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Abstract

We propose a deep graphical model for the correction of isolated spelling errors in text. The model is a
deep autoencoder consisting of a stack of Restricted Boltzmann Machines, and learns to associate error-
free strings represented as bags of character n-grams with bit strings. These bit strings can be used to
find nearest neighbor matches of spelling errors with correct words. This is a novel application of a
deep learning semantic hashing technique originally proposed for document retrieval. We demonstrate
the effectiveness of our approach for two corpora of spelling errors, and propose a scalable correction
procedure based on small sublexicons.

1 Introduction
In this paper, we investigate the use of deep graphical models for the purpose of context-free spelling correc-
tion in text: spelling correction in isolated words. Spelling correction is a well-studied subject that has been
on the agenda of the NLP community for decades ([3]). Nowadays, new applications arise in the contexts
of big data, search engines and user profiling. For instance, in product data cleansing ([4, 19]), where large
quantities of manually entered product data need to be standardized, accurate detection and handling of mis-
spellings is important. Search engines like Google proactively perform spelling correction on user queries
([5, 15, 17, 25]). Stylometric user profiling in forensic situations may benefit from accurate estimates of
the amount and type of spelling errors a person makes, e.g. for authorship verification (e.g. [13, 23]). The
approach we propose is an application of a recent neural network technique that was proposed by Salakhut-
dinov and Hinton ([20]) for document hashing and retrieval. This technique, semantic hashing, attempts
to compress documents into compact bit strings, after which document retrieval becomes an efficient and
accurate operation on binary hash codes. In Section 2, we outline this approach, and describe how it can be
used for spelling correction, which we view as a form of document retrieval at word level. In Section 3, we
describe a number of experiments on two corpora of spelling errors. Results are discussed in Section 4.

2 Deep graphical models
Deep graphical models have emerged in the machine learning community as hierarchically structured, pow-
erful learning methods that perform ’deep learning’: hidden layer information of subordinate layers is ex-
ploited as feature input by higher layers, the idea being that every layer computes features of its input (hence,
higher levels compute meta-features, ’features of features’). This higher-order type of information is gen-
erally held to capture deep or semantic aspects of input data, and seems to correlate with the human brain
architecture for cognitive processing ([1]). Deep learning has been applied to challenging problems in vi-
sion and speech and language processing (see e.g. [1, 11, 21]). Frequently, deep learning architectures are
composed of stacks of Restricted Boltzmann Machines (RBM’s): generative stochastic networks that learn
probability distributions over inputs. Boltzmann Machines are stochastic neural networks with a layer of



visual neurons (input units) and a layer of hidden neurons. Restricted Boltzmann Machines have no connec-
tions from visible units (inputs) to visible units, or from hidden units to hidden units, making them bipartite
graphs (see Figure 1).
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Figure 1: A Restricted Boltzmann Machine.

Often, the neurons are binary stochastic neurons than can be in two states: on or off. Whether a neuron is
on depends (via a sigmoid function) on node-specific properties (like a bias), and the weighted connections
the node has with the other neurons in the network, as well as the states of those other neurons.

The energy of a RBM at any time is given by E(v, h) = h′Wv + b′v + c′h, with W the weight
matrix, and b and c bias vectors of the visible (v) and hidden (h) neurons. Training a Boltzmann machine
means to feed input to the network through the visible neurons, and updating weights and biases with the
purpose to minimize the energy of the network. Efficient training methods for RBM’s have been proposed
by [8, 9], based on alternating Gibbs sampling of the hidden units based on the visible units, and vice versa
. In [20], an application of a stack of RBM’s is presented for document hashing. The stack is trained
to associate training documents with bit strings (binary codewords), which can be interpreted as memory
addresses, and allow for finding similar test documents with fast and simple bit shift and Hamming distance
operations. First, training proceeds in an unsupervised, greedy manner, mapping vector representations of
documents to lower-dimensional real-valued vectors. After this stage, these output vectors are converted
into binary vectors, which are used to reconstruct the original training documents. This is done by pairing
the feedforward phase (generating bit strings) with a feedbackward phase that predicts the original training
input from the binary vectors. Reconstruction errors are minimized with gradient-descent backpropagation
in a supervised fine-tuning stage. Finally, the stack of finetuned RBM’s can be used for the prediction of
bit strings for arbitrary documents based on the ’training’ on the unlabeled, original training documents.
Systems of this type are called autoencoders ([10]): they learn how to compress data into low-dimensional
codewords. In the next subsection, we describe the details of a similar architecture we use in our experiments
to handle the problem of spelling correction in isolated words.

