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Chapter 1

Introduction

In general, this thesis is aiming at predicting the survival probability of patients with heart disease. Heart

disease is considered to be one of the mortal diseases that is caused by several factors. Among them, the

most common cause is atherosclerosis, which is an accumulation of a plaque in the artery wall as a result

of excessive cholesterol in the blood stream. Details about this disease will be explained in Section 1.1.

Since this disease is one of the leading causes of death, people have been trying to improve the medication.

A lot of research in different areas has been conducted for this purpose.

Typically, research conducted from a mathematical point of view is to investigate the survival probability

of a patient having this disease. For instance, by comparing the survival probabilities of patients with

different medications. We would like to estimate the curve of the survival probability function. This would

describe the survivability of patient with a certain medication over time. Several estimators for describing

the estimate of the survival probability will be described in Chapter 2. In this chapter an overview about

the disease itself and the purpose of writing this thesis will be given. At the end of this chapter, an outline

of this thesis is given.

1.1 Acute Coronary Syndrome (ACS)

In general, a human’s heart consists of heart muscles and arteries. It pumps oxygenated blood to the whole

body through blood vessels. In normal arteries, blood flows without any obstruction. In some cases, we

may find a narrowing of artery wall which results in the obstruction of blood flow. For instance, in the

case of atherosclerosis. The obstruction of blood flow in the cardiac artery wall will raise symptoms called

ACS, which is a life-threatening manifestation of atherosclerosis characterized by the symptoms chest pain

(radiating to the left arm or jaw),nausea and vomiting. It is associated with an increased risk of cardiac

death.

In Figure 1.1s, an illustration of the accumulation process in the wall artery until it results in ACS is

given. In this picture, we see 6 cross sections of the artery. The first cross section represents a normal

artery. In cross section 2, there is a lesion initiation and extracellular lipid in the artery wall as a result of a

high amount of cholesterol in the blood stream. This will grow into a plaque which clogs and hardens the

artery, which makes an obstacle to the blood flow (see the third and fourth cross section). The situation can

worsen if the plaque ruptures (see the fifth cross section), stimulating thrombogenesis and thus forming a

thrombus (blood clot). Thrombus formation can completely or partially occlude the blood vessel and reduce

blood flow. Blood flow reduction (and consequently oxygen reduction) can cause ischemic discomfort which
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is known as angina pectoris. The sudden process of plaque disruption and subsequent thrombus formation

is known as ACS.

Figure 1.1: An Illustration about the process in human coronary artery until becoming an ACS.Source: Circulation,
Journal of American Heart Association.

Patients with ACS are classified into two types based on the graphical interpretation of the Electro-

cardiogram. If it shows an ST-segment elevation then it can be classified as ST-Elevation Myocardial

Infarction (STEMI). In the absence of such an elevation, it can be categorized as NSTEMI or Unstable

Angina. While STEMI is associated with a total occlusion of the coronary artery, NSTEMI and angina

pectoris is associated with partial occlusion.

1.2 Objective of the Thesis

The research work presented in this thesis is about predicting the survival probability of patients with

heart disease. In particular, the work is focused on a method to improve the approach to estimate the

survival probability and studying the effects of applying the new method. This work is done in collaboration

with Department of Cardiology, Academisch Medisch Centrum (AMC) Amsterdam, the Netherlands. In

this section, it will be described why such a prediction of the survival probability is important in medical

applications as well as the reason why it is needed to be improved.

When a person is diagnosed with a certain life-threatening disease, it is natural to question how large

is the probability that he/she will survive. There are different interests which motivate the calculation of

this probability. One interest comes from medical applications. For instance, to compare the efficacy of

treatments given to patients with this disease. This will be explained shortly.

It is not common in practice to assume that the survival probability follows a certain parametric

distribution. Rather, we deal with a non-parametric estimator and the most well known non-parametric

7



estimator is the product limit estimator (also known as Kaplan-Meier estimator). The distribution function

obtained in this way is merely an estimate of the true survival distribution function.

It may be the case that certain characteristics of the patients, for instance the age of patient, gender

type, smoking habits and so on, affect the survival probability. If this is the case, one has to formulate a

regression survival model that describes the survival probability and its relationship with several covariates.

The most well-known regression survival model is the proportional hazard model introduced by Cox(1972).

This model is somewhere in between a parametric and nonparametric model and is an example of a so-called

semiparametric model. It still assumes a specific structure on the survival distribution, namely proportion-

ality of the hazards of different individuals, which can be described by a finite number of parameters, but

it also contains an unknown baseline hazard as an infinite dimensional component.

In the Cox model, the proportional hazard assumption can be used extensively to compare the efficacy of

several treatments given to patients with certain disease. This assumption means that the hazard between

patients with different covariates (for instance, treatment) are just a constant multiplication of one another.

By this, we can draw conclusions about which treatment gives the worst hazard values. Take for example

two patients with heart disease. One patient is given treatment A and the other is given treatment B.

In this case, the Cox model will result in different hazard functions for those individuals. Based on this

information, a conclusion about the efficacy of treatment A and treatment B can be compared.

In this thesis, survival regression is applied to patients from the ICTUS trial[1]. It consists of 1200

patients with heart disease in the AMC hospital in Amsterdam, The Netherlands. These patients are

randomized into two treatment groups and the event of interest is the death of a patient or development of

a myocardial infarction. In this particular situation, there is empirical evidence and biological reasoning that

suggest the hazard of patients to be decreasing over time. This additional information is not incorporated

in the traditional estimators, such as the Kaplan-Meier estimator or the estimators for the parameters in

the Cox model. Thus, for that purpose a new estimator that incorporates the shape information will be

introduced.

Having applied the new estimator, we would like to investigate the behavior of the new estimator and

compare it with the traditional estimators. The investigation will include the differences in the survival

curves between the traditional and the new estimator.

1.3 Outline of the Thesis

The thesis is organized as follows.

In Chapter 2, the problem is introduced. Some theoretical background, which is needed in survival

analysis and survival regression, will be given. In this chapter, an illustration of the cumulative hazard and

the hazard itself is given, such that reader can see the shortcomings of the traditional estimator.

In Chapter 3, a shape constrained estimator is introduced and explained in more detail. Applying this

estimator will raise the question whether this estimator is reasonable for the dataset. For this, a statistical

test will be conducted and the bootstrap method is used to compute the p-value.
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In Chapter 4, we will see the effect on applying a shape constrained estimator in the Cox model.

Observations in this chapter are intended to investigate whether the shape constrained estimator is a

better estimator compared to the traditional one especially in estimating the parameters in the Cox model.

In Chapter 5, another method of estimating a shape constrained estimator is introduced. We do a

similar investigation as in Chapter 4 to study the performance of this estimator compared to the traditional

one.

In Chapter 6, we give a conclusion about the performance of this estimators compared to the traditional

estimator.
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Chapter 2

Traditional Estimator for Survival
Distribution

In this chapter, we will start with an introduction of the problem in survival analysis. Some theoretical

background which support the understanding in survival analysis are given in Section 2.1. It consists

of several formula which illustrate different aspects in a data so as to capture the survival pattern in a

population. Later on, we use this knowledge to analyze the survivability of a population which is based

on the ICTUS dataset. Information regarding the background and characteristics of patients in the ICTUS

dataset is given in Section 2.1.

In order to draw inference regarding the survivability pattern, we used several approaches. As a non-

parametric approach, the Kaplan-Meier estimator is used. See Section 2.2 for more details. In the semi-

parametric approach, survival regression is used. For this purpose we used the Cox model which will be

explained in Section 2.3. This involves a brief introduction to the Cox model and the procedure to con-

struct the model. In Section 2.4, we will illustrate how the Cox model is used in estimating the survival

distribution for the ICTUS trial dataset. At the end of this chapter, we give a summary regarding the use

of the Kaplan-Meier and the Cox model to estimate the survival distribution.

2.1 Introduction of the Problem

In survival analysis, the random variable of interest is the time to an event or simply the follow-up time.

It means that a subject is observed from a certain time origin until it shows an event. In general, the term

”event” refers to a failure of a mechanism, for instance death, development of new disease, etc. The time

origin should be defined unambiguously for each subject. In a randomized clinical trial, it is meaningful to

state the time origin as the first time when a patient enters the randomization process.

The probability distribution of the follow-up time can be characterized by several quantities, such as

the cumulative distribution function, the survival function, and the cumulative hazard function, or by their

derivatives such as the probability density or hazard function. One of the main purposes is to estimate

these quantities on the basis of the observed follow-up times. In observing the follow-up times, there is a

possibility that for some subject the full time to failure cannot be observed due to the following causes.

1. During the study period, a subject decided to leave the study or can no longer be contacted.

2. At the end of the study, a subject has not shown a failure yet.
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In both of these circumstances, the actual survival time is larger than the observed follow-up time. An

incomplete observation like this is (right) censored and the presence of censoring may lead to difficulties in

estimating the probability distribution.

In this thesis, we want to estimate the probability distribution of patients with non-ST-elevation my-

ocardial infarction (NSTEMI) in the AMC hospital, Amsterdam, The Netherlands. For that purpose, the

dataset provided by the Department of Cardiology at the AMC Hospital is used. The dataset is derived

from the ICTUS (Invasive versus Conservative in Treatment of the Unstable coronary Syndromes) trial.

The study has this name because of comparing two treatment strategies (namely the Invasive and the Con-

servative treatment) in patients with NSTEMI. It consists of 1200 patients who had a myocardial infarction

and met the criteria to be included in the study[1]. These 1200 patients were randomized into two types of

treatment. The time origin is the time when these patients were randomized into two types of treatment.

The event of interest in this study is the subsequent MI or cardiovascular death. The follow-up time for

each patient was recorded during the 5 years. If at the end of the study a patient did not show an event,

then its observed follow-up time is considered to be right censored. In this dataset, several characteristics

which are considered to affect the survival distribution are also recorded. Up to 14 characteristics were

recorded, which are listed below.

Treat : the randomized treatment
Age : Age of the patient at the time it enters the study
BMI : Body Mass Index (in unit kg/m2)
Gen : Gender type
Smo : smoking habit
Hyp : hypertension
Hypl : hyperlipidemia
Dbet : diabetes
Fam.H : Family history of having MI
Mi.H : History of MI
PCI : Having a PCI history
St. D : Having ST Depression in electrocardiogram
CRP : Having an increment of C-reactive protein ≥ 10mg/L
Risc : FRISC score, the sum of 7 factors presents at admission [1]

Right-Censored Data and Ties. Along this manuscript we deal with a right censored dataset which is

in the form of triplets (ti, δi,zi). The subscript i represents the ith patient. The variables ti, δi and zi

represent the follow-up time, the censoring indicator and the vector of characteristics of the ith patient,

respectively. The censoring indicator can have either two values, δi = 1, when we actually observe the

event (ti is the exact survival time) or δi = 0 when the subject is lost to follow-up (the exact survival

time is larger than ti). The censoring indicators are modelled as the consequence of the random censoring

mechanism

Ti = min{Xi, Ci}, (2.1)

where Xi is the survival time and Ci is the censoring time. The censoring time in right-censored data

is defined as the time when a patient was lost to follow-up. The vector of the characteristics zi =

(zi1, zi2, ..., zip) consists of p values of characteristic of the ith patient. For example, as in the ICTUS

dataset, each patient has 14 characteristics as listed earlier.

Another important term that we may find in survival analysis are tied follow-up times. Tied follow-up

times refer to the situation in which different patients have the same follow-up time. This could be the case
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when the follow-up time is measured in month or weeks. Consider the following simple survival dataset

consists of 5 individuals: (4, 1), (4, 1), (2, 1), (2, 1), (2, 0), (8, 1). In this dataset, the follow-up times 2 and

4 occur more than once. If this is the case then 2 and 4 are tied follow-up times.

2.2 Theoretical Background

In this section, several quantities which will be used later in this manuscript will be given. These quantities

characterize the survival distribution, such as the cumulative distribution function and the cumulative hazard

function as well as their derivatives. These characterizations are possible since all of these quantities are

equivalent, i.e., if one form is known then the others can be derived. For completeness, the relations

between these quantities are provided. Let T be the survival time.

1. The survival function, as a function of t, is defined as the probability that an individual survives

longer than time t:

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t),

where F (t) is the cumulative distribution function. Therefore, the probability density function can

be defined as

f(t) =
d

dt
F (t) =

d

dt
(1− S(t)). (2.2)

2. The hazard function h(t) is defined as the conditional failure rate, i.e., the infinitesimal probability of

failure during a small time interval, given that a subject has survived to the beginning of the interval:

h(t) = lim
ε↓0

P (t < T ≤ t+ ε | T > t)
ε

,

which is equal to

h(t) =
f(t)
S(t)

= − d

dt
log[S(t)]. (2.3)

The last term of (2.3) is obtained by substituting the form f(t) from equation (2.2).

3. The following relation can be obtained by integrating (2.3) from zero to t and using S(0) = 1:

−
∫ t

0
h(x) dx = log[S(t)],

which leads to the relation between the cumulative hazard H and the survival function:

H(t) = − log[S(t)], (2.4)

or equivalently

S(t) = exp[−H(t)] = exp
[
−
∫ t

0
h(x) dx

]
. (2.5)
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2.3 The Kaplan-Meier Estimator

A nonparametric approach to estimate the survival distribution is based on the maximum likelihood principle.

The idea is to form the likelihood function. This is a function of the parameters that we want to estimate

by maximizing this function over all possible parameters. Suppose that we have right censored observations

(ti, δi), i = 1, 2, ..., n as explained in the previous subsection. If the distribution of the survival time has

survival function S(t) and probability density f(t), the likelihood for the observations can be written as

`(F ) = [f(t1)]δ1 [S(t1)]1−δ1 × · · · × [f(tn)]δi [S(ti)]
1−δn ,

or written more compactly

`(F ) =
n∏

i=1

[f(ti)]
δi [S(ti)]

1−δi . (2.6)

This represents the ”probability” that the observations occur if they would be generated from a distribution

with density f and survival function S. The principle of maximum likelihood (ML) prescribes to find the

probability distribution for which the observations are most likely to occur. Maximizing `(F ) over all

possible F (or equivalently all f and S) is not possible, but it can be shown that when one maximizes over

all survival functions S that are constant between observed survival times, the ML estimator exists and is

given by the Kaplan-Meier estimator

Ŝ(t) =
∏

t(i)≤t

(
1− di

ni

)
, (2.7)

where t(1) < · · · < t(m) are the ordered observed survival times and

di = number of observed events at t(i);

ni = number of individuals at risk at t(i),

with the convention that Ŝ(t) = 1 for t < t(1). Individuals at risk at t(i) are those whose follow-up time

(either censored or uncensored) is at least t(i).

