
Work Practices and Challenges in Pull-Based
Development: The Integrator’s Perspective

Georgios Gousios∗, Andy Zaidman∗, Margaret-Anne Storey†, Arie van Deursen∗
∗ Delft University of Technology, the Netherlands

Email: {g.gousios, a.e.zaidman, arie.vandeursen}@tudelft.nl
† University of Victoria, BC, Canada

Email: mstorey@uvic.ca

Abstract—In the pull-based development model, the integrator
has the crucial role of managing and integrating contributions.
This work focuses on the role of the integrator and investigates
working habits and challenges alike. We set up an exploratory
qualitative study involving a large-scale survey involving 749 inte-
grators, to which we add quantitative data from the integrator’s
project. Our results provide insights into the factors they consider
in their decision making process to accept or reject a contribution.
Our key findings are that integrators struggle to maintain the
quality of their projects and have difficulties with prioritizing
contributions that are to be merged.

I. INTRODUCTION

Pull-based development as a distributed development model
is a distinct way of collaborating in software development. In
this model, the project’s main repository is not shared among
potential contributors; instead, contributors fork (clone) the
repository and make their changes independent of each other.
When a set of changes is ready to be submitted to the main
repository, they create a pull request, which specifies a local
branch to be merged with a branch in the main repository.
A member of the project’s core team (from hereon, the
integrator1) is responsible to inspect the changes and integrate
them into the project’s main development line.

The role of the integrator is crucial. The integrator must
act as a guardian for the project’s quality while at the same
time keeping several (often, more than ten) contributions “in-
flight” through communicating modification requirements to
the original contributors. Being a part of a development team,
the integrator must facilitate consensus-reaching discussions
and timely evaluation of the contributions. In Open Source
Software (OSS) projects, the integrator is additionally taxed
with enforcing an online discussion etiquette and ensuring the
project’s longevity by on-boarding new contributors.

The pull-based development process is quickly becoming a
widely used model for distributed software development [1].
On GitHub alone, it is currently being used exclusively or
complementary to the shared repository model in almost half
of the collaborative projects. With GitHub hosting more than 1
million collaborative projects and competing services, such as
BitBucket and Gitorious, offering similar implementations of
the pull-based model, we expect the pull-based development

1Also referred to as “integration manager”: http://git-scm.com/book/en/
Distributed-Git-Distributed-Workflows. We use the term integrator for brevity.

model to become the default model for distributed software
development in the years to come.

By better understanding the work practices and the chal-
lenges that integrators face while working in pull-based set-
tings, we can inform the design of better tools to support their
work and come up with best practices to facilitate efficient
collaboration. To do so, we set up an exploratory qualitative
investigation and survey integrators on how they use the
pull-based development model in their projects. Our field of
study is GitHub; using our GHTorrent database [2], we aimed
our survey at integrators from high profile and high volume
projects. An explicit goal is to learn from many projects rather
than study a few projects in depth. We therefore use surveys
as our main research instrument, generously sprinkled with
open-ended questions. We motivate our survey questions based
on a rigorous analysis of the existing literature and our own
experience with working with and analysing the pull-based
model during the last 2 years. We conducted a two-round (pilot
and main) survey with 21 and 749 respondents respectively.

Our main findings reveal that integrators successfully use
pull requests to solicit external contributions and we provide
insights into the decision making process that integrators go
through while evaluating contributions. The two key factors
that integrators are concerned with in their day-to-day work are
quality and prioritization. The quality phenomenon manifests
itself by the explicit request of integrators that pull requests
undergo code review, their concern for quality at the source
code level and the presence of tests. Prioritization is also a
concern for integrators as they typically need to manage large
amounts of contributions requests simultaneously.

II. BACKGROUND AND RELATED WORK

The goal of distributed software development methods is
to allow developers to work on the same software product
while being geographically and timezone dispersed [3]. The
proliferation of distributed software development techniques
was facilitated by the introduction of online collaboration
tools such as source code version control systems and bug
databases [4], [5]. The main differentiation across distributed
software development methods is the process of integrating
an incoming set of changes into a project’s code base. This
change integration process has gone through many phases,
as the collaboration tools matured and adapted to changing

http://git-scm.com/book/en/Distributed-Git-Distributed-Workflows
http://git-scm.com/book/en/Distributed-Git-Distributed-Workflows

development needs; pull-based development [1] is the latest
of those developments.

In distributed software development, the first step towards
integrating changes is evaluating the proposed contributions.
This is a complex process, involving both technical [6], [7],
[8] and social aspects [9], [10], [11].

Mockus et al. [6] analyzed two early OSS communities,
Mozilla and Apache, and identified common patterns in eval-
uating contributions, namely the commit-then-review process.
As an alternative, the Apache community also featured a
review process through mailing list patch submissions. Rigby
and Storey examined the peer review process in OSS [7]
mailing lists and found that developers filter emails to re-
duce evaluation load, prioritize using progressive detail within
emails containing patches and delegate by appending names
to the patch email recipients. Jiang et al. [8] analyzed patch
submission and acceptance in the Linux kernel project, which
is using a preliminary pull-based development model, and
found that, through time, contributions are becoming more
frequent, while code reviews are taking less time.

As the change submission and integration models evolve,
so do the evaluation processes. Bacchelli and Bird [12] refer
to lightweight, branch-based peer reviews as “modern” code
review. This kind of peer review is similar to the reviews
taking place in pull-based development in many aspects, with
an important difference: the process for accepting a contri-
bution is pre-determined and requires sign-off by a specific
number of integrators. They find that while the stated purpose
of modern code review is finding defects, in practice, the
benefits in knowledge transfer and team awareness outweigh
those stemming from defect finding. In a similar quantitative
study [13], Rigby and Bird analyzed branch-based code review
processes in OSS and commercial systems and found that
reviewed patches are generally very small while two reviewers
find an optimal number of defects.

In recent work, Gousios et al. [1] and Tsay et al. [14]
investigated quantitatively what factors underline the accep-
tance of contributions in pull-based development; both find
similar effects, but the dominating factors (hotness of project
area and social distance, respectively) are vastly different. This
difference suggests that there may be no underlying processes
for contribution evaluation in pull-based development that are
in effect across projects. In turn, this calls for a more in-
depth, qualitative study to help us understand how integrators
evaluate contributions. Initial qualitative evidence on how
integrators assess contributions has been reported by Pham et
al. [15], but the focus of this work was the evaluation of testing
practices rather than the pull-based development model.

A number of social aspects also affect the evaluation of
contributions. Duchneaut found that developers looking to
get their contributions accepted must become known to the
core team [10]. Then, core team members would use the
developer’s previous actions as one of the signals for judging
contributions. Similarly, Krogh et al. [9] found that projects
have established implicit “joining scripts” to permit new
developers to contribute to the project, according to which they

examine the developers’ past actions to permit access to the
main repository. There is no empirical evidence on whether
the developer’s previous actions play a significant role in
contribution assessment in the context of pull-based develop-
ment; in fact, quantitative data from Gousios et al. [1] suggest
otherwise. Finally, Marlow et al. [11] found that developers
on GitHub use social signals, such as the developer’s coding
activity and the developer’s social actions (e.g. following other
developers), in order to form an impression of the quality of
incoming contributions.

III. RESEARCH QUESTIONS

Our examination of the literature revealed that while several
researchers have examined how developers evaluate contribu-
tions and collaborate in the context of OSS or, more recently,
GitHub, no work has examined yet how integrators perceive
pull-based development. With pull-based development rapidly
rising in popularity, it is important to expand our understanding
of how it works in practice and what challenges developers
in general and integrators in particular face when applying
it. Consequently, our first question explores how integrators
employ the pull-based development model in their projects at
the project level:

RQ1: How do integrators use pull-based development in their
projects? To make the analysis easier, we further refine RQ1
in the following subquestions:

• RQ1.1 How do integrators conduct code reviews?
• RQ1.2 How do integrators merge contributions?
After a contribution has been received, the integrators must

decide whether it is suitable for the project or not. Recent
quantitative work identified that, across projects, simple factors
such as the recent activity of the project area affected by the
contribution [1] and social distance between the contributor
and the integrator [14] can be used to predict whether a
contribution will be accepted or not. What criteria do the
integrators use to make this decision? This motivates our
second research question:

RQ2: How do integrators decide whether to accept a contri-
bution?

