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Abstract: We consider data-driven control of input-affine systems via approximate nonlinearity
cancellation. Data-dependent semi-definite program is developed to characterize the stabilizer
such that the linear dynamics of the closed-loop systems is stabilized and the influence of the
nonlinear dynamics is decreased. Because of the additional nonlinearity brought by the state-
dependent input vector field, nonlinearity cancellation is more difficult to achieve. We show
that under some assumptions on the nonlinearity, the nonlinearity cancellation control approach
can render the equilibrium locally asymptotically stable even if the additional nonlinearity is
neglected. Data-based estimation of the region of the attraction is also presented.

Keywords: Data-driven control, nonlinear control, region of attraction estimation, robust
control, learning control

1. INTRODUCTION

Control design for complex dynamical systems with lim-
ited knowledge on the dynamics has always been challeng-
ing in control engineering. Data-driven control is one of
the efforts devoted to overcoming this challenge. Using
input-output data and some preknowledge on the dynam-
ics, data-driven control synthesizes controllers to achieve
various design objectives. On the contrary to the indirect
data-driven control method which identifies the system
model first, the direct data-driven control method charac-
terizes controllers without explicit system identification.
Inspired by the fundamental lemma by Willems et al.
(2005), which shows that the behavior of a linear time-
invariant system can be represented by a single input-
output trajectory, notable results on direct data-driven
control have been reported. For instance, Coulson et al.
(2019) and Huang et al. (2022) developed data-enabled
predictive control using data-based representation, and De
Persis and Tesi (2020) characterized feedback stabilizers
and linear quadratic regulators via data-dependent linear
matrix inequalities and semi-definite programs.

For nonlinear dynamical systems, direct data-driven con-
trollers have been developed via various approaches and
techniques, such as the virtual reference feedback tuning
(VRFT) by Campi and Savaresi (2006), the online data-
driven control by Tanaskovic et al. (2017), and the Koop-
man based data-driven predictive control by Lian et al.
(2021). The work of van Waarde and Camlibel (2021)
applied a matrix Finsler’s lemma to data-driven control,
Fraile et al. (2021) designed controllers by point-wise lin-
ear approximation of feedback linearizable systems, and
Alsalti et al. (2023) developed data-based nonlinear pre-
dictive control scheme for feedback linearizable systems.

Based on the results of De Persis and Tesi (2020) and con-
sidering polynomial systems, Guo et al. (2022a) designed
data-driven stabilizers via sum of squares (SOS) relax-
ation, Luppi et al. (2022) investigated the case where the
nonlinearities satisfying quadratic constraints, and Bisoffi
et al. (2022) developed data-driven control designs using
Petersen’s lemma. For non-polynomial systems, when the
collected data is close to the equilibrium to be stabilized,
Guo et al. (2022b) obtained local stabilization results by
approximating the nonlinear dynamics via Taylor’s ex-
pansion. Using Taylor polynomials, Martin et al. (2022)
designed state-feedback controllers with data corrupted by
Gaussian noise. If the basis functions of the unknown dy-
namics are available, De Persis et al. (2023) derived data-
dependent semi-definite programs whose solution gives
data-driven controllers that (approximately) cancel out
the nonlinearity. Data-driven safety controllers have been
developed for polynomial systems by Luppi et al. (2021)
and Nejati et al. (2022), respectively.

The recent result by De Persis et al. (2023) has established
data-driven control via (approximate) nonlinearity cancel-
lation. In particular, when both the state and the input
enter the dynamics nonlinearly, a dynamic controller is
designed by dynamic extension such that the equilibrium
is locally asymptotically stable. This work considers a class
of input-affine systems and shows that the nonlinearity
cancellation approach by De Persis et al. (2023) can be
applied to design data-driven static feedback controllers
for input-affine systems with state-dependent input vector
field. Following the idea of approximate nonlinearity can-
cellation, we also stabilize the linear part of the closed-loop
dynamics and decrease the influence of the nonlinear part.
However, because of the state-dependent input vector field,
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the designed control input brings additional nonlinearity
into the dynamics and nonlinearity cancellation becomes
more difficult.

Outline of the contribution. We consider the discrete-
time input affine systems whose input vector field can
be written as the sum of a state-independent part and a
state-dependent part. Using the prior information on the
dynamics, we express the dynamics in the linear-like form
and design a feedback controller based on the basis func-
tions. The collected data is assumed to be perturbed by
noise with a known bound. Data-based conditions are then
derived to characterize stabilizers for the linear closed-loop
dynamics, and suitable costs are chosen to decrease the
effect of the nonlinear dynamics. Specifically, we use the
control input’s nonlinear component entering through the
state-independent part of input vector field to approxi-
mately cancel out the system nonlinearity. The additional
nonlinearity brought through the state-dependent part of
the input vector field is not especially handled. Under
mild assumptions on the nonlinear basis functions, local
asymptotic stability of the equilibrium is guaranteed and
the RoA is estimated based on data. The performance of
the controller can be improved if the influence of the ad-
ditional nonlinearity is also decreased in the semi-definite
programs. It is of importance to investigate how to further
decrease the impact of the nonlinearities in our future
works.