From its definition it can be seen that the Kaplan-Meier estimator is piecewise constant between

successive survival times

S(t) = S(t(i)), for t(i) ≤ t < t(i+1).

This is in contrast with a parametric approach, in which the survival function will usually be a smooth

function following a pre-specified form. In many applications, such a fixed pre-specified form may not be

suitable. The difference is illustrated in Figure 2.1, which shows the Kaplan-Meier estimator for ICTUS

dataset and the estimated survival function for the exponential model for a particular dataset.

We will concentrate on estimating the cumulative hazard function H(t), rather than estimating the

survival function S(t). Relation (2.4) suggest a natural estimator

Ĥ(t) = − ln
[
Ŝ(t)

]
=
∑

t(i)≤t
− ln

(
1− di

ni

)
.

This estimator should not be confused with the Nelson-Aalen estimator for the cumulative hazard,

ĤNA(t) =
∑

t(i)≤t

di
ni
. (2.8)

Although, the estimators are different and ĤNA(t) ≥ Ĥ(t), the difference is usually very small, especially

when di is small compared to ni.
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Figure 2.1: Kaplan - Meier (left) and Exponential (right) Survival Curve.

2.4 The Proportional Hazard Model

In dealing with survival data without any prejudice about the underlying distribution, a nonparametric or

a semiparametric approach might be appealing to describe the relationship between several variables and

the survival probability. When incorporating explanatory variables, the most popular method is the Cox[2]

Proportional Hazard Model (or simply the Cox Model). Let z = (z1, . . . , zp)′ be the vector of explanatory

variables, also referred to as covariates. For instance, in the ICTUS dataset the covariates are the patients’

characteristics. Cox proposed the hazard function of the survival time distribution to be of the form

h(t) = h(t, z,β) = h0(t) exp(z0β), (2.9)

where h0 is the unknown baseline hazard function and β = (β1, β2, . . . , βp)′. In this model, the hazard

function h(t) is characterized by a function of survival time separated from a function of the explanatory

variables. Note that the hazard function is equal to h0(t) when exp(z′β) = 1, i.e., when z′β = 0.

The cumulative hazard function is given by

H(t) = H(t,z,β) =
∫ t

0
h0(u) exp(z′β) du = H0(t) exp(z′β), (2.10)

where H0 is the baseline cumulative hazard function. For completeness, we also specify the survival function

in the Cox model. According to equation (2.5), the survival function for model (2.9) can be formulated as

follows,

S(t, z,β) = exp[−H(t, z,β)] =
[
e−H0(t)

]exp(z0�)
= [S0(t)]exp(z0�) , (2.11)

where S0(t) is the baseline survival function. Having specified the cumulative hazard function of the Cox

model, the problem is to find the estimate of baseline cumulative hazard function H0(t) and the regression

coefficients β.

Assume that the survival data for the i-th individual consist of a follow-up time ti, a censoring indicator

δi, and covariate values zi = (zi1, zi2, ..., zip)′. The hazard ratio gives the relative hazard between two

subjects having different covariate values. For instance, consider two subjects having covariate values z1

and z2.

HR(t, z1, z2) =
h(t,z1,β)
h(t,z2,β)

=
h0(t) exp(z′1β)
h0(t) exp(z′2β)

=
exp(z′1β)
exp(z′2β)

= e(z1−z2)′�. (2.12)
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Notice that this ratio is independent of time and can be described by a linear combination of the coefficients

β1, . . . , βp and the differences of the covariate values. Obviously, the hazards of both individuals are

proportional to another, which explains why the Cox model is often referred to as the proportional hazards

model.

2.4.1 Estimating the Coefficients in the Cox Model

The likelihood of the observations (ti, δi,zi), i = 1, 2, . . . , n can be obtained similar to equation (2.6).

Because from (2.3) it follows that f(t) = h(t)S(t), the likelihood for the Cox model becomes

`(h0,β) =
n∏

i=1

[h(ti, zi,β)S(ti, zi,β)]δi [S(ti, z1,β)]1−δi (2.13)

By inserting (2.9) and (2.11), the right hand side will be a function of h0 and β. Theoretically, one could

maximize this over all possible hazard functions h0 and coefficients β. However, it is more convenient to

consider the log-likelihood L(h0,β) = ln `(h0,β) and maximize this, which would yield the same maximizer

(if it exists). The log-likelihood for the Cox model becomes

L(h0,β) =
n∑

i=1

{
δi lnh0(ti) + δiz

′
iβ + ez

′
i� lnS0(ti)

}
. (2.14)

In practice, maximizing L(h0,β) over all baseline distributions with hazard function h0 and survival

function S0 and over all coefficients β ∈ Rp is not possible. While the estimation of β is usually of primary

interest, the baseline hazard h0 is seen as a nuisance parameter. In order to circumvent the dependence of

the full likelihood on h0, Cox [2] proposed to use the ”partial likelihood function” of the data to estimate

the regression coefficients β. For simplicity in deriving the partial likelihood, assume that there is only one

covariate z. Suppose there are n observations, with follow-up times t1, . . . , tn. If we denote the ordered

follow-up times by t(1) ≤ · · · ≤ t(n), then the partial likelihood formula is given by the following expression

`p(β) =
n∏

i=1




ez
′
iβ

∑
j∈R(t(i))

ez
′
jβ




δi

, (2.15)

with R(t(i)) denotes the risk set, consisting of all subjects that are at risk at t(i), i.e., with a follow-up time

greater than or equal to t(i). The derivation is explained in [3]. The formula (2.15) above assumes there

are no ties in the dataset. If there are ties in the dataset, approximations for the partial likelihood proposed

by Breslow [4] or Efron [5] can be used.

Formula (2.15) can be simplified. For a censored observation one has δi = 0, so that the partial

likelihood can be reduced to

`p(β) =
m∏

i=1

ez(i)β∑
j∈R(t(i))

ezjβ
(2.16)

where the product is over m distinct ordered observed survival times, z(i) denotes the value of the covariate

for the subject with ordered survival time t(i). The log partial likelihood function is then

`p(β) =
m∑

i=1



z(i)β − ln


 ∑

j∈R(t(i))

ezjβ





 . (2.17)
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The maximum partial likelihood estimator can be calculated by first differentiating the right hand side of

(2.17) with respect to β, setting the derivative equal to zero and solving for the unknown parameter. The

derivative of (2.17) with respect to β is

∂`p(β)
∂β

=
m∑

i=1




z(i) −

∑
j∈R(t(i))

zje
zjβ

∑
j∈R(t(i))

ezjβ




. (2.18)

The solution of setting (2.18) equal to zero, is the estimated regression coefficient β̂.

This method can also be applied to a multicovariate model. Assume there are p covariate values for

subject i denoted by the vector zi = (zi1, zi2, . . . , zip)′. This vector may be any collection of covariates:

continuous covariates, categorial covariates, design variables for nominal scale covariates, interactions be-

tween covariates, and other higher order terms. The data are now described in the triplet form (ti, δi,zi),

for i = 1, 2, . . . , n. The partial likelihood for the multivariable model is obtained by replacing the single

covariate, z in (2.16) with the vector of covariates z and the its coefficient β with β.

When putting the derivative equal to zero, this yields p equations, one for each covariate. The derivative

for the kth covariate is

∂`p(β)
∂βk

=
m∑

i=1




z(ik) −

∑
j∈R(t(i))

zjke
z0j�

∑
j∈R(t(i))

ez
0
j�




. (2.19)

A similar procedure as with the previous single covariate model can be followed. The derivatives of the log

partial likelihood are set equal to zero and solved simultaneously, yielding the maximum partial likelihood

estimator β̂.

Tied Follow-up Times. In the previous subsection, the partial likelihood function is derived for the

case when there are no tied follow-up times. In most applied settings, tied follow-up times may occur and

modifications in the partial likelihood will be needed. Basically, there are three types of approaches to handle

tied follow-up times which are used in software packages, i.e., an exact expression and approximations due

to Breslow and Effron. The expression for exact approximation will not be presented here.

The approximations proposed by Breslow [4] and Efron [5] are designed to provide an easier form to

be used in most software programs, and yet still account for ties which occur in the observed values of

follow-up times. The following is the approximation to the partial likelihood that is used by Breslow:

lp1(β) =
m∏

i=1

z(i)+β[
∑

j∈R(t(i))

ezjβ

]di ,

where di denotes the number of subjects with follow-up times t(i) and z(i)+ is equal to the sum of the

covariate values over the di subjects or it can be formulated as

z(i)+ =
∑

j∈D(t(i))

zj

where D(t(i)) represents the uncensored subjects with survival time equals t(i).

16



The Effron approximation is a bit more complicated and yields a slightly better approximation to the

exact partial likelihood than the Breslow approximation. The following expression is the approximation of

the partial likelihood proposed by Effron:

lp2(β) =
m∏

i=1

z(i)+β

di∏
k=1

[
∑

j∈R(t(i))

ezjβ − k − 1
di

∑
j∈D(t(i))

ezjβ

] .

The maximum partial likelihood estimator for β in the tied case is obtained in the same manner as for the

non tied case.

2.4.2 Estimating the Baseline Survival Function

Once the regression coefficients have been estimated, the baseline survival function, or related quantities

that characterize the baseline distribution, can be estimated. The principal idea in deriving the estimate for

the baseline survival function is to insert the partial likelihood estimate β̂ into the log-likelihood L(h0,β)

in (2.14) and then maximize over baseline distributions with hazard function h0. However, as with the

Kaplan-Meier likelihood (2.6) it is not possible to maximize over all baseline distributions, and we restrict

to maximize over all distributions for which the survival function is constant between successive survival

times. The essential idea of the likelihood approach is to write

S0(t(i)) =
S0(t(i))
S0(t(i−1))

× S0(t(i−1))
S0(t(i−2))

× · · · × S0(t(1))
S0(0)

× S0(0),

where S0(0) = 1. The key point is the use of the quantity

αi =
S0(t(i))
S0(t(i−1))

.

Then with (2.11), for the survival function we find

S(t(i), z,β)
S(t(i−1), z,β)

=
{

S0(t(i))
S0(t(i−1))

}exp(z0�)

= α
exp(z0�)
i .

After inserting this in the log-likelihood (2.14), it can be shown that the maximizing baseline survival

function is a product of αi’s that satisfy

∑

l∈Di

θ̂l

1− αiθ̂l
=
∑

l∈Ri
θ̂l, (2.20)

with θ̂l = exp(z′lβ̂) and

Ri = all subjects that are at risk at t(i);

Di = uncensored subjects that are at risk at t(i).

If there are no tied follow-up times, Di contains one subject and the solution to (2.20) is given by explicitly

by

α̂i =


1− θ̂l∑

l∈Ri
θ̂l




1/bθi
.

17



If there are tied follow-up times, the solution to (2.20) is obtained using iterative methods. The estimator of

the baseline survival function is the product of the individual estimators of the conditional baseline survival

probabilities

Ŝ0(t) =
∏

t(i)≤t
α̂i, (2.21)

where α̂i is the solution to (2.20). To obtain this solution, the expression αiθ̂l on the left hand side of

(2.20) is often replaced by the approximation αiθ̂l ∼ 1 + θ̂l ln(αi). The solution for the baseline survival

function in (2.11) can then be computed explicitly:

α̃i = exp


 −di∑
l∈Ri

θ̂l


 (2.22)

which is again the product of the individual conditional survival probabilities.

2.4.3 The Cumulative Baseline Hazard and Baseline Hazard

Since in this manuscript we will deal mostly with the baseline hazard (or the cumulative baseline hazard),

a derivation of its formula is given in this subsection. We used the suggestion by Breslow in Cox’s paper

[2]. He noted that in order to obtain the estimate for the baseline hazard, the attention is restricted in to

a hazard that is constant between the subsequent ordered survival times:

h0(t) = hi, t(i−1) < t ≤ t(i), i = 1, . . . , k

We adopt the convention that every censored time is censored in the preceding uncensored survival time.

This means, whenever we have the subsequent failure times and we have a censored follow-up times in

between, these censored follow-up times are shifted back to the previous uncensored failure time. It turns

out that the partial likelihood estimate of β and the following naive estimate of the cumulative baseline

hazard

Ĥ0(t) =
∫ t

0
h0(u)du =

∑

t(i)≤t

di∑
l∈Ri

exp
(
z′lβ
) , (2.23)

is maximizing the Cox’s full likelihood. In this equation, Ri consists of all individuals who are at risk at

time t(i). Thus, the estimate for the baseline hazard is obtained by taking the numerical derivative from

the estimate of the cumulative baseline hazard above. Its formula is given by the following

ĥ0(X(i)) =
di(

t(i+1) − t(i)
) ∑
l∈R(ti)

ez′�
, i = 1, . . . , k. (2.24)

2.5 Cumulative Hazard of ICTUS dataset

In estimating the cumulative hazard from a given dataset, one can use the Nelson-Aalen estimator (as

a nonparametric approach) or the Breslow estimator in the Cox model (as a semiparametric approach).

In most statistical software, there is already an available package for this purpose. In a nonparametric

approach, the cumulative hazard of the ICTUS dataset is estimated by the Nelson-Aalen estimator (equation

(2.8)). The estimate of the cumulative hazard by using this estimator is presented in Figure 2.2. In this
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section, we will estimate the cumulative hazard using the Cox model. This means that an estimate of the

cumulative hazard might depend on several predictors in this dataset. The first step in building the Cox

model is choosing significant covariates to be involved in the model. Despite having 14 covariates for each

patient in the ICTUS dataset, it might be that only several covariates influence the survival probability.

Thus, it is more efficient to include only the covariates which have an influence on the survival distribution.

For this purpose, we first do an analysis for choosing the covariates which give a significant contribution

to the survival distribution. This will be done in Sections 2.5.1 and 2.5.2. A detailed explanation about

the procedure of fitting the Cox model can be found in [6].
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Figure 2.2: The Nelson-Aalen Cumulative Hazard of the ICTUS dataset

2.5.1 Bivariate Analysis

The bivariate analysis is done for all covariates separately. The analysis is based on the procedure explained

in [6]. This is done by using the Kaplan-Meier estimator for the specific covariates. In Table 2.1, all

p−values for the partial likelihood and log rank test are listed. It is common that a p-value between

the range 20 - 25% still indicates the significance of the covariates. On the basis of this suggestion, we

can see from Table 2.2, there are three covariates which can be considered insignificant with the survival

distribution namely Treat, St.D, and CRP.

Table 2.2 provides the discrete form of the bivariate analysis for continuous covariates. If by either a

discrete or a continuous form, the covariate is significant, it should be included in the multivariate model.

Notice that the covariate BMI is actually not a continuous covariate. The values of this covariate fall into

7 categories [7]. The range of BMI in this dataset falls between category underweight to obese class 3.

