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Abstract 
 

Cardiac magnetic resonance (CMR) is used extensively in the diagnosis and management of 

cardiovascular disease. Deep learning methods have proven to deliver segmentation results 

comparable to human experts in CMR imaging, however, no successful attempts have been made at 

fully automated diagnosis. This has been contributed to a lack of sufficiently large datasets required 

for end-to-end learning of diagnoses. Here we propose to exploit the excellent results obtained in 

segmentation by jointly training with diagnosis in a multitask learning setting. We hypothesize that 

segmentation has a regularizing effect on learning and promotes learning of features relevant for 

diagnosis. Results show a three-fold reduction of the classification error to 0.12 compared to a baseline 

without segmentation, both results are obtained by training on just 75 cases in a dataset (ACDC) that 

is equally distributed over 5 classes. 
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1 Introduction 

Cardiovascular disease (CVD) is consistently ranked the leading cause of death worldwide, 

killing more people in 2016 than the next four causes together [1]. Due to the aging population 

and increasing prevalence of risk factors such as diabetes and obesity, the number of CVD 

related deaths is predicted to increase by 30% to 23.3 million a year in 2030 [2, 3]. Aiming at 

earlier detection and disease management, several non-invasive imaging options have been 

designed for the assessment of CVD. 

 

Cardiovascular Magnetic Resonance (CMR) imaging has proven to be of particular great value 

in CVD diagnosis and management. A combination of factors such as lack of ionizing radiation, 

excellent soft tissue contrast, and high reproducibility have made it the preferred imaging 

modality in the quantification of ventricular volumes, myocardial function and scarring [4-6]. 

Increasing clinical use has also resulted in an increased application of CMR in large cohort 

studies [7]. This proliferation of medical imaging datasets will impact the need for automated 

tools, making machine learning for big imaging data a very promising field.  

 

Several advances in deep learning have enabled machines to outperform humans in image 

classification if provided with a database of millions of images as in the ImageNet challenge 

[8, 9]. In the medical field, highly task specific databases of medical photographs have shown 

capable of accurate diagnosis. Esteva et al. [10], for example,  used dermatology images to train 

a model that detects skin cancer, and Gulshan et al. [11] used retinal fundus images for detection 

of diabetic retinopathy. Both scored on par with certified clinical experts in their respective 

field. While the underlying data is very different from cardiac volumetric data, the wide range 

of application shows that deep learning can indeed be used for diagnosis in the medical field.  

 

Current machine learning based methods for automated cardiac diagnosis focus on detection 

and segmentation of the heart, followed by the extraction of features that are then used for 

diagnosis. This approach is reflected in the 2017 Automated Cardiac Diagnosis Challenge 

(ACDC) where aim the aim is to automatically perform segment and diagnosis on a 4D cine-

CMR scan. All but one participant in the segmentation part of the challenge used deep learning, 

scoring on par with clinical experts [12], while none of the participants in the classification part 

did. Instead they performed classification using support vector machines (SVM) and random 

forests (RF) on handcrafted features extracted from obtained segmentation maps [12].  

 

As the handcrafted features define clinical diagnosis of the pathology, extraction of those 

features is a reasonable approach. Subsequent diagnosis using machine learning based methods 

shows the demand for flexibility in the current diagnostic process that cannot easily be captured 

in rule-based methods. Deep learning can provide the required flexibility and perform accurate 

segmentation and classification as shown in state-of-the-art methods [13]. However, no 

attempts have been made at end-to-end learning for diagnostic purposes in cardiology. One 

explanation for this is insufficient data, a recurring statement for deep learning in medical image 

analysis [14, 15]. 

 

In this thesis we propose to exploit the excellent result of cardiac segmentation in deep learning 

by jointly training with disease prediction on the ACDC dataset in a multitask learning setting. 

The combined training with segmentation serves two purposes. First, a typical cine-CMR scan 

contains millions of voxels that are individually labeled and evaluated together to provide a 

smooth learning update that could balance out the crude update from a single diagnostic 

prediction. This regularization by segmentation allows the model to learn faster. Second, as the 
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segmentation maps have shown to contain information relevant for diagnosis [16], the use of 

features that are important for segmentation can guide the learning of relevant diagnostic 

features.  

 

Additionally, we propose to include a third task in our multitask learning set-up. We include a 

regression model that estimates the handcrafted features used for clinical diagnosis as inspired 

by [17]. It is important to note that accurate segmentation or quantification of cardiac indices 

are not part of the objectives, they only serve as a means of improving diagnostic accuracy. 

 

In the remainder of this thesis we will first look at some background information on the heart, 

deep learning, the ACDC dataset, and available literature, to allow this work to be seen in the 

right perspective. This is followed by a description of the experiments in the materials and 

methods section. In the results we show that that multitask learning is capable of obtaining 

diagnostic results comparable to state-of-the-art in the challenge. This thesis is concluded with 

a summary of our contributions, discussion of the limitations, and suggestions for future 

research. 
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2 Background 

This section contains a brief summary of the heart, dataset, and basics of deep learning. These 

topics serve as a non-exhaustive introduction to the main concepts required for placing this 

research in the right perspective, and familiarizing readers with basic concepts.  