The rest of the work is organized as follows. The data-
driven stabilization problem is formulated in Section 2.
The stabilizer design and RoA estimation are presented
in Sections 3 and 4, respectively. A numerical example
is illustrated in Section 5. Some conclusive remarks are
drawn in Section 6.

2. PROBLEM FORMULATION

Consider the discrete-time system

x+ = f(x) + g(x)u

where x ∈ Rn is the state, u ∈ Rm is the input. Without
loss of generality, assume that the uncontrolled system has
an equilibrium at the origin, i.e., f(0) = 0. One can always
write the system into the linear-like form

x+ = AZ(x) + (B0 +B1W (x))u (1)

where the function W (x) ∈ Rp×m contains basis functions
dependent on x, and

Z(x) =

[
x

Q(x)

]

with Q(x) ∈ Rq×1 containing nonlinear basis functions.
The constant matrices A ∈ Rn×(n+q), B0 ∈ Rn×m and
B1 ∈ Rn×p are unknown.

Assumption 1. The functions Z(x) and W (x) are known.
There is at least one nonzero element in B0. �

Remark 1. We assume Z(x) and W (x) are known for non-
linearity cancellation. The information on the basis func-
tions can be obtained via pre-knowledge on the dynamics.
To ensure that the designed controller contains a linear
feedback component, we assume that B0 has at least one
non-zero element. This implies that g(x) contains 1 as a
basis function, or at least one of the non-polynomial basis
functions gij(x), i = 1, . . . , n, j = 1, . . . ,m, has value 1 at

the origin, so that it can be approximate at the origin by
Taylor’s expansion with the constant term gij(0) = 1. �

Following the idea of nonlinearity cancellation developed
by De Persis et al. (2023), we aim at designing a static
state feedback controller u = KZ(x), such that the linear
component of the closed-loop system is stable and the
influence of the nonlinear component is minimized.

As the matrices A and B are not available for controller
design, we use data to represent the system dynamics.
Denote the dataset collected in the experiment as DS :=
{x(k);u(k)}Tk=0. Arrange the collected data as

X0 := [x(0) x(1) · · · x(T − 1)] ∈ Rn×T ,

X1 := [x(1) x(2) · · · x(T )] ∈ Rn×T ,

U0 := [u(0) u(1) · · · u(T − 1)] ∈ Rm×T ,

U0 := [W (x(0))u(0) W (x(1))u(1)

· · · W (x(T − 1))u(T − 1))] ∈ Rp×T ,

Z0 :=

[
x(0) x(1) · · · x(T − 1)

Q(x(0)) Q(x(1)) · · · Q(x(T − 1))

]
∈ R(n+q)×T .

Assume that the collected data is affected by noise d(k)
during the data acquisition phase for k = 0, . . . , T −1, and
the data satisfies that

X1 = AZ0 +B0U0 +B1U0 +D0 (2)

where D0 := [d(0) d(1) · · · d(T − 1)] ∈ Rn×T . For the
sake of simplicity, this work does not consider the distur-
bances affecting the execution of the control input, which
could be handled by following a similar approach as shown
in Section IV of the work by De Persis et al. (2023) and
will be studied in our future work.

The data-driven control problem considered in this work
is formulated as follows.

Problem 1. For the discrete-time system (1) satisfying
Assumption 1, design a feedback controller u = KZ(x) via
the dataset DS, such that the origin is an asymptotically
stable equilibrium for the closed-loop system.

3. CONTROL DESIGN

In this section, we first derive the data-based closed-
loop representation that is composed of a linear part
and a nonlinear part. Then, an optimization problem is
developed to solve Problem 1.

Consider the feedback controller u = KZ(x) where K ∈
Rm×(n+q) is the control gain. Let the matrices K, Y ∈
RT×(n+q) and P ∈ R(n+q)×(n+q) satisfies that P � 0,

K = U0Y P−1, Z0Y = P. (3)

Similarly as presented in Guo et al. (2022a), the closed-
loop dynamics can be written as

x+ = AZ(x) + (B0 +B1W (x))KZ(x)

(3)
= AZ0Y P−1Z(x) + (B0 +B1W (x))U0Y P−1Z(x)

= (AZ0 +B0U0 +B1W (x)U0)Y P−1Z(x)

(2)
= (X1 −B1U0 −D0 +B1W (x)U0)Y P−1Z(x).

We define that G = [G1 G2] = Y P−1 ∈ RT×(n+q) with
G1 ∈ RT×n and G2 ∈ RT×q. The product Y P−1Z(x) can
then be found as
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the designed control input brings additional nonlinearity
into the dynamics and nonlinearity cancellation becomes
more difficult.

Outline of the contribution. We consider the discrete-
time input affine systems whose input vector field can
be written as the sum of a state-independent part and a
state-dependent part. Using the prior information on the
dynamics, we express the dynamics in the linear-like form
and design a feedback controller based on the basis func-
tions. The collected data is assumed to be perturbed by
noise with a known bound. Data-based conditions are then
derived to characterize stabilizers for the linear closed-loop
dynamics, and suitable costs are chosen to decrease the
effect of the nonlinear dynamics. Specifically, we use the
control input’s nonlinear component entering through the
state-independent part of input vector field to approxi-
mately cancel out the system nonlinearity. The additional
nonlinearity brought through the state-dependent part of
the input vector field is not especially handled. Under
mild assumptions on the nonlinear basis functions, local
asymptotic stability of the equilibrium is guaranteed and
the RoA is estimated based on data. The performance of
the controller can be improved if the influence of the ad-
ditional nonlinearity is also decreased in the semi-definite
programs. It is of importance to investigate how to further
decrease the impact of the nonlinearities in our future
works.