When evaluating contributions in collaborative environ-
ments, a common theme is quality assessment [6], [7], [12]. In
the context of pull-based development, the asynchrony of the
medium combined with its high velocity may pose additional
(e.g. timing) requirements. It is beneficial to know what
factors the integrators examine when evaluating the quality
of a contribution and what tools they use to automate the
inspection, as the results may be used to design tools that
automate or centralize the evaluation process. Therefore, our
third research question is as follows:

RQ3: How do the integrators evaluate the quality of contri-
butions?

On busy projects, or in projects with busy integrators,
contributions can pile up. It is not uncommon for large projects
(for example Ruby on Rails) to have more than 100 pull

requests open at any time. How do integrators cope with such
a situation? How do they select the next contribution to work
on when many need their immediate attention? This leads to
our fourth research question:

RQ4: How do the integrators prioritize the application of
contributions?

The challenges of online collaboration have been a very
active field of study, also in the field of distributed soft-
ware development [4]. The pull-based development setting is
unique: the asynchrony between the production of the code
and its integration in a project’s code base along with the
increased transparency afforded by platforms like GitHub,
theoretically allow contributors and integrators to co-ordinate
more efficiently. But is this so? How do integrators perceive
the theoretical advantages of pull-based development in prac-
tice? By understanding the challenges that integrators face
when applying pull-based development in their projects, we
may better understand the limits of the pull-based method and
inform the design of tools to help them cope with them. This
leads to our final research question:

RQ5: What key challenges do integrators face when working
with the pull-based development model?

IV. STUDY DESIGN

We conduct a mixed-methods exploratory study, using
mostly qualitative but also quantitative data, that consists of
two rounds of data collection. In the first round, we run a
pilot survey among a limited set of selected integrators. After
analyzing the results of the first round, we identify emerg-
ing themes (specifically, quality and prioritization), which
we addressed by including related questions in the second
round. The survey results of the second round were further
augmented, and partitioned by, quantitative results for each
specific project. In this section, we describe our research
method in detail.

A. Protocol

Since our aim is to learn from a large number of projects,
we use surveys which scale well.
Survey Design The study takes place in two rounds, a pilot
round that can give us the opportunity to field test our initial
questions and the final round through which we gather the
actual responses.

Both surveys are split into three logical sections; demo-
graphic information, multiple choice or Likert-scale questions
and open-ended questions. The open-ended questions are
intermixed with multiple choice ones; usually, the developer
has to answer an open-ended question and then a related one
with fixed answers. To further elicit the developer’s opinions,
in all questions that have predefined answers but no related
open-ended question, we include an optional “Other” response.
Finally, throughout the survey, we intentionally use even Likert
scales to force participants to make a choice. Overall, and
excluding demographic questions, the survey includes 7 open-
ended questions, 7 Likert scale questions with an optional

open-ended response and 6 multiple choice questions with no
optional fields. The respondents could fill in the survey in
about 15 minutes.

The purpose of the survey pilot is to identify themes on
which we should focus the main survey. As such, the pilot
survey includes fewer open-ended questions, but all multiple
choice questions have optional open-ended reply fields. This
allows us to test our initial question set for strongly correlated
answers (we removed several potential answers from multiple
choice questions) and identify two topics, namely quality and
prioritization which we address in the main survey round.
Attracting participants In previous work [1], we presented
evidence that most repositories on GitHub are inactive, single
user projects. To ensure that our sample consists of repositories
that make effective and large scale use of pull requests, we
select all repositories in our GHTorrent dataset [2] that have
received at least one pull request for each week in the year
2013 (3,400 repositories). For each repository, we extract the
top 3 pull request integrators, by the number of pull requests
that they have merged and send an email to the first developer
whose email is registered with GitHub.

For the pilot phase, we emailed 250 of those integrators
randomly and received 21 answers (8% answer rate). For
the data collection phase, we emailed integrators from the
remaining 3,150 projects and received 749 answers (23%
answer rate). The survey was published online and its web
address was sent by personal email to all participants. We did
not restrict access to the survey to invited users only. In fact,
several survey respondents forwarded the survey to colleagues
or advertised it on social media (Twitter) without our consent.
After comparing the response set with the original set of
projects we contacted, we found that 35% of the responses
came through third party advertising of the survey. The survey
ran from Apr 14 to May 1, 2014.

To encourage participation, we created a customized project
report for each of the emailed integrators. The report includes
plots on the project’s performance in handling pull requests
(e.g. mean close time) on a monthly basis. The reports for
all projects have been published online2 and were widely
circulated among developers. Of the 749 survey respondents,
138 also expressed gratitude for their report through email.

B. Participants

The majority of our respondents self-identified as project
owners (71%), while 57% work for industry. Most of them also
have more than 7 years of software development experience
(81%) and considerable experience (> 3 years) in geograph-
ically distributed software development (76%). An overview
of the respondents profiles can be found in Figure 1.

To identify the leading groups of respondents based on the
combined effect of experience, role in the project and work
place, we ran the kmodes clustering algorithm (a variation of
kmeans for categorical data) on the dataset. The clustering
results revealed that 1

3 of the respondents (275/749) are project

2http://ghtorrent.org/pullreq-perf/

123

532

193
Project owner or co−owner

Source code contributor

Documentation contributor

Other (please specify)

Developer Roles

157

125

35

432

The industry

The academia

The government

Open Source Software

Developers work for

415
334

No

Yes

Working exclusively on repository

214

479

123

131

< 1

1 − 2

3 − 6

7 − 10

10+

Developer Experience
(years)

038
136

124
314

133

< 1

1 − 2

3 − 6

7 − 10

10+

Developer Experience
(distributed software development, years)

19
135

160
294

137
4

Never

< 1

1 − 2

3 − 6

7 − 10

10+

Developer Experience
(open source software, years)

Fig. 1: Respondent demographics

owners with more that 7 years of industrial experience; of
those, around 40% (108/275) also worked exclusively on the
projects they responded about.

C. Analysis

We applied manual coding on the seven open-ended ques-
tions as follows: initially, three of the four authors individually
coded a different set of 50 (out of 750) answers for each
question. At least one and up to three codes were applied to
each answer. The extracted codes were then grouped together
and processed to remove duplicates and, in cases, to generalize
or specialize them. The new codes were then applied on all
answers. When new codes emerged, they were integrated in
the code set. On average, 30% more codes were discovered
because we decided to code the full dataset. Finally, the order
of code application reflected the emphasis each answer gave
on the code topic.

In the survey, we asked integrators to optionally report
a single repository name for which they handle most pull
requests. 88% of the respondents did so. For the remaining
83 answers, we either resolved the repository names from the
developer’s emails (since integrators were invited to participate
based on a specific email), or by selecting the most active
project the developer managed pull requests for, while we also
fixed typos in repository names. We excluded from further
analysis answers for which we could not obtain a repository
name (61 answers). After we resolved the repository names,
we augmented the survey dataset with information from the

GHTorrent database [2]. Specifically, for each project, we
calculated the mean number of pull requests per month and
the mean number of integrators for the period July 2013 to
July 2014. Using those metrics, and for each one of them,
we split the project population in three equally sized groups
(small, medium and large). Finally, we excluded answers from
projects that received no pull request in this time frame (14
answers). None of these were in our original contact list.

V. RESULTS

In this section, we present our findings per research ques-
tion. To enable traceability, we include direct quotes from
integrators along with the answer identified in our dataset
(e.g. R1 corresponds to answer 1). Similarly, in the case of
coded open-ended questions, we present the discovered codes
slanted.

A. RQ1: How do integrators use pull-based development in
their projects?

1) Overall use: To understand why and how projects use
the pull-based development model, we asked integrators a mul-
tiple choice question that included the union of potential uses
of pull requests that have been reported in the literature [1],
[16], [15]. Respondents also had the opportunity to report other
uses not in our list. The results show (Figure 2) that projects
use pull requests for a multitude of reasons.

