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VISCOPLASTICITY FOR INSTABILITIES DUE TO STRAIN
SOFTENING AND STRAIN-RATE SOFTENING*
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ABSTRACT

Three viscoplastic approaches are examined in this paper. First, the overstress viscoplastic models (i.e. the
Perzyna model and the Duvaut-Lions model) are outlined. Next, a consistency viscoplastic approach is
presented. In the consistency model a rate-dependent yield surface is employed while the standard
Kuhn-Tucker conditions for loading and unloading remain valid. For this reason, the yield surface can
expand and shrink not only by softening or hardening effects, but also by softening/hardening rate effects.
A full algorithmic treatment is presented for each of the three models including the derivation of a consistent
tangential stiffness matrix. Based on a limited numerical experience it seems that the consistency model
shows a faster global convergence than the overstress approaches. For softening problems all three
approaches have a regularising effect in the sense that the initial-value problem remains well-posed. The
width of the shear band is determined by the material parameters and, if present, by the size of an
imperfection. A relation between the length scales of the three models is given. Furthermore, it is shown that
the consistency model can properly simulate the so-called S-type instabilities, which are associated with the
occurrence of travelling Portevin-Le Chatelier bands. © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The calculation of shear bands and other material instability phenomena has become of consider-
able interest because of its importance in predicting failure of materials. The numerical simulation
of shear bands with classical rate-independent softening models fails because, under dynamic
loading conditions, the field equations that describe the motion of the body may lose hyperbolic-
ity when strain softening occurs. The initial value problem becomes ill-posed and numerical
solutions suffer from mesh sensitivity. Because the wave speed in the softening region becomes
imaginary, loading waves are not able to propagate and the localization zone stays confined to
a line with zero thickness.! These results are in contradiction with experimental data, which show
finite widths of the localization zone.

In order to solve the mesh-sensitivity problem, viscous terms can be introduced to keep the
field equations hyperbolic. Needleman,? Loret and Prevost® and Sluys* have shown that material
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rate dependence introduces a length scale effect into the initial value problem under dynamic
loading conditions even though the constitutive equations do not explicitly contain a parameter
with the dimension of length. Sluys* has demonstrated that this viscous length scale effect can be
related to the spatial attenuation of waves that have real wave speeds in the softening regime.
Wang et al.’ related the internal length scale to the softening modulus and examined the influence
of an imperfection (see also Reference 6). They showed that the width of the localization zone is
determined by the smallest value of the internal length scale and the size of the imperfections.

In this paper a review of viscoplastic models and their algorithmic aspects will be given. First,
the overstress viscoplastic methods according to Perzyna’ ° and Duvaut-Lions'®'"* will be
investigated. These viscoplastic models are implemented by allowing the stress state to be outside
the yield surface and directly define the plastic relaxation equations in the stress space. As an
alternative model, the consistency approach is presented. Now the viscoplastic regularization is
achieved by introducing a rate-dependent yield surface. The standard Kuhn-Tucker conditions
for rate-independent plasticity then still apply. For this reason, the yield function can expand and
shrink not only by hardening or softening effects, but also by hardening rate or softening rate
effects. This has the advantage that the model can simulate both H-type instabilities (i.e.
stationary shear bands) and S-type instabilities (i.e. propagative Portevin-Le Chatelier bands'?).

In this paper we will first discuss the algorithmic aspects of the three viscoplastic approaches.
Next, it is shown that the three models have a regularizing effect in the sense that they keep the
field equations hyperbolic under dynamic loading conditions. Accordingly, the initial-value
problem remains well-posed. By a wave dispersion analysis it is demonstrated that rate-depen-
dent models naturally introduce a length scale parameter into the initial value problem. A rela-
tion between the length scales of the three models is given. Finally, numerical examples are
presented of H- and S-type instabilities and some evidence is given that the consistency model
exhibits a faster convergence than the algorithms for the Perzyna and the Duvaut-Lions models.

2. RATE-INDEPENDENT PLASTICITY

We consider a body B with volume Q and surface éQ = 3,Qu 3, Q, where 6,Q and 9,Q are the
traction and kinematic boundaries, respectively, with 8,Q3,Q = 0. The equations of motion, the
kinematic equations for small displacement gradients and the corresponding initial and boundary
conditions read