The rest of the work is organized as follows. The data-
driven stabilization problem is formulated in Section 2.
The stabilizer design and RoA estimation are presented
in Sections 3 and 4, respectively. A numerical example
is illustrated in Section 5. Some conclusive remarks are
drawn in Section 6.

2. PROBLEM FORMULATION

Consider the discrete-time system

x+ = f(x) + g(x)u

where x ∈ Rn is the state, u ∈ Rm is the input. Without
loss of generality, assume that the uncontrolled system has
an equilibrium at the origin, i.e., f(0) = 0. One can always
write the system into the linear-like form

x+ = AZ(x) + (B0 +B1W (x))u (1)

where the function W (x) ∈ Rp×m contains basis functions
dependent on x, and

Z(x) =

[
x

Q(x)

]

with Q(x) ∈ Rq×1 containing nonlinear basis functions.
The constant matrices A ∈ Rn×(n+q), B0 ∈ Rn×m and
B1 ∈ Rn×p are unknown.

Assumption 1. The functions Z(x) and W (x) are known.
There is at least one nonzero element in B0. �

Remark 1. We assume Z(x) and W (x) are known for non-
linearity cancellation. The information on the basis func-
tions can be obtained via pre-knowledge on the dynamics.
To ensure that the designed controller contains a linear
feedback component, we assume that B0 has at least one
non-zero element. This implies that g(x) contains 1 as a
basis function, or at least one of the non-polynomial basis
functions gij(x), i = 1, . . . , n, j = 1, . . . ,m, has value 1 at

the origin, so that it can be approximate at the origin by
Taylor’s expansion with the constant term gij(0) = 1. �

Following the idea of nonlinearity cancellation developed
by De Persis et al. (2023), we aim at designing a static
state feedback controller u = KZ(x), such that the linear
component of the closed-loop system is stable and the
influence of the nonlinear component is minimized.

As the matrices A and B are not available for controller
design, we use data to represent the system dynamics.
Denote the dataset collected in the experiment as DS :=
{x(k);u(k)}Tk=0. Arrange the collected data as

X0 := [x(0) x(1) · · · x(T − 1)] ∈ Rn×T ,

X1 := [x(1) x(2) · · · x(T )] ∈ Rn×T ,

U0 := [u(0) u(1) · · · u(T − 1)] ∈ Rm×T ,

U0 := [W (x(0))u(0) W (x(1))u(1)

· · · W (x(T − 1))u(T − 1))] ∈ Rp×T ,

Z0 :=

[
x(0) x(1) · · · x(T − 1)

Q(x(0)) Q(x(1)) · · · Q(x(T − 1))

]
∈ R(n+q)×T .

Assume that the collected data is affected by noise d(k)
during the data acquisition phase for k = 0, . . . , T −1, and
the data satisfies that

X1 = AZ0 +B0U0 +B1U0 +D0 (2)

where D0 := [d(0) d(1) · · · d(T − 1)] ∈ Rn×T . For the
sake of simplicity, this work does not consider the distur-
bances affecting the execution of the control input, which
could be handled by following a similar approach as shown
in Section IV of the work by De Persis et al. (2023) and
will be studied in our future work.

The data-driven control problem considered in this work
is formulated as follows.

Problem 1. For the discrete-time system (1) satisfying
Assumption 1, design a feedback controller u = KZ(x) via
the dataset DS, such that the origin is an asymptotically
stable equilibrium for the closed-loop system.

3. CONTROL DESIGN

In this section, we first derive the data-based closed-
loop representation that is composed of a linear part
and a nonlinear part. Then, an optimization problem is
developed to solve Problem 1.

Consider the feedback controller u = KZ(x) where K ∈
Rm×(n+q) is the control gain. Let the matrices K, Y ∈
RT×(n+q) and P ∈ R(n+q)×(n+q) satisfies that P � 0,

K = U0Y P−1, Z0Y = P. (3)

Similarly as presented in Guo et al. (2022a), the closed-
loop dynamics can be written as

x+ = AZ(x) + (B0 +B1W (x))KZ(x)

(3)
= AZ0Y P−1Z(x) + (B0 +B1W (x))U0Y P−1Z(x)

= (AZ0 +B0U0 +B1W (x)U0)Y P−1Z(x)

(2)
= (X1 −B1U0 −D0 +B1W (x)U0)Y P−1Z(x).