Further consideration of these categories lead to the decision of dividing the covariate into two groups,

which are normal and overweight or obesity. The covariate Risc is divided into 3 categories, i.e., category

1 which includes all patients having FRISC Score from 1 and 2, category 2 which includes patients with

FRISC Score 3 and 4, and the remaining FRISC Score belong to the third category. These categories are

based on [1].
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Log-Rank Part.Lik
No Covariates Category p−value p−value

1 Age Polytomous < 0.0001 5.64E-09
2 Treat Dichotomous 0.515 0.515
3 BMI Polytomous 0.0459 0.0513
4 Gen Dichotomous 0.0826 0.0890
5 Smo Dichotomous 0.0461 0.0440
6 Hyp Dichotomous 0.0040 0.0045
7 Hypl Dichotomous < 0.0001 < 0.0001
8 Dbet Dichotomous < 0.0001 < 0.0001
9 Fam.H Dichotomous 0.127 0.1243

10 Mi.H Dichotomous < 0.0001 < 0.0001
11 St.D Dichotomous 0.742 0.7423
12 CRP Dichotomous 0.774 0.7735
13 Risc Polytomous 0 < 0.0001
14 PCI Dichotomous 0.0021 0.0044

Table 2.1: Bivariate Analysis for All Covariates

Variable Change Haz.Ratio for Change Wald Test ParLik Ratio
(.95 CI) p-value p-value

Age 11 years 1.7258 (1.465, 2.033) 7.03E-11 7.78E-12

Table 2.2: Estimated Hazard Ratios for Continuous Covariate

coef exp(coef) lower .95 upper .95 se(coef) z Pr(> |z|)
Treat 0.0960 1.1008 0.8281 1.4634 0.1452 0.661 0.5083
Age 0.0318 1.0324 1.0134 1.0517 0.0095 3.367 0.0007
BMIhi −0.3425 0.7100 0.5247 0.9608 0.1543 -2.219 0.0265
Gen −0.3252 0.7223 0.5022 1.0391 0.1855 −1.753 0.0795
Smo −0.0263 0.9740 0.7082 1.3396 0.1626 −0.162 0.8713
Hyp 0.1819 1.1995 0.8946 1.6082 0.1496 1.216 0.2241
Hypl 0.3439 1.4104 1.036 1.9201 0.1574 2.185 0.0289
Dbet 0.3803 1.4627 0.9891 2.1629 0.1996 1.905 0.0567
Fam.H −0.1488 0.8617 0.6399 1.1604 0.1518 −0.98 0.3271
Mi.H 0.2914 1.3383 0.9386 1.9083 0.1810 1.61 0.1075
PCI 0.2072 1.2303 0.8291 1.8256 0.2014 1.029 0.3034
St.D −0.0111 0.9889 0.7423 1.3175 0.1463 −0.076 0.9394
CRP −0.0869 0.9168 0.6502 1.2928 0.1753 −0.495 0.6203
Risc2 0.4313 1.5393 1.0321 2.2957 0.2039 2.115 0.0344
Risc3 1.0125 2.7524 1.3631 5.5577 0.3585 2.824 0.0047

Rsquare= 0.092
Likelihood ratio test = 112.1 on 15 df, p=1.110e−16
Wald test = 118.3 on 15 df, p=0
Score (logrank) test = 137.6 on 15 df, p=0

Table 2.3: Multivariate Model
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After applying the bivariate analysis, the fitting of a Cox model is done for all covariates simultaneously.

We do not eliminate the insignificant estimates which are obtained by bivariate analysis. Some practice

shows that it could be the case that a covariate with a high p-value became highly significant in the

multivariable model [6]. The resulting parameters estimates of the model are given in the Table 2.3.

The covariate BMIhi represents patients having a body mass index higher than 25 kg/m2, which can

be considered as overweight or obesed. In the last column of Table 2.4, the p−values of the Wald test for

each covariate are given. There are 8 covariates which seem to be insignificant. In the following subsection,

we decide whether to include or exclude the insignificant covariates.

2.5.2 Inclusion/Deletion of Covariates

Inclusion or exclusion of a covariate which is not found to be significant in the bivariate analysis, will

include two important steps, i.e., verification of the partial likelihood test and verification of confounding.

A covariate is called a confounder if it is known that this covariate has a correlation with other significant

covariates in the model. Suppose for example, that after the separated bivariate analysis smoking habit

is not significant while diabetes is. When we put them together in the model and inspect any correlation

between these two, we consider smoking habit as a confounder. Possible interaction is inspected by means

of a statistical test.

The verification of the partial likelihood test should be done per covariate and cannot be done simul-

taneously. The procedure for inclusion or exclusion is explained as follows. The partial likelihood of the

fitted Cox model with and without the insignificant covariate are compared. By this comparison, we would

like to confirm whether there is any significant change from the model with the covariate and the model

without the covariate. If it is not significant, then verification whether that covariate is a confounder for

another variable should also be done. If it is also not a confounder for another covariate, then it can be

excluded from the model. This is done for all insignificant covariates.

The verification of being a confounder is done in the following way. We first fit the Cox model without

the insignificant covariate and obtain the estimate of the covariate coefficient. We then fit the Cox model

including the insignificant covariate. If the covariate coefficient is changing considerably (a suggestion is a

change more than 20%) this means that the insignificant covariate is a confounder. Details about this can

be read in [6]. When applying the procedure of inclusion/deletion mentioned above, it is found that all the

insignificant covariates are not confounding for any of the other covariates. Therefore they can be removed

from the model. The last step in fitting the Cox model is the verification for the possible significant

interactions between covariates. For all five 5 significant covariates, we tested all possible interactions

between two covariates. As a result, in this dataset no interactions were found to be significant.

After applying the procedure mentioned above, the subset of covariates which are considered to be

significant can be found in Table 2.4. If we look on the final model, the covariate Treat is still included

even though it is not significant. This is done because of the purpose of this project which is to analyze

the effect of treatment.

2.5.3 The Cumulative Baseline Hazard and Baseline Hazard Function of ICTUS dataset

As the regression coefficients have now been estimated, the baseline cumulative hazard H0(t) can also

be estimated using the Breslow estimator (2.23). Figure 2.3 shows the Breslow estimate Ĥ0(t) for the
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coef exp(coef) lower .95 upper .95 se(coef) Pr(> |z|)
Treat 0.0588 1.0606 0.8033 1.4002 0.1417 0.6782
Age 0.0425 1.0434 1.0278 1.0593 0.0077 3.49E-08
BMIhi −0.3445 0.7086 0.5289 0.9493 0.1492 0.0210
Hypl 0.3643 1.4395 1.0698 1.937 0.1514 0.0161
Dbet 0.7155 2.0451 1.4843 2.8179 0.1635 1.21E-05
Mi.H 0.5238 1.6884 1.2485 2.2834 0.1540 0.0007

Rsquare 0.078
Likelihood ratio test = 98 on 6 df, p=0
Wald test = 101.2 on 6 df, p=0
Score (logrank) test = 108.8 on 6 df, p=0

Table 2.4: Final Model

cumulative baseline hazard function. In spite of the differences in their values, the cumulative baseline
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Figure 2.3: The Baseline Cumulative Hazard from Cox Model

hazard shapes in Figure 2.2 and Figure 2.3 are quite similar. As can be seen in both figures, the curve is

increasing fastly with decaying steepness in the first 100 days meaning that in this study many patients

develop a new MI or die in the first 100 days. In the following days until the end of study, the curve shows

more or less a linear trend. This phenomenon suggests that the hazard is decreasing in the first 100 days

and remains fairly constant afterwards. This empirical evidence suggests that the hazard is decreasing.

Using formula (2.24), we can estimate the baseline hazard at every ordered distinct follow-up times as

illustrated in Figure 2.4. The two pictures in Figure 2.4 represent the baseline hazard. The left figure is the

hazard derived from the Cox model using the procedure explained in Subsection 2.4.3. This hazard function

is not a smooth function. In medical applications, it is desirable to use a smooth function. Therefore, a

smooth version of the hazard function is calculated by using a kernel estimator and is depicted in Figure

2.4 in the right picture.

It can be seen from the picture that in the beginning of the study, the risk is quite high. We see

that in general the curve is decreasing with a slightly increasing pattern in certain follow-up times interval.

Several suspicious jumps occur between day 500 and 1500. This jump pattern means that after the risk

of getting subsequent MI decreases, it might increase in the future. This jump pattern in the MI hazard

function cannot be explained from a medical perspective. It is believed that in the beginning of the study,
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Figure 2.4: The Baseline Hazard from Cox Model

a lot of events happen but once it passes some constant level, it stays there or even decreases. Thus,

the baseline hazard curve is expected to decrease over time until a certain base level. In other words, the

hazard function should be monotone decreasing. We see that this information is not incorporated by either

the Cox model or the Kaplan-Meier estimator.

2.6 Summary

In this chapter, we estimated the survival distribution (in term of cumulative hazard function) of patients

having an MI using the traditional estimators. The Nelson-Aalen estimator is used in the nonparametric

approach to right-censored data and the Breslow estimator is applied in the semiparametric approach.

Using both estimators, we see that the cumulative hazard does not assume a monotone function. Their

cumulative hazard curves show a similar pattern even though the values are different. As a consequence,

the hazard function is not monotone decreasing. From the medical point of view, this is not reasonable. A

patient who undergoes treatment and survives at a certain time would not be expected to have an increase

hazard from this specific time onwards. This assumption is not incorporated when using the traditional

estimator. In a later chapter, a new estimator which overcomes this drawback will be introduced.
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Chapter 3

Shape Constrained Estimator for Right
Censored Data

In this chapter, we will investigate a new estimator, which incorporates the information that we have about

the shape of the probability distribution. We will assume that the hazard function h(t) of the survival

time distribution is nonincreasing. We concentrate on estimating the cumulative hazard function H(t),

which then necessarily must be concave. In the construction of this new estimator, the nonparametric

estimator Ĥ(t) (or alternatively ĤNA), will be adjusted so that it will result in a continuous concave curve,

say H̃(t). To obtain a concave estimate for H(t), we construct the so-called least concave majorant of

the nonparametric estimator Ĥ(t). The new cumulative hazard estimate H̃(t) turns out to be piecewise

linear and its (left) derivative is piecewise constant. Due to the concavity of H̃(t), the estimate h̃(t) for

the hazard is nonincreasing and therefore incorporates the assumptions of the model. Such a construction

leads to sensible estimators and this will be explained in Section 3.1 .

Afterwards, we need to investigate whether it is reasonable to apply this new estimator in the ICTUS

dataset. For that purpose, a statistical hypothesis test will be performed in Section 3.3. One step in

statistical tests is to built the probability distribution of the test statistic. A bootstrap method is one

way to determine the test statistic distribution. More about the bootstrapping technique will be explained

in Section 3.4. In Section 3.6, the bootstrap method is performed to construct the distribution of test

statistics in ICTUS data and in Section 3.7, we validate the test statistic.

3.1 The Least Concave Majorant

Let G be some function on [0,∞). The smallest concave function G̃ on [0,∞) that lies above G is called

the least concave majorant (LCM) of G on [0,∞), i.e.,

G̃(t) ≥ G(t) for t ∈ [0,∞).

The idea of constructing the LCM originates from the problem of estimating a nonincreasing probability

density function on [0,∞). This problem is the simplest one in a wide range of statistical problems that fall

under the name “shape constrained nonparametric estimation”. As shown by Grenander [8], the maximum

likelihood estimator for a nonincreasing density exists within the class of all nonincreasing densities on

[0,∞). This means there exists a nonincreasing density f̂ that maximizes the likelihood of the observations

y1, . . . , yn, i.e.,

`(f) =
n∏

i=1

f(yi)
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over all nonincreasing densities on [0,∞). Moreover, the maximum likelihood estimator f̂ can be char-

acterized as the left-derivative of the least concave majorant of the empirical distribution function of the

observations. The empirical distribution function can be seen as a naive estimator for the cumulative dis-

tribution function (CDF) that does not incorporate any information about the probability distribution. The

LCM ”monotonizes” the naive empirical CDF, which in this case results in a piecewise linear density esti-

mate whose derivative is piecewise constant and nonincreasing, and therefore incorporates the assumption

on the density.

Because the empirical CDF is piecewise constant, the construction of the LCM is straightforward.

Illustratively, the LCM can be obtained by fixing a rubber band at the origin and stretching it over the

empirical CDF. In this way, the LCM will be piecewise linear and touches the empirical CDF at some of

the observations. Suppose there are n observations and 0 < y1 < y2 < . . . < yn are the corresponding

order statistics. The construction of the LCM is illustrated in Figure 3.1 for the case n = 5.
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Figure 3.1: Empirical CDF and LCM

The emprical CDF is the staircase starting at the origin having an upward jump at each observation of

size 1/n and remaining constant equal to 1 after the last observation. The LCM starts at the origin and is

obtained by stretching a rubber band over the staircase. In this particular example it touches the empirical

CDF at the second order statistic and at the last observation after which it remains constant equal to 1.

The LCM of the empirical CDF can be computed by the following algorithm. Suppose there are n

observations, then the empirical distribution function Fn is represented by the points:

(0, 0), (y1, Fn(y1)), (y2, Fn(y2)), . . . , (yn, Fn(yn)).

The algorithm consists of the following steps:

1. Start with the first point (0, 0) and calculate the slopes of all lines connecting the first point with all

succeeding points. Thus, there will be n slopes:

Fn(yi)
yi

, i = 1, 2, . . . , n.

2. Find the line with the maximum slope and denote the corresponding point by (y(e1), Fn(y(e1))).

Connect the points (0, 0) and (y(e1), Fn(y(e1))) with a straight line. This will be the first segment of

the LCM.
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3. Use the endpoint of the first segment (y(e1), Fn(y(e1))) as the new starting point and calculate all

slopes between this point with the succeeding points:

Fn(y(e1))− Fn(yi)
y(e1) − yi

, yi > y(e1).

Find the line with the maximum slope and denote the endpoint by (y(e2), Fn(y(e2))). Connect the

points (y(e1), Fn(y(e1))) and (y(e2), Fn(y(e2))) with a straight line. This will be the second segment

of the LCM.