Overwhelmingly, 80% of the integrators use the pull-based
development model for doing code reviews and 80% resolve

Soliciting contributions
from external parties

Reviewing code

Discussing new features
before those are

implemented

Distributing work and
tracking progress

Issue fixes

Other

0 20 40 60 80
Percentage of projects

A
ns

w
er

31%

44%

45%

52%

52%

91%

92%

99%

69%

56%

55%

48%

48%

9%

8%

1%

I insist on
pull requests

being split
per feature

I merge pull
requests fast

to ensure
project flow

I prefer pull
requests to be

tied to an
open issue

I am pedantic
when enforcing

code and
documentation

style

I ask for more
work as a
result of a
discussion

I close pull
requests fast

in case of
unresponsive

developers
I try to
restrict

discussion to
a few comments

I try to avoid
discussion

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

Q24: What is your work style when dealing with pull requests?

(a)

21%

71%

92%

99%

79%

29%

8%

1%

Use Github
facilities,

the merge
button

Pull the
proposed

branch
locally, merge

it with a
project branch
and then push

Squash the
commits of the

proposed
branch, merge

it with a
project branch
and then push

Create a
textual patch

from the
remote branch,

apply this to
a project

branch and
then push

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

To merge pull requests integrators:

I review code in all
pull requests

I delegate reviewing to
more suitable code

reviewers

I use inline code
comments in pull

requests

I only review code in
commits

Code review is
obligatory for a pull

request to be merged

The community
participates in code

reviews

Other

0 20 40 60
Percentage of projects

A
ns

w
er

Fig. 2: How projects use pull requests

issues. Perhaps more interesting is that half of the integrators
use pull requests to discuss new features (as R710 commented:
“experimenting with changes to get a feel if you are on the
right path”). This is a variation of the GitHub-promoted way of
working with pull requests,3 where a pull request is opened as
early as possible to invite discussion on the developed feature.

60% of the integrators use pull requests to solicit contribu-
tions from the community, which seems low given the open
nature of the GitHub platform. We examined this response
quantitatively, using the GHTorrent database: indeed for 39%
percent of the projects that responded, no pull request origi-
nated from the project community. There is a small overlap
(30%) between projects responding that they do not use pull

3https://github.com/blog/1124 Accessed Jul 2014

requests to solicit contributions from the community and those
that actually did not receive a pull request. Moreover, another
28% of the projects reported that they have used pull requests
to solicit contributions from the community even though they
did not receive any external pull requests.

Only 4% (or 29) of the respondents indicated that they use
pull requests for something else. The analysis of the answers
reveals that the majority of the replies nevertheless aligns
with the offered choice answers with two notable exceptions.
Respondent R635 mentions that they use pull requests in
“every commit we make. We have a policy of having every
commit, even bumping up version number for next release,
coming in on a PR.”. The project has effectively turned pull
requests into a meta-version control system, one that only
allows reviewed code to be merged. This merging behaviour

27%

49%

67%

73%

51%

33%

New features

Bug fixes

Refactorings,
excluding
changes

required for
the above

100 50 0 50 100
Percentage

Response Non existent Once per month Once per week Daily

How often do the following types of pull requests occur in your project?

20%

52%

75%

80%

48%

25%

3%

25%

53%

97%

75%

47%

47%

69%

86%

53%

31%

14%

New features

Bug fixes

Refactorings, excluding changes required for the above

LARGE

MEDIUM

SMALL

LARGE

MEDIUM

SMALL

LARGE

MEDIUM

SMALL

100 50 0 50 100
Percentage

Response Non existent Once per month Once per week Daily

How often do the following types of pull requests occur in your project?

Fig. 3: Types of contributions according to project size.

is also in place within Microsoft [12] and in the Android
project [13]. Another integrator is using pull requests as a time
machine mechanism: R521: “Ideally, any change, because
using PRs makes it easier to rollback a change if needed”.

2) Types of contributions: Following Leintz and Swan-
son [17], we distinguish perfective (implementing new fea-
tures), corrective (fixing issues) and adaptive-preventive (refac-
toring) maintenance. We asked integrators how often they
receive contributions for these types of maintenance activities.
73% percent of the projects receive bug fixes as pull requests
once a week, half of them receive new features once a week,
while only 33% of them receive a refactoring more often than
once a week.

What is more interesting though is the distribution of
responses per project size, as this is reflected by the number
of pull requests a project gets per month. Large projects
receive bug fixes through pull requests almost daily, while

more than 50% of them receive proposed refactorings weekly.
Moreover, we observe important differences between large and
medium projects in both frequencies of incoming refactorings
and bug fixes. Intuitively, integrating refactorings is typically
more difficult than integrating bug fixes; we therefore expect
large projects to face significant problems with prioritizing the
order of application of pull requests so as to avoid conflicts.
For small projects the most frequent type of maintenance
activity is corrective maintenance, even though the frequency
of incoming changes is not as high.

Overall, integrators had little reservation to integrate pull-
based development in their maintenance lifecycle as can be
seen . This is an indication that pull-based development is not
only suitable as a patch submission mechanism, the reason
it was designed for, but also as an integral part of how
projects are developed. In turn, this calls for a revision of how
development methods regard source code patches; instead of
featuring just ad-hoc changes, they are increasingly being used
as the atomic element of software change.

3) Code reviews: In the time between a contribution sub-
mission and before it is accepted, it becomes a subject of
inspection. 75% of the projects indicate that they do explicit
code reviews on all contributions (only 7% of the projects
do not do either, but those have specified alternative ways of
doing code reviews as described below). On GitHub, anyone
can participate in the inspection process. 50% of the integrators
report that the project’s community (people with no direct
commit access to the repository) actively participates in code
reviews; this is in contrast with Gousios et al. [1], where
we found that in all projects we examined, the community
discussing pull requests was bigger than the core team.

In current code reviewing practices, using tools such as
Gerrit [13] or Codeflow [12], code review comments are
intermingled with code and a predetermined approval process
is in place. GitHub offers a more liberal code reviewing
system where users can provide comments on either the pull
request as a whole, the pull request code or even in individual
commits comprising the pull request, but imposes no approval
process. 75% of the integrators use inline code comments in
the pull request to do code reviews; only 8% of the integrators
report that they use commit comments. The absence of strict
acceptance process support has created a market for code
reviewing tools: of the 7% (or 52) of the integrators that
indicated they are doing code reviews in another way, 20%
(or 10) mentioned that they are explicitly using a different
tool for doing code reviews.

Projects have established processes for doing code reviews.
One of them is delegation; 42% of the integrators delegate a
code review if they are not familiar with the code under review.
Delegation is again not a strictly defined process on GitHub;
by convention, it can occur by referencing (@username)
a user name in the pull request body, but integrators report
other ways to delegate work: for example, R62 uses video
conferencing to discuss pull requests and assign work load,
while others (e.g. R577, R587) use external tools with support
for delegation. Another process is implicit sign-off: at least 20

integrators reported that multiple developers are required to
review a pull request to ensure high quality. Typically this is
2 reviewers, e.g. R481: “We have a rule that at least 2 of the
core developers must review the code on all pull requests.”.
Rigby and Bird also report a similar finding in Gerrit-based
industrial projects [13].

4) Integrating Changes: When the inspection process fin-
ishes and the contributions are deemed satisfactory, they can
be merged. A pull request can only be merged by core team
members. The versatility of Git enables pull requests to be
merged in various ways, with different levels of preservation
of the original source code properties. Briefly, a pull request
can be integrated either through GitHub’s facilities or a
combination of low level git commands, such as merge or
cherry-pick.

We gave integrators a list of 4 ways to perform merges, as
identified in [18], and asked them how often they use them, but
also allowed them to describe their own. In 79% of the cases,
integrators use the GitHub web interface “often or always” to
do a merge; this number is actually close to what we obtained
by quantitatively analyzing pull requests in [18] and [1]. Only
in 8% and 1% of the cases do integrators resort to cherry-
picking or textual patches respectively to do the merge.