We define that G = [G1 G2] = Y P−1 ∈ RT×(n+q) with
G1 ∈ RT×n and G2 ∈ RT×q. The product Y P−1Z(x) can
then be found as

Y P−1Z(x) = [G1 G2]

[
x

Q(x)

]
= G1x+G2Q(x). (4)

Substituting (4) into the closed-loop dynamics, we write
the dynamics into the sum of a linear part and a nonlinear
part, i.e.,

x+ = Ax+Ψ(x) (5)

where A = (X1 − EÛ0)G1 with E = [B1 D0], Û0 =[
U

�
0 IT

]�
and

Ψ(x) = (X1 − EÛ0)G2Q(x)

+B1W (x)U0G1x+B1W (x)U0G2Q(x). (6)

To solve Problem 1, we will find the matrices Y and P
such that the feedback controller u = Y P−1Z(x) stabilizes
the matrix A and decreases the influence of the nonlinear
component Ψ(x).

First, we characterize the feedback controller that renders
A stable. As A depends on the unknown matrix E, the
following assumption is posed.

Assumption 2. There exists a known matrix RE � 0 such
that EE� � RE . �

Remark 2. The unknown matrix E consists of the system
parameter B1 and the noise data D0. It is reasonable to
assume that the latter is bounded asD0D

�
0 � RD for some

known RD � 0. A similar bound on B1, i.e., B1B
�
1 � RB

for some known RB � 0, can be obtained from data if[
U0

Z0

]
has full row rank (Guo et al., 2022a, Remark 2).

Then, RE takes the form of RE = RB +RD as

EE� = [B1 D0]

[
B�

1

D�
0

]
= B1B

�
1 +D0D

�
0 � RB +RD.

The bound on B0 is not needed. Note that it is possible to
estimate the matrix [A B0 B1] via (2) using least-square
estimate. �

Let matrices Y and P take the form

Y = [Y1 Y2] , P =

[
P1 0
0 P2

]
(7)

with Y1 ∈ RT×n, Y2 ∈ RT×q, P1 ∈ Rn×n, and P2 ∈ Rq×q.
By the relation G = Y P−1, one has that G1 = Y1P

−1
1

and G2 = Y2P
−1
2 . We give the following lemma that

characterizes Y1 and P1 such that the resulting G1 makes
A stable.

Lemma 1. Under Assumption 2, for any fixed Ω � 0, if
there exist matrices Y1, P1 � 0, P1 = P�

1 , and constant ε
such that 


P1 − Ω Y �

1 Û�
0 Y �

1 X�
1

Û0Y1 εI(p+T ) 0(p+T )×n

X1Y1 0n×(p+T ) P1 − εRE


 � 0 (8a)

ε > 0 (8b)

then it holds that

−P1 + Y �
1 (X1 − EÛ0)

�P−1
1 (X1 − EÛ0)Y1 � −Ω. (9)

�

Proof. For any ε > 0, by Schur complement, condition (8a)
is equivalent to

−P1+ ε−1Y �
1 Û�

0 Û0Y1−Y �
1 X�

1 (−P1 + εRE)
−1X1Y1 � −Ω

which can be written as[
−P1 +Ω Y �

1 X�
1

X1Y1 −P1

]
+ ε−1

[
Y �
1 Û�

0
0

] [
Û0Y1 0

]

+ ε

[
0

−In

]
RE [0 −In] � 0. (10)

Recalling Assumption 2, and using Petersen’s lemma
(Bisoffi et al., 2022, Fact 2), condition (10) is equivalent
to [

−P1 +Ω Y �
1 X�

1
X1Y1 −P1

]
+

[
Y �
1 Û�

0
0

]
E� [0 −In]

+

[
0

−In

]
E
[
Û0Y1 0

]
� 0. (11)

Rearranging (11) gives
[

−P1 +Ω Y �
1 (X1 − EÛ0)

�

(X1 − EÛ0)Y1 −P1

]
� 0 (12)

which, by Schur complement, is equivalent to (9). �

A direct result following Lemma 1 is that the origin is
a globally exponentially stable equilibrium of the linear

dynamics x+ = Ax = (X1 − EÛ0)G1x. Define the
Lyapunov function V (x) = x�P−1

1 x. Recalling that G1 =
Y1P

−1
1 , the difference between V (x+) and V (x) is

V (x+)− V (x)

= x�G�
1 (X1 − EÛ0)

�P−1
1 (X1 − EÛ0)G1x− x�P1x

= x�P−1
1

[
Y �
1 (X1 − EÛ0)

�P−1
1 (X1 − EÛ0)Y1

−P1]P
−1
1 x.

By Lemma 1, the solution to (8a) and (8b) leads to

V (x+)− V (x) ≤ −x�P−1
1 · Ω · P−1

1 x.

As Ω � 0, Lemma 1 ensures that the origin is a globally
exponentially stable equilibrium of the linear dynamics
x+ = Ax, and the decay rate is enforced by the choice
of Ω.