4. Repeat step 3 by taking the endpoint of the last segment as the new starting point and continue

until the LCM reaches the last point (yn, Fn(yn) = (yn, 1).
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Figure 3.2: Illustration of Algorithm in Constructing LCM

One may feel uncomfortable with the fact that ”monotonizing” the empirical CDF leads to a LCM

which lies completely above the empirical CDF. This typically is the consequence of misinterpreting the

LCM as being an ”adjustment” of the empirical CDF, in which case one expects a concave curve that runs

through the points of the empirical CDF instead of dominating it completely. However, the LCM should

not be seen as an adjustment for the empirical CDF to incorporate concavity of the underlying CDF. It is

the probability density for which we try to find the maximum likelihood estimator and it can be shown that

this estimator is obtained as the left-derivative of the LCM. If one looks at the density and draws a naive

estimate for the density, e.g., a histogram or some smooth alternative like a kernel estimator, then the ML

estimator (which is the derivative of the LCM) indeed would be a nonincreasing curve that runs through

the naive estimate.

The idea of ”monotonicing” a naive estimator has been extended to several statistical models, such

as the estimation of a decreasing regression curve or a decreasing hazard function of regular data (see

Robertson et al. [9]). In the context of survival analysis, this idea has been investigated for the estimation

of a decreasing density or a decreasing hazard function of right censored observations. The naive way to

estimate the CDF of right censored observations is to use the Kaplan-Meier estimator. Incorporating the

constraint that the corresponding density is nonincreasing, suggests to ”monotonize” the Kaplan-Meier

estimator in the same way as in the density model: determine the LCM of the Kaplan-Meier estimator

and compute its left-derivative. Once again this results in a piecewise constant nonincreasing estimate. It

can be shown [10] that the true maximum likelihood estimator in this model is slightly different from the

monotonized Kaplan-Meier, but the difference tends to zero as the sample size n tends to infinity. A shape
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constrained estimator of a nonincreasing hazard function can be obtained by taking the left-derivative of the

LCM of the Nelson-Aalen estimator, which is the naive estimate for the cumulative hazard function [11].

These examples suggest to employ the same idea in the Cox model. The naive estimator for the

baseline cumulative hazard function H0 is the Breslow estimator, which is Nelson-Aalen equivalent for

the Cox model. To incorporate the assumption that baseline hazard h0 is nonincreasing, in view of the

previous examples, one could ”monotonize” the Breslow estimator, i.e., construct its LCM H̃0 and use the

left-derivative h̃0 as an estimate for h0.

3.2 The LCM for the Cumulative Hazard in the ICTUS dataset

We are now going to apply the procedure of adjusting the traditional estimator of the cumulative hazard

using the LCM explained in the previous subsection. Both estimators for the cumulative hazard (the

Nelson-Aalen and the Breslow estimator) explained in Section 2.5.3 provide a similar estimate in their

shapes. The application of the LCM will result in similar shapes of the baseline hazard. In R software,

there is a package (”fdrtool”) that supplies the command to produce the LCM given the set of points

from a staircase function. Figure 3.3 provides the graph of the Nelson-Aalen cumulative hazard with the

corresponding LCM.
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Figure 3.3: Least Concave Majorant of The Nelson-Aalen Cumulative Hazard

In Figure 3.3, we can see that the resulting curve slightly differs from the traditional estimator. This red

line connects the points which were produced by the command to produce the LCM in R software. After

day 89, the line is linear until day 1434. From this, it can be said that after day 89, the risk of having an

event is getting constant. This situation can be explained by the picture of the hazard function in Figure

3.4. The graph of the hazard function derived from the LCM is obtained by taking the slope of the line

segment in the LCM of the cumulative hazard. It is confirmed by this figure that the hazard from day 89

is constant at certain level until some certain point and then drops again close to 0.

The hazard curve obtained by applying the LCM is guaranteed to be monotone decreasing over time

while using the traditional estimator we still see some ups and downs (the numerical derivative from the

Nelson-Aalen estimator in Figure 3.5). However, the hazard curves seem comparable except in some points
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Figure 3.5: Baseline Hazard Comparison

where the naive estimator has jumps (see Figure 3.5). This suggests that the LCM is reasonable to estimate

the cumulative hazard for the ICTUS dataset. To investigate this, we perform a test in Section 3.6.

3.3 Testing Monotonicity

It is seen that the LCM incorporates the assumption of monotonicity. If we look at Figure 3.3, the LCM

gives a cumulative hazard function which is slightly different from the traditional estimator. Even if their

values are only slightly different, it still has to be verified whether this difference is still acceptable to

conclude that the cumulative hazard for the ICTUS dataset is concave. Therefore, in this section we

describe the procedure to statistically test whether a monotone hazard is a reasonable assumption for this

dataset.

The procedure for the statistical test is started with stating the null hypothesis. In this case, the

null hypothesis is that the hazard function is monotone decreasing. Thus, the corresponding cumulative

hazard function is concave. Assuming that the null hypothesis is true, one tries to disprove the alternative

hypothesis, which says the hazard function is not monotone decreasing. For this purpose, an appropriate
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test statistic is needed. Based on the distribution of the test statistic under the assumption that the null

hypothesis is true, one can compute the p-value. The smaller the p-value (usually smaller than 0.05) the

more one is inclined to reject the null hypothesis.

The next step is to describe a relevant test statistic. Consider the curves resulting from the LCM and

the Nelson-Aalen cumulative hazard in Figure 3.3. One could think about a possible test statistic as the

total area between the LCM curve and the Nelson-Aalen estimator for the baseline cumulative hazard,

which can be formulated as follows

A =
∫

(H̃(t)− Ĥ(t))dt (3.1)

where Ĥ is the cumulative hazard curve derived using the Nelson-Aalen estimator and H̃ is the LCM of

the Nelson-Aalen cumulative hazard curve. This total area would take larger values if the true cumulative

hazard is not concave. If this is the case, then the null hypothesis will be rejected. If it is small, then

the null hypothesis is not rejected. However, the term ”small” should be made clear. This term can be

quantified if we know the distribution of the test statistic. Having this distribution, we can then compute

the probability that the test statistic is larger than the observed value, known as the p-value.

The p-value is the probability that the test statistic is at least as large as the observed test statistic,

assuming that the null hypothesis is true. This value can be calculated if the distribution of the test

statistic is known. However, in our situation, there is no knowledge about the distribution of the test

statistic under the null hypothesis. Therefore, the distribution of the test statistic will be approximated

and for this purpose, the bootstrapping procedure is used.

3.4 Bootstrap Method

A sampling distribution is the distribution of a given statistic based on a random sample of certain size, say

n. It could be possible for a statistic to depend on information about the population from which samples are

drawn. If the population distribution is unknown, the problem of estimating the distribution of the statistic

maybe difficult. However, this problem can be solved if we can estimate the population distribution. The

empirical distribution function is known to be a consistent estimator for the true cumulative distribution

function. After having this estimate of the true distribution, a sample can be drawn and one value of the

statistic can be obtained. If this process is repeated several times, we have an approximation of the true

distribution of the statistic. This method is known as the bootstrap.

The bootstrap idea is based on the fact that original sample represents the population from which it

was drawn. Thus, resamples from an estimate based on this random sample, represent random samples

that one would obtain from the population. Bootstrapping right-censored data in the form (ti, δi) is not

straightforward. It is not done by randomly resampling from the sample since the variable ti comes from

the random censoring mechanism (2.1). We should sample both the survival time Xi and censoring time

Ci from their distributions instead. The bootstrap procedure for the right censored data will be explained

in Section 3.5.
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3.5 Bootstrap Method for General Right Censored Data

In testing monotonicity of the hazard, the bootstrap method is needed to approximate the distribution

of the test statistic under the assumption that the null hypothesis is true. To this end, we resample the

survival times from the LCM and censoring times from a naive estimator of the cumulative hazard function.

Consider the right censored data in the form (ti, δi), i = 1, 2, ..., n. Here n represents the resamples

size which is the same size as the original sample. For convenience, the follow-up times are ordered as

t(1) < t(2) < ... < t(n). As mentioned above, bootstrapping the right censored data is done by bootstrapping

the survival times Xi and the censoring times Ci. This means by randomly sample those variables from their

estimated distribution. Their actual distribution is unknown but we do have one random sample. Thus,

under the null hypothesis, we can estimate their distribution by the LCM of the Kaplan-Meier estimator

for the survival function or the LCM of the Nelson-Aalen estimator for the cumulative hazard. We denote

the estimated survival function by ŜX(t).

The estimated survival function for the censoring variable Ci can be obtained similarly. Note that

the uncensored observation of Xi corresponds to a censored observation of Ci and vice versa. The new

censoring indicator Γi = 1−∆i is introduced and γi represents the censoring indicator for the ith subject.

Consider the dataset of the form (ti, γi). When γi = 1, then ti is the exact censoring time. We can

estimate the survival function for Ci, say ŜC(t) by the Kaplan-Meier estimate

ŜC(t) =
∏

t(j)≤t

noj − doj
noj

,

where doj is the number of observed censoring events at t(j) and noj is the number of individuals at risk at

t(j). Individuals at risk here are those whose observed follow-up time is at least t(j).

In general, the procedure for bootstrapping the survival and censored times is described as follows.

1. Independently sample the survival times X∗i from the estimated survival function ŜX(t) and the

censoring times C∗i from the estimated survival function ŜC(t). To do this, notice that if a random

variable W has a continuous survival distribution S, then the random variable U = S(W ) is uniformly

distributed on [0,1]. In order to sample a survival time X∗i from the estimated survival function ŜX(t),

one take a random number U which is uniformly distributed on [0,1] and compute X∗i = Ŝ−1
X (U).

A similar procedure is applied to sample a censoring time C∗i from the estimated survival function

ŜC(t).

2. Define the follow-up time T ∗i = min{X∗i , C∗i } for the ith patient. The indicator ∆∗i can take on two

values,

∆∗i =
{

1, if X∗i ≤ C∗i ;
0, if X∗i > C∗i .

The kth bootstrap sample will be of the form (T ∗i ,∆
∗
i ), i = 1, 2, ..., n where n is the same as for the

original sample. We take many bootstrap samples and for each bootstrap sample we compute the

value of the test statistic. By doing this, we expect to approximate the true sampling distribution.
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Figure 3.6: Illustration of Sampling Procedure from Survival and Censoring Distribution

3.6 Procedure of Testing Monotonicity in the ICTUS Dataset

As explained in Section 3.5, a bootstrap sample of survival and censoring times, respectively denoted as

X∗i and C∗i are generated for i = 1, ..., n. Part of the procedure for testing monotonicity of the baseline

hazard in the ICTUS trial has been explained in Section 3.3 including the definition of the test statistic. In

this subsection the procedure is continued, especially by approximating the distribution of the test statistic

using the bootstrap method.

The bootstrap technique consist of drawing a lot of resamples. Assume there are B resamples. Each

resample is of the form (T ∗i ,∆
∗
i ), i = 1, ..., n = 1200. For each resample, we can compute the Nelson-Aalen

estimator for the cumulative hazard Ĥ∗(t) as well as its LCM H̃∗(t). Having these two estimators, one

can then calculate the test statistic A∗ for each resample k. Thus, the p-value can be approximated as

p-value ≈ P (A∗ ≥ A) ' #(A∗ ≥ A)
B

(3.2)

where A is the value of the test statistic for the observed data.

Now, we are going to bootstrap the survival and censoring times from their corresponding estimated

distributions. It should be noted that bootstrapping the survival times X∗i is done under the assumption

that the null hypothesis is true. Therefore, the X∗i are obtained from the LCM which will be explained in

more detail as follows. Whilst bootstrapping the censoring distribution is done on the basis of its naively

estimated distribution. We first explain the bootstrap process for the survival times. The cumulative hazard

from LCM is transformed into the survival curve to make sure that it only takes value between [0,1]. By

randomly sample U from uniform distribution on [0, 1] and then transform it back into the cumulative

hazard by using the inverse of LCM, one obtains the bootstrap sample of X∗i ’s.

Bootstrapping the censoring times C∗i is done as follows. A new event indicator should be assigned,

i.e., Γi = 1{Ci ≤ Xi}. The Nelson-Aalen estimator applied to the ICTUS results in Figure 3.7. The

curve shows a slight increasing pattern between 0 and 1825. At day 1826, the curve shows an extreme

increases. Since this is the cumulative hazard for the censoring distribution, it can be seen that before

day 1000, several patients were lost to be contacted. The study is then terminated at day 1826, and no
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Figure 3.7: The Cumulative Hazard Distribution for the Censoring Times.

patients showed an event at this time. Having the censoring distribution, we now use the similar procedure

as generating the survival times. First, transform this curve into the survival curve and randomly sample

U from uniform distribution on [0, 1]. Substitute this random variable into the inverse of this Nelson-Aalen

curve will give a bootstrap sample of C∗i ’s.
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Figure 3.8: The Scheme for the Follow-up Times

The bootstrap dataset then will be in the form (T ∗i ,∆
∗
i ), i = 1, . . . , 1200. There are three possibilities

to assign the values of T ∗i ’s and ∆∗i ’s based on the scheme illustrated in Figure 3.8. This scheme is based

on the duration of the study which is 1826 days. First, consider X∗i ≤ C∗i and X∗i ≤ 1826, then for each

possible C∗i satisfying that condition the data is assigned as (T ∗i ,∆
∗
i ) = (X∗i , 1). In the case X∗i > C∗i ,

when X∗i ≤ 1826 the corresponding individual left the study and his/her true actual event times will not

be known. For this case, the corresponding data will be (T ∗i ,∆
∗
i ) = (C∗i , 0). If both X∗i and C∗i are larger

than 1826 (whichever X∗i or C∗i comes first) then the data will be of the form (T ∗i ,∆
∗
i ) = (1826, 0).

Applying this bootstrap procedure to the ICTUS dataset with B = 10000 bootstrap samples, gives an

approximation of the distribution of the test statistic under the null hypothesis and can be seen in Figure

3.9. The approximation of the p-value is 0.701. This value suggests that there is not enough evidence to
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Figure 3.9: The Distribution of the Test Statistic

reject the null hypothesis of a monotone decreasing hazard. Thus, it can be concluded that it is reasonable

to assume that the cumulative hazard function for the ICTUS dataset is concave and can be estimated by

the LCM method.

3.7 Validating the Test Statistic

The above sampling distribution is obtained by bootstrapping from the estimated distribution. This is done

because the true distribution is unknown. We only have one random sample, which is the ICTUS dataset.

We want to investigate whether bootstrapping from the true distribution would give a different sampling

distribution compared to bootstrapping from this one random sample.

In order to validate our test statistic, we use a parametric distribution such that we know the distribution

of the population. Further, we fix one random sample from this parametric distribution such that it

resembles the ICTUS dataset. The idea is to bootstrap the test statistic from the true distribution (scheme

1) and compare it to the bootstrapped test statistic from the fixed random sample from this true distribution

(scheme 2). The comparison of the distribution of test statistic resulting from these two schemes is based

on their shape and the p-value.