2.1 Heart 

Cardiac anatomy, see Figure 1, is split in a left and right half, both containing an atrium and 

ventricle. Left ventricle (LV), left atrium (LA), right ventricle (RV), and right atrium (RA). The 

right half pumps blood through the lungs for oxygenation, followed by distribution through the 

body by the left half of the heart. The ventricles are responsible for the pumping function of the 

heart while the atria prevent stasis of venous blood flow during systole (i.e. contraction of the 

ventricles). A valve is located at each end of the ventricles to prevent backflow of blood. Two 

surfaces are defined in the heart. The epicardial surface describes the outer surface of the heart 

while the endocardial surface refers to the lining on the inside of a chamber. In imaging, the 

epicardial contour usually refers to the outer contour of the LV myocardial (e.g. muscle) tissue 

(Myo), though partially anatomically incorrect. Three coronary arteries originate directly after 

the aortic valve (i.e. the valve between LV and aorta) that traverse the epicardial surface of the 

heart to supply the myocardium with oxygen and other nutrients. The axis of the heart is defined 

as the line between the apex and base). Long-axis planes are parallel to this axis while short-

axis planes are defined perpendicular to the axis. 

 

 

 
Figure 1: Anatomy of the heart. 
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Definition of relevant terms and indices commonly extracted from cine-CMR are given below. 

• Body Surface Area (BSA): Dubois and Dubois 0.007184 ∙ (weigth0.425 ∙ heigth0.725) 

• End-Diastole (ED): Moment when mitral valve closes right before contraction of the heart. 

• End-Systole (ES): End of contraction when the mitral valve opens. 

• ED, ES volume (EDV, ESV):  Blood volume in the ventricle at ED and ES respectively 

• ED, ES volume index (EDVI, ESVI) = EDV/BSA, ESV/BSA: Volume normalized by 

division with BSA. 

• Stroke volume (SV) = EDV-ESV: Blood volume pumped by the ventricle during a single 

heartbeat. 

• Cardiac output (CO) = SV * heart rate: Blood volume pumped per minute by the heart. 

• Ejection fraction (EF) = SV/EDV: Fraction of blood removed from the heart during a beat. 

• LV mass (LVM): LV myocardial volume at ED multiplied with the tissue density (1.05).  

• Wall Thickness (WT): Distance from a random point on endocardial surface to its closest 

point on epicardial surface. 

2.2 ACDC dataset  

The ACDC challenge [12] provides a total of 150 short-axis cine-CMR scans, split in a training 

and test set that contain 100 and 50 scans respectively. Both sets are equally distributed over 

five disease classes and contain the patients’ height and weight. Labels available for the training 

set consists of disease class label and segmentation maps. Segmentation maps are available for 

the end-systolic (ES) and end-diastolic (ED) phase and contain four class labels, namely LV 

and RV cavity (LV and RV), LV myocardium (Myo), and background (BG). Diagnostic labels 

present in the dataset are normal or healthy (NOR), myocardial infarction (MINF), dilated 

cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and abnormal right ventricle 

(ARV). Characteristics for the disease classes are given in Table 1. Patients with ambiguous 

(e.g. borderline) values are excluded from the study. 

 

Short-axis cine scans consist of stacked single slice temporal recordings (i.e. stacked 2D + time 

recordings) to generate a 4D dataset. Data acquisition is performed with a magnetic field 

strength of 1.5T or 3.0T using the conventional SSFP sequence in breath hold with ECG gating. 

Slices are recorded with a spatial resolution from 1.34 to 1.68 mm2/pixel, thickness of 5 or 10 

mm, and contained an inter-slice gap of 5 mm in some cases. ECG-gating is used to divide the 

cardiac cycle in 28 to 40 steps. Long-axis scans (not provided) were used for positioning of 

short-axis acquisitions and definition of cardiac phase using mitral valve motion – closing 

defines ED, opening ES. 

 

 NOR MINF DCM HCM ARV* 

LV EF (%) 
EDVI (mL/m2) 

> 50 
< 90 ♂ | < 80 ♀ 

< 40 
↑ 

< 40 
> 100 

> 55 
 

 
 

RV 
 

EF (%) 
EDVI (mL/m2) 

> 40 
< 100 

 
 

 
↑ 

 
 

< 40 
> 110 ♂ | > 100 ♀ 

Myo 
 
 

WT (mm) 
Contraction 
Mass (g/m2) 

< 12 
Normal 
 

↑ (local) 
Abnormal 
 

< 12 
 
↑ 

> 15 
 
> 110 

 

Table 1: Indices defining the five diagnostic classes as provided by the challenge organizers [12]. For the four pathological 
cases, only the indices that define the pathology are given. Ambiguous cases are excluded from the study.↑ Possibly elevated 
due to compensation for pathology; * One criteria needs to be satisfied for ARV diagnosis. 
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2.3 Deep learning 

Main components and concepts are introduced to understand the rest of this thesis. The book 

‘Deep Learning’ by Goodfellow et al. [18], and several review articles can be consulted for an 

extensive overview of the field in general [19, 20] and its application to medical imaging [15, 

21]. 

 

Learning from training data 

At its basis, deep learning is a series of algorithmic advances building on the foundations of 

neural networks that have been around for a couple of decades. The reason deep learning is so 

successful can be contributed to those algorithmic advances, but also, by and large, to the 

increases in computational power and availability of big data. 

 

The perceptron is the earliest and simplest form of an artificial neural network [22]. It consists 

of an input layer and output layer, see Figure 2. In this feedforward neural network, information 

propagates forward from one layer to the next, but not backwards or within the layer. From the 

input vector Nx , the perceptron calculates the output vector 
My  as a weighted sum 

M NW  of the inputs plus some offset values Mb . The weights and biases are the 

learned parameter set  ,  W b  of the perceptron. In imitation to the brain, where a neuron 

fires if it receives the right combination and strengths of inputs from its downstream neurons, 

an activation function     can be applied to all the nodes in the output layer. A more complex 

transformation can be learned by adding hidden layers between the input and output layer, 

turning it in a multilayer perceptron (MLP). In an MLP, the output of one layer serves as the 

input of the next (2.1).  