2.1 Model architecture for spelling correction
Our proposal is based on the idea of treating words as ’documents’, and spelling correction as a form of
document retrieval: retrieving the best matching correct spelling for a given input. Our hypothesis is that se-
mantic hashing-based document matching can be applied here too, even if the documents are tiny compared
to ’normal’ documents. In our approach, bit strings are learned from training words (correct spellings), and a
corresponding dictionary of bit strings paired with correct spellings is derived. For queries, the model makes
a bit string prediction, which is then matched against the bit string dictionary derived from the training data.
The bit string with closest Hamming distance to the predicted bit string produces the proposed spelling for
the query word. This approach is illustrated in Figure 2. We expand words to quasi-documents using a bag
of character n-grams representation. An example is

• (bigrams) spelling: s,sp,pe,el,li,in,ng,g

Using character n-grams allows for approximate matching of strings, since partial matches are possible.
Character n-grams have been found to be strong features for many applications in text analytics, such as
polarity classification of sentiment in documents (e.g. [18]). The bag-representation discards order, and
usually contains frequencies of elements (like words, or, in our case, character n-grams)1. Like [20], we

1The unordered character n-gram representation may lead to discriminative difficulties in the rare case of two words that share the
same n-grams, but differ from each other in the position of some n-grams. Adding position indexes to n-grams may prove beneficiary
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Figure 2: System setup. A model for the prediction of bit strings is learned from correctly spelled words.
The closest match of learned bit strings with predictions yields the correction of the input.

used a uniform model architecture in our experiments, with the following characteristics. We stack three
primary RBM’s with binary hiddden units, which have a (N (input)×N/2 (hidden))− (N/2 (input)×
N/2 (hidden)) − (N/2 (input) × 128 (output)) structure. Here, N is the dimension of the input layer
(the number of features), which we set to be min(Nf , 1000), with Nf the amount of different features in
the training data. We generate bit strings of length 128, a value that was determined on the basis of some
experiments on a fraction of the training data. These RBM’s are connected to their inverse counterparts, in
order to reconstruct the original training data from the bit string predictions. The graphic structure of the
total, unrolled model is depicted in Figure 3.
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Figure 3: Model architecture. Three RBM’s are pre-trained, and then reversed (’unrolled’).

The feature representation of the input layer then consists of a vector of N log(1 + cf ) values, with cf
the raw frequency of feature f in the bag of character n-grams derived for an input word. In our setup, the
three first Boltzmann machines are pretrained for 500 epochs. Subsequently, the chain is unrolled (i.e. put in
reverse mode), and the training data is reconstructed (input′) from the predicted bit strings. This is followed
by a gradient descent backpropagation phase (100 epochs) that feeds back the measured reconstruction
error (the error between original training data and reconstructed, predicted training data) into the chain,
and optimizes the various weights. Finally, after backprogation, the three trained and optimized RBM’s
are stored as the final model. Predicted values by the model are discretized to binary values by simply
thresholding them (values greater than or equal to .1 becoming 1, following [20], who mention that RBM’s
have asymmetric energy functions that tend to produce values closer to zero than to 1). During training, the
learning rate was set to .1, and no momentum nor weight decay was used. A momentum of .9 was used for
backpropagation. No systematic grid search was attempted due to the rather unfavorable time complexity
of the training procedure.2 Our approach differs in some respects from the approach by Salakhutdinov and
Hinton [20]. Unlike their setup, which uses RBM’s based on Constrained Poisson Models, we used standard
Restricted Boltzmann Machines. In addition, we did not apply any optimization techniques to enhance the
binarization of the output predictions. In [20], deterministic Gaussian noise was added to the inputs received
by every node in the chain, in order to produce better binary codes. We merely relied on backpropagation

in such cases, with the position indices being string parts of the n-grams, e.g. ab1, bc2.
2According to [20], deep graphical models are somewhat insensitive to perturbations of hyperparameters.



for bit string optimization after the initial bit string predictions were made.