The next question that might occur is regarding the parametric distribution that we are going to use for

this validation. Since we are dealing with a concave cumulative hazard, we are interested in a distribution

for which the cumulative hazard function is concave. One possible choice is the Weibull distribution, in

which the concavity of the cumulative hazard is controlled by one parameter. Details about this distribution

are given in Section 3.8.
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3.8 Weibull Distribution

The Weibull dstribution is a continuous probability distribution. If a random variable T has a Weibull

distribution then its probability density function is defined as follows.

f(t) =





κ

λ

(
t

λ

)(κ−1)

exp
(
−
(
t

λ

)κ)
, t ≥ 0;

0, t < 0.

(3.3)

where κ > 0 is the shape parameter and λ > 0 is the scale parameter. Based on the definition of the

probability density function, other quantities such as the hazard and the cumulative hazard function can

also be derived. The hazard function of Weibull distribution is

h(t) =
κ

λ

(
t

λ

)κ−1

. (3.4)

and the corresponding cumulative hazard function

H(t) =
(
t

λ

)κ
(3.5)

As can be seen from (3.4) and (3.5), the shape of the cumulative distribution function (and corre-

spondingly the hazard function) is completely determined by the value of the shape parameter κ. Since κ

assumes a value on (0,∞), then for 0 < κ < 1, the hazard function is monotone decreasing. Correspond-

ingly, the cumulative hazard function will be concave. In the case when κ = 1, the Weibull distribution

becomes a specific distribution, namely the exponential distribution with parameter
1
λ

and the hazard for

this distribution is constant over time. If κ assumes a value between (1,∞) then the hazard function is

monotone increasing and correspondingly the cumulative hazard function is convex. The differences in the

shape of the hazard function regarding the variation in the shape parameter value are given in Figure 3.10.
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Figure 3.10: The Weibull Hazard Function Depending on the Shape Parameters.

We will use the Weibull distribution to validate the test statistic. For this purpose, the parameters of

the Weibull distribution are based on the ICTUS dataset. We will use equation (2.6) to estimate these

parameters which will be explained in detail later on. It should be noted that the Weibull distribution

based on the ICTUS data involves two derivations. We choose a Weibull distribution for the survival time

distribution and also for the distribution of the censoring times. The reason to choose Weibull distribution
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as the censoring distribution is based on the shape of its estimated cumulative hazard. The curve is convex,

thus the Weibull distribution with shape parameter larger than 1 is suitable.

We first determine the Weibull distribution for the survival times. From the right censored data in

ICTUS (ti, δi), i = 1, . . . , 1200, the likelihood function as (2.6) is formed with the probability density and

survival function of the Weibull distribution. We substitute all values of the data into this likelihood and

maximize this likelihood over all possible values of parameters of the Weibull distribution. It turns out that

the estimated Weibull distribution for the survival times has scale parameter λX = 50771.97 and shape

parameter κX = 0.5155445.

The derivation of the Weibull distribution for the censoring times is quite similar to the derivation for

Xi. It differs in the sort of right censored data that is used in the likelihood function. Instead of using

right censored data of the form (ti, δi), we use right censored data (ti, γi) where γi = 1− δi. Maximizing

the likelihood that is formed for the censoring times, we got scale parameter λC = 1825.224 and shape

parameter κC = 56.00124. Both Weibull approximations for X and C are given in the following figure.
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Figure 3.11: The Weibull Hazard Function Depending on the shape parameters

Having estimated the Weibull distributions for X and C, we are now going to compare the distribution

of the test statistic using scheme 1 and scheme 2 explained above. The details of scheme 1 and scheme 2

are as follows.

Scheme 1: Sampling from the true Weibull distribution. The procedure for bootstrapping the test

statistic in this scheme is given by the following procedure. Let WX and WC be the Weibull distributions

for the survival times X and censoring times C respectively.

1. Randomly sample X
(1)
i from WX and C

(1)
i from WC , i = 1, . . . , 1200.

2. Define (T (1)
i ,∆(1)

i ) as the follow up time and censoring indicator, where T
(1)
i = min{X(1)

i , C
(1)
i } and

∆(1)
i = 1{X(1)

i ≤ C(1)
i }.

3. Construct the Nelson-Aalen estimator (2.8) for the cumulative hazard (Ĥ(1)(t)) based on the right

censored data (T (1)
i ,∆(1)

i ).

4. Construct the LCM of the Nelson-Aalen estimator; denote this estimator as H̃(1)(t).
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5. Calculate the test statistic A, defined in (3.1).

6. Repeat step 1 to step 5 for B times, here B = 1000 times.

Scheme 2: Sampling from a sample from the true Weibull distribution. For this scheme we first

do step 1 to step 4 from scheme 1. By doing these steps, we are given with one fixed sample from the

Weibull distribution (T (2)
i ,∆(2)

i ), i = 1, . . . , 1200 as well as the estimated Weibull cumulative hazard, which

is obtained from step 3 and step 4. From this estimate of the Weibull cumulative hazard, we can derive

the estimates of the distribution for X and C. Let the estimate distributions for X and C be ŴS and ŴC ,

respectively.

1. Randomly sample X
(2)
i from ŴS and C

(2)
i from ŴC , i = 1, . . . , 1200.

2. Define (T (2∗)
i ,∆(2∗)

i ) as the follow up time and censoring indicator, where T
(2∗)
i = min{X(2)

i , C
(2)
i }

and ∆(2∗)
i = 1{X(2)

i ≤ C(2)
i }.

3. Construct the Nelson-Aalen estimator for the cumulative hazard (Ĥ(2∗)(t)) based on the right cen-

sored data (T (2∗)
i ,∆(2∗)

i ).

4. Construct the LCM of the Nelson-Aalen estimator (2.8); denote this estimator as H̃(2∗)(t).

5. Calculate the test statistic A, defined in Section (3.1).

6. Repeat step 1 to step 5 for B times, here B = 1000 times.
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Figure 3.12: The Illustration of the Schemes to Validate the Test Statistic

Figure 3.13 gives an illustration of the resulting distribution of the test statistic given by both schemes.

The grey dashed lines are the distribution of test statistic resulted from scheme 2 for several fixed Weibull

samples. While the solid bold blue line resulted from scheme 1. From this illustration, we can see that
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Figure 3.13: The Distribution Comparison between Schemes

actually the test statistic distribution which are calculated from the sample will have a distribution that

approximates the distribution of test statistic drawn from the known distribution. We also consider the

comparison in the p−values between schemes. In scheme 2, we have one p−values in each iteration of

”repetition 2”. This is calculated on the basis of the observed areas between the traditional cumulative

hazard and LCM. In order to compute the p−values on scheme 1, we use these observed area. The mean

of the p−value obtained by the true distribution (scheme 1) is 0.51 with standard deviation 0.28, while

using the scheme 2 is 0.48 with standard deviation 0.26. Thus, the shapes of the test statistic distributions

which were given by scheme 1 and 2 and their corresponding p-values mean supports the validity of the

test statistic procedure which is based on an estimated distribution.

3.9 Summary

In this chapter, a new estimator that incorporates the assumption of a monotone hazard function was

introduced. Graphically, it has a comparable hazard to the traditional estimator (hazard by the Nelson-

Aalen estimator). Hypothesis testing is then performed to quantitatively investigate whether assuming a

monotone hazard function is reasonable in the ICTUS dataset. In performing the test, we dealt with the

problem of generating the distribution of the test statistic. The distribution of the test statistic is unknown

and bootstrap method is needed for this purpose. The p-value which was computed using the bootstrapped

distribution of the test statistic did not give enough evidence to reject the null hypothesis.

The problem that arises later on is the validity of the test itself. The distribution of the test statistic

is obtained by bootstrapping. We investigated whether there is a large difference in the distribution of the

test statistic if it were simulated from the real distribution. Using the Weibull distribution, in which all

parameters are obtained based on the ICTUS data, we see that the distribution of the test statistic based on

one sample closely approximates the distribution of the test statistic simulated from the true distribution.
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Chapter 4

Effects of applying the LCM in the Cox
Model

In Chapter 3, it is confirmed by hypothesis testing that the LCM is reasonable to estimate the cumulative

hazard and the corresponding hazard in the ICTUS dataset. It is also interesting to investigate the effect

of LCM on estimating Cox’s baseline hazard. By applying the LCM to the estimated cumulative baseline

hazard, an estimate for the baseline hazard is obtained. We are interested on how this estimate behaves,

whether it is a better estimator for the baseline hazard compared to Breslow’s. The term ”better estimate”

refers to the estimator having smaller standard deviation and bias than the existing estimator. This will be

explained in more detail in Section 4.3.

Recall that in the Cox model, there are two parameters which have to be estimated, i.e., the regression

coefficients and the baseline hazard. The effect of LCM on the estimate of the regression coefficients

is also an interesting issue to be investigated. The partial likelihood method which is proposed by Cox

does not incorporate any assumption on the baseline hazard. This method is proposed due to infeasibility

of maximizing the full log-likelihood (2.14). In brief, we use the estimate of the baseline hazard, which

is obtained from the LCM, to maximize the full likelihood over all possible regression coefficients. We

investigate the distribution of these regression coefficients compared to those which are obtained by partial

likelihood in Section 4.4.

In order to assess the quality of the estimates, we need to form a Cox dataset from a certain distribution.

By doing this, we know the true value of the regression coefficients and the baseline hazard so that we can

measure the distance between the true value and their estimators. Details on generating a dataset based

on a Cox model is given in Section 4.1.

4.1 Generating the Cox Data

As defined in equation (2.9), the two parameters in Cox model are the baseline hazard and the regression

coefficients. In order to generate a dataset based on a fixed Cox model, we need information about the

baseline distribution and the covariates values. As in Chapter 3, we choose the Weibull distribution because

its concavity is controlled by one parameter. We use Weibull distribution with shape parameter between

0 and 1 as the baseline hazard. For simplicity, we use only one covariate which is a dichotomous variable

(its value is either 0 or 1) and fix the regression coefficient (β) equal to 1.

On the basis of a fixed Cox model, we need to generate the dataset which consists of n subjects in the

form (Ti,∆i, Zi) with Ti is the follow-up time, ∆i is the censoring indicator and Zi is the covariate assigned
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to the ith subject. The values of Zi are randomly assigned to the ith subject. The problem remains on how

to construct the dataset in the form (Ti,∆i). As in Chapter 3, the follow-up time and censoring indicator

for each subject depends on its survival time and censoring time, whichever occurs first. For this purpose,

we need to generate survival times Xi and censoring times Ci from the survival and censoring distributions.

Note that in this chapter, we deal with the Cox model, so there is a slight difference in generating the

survival and the censoring times. Details on generating the Cox dataset can be read in [12].

First, the survival times Xi are randomly generated from the survival distribution. Since X has a hazard

function of equation (2.9) or a cumulative hazard formulated in equation (2.10), we use this to generate

the Xi’s. From the cumulative hazard of the Cox model, we can derive the survival distribution (2.11).

Therefore, if X has the following survival distribution

S(x,z,β) = [exp(−H0(x))]exp(z0�)

then a random variable U = S(X,z,β) has a Uniform distribution on [0,1]. Thus, by randomly sampling

U from Uniform[0,1] and setting

X = H−1
0

(− log(U) exp(−z′β)
)
, (4.1)

we can generate a survival time Xi. Furthermore, since the baseline hazard function is already assumed

to be from a Weibull distribution, we can set the baseline cumulative hazard H0 as in the equation (3.5).

The inverse of the baseline cumulative hazard is thus the inverse of Weibull hazard as follows.

H−1
0 (u) = λu

1
κ (4.2)

Generating censoring times Ci in the Cox model is similar to generating censoring times based on the

Kaplan-Meier estimator. Suppose that the censoring distribution has a cumulative hazard Hc. Then, we

begin by drawing a random number U from Uniform[0,1] and setting

C = H−1
c (U) (4.3)

with H−1
c is the inverse of the cumulative hazard function.

Several questions related with censoring distribution might raise up, such as the type of the distribution

and the censoring proportion. In [13], the exponential, the uniform and truncation are several common

distributions which were chosen for the censoring distribution in the Cox model. Thus, we need to determine

the parameters for these distribution. Another important factors in determining these parameters are the

censoring proportion. Given the censoring proportion and the survival distribution, Halabi and Singh [14]

provides a formula to compute the parameters for several censoring distribution. Having generated the

survival and censoring times Xi and Ci respectively, we could define Ti and ∆i as before. As a result, we

have a Cox dataset in the form (Ti,∆i,Zi), say the Weibull-Cox dataset.

4.2 The Effect on ICTUS’s Baseline Hazard

In this section, the performance of the LCM based estimator will be compared to the Breslow estimator.

To do this, we need a true value of the baseline hazard. To this end, a Weibull-Cox dataset based on

the ICTUS data is generated. We estimate the Weibull parameters for the survival and censoring using
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Figure 4.1: The Weibull CDF for the Survival and Censoring Distribution Based on the ICTUS Dataset

maximum likelihood as we did in Chapter 3. We use Weibull distributions as before for the survival and

censoring distributions. It turns out that the Weibull parameters for the survival distribution are (shape =

0. 5156, scale 55557.67) while for the censoring distribution are (shape =56.00124, scale = 1825.224). To

assess the performance, we use a pointwise measure, such as the Mean Squared Error (MSE) to quantify the

differences between these estimators and the true hazard. We will also calculate the bias and the variance

for each estimators so as to measure the variability of its value over several points in the domain of the

baseline hazard. The Mean Integrated Squared Error (MISE) will also be calculated for both estimators.
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Figure 4.2: The LCM (Left) and Breslow (Right) Performance on ICTUS-Based Weibull Dataset

Figure 4.1 provides the cumulative distribution function for the survival and censoring distribution based

on the ICTUS dataset. We choose the size of the dataset to be 2000. In 1000 repetitions, we obtain the

estimate of the baseline hazard from the LCM and the Breslow estimator as depicted in Figure 4.2. We

see that the overall performance of LCM in estimating the baseline hazard is better than the Breslow

estimators. Figure 4.3 also provides the distribution of the baseline hazard over certain points. In each

time point we see that the variance of LCM is smaller than the Breslow estimator. The global measure of

distance (MISE) also confirms that LCM performs better. Table 4.1 provides numerical measure between

these two estimators. Here the term ”hat” refers to the Breslow estimator while the term ”tilde” refers to

the LCM based estimator.
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Figure 4.3: Boxplots of the Hazard Values in Each Observed Times of ICTUS-Based Weibull
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Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -1.61E-02 5.20E-07 2.58E-04 -1.60E-02 4.07E-07 2.55E-04
0.1 -3.96E-03 5.20E-07 1.62E-05 -3.86E-03 4.07E-07 1.53E-05
10 -3.36E-05 1.28E-07 1.29E-07 -1.27E-05 1.93E-08 1.94E-08
50 -1.39E-07 4.40E-08 4.40E-08 -3.12E-07 3.01E-09 3.00E-09

100 2.47E-06 3.38E-08 3.37E-08 -6.16E-07 1.31E-09 1.31E-09
200 6.60E-07 1.91E-08 1.91E-08 3.72E-07 5.61E-10 5.60E-10
300 5.37E-06 1.70E-08 1.70E-08 -1.11E-06 3.39E-10 3.40E-10
400 -2.60E-06 1.01E-08 1.01E-08 -3.79E-07 2.26E-10 2.26E-10
500 -2.46E-06 8.86E-09 8.85E-09 -5.14E-07 1.83E-10 1.83E-10

1000 -1.79E-06 6.36E-09 6.36E-09 -5.42E-07 8.47E-11 8.50E-11
1200 -1.15E-06 4.76E-09 4.76E-09 -2.89E-07 6.78E-11 6.79E-11
1500 4.71E-07 4.74E-09 4.73E-09 -1.43E-06 6.30E-11 6.50E-11
1800 5.00E-05 1.50E-08 1.74E-08 -1.97E-05 1.48E-10 5.38E-10
1825 5.21E-05 1.55E-08 1.82E-08 -1.94E-05 1.48E-10 5.25E-10

MISE.hat MISE.tilde
2.34E-05 3.16E-06

Table 4.1: The Measures of LCM Performance on ICTUS-Based Weibull

4.3 Effect on the Baseline Hazard

The application of LCM to the cumulative baseline hazard gives an estimate of a decreasing baseline hazard.