 

              2 2 1 1 2(1)ˆ ,    y x W W x b b   (2.1) 

 

Activation functions are sometimes referred to as non-linearities as they add a non-linear 

component to a layer (unless it is an identity activation). This allows the network to handle 

complex data patterns that cannot be captured by a linear model. There exist many types of 

activation functions. However, it is beyond the scope of this thesis to evaluate them all. Here 

we only give the most popular ones, Figure 2. Historically the sigmoid function was used for 

activation and later replaced by the hyperbolic tangent (tanh). While effective, both are 

computationally expensive and have several unfavorable properties for learning. Rectified 

linear units (ReLU)    max 0,x x   and Leaky ReLU or parametrized ReLU (PReLU) 

   1 0 ( ) 1( 0)( )x x x x x      (where   is a hyper or learned parameter respectively) are 

simple yet effective activation functions that can be found in most current models [9, 23]. 

 

So far the network is only capable of predicting an output given an input, but it is not learning 

yet. A combination of back-propagation and stochastic gradient descent (SGD) can be used to 

update, or learn, the model parameters. The back-propagation algorithm calculates the gradient 

of the loss function  L   with respect to the model parameters at each point in the network 

under certain conditions [24]. The assumption in gradient descent is that by updating each 

model parameter with a small step (  learning rate) in opposite direction of the gradient, the 

parameter set values get a bit closer to a (possibly local) optimum for the model’s task. In SGD, 

the gradient of the loss is computed over a subset of the dataset (termed mini-batch or batch) to 

update model parameters. 
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Figure 2: Left – Multilayer perceptron (MLP) with one hidden layer. All lines between two subsequent layers can be collected 
in a weight matrix. Bias values can be learned as weights by adding an extra node with constant value to a layer. Activations 
are applied directly after the learned layer. Right – Visualization of the four common activation functions.  

 

       1
L

  

   

     (2.2) 

 

If the mini-batch size is large enough, its gradient can give a good approximation for the 

gradient over the entire dataset. As a result, SGD performs parameter updates similar to the 

gradient over all data but more frequently, allowing the model to converge faster. This of course 

only works if the mini-batch samples the entire feature space of the available data. 

 

Processing each pixel in an image independently as in a fully connected perceptron would 

require learning of  1N M   parameters per layer learned, where N  is the number of nodes 

in the input layer and M  the nodes in the output layer. For any reasonably sized image, the 

number of parameters needed to learn would be unfeasible beyond a few layers. It would also 

require the model to be presented with every possible variation on the same image as moving 

an object one pixel would result in completely different activations in the network that still need 

to be recognized as the same object. 

 

Convolutional neural networks (CNN) are the main method for processing images, Figure 3. 

CNNs compute the next layer in the network by convoluting the image with a learned filter 

(usually applied as correlation). Filters apply a function to a local patch that results in a large 

output value if the underlying image patch matches the filter. By applying a filter to every local 

patch in an image, a feature map is generated that shows where the filter’s features are present 

in the image. This approach requires only the parameters of the filters to be learned that are 

shared over the entire image, significantly reducing the numbers of parameters to be learned. 

Applying the same filter to every patch in the image makes CNNs shift invariant. Different 

forms of filters can be applied to increase receptive field (larger size, dilated filter), decrease 

image size (strided convolution, pooling), and many more. See the review of Gu et al. [25] for 

more information on CNNs. 
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Figure 3: Convolution operation applied in CNNs. A 3x3 filter is applied to the input layer as a sum of the elementwise products 
to compute the value in the output layer. The values in the filters are the learned parameters in deep learning. Compared to 
the fully connected setting of MLP, CNNs require only a fraction of the parameters to be learned. As the same filter is applied 
to the entire image, CNNs are translation invariant.  

 

Regularization 

Once a model is able to learn, it will start to update the parameters in a way that produces 

optimal results on the training set. Optimal parameter values for the training set may not be 

optimal for describing the distribution of data in general. For instance, let’s say the training data 

is sampled from parabolic function and contains some measurement noise or discretization 

errors. This may result in finding an optimal fit by a function much higher than second order. 

This higher order function is said to overfit the training data and needs to be regularized so it 

generalizes to the underlying distribution, a second order function, Figure 4. Regularization is 

achieved by introducing additional information to prevent overfitting. This can either be 

explicitly, by working on the model parameters, or implicitly, by adding information elsewhere 

in the model that indirectly impact parameter values. 

 

 
Figure 4: Different stages in learning. When a model starts to learn it will underfit the data and is said to have high bias (a). 
Once it is learning more, a model’s performance will gradually move through an optimal fit (b) and eventually overfit the data, 
resulting in high variance (c). (d) shows the error curves for the training and test set. Optimal results for a model are obtained 
when the error on the test set starts to increase again. Regularization aims to lower the error where the test set curve reaches 
its tipping point. Ideally, regularization forces the curve for test and training to be the same. 

Norm penalties, such as L1 and L2 norm, can be added to the loss function of the model to 

penalize high parameter values. The sort of effect the penalty will have depends on the norm 

used. L1 for example, generates sparse outputs, effectively removing some parameters from the 

network while L2 reduces the size of parameter values. Making the parameters sparse or low 

valued prevents overfitting by reducing the number of parameters or the influence of single 

parameter on the overall model respectively. The penalty is added as a sum of all parameter 
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norms multiplied by hyperparameter value lambda. An appropriate value for lambda needs to 

be found to get a good balance between penalty and the other values in the loss function. If 

lambda is too small or too big, the model will overfit or underfit respectively. It can be shown 

that adding small amounts of noise to the input of the network is equivalent to the L2 norm. 