As identified by the integrators in the comments, the
command-line git tool is mostly used in advanced merging
scenarios where conflicts might occur. Also, 4% (or 28) of
the respondents mentioned that they are using rebasing (history
rewriting) in the following ways: i) placing the new commits
in the source branch on top of the current ones in the target
branch (e.g. R306 and R316), which effectively merges the
two branches while avoiding redundant merge commits, and
ii) asking the contributor to squash pull request commits into
one before submitting the pull request. Moreover, integrators
indicated that they allow their continuous integration system
to do the merge (e.g. R157) or use scripts to automate merges
between feature branches (e.g. R321).

Overall, integrators emphasize the preservation of commit
metadata by avoiding textual patches and cherry-picking, while
some of them use history rewriting to avoid the formation of
complicated networks of branches and merges.

RQ1: Integrators successfully use the pull-based model
to accommodate code reviews, discuss new features and
solicit external contributions. 75% of the integrators con-
duct explicit code reviews on all contributions. Integrators
prefer commit metadata preserving merges.

B. RQ2: How do integrators decide whether to accept a
contribution

The second research question elicits the signals that inte-
grators use to decide on the fate of a contribution. We asked
integrators an optional open-ended question and received 324
answers. The results are summarized in Figure 5a.

1) The decision to accept: The most important factor lead-
ing to acceptance of a contribution is its quality. Quality has
many manifestations in our response set; integrators examine
the source code quality and code style of incoming code,

along with its documentation and granularity: “Code style and
whether or not it matches project style. Overall programming
practice, lack of hacks and workarounds.” (R32). At a higher
level, they also examine the quality of the commit set and
whether it adheres to the project conventions for submitting
pull requests.

A second signal that the integrators examine is project fit .
As respondent R229 states: “The most important factor is if
the proposed pull request is in line with the goals and target
of the project”. A variation is technical fit : does the code fit
the technical design of the project (R90: “Most important to
us is that the contribution is in keeping with the spirit of the
project’s other APIs, and that its newly introduced code follow
the total and functional style of the rest of the codebase”)?
Integrators also examine the importance of the fix/feature with
respect to the current priorities of the project. This is common
in case of bug fixes: “If it fixes a serious bug with minimal
changes, it’s more likely to be accepted.” (R131).

A third theme that emerged from the integrator responses is
testing. Apart from assessing the quality of contributions using
higher level signals, integrators also need to assess whether the
contributed code actually works. Initially, integrators treat the
existence of testing code in the pull request as a positive signal.
Success of test runs by a continuous integration system also
reinforces trust in the code: “All tests must pass integration
testing on all supported platforms. . . ”(R94). Finally, integra-
tors resort to manual testing if automated testing does does not
allow them to build enough confidence: “If other developers
verified the changes in their own clones and all went fine, then
we accept.” (R156).

It is interesting to note that the track record of the contrib-
utors is ranked low in the integrator check list. This is in line
with our earlier analysis of pull requests, in which we did not
see a difference in treatment of pull requests from the core
team or from the project’s community [1].

Finally, technical factors such as whether the contribution
is in a mergeable state, its impact on the source code or its
correctness are not very important for the eventual decision to
merge to the majority of respondents. In such cases, integrators
can simply postpone decisions until fixes are being provided
by the contributors: “. . . occasionally I go through discussion
with committer on how to do things better or keep the code-
style held in the whole project” (R300). The postponing effect
has also been observed by Rigby and Storey [7].

2) Reasons to reject: An issue related to acceptance is that
of rejection. Why are some pull requests rejected? Intuitively,
we would expect that negating one or more acceptance factors
(e.g. the pull request code is bad style wise or tests are
missing) should be a reason enough to reject a pull request.
Nevertheless, we gave integrators a list of reasons for which a
pull request can be rejected and asked them to indicate the top
3. The list corresponded to the rejection reasons we identified
by manually analyzing 350 rejected pull requests in [1]. The
integrators were also free to identify new reasons.

Overall, the top three reasons for rejection identified by
integrators are technical quality (85% of the projects), testing

38%

38%

62%

76%

83%

85%

62%

62%

38%

24%

17%

15%

Existence of
tests, in the
pull request

Number of
commits

Number of
changed lines

Number of
discussion
comments

Pull requester
track record

Pull request
affects hot

project area

100 50 0 50 100
Percentage

Response Not Important Mildly Important Quite Important Very Important

Importance of factors to the decision to accept a pull request

(a) Importance of factors to the decision to accept a pull request.

mergability

impact

contributor track record

correctness

PR quality

responsiveness

discussion

project conventions

granularity

works

reviewed

feature importance

documentation

testing

technical fit

project fit

code style

code quality

0 5 10 15 20

Percentage of responses

rank Top Second Third

(b) What affects the decision to accept a pull request

33%

33%

36%

41%

55%

65%

71%

67%

67%

64%

59%

45%

35%

29%

Existence of
tests, in the
pull request

Existence of
tests, in the

project

Number of
commits

Number of
changed lines

Number of
discussion
comments

Pull requester
track record

Pull request
affects hot

project area

100 50 0 50 100
Percentage

Response Not Important Mildly Important Relatively Important Very Important

Importance of factors to the time to make the decision to accept a pull request

(c) Importance of factors to the decision to accept a pull request.

project conventions

contrib track record

technical quality

hotness

workload

reviewed

commit quality

documentation

mergability

code style

impact

testing

importance

project scheduling

code quality

discussion

responsiveness

complexity

reviewer availability

0 5 10

Percentage of responses

rank Top Second Third

(d) What affects the time to decide on a pull request.

The pull request
conflicts with another

pull request or branch

A new pull request
solves the problem

better

The pull request
implements functionality

that already exists in
the project

Examination of the
proposed feature/bug fix

has been deferred

Tests failed to run on
the pull request

The implemented feature
contains technical
errors or is of low

quality

The pull request does
not follow project

conventions (style)

Other

0 20 40 60 80
Percentage of projects

A
ns

w
er

(e) Common reasons for rejection.

Fig. 4: Acceptance and rejection

failures (55%) and failures to follow project conventions
(48%). From the open ended answers, only one new reason
emerged, namely the unresponsiveness of the pull request
submitter (5%).

3) Time to make a decision: The factors that strongly
affect the time to make a decision are mostly social and,
as expected, have timing characteristics as well. The most
important one, affecting 14% of the projects, is reviewer
availability. The problem is more pronounced in projects with
small integrator teams (45%) and no full time paid developers.
Another social factor is contributor responsiveness; if the pull
request contributor does not come back to requests for action
fast, the evaluation process is stalled. Long discussions also
affect negatively the time to decide, but they are required for
reaching consensus among core team members, especially in
case of controversial contributions (e.g. R22, R81, R690). For
changes that have not been communicated before, discussions
are also mandatory: “If the change is out of the blue or if it has
been discussed with the other developers up front.” (R287)

Technical factors, such as the complexity of the change,
code quality, code style and mergability of the code also
affect negatively the time to decide on a pull request. The
reason is that the code inspection reveals issues that need to
be addressed by the contributors.

RQ2: Integrators decide to accept a contribution based on
its quality and its degree of fit to the project’s roadmap
and technical design.

C. RQ3: What factors do the integrators use to examine the
quality of contributions?

When examining contributions, quality is among the top
priorities for developers. With this research question, we
explore how integrators perceive quality and what tools they
use to assess it, by means of a pair of compulsory open-ended
and multiple choice questions. The results are summarized in
Figure 5.

1) Perception: One of the top priorities for integrators when
evaluating pull request quality is conformance . Conformance
can have multiple readings: For R39, conformance means
“it matches the project’s current style (or at least improve
upon it)” (project style) while for R155 conformance is to
be evaluated against fitting with internal API usage rules
(architecture fit). Many integrators also examine conformance
against the programming language’s style idioms (e.g. PEP8
for Python code). Integrators expect the contributed code to
cause minor friction with their existing code base and they try
to minimize it by enforcing rules on what they accept.

Integrators often relate contribution quality to the quality of
the source code it contains. To evaluate source code quality,
they mostly examine non-functional characteristics of the
changes. Source code that is understandable and elegant , has
good documentation and provides clear added value to the
project with minimal impact is preferred.