As we have seen for the Weibull-Cox baseline hazard based on ICTUS dataset, the LCM performs better

in estimating the baseline hazard compared to the Breslow’s estimator. In this section, we will investigate

the LCM performance in other decreasing shapes of the Weibull baseline hazard. For this purpose we

consider 3 shapes for the Weibull distribution which we are going to use in the experiment, namely strong

concave, less concave and linear. In this investigation, we choose the uniform distribution U(0, θc) as

a censoring distribution. By using the formula provided in [14], we compute the parameter θc for the

censoring distribution such that the dataset has a censoring proportion pc. For our investigation, we set

the proportion censoring similar with the ICTUS case, i.e., 20%. We also truncate the follow-up time in

certain position. In this investigation, it is set at 210. This means all follow-up times which are larger

than 210 will equal to 210 and the corresponding event indicator will be 0. This mechanism is designed

to represents the situation in real application where a study is terminated at some time. The parameters

pairs are listed in Table 4.2 and their corresponding cumulative distribution function curves are depicted in

Figure 4.4.

Strong Concave Less Concave Linear
Survival distribution : Weibull(shape, scale) (0.28,60000) (0.76,1200) (1,700)

Censoring distribution: Uniform(0, θc) 224 237 234

Table 4.2: The Parameters for the Survival and Censoring Distribution

Using these pairs of survival and censoring distribution, we have a range of follow-up times from 0 to

210. Moreover, we also round-up the generated survival times and the censoring times, such that the tied

follow-up times present in the dataset. We will investigate the performance of both estimators in 15 time

points on this interval for each case. As before, the size of the data is 2000 and we do 1000 iterations.

The visual comparison between the performance of the Breslow estimator and the LCM in estimating the
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Figure 4.4: The Pair of Weibull CDF in Survival and Censoring Distribution

Figure 4.5: The LCM (Left) and the Breslow (Right) Estimate of the Baseline Hazard in the Strong Concave Cumulative
Hazard

baseline hazard for the three cases can be seen in Appendix A, Figure A.3 to Figure A.5. The numerical

quantities to measure the pointwise differences are listed in Table 4.3 to Table 4.5.

In strong concave case, we see that the bias between the Breslow estimator and the LCM are slightly

different. The MISE for this case are also in the same order. These suggest that the Breslow estimator

has relatively similar shape to the LCM. However, on the basis of their variance, the LCM is still preferable

since it gives smaller values for each time points. In other cases, as we might have expected, the LCM

performs better than the Breslow estimator. This is shown by the bias and variance for the LCM’s baseline

hazard in each observation point which is smaller than the bias and variance for the Breslow estimator. The

MISE suggests that the distance between LCM and the true hazard is closer than the Breslow estimator.

If we look on the boxplots representation for visual comparison between the Breslow and the LCM

(Appendix A), we might think that the performance of the LCM near zero is as bad as the Breslow. We

also notice that it has a large distance to the true value. This will lead into a conclusion that using the

LCM is only good in latter time points. This is not true. This large distance is caused by rounding up the

follow-up time to the nearest integer. A rigorous study in which we round up the follow-up times to the

nearest third digit decimals shows that near zero, the LCM has a closer distance to the true hazard.
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Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -3.41E-01 4.88E-06 1.16E-01 -3.41E-01 4.86E-06 1.16E-01
0.1 -5.39E-02 4.88E-06 2.92E-03 -5.39E-02 4.86E-06 2.91E-03
1 -5.00E-03 2.83E-06 2.78E-05 -4.92E-03 2.50E-06 2.67E-05
5 -5.34E-04 1.21E-06 1.50E-06 -4.43E-04 4.53E-07 6.48E-07

10 -1.78E-04 7.63E-07 7.94E-07 -1.40E-04 1.88E-07 2.08E-07
20 -7.09E-05 5.23E-07 5.28E-07 -3.65E-05 6.49E-08 6.62E-08
50 1.11E-05 2.87E-07 2.87E-07 7.02E-06 2.01E-08 2.02E-08
75 -1.28E-06 1.89E-07 1.89E-07 1.50E-05 1.15E-08 1.17E-08

100 -5.07E-06 1.45E-07 1.45E-07 1.58E-05 7.58E-09 7.82E-09
125 1.02E-06 1.37E-07 1.37E-07 2.08E-05 6.68E-09 7.11E-09
150 1.52E-05 1.40E-07 1.40E-07 1.98E-05 8.03E-09 8.42E-09
175 5.44E-05 1.49E-07 1.52E-07 6.23E-06 1.05E-08 1.05E-08
190 2.00E-04 3.17E-07 3.57E-07 6.72E-06 9.99E-09 1.00E-08
200 3.80E-04 5.04E-07 6.48E-07 1.67E-05 9.92E-09 1.02E-08
210 5.62E-04 9.93E-07 1.31E-06 2.65E-05 9.92E-09 1.06E-08

MISE.hat MISE.tilde
4.02E-04 3.55E-04

Table 4.3: The Bias, Variance, MSE and MISE for both Estimators Applied to The Strong Concave Cumulative Baseline
Hazard

Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -7.03E-03 1.03E-06 5.05E-05 -6.81E-03 7.21E-07 4.71E-05
0.1 -2.58E-03 1.03E-06 7.70E-06 -2.36E-03 7.21E-07 6.29E-06
1 -5.05E-04 8.72E-07 1.13E-06 -3.91E-04 3.56E-07 5.09E-07
5 -8.07E-05 6.13E-07 6.19E-07 -3.81E-05 1.37E-07 1.38E-07

10 -1.79E-05 5.49E-07 5.49E-07 3.71E-06 7.55E-08 7.55E-08
20 -1.56E-05 5.26E-07 5.26E-07 5.46E-06 4.64E-08 4.64E-08
50 -2.39E-05 5.05E-07 5.05E-07 2.20E-05 2.52E-08 2.57E-08
75 -1.17E-05 5.12E-07 5.11E-07 2.16E-05 1.87E-08 1.92E-08

100 -6.15E-05 5.24E-07 5.28E-07 3.03E-05 1.75E-08 1.84E-08
125 2.70E-05 6.55E-07 6.55E-07 3.37E-05 1.77E-08 1.89E-08
150 6.05E-05 7.69E-07 7.71E-07 2.51E-05 2.15E-08 2.22E-08
175 -1.40E-06 6.56E-07 6.55E-07 -1.62E-05 3.25E-08 3.28E-08
190 5.83E-05 9.32E-07 9.35E-07 -7.63E-05 4.78E-08 5.36E-08
200 1.59E-04 1.27E-06 1.30E-06 -1.62E-04 6.29E-08 8.89E-08
210 9.77E-04 2.89E-06 3.84E-06 -1.76E-04 5.97E-08 9.05E-08

MISE.hat MISE.tilde
1.36E-04 8.70E-06

Table 4.4: The Bias, Variance, MSE, and MISE for Both Estimator Applied to The Less Concave Cumulative Baseline
Hazard
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Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -2.30E-05 3.97E-07 3.97E-07 3.83E-04 1.33E-07 2.79E-07
0.1 -2.30E-05 3.97E-07 3.97E-07 3.83E-04 1.33E-07 2.79E-07
1 -2.00E-05 3.80E-07 3.80E-07 2.60E-04 6.29E-08 1.30E-07
5 -8.52E-07 3.98E-07 3.97E-07 1.53E-04 2.82E-08 5.18E-08

10 -1.18E-05 3.87E-07 3.87E-07 1.15E-04 2.09E-08 3.41E-08
20 1.53E-06 4.70E-07 4.69E-07 9.01E-05 1.73E-08 2.54E-08
50 -1.66E-05 5.91E-07 5.91E-07 6.34E-05 1.55E-08 1.95E-08
75 1.93E-05 6.86E-07 6.86E-07 5.02E-05 1.63E-08 1.88E-08

100 -8.30E-07 6.87E-07 6.86E-07 3.69E-05 1.68E-08 1.82E-08
125 -1.50E-05 8.86E-07 8.85E-07 1.98E-05 1.81E-08 1.84E-08
150 -3.54E-05 1.03E-06 1.03E-06 -3.43E-06 2.19E-08 2.19E-08
175 1.87E-05 1.31E-06 1.31E-06 -5.89E-05 3.37E-08 3.72E-08
190 6.32E-05 1.56E-06 1.56E-06 -1.44E-04 6.45E-08 8.50E-08
200 1.04E-04 1.95E-06 1.96E-06 -2.77E-04 1.11E-07 1.87E-07
210 1.16E-03 3.93E-06 5.27E-06 -3.26E-04 1.11E-07 2.17E-07

MISE.hat MISE.tilde
1.86E-04 7.69E-06

Table 4.5: The Bias, Variance, MSE and MISE for Both Estimator Applied to the Linear Cumulative Hazard

4.4 The Change in ICTUS’s Regression Coefficient

As it is already explained in Section 2.4.1, Cox introduced the partial likelihood to estimate the covariate

coefficient because maximizing the full likelihood function (2.14) over all possible β and baseline distri-

butions is not feasible. The partial likelihood that he proposed will have a resulting estimate with similar

distributional properties as the full maximum likelihood estimator. In fitting the Cox model to a right-

censored dataset, we first estimate the covariate coefficient by maximizing the partial likelihood which

is then followed by estimating the baseline function. We see that changing the estimate of the baseline

distribution will not alter the values of the estimated covariate coefficients. However, if we substitute the

baseline distribution, which were estimated by the LCM, into the full likelihood function, we can maximize

it over all possible β. As a result we obtain a new estimated β with regard to the LCM, say β̃.

The idea to see a change in the estimate of the regression coefficients can be explained as follows. We

first fit the ICTUS dataset with the Cox model. Using the partial likelihood, we estimate the coefficients of

the six covariates which are considered to be significant. Having estimated these coefficients, the baseline

cumulative hazard (say, Ĥ0) can be estimated. The LCM estimator is then applied to the estimated baseline

cumulative hazard, which results in the new estimator of baseline cumulative hazard (say, H̃0). Based on

the function H̃0, we can use the formulas explained in Section 2.2 to derive the formulas for the baseline

survival S̃0 and the baseline hazard h̃0. By substituting these estimates of h̃0 and S̃0 into equation (2.14),

we have an expression which only depends on β. Thus maximizing this log-likelihood over all possible

parameter values will give us an estimate of β̃.

Suppose that this likelihood maximization process is repeated, we hope that in the end, we will have

an estimate of the baseline hazard and the regression coefficients that maximizes the total likelihood. It

would be interesting to see whether this would produce a better estimator. In the above procedure, we

only estimate the β̃ after only one iteration. It would be interesting to numerically iterate this process to

see whether the maximum likelihood value converges. First, we will investigate the outcome of this process
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when we apply it into the ICTUS dataset. The following figure gives the illustration of the procedure to

investigate the change of the covariates values.

ICTUS dataset

( , , )
i i i
T Z∆

β̂
0Ĥ

0H
%

0 0,S h%%

β%

repeat

{ }0max ( , )l h
β

β%

Figure 4.6: The Illustration of the schemes

The above procedure was implemented with the stopping criterion on subsequent likelihood values

being not larger than a certain small number. In this experiment, it is set at 10−15. Note that even with

a stopping criterion smaller than 10−15, the estimate of the covariate coefficient still converges. Using R

software, the following table provides estimated values of six significant covariates after each iteration.

lth Treat Age BMIhi Hypl Dbet Mi.H

1 5.8815E−02 4.2531E−02 −3.4452E−01 3.6432E−01 7.1546E−01 5.2380E−01
2 5.8813E−02 4.2293E−02 −3.4452E−01 3.6432E−01 7.1546E−01 5.2380E−01
3 5.8811E−02 4.2060E−02 −3.4452E−01 3.6432E−01 7.1546E−01 5.2379E−01
4 5.8809E−02 4.1832E−02 −3.4452E−01 3.6432E−01 7.1546E−01 5.2379E−01
5 5.8807E−02 4.1608E−02 −3.4453E−01 3.6432E−01 7.1546E−01 5.2379E−01
...

...
...

...
...

...
...

1357 2.8584E−02 3.0767E−02 −3.9433E−01 3.2094E−01 7.3859E−01 5.3816E−01

Table 4.6: The Change in Covariates Coefficients Value due to LCM

The last row in Table 4.6 indicates the estimate of the covariate values after the last adjustment. Figure

4.7(b) shows how the values of the log-likelihood behaves and (c) an enlargement of panel (b). In panel

(c), the loglikelihood curves shows a zig-zag pattern. In the first iteration, we compute the log-likelihood

which consists of the partial likelihood estimate of β with the estimate of LCM’s baseline hazard. The

value equals −1900.838. In the next iteration, we maximize the log-likelihood over all possible β by fixing

the LCM’s baseline hazard. In this process, surely we will have a log-likelihood value which is bigger than in

previous step. It is recorded that in second iteration, the log-likelihood value equals −1900.131. However,

in next iteration, the loglikelihood goes down. This pattern repeats until it reaches convergence. After

the 511th iteration, the log-likelihood values remains constant at −1902.114. Figure 4.7(a) provides the

change in estimated Treatment coefficient. We see that the estimated coefficient for Treatment in the end

of the iteration decreases around 50% from the estimated coefficient using the traditional estimator. The

second highest change can be found in covariate Age whilst the covariate Dbet and Mi.H differs a little

from their initial values.
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Figure 4.7: (a)The change in estimated covariates coefficients during 1357 iteration (b) The Log-Likelihood Values (c)
The Log-Likelihood Values (zoom-in)

The Breslow estimator for the cumulative baseline hazard in the ICTUS data involves 6 significant

covariates mentioned earlier in Chapter 2. Since we are mainly interested in Treatment covariate, we would

like to see the change in the cumulative baseline hazard for Treatment due to the LCM adjustment. In this

way, we should treat the remaining five covariates such that it represents the center of the data. One way

to do such a thing is to use a quantity known as risk score. In a model containing p covariates, the risk

score for j-th subject in the dataset is

r̂j(zj , β̂) =
p∑

k=1

β̂kzjk.