3 Experiments
We tested the deep graphical model on two publicly available corpora of spelling errors: a corpus of spelling
errors in Tweets3, and a Wikipedia corpus of edit errors4. The Tweet corpus consists of 39,172 spelling
errors, their correction, and the edit steps to be performed to transform the error to the correct word form
(replacement, insertion, deletion). The corpus has 2,466 different correct word types, which implies on
average 15.9 errors per word. The Wikipeda corpus consists of 2,455 errors coupled to correct word forms
(a total of 1,922 different correct word types), which means on average 1.3 errors per word. We performed
two types of experiments. The first experiment is a small lexicon experiment, in which we built for separate
portions of errors a model of the corresponding ground truth corrections. For both corpora, we took 10
equal-sized test data splits consisting of spelling errors, and the corresponding ground truth, built models
for the ground truth words, and tested the models on the 10 test splits. We indexed every word for the
presence of character bigrams and trigrams, on the basis of a feature lexicon of character n-grams derived
from the training data. This lexicon consists of the 1,000 top character n-grams ranked by inverse document
frequency, treating the bag of character n-grams of a word as a ’document’. Next, in order to assess the
impact of lexicon size on correction accuracy, we built a model of a larger amount of ground truth data, and
tested the model on the same test data splits we used in the first experiment. We used the first 5,000 words
of the Twitter corpus, and the first 500 words of the Wikipedia corpus for training, after which we tested the
model on the first 5 test splits of the corresponding test data. For both corpora, this means a considerable
increase in lexicon size. To speed up training of the model, we limited the feature lexicon to the 500 top-
ranking character n-grams. Details of the corpus size, and the training and test splits are listed in Table 1.

Corpus Size Size of training splits Size of test splits Splits used Lexicon size
Experiment 1

Twitter 39,172 1,000 1,000 1-10 (the first 10) 1,000
Wikipedia 2,455 100 100 1-10 (the first 10) 1,000

Experiment 2
Twitter 39,172 5,000 1,000 1-5 (the first 5) 500
Wikipedia 2,455 500 100 1-5 (the first 5) 500

Table 1: Characteristics of the data used in the experiments.

We report correction accuracy for different minimal word lengths, varying from 4, 6, 8 to 10 characters.
Since we use character n-grams as features, we hypothesize that our approach works better for relatively
longer words, which produce larger bags of character n-grams. The deep graphical model was implemented
in Python, with the Oger toolbox5. As a baseline, we used the well-known Unix aspell spelling correction
program. While this comparison is not entirely sound (for one thing, we did not feed aspell with the same
lexicon data as the RBM), it shows the baseline performance on our data with a standard, widely used and
off-the-shelf large-vocabulary tool.

4 Results and discussion
Results are presented in Figure 4 and are summarized in Table 2. The results demonstrate effective error cor-
rection capability for words longer than 6 characters, and show an overall performance well above baseline,

3http://luululu.com/tweet/, published by Eiji Aramaki.
4http://www.dcs.bbk.ac.uk/ ROGER/corpora.html
5http://reservoir-computing.org/organic/engine



with the exception of the extended lexicon for Wikipedia. Yet, it is clear that, in general, correction accuracy
linearly decreases with the size of the lexicon. The effect is stronger for the Wikipedia corpus than for the
Twitter corpus. In fact, for the latter, the use of the large lexicon becomes an advantage for long words of 9
characters and more. Especially for shorter words in both corpora, the increase in lexicon size seems to lead
to less accurate models. While we cannot rule out effects of non-optimal hyperparameters, we propose to
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Figure 4: Accuracy results for the Twitter and Wikipedia corpora, for the small and extended lexicons. The
aspell program was used as a baseline on the test data for both experiments; it uses its own dictionary.

Experiment 1 - small lexicons
≥ 4 ≥ 6 ≥8 ≥10

Twitter 52 80.5 93.4 97.1
Baseline 43.9 60.1 75.6 87.7

Wikipedia 77.3 79.8 84.3 86.3
Baseline 69.4 71.7 77.5 82.3

Experiment 2 - extended lexicons
≥ 4 ≥ 6 ≥8 ≥10

Twitter 47.3 71.1 90.7 100
Baseline 43.1 57.9 75.5 89.9

Wikipedia 67.6 70.9 74.9 78.2
Baseline 70.9 73.5 79.7 86.8

Table 2: Accuracy results for the Twitter and Wikipedia corpus, under both experimental conditions, and for
different minimum word lengths (4-10).

remedy this problem by using an array of models derived from relatively small sublexicons. Input strings
can efficiently be matched against these sublexicons, under the hypothesis that out-of-vocabulary words re-
ceive bit strings with higher average Hamming distance to the bit strings of the training words in the lexicon
than in-vocabulary words. This is an expression of the reconstruction error of the model for ’foreign’ data.
The less optimal the fit of the model to the test data, the higher the Hamming distance between the predicted
bit strings with the learned bit strings for the training data becomes. The proposed procedure basically per-
forms a nearest neighbor search over several lexicons in parallel, and the dictionary with the lowest average
Hamming distance between training bit strings and predicted bit strings produces the correction.6 Formally,