We know that between the two components of G, G1 is
chosen to stabilize A and G2 is chosen to decrease the
influence of the nonlinear term Ψ(x). We recall that the
nonlinear term Ψ(x) takes the form

Ψ(x) = (X1 − EÛ0)G2Q(x)︸ ︷︷ ︸
=:ψ1(x)

+B1W (x)U0G2Q(x)︸ ︷︷ ︸
=:ψ2(x)

+B1W (x)U0G1x. (13)

If the input vector field is state-independent (W (x) = 0),
then ψ1(x) is the closed-loop nonlinearity. To decrease the

effect of ψ1(x), we minimize ‖(X1 − EÛ0)G2‖. However,
as the input vector field is state-dependent, there are
additional closed-loop nonlinearities. In this work, we show
that by choosing G2 such that it decreases the effect of
ψ1(x), the designed controller can render the origin locally
asymptotically stable. Meanwhile, one may also penalize
‖G2‖ in the cost to decrease the influence of ψ2(x). If
we neglect the unknown matrix E, we set the cost as

‖X1G2‖ + ‖Û0G2‖ + λ‖G2‖ for any fixed weight λ ≥ 0
and establish the following minimization problem
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min
P1,Y1,G2,ε

‖X1G2‖+ ‖Û0G2‖+ λ‖G2‖ (14a)

s.t. (8a), (8b)

Z0Y1 =

[
P1

0q×n

]
(14b)

Z0G2 =

[
0n×q

Iq

]
, (14c)

where (14b) and (14c) ensure that Z0Y = P .

Remark 3. If we do not neglect the unknown matrix E, we

can change the cost term ‖Û0G2‖ into λmax(RE)
1/2‖Û0G2‖

where λmax(RE) represents the largest eigenvalue of RE .
Alternatively, we may minimize the norm of

Ξ := (X1 − EÛ0)G2 (15)

which requires additional conditions to handle E under
Assumption 2. By the nonstrict Petersen’s lemma (Bisoffi
et al., 2022, Fact 2) and Schur complement, if for any δ > 0
it holds that


γ2Iq G�

2 Û
�
0 G�

2 X
�
1

Û0G2 δIp+T 0(p+T )×n

X1G2 0n×(p+T ) In − δRE


 � 0, (16)

then G�
2 (X1 − EÛ0)

�(X1 − EÛ0)G2 − γ2Iq � 0, i.e.,
Ξ�Ξ � γ2Iq. Hence, to minimize ‖Ξ‖, we can choose γ as
the cost. In this case, the optimization problem becomes

min
P1,Y1,G2,ε,γ,δ

γ + λ‖G2‖ (17a)

s.t. (8a), (8b), (14b), (14c), (16)

δ > 0. (17b)

�

Now we analyze the stability of the overall closed-loop
system x+ = Ax + Ψ(x). The stabilization result is given
as follows.

Theorem 1. Consider the nonlinear system (1). If the
optimization problem (14) is feasible and it holds that

lim
|x|→0

|Q(x)|
|x|

= 0, lim
|x|→0

|W (x)| = 0, (18)

then the control input u = U0Y P−1Z(x) renders the origin
asymptotically stable for the closed-loop system. �

Proof. Under conditions (14b) and (14c) and by the choice
of the control gain K = U0Y P−1, the system (1) under the
feedback u = KZ(x) results in the closed-loop dynamics
x+ = Ax+Ψ(x). Using Lemma 1, we have shown that the
condition (8a) guarantees that the linear system x+ = Ax
is stable. For the overall closed-loop system x+ = Ax +
Ψ(x), if the stable linear part dominates the nonlinear part
near the origin, then the origin is asymptotically stable.
To ensure that the linear part dominates the nonlinear
part, we examine the function Ψ(x) in (13). For ψ1(x),

we need lim|x|→0
|Q(x)|
|x| = 0, which also ensures that

ψ2(x) converges to the origin faster than the linear part
in a neighborhood of the origin. Similarly, for the term
B1W (x)U0G1x, we need

lim
|x|→0

|W (x)U0G1x|
|x|

= 0. (19)

Note that for any x �= 0, it holds that

0 ≤ |W (x)U0G1x|
|x|

≤ |W (x)||U0G1||x|
|x|

= |W (x)||U0G1|.

(20)

We also note that if lim|x|→0 |W (x)| = 0, then

lim
|x|→0

|W (x)||U0G1| = 0.

Hence, by the squeeze theorem, as (20) holds true, (19) is
guaranteed by lim|x|→0 |W (x)| = 0. Therefore, (18) makes
sure that the linear dynamics of the closed-loop system
dominates the nonlinear dynamics near the origin, and
hence the origin is asymptotically stable. �

Remark 4. The conditions in (18) can be easily checked
as Q(x) and W (x) contain known basis functions. As
pointed out in Section IV.A by De Persis et al. (2023),
these conditions are satisfied for any polynomial systems,
as well as the systems with functions f(0) = 0, gij(0) = 1,
i = 1, . . . , n, j = 1, . . . ,m, and f(·), gij(·) differentiable at
the origin so that the functions can be written as the sum
of a linear part and a Taylor’s remainder. �

Remark 5. In the optimization problem, the cost is chosen
to minimize the influence of nonlinearity ψ1(x), which aims
at cancelling the system nonlinearity using the control
effort U0G2Q(x). Due to the state-dependent input vector
fieldW (x), the control input brings additional nonlinearity
into the closed-loop dynamics. We try to decrease the effect
of the additional nonlinearity by penalizing the term ‖G2‖.
As shown in the simulation results in Section 5, penalizing
‖G2‖ does not improve the controller performance. How to
design the cost and conditions of the optimization problem
so that Ψ(x) has minimum influence on the dynamics is
an interesting topic to be further investigated in our future
work. �

4. ROA ESTIMATION

In this section, we analyze the RoA of the closed-loop
system under the designed controllers using data. First,
the definition of the RoA is given as follows.