Vo +p=pi in Q (1)
£=3(Vv+ W) in Q 2
u(x,0)=1u,, v(x,0)=v, inQ (3)
t=h-o on 6,Q (4)
u(x,t)=1 on 0,Q (5)

in which € and o denote the strain and stress tensors, p is the density, u, v, p and t represent the
displacement, velocity, body force and surface traction with the outward normal i, the symbol V,
( +)and ( )T are the gradient operator, the inner tensor product and the transpose symbol, and
a superimposed dot denotes differentiation with respect to time, respectively. The constitutive
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VISCOPLASTICITY FOR INSTABILITIES 3841

equations for rate-independent plasticity can be written in a rate format as

§=¢"+ & (6)
=D (¢ —¢P) 7
& = Jn (8)

where D¢ is the elasticity tensor, the symbol ( : ) represents the doubly contracted tensor product,
n is the direction of the plastic flow and 4 is the plastic multiplier. The yield criterion of inviscid
plasticity and the loading-unloading conditions can be expressed in Kuhn-Tucker form as

120, f<0, if=0 ©

where f (o, k) is the yield function and x is the equivalent plastic strain which describes the plastic
deformation history. In this paper a strain-hardening/softening hypothesis is assumed

k= /2/3&: 8P (10)

For algorithmic convenience we limit our interest to Von Mises plasticity with an associated flow
rule
of

flo9=/30-6(), n=7 1)

in which J, is the second invariant of the deviatoric stress tensor and ¢ is a hardening-softening
function with a modulus h = d6/0x. Substitution of equations (8) and (11) into equation (10) gives

k=1 (12)

so that the yield function can also be expressed as f(o, 4).
In the context of finite element analysis, the equation of motion (1) is normally fulfilled in
a weak form, i.e.

J [o:és—i—pii-éu]dQ:J t-oudS (13)
Q a0

where the virtual displacement du is zero on the kinematic boundary ¢, Q and the body force p is
neglected. To arrive at a semi-discretized set of equations equation (13) is solved by means of finite
elements. Next, the second-order ordinary differentiation equations are discretized in time, €.g.
through the Newmark method, which results a set of fully discrete algebraic equations.'?

3. RATE-DEPENDENT PLASTICITY

In this section three viscoplastic models are presented: the Perzyna and Duvaut-Lions viscoplas-
tic models and the consistency model. In the overstress viscoplastic approaches the plastic flow is
constrained by the plastic relaxation equation. In the consistency viscoplastic model the viscop-
lastic flow is determined by the Kuhn-Tucker conditions with a rate-dependent yield function.

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997)
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3.1. Perzyna viscoplastic model

In the viscoplastic model according to Perzyna,” ~? the viscoplastic strain rate is defined as

&= <$(f)>n (14)

in which  is a fluidity parameter. The notation < > refersto <y > =y H(y), where H is the
Heaviside step function. ¢ (f) is an arbitrary positive function of the yield function, for instance,

a power law
¢(f)= [i] (15)

with N a constant and &, the initial yield stress.

3.2. Duvaut-Lions viscoplastic model

A different viscoplastic model, which in its elaboration more closely connects to rate-indepen-
dent plasticity, has been proposed by Duvaut and Lions.'®'"* The theory is based on the
difference in response between the rate-independent material and the viscoplastic material. The
viscoplastic strain rate and the hardening law are defined as

éVP=%[De]*‘ (c — &) (16)
k= —L—n) (17)
=7

where { is the relaxation time, & is the contribution of the rate-independent material ( we use a bar
to denote the variable of the inviscid plastic model or back-bone model) which can be viewed as
a projection of the current stress on the yield surface. The viscoplastic strain rate is determined by
the difference between the total stress and the stress in the inviscid backbone model. This is in
contrast with the Perzyna model in which the value of the yield surface f determines the
viscoplastic strain rate. The Duvaut-Lions model has the far-reaching advantage that it can be
combined with a yield surface which has an apex (Drucker-Prager, Mohr—-Coulomb) or which is
non-smooth (Mohr—Coulomb, Tresca).

3.3. Consistency model

In the Perzyna and Duvaut-Lions viscoplastic theories an important distinction from the
inviscid plasticity theory stems from the fact that the current stress states can be outside the yield
surface and that the yield function may have a value larger than zero. Therefore, the
Kuhn—Tucker conditions are not applicable. If the external loading remains constant the stresses
return to the yield surface as a function of time. Because of this feature viscoplastic theories are
commonly called overstress laws. We now consider another approach in which the strain-rate
contribution (viscosity) is implemented through a rate-dependent yield surface. By doing so the
Kuhn—Tucker conditions (9) remain valid and therefore we call this approach the consistency
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method. The yield function and the consistency condition for a rate-dependent material can be
written as

flo,k,K)=0 (18)
and
f(o, K, K)=n:6 —h& — Ek =0 (19)

where n is the gradient to the yield surface, h the hardening modulus and ¢ the viscosity defined as
follows:

of af o

n=5(—’, = —5’;, &= EX (20)

In the consistency approach the yield surface can expand and shrink not only by hardening or
softening effects, but also by hardening or softening rate effects. This has the advantage that the
consistency method can describe the so-called Portevin-Le Chatelier effects in a proper way
(S-type instability), which are caused by strain-rate softening (ie. h >0, ¢ < 0'3),