 

Dropout is another popular regularization method directly working on the model parameters 

[26]. In dropout, each node in the network (and its connections) has a probability p of being 

dropped from the network. This prevents co-adaptation where a specific feature is only useful 

in combination with other features, i.e. it forces the learned feature detectors to produce features 

that are relevant on their own. The network effectively learns multiple less complex networks 

that are averaged at test time (where no nodes are dropped). 

 

Early stopping aims to prevent overfitting by stopping the learning process as it starts to overfit 

on the training data. By restarting from the previously most successful model parameters, the 

model’s performance may increase again as the learning process contains several steps with 

stochastic effects. 

 

As the complexity the model can handle depends on the amount of data it is trained on, a simple 

way of generalization is using more data. This can be done by actually getting more data but is 

usually an expensive and time-consuming process. Semi-supervised learning can reduce the 

amount time and costs related to increasing dataset size by adding data that is not labelled. Data 

augmentation is another way of getting more data, by generating new data from the available 

data. Common ways of data augmentation are translation, rotation, scaling, mirroring, and 

cropping of true images. Another way is generating completely new data using generative 

adversarial networks (GAN) [27]. Two networks are trained in GANs, one network generates 

a new image and the other discriminates between the generated and true image. This allows 

new images to be generated that appear to be real. Artificially generating more data can be 

useful in certain circumstances, however, care must be taken to create new data that is still an 

accurate representation of the true data being modeled. For example, in our case, scaling of 

images could result in normal hearts that appear to be enlarged or the other way around. 

 

Multitask learning involves learning of multiple related tasks at the same time. If the tasks can 

partially be described by the same features, part of the network can learn a general 

representation for all tasks. On top of this general representation, some task specific features 

can be learned [28]. For example, if asked to describe a certain breed of dog to someone that 

has never seen a dog, most of the description would apply to all dogs, and contain a few details 

that distinguishes it from other breeds. In multitask learning, this general concept of a dog 

would be described in the shared part of the network. The few characteristic features that are 

required to distinguish the different breeds of dogs that are learned in the task specific parts of 

the network.  

. 
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3 Literature 

3.1 Automatic Cardiac Diagnosis Challenge 

The organizers of the challenge published an extensive overview of all proposed methods and 

compared the results to each other and experts [12]. Below we give a summary, split in the two 

objectives of the challenge – segmentation and diagnosis. 

 

Segmentation 

Of the ten competing groups, nine used deep learning for image segmentation. The one group 

that didn’t use deep learning used level-sets in combination with a Markov random fiels (MRF) 

graph cut for an initial segmentation and finetuned their result with spline fitting [29]. Eight 

groups used U-net type of structures, varying their implementations in 2D vs 3D [30-32], 

implementation of skip-connections [33, 34] or transition layers [35], addition of inception 

layers [36], incorporation of an atlas [37], and loss functions  – mainly cross-entropy and Dice 

loss. Wolterink et al. [38] are the only group that did not use an encoder-decoder structure. 

Instead, they used a CNN with a series of dilated convolutional kernels with increasing dilation 

to capture sufficient context. 

 

Results are evaluated on the 50 test scans using Dice index and Hausdorff distance. Dice 

coefficients measure overall correspondence of predicted segmentation and ground truth, while 

Hausdorff distance measures local boundary inaccuracies. Ignoring the results of the only group 

with a partial entry, deep learning methods significantly outperform the only non-deep learning 

method. All deep learning methods produce consistent results and the top 5 differ less than a 

single voxel for 9 out of 12 metrics. An investigation in to where the methods fail shows that 

there is no difference in performance for specific pathology or 1.5T vs 3.0T scanners. However, 

methods perform significantly worse on slices at the apex and base compared to mid-ventricular 

slices. This is contributed to contour blurring due to partial volume effects and can also be 

witnessed in manual segmentations by experts. 

 

To compare the state-of-the-art deep learning segmentation methods with expert segmentations, 

test set images are segmented by two experts of which one segmented the images twice (one 

month apart) to measure inter- and intra-observer variation. Interestingly enough, the average 

of all deep learning method scores in-between the inter- and intra-observer on all Dice scores, 

and Hausdorff distance is only 2-3 mm larger than the inter-observer score. For comparison, 

average in-slice voxel size is about 1.6 mm. If slices at the base and apex are excluded, the 

Hausdorff distance becomes lower than inter-observer score as well. In answer to the – Is the 

problem solved? – question raised in the paper’s title, the authors note that there are still issues 

in segmentation of apex and base and there is need for a new metric that can replace Dice index 

in evaluation of these issues. The authors also suggest that the remaining issues can possible be 

solved by training on larger datasets such as the UK Biobank [39]. Since then, a deep learning 

based segmentation has been compared to inter- and intra-observer variation on the UK 

Biobank that shows similar overall performance between man and machine and same issues at 

base and apex [40]. 

 

Diagnosis 

All groups that entered the diagnosis part of the challenge extracted features using the 

segmentation maps. Three groups extracted hand designed features that are used in clinic for 

diagnosis from their obtained segmentation maps, and added patient height and weight and 

some of their own features. Diagnosis is performed using a 1000-tree RF [38], an ensemble of 

multilayer perceptrons + RF [30], and a 100-tree RF [36] for accuracies of respectively 0.86%, 
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0.92%, and 0.96%. The best performing group has since then improved their model’s accuracy 

to 100% by adding a cascade of classifiers to handle challenging cases [16]. The remaining 

group were the only ones to use semi-automatic segmentation and used a radiomics [41] 

approach to extract a set of 567 features. Diagnosis was performed with an SVM to obtain an 

accuracy of 0.92% [42]. Interestingly enough, where nearly all segmentation methods consisted 

of deep learning techniques, not a single classification method did.  