Apart from source code, the integrators use characteristics
of the pull request as proxies to evaluate the quality of
the submission. The quality (or even the existence) of the

pull request documentation signifies an increased attention to
detail by the submitter: “A submitter who includes a clear
description of what their pull request does have usually put
more time and thought into their submission” (R605). The
integrators also examine the commit organization in the pull
request: “well written commit messages; one commit about a
single subsystem — each commit compiles separately” (R610)
and its size . In the later case, the integrators value small pull
requests as it is easier to assess their impact (R246: “. . . the
code has the minimum number of lines needed to do what it’s
supposed to do” or R330: “is the diff minimal?”).

Testing plays an important role in evaluating submissions.
Initially, the very existence of tests in the pull request is
perceived as a positive signal. The integrators also examine
whether the changes in the pull request are covered by existing
or new tests (test coverage), while, in 4% of the cases,
they report that they exercise the changes manually (manual
testing). Moreover, in performance-critical code, performance
degradation is frowned upon and in some cases, integrators
require proof that performance is not affected by the proposed
change, e.g. in R72: “Performance related changes require
test data or a test case”.

Finally, integrators use social signals to build trust for
the examined contribution. The most important one is the
contributor’s reputation . The integrators build a mental profile
for the contributor by evaluating their track record within the
project (R405: “Who submitted the PR and what history did
we have with him/her?”) or by searching information about
the contributor’s work in other projects (R445: “looking at
the other contributions in other projects of the pull author”).
Some integrators also use interpersonal relationships to make
judgements for the contributor and, by proxy, for their work.
The process of impression building through social signals has
been further elaborated by Marlow et al. [11].

2) Tools: Quality evaluations can be supported by tools. To
evaluate how often projects use tools, we gave integrators a
selection of tools and asked them which ones they use in their
projects. The vast majority (75%) of projects use continuous
integration , either in hosted services or in standalone setups.
Continuous integration services, such as Travis and Cloud-
Bees, allow projects to run their test suites against incoming
pull requests, while integration with GitHub enables them to
update pull requests with test outcomes. On the other hand,
few projects use more dedicated software quality tools such
as metric calculators (15%) or coverage reports (18%). It is
interesting to note that practically all (98%) projects that use
more advanced quality tools, run them through continuous
integration.

99 integrators responded that they are using other tools.
By going through the responses, we see that integrators
use a rather limited toolset. Specifically, only a handful of
integrators reported that they are using linting tools4 while
dedicated static analysis tools are used in just two large scale
C++ projects in our sample. In two more cases, the integrators

4Tools that find common mistakes, e.g. uninitialized variables

technical correctness

roadmap

architecture fit

simplicity

communication/discussion

change locality

quality check automation

clear purpose

performance

commit quality

added value

test manual

size

project conventions

author reputation

experience

understandability

documentation

test result

code review

code quality

test coverage

style conformance

0 4 8 12

Percentage of responses

rank Top Second Third

(a) Factors the developers examine when evaluating the quality of
contributions.

Continuous integration
(i.e., via Travis,

Jenkins, Cloudbees)

Manual test execution

Code quality metrics
(i.e. via Code Climate

or Sonar)

Coverage metrics

Formal code inspections
from specialized testers

Other

0 20 40 60 80
Percentage of projects

A
ns

w
er

(b) Tools used for quality evaluations.

Fig. 5: Contribution quality examination.

reported that they rely on the language’s type system to
eliminate bugs. Finally, the majority of integrators answered
that they evaluate the quality manually (e.g. R291: “my brain
is a powerful testing environment” or R353: “good eyes and
many eyes”) even when they were asked what tools they are
using to do so.

RQ3: Top priorities for integrators when evaluating con-
tribution quality include conformance to project style
and architecture, source code quality and test coverage.
Integrators use few quality evaluation tools other than
continuous integration.

D. RQ4: How do the integrators prioritize the application of
contributions?

Our fourth research question examines the factors integra-
tors use to prioritize their work on evaluating contributions. To
discover them, we asked integrators a compulsory open-ended
question. The results are summarized in Figure 6.

The first thing that integrators examine is the contribution’s
urgency . In case of bug-fixing contributions, the criticality of
the fix is the most important feature to prioritize by. Integrators
examine at least the following factors to assess criticality: i)
the contribution fixes a security issue, ii) the contribution fixes
a serious new bug, iii) the contribution fixes a bug that other
projects depend upon, and iv) number of issues blocked by
the unsolved bug.

In the case of a contribution implementing new features,
integrators examine whether the contribution implements cus-
tomer requested features or features required for the devel-
opment of other features. Several integrators also mentioned
that they just examine the type of the contribution before its

criticality; it is usually project policy to handle bug fixing
contributions before enhancements, as is the case with R446:
“Bug fixes first, then new features. Only if all bug fix pull
requests are treated.”

The pull request age plays an important role in prioritization
for integrators. It is interesting to note that many integrators
prefer a first-in, first-out treatment of the pull requests before
applying other prioritization criteria. Similarly, easy to assess
(and therefore less complex) pull requests are preferred by
integrators. The size of the patch, even through usually related
to complexity, is used to quickly filter out small, easy to
integrate contribution and process them first (e.g. R490: “The
lower the number of lines/files changes, the more likely I am
to process it first.”)

The contributor’s track record is a relatively important factor
for prioritization and usually known contributors get higher
priority. As R82 states it: “If I know the person, they get
high priority. Sorry, strangers.”. A related criterion is the
contributor’s origin; if the contributor is another core team
member or, in business settings, a colleague, some projects
assign priorities to his/her contributions (e.g. R106, R183,
R411), while some others specifically favour community
contributions (e.g. R161, R398).

Finally, it is interesting to note that 18% of all integrators
in our sample are not using any prioritization processes at all.

When prioritizing contributions, integrators must apply mul-
tiple criteria in a specific sequence. Figure 6a depicts the
frequencies of prioritization criteria usage for all reported
application sequences. What we can see is that criticality,
urgency and change size contribute to most prioritization

age

complexity

contributor origin

contributor track record

criticality of fix

dependencies

existence of tests

impact

merge conflicts

project roadmap

quality

review cycle

reviewer availability
reviewer familiarity

size of change

type

urgency of feature

age

complexity

contributor origin

contributor track record

criticality of fix

dependencies

existence of tests

impact

merge conflicts

project roadmap

quality

relevance to project

review cycle
reviewer availability

reviewer familiarity

size of change

test result

type

urgency of feature

age

complexity

contributor origin

contributor responsiveness

contributor track record

criticality of fix

dependencies

existence of tests
impact

merge conflicts
project roadmap

quality

relevance to project
review cycle

reviewer availability

reviewer familiarity

size of change

test result

type
urgency of feature

(no 3rd criterion)

(a) Factors used for prioritization and their order of application (left
to right). The thickness of each line corresponds to the frequency
the particular prioritization order appeared in our response set.

15%

44%

46%

52%

88%

91%

85%

56%

54%

48%

12%

9%

I delegate to
devs more

experienced
with the
specific

subsystem

I process them
serially

I just discard
very old pull

requests

I discard too
discussed

I trust pull
requests from

reputed pull
requesters

I assess the
technical

quality of the
pull request

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

How do you triage pull requests?

Fig. 6: Triaging and prioritization.

criteria application sequences, while most integrators report
that they apply at most two prioritization criteria.

RQ4: Integrators prioritize contributions by examining
their criticality (in case of bug fixes), their urgency (in case
of new features) and their size. Bug fixes are commonly
given higher priority. One fifth of the integrators do not
prioritize.

E. RQ5: What key challenges do integrators face when work-
ing with the pull-based development model?

We asked integrators an optional open-ended question and
received 410 answers. We found two broad categories of
challenges: technical challenges hamper the integrator’s ability
to work effectively, while social challenges make it difficult
for integrators to work efficiently with other project members.

1) Technical challenges: At the project level, maintain-
ing quality is what most integrators perceive as a serious
challenge. As incoming code contributions mostly originate
from non-trusted sources, adequate reviewing may be required
by integrators familiar with the project area affected by it.
Reviewer availability is not guaranteed, especially in projects
with no funded developers. Often, integrators have to deal
with solutions tuned to a particular contributor requirement
or an edge case; asking the contributor to generalize them to
fit the project goals is not straightforward. A related issue is
feature isolation; contributors submit pull requests that contain
multiple features and affect multiple areas of the project. As
put by R509: “Huge, unwieldy, complected bundles of ‘hey I

added a LOT of features and fixes ALL AT ONCE!’ that are
hell to review and that I’d like to *partially* reject if only the
parts were in any way separable...”.