4. ALGORITHMIC ASPECTS

In displacement-based finite element formulations, stress updates take place at the Gauss points
for a prescribed nodal displacement. We start from time ¢ with the known converged state: &, &7,
6, k, ] in a configuration B, to calculate the corresponding values at time t + At: [& 44 % A
6.+ ai» Ki4a:] in the updated configuration B, ,, With a prescribed incremental nodal displace-
ment Aa defining the geometric update B, — B, 4. In this incremental process, the incremental
strain Ag is decomposed into an elastic part Ae® and a viscoplastic part Ag'® according to

Ae = Ag® + Ag™® (21)
The incremental stress is related to the elastic response by
Ao = D, (As — Ag'P) (22)

where, for algorithmic convenience, we have shifted to matrix vector notation. Therefore, the key
feature of stress updates is characterized by estimating the incremental viscoplastic strain Ag™.
We can use the generalized trapezoidal rule or the generalized midpoint rule to approximate the
viscoplastic flow. The first algorithm is given by

AP = AL [(1 —On, + 0n,44,], Ax=AA (23)
while the second method reads
AEP = Al i, Ak = AL (24)

where Von Mises plasticity is assumed and 6 is an interpolation parameter such that 0 < 6 < 1.
For the one-step methods in this paper we adopt a generalized Euler method in which the

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839 -3864 (1997)
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Figure 1. Geometric interpretation of the generalised Euler rule

viscoplastic flow is approximated as
Ae? =[(1 — 0) &° + 082, ] At (25)
Ak =[(1 — O) K, + 0K, 1 ar ] At (26)

The geometric interpretation of the Euler integration scheme is plotted in Figure 1. We note
that for § = 0 (explicit method) and 6 = 1 (fully implicit method) the above three integration
schemes are identical.

4.1. Perzyna viscoplastic model

In the one-step Euler integration scheme, the viscoplastic strain rate at the end of the time
interval is expressed in a limited Taylor series expansion as*

. . 0&"P a&"r .
&A=&+ Ao + Ax =£° + G, Ao + h,Ax (27)
do |, oK |,
where
CTeb o L _ [
Gz—'l[acn +¢W,’ h,=n 5,2“[ (28)

and equations (11) and (14) have been applied. Substitution of equation (27) into equation (25)
yields

Ae'? = (§° + 0G,Ac + 6h,Ax) At (29)
This equation can be substituted in the incremental stress—strain relation (22), which leads to
Ao = D At — Ag (30)
in which
D, =[D. !+ 6AtG] !
Ag =D, (£/°At + 0Ath,Ax) (31)

Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997) © 1997 John Wiley & Sons, Ltd.
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Box 1. A one-step Euler stress-update
algorithm for Perzyna model

Ag 1o = B Aa iy,
6, = 6, + D, Ag; 1o,
If f(o,,, k) = 0: plastic state

(1)G,=n[%nw¢azf]

06 Era

0
@) ht=n[a—fn}

(3) D, =[D; ! + 0AG,]7!

(4) Aq = D, (&}° At + 0Ath, AxD)*
(5) 6,4ar=06,+ D Ag, 5, — Aq
(6) f=1(0r+ a0, ki + AKD)

(T) 7 = 0 (0sn 0+ B0)
(8) Kipar=~/% £P:E™

9) AU D = [(1 — 0)K, + 0K ac] At
else elastic state : 6,4 4; = Gy,

*(I): global iteration.

D, is the tangent stiffness matrix and Aq gives the contribution of an extra pseudo-nodal force in
the equation of motion. The Euler stress-update algorithm for Perzyna viscoplasticity is outlined
in Box 1.

In the one-step Euler integration scheme, the current viscoplastic flow is estimated by a limited
Taylor series expansion which depends on the gradient of the yield surface at time ¢. In a fully
implicit integration scheme, the viscoplastic flow is determined by the gradient of the yield surface
at time ¢ + At. The incremental viscoplastic strain now reads

AP = &80 At =1 < Prrar > Atny g = ANy (32)
where a plastic multiplier A4 is introduced under the constraint that the residual**

Y

r—m

~ O (G4 a1 Aetar) (33)

goes to zero during the local iterative procedure. Substituting equation (32) into equation (22)
yields

Ac = D, [Ae — Aln 4] (34)

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839 -3864 (1997)
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To compute A4, a local Newton-Raphson iteration process is applied. The iterative improve-
ments of As, Ag and Al are denoted by &6, d¢ and 84, respectively. Differentiation of equation (34)
gives the variation of Ac as a function of the variation in Ag and A4 during iteration i:

. 5f 6) azf
56 = Hoe H[66+Ai 57 | o 35)

with a pseudo-elastic material stiffness matrix H

2
H‘1=D;‘+A/1""a—{ (36)
Jc

By differentiation of equation (33) the Newton—Raphson process at iteration i + 1 is then
described by

op\" f5l0) 1 o
b = = —pt 7
<60'> 56+<6i Y oA r (37
with the residual r®. Substitution of equation (35) into equation (37) yields
1{/0p\" )
8 =— [(—(é> Hoée + r‘”] (38)
af\Jo
with
a= Ea-‘BTH g+A,l“’ S +—1——6—¢ (39)
~ \ oo Jo 0o 04 nAt 04
Substitution of equation (38) into equation (35) subsequently leads to the tangent stiffness matrix
_ 1 of o O*f | [0p\"
DC—H—&H[66+A/1 7637 |\ 70 H (40)

If we use local iterations during a global iteration, the iterative strain increment ¢ vanishes from
equation (38) due to a fixed total strain increment. In Box 2 the iterative implicit stress-update
algorithm for Perzyna viscoplasticity is outlined.

To investigate the influence of the interpolation parameter € on the approximation of the
plastic flow, a unit cell test has been carried out, Figure 2. A four-noded element with a one-point
Gauss integration scheme has been used. We take a consistent mass matrix and a constant time
step. In Figure 3 the results for a constant velocity test (left) and a constant acceleration test (right)
have been plotted. We observe that the results for a constant velocity test with different values for
the interpolation parameter 0 are identical after a few steps of plastic deformation. This is logical
since the viscoplastic strain rate becomes constant due to the imposed constant velocity. For the
constant acceleration test, the load-carrying capacity decreases with increasing values for the
interpolation parameter . It is noted that the results of the one-step Euler backward method
(# = 1) and the iterative implicit method do not differ significantly even for the constant
acceleration test, but this may change for larger time steps.

Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997) © 1997 John Wiley & Sons, Ltd.
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Box 2. An iterative implicit stress-update algorithm for

Perzyna model

Ag, o =BAag,
6, =0, + D Ag, , a
If f(o,, A;) = 0:plastic state

ANO =0, GEOLA,—GI+D[ Al‘°’§f]
(9

AI®
1O = $o % uy dy + ALV — 2o
nAt

(1) local iteration

H [D + AL 62f ]_1

ap\" Y T Y
== A0 . T
(3) @ <6c> H [A 260l 3 | T nht G2

(i)
(@) A = A0 4 T
o

Y
(5) o!'fAl=0,+D, [As — ANETD %]

A/l(H— 1)

(6) 0 = §lol it du+ ALY -
nAt

(7) if |V > 8 go to (1)

else elastic state : 6,, o, = G,,

© 1997 John Wiley & Sons, Ltd.
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= 10000, h=—3000[ Nimm*

a, =3 Nimm® , p =2% 107 Ns*/mm®

=5 mmis], Ar=10"%[s]

Figure 2. Unit cell under dynamic shear
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t [ Nimm* ) 7 [ Nimm* ]
1.10 1.10

[
1.07 --8

—6=00
--6=0.5
—-0=1.0
--iterative implicit

-- iterative implicit

1.04

1.014

0.98d 7=50[Vs]
v=5+108%1 [ mmis ]
0.95 T i T
0.1 0.15 0.2 0.1 0.2 0.3 0.4

y[x107] y[x107%]

n=50{Vs]

v=5[mmls]

Figure 3. Unit cell—Perzyna model. Left: constant velocity. Right: constant acceleration

4.2. Duvaut—Lions viscoplastic model

In Duvaut-Lions viscoplastic model, the stress update is carried out in two steps. First the
inviscid back-bone stress & is updated. An Euler backward algorithm is used for the return
mapping of the stress to the yield surface

AG = D As (41)
where
_ D.an™D
D — D € €
¢ ¢ h+a"D.n (42)
and
0
n= —{ (43)
Jo

Next, the viscoplastic response is determined. The current viscoplastic strain rate £%,, can be
expressed as

1. _ 1. _
&R = Z D, ! (61— Griar) =Z D. ! (A — Ac + o,") (44)

where 6, = o, — 6,. Now the viscoplastic strain increment Ag'® in equation (25) becomes
6
Ag™® = [(1 —0) &P + 7 D. ! (Ao — AG + cyp)} At (45)

Substitution of equation (45) into equation (22) yields
Ao =D, Ae — Aq (46)

Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997) © 1997 John Wiley & Sons, Ltd.
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Box 3. A one-step implicit stress-update algorithm for Duvaut—
Lions model