3.2 Applications in cardiac imaging 

While neural networks have been around for a few decades, required computational power and 

other practical issues prevented them from having significant contributions to (medical) image 

analysis until recently. First LV segmentation using deep learning was performed by Carneiro 

et al. [43] using a deep believe network (DBN) in ultrasound images, a method they improved 

to include tracking [44], and adapted for steering the learning of a multi-atlas segmentation 

process [45]. DBNs were also used in CMR by Ngo et al. [46] to initialize a level-set framework 

for LV segmentation. 

 

CT is preferred over CMR for assessment of the coronary arteries where several methods have 

been developed for calcium scoring [47, 48], centerline extraction [49], or (landmark) 

localization [50-52], and LV segmentation [53]. All CT based methods used a CNN 

architecture. 

 

In CMR, the main application has been segmentation of the LV, using a fully convolutional 

network (FCN) [38, 40, 54], patch-based CNNs combined with active contours [55], a 

combination of stacked auto-encoders (SAE) and CNN for initialization and optimization of a 

deformable model [56], many U-net kind of structures [30-37], an recurrent neural network 

(RNN) to process an entire stack [57], multi-organ segmentation using SAE [58] and CNN [59], 

and many more. This large amount of work in segmentation can in part be contributed to two 

challenges that focused on segmentation and cardiac volume prediction – the 2015 Kaggle Data 

Science Bowl1 and the 2017 ACDC challenge2.  

 

Other applications of CNNs consist of LV detection in a slice [60], detection of base/apex for 

quality control of a scan [61], and super-resolution to counter issues due to relative thick slices 

in CMR [62]. Besides processing an image stack for segmentation, RNNs have also been used 

for cardiac phase prediction [63-65]. 

 

Xue et al. [64, 65] have performed full left ventricle quantification via deep multi task 

relationship learning. They used a combination of CNNs and RNNs to quantify six measures 

of regional wall thickness, three cavity dimensions, end-systole and end-diastole cavity area, 

and the binary cardiac phase from short-axis cine scans by learning the relationship between 

the measures. This dataset is currently used in the 2018 Left Ventricle Full Quantification 

Challenge3 and has the same objective. 

 

Bello et al. [66] are, as far as we know, the only ones that used deep learning for computer aided 

diagnosis in cardiac imaging. They predicted mortality due to pulmonary hypertension from 

3D shape models of RV motion patters using a deep survival network [67] that consists of just 

                                                 
1 www.kaggle.com/c/second-annual-data-science-bowl 
2 www.creatis.insa-lyon.fr/Challenge/acdc/ 
3 lvquan18.github.io/ 
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3 layers.  Other groups that allege to use deep learning for cardiac disease prediction only do 

so for segmentation, followed by other machine learning methods on the handcrafted features. 

 

Having the ability to learn its own features for a highly non-linear classification process 

provides deep learning models with many benefits over handcrafted features. Since the 

demonstration AlexNet’s [68] superior performance on the ImageNet challenge, deep learning 

models are consistently top ranked at all (medical) image classification and segmentation 

challenges. While clearly outperforming other approaches on a range of tasks, only one 

diagnostic model currently exist in cardiology [66]. Deep learning has made more progress in 

the area of diagnosis in oncology and brain imaging. In oncology it is frequently used to detect 

and classify lesions as benign or malignant, and in brain imaging it has been used for disorder 

classification. The amount of available data plays a crucial role deep learning. It is the 

consistently given as main issue in deep learning, or as reason to prefer other classification 

methods over end-to-end learning [15, 21, 53]. 
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4 Materials and methods 

4.1 Data 

The dataset is represented by   
1

, , , ,
D

ED ES ED ES i i
y


 x x m m , where , :ED ES x x  are the 

short-axis cine volumes at ED and ES instances, , :ED ES m m  the corresponding 

segmentation maps with per pixel label { , , , }m BG RV Myo LV  , and 

 , , , ,y NOR MINF DCM HCM ARV   the diagnostic class label. In both cases, 3 . 

The 100 fully annotated samples are split 3:1 equally distributed over the diagnostic classes in 

a training and validation set. 

 

Short-axis cine scans of the two phases are combined to form a single triple-channel volume 

( , , )ED sub ESx x x x  per sample where sub ED ES x x x  is the subtraction volume of the two 

phases, explicitly incorporating temporal information in the input. 

 

A set of 13R   handcrafted volumetric cardiac features are extracted from the segmentation 

maps and predicted. The extracted features are the six volumes of LV, RV, and Myo from both 

phases; the three ratios of these volumes (EF); and two LV/RV ratios and two Myo/LV ratios 

from both phases. The resulting handcrafted feature vector is given by r . 

4.2 Preprocessing 

As the cine scans consist of a stack of individually acquired slices, each at a different breath 

hold allowing translation of the heart and intensity scaling differences from one acquisition to 

the next, preprocessing is performed on individual slices. 

 

Cine slices are resampled to 1.0 1.0 Z   mm per voxel using bicubic interpolation and Z  the 

samples original slice thickness, followed by grey value normalization to zero-mean and unit-

variance. Resampled segmentation maps are created by generating a pseudo probability map 

for each of the four labels using bicubic interpolation on a binary map of each individual label. 

In the resampled map, voxels are assigned to the label that has the highest interpolated value 

for a given voxel. 