Several issues are aggravated the bigger or more popular
a project is. Integrators of popular projects mentioned that
the volume of incoming contributions is just too big (e.g.
Ruby on Rails receives on average 7 new pull requests per
day) consequently, they see triaging and work prioritization
as challenges. As requests are kept on the project queue,
they age: the project moves ahead in terms of functionality
or architecture and then it is difficult to merge them without
(real or logical) conflicts . Moreover, it is not straightforward
to assess the impact of stale pull requests on the current state
of the project or on each other.

Another category of technical challenges is related to the
experience of the contributor. Integrators note that aspiring
contributors often ignore the project processes for submitting
pull requests leading to unnecessary communication rounds.
When less experienced developers or regular users attempt to
submit a pull request, they often lack basic git skills (e.g. R42:
“Lack of knowledge of git from contributors; most don’t know
how to resolve a merge conflict.”). New contributors can be
a valuable resource for a project; integrators report that they
avoid confrontation in an effort to onboard new users.

Many of the challenges reported by the integrators are
bound to the distributed nature of pull-based development.
Lack of responsiveness on behalf of the contributor hurts the
code review process and, by extension, project flow. This is

accepting blame
communicating goals and standards

context switching
multiple communication channels

reaching consensus
poor notifications

project speed
process ignorance

timezones
coordination among contributors
coordination among integrators

impact
politeness

asking more work
bikeshedding

hit 'n' run RPs
poor documentation

age
syncing

feature isolation
developer availability

conflicts
differences in opinion

motivating contributors
generalizing solutions

tools
git knoweledge

size
review tools

testing
responsiveness
maintain vision

volume
explaining rejection

reviewing
maintaining quality

time

0.
0

2.
5

5.
0

7.
5

Percentage of responses

rank Top Second Third

Fig. 7: Biggest challenges when working with the pull-based
development model.

especially pronounced in the case of hit and run pull requests,5

as they place additional reviewing and implementation burden
on the integrator team. Integrators mention that the lack of
centralized co-ordination with respect to project goals can lead
to “chaos. Lots of people trying to reach the same goal without
coordinating” (R155).

Finally, integrators also report inefficiencies in the GitHub
platform itself. Specifically, many integrators complained
about the quality of the code review tool offered by GitHub
(R567: “A good code review tool with code analysis possibil-
ities can help”) and made comparisons to their favourite ones
(e.g. R288: “The mechanism itself is a huge step backwards
from Reviewboard”) while others did not like the way GitHub
handles notifications (e.g. R514: “Sifting through the GitHub
information flood to find what, if any, I should address.”).

2) Social challenges: Integrators often have to make deci-
sions that affect the social dynamics of the project. Integrators
reported that explaining the reasons for rejection is one of the
most challenging parts of their job as hurting the contributor’s
feelings is something they seek to avoid. As R255 explains:
“Telling people that something is wrong without hurting their
feelings or giving them an incorrect idea of my intentions.”.
Similarly, integrators find that asking for more work from the
contributors (e.g. as a result of a code review) can be difficult
at times, as they “. . . worry about alienating our valued con-
tributors” (R635). Motivating contributors to keep working on
the project, even in the face of rejected contributions, is not
easy for integrators either.

Reaching consensus through the pull request comment
mechanism can be challenging. Integrators often find them-
selves involved in a balancing act of trying to maintain

5 R708 describes hit and run pull requests nicely: “They (contributors)
send a pull request with a bug but when I ask them to fix them then they just
vanish and don’t respond to GitHub e-mails.”

their own vision of the project’s future and incorporating
(or rejecting) contributions that are tuned to the contribu-
tor’s needs. Differences in opinion compared to the relative
anonymity of the pull request comment mechanism can lead
to unpleasant situations. Integrators may need to take action
to maintain discussion etiquette (e.g. R449 “Dealing with
loud and trigger-happy developers.”), enforce politeness rules
or to stop long, unhelpful (bikeshedding) discussions (R586:
“be objective and avoid off-topics in discussions”). Multiple
communication channels are not helping either; integrators
find it difficult to synchronize between multiple sources.

On a more personal level, integrators find it difficult to
handle the workload imposed by the open submission process
afforded by the pull-based development model. For many of
our respondents, managing contributions is not their main
job; consequently finding free time to devote on handling
a pull request and context switching between various tasks
puts a burden on integrators. As R470 notes: “Managing pull
requests is not my full-time job, but it is a component of it.
Mostly it is difficult to keep track of them while also completing
my other tasks.”.

RQ5: Integrators are struggling to maintain quality and
mention feature isolation and total volume as key technical
challenges. Social challenges include motivating contrib-
utors to keep working on the project, reaching consensus
through the pull request mechanism and explaining reasons
for rejection without discouraging contributors.

VI. DISCUSSION

In this section, we compare and contrast our findings with
existing work and present future work directions.

A. Quality

Throughout our analysis, the issue of quality evaluation
was recurring. The respondents directly linked quality with
acceptance while also described maintaining quality as a big
challenge. According to integrators, quality emerges from
attention to detail; code style, documentation, commit for-
matting and adherence to project conventions all help to
build confidence in the contribution. The issue of quality
evaluation has been repeatedly mentioned in works on patch
submission [7], [19], lightweight code review [12], [13] and
testing [15]; in this sense, our work reinforces earlier findings.
In addition, we document in detail what factors integrators
examine in contributions when doing quality assessments.

An open question is how to efficiently automate the quality
evaluation for pull requests. While tools that automate the
evaluation of many tasks that the developers do to determine
quality (e.g. code style analyzers, test coverage, metrics for
software quality, impact analysis etc) do exist, we have seen
that developers go little beyond testing and continuous inte-
gration. To solve this issue, one could envisage a pluggable
platform that, given a pull request update, runs a suite of tools
and automatically updates the pull request with a configurable
quality score. For the platform to be useful, it will have to auto-
matically learn from and adapt to project-specific behaviours.

B. Testing

Integrators overwhelmingly use testing as a safety net when
examining contributions. The inclusion of tests in a contribu-
tion is perceived as a positive signal, while (reverse) coverage
is evaluated by many integrators. 75% of our respondents run
tests automatically through continuous integration services.
Pham et al. examined how testing works on GitHub [15];
our work confirms many of their findings (e.g. use of testing
as a quality signal, manual examination when continuous
integration fails) and complements it with more quantitative
data about test diffusion on GitHub projects. Moreover, it is
interesting to pinpoint the contradiction with the results of our
previous work [1], where we found that inclusion of test code
in a contribution was not a strong factor influencing either
the decision to accept or the time to decide (Tsay et al. [14]
report a similar result). We speculate that this difference is
due to how we modeled test inclusion (continuous rather than
a dichotomous feature) in our previous study.

C. Work Prioritization

In large projects, integrators cannot keep up with the volume
of incoming contributions. A potential solution could be a
recommendation system that provides hints on which con-
tributions need the integrator’s immediate attention. Existing
work on assisted bug triaging (e.g. [20] or [21]) is not directly
applicable to the pull-based model, as a pull request is not
necessarily as static as a bug report. Researchers might need to
come up with different methods of work prioritization that take
into account the liveness and asynchrony of the pull-request
model. Our analysis of how developers prioritize contribution
is a first step in this direction.

D. Developer Track Records

One finding of this work is that a developer’s track record,
while present in our response set, is not a commonly used
criterion to assess or prioritize contributions by. With the
raise of transparent work environments [16], and based on
previous work on the subject [9], [11], one would expect that
the developer’s track record would be used by the majority of
integrators to make inferences about the quality of incoming
contributions. Despite this, the track record is mostly used as
an auxiliary signal; in both Figure 5a and Figure 6a, we can
see that developers equally mentioned the track record as top
and second criterion for quality evaluation and prioritization.