Ag, o = BAa, ,

o, =6, + DAg, _ 4

If f(6,, k) = 0: plastic state
(1) 6,.a =6 +D,As

(2) Resne = Ko+ Kewa At

_ { OAr _
(3) D= T OA |:De + e DC:I

A o 0
(4) Aq_C+ OAt |:(1‘_6)De81p+2(6t_61):|

(5) 6, a =0, +D.Ae — Aq

. | _
(6) &% 5 =+ D, ! (6,4 ac— 04 a0)

¢

(7) Kexar = (éf‘lA,)T AET A, A=diag [% % % % % %]
(8) Kirar = Rixar — (Ko ar

else elastic state : @, , 5, = 6,

in which

B 4 0At _ A _ .vp va
D°_C+6At[De+TD°]’ Agq _C+0At|:(1 0) D & +£c,] 47

where Ag represents the contribution of an extra pseudo-nodal force in the equation of motion.
Note that with § = 1 the tangent D, for the backward Euler algorithm as in'® is recovered. In
Box 3 the stress-update algorithm for Duvaut-Lions viscoplasticity is outlined.

4.3. Consistency model

In the consistency approach the plastic flow direction is defined in the same way as in the
Perzyna model [cf. equation (14)]

Ae™® = Aln (48)

The plastic multiplier is now determined by the discretized consistency condition of the yield
surface
of of

S(o,2,2) = [ +0Toe + 22 54+ 2751 =0 (49)

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 38393864 (1997)
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where f @ = (6", A9, 1) is the ith residual of the yield function. For algorithmic convenience, we
directly express the yield surface as a function of plastic multiplier since £ = 4 for Von Mises
plasticity. We again use a local Newton-Raphson iteration process to compute the plastic
multiplier AA. The multiplier AZ is integrated by an Euler backward algorithm

A0 =351At, A=Y 640 (50)

Accordingly, equation (49) can be rewritten as

T of L of]s,_ _ sa
nac+[a/{ Ktai]‘”‘ o (51)

Substitution of equation (48) into equation (22), differentiation and use of equation (50) leads to

2 @B A2
50=H5£—H[g+Ai(i) 0f+A/1 if_:|

oo 860l At 8adl (52)

where H is defined as in equation (36). Elimination of d¢ by substitution of equation (52) into
equation (51) yields

{ .
oA = Vi (m"Hde + 1) (53)
with
of SO AAY P of 1 of

= TH —_— ® —_— Y x| T T 3z 4
p=n |:80' + A el T A 00l | a1 AioA (54)

Substitution of equation (53) into equation (52) gives the tangent stiffness matrix

B 1 of o Of AMD 3

D°_H_ﬁH[ac+M doai T AL dead " (53)

Again, if we use local iterations during a global iteration, the iterative strain increment ¢ vanishes
from equation (53). The stress-update algorithm for the consistency model is outlined in Box 4.

5. VISCOPLASTICITY AND H-TYPE AND S-TYPE INSTABILITIES

To compare the three viscoplastic models in a quantitative context, we consider a simple shear
problem (2¢,, = y = dv/0x, 0., = 7) with a Von Mises yield function

f(o,x) = /3t — G(x) (56)
For the Perzyna model we apply equation (14) and equation (15) with N = 1
77 =L /30 = 6] /3 (57)
(0]

Int. J. Numer. Meth. Engng., 40, 3839—-3864 (1997) © 1997 John Wiley & Sons, Ltd.
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Box 4. A fully implicit stress-update algorithm for the consistency
model

A£I+At = BAaH.A,
6, =06, + D, Ag, , o
if f(o,, A4, ) > 0: plastic state

AN® 0
AXD =0, /I[+At = , 6% a=0,+D.| Ae — AX? _f
At Jo

f(O)—_f(ct‘FAf’)” +A/1(O) /ﬁ A)

(1) local iteration

(2) HO =[ LA azq‘l

N (3 o B0 DO ] o 1Y
®) = ( )H[a AT A acai]"a_fﬁaz

f(i)
B

() AACHD = A2 4

(5) 67 ) =6,+ D, |:As — ALUFD 5_]"]

oo
(6) SV =Sl i d A+ ALY QLD
(7) if | £ D] > 6 go to (1)

else elastic state: 6, . 5, = 6,,

After rewriting equation (57) we obtain

o G0\ .vp
T= ﬁ + <3_7]> Y (58)

Differentiating equation (58) and substituting & = hx and & = )5“’/\/3 then results in

h Go
s e HvVP 59
’ 3 Y <3n> Y (59)

If we combine the constitutive equation (59) with the equations of motion (1), the kinematic
equation (2) and take y'? = y — 7/G, we obtain a third-order differential equation for the 1-D
Perzyna viscoplastic strain-softening element

<1 v v ) 3G +h 0% b)) Go

v L A i =2
¢ o ox*or PR PR 0 with m " (60)

Cy

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997)
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where G is the shear modulus and ¢, = \/G/p the elastic shear wave speed. If the viscosity
parameter m — O the classical rate-independent wave equation is recovered with imaginary wave
speed in case of strain softening (h < 0).* Furthermore, upon a decreasing loading rate the
third-order terms in equation (60) become less dominant.