 

Three-dimensional bounding boxes are extracted around the heart from the segmentation maps 

and used to center crop the resampled slices and segmentation maps to 192 192 S   voxels 

where S  is the number of slices in a volume. 

4.3 Network architecture 

Three branches are identified in the network, namely main or shared (MB), segmentation (SB), 

and classification branch (CB), Figure 5. The main branch is shared by all tasks and together 

with the segmentation branch they form a U-net like structure [69]. Skip-connections between 

the two are omitted to prevent the segmentation task from bypassing the flow of information 

coming from the classification task at the bottom of the U-net. 

 

All three branches apply a DenseNet-like structure that is adapted to handle 3D data and is 

optimized for each branch’s respective task. Main components in DenseNet structures are 

DenseBlocks followed by transition layers [70]. Each DenseBlock consists of a series of 

composite functions    (also referred to as layers) that produce a fixed number of feature 
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maps each as defined by the growth rate. The input of the composite function is concatenated 

with its output to produce the input for the next composite function. This provides each layers 

in the block with the block’s input and all features maps created by previous layers, improving 

the backflow of information for learning. 

 

The composite function in all dense blocks consist of batch normalization (BN) [71], activation 

by a rectified linear unit (ReLU) [23], and convolution (Conv) with a 3 3 3   filter 

    3 3 3BN ReLU Conv    . Growth rate is set to 12k  . Transition layers consist 

of a bottleneck   1 1 1BN ReLU Conv     that halves the number of feature maps, followed 

by a decrease (MB, CB) or increase (SB) of the feature maps’ size.  

 

In the main branch, a  7 7 7Conv    with stride 2 is applied in the x-y-plane to generate 64 

feature maps from the input x . This is followed by three DenseBlocks, with 6, 6, and 12 layers, 

separated by average pooling layers that each half the size of the feature maps’ first two 

dimensions. 

 

 
Figure 5: Architecture of the network consists of three branches, each adapted to its own task. The main branch (MB) is shared 
by all three training tasks. Input to the model during training are six consecutive slices of a volume selected from a random 
starting slice. The middle six slices are evaluated during testing to obtain deterministic results.  
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Branch Layer Feature maps Operation 

Size Amount 

Main Input 192 192 6   3  

Convolution 96 96 6   64  7 7 7 , 2Conv stride   

DenseBlock 96 96 6   136   6     

Transition 
96 96 6   68 Bottleneck  

48 48 6   68 (2 2 1)AveragePool    

DenseBlock 48 48 6   140   6     

Transition 
48 48 6   70 Bottleneck  

24 24 6   70 (2 2 1)AveragePool    

DenseBlock 24 24 6   214   12     

 

Classification 
Transition 

24 24 6   107 Bottleneck  

12 12 3   107 (2 2 2)MaxPool    

DenseBlock 12 12 3   683   48     

Transition 
12 12 3   341 Bottleneck  

6 6 1   341 (2 2 3)MaxPool    

DenseBlock  6 6 1   725   32     

Transition linear 1 1 1   725 (6 6 1)MaxPool    

Cardiac features Linear  13  725 13FC   

Diagnosis Linear  5  725 5FC   

 

Segmentation 
Transition 

24 24 6   107 Bottleneck  

48 48 6   107 DeConv  

DenseBlock 48 48 6   179   6     

From here separate branch for ES and ED 

Transition 
48 48 6   89 Bottleneck  

96 96 6   89 DeConv  

DenseBlock 96 96 6   161   6     

Transition 
96 96 6   80 Bottleneck  

192 192 6   80 DeConv  

Segmentation 192 192 6   4 Bottleneck  
Table 2: Overview of network architecture separated in the three branches; main (MB), classification (CB), and segmentation 
(SB). CB and SB both connect to last layer in MB.  Growth rate is k=12. FC at the end of CB refers to fully connected layer. 

In the segmentation branch, transpose convolutions  DeConv  are learned in the transition 

layer to undo the down sampling. Three transpose convolutions are applied to obtain the 

original volume size, separated by two 6-layer DenseBlocks. The model splits in two 

symmetrical branches after the first block to obtain a softmax probability map for ED EDp  and 

ES ESp  from the triple channel input. 



       

16 

 

In the classification branch, transition layers switch to max pooling to extract the strongest 

features and now also reduce feature map size in de slice (z-)direction. Three transition layers 

are separated by two DenseBlocks with 48 and 32 layers respectively. Empirical testing showed 

large number of layers are required to improve on random diagnosis. The last pooling layer 

extracts 725 singleton feature maps that are fully connected to the cardiac feature and diagnosis 

output layers. For cardiac feature prediction, the output layer estimates values of the 

handcrafted features r̂ . For diagnosis, the output is followed by softmax to obtain the class 

probability vector yp . 

4.4 Training 

All input volumes are required to be the same size for architectural reasons. Six consecutive 

slices were selected at random form a sample during each training iteration, the lowest number 

of slices for a sample in the dataset. During testing, use of the center six slices ensured a 

deterministic outcome.  

 

Training was performed with the ADAM solver where learning rate was set to 45 10  [72]. 

Dropout is applied to individual parameters in all branches with probability 0.5p   of a 

parameter in the network being dropped, and probability of 0.2  for input voxels being dropped 

[26]. 

 

Training loss tot  is computed as a weighted combination of the losses over de three different 

outputs. 

 

     1 1tot Segmentation CardFeat Diagnosis             (4.1) 

 

Where , ,Segmentation CardFeat Diagnosis  are the losses for their respective task, and ,   are 

hyperparameters controlling the backflow of information at the end of MB and CB respectively. 

Values are set to 0.3, 0.6   . 

 

Segmentation performance was evaluated as a weighted sum of the binary Dice loss for each 

label [69]. 