Typically, the quantiles or other measure such as the average of the risk score can be obtained by a common

routine in most statistics software. Thus, the corresponding cumulative hazard will be

Ĥ(tj , r̂q, β̂) =
[
Ĥ0(tj)

]
ebrq , j = 1, . . . , n

where q is an empirical quantile of the risk score. Further details on how to calculate the estimated value

of the risk score can be found in [6].

Figure 4.8 shows the change in the cumulative baseline hazard for Treatment while setting the other

covariates in median risk score. The lowest curves is the baseline cumulative hazard based on Cox model

(black curve) and its LCM (red curve). The highest curves are the curves obtained after the last iteration.

This picture provides an information that adjustment of the LCM shifts the Breslow estimate of the

cumulative baseline hazard upward.

In Figure 4.9, an illustration regarding the estimate of the covariate coefficient is given. The curves in

both of these figures are the cumulative hazard of patient with different treatment in median risk score.

As can be seen for this picture, the distance between Treatment 0 and 1 is getting smaller in last iteration

than before the iteration. While the baseline hazard estimate is shifted upward the regression coefficient

estimate is shifted downward. This facts lead us to a conclusion that this procedure goes in the wrong

direction in maximizing the log-likelihood.
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Figure 4.8: Simulation of the Baseline Hazard Change
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Figure 4.9: The Cumulative Hazard with the Effect of Treatment at the Median Risk Score (a) Before Iteration (b) In
the last Iteration
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4.5 Analysis on the Regression Coefficients Change in ICTUS Dataset

Details regarding the iterating schemes and the resulting change of the estimate of the covariate coefficient

due to substitution of the LCM’s baseline hazard are interesting to be analyzed. The change in the estimated

covariates coefficients for some covariates are high while for some others are quite small. In addition, the

cumulative baseline hazard is shifted upward in each iteration. Even the log-likelihood values decreases.

By doing this, we are not even approximating the maximum of the log-likelihood.

Estimating the covariate coefficient corresponding to the LCM (β̃) is done by maximizing the full log-

likelihood function (2.14). For simplicity, we use one covariate (z) which can take any of two values, either

0 or 1. Suppose that we already have the estimate for the baseline distribution ĥ0. We could also plug the

information about the baseline distribution into the following log-likelihood for n individuals.

L(ĥ0, β) =
n∑

i=1

{
δi ln ĥ0(ti) + δiz

′
iβ − ez

′
iβĤ0(ti)

}
. (4.4)

If this function is maximized over all possible β then one way to do that is by differentiating the log-likelihood

function with respect to β and set it equal to 0.

∂L

∂β
(ĥ0, β) =

n∑

i=1

zi

(
δi − Ĥ0(ti)ez

′
iβ
)

= 0

Whenever zi = 0 the summand in the above expression equals 0. The above expression can then be

simplified as follows:

∑

i∈{zi=1}

(
δi − Ĥ0(ti)eβ

)
= 0.

Thus, the estimate of the covariate coefficient (β̂) that maximizes the log-likelihood can be expressed in

the following formula,

ebβ =

∑
i∈{zi=1} δi∑

i∈{zi=1} Ĥ0(ti)
. (4.5)

The numerator in the equation (4.5) is fixed whenever the LCM is applied to the estimate of the cumulative

baseline hazard Ĥ0. Thus, we always have the following:

H̃0 ≥ Ĥ0 ⇒β̃ ≤ β̂ (4.6)

The abovementioned facts regarding the iterating schemes contradicts our hope at the beginning. We

know that the Breslow estimates the true distribution. Since LCM gives a continuous estimate of the

cumulative baseline hazard, we expect to see a better approximation of the true quantities by using this

estimator than the traditional estimator does. However, iterating the LCM shifts the cumulative baseline

hazard upward, which as a consequence makes the distance to the true distribution larger. In addition, the

estimate of the covariate coefficient is getting smaller in each iteration. On the basis of these facts, we

suggest to avoid the iterating procedure to improve the estimation of the Cox’s quantities. This suggestion

might raise the question whether the LCM is a better estimator if it is implemented without any iteration.

In order to address this question, we performed an experiment in Section 4.6.
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4.6 Simulation on the Regression Coefficient Distribution

In this section, we will investigate the performance of the LCM-based estimator in estimating the regression

coefficient without the iterations. In the experiment, we need to build a dataset which follows a certain

Cox model. The Weibull distribution will be used to model the hazard function since we can vary the shape

of the hazard function. We deal with three types of the Weibull cumulative hazard’s shapes as mentioned

in the beginning, namely the strong concave, less concave and linear. These types were chosen since the

corresponding cumulative hazard shape would be properly fitted with the LCM. After having the hazard,

we take one covariate which can be either two values, 0 or 1. Having this so-called Weibull-Cox dataset,

we will compare the estimates obtained by the traditional estimator and by the LCM. In more detail, we

are interested in obtaining an information about the distribution of those estimates.

The resulting distribution of β̂ and β̃ for different shape of cumulative hazards are illustrated by the

measures listed in Table 4.7. In this table, we used the dataset with 10% censoring.

Type β̂ β̃

Strong Concave mean 0.9959 0.9892
sd 0.0425 0.0423

Less Concave mean 0.9984 0.9818
sd 0.0558 0.0559

Linear mean 0.9951 0.8746
sd 0.0479 0.0790

Table 4.7: The Resulting Variation of b� and e� in the Dataset with 10% Censoring

Type β̂ β̃

Strong Concave mean 0.9988 0.9856
sd 0.0994 0.0997

Less Concave mean 1.0193 0.9934
sd 0.1168 0.1171

Linear mean 1.0111 0.9623
sd 0.0862 0.0865

ICTUS-Based mean 1.0123 1.0055
sd 0.0879 0.0880

Table 4.8: The Resulting Variation of b� and e� in The Dataset Consists of 80% Censored Survival Times

As can be seen from Table 4.7 and 4.8, the resulting estimate of the covariate coefficient obtained

by the Cox model has only a slight difference than the estimator using LCM, especially in the case of a

concave cumulative hazard (either the strong concave or the less concave). The censoring percentage in

the dataset does not notably influence the estimate resulting from LCM. This conclusion is supported by

the distribution comparison provided in Table 4.8 which is generated from the Weibull-Cox dataset with

around 60% censoring. Either with zero or 60% censoring, the estimates of the regression coefficient using

LCM or the partial likelihood have similar behaviour. An extraordinary result occurs in the linear case. It

appears that in the linear case, the LCM is not a good estimator for the regression coefficient. If we take

a closer look at one iteration of the linear case, we see the trend illustrated in Figure 4.10.
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Figure 4.10: Example of Cumulative Hazard and Hazard in One Step Simulation from Linear Cumulative Hazard

In Figure 4.10, we see that the LCM estimate for the baseline hazard does not approximate the true

hazard at the boundaries of follow-up times. Its estimate values are higher than the true hazard near 0 and

lower than the true hazard near time 200. Whilst it has a constant hazard in the interior of the follow-up

time domain. This is the consequence for estimating the constant hazard with some decreasing estimate.

In the case of concave cumulative hazard (either in strong or less concave case), the LCM has a shape that

is already close to the true hazard. Therefore, the distribution of the β̃ will not change much comparing

with the distribution of β̂.

4.6.1 Inserting the True Hazard Information

On the basis of the comparison between true hazard shape and the LCM’s estimate, especially in linear

case, we intend to investigate another thing. Suppose that we know completely the true underlying hazard.

Instead of plugging the estimate of the baseline hazard into the full likelihood, we insert the true hazard. If

we do the likelihood maximizing procedure over all possible β we want to investigate whether it will results

in a distribution which has a smaller standard deviation than the traditional estimator. For this purpose,

we use the three shapes parameters of Weibull-Cox dataset. The results can be seen in Table 4.9 and

visualized in Figure 4.11.

Type β̂ β̃

Strong Concave mean 1.0047 0.9977
sd 0.1000 0.0512

Less concave mean 1.0029 0.9985
sd 0.0985 0.0542

Linear mean 1.0038 0.9973
sd 0.1008 0.0530

ICTUS-Based mean 1.0113 0.9978
sd 0.1813 0.0971

Table 4.9: The Resulting Variation of b� and e� in The Dataset Consists of 80% Censored Survival Times, with The True
Hazard
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Figure 4.11: Distribution Comparison for the Coefficient Regression between Cox’s Partial Likelihood and LCM with
True Hazard

These results confirm our hope that whenever we know the true underlying hazard, estimating the

regression coefficient using LCM will be a better approach compared to the Breslow estimator, even in

the linear case. Based on this fact, we believe that the bad results in the distribution of the regression

coefficient in linear case is caused by the boundary problems. We hope that if we can find some correction

method for this boundary problem, we will have a better estimate for the regression coefficient. We are

going to use this information on treating the estimate of the regression coefficient without any information

regarding the true baseline hazard.

4.6.2 Correction on the Baseline Hazard’s Estimate

From the previous explanation regarding the shape of the LCM baseline hazard in the linear case and the

knowledge of inserting true hazard, we intuitively think that LCM performance in estimating the coefficient

regression can be improved by correcting the values on the boundaries. A study in [15] asserts the rate

of convergence of the monotone failure rate is n1/3
[
h̃0(t0)− h0(t0)

]
for a fixed t0. Thus, we might use

this information as a way to correct the LCM. We set the LCM’s baseline hazard on the interval [0, n−1/3]

equals to the LCM’s baseline hazard at point n−1/3. As can be seen in Table 4.10, the correction on the

interval [0, n−1/3] does not improve the LCM in the less concave and linear case. In the strong concave

case, the performance of the LCM is getting worse. This is reasonable as a rigorous check shows that

in the strong concave case, the LCM slope’s segment decreases rapidly on that interval. The correction

forces the nature of high baseline hazard into a far lower baseline hazard. This explains why we have a

high estimated coefficient regression in this way.

Another intuitive way to correct the LCM baseline hazard is by correcting it on the interval [0, t∗],

where t∗ is an average position where LCM has a jump for the first time. However, since LCM jumps is
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Type β̂ β̃1 β̃2

Strong Concave mean 1.0105 0.9939 1.0858
sd 0.1040 0.1033 0.1090

Less Concave mean 1.0123 0.9710 0.9816
sd 0.0973 0.1116 0.1124

Linear mean 0.9940 0.9224 0.9225
sd 0.0976 0.1016 0.1016

ICTUS-Based mean 0.9945 0.9712 0.9763
sd 0.0901 0.1092 0.1093

Table 4.10: The Distribution Comparison of the Estimated Coeffient Regression with Hazard Correction on the Interval
[0, n−1/3]

also influenced by the shape of the baseline hazard, we cannot fixed this t∗. In the strong concave case,

the first jumps in LCM are close to 0 and it is getting further from 0 in the case of less concave and

linear cumulative hazard. Thus we cannot fix a t∗ that best represents the first jumps for all shapes of the

concave cumulative hazard.

Now we focus only on the linear case. Varying the correction point t∗ does not improve the estimation.

By trial and error, we could not find a t∗ which can improve the standard deviation. By this, we conclude

that the traditional estimator for the covariate coefficient performs better than the LCM.

4.7 The Covariate Effect

In the above experiments, the true regression coefficient is fixed (equals 1). In the proportional hazard

model, this value can be interpreted as the hazard ratio for subjects with different type of covariate (see

equation (2.12)). For example, we use treatment type as the covariate which can take either of two values

i.e., 0 and 1. Thus, the regression coefficient equals 1 means that the risk of subject with treatment 1 is

more than twice the risk of subjects with treatment 0. In this situation, the treatment effect is considered

to be important. Further in this subsection, the term important and unimportant refer to the covariate

effect. Suppose that we fix the unimportant regression coefficient (for example 0.05) and do the similar

experiment as before to investigate the resulting distribution of the β̃.

Type β̂ β̃

Strong Concave mean 0.0163 -0.0059
sd 0.1246 0.1244

Less Concave mean 0.0014 -0.0540
sd 0.1194 0.1385

Linear mean 0.0022 -0.0813
sd 0.1113 0.1275

ICTUS-Based mean 0.0079 -0.0097
sd 0.1017 0.0974

Table 4.11: The Resulting Variation of b� and e� in the Case of Insignificant Covariate

As can be seen in Table 4.11, we obtain a similar change in standard deviation for all three types of

cumulative hazards as the case where the true regression coefficient is important. Notice that as in Table
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4.8, the standard deviation in the strong concave and the less concave case are slightly different. In the

linear case, we still see this large difference. However, the mean of β̃ shifts considerably even in the concave

cumulative hazard, see the means for β̃ in the strong concave and the less concave case. Nevertheless,

this situation is reasonable. Consider again the equation (4.5). The estimate of the covariate coefficient

depends on the number of subjects in the dataset who show an event at time i and the cumulative baseline

hazard at time ti. Both of these quantities are conditioned on the covariate equal to 1. In the case of

an unimportant true regression coefficient, the risk of having an event for covariate value 1 equals the

risk to have an event for subjects with covariate value 0. In such a circumstance, we have the number

of subjects who have an event approximately equal with the subjects who do not show an event. In the

case of important coefficient, the risk for subject with covariate value 1 is bigger than those with covariate

value 0. Consequently, the number of subjects who experience an event will be larger than the those who

do not show an event. This lead to a conclusion that the numerator of equation (4.5) in the unimportant

case is smaller than the numerator in the important case. Thus, a smaller increase in the cumulative

baseline hazard (due to applying the LCM) will result in a bigger change of the covariate coefficient. This

is explaining the biggest change in covariate Treatment after applying LCM to the cumulative baseline

hazard in ICTUS dataset.