By means of an analysis of characteristics we obtain the characteristic determinant:

D =m[(1/c})dx* —dt*] (61)

with D = 0 a curve in the v—x—t plane which coincides with the characteristics (+dx/dt) equal to
the elastic shear wave speed + c,. This means that the wave equation remains hyperbolic and the
initial value problem is well-posed also after the onset of softening. An investigation of the strain
rate distribution along a one-dimensional element has resulted into an implicit expression for the
internal length scale I:°

36t 4h + 3G

2egm) ] 4 —— 1 | & (

e 1 [ B 62)
dc, m

g

where f is a small constant which represents the cut-off value of the relative strain rate at the edge
of the shear band. The derivation in Appendix I is based on high loading rates and for this reason
the loading rate does not enter equation (62). However, for loading rates of several orders of
magnitude smaller than considered in this paper equation (62) no longer holds. An examination
of the influence of the imperfection has revealed that the width of the localization zone L is
determined by the smaller value of the internal length scale ! and the imperfection
size w®

L =min [], w] (63)
Next, the Duvaut-Lions model is examined. For the case of simple shear equation (16) becomes

1 -

PP = Gt (rt—1) (64)
If we use equation (64) in rate format and take 7 = (h//3)7” we obtain

h .
T=—=7"+ (Gj" (65)

NE

where the Von Mises back-bone solid is assumed. Note that both 7® and y*® enter the equation
which is different from the Perzyna model. Since

F=P A=A (66)

%=i§p=i<v—3> (67)
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which can be rewritten in

RIUNOR (68)
G + (h//3)

If we combine the constitutive equations (65) and (68) with the equations of motion (1), the
kinematic equation (2) and take y*? = y — 7/G, we obtain the third-order differential equation for
the one-dimensional Duvaut-Lions viscoplastic strain-softening bar in shear

f:

m(l Pv_ % >+3G+(2\/§h)az"—(\/§h)a—j;=o with m={(3G +(/3h) (69)

2o’ axtat ¢l ar?

This equation is similar to that derived for Perzyna viscoplasticity, equation (60). Therefore, the
wave equation remains hyperbolic and the initial value problem is well-posed. If we replace 4 in
equation (62) by \/3 h we obtain the expression for the width of the localization zone for the
Duvaut-Lions model.

Finally, the consistency model is investigated. For the simple shear problem with a Von Mises

yield function and a strain-hardening hypothesis (¥ = $*?/ \/5), equation (19) leads to

h &
L h o S .
=37+ (70)

The representation of a one-dimensional viscoplastic element is thus the same as the Perzyna
model, cf. equation (59). The wave equation and the expression for the internal length-scale are
obtained directly by setting m = & in equations (60) and (62), respectively.

From the differential equations for the one-dimensional case we derived that the three different
viscoplastic models have a regularizing effect in the sense that they keep the field equations
hyperbolic and therefore the initial-value problem remains well-posed. By introducing a viscosity
parameter m:

g
Perzyna model: m = =2
n

Duvaut-Lions model: m = { (3G + (\/gh))
Consistency model: m = ¢&

the three models have the same length scale equation (62) which specifies the width of the shear
band.

Because for the one-dimensional case the three viscoplastic models can be cast into the same
format by introducing a viscosity parameter m, we can compare them by choosing the material
parameters such that they have the same viscosity parameter m. Figure 4 shows that for the unit
cell in shear the results for the Perzyna model and the consistency approach are identical. The
results for the Duvaut-Lions model are slightly different from the results for Perzyna and
consistency models because we take the same softening parameter h. In the formulation for

Duvaut-Lions we have \/§h which causes the difference, cf. equations (69) and (60).

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997)
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Figure 4. Unit cell—comparison of viscoplastic models. Left: constant velocity. Right: constant acceleration
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Figure 5. Unit cell under dynamic shear for H-type instability (h < 0, m > 0) and S-type instability (h > 0, m < 0)

In the consistency model the yield surface can expand or shrink not only by hardening or
softening effects, but also by hardening rate or softening rate effects. The competition of the strain
and strain-rate influence can trigger so-called H-type instabilities (i.e. h < 0, m > 0) and so-called
S-type instabilities (i.e. h > 0, m < 0).'? In Figure 5 typical stress-strain relations for the occur-
rence of the H-type and the S-type instabilities are shown. For the H-type instabilities a station-
ary shear band will occur at the later stages of deformation. For the S-type instabilities,
a Portevin-Le Chatelier (PLC) band occurs at the initial stages of deformation. Due to the

contribution of strain hardening the PLC band will be arrested locally and a travelling PLC effect

will be observed.
© 1997 John Wiley & Sons, Ltd.
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Figure 6. One-dimensional problem in shear-H-type instability