 

 
, ,

2 2

, ,

2
1

N

i m i mi
Segmentation m N N

m i m i mi i

v g
w

v g

 
  
  




 
  (4.2) 

 

Where  , ,i m ED ESv  p p  and  , 0,1i mg   are the  probability and binary ground truth for a given 

label and voxel combination, N  the number of voxels in a volume, and mw  the label weight. 

Background is assigned weight 0.1 , other labels are assigned weight 0.3  so 1mm
w  . 

 

Estimation of the cardiac features is evaluated using the mean squared error. 
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Diagnosis is evaluated using the cross-entropy loss with 
jy yp p  the probability corresponding 

to the ground truth class label. 

 

 log
yi

y j

p

Diagnosis p

j

e

e

 
  
 
 

  (4.4) 

 

4.5 Experiments 

Four experiments are performed to evaluate the change in diagnostic performance due to 

combined training with segmentation and prediction of cardiac features, Table 3. Baseline 

diagnosis and segmentation experiments are performed by eliminating the SB and CB from the 

model respectively. Baseline experiments were also used to find optimal settings for each task. 

In the double task learning model, optimal settings from segmentation and diagnosis are 

combined. In the triple task learning model, prediction of cardiac features is added to the 

learning. In all but the baseline segmentation model, accurate diagnosis was the objective. Mini-

batch size was limited to 4 by the memory requirements of the deconvolution layers. When 

removing SB, mini-batch size was fixed to 20% of training data to benefit from stochastic 

effects of learning. 

 

Model name Diagnosis Segmentation 
Cardiac 
features 

Mini-batch 
size 

Baseline diagnosis ✓ ✕ ✕ 15 

Baseline segmentation ✕ ✓ ✕ 4 

Double task learning ✓ ✓ ✕ 4 

Triple task learning ✓ ✓ ✓ 4 
Table 3: Overview of tasks included for learning in each experiment. Mini-batch size was limited due to high memory usage of 
SB. In baseline diagnosis, batch-size was fixed to 20% of training data (n=15). 
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5  Results 

5.1 Segmentation 

Figure 6 shows the segmentation results of a single slice for two patients and the corresponding 

ground truths masks. Shown images are examples of typical good and bad segmentation results 

for the baseline method and the double task method. Dice coefficients and Hausdorff distances 

for the three methods performing segmentation are shown in Table 4 – together with the best 

results reported in the challenge. Our data is only evaluated on the center six slices of each case. 

As apical and basal slices are harder to segment, shown results are an overestimation of 

performance. Baseline segmentation results are marginally worse than state-of-the-art for LV 

and Myo. RV results are less accurate, with a doubling of the Hausdorff distance and reduction 

in the dice index of 0.05 to 0.90 and 0.09 to 0.82 for ED and ES respectively. Adding other 

tasks to the learning process significantly reduces segmentation results. Dice scores reduce by 

0.22 on average and Hausdorff increases by a factor of up to 6.4 when trained jointly with 

diagnosis and cardiac feature prediction. In all but one case, LV and RV Dice scores are higher 

for ED than for ES while Myo shows the opposite trend. As segmentation errors mostly occur 

on object boundaries, this pattern might be due to an opposite change in volume to surface ratio 

of the three areas when the heart contracts. On visual inspection, the baseline method shows 

decent segmentation for nearly all cases, while combined training with diagnosis and cardiac 

feature prediction results in anatomically impossible results even in better performing cases. 

 

 
Figure 6: Selected segmentation results of a single frame of two patients for baseline and double task (combined segmentation 
and diagnosis) methods. Top row representative for methods’ best results, bottom for worst. 

 Dice Hausdorff (mm) 

LV RV Myo LV RV Myo 

ED ES ED ES ED ES ED ES ED ES ED ES 

Isensee et al. [30] 0.97 0.93 0.95 0.91 0.90 0.92 7.4 6.9 10.1 12.1 8.7 8.7 

Baseline segm. 0.96 0.92 0.90 0.82 0.86 0.88 8.6 12.1 23.4 19.8 6.4 12.0 

Double task 0.70 0.66 0.75 0.66 0.65 0.64 13.5 14.1 43.3 38.4 16.1 16.6 

Triple task 0.72 0.58 0.77 0.71 0.45 0.63 50.8 77.7 51.7 27.0 22.0 65.0 
Table 4: Segmentation results measured by dice similarity coefficient and Hausdorff distance for the three experiments 
involving segmentation and the best challenge entry. 
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5.2 Diagnosis 

Figure 7 shows the training and validation diagnostic classification error during training for the 

three experiments involving diagnosis. Of the three methods, the combined segmentation and 

diagnosis approach achieves overall best results. It converges fastest and has the lowest error. 

Addition of cardiac feature prediction is still an improvement on single task learning, but not 

as good as the double task. The triple task approach converges considerably slower than the 

other two. One could argue that the triple method has not converged yet, however, shortly after 

the shown range, all three methods start to destabilize and default to predicting a single class 

for all cases at around 1500 iterations. Diagnosis prediction is stable for all three methods 

around 1100 iterations where they misclassify 3, 7, and 9 out of 25 cases. This corresponds to 

an accuracy of 64%, 88%, and 72% for the single, double, and triple task learning approach 

respectively, Table 5. Figure 8 shows the misdiagnoses per type for the double task learning 

approach and the best diagnosis results in the challenge. All incorrect diagnoses in our model 

involve the RV while the majority of misdiagnoses in the challenge could be contributed to 

switching dilated cardiomyopathy and myocardial infarctions cases. Single and triple task 

errors showed no misclassification pattern. 