E. Community Building

Community building through collaboration has been studied
extensively in the context of OSS projects [9], [22], [23]. A
common theme in those studies is that recruitment of new
developers can be challenging [22], as core teams are reluctant
to give access to the main repository without an initiation
process [9]. Integrators in our study actually mentioned the
opposite: it is maintaining the community momentum and mo-
tivating contributors to do more work that is not easy. Through
transparency [16] and lowered barriers to participation [15],
[1], the pull-based model can act as glue for communities build

around projects, if integrators are keen enough on fostering
their project’s communities by helping newcomers cope with
tools and project processes, prioritizing the examination of
community contributions and, in the extreme case, not reject-
ing unwanted contributions.

F. A modern theory of software change

In the recent years, we are witnessing that collaborative,
lightweight code review is increasingly becoming the default
mechanism for integrating changes, in both collocated [12] and
distributed [13], [1] development. Effectively, the pull request
(in various forms) is becoming the atomic unit of software
change. Existing works (e.g. [24], [25]) neither did antici-
pate lightweight code reviews nor asynchronous integration
of changes. This work can contribute to theory building by
providing empirical evidence about the common practices of
pull-based development.

VII. LIMITATIONS

We carefully designed the survey to gain insight into the
work practices and challenges faced by integrators in pull-
based development. We thoughtfully crafted the wording of
each of the questions (to avoid ambiguous or leading ques-
tions), refining them through small pilot tests and consults with
other researchers with survey research expertise, and refined
the questions yet further through a larger pilot study. The
response categories we supplied for many of the questions
were based on the existing literature, and were likewise refined
through the pilot studies. For the questions that had multiple
response options, we supplied an additional “other” field which
was used to uncover responses not considered that we later
coded. Despite our best efforts, this work may be subject to
the following limitations:
Generalizability: Since we did purposive sampling from the
population of integrators, the findings may not apply to other
populations of integrators (e.g. developers using other tools,
integrators that work private projects on GitHub or integrators
that are not in the top three integrators for a given project).
Moreover, in previous work [1], we found that the median
number of pull requests across repositories is 2; in our sample,
the smallest project had more than 400. We expect that if
the study is repeated using random sampling for projects,
the results will be slightly different, as the average project
does not use pull requests in a high capacity. Furthermore, the
integrators that responded to our survey may have introduced
an additional bias to the results (non-responders may have had
different insights or opinions).
Researcher bias: It is possible that researcher bias may have
influenced the wording of questions (perhaps to be leading) as
well as the coding of the open ended questions. As discussed
above, we tested the questions through pilots and had experts
evaluate it for this concern. In terms of the analysis of the
open ended questions, we conducted a pilot study, and three
of us separately coded a sample of the responses to derive
these codes.

Research reactivity: The ordering of questions (one may
provide context for the next one), the open ended questions,
as well as a respondent’s possible tendency to to appear in a
positive light (for example, they wish to think they are fair
or logical), may have influenced the accuracy of the answers
provided.

VIII. CONCLUSIONS

Our work studies the pull-based development model from
the integrator’s perspective. Our goal is to better understand
the work practices of integrators working with the pull-based
development model and to identify the challenges they face
when integrating contributions. The key contributions of this
paper are as follows:

• A novel way of using the GHTorrent dataset to generate
targeted reports, large scale surveys and augmenting
qualitative datasets with quantitative data.

• A publicly available data set with 749 anonymized survey
answers.

• A thorough analysis of survey data resulting in answers
to our research questions on topics such as work practices
in pull-based development, quality evaluation of contri-
butions, work prioritization and open challenges when
working with pull requests.

Our anonymized response set, our coded open-ended ques-
tions and custom-built R-based analysis and plotting tools are
available in the Github repository gousiosg/pullreqs-survey. 6

This data set complements existing quantitative data sets (e.g.
our own widely used GHTorrent data set) and provides much
needed context for analyzing and interpreting that data. Fur-
thermore, our survey brings additional insights to the insightful
but smaller scale interviews that have been conducted by
other researchers on the pull based model (e.g. [16], [11],
[15], [14]). We welcome replications of this work; potential
directions include replications with integrators that (1) use
different (non-GitHub) repositories, e.g., Bitbucket, (2) work
on private repositories, and (3) work on non-pull request
intensive projects. These replications will help in moving
towards a theory of how pull-based development impacts
distributed software development.

Last but not least, our findings point to several research
directions (see Section VI) and have implications for both
practice and research. Based on our results, integrators can
structure their contribution evaluation processes in an opti-
mized way and be informed about common pitfalls in commu-
nity management. Researchers can reuse our research methods
and datasets to conduct large scale, mixed-methods research,
while they can use our research findings as a basis to drive their
work on pull request quality evaluation and work prioritization
tools.

Acknowledgements The authors would like to thank the survey
participants for their time. This work has been partially funded
by the NWO 639.022.314 — TestRoots project.

6To be available after acceptance.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 345–355. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568260

[2] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132

[3] D. Gumm, “Distribution dimensions in software development projects:
A taxonomy,” Software, IEEE, vol. 23, no. 5, pp. 45 –51, sept.-oct. 2006.

[4] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the design
of collaboration and awareness tools,” in Proceedings of the 2006
20th anniversary conference on Computer supported cooperative work,
ser. CSCW ’06. New York, NY, USA: ACM, 2006, pp. 353–362.
[Online]. Available: http://doi.acm.org/10.1145/1180875.1180929

[5] J. Whitehead, “Collaboration in software engineering: A roadmap,” in
2007 Future of Software Engineering, ser. FOSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 214–225. [Online].
Available: http://dx.doi.org/10.1109/FOSE.2007.4

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, 2002.

[7] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 541–550. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985867

[8] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it?
and how fast?: case study on the linux kernel,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 101–110. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487111

[9] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community,
joining, and specialization in open source software innovation: a
case study,” Research Policy, vol. 32, no. 7, pp. 1217 – 1241,
2003, open Source Software Development. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0048733303000507

[10] N. Duchneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, pp. 323–368, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10606-005-9000-1

[11] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: activity traces and personal profiles in github,” in
Proceedings of the 2013 conference on Computer supported cooperative
work, ser. CSCW ’13. New York, NY, USA: ACM, 2013, pp. 117–128.
[Online]. Available: http://doi.acm.org/10.1145/2441776.2441792

[12] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 712–721. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486882

[13] P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: ACM, 2013, pp. 202–212. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491444

[14] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 356–366. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568315

[15] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 112–121. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486788.2486804

[16] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding
in Github: transparency and collaboration in an open software
repository,” in Proceedings of the ACM 2012 conference on

https://github.com/gousiosg/pullreqs-suvey
http://doi.acm.org/10.1145/2568225.2568260
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://doi.acm.org/10.1145/1180875.1180929
http://dx.doi.org/10.1109/FOSE.2007.4
http://doi.acm.org/10.1145/1985793.1985867
http://dl.acm.org/citation.cfm?id=2487085.2487111
http://www.sciencedirect.com/science/article/pii/S0048733303000507
http://dx.doi.org/10.1007/s10606-005-9000-1
http://doi.acm.org/10.1145/2441776.2441792
http://dl.acm.org/citation.cfm?id=2486788.2486882
http://doi.acm.org/10.1145/2491411.2491444
http://doi.acm.org/10.1145/2568225.2568315
http://dl.acm.org/citation.cfm?id=2486788.2486804
http://dl.acm.org/citation.cfm?id=2486788.2486804

Computer Supported Cooperative Work, ser. CSCW ’12. New
York, NY, USA: ACM, 2012, pp. 1277–1286. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145396

[17] B. P. Lientz and E. B. Swanson, “Software maintenance management,”
1980.

[18] G. Gousios and A. Zaidman, “A dataset for pull-based development
research,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. New York, NY, USA: ACM,
2014, pp. 368–371. [Online]. Available: http://doi.acm.org/10.1145/
2597073.2597122

[19] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The secret life
of patches: A firefox case study,” in Reverse Engineering (WCRE), 2012
19th Working Conference on, Oct 2012, pp. 447–455.

[20] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595715

[21] P. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, vol. 1, May 2010, pp. 495–504.

[22] M. Stürmer and T. Myrach, “Open source community building,” Licen-
tiate, University of Bern, 2005.

[23] J. West and S. O’Mahony, “Contrasting community building in spon-
sored and community founded open source projects,” in HICSS’05.
Proceedings of the 38th Annual Hawaii International Conference on
System Sciences. IEEE, 2005, pp. 196c–196c.