6. NUMERICAL EXAMPLES

To demonstrate the applicability of the computational procedures, finite element analyses have
been carried out for a one-dimensional bar, Figure 6. The bar is fixed at the left end and a shear
stress is imposed at the right end. By keeping all horizontal displacements equal to zero, we
simulate a pure one-dimensional shear problem. In all analyses, the spatial discretization was
performed using eight-noded quadrilateral elements with a 3 x 3 Gauss integration scheme. We
use a consistent mass matrix and an implicit time-integration scheme based on the trapezoidal
rule. All calculations presented here have been carried out with a time step smaller than the
critical time step At,, = Al/c,, where Al is the size of the smallest finite element.

6.1. Shear layer: H-type instability

The set-up of the problem is shown in Figure 6 together with the constitutive relations that give
rise to an H-type instability with strain-softening (h < 0) and strain-rate hardening (m > 0). First,
the width of the shear band has been investigated for the three viscoplasticity models. The
internal length scale results from equation (62) with the material parameters in the corresponding
figures. The relative strain distributions have been plotted in Figure 7 at the time when the
loading pulse has returned to the centre of the bar (¢ = 3 x 10~ s). We observe that upon mesh
refinement, the shear band thickness converges to the material length scale [ as defined in
equation (62). Clearly, the width of the shear band decreases when the viscosity m decreases or
when the softening modulus h becomes more negative.

Next, the influence of a material imperfection is analysed. We take the imperfection sizes
w =1, 2, 4, 8 mm, respectively, at the left end of the shear layer by means of a 10 per cent
reduction in yield strength. The relative strain distributions have been plotted in Figure 8 for the
three viscoplasticity models at the time when the reflected stress wave has reached the centre
(x = 10 mm) of the bar. We observe that for all viscoplastic models, the imperfection size
dominates the width of the shear band when the value for w is smaller than the material length
scale I. On the other hand, if the imperfection size is larger than the material length scale (w > 1),
the influence of the imperfection disappears and the material length scale determines the width of
the shear band.

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3839-3864 (1997)
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Finally, a comparison is presented between the three viscoplasticity models. We take the same
softening modulus h and the viscosity m is chosen such that the internal length scales are
approximately the same. In Figure 9 the distribution of the plastic strain is plotted. The results are
almost identical for the three viscoplasticity models. We observe that the peak strain in the shear
band for the Duvaut-Lions model is slightly larger than those for the Perzyna model and for the
consistency model. It is finally noted that the consistency model shows a faster global conver-
gence than the other models during plastic loading. Box 5 shows the average number of global
iterations per loading step for the different models.
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Figure 7. (a) Perzyna viscoplastic model: the width of the shear band upon variation of m and h—Comparison with

analytical solution for | via equation (62). (b) Duvaut-Lions viscoplastic model: the width of the shear band upon

variation of m and h—Comparison with analytical solution for / via equation (62). (c) Consistency viscoplastic model: the
width of the shear band upon variation of m and h—Comparison with analytical solution for / via equation (62)
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Figure 8. (a) The influence of an imperfection: Perzyna viscoplastic model (I = 8mm). (b) The influence of an imperfec-
tion: Duvaut-Lions viscoplastic model (I = 8mm). (c) The influence of an imperfection: consistency viscoplastic model

(I = 8mm)

6.2. Shear layer: S-type instability

The shear layer problem is now re-analysed with a different material law, Figure 10, that
incorporates strain hardening (h > 0) and strain-rate softening (m < 0). This so-called S-type
instability is different from an H-type instability (i.e. # <0, m > 0) which produces a stationary
shear band. Now, a propagative shear band is observed, which is commonly referred to as
a Portevin-Le Chatelier (PLC) band. '? The competition between the strain hardening (h > 0)
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Figure 9. A comparison of viscoplastic models

Box 5. Number of global iterations of each plastic loading step for different

models
Perzyna model Duvaut-Lions model Consistency model
At/At.. =05 40 47 2:0
At/ At = 02 31 32 1-9
L = 20mm

initial condition:

i w(x,0 =0
P Tr( N vn0)=0
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A (L) =71

n T

sk S

Figure 10. One-dimensional problem in shear—S-type instability

and strain-rate softening (m < 0) determines the propagation velocity of this shear band in the
absence of temperature effects. When the deformation reaches a critical value the local PLC band
is arrested due to the contribution of the strain hardening. Subsequently, a new PLC band will be
initiated at the adjacent element, so that the PLC effect progresses from one end of the bar to the
other in a discontinuous, but orderly and periodic fashion, Figure 11.'¢
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Figure 11. Propagative Portevin-Le Chatelier bands
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Figure 13. S-type instability: The Portevin-Le Chatelier effect. Equivalent plastic strain contours (x = 0-02)