 

 
Figure 7: Evolution of diagnostic performance during training for the three methods involving diagnosis. Validation set 
contains 25 patients (i.e. classification error increases 4% per incorrect diagnosis). 

 Method Diagnostic 
accuracy 

Ours Baseline 64% 

Double task 88% 

Triple task 72% 

 

Challenge Khened et al.* [36] 96% 

Cetin et al. [42] 92% 

Isensee et al. [30] 92% 

Wolterink et al. [38] 86% 
Table 5: Comparison of diagnostic accuracy for our deep learning based approach on a subset of the provided training data 
and the results obtained in the challenge on the provided test set. *Improved their results to 100% after the challenge.  
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Figure 8: Confusion matrices with diagnosis results for our best method and the best entry in the challenge (adapted from 
[12]). 
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6 Discussion and Conclusions 

We applied several methods for end-to-end learning of cardiac diagnosis. Multitask learning, 

where segmentation and diagnosis are trained jointly, produced the highest diagnostic accuracy 

(88%). All misclassifications involved the RV, suggesting that our model does not accurately 

capture the concept of an RV. If compared to the challenge results, our best method performs 

similar to the mid-range entries in the challenge. This indicates that end-to-end learning is 

feasible for diagnostic purposes, even on small datasets with just 15 training cases per class. 

However, we note that the dataset contains cases of above average image quality, hand-picked 

for the challenge. Generalizing ability to a realistic dataset that includes diagnostic boundary 

cases and image artifacts or other quality issues needs to be investigated.  

 

The inferior performance of diagnosis in the triple task learning method, that includes cardiac 

feature prediction, is contributed to suboptimal network architecture. In its current 

implementation, the diagnosis and feature prediction output layers are directly connected to the 

same layer. Both output layers therefore compete in ‘teaching’ relevant features to the shared 

previous layer. In future work it will be investigating if performance increases if more distance 

is created between the two output layers. This would allow the model to learn features relevant 

to both tasks in the shared part of the network while finetuning the features in the layers unique 

to each task.  

 

Segmentation results show that our U-net like structure is capable of accurate segmentation 

when the classification branch is removed. Performance is slightly less than the best method in 

the challenge that used an ensemble method to generate segmentation maps. Skip-connections 

are omitted by design to prevent backpropagation of errors bypassing the classification branch. 

Adding the skip-connections could bring results up to the same level as challenge entries. LV 

and Myo scores are marginally worse that best in the challenge, however, RV segmentation 

performance is significantly worse. The short-axis used for image acquisition is defined in the 

LV, resulting in a consistent appearance of the LV in images. RV appearance in the images 

shows more variation, possibly explaining consistent worse performance compared to LV. 

Including data augmentation by random cropping and rotation of volumes artificially increases 

the information available on the RV and could improve segmentation. As a result, the model 

could learn a better concept of the RV, possibly leading to a reduction of diagnosis 

misclassifications. 

 

In a multitask setting, segmentation results decrease to below a clinically acceptable standard. 

Unless the feature maps in the shared branch are unique to either the segmentation or 

classification branch, it is expected that the crude update of a single prediction in diagnosis will 

partially undo the refined segmentation update coming from 4.4*105 voxels per patient. That 

this effect is indeed present shows that the segmentation task updates features that are also used 

for diagnosis, thereby guiding the learning process of diagnosis. The crude update of diagnosis 

would normally require a smaller learning rate, however, results here use the same value for all 

methods and show that combined learning with segmentation converges faster using the same 

learning rate and a batch size that nearly 4 times smaller. 

 

Direct comparison of the results with the challenge is unjust as our results are evaluated on a 

subset of the training data while challenge results are evaluated on a separate test set. 

Furthermore, as no test set was used, current result may be a product of overfitting on the 

validation set. Cross-validation could be performed to increase certainty about results, however, 

improving the preprocessing pipeline to automatically detect the heart for center cropping 

would allow our method to be applied to the test set for a fairer comparison.  
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Segmentation evaluation also needs to be improved for a fair comparison with challenge results. 

First, segmentation is currently only evaluated on the center six slices, excluding basal and/or 

apical slices in the majority of cases. Slices at the base and apex have proven to be harder to 

segment for both expert and machine [12, 40]. Second, predicted segmentation maps are 

evaluated using resampled versions of the ground truth. While mostly accurate, resampling has 

resulted in small changes at the ground truth boundary between objects. Resampling of the 

softmax segmentation maps to the original resolution followed by evaluation on original ground 

truth maps would therefore provide a better comparison. As accurate diagnosis was the 

objective of this study, no further time was invested in segmenting accuracy or fair comparison 

to challenge results. 

 

In clinical practice, the diseases present in this dataset are diagnosed based on the cardiac 

features that are predicted, see Table 1. It is therefore unsurprising that these features can be 

used for automated diagnosis when segmentation results are accurate, as proven by the 100% 

accuracy obtained on the dataset [16]. However, the cut-off values for diagnosis are based on 

population averages and therefore do no justice to the individual. Clinicians can take other 

factors (e.g. patient’s size, or relationship between posture and cardiac anatomy) in to 

consideration when diagnosing a patient that are not captured in the statically defined cardiac 

features. We argue that deep learning based methods may be able to learn these factors. In time, 

deep learning could then outperform rule based methods in cardiac diagnosis and may provide 

new imaging biomarkers for diagnosis and CVD management. We therefore welcome new 

challenges, such as the left ventricle full quantification challenge4, that focus on direct 

measurement on (cardiac) images instead of extracting features indirectly via segmentation. 

 

 
  

                                                 
4 lvquan18.github.io 
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