Definition 1. A set S is positively invariant for the system
x+ = f(x) if for every x(0) ∈ S the solution x(t) for t > 0
satisfies x(t) ∈ S. If for every initial condition x(0) ∈ R,
it holds that limk→∞ x(k) = 0, then R is a region of
attraction of the system with respect to the origin. �

Recall that (8a) in Theorem 1 guarantees that for any
given Ω � 0,

Y �
1 (X1 − EÛ0)

�P−1
1 (X1 − EÛ0)Y1 − P1 � −Ω. (21)

Using the definitions G1 = Y1P
−1
1 and A = (X1−EÛ0)G1,

the above inequality implies

A�P−1
1 A− P−1

1 � −P−1
1 ΩP−1

1 . (22)

Defining Φ = P−1
1 ΩP−1

1 gives A�P−1
1 A− P−1

1 ≺ −Φ.

For the closed-loop dynamics x+ = Ax + Ψ(x), the
difference between V (x+) and V (x) is

V (x+)− V (x) = x� (
A�P−1

1 A− P−1
1

)
x

+ 2x�A�P−1
1 Ψ(x) + Ψ(x)�P−1

1 Ψ(x).

Bear in mind that
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min
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‖X1G2‖+ ‖Û0G2‖+ λ‖G2‖ (14a)

s.t. (8a), (8b)

Z0Y1 =
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P1

0q×n

]
(14b)

Z0G2 =

[
0n×q

Iq

]
, (14c)

where (14b) and (14c) ensure that Z0Y = P .

Remark 3. If we do not neglect the unknown matrix E, we

can change the cost term ‖Û0G2‖ into λmax(RE)
1/2‖Û0G2‖

where λmax(RE) represents the largest eigenvalue of RE .
Alternatively, we may minimize the norm of

Ξ := (X1 − EÛ0)G2 (15)

which requires additional conditions to handle E under
Assumption 2. By the nonstrict Petersen’s lemma (Bisoffi
et al., 2022, Fact 2) and Schur complement, if for any δ > 0
it holds that
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then G�
2 (X1 − EÛ0)

�(X1 − EÛ0)G2 − γ2Iq � 0, i.e.,
Ξ�Ξ � γ2Iq. Hence, to minimize ‖Ξ‖, we can choose γ as
the cost. In this case, the optimization problem becomes

min
P1,Y1,G2,ε,γ,δ

γ + λ‖G2‖ (17a)

s.t. (8a), (8b), (14b), (14c), (16)

δ > 0. (17b)

�

Now we analyze the stability of the overall closed-loop
system x+ = Ax + Ψ(x). The stabilization result is given
as follows.

Theorem 1. Consider the nonlinear system (1). If the
optimization problem (14) is feasible and it holds that

lim
|x|→0

|Q(x)|
|x|

= 0, lim
|x|→0

|W (x)| = 0, (18)

then the control input u = U0Y P−1Z(x) renders the origin
asymptotically stable for the closed-loop system. �

Proof. Under conditions (14b) and (14c) and by the choice
of the control gain K = U0Y P−1, the system (1) under the
feedback u = KZ(x) results in the closed-loop dynamics
x+ = Ax+Ψ(x). Using Lemma 1, we have shown that the
condition (8a) guarantees that the linear system x+ = Ax
is stable. For the overall closed-loop system x+ = Ax +
Ψ(x), if the stable linear part dominates the nonlinear part
near the origin, then the origin is asymptotically stable.
To ensure that the linear part dominates the nonlinear
part, we examine the function Ψ(x) in (13). For ψ1(x),

we need lim|x|→0
|Q(x)|
|x| = 0, which also ensures that

ψ2(x) converges to the origin faster than the linear part
in a neighborhood of the origin. Similarly, for the term
B1W (x)U0G1x, we need

lim
|x|→0

|W (x)U0G1x|
|x|

= 0. (19)

Note that for any x �= 0, it holds that

0 ≤ |W (x)U0G1x|
|x|

≤ |W (x)||U0G1||x|
|x|

= |W (x)||U0G1|.

(20)

We also note that if lim|x|→0 |W (x)| = 0, then

lim
|x|→0

|W (x)||U0G1| = 0.

Hence, by the squeeze theorem, as (20) holds true, (19) is
guaranteed by lim|x|→0 |W (x)| = 0. Therefore, (18) makes
sure that the linear dynamics of the closed-loop system
dominates the nonlinear dynamics near the origin, and
hence the origin is asymptotically stable. �

Remark 4. The conditions in (18) can be easily checked
as Q(x) and W (x) contain known basis functions. As
pointed out in Section IV.A by De Persis et al. (2023),
these conditions are satisfied for any polynomial systems,
as well as the systems with functions f(0) = 0, gij(0) = 1,
i = 1, . . . , n, j = 1, . . . ,m, and f(·), gij(·) differentiable at
the origin so that the functions can be written as the sum
of a linear part and a Taylor’s remainder. �

Remark 5. In the optimization problem, the cost is chosen
to minimize the influence of nonlinearity ψ1(x), which aims
at cancelling the system nonlinearity using the control
effort U0G2Q(x). Due to the state-dependent input vector
fieldW (x), the control input brings additional nonlinearity
into the closed-loop dynamics. We try to decrease the effect
of the additional nonlinearity by penalizing the term ‖G2‖.
As shown in the simulation results in Section 5, penalizing
‖G2‖ does not improve the controller performance. How to
design the cost and conditions of the optimization problem
so that Ψ(x) has minimum influence on the dynamics is
an interesting topic to be further investigated in our future
work. �

4. ROA ESTIMATION

In this section, we analyze the RoA of the closed-loop
system under the designed controllers using data. First,
the definition of the RoA is given as follows.