6.3. Biaxial test: S-type instability

Two-dimensional calculations of the PLC effect have been performed (Figure 12). At the top of
the sample a dynamic tensile load is applied. The boundary conditions along the bottom of the
sample are rigid [ux(x, 0) = 0 and u,(x, 0) = 0] and the vertical displacements at the top of the
sample are kept equal [u, (x, 120) = u, (20, 120)]. The material parameters in Figure 12 are used
in combination with a Von Mises softening plasticity model, where & is the uniaxial yield stress,
x is the equivalent plastic strain and u is Poisson’s ratio. To model the S-type instability a linear
hardening model and a constant negative strain rate sensitivity is assumed. The longitudinal wave
speed ¢, =+/E/p = 10° mm/s. For the numerical analysis we take a 16 x 48 mesh with plane
stress elements and a nine-point Gaussian integration. The tensile loading waves will approxim-
ately propagate with an elastic wave speed c. and the stress in the material will be doubled when
reflection at the bottom takes place. Due to the boundary effect two shear bands will initiate [see
Figure 13(a)] at the corner of the bottom and will develop with an inclination angle
O =~ 35° = (see Sluys, 1992). Due to the hardening effect further deformation leads to an increase
of stress. Therefore, the first shear band remains stable and the width of the shear band enlarges
when the stress waves propagate to the top, Figures 13(b) and 13(c). In this way the shear band
may propagate and extend to the whole specimen, Figures 13(d)-13(f).

7. CONCLUSIONS

In the paper a review of rate-dependent plasticity models is given. Along with the well-known
overstress laws of Perzyna and Duvaut-Lions a new model, herein named the consistency model,
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is presented in which a rate-dependent yield surface is employed. Upon viscoplastic loading the
stress point remains on the yield surface in this model. For this reason the yield contour can
expand/shrink not only by softening/hardening effects but also by softening rate/hardening rate
effects. This model is shown to produce good results for the one- and two-dimensional simulation
of propagative instabilities. These instabilities can be induced by a negative strain rate sensitivity
of the material and are commonly referred to as Portevin-Le Chatelier bands. A full algorithmic
treatment of the models is presented including a new algorithm for the consistency model with
a derivation of a consistent tangent matrix. An algorithmic comparison between the models has
been carried out. Furthermore, a relation between the length scales of the three models is derived
and verified with the computational modelling of a one-dimensional shear band.

APPENDIX I

Length scale effects in viscoplastic solutions

To investigate the dispersive character of wave propagation in a viscoplastic medium, a general
solution for a single linear harmonic wave with angular frequency w and wave number k is
assumed

v(x, t) = v, e ek (71)

in which v, is a constant and « the spatial damping coefficient. The real non-harmonic part of the
strain rate distribution is considered

¥ =wvoe ¥ [ — acos(kx — wt) — k sin(kx — wt)] (72)

because it contains the spatial attenuation part and therefore the length scale contribution. By
using Taylor series expansions equation (72) gives

j= —voe ™ [o + k(kx — 1) + 02 (kx — wi)] (73)

where 0" (y) refers to the truncated terms of the order y". By considering a strain rate wave along
a characteristic line (x = ¢,t) we can use

1
kx — ot = <£——> wx 74)
o ¢

and equation (73) further reduces to

j= —voe [oc +£(£—l>w2x+02<<k—i>wx>:| (75)
o\o ¢, o ¢

Substituting equation (71) into the third-order differential equation of the Perzyna model
[equation (60)] and equating real and imaginary parts we can derive limit values (v — oo) for the

attenuation constant
3G 1
o= + 0? <—> (76)
2c,m )

g
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and wave number

£=1[1+3G(4h+36)}+04<l> )

¢y 8m* w* »

<£ — i) wx =0 <l> (78)
W ¢ w

If we substitute equations (76)—(78) into equation (75), we obtain

) 30,G 36412 4h + 3G o1
= - x2egm | ] f————— o° | — 79
7 () 2¢c,m © * 4c,m X+ ) )

which can be rewritten as

At the wave front (along the characteristic line x = ¢,) high angular frequencies « dominate the
solution. It seems reasonable to omit the 0% (1/w) terms in equation (79). If we define a material
length scale x = [ as the co-ordinate at which the relative strain rate at the boundary of the shear
band reads

=P (80)

where f is a small constant representing the cut-off value of the relative strain rate at the edge of
the shear band. Upon substitution of equation (80) into equation (79) the material length scale
I can be solved from

4h + 3G
e~ 36U 2egm [1 + z] -8 81)
g
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