6The size of the separate sublexicons is an extra parameter that can be further tuned during training.



we compute C(x), the correction of input word x as follows:

C(x) = argmin
y∈L

(
argmin

L
H(p̂L(x), p̂L(y))

)
(1)

Here, H(p̂L(x), p̂L(y)) is the Hamming distance between the bit strings predicted by the model for lexicon
L, for words x and y (where y is a correct word in the dictionary L). We tested the viability of this procedure
on the Wikipedia corpus for the 10 splits of Experiment 1, and we were able to infer for all test splits the
correct lexicon for lookup. For every test split, we produced predictions with the 10 training data models,
only one of which contained the correct ground truth (training partition i for test partition i). For every
word in the test data, we let these models produce a bit string. We then found the nearest neighbor bit
string in the corresponding training bit strings, and measured the Hamming distance between the predicted
bit string and this nearest neighbor. For every test split, we averaged the distances. The resulting 10×10
distance matrix is presented in Figure 5, which indeed shows (on the diagonal) minimal distance between
the test data and the correct models. This means that the model with the minimal average Hamming distance
between predictions and learned bit strings can be identified as the preferred model for correction. From a
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Figure 5: Average Hamming distance between bit strings produced for the 10 test data splits (starting at 0),
and the bit strings learned for the training data.

practical point of view, these relatively small models can be jointly loaded in memory, and spelling error
correction can be done efficiently in parallel.

5 Related work
For a traditional topic like spelling correction, many solutions have been proposed, ranging from either
knowledge-intensive (rule-based, dictionary-based) to statistical, data-driven and machine learning based
methods, and mixed rule-based/data-driven solutions ([16]). In [12], an overview of noisy channel methods
that can be used for spelling correction based on character-based language models is provided. Models
based on transformations attempt to apply inverse string edit operations in order to map noisy strings back
to clean versions7. A modern substring matching algorithm that uses a similar approach is [22]. The well-
known GNU aspell program is based on these transformations as well, in combination with a procedure
mapping words to soundalike strings (’metaphones’) that abstract away to a certain extent from orthography.
A context-sensitive approach to spelling correction was presented in [6], using the Winnow machine learning
algorithm. In [2, 14], early neural network approaches to spelling error correction were presented. In [24], a

7See http://norvig.com/spell-correct.html for a good and practical explanation.



hashing approach to the spelling correction of person names is presented. The authors formulate the problem
of finding optimal bit strings as an Eigenvalue problem, to be solved analytically, and, using character
bigrams, are able to improve significantly on a number of baselines. Their approach differs from ours in
that we explicitly use machine learning techniques to learn optimal bit strings with self-optimization, and
that we exploit an inherent characteristic of the learning paradigm (the reconstruction error of the trained
autoencoder) to optimize lexicon selection for error correction. Character-level spelling correction based on
error correction codes in the context of a brain-computer interface is described in [7].

6 Conclusions
We have demonstrated the effectiveness of deep autoencoders for spelling correction on two publicly avail-
able corpora of spelling errors in isolated words. To the best of our knowledge, this is a novel application of
the semantic hashing technique proposed by [20]. Overall, character n-gram representations of strings pro-
duced high accuracy results, especially for longer words. This representation generates ’quasi-documents’
from words, and makes semantic hashing techniques originally meant for documents amenable to the level
of words. Increased lexicon size was found to be of negative influence on correction accuracy. We proposed
the use of small sublexicons as a remedy, relying on the reconstruction error of the autoencoder to identify
the suitable lexicons for correction of a certain input. In a separate experiment, we were able to identify
for the 10 Wikipedia test data splits of our small lexicon experiment the sublexicon that minimized the re-
construction error of the test data. Our approach is knowledge-free, and only demands a list of correctly
spelled words. It can be extended to contextual spelling correction, by using windowed character n-gram
representations of text, which we plan for future work. While we are not aware of comparable results on
the two corpora we used, we hope our research contributes to further benchmarking of spelling correction
methods applied to these datasets. The data splits we used are easily reconstructed from our specifications.
Future work wil also address scalable hyperparameter optimization. Due to the prohibitive time complexity
of training the models, efficient methods are needed here. While it is in theory possible we hit a coincidental
local maximum in our choice of parameter settings, we observed in line with [20] some indifference of the
models with respect to perturbations of certain parameters. A systematic hyperparameter search will deepen
our understanding of this phenomenon, and may lead to further improvement of our results.
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