Definition 1. A set S is positively invariant for the system
x+ = f(x) if for every x(0) ∈ S the solution x(t) for t > 0
satisfies x(t) ∈ S. If for every initial condition x(0) ∈ R,
it holds that limk→∞ x(k) = 0, then R is a region of
attraction of the system with respect to the origin. �

Recall that (8a) in Theorem 1 guarantees that for any
given Ω � 0,

Y �
1 (X1 − EÛ0)

�P−1
1 (X1 − EÛ0)Y1 − P1 � −Ω. (21)

Using the definitions G1 = Y1P
−1
1 and A = (X1−EÛ0)G1,

the above inequality implies

A�P−1
1 A− P−1

1 � −P−1
1 ΩP−1

1 . (22)

Defining Φ = P−1
1 ΩP−1

1 gives A�P−1
1 A− P−1

1 ≺ −Φ.

For the closed-loop dynamics x+ = Ax + Ψ(x), the
difference between V (x+) and V (x) is

V (x+)− V (x) = x� (
A�P−1

1 A− P−1
1

)
x

+ 2x�A�P−1
1 Ψ(x) + Ψ(x)�P−1

1 Ψ(x).

Bear in mind that

Ψ(x)

= B1W (x)U0G1x+ (X1 − EÛ0 +B1W (x)U0)G2Q(x)

= B1

(
W (x)U0GZ(x)− U0G2Q(x)

)
−D0G2Q(x)

+X1G2Q(x).

We rewrite Ψ(x) as Ψ(x) = EΥ(x) +X1G2Q(x) where

Υ(x) =

[
W (x)U0GZ(x)− U0G2Q(x)

−G2Q(x)

]
.

Next, by simple calculation, we obtain that

x�A�P−1
1 Ψ(x)

= (X1G2Q(x))�P−1
1 X1G2Q(x) + Υ(x)�E�P−1EΥ(x)

+ 2(X1G2Q(x))�P−1
1 EΥ(x).

Using the above expressions and recalling that under
Assumption 2, it holds that ‖E‖2 ≤ ‖RE‖2, we can write

V (x+)− V (x) ≤ −x�Φx+ l1(x) + l2(x) + l3(x) + l4(x)︸ ︷︷ ︸
=:l(x)

(23)

where

l1(x) := (2X1G1x+X1G2Q(x))
�
P−1
1 X1G2Q(x),

l2(x) := 2‖RE‖2
∣∣∣Û0G1x

∣∣∣ ∣∣P−1
1 X1G2Q(x)

∣∣ ,
l3(x) := 2‖RE‖2

∣∣(X1G1x)
�P−1

1

+(X1G2Q(x))�P−1
1

∣∣ |Υ(x)| ,

l4(x) := ‖RE‖22‖P−1
1 ‖

∣∣∣2Û0G1x+Υ(x)
∣∣∣ |Υ(x)| .

Note that the functions li(x), i = 1, . . . , 4, can all be
computed from data and the known basis functions. Now
we are ready to present the data-based estimation of the
RoA.

Proposition 1. Consider system (1) with the control input
designed by Theorem 1. Let L := l(x) < 0 with l(x)
defined in (23). Then, any sublevel set Rc := {x : V (x) ≤
c} of V (x) = x�P−1

1 x contained in L ∪ {0} is a positively
invariant set for the closed-loop system and defines an
estimate of the RoA relative to x = 0. �

5. NUMERICAL EXAMPLE

Consider the polynomial system

x+
1 = 0.5x2

x+
2 = x1 + x3

2 + (1 + x2)u. (24)

Let Z(x) =
[
x1 x2 x2

2 x3
2

]�
and W (x) = [x1 x2]

�
. We

collect data by conducting an experiment with input
uniformly distributed within the interval [−0.5, 0.5] and
with an initial state within the same interval. The noise is
uniformly distributed within the interval [−0.1, 0.1]. The
length of the data collected is set as T = 30.

First, we solve the optimization problem (14) by setting
Ω = 1 · 10−8. When ‖G2‖ is not penalized (λ = 0), the
solution of the optimization problem gives

P1 = 10−7 ·
[
0.1187 0.0026
0.0026 0.1262

]
,

K = [−0.1600 −0.0537 0.1539 −0.7047] .

We observe that the first two components in K render
the linear part of the dynamics stable, while the rest of

Fig. 1. Estimation of the RoA using the cost ‖X1G2‖ + ‖Û0G2‖ + λ‖G2‖
(light grey) and the largest sub-level set of V = x�P−1

1
x contained in

it (dark grey) with λ = 0 (left) and λ = 1 (right).