[24] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards
a taxonomy of software change,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 17, no. 5, pp. 309–332, 2005.

[25] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the Apache server,” in Proceedings
of the 30th international conference on Software engineering, ser.
ICSE ’08. New York, NY, USA: ACM, 2008, pp. 541–550. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368162

http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2597073.2597122
http://doi.acm.org/10.1145/2597073.2597122
http://doi.acm.org/10.1145/1595696.1595715
http://doi.acm.org/10.1145/1368088.1368162

1. Which of the following best describes your role:

2. How many years have you been programming

3. How many years have you worked on projects that are developed in a geographically
distributed manner?

4. How many years have you been working in Open Source projects

1. Questions

*

*

*

Project owner or co-­owner

�����

Source code contributor

�����

Translator

�����

Documentation contributor

�����

Other (please specify)

�����

< 1

�����

1 -­ 2

�����

3 -­ 6

�����

7 -­ 10

�����

10+

�����

< 1

�����

1 -­ 2

�����

3 -­ 6

�����

7 -­ 10

�����

10+

�����

Other (please specify)

Never

�����

< 1

�����

1 -­ 2

�����

3 -­ 6

�����

7 -­ 10

�����

10+

�����

5. You work for

6. Which project repository do you mainly handle pull requests for (e.g. rails/rails)?

7. Is working on this repository your day job?

8. How many pull requests have you handled during the last month for your
repository?

9. In my project, developers use pull requests for

10. In my project, developers use pull requests between branches in the central repo

11. How often do the following types of pull requests occur in your project?

*

*

*

*

*

*
Non existent Once per month Once per week Daily

New features ����� ����� ����� �����

Bug fixes ����� ����� ����� �����

Refactorings (excluding
changes required for the
above)

����� ����� ����� �����

The industry

�����

The academia

�����

The government

�����

Open Source Software

�����

Yes

�����

No

�����

Less than 10

�����

11 to 50

�����

51 to 100

�����

More than 100

�����

Soliciting contributions from external parties

�����

Reviewing code

�����

Discussing new features before those are implemented

�����

Distributing work and tracking progress

�����

Issue fixes

�����

Other (please specify)

Yes

�����

No

�����

12. To merge pull requests I:

13. Please rate the importance that the following factors play in the DECISION TO
ACCEPT OR REJECT a pull request

14. In your experience, what other factors affect the decision to accept or reject a pull
request?

*
Never Occasionally Often Always

Use Github facilities (the
merge button)

����� ����� ����� �����

Pull the proposed branch
locally, merge it with a
project branch and then
push

����� ����� ����� �����

Squash the commits of the
proposed branch, merge it
with a project branch and
then push

����� ����� ����� �����

Create a textual patch
from the remote branch,
apply this to a project
branch and then push

����� ����� ����� �����

*
Not Important Mildly Important Quite Important Very Important

Existence of tests (in the
pull request)

����� ����� ����� �����

Number of commits ����� ����� ����� �����

Number of changed lines ����� ����� ����� �����

Number of discussion
comments

����� ����� ����� �����

Pull requester track record ����� ����� ����� �����

Pull request affects hot
project area

����� ����� ����� �����

��

��

Other (please specify)

��

��

15. Please rate the importance of the following factors to the TIME TO MERGE a pull
request

16. In your experience, what other factors affect the time to merge a pull request?

17. In your experience, what are the 3 most common reasons for REJECTING a pull
request?

18. Rejection of pull requests might lead to problems with the project community.
Have you ever experienced such problems and if yes how did you deal with them?

19. What heuristics do you use when prioritizing pull requests for merging?

*
Not Important Mildly Important Relatively Important Very Important

Existence of tests (in the
project)

����� ����� ����� �����

Existence of tests (in the
pull request)

����� ����� ����� �����

Number of changed lines ����� ����� ����� �����

Number of commits ����� ����� ����� �����

Number of discussion
comments

����� ����� ����� �����

Pull request affects hot
project area

����� ����� ����� �����

Pull requester track record ����� ����� ����� �����

��

��

*

*

��

��

*
��

��

A new pull request solves the problem better

�����

Examination of the proposed feature/bug fix has been

deferred

�����

Tests failed to run on the pull request

�����

The implemented feature contains technical errors or is of low

quality

�����

The pull request conflicts with another pull request or branch

�����

The pull request does not follow project conventions (style)

�����

The pull request implements functionality that already exists

in the project

�����

Other (please specify)

��

��

20. Imagine you frequently have more than 50 pull requests in your inbox. How do
you triage them?

21. How do you do code reviews?

22. What heuristics do you use for assessing the quality of pull requests?

23. What tools do you use to assess the quality of pull requests?

*
Never Occasionally Often Always

I delegate to devs more
experienced with the
specific subsystem

����� ����� ����� �����

I process them serially ����� ����� ����� �����

I just discard very old pull
requests

����� ����� ����� �����

I discard too discussed /
controversial pull requests

����� ����� ����� �����

I trust pull requests from
reputed pull requesters

����� ����� ����� �����

I assess the technical
quality of the pull request

����� ����� ����� �����

*

*
��

��

*

Other (please specify)

��

��

I review code in all pull requests

�����

I delegate reviewing to more suitable code reviewers

�����

I use inline code comments in pull requests

�����

I only review code in commits

�����

Code review is obligatory for a pull request to be merged

�����

The community participates in code reviews

�����

Other (please specify)

��

��

Continuous integration (i.e., via Travis, Jenkins, Cloudbees)

�����

Manual test execution

�����

Code quality metrics (i.e. via Code Climate or Sonar)

�����

Coverage metrics

�����

Formal code inspections from specialized testers

�����

Other (please specify)

��

��

24. What is your work style when dealing with pull requests?

25. How do you communicate with the project's contributors on potential
contributions?

26. What is the biggest challenge (if any) you face while managing contributions
through pull requests?

27. What kind of tools would you expect research to provide you with in order to assist
you with handling pull requests for you project?

28. Your Github Id. This will help us cross-­check your replies with our dataset. This will
not be part of the public dataset we will release.

*
Never Occasionally Often Always

I insist on pull requests
being split per feature

����� ����� ����� �����

I merge pull requests fast
to ensure project flow

����� ����� ����� �����

I prefer pull requests to be
tied to an open issue

����� ����� ����� �����

I am pedantic when
enforcing code and
documentation style

����� ����� ����� �����

I ask for more work as a
result of a discussion

����� ����� ����� �����

I close pull requests fast in
case of unresponsive
developers

����� ����� ����� �����

I try to restrict discussion to
a few comments

����� ����� ����� �����

I try to avoid discussion ����� ����� ����� �����

��

��

��

��

Email

�����

Issue tracking: I expect contributors to open an issue describing the problem and the potential fix

�����

Pull request: I expect contributors to open a minimal pull request describing the problem and the potential fix

�����

IRC

�����

Twitter

�����

Skype/Hangouts/Other form of synchronous communication

�����

I prefer not to communicate

�����

Other (please specify)

��

��

29. Would you like to be notified when the questionnaire results have been processed?
If yes, please fill in your email below:

30. Would you be available for a 30 min interview over Skype or Google Hangouts? We
'll use the email you filled in above to contact you. We are offering a $20 gift certificate
on Amazon to every person we interview.

Yes

�����

No

�����

	Introduction
	Background and Related Work
	Research Questions
	Study Design
	Protocol
	Participants
	Analysis

	Results
	RQ1: How do integrators use pull-based development in their projects?
	Overall use
	Types of contributions
	Code reviews
	Integrating Changes

	RQ2: How do integrators decide whether to accept a contribution
	The decision to accept
	Reasons to reject
	Time to make a decision

	RQ3: What factors do the integrators use to examine the quality of contributions?
	Perception
	Tools

	RQ4: How do the integrators prioritize the application of contributions?
	RQ5: What key challenges do integrators face when working with the pull-based development model?
	Technical challenges
	Social challenges

	Discussion
	Quality
	Testing
	Work Prioritization
	Developer Track Records
	Community Building
	A modern theory of software change

	Limitations
	Conclusions
	References