Fig. 2. Estimation of the RoA using the cost ‖X1G2‖ +

λmax(RE)1/2‖Û0G2‖ + λ‖G2‖ (light grey) and the largest sub-

level set of V = x�P−1
1

x contained in it (dark grey) with λ = 0 (left)

and λ = 1 (right).

the components decrease the influence of the nonlinear
part. In particular, the term −0.7047x3

2 is the approximate
cancellation performed on the nonlinearity x3

2 in the dy-
namics. Only approximate cancellation is achieved because
of the matrix E containing unknown noise D0 and system
parameters B1.

From the solution we calculate that ‖Ξ‖ = 0.3330 and

Ψ(x) =[0;−0.7047x4
2+0.4491x3

2+0.1002x2
2−0.1600x1x2].

The estimated RoA is illustrated in Fig. 1 (left) , where
the dark ellipse is {x : x�P−1

1 x ≤ 1.86 · 106}.
When we penalize ‖G2‖ (λ = 1), the solution to (14) is

P1 = 10−7 ·
[
0.1150 0.0019
0.0019 0.1350

]
,

K = [−0.1734 −0.0517 0.0192 −0.5855] .

We calculate from the solution that ‖Ξ‖ = 0.4149 and

Ψ(x) =[0;−0.5855x4
2+0.4337x3

2−0.0325x2
2−0.1734x1x2].

The estimated RoA is illustrated in Figure 1 (right) where
the dark ellipse is {x : x�P−1

1 x ≤ 1.1 · 106}. When the

cost is set as ‖X1G2‖+λmax(RE)
1/2‖Û0G2‖+λ‖G2‖, the

simulation results are illustrated in Fig. 2. Due to space
limit, details of the solutions are omitted here.

Next, we consider the optimization problem (17) that
minimizes the norm of Ξ. When ‖G2‖ not penalized (λ =
0), the solution is

P1 = 10−7 ·
[
0.0902 0.0020
0.0020 0.1116

]
,

K = [−0.1893 −0.0539 0.1466 −0.6839] .

It can be calculated that ‖Ξ‖ = 0.3484 and

Ψ(x) =[0;−0.6839x4
2+0.4627x3

2+0.0927x2
2−0.1893x1x2].

The estimated RoA is illustrated in Fig. 3 (left) where the
dark ellipse is {x : x�P−1

1 x ≤ 1.58 · 106}.
When ‖G2‖ is penalized (λ = 1), solving (17) gives
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Fig. 3. Estimation of the RoA using the cost γ +λ‖G2‖ (light grey) and the

largest sub-level set of V = x�P−1
1

x contained in it (dark grey) with

λ = 0 (left) and λ = 1 (right).

Fig. 4. Estimation of the RoA using the cost ‖X1G2‖+ ‖Û0G2‖+ ‖U0G2‖.

P1 = 10−7 ·
[
0.1125 0.0054
0.0054 0.1245

]
,

K = [−0.3475 −0.0955 0.0376 −0.6633] .

It can be calculated that ‖Ξ‖ = 0.3388 and

Ψ(x) =[0;−0.6633x4
2+0.3743x3

2−0.0580x2
2−0.3475x1x2].

Using this solution, the estimated RoA is illustrated in
Figure 3 (right), where the dark ellipse is {x : x�P−1

1 x ≤
0.65 · 106}.
The simulation results show that for all variations of the
cost, the designed controllers are closer to cancel the non-
linear term x3

2 in the dynamics when ‖G2‖ is not penalized,
and also result in larger estimated RoA. When ‖G2‖ is not
penalized, the optimization problem (14) returns a smaller
‖Ξ‖ and a larger estimated RoA compared with (17). As
pointed out in Remark 5 and verified by the simulation
results, the designed controller can only approximately
cancel the nonlinearity and brings additional nonlinearity
into the dynamics. Future investigations will be focused
on decreasing the norm of matrix by which the additional
nonlinearity enters the dynamics.

In comparison, we change the penalized term from λ‖G2‖
to ‖U0G2‖, and the optimization problem returns a linear
controller as U0G2 is the gain of the nonlinear part
of the controller. The control gain returned is K =
[−0.3283 − 0.0543 − 6.3815 · 10−8 − 7.7083 · 10−7]. The
remaining nonlinearity in x2-subsystem is −7.70831x4

2 +
x3
2 − 0.05434x2

2 − 0.3283x1x2, where x3
2 is the nonlinear

term from the system dynamics and the rest is brought
by B1W (x)U0G1x. The estimated RoA is given in Figure
4, which is much smaller than the one obtained from the
nonlinear controllers.

6. CONCLUSION

This work applies the data-driven control approach via
nonlinearity cancellation developed by De Persis et al.
(2023) to input-affine nonlinear systems with state-
dependent input vector field. Data-based optimization
problems are developed to design static state feedback

stabilizers. Local asymptotical stability is guaranteed un-
der mild assumptions and data-based RoA estimation is
achieved. Due to the complexity of the input vector field,
the additional part of the nonlinearity is difficult to cancel
and is not explicitly handled in this work. Future works
involve considering more general disturbances and design-
ing controllers that further decreases the impact of the
closed-loop nonlinearities.
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