4.8 Summary

The purpose of the works done in this section is to investigate the advantages and disadvantages of using

the LCM to estimate the parameters in the Cox model. In the beginning, we hope that by incorporating

the knowledge about the shape of the baseline hazard, we will have a better estimator for these parame-

ters. However, our simulation and analysis proves that the LCM-based estimator only performs better in

estimating the baseline hazard. In estimating the regression coefficient in the strictly decreasing hazard,

this method works similarly as the partial likelihood estimator. It turns out that this method performs

bad in the case of linear hazard. It also gives a bias estimate of the regression coefficient in the case of

unimportant covariate. In later chapter, another shape-constrained estimator is introduced and we will

investigate the performance of this estimator in estimating the parameters in the Cox model.
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Chapter 5

The Maximum Likelihood Estimator for
the Monotone Baseline Hazard

In Chapter 4, we investigated the effect of monotonicing the cumulative baseline hazard of the estimate of

the baseline hazard and the regression coefficients in Cox model. The purpose was to investigate whether

incorporating the information about the shape of the baseline hazard would result in a better estimate for

the parameters in the Cox model. In estimating the baseline hazard, this method is proven to give a better

estimate than Breslow’s. However, inserting the information about the shape constrained baseline hazard

into the full likelihood gives a worse estimate of the regression coefficient.

A worse estimate in regression coefficient is affected by the way the LCM constructs the baseline hazard.

The estimate for the regression coefficient is obtained by maximizing the full likelihood by first inserting

the baseline hazard which was estimated by LCM. The maximization problem depends on the value of

the cumulative hazard. Since LCM gives a cumulative baseline hazard which is always larger than the

Breslow’s cumulative hazard, it turns out that the regression coefficient is getting smaller (see (4.5)). The

corresponding likelihood is even smaller than the likelihood for the Breslow’s estimator. Thus, in this way,

we did not reach the maximum value of the likelihood.

In this chapter, we will use a shape constrained estimator for the baseline hazard which is introduced

in [16]. This estimator is the solution for the maximum likelihood problem and has been proven to be

a consistent estimator. Before we compute this estimator, Section 5.1 provides an introduction of the

underlying principle of this MLE.

5.1 Regression Under Order Restriction

Given a finite observations y1, y2, . . . , yn and a function p which depends on the value of the observation.

For a given points (y1, p(y1)), (y2, p(y2)), . . . , (yn, p(yn)), the most common way to capture a curve that

best fits those points is via regression which is in sense of least squares. In specific set, suppose Y is a

finite set {y1, y2, . . . , yn} with the simple order y1 ≤ y2 ≤ . . . ≤ yn. A function f on Y is defined to be

isotonic with respect to the ordering if it satisfies f(y1) ≤ f(y2) ≤ . . . ≤ f(yk). It is called antitonic with

respect to the ordering if it satisfies f(y1) ≥ f(y2) ≥ . . . ≥ f(yn). If g is a given function on Y , then a

function g∗ on Y is the isotonic regression of g with weights w if and only if g∗ is isotonic and g∗ minimizes

∑

y∈Y
[g(y)− f(y)]2w(y) (5.1)
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in the class of all isotonic function f on Y . Thus, it is quite obvious to expect the isotonic regression in

form of the weighted average
∑

y∈Y w(y)g(y)∑
y∈Y w(y)

in order to satisfy the minimization problem (5.1). The similar result also hold in the case of antitonic

regression. The exact formula for the iso(anti)tonic regression cannot be derived. However, there is a

graphical interpretation for the solution which will be explained later on. Since in this manuscript we will

deal mostly with antitonic regression, we will only concentrate on the term antitonic regression.

To visualize the solution of antitonic regression, consider a simple ordered set Y mentioned above. The

plot of the points

Pj = (Wj , Gj), P0 = (0, 0), j = 1, 2, . . . , n

where

Gj =
j∑

i=1

w(yj)g(yj) and Wj =
j∑

i=1

w(yj), j = 1, 2, . . . , n (5.2)

in the Cartesian plane constitutes a cumulative sum diagram (CSD) of the given function g with weights

w. The slope of the points Pj−1 and Pj , j = 1, 2, . . . , n is simply g(x). The antitonic regression of g is

given by the slope of the LCM of the CSD.
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Figure 5.1: The CSD and LCM

5.2 The MLE for the Baseline Hazard Under Order Restriction

Now, we want to estimate the baseline hazard function through the MLE. In the end, it turns out that the

likelihood maximization problem is an antitonic regression problem as explained in Section 5.1. The idea is

to mimic the derivation of the isotonic estimator which is introduced in [16] with the antitonic estimator.

Recall that the total likelihood function of the Cox model is given by equation (2.13). By inserting the

relation (2.5), we obtain the following expression for the Cox’s likelihood.

`(h0,β) =
n∏

i=1

[h(ti, zi,β)]δi [exp(−H(ti, zi,β)] (5.3)
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We want to rewrite the likelihood (5.3) in the ordered survival times. For that purpose we use the convention

that all censored observations are censored at the preceding uncensored failure times. This convention has

been explained in Chapter 2. By the convention, if we have n ordered follow-up time, whenever we have

censored follow-up times between subsequent survival times, they will be shifted back to the preceding

survival time. As a consequence, we have a constant hazard between the subsequent survival times.

Suppose the ordered distinct survival times are denoted as t(1) < t(2) < · · · < t(k) and there are di

subjects fail at t(i) and ri subjects which are censored. Firstly, we focus on the first term in (5.3). The

censored subjects (with δi = 0) turns the first term into 1. The baseline hazard at time t(i) is h0(t(i)), thus

for di subjects who fail at this particular time, h0(t(i)) is their baseline hazard. The uncensored subjects

(δi = 1)then contributes to the following expression

hdi0 (t(i)) exp(s′iβ)

with si is the sum of covariates for the subjects which fail at time t(i).

Now,we focus on the second term in (5.3). The cumulative hazard for the Cox model is formulated

as H0(ti) exp(z′iβ). Since the cumulative baseline hazard at time t(i) is just an integration of the baseline

hazard from 0 to time t(i), all subjects which have the follow-up time at time t(i) will have the same

cumulative baseline hazard, which is H0(t(i)). Thus, the second form can be reformulated as follows.

exp



−H0(t(i))

∑

l∈H(t(i))

exp(z′lβ)



 = exp



−

∫ t(i)

0
h0(u)du

∑

l∈H(t(i))

exp(z′lβ)



 ,

with H(t(i)) is the label for all subjects who have follow-up time at t(i), either censored or uncensored.

Then, the formula for the Cox’s likelihood in terms of the ordered distinct survival times is as follows.

`(h0,β) =
k∏

i=1

hdi0 (t(i)) exp(s′iβ) exp



−

∫ t(i)

0
h0(u)du

∑

l∈H(t(i))

exp(z′lβ)



 (5.4)

By fixing β as known parameters, the MLE for h0(t(i)) cannot be obtain directly by maximizing this

likelihood. This is due to the baseline hazard values which can be chosen infinitely large over a small

interval. One way to avoid this problem is by assuming that the baseline hazard values are constant for

each interval. We choose a subclass of decreasing hazard which is bounded above (say, by M) and show

that there is a hazard function that could maximize (5.4).

Since we already assume that the baseline hazard which maximize the likelihood (5.4) are in the subclass

of decreasing hazard, the hazard should be in step function.

h1 ≥ h2 ≥ . . . ≥ hk > 0, hi = h0(t(i)).

Thus, the likelihood in (5.4) can be reformulated as

`(h0,β) =
k∏

i=1

hdii exp(s′iβ) exp



−

i∑

j=1

hj(t(j+1) − t(j))
∑

l∈H(t(i))

exp(z′lβ)





By rearranging the the following term

−
i∑

j=1

hj(t(j+1) − t(j))
∑

l∈H(t(i))

exp(z′lβ) =
k−1∑

j=1

hj
(
t(j+1) − t(j)

) ∑

l∈R(t(i+1))

exp(z′lβ)
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we obtain the following likelihood.

`(h0,β) =
k∏

i=1

hdi0 (t(i)) exp(s′iβ) exp



−

k−1∑

j=1

hj
(
t(j) − t(j−1)

) ∑

l∈R(t(i+1))

exp(z′lβ)





The corresponding log-likelihood becomes

L(h0,β) =
k−1∑

i=1

di log hi + s′iβ − hi(t(i+1) − t(i))
∑

l∈R(ti+1)

exp(z′lβ)

Since the maximization does not depend on the second term, the problem is reduced into maximization

the following form

L =
k−1∑

i=1

(g(i) log hi − hi)w(i), (5.5)

subject to

h1 ≥ h2 ≥ . . . ≥ hk > 0

where the function g(i) and w(i) in equation (5.5) are as follows

g(i) =
di(

t(i+1) − t(i)
)∑

l∈R(t(i+1))
exp(z′lβ)

and w(i) =
(
t(i+1) − t(i)

) ∑

l∈R(t(i+1))

exp(z′lβ) (5.6)

The maximization problem (5.5) has similar form as maximization of the likelihood over monotone hazard

introduced in [9] Section 7.4. Theorem 1.5.7 in [9] guarantees that the solution of this maximum likelihood

exist. One way to obtain the solution is by forming the cumulative sum diagram of Pj = (Wj , Gj), j =

1, 2, . . . , n as defined in Section 5.1 with the corresponding w(j) and g(j) are defined in (5.6). The left

hand slope of the LCM of this CSD is the solution of (5.5). This solution is the MLE of the decreasing

baseline hazard.

5.3 The MLE of Baseline Hazard Effect on the Parameters of the Cox
Model

As we did in Chapter 4, we want to find the regression coefficients and the baseline hazard which maximize

the total likelihood function in the Cox model. By incorporating this MLE of the baseline hazard, we want

to investigate the distribution of the resulting baseline hazard and the regression coefficients in Cox model.

In separate sections we will discuss the differences between this estimator and the traditional one.

By this MLE of the baseline hazard, we can assert that for every particular regression coefficient we

can always find a baseline hazard which maximize the total likelihood of Cox model with the restriction

that the hazard is decreasing. In order to obtain these estimates, we use the scheme which is illustrated

in Figure 5.2. By choosing a certain parametric distribution for the survival and censoring variable, we

then generate a Cox dataset with a fixed regression coefficient (as before, we set this regression coefficient

β = 1). For simplicity, we use only one covariate which can take either of two values (0 and 1). Applying

partial likelihood estimation for the regression coefficient, we obtain a value of this estimator, say ĥ0. We

fix this value and maximize the likelihood over all possible β. From this step, we obtain a baseline hazard
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Figure 5.2: The Schemes for MLE of the Baseline Hazard

estimate. By fixing this baseline hazard estimate in the log-likelihood and maximize it over all possible

β, we obtain the maximizing β. We repeat this procedure until the likelihood converges. We did this

procedure for 1000 times using the three shapes of Weibull distribution as in Chapter 4. The procedure is

also applied to the Weibull distribution which is based on the ICTUS dataset. In each iteration, the sample

size equals 2000 we use the stopping criteria for the iteration to be the subsequent likelihood is smaller

than 10−20.

5.4 Effects on the Baseline Hazard

In this section, we do simulations to investigate the MLE consistency in estimating the baseline hazard.

We use again several types of the Weibull distribution with a decreasing hazard as explained in Chapter

4. As we did in Chapter 4, the quality of this estimator was assessed using the bias, variance and mean

squared error at several points. As a global measure, the mean integrated square error is used.

The distribution comparison between the baseline hazards in strong concave which are obtained by

using the MLE and the Breslow estimator are illustrated in Figure 5.3. We can see that the MLE has

a closer distance to the true baseline hazard than the Breslow estimator. We could also compare their

performance numerically with the measures as listed in Table 5.1. Near zero, the Breslow estimator and

the MLE show relatively similar performance. As it has been explained in Chapter 4, this is also the

consequence of rounding up the follow-up time to the nearest integer. As time increases, we see that the

MLE performance is much better than the Breslow estimator. The MISE also confirms that overall, the

distance between the MLE estimator is closer to the true hazard compared to the Breslow estimator.

The illustration of the comparisons for other types of Weibull distribution can be seen in Figure B.1

and Figure B.2 in Appendix B. The numerical comparisons are listed from Table 5.2 to Table 5.4. In all
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Figure 5.3: The MLE (Top Left) and the Larger Version (Top Right) and Breslow (Bottom) Estimator for the Baseline
Hazard in Strong Concave Case

Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -3.41E-01 4.81E-06 1.16E-01 -3.15E-01 2.08E-05 9.91E-02
0.1 -5.43E-02 4.81E-06 2.95E-03 -2.80E-02 2.08E-05 8.07E-04
1 -5.01E-03 2.67E-06 2.77E-05 8.40E-04 5.37E-06 6.07E-06
5 -6.33E-04 1.04E-06 1.44E-06 1.09E-04 6.81E-07 6.92E-07

10 -2.03E-04 7.33E-07 7.73E-07 4.56E-05 2.14E-07 2.15E-07
20 -5.69E-05 4.76E-07 4.79E-07 1.41E-05 7.24E-08 7.25E-08
50 2.15E-05 2.75E-07 2.76E-07 3.72E-06 2.22E-08 2.22E-08
75 -3.88E-06 1.87E-07 1.87E-07 1.34E-06 1.11E-08 1.11E-08

100 3.02E-06 1.54E-07 1.54E-07 2.25E-06 8.16E-09 8.16E-09
125 1.72E-05 1.42E-07 1.42E-07 -8.16E-07 7.46E-09 7.46E-09
150 2.23E-05 1.62E-07 1.62E-07 -3.92E-06 7.47E-09 7.48E-09
175 3.68E-05 1.24E-07 1.25E-07 -2.02E-05 8.33E-09 8.73E-09
190 1.83E-04 2.30E-07 2.63E-07 -1.50E-05 7.75E-09 7.96E-09
200 4.62E-04 6.60E-07 8.72E-07 -4.46E-06 7.71E-09 7.72E-09
210 6.28E-04 1.15E-06 1.55E-06 5.32E-06 7.71E-09 7.73E-09

MISE.hat MISE.tilde
4.11E-04 3.50E-04

Table 5.1: The Numerical Comparisons Between the Breslow Estimator (hat) and the MLE (tilde) in Strong Concave
Case

cases of Weibull distributions used in this investigation, the MLE is preferable. It has smaller variance than

the Breslow. In global measures, we also see that the MLE gives a smaller distance to the true hazard.

Note that the MISE for the MLE of the strong concave case and the ICTUS-based Weibull are relatively in

similar order as the Breslow estimator. This suggests that in both cases, the Breslow estimate has already

a similar shape to the MLE. Even in this case, MLE is still preferable due to its smaller variance.
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Figure 5.4: Pointwise Distribution of the Baseline Hazard in Strong Concave Case
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Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -6.97E-03 9.90E-07 4.96E-05 -7.07E-03 4.21E-07 5.04E-05
0.1 -2.52E-03 9.90E-07 7.35E-06 -2.62E-03 4.21E-07 7.28E-06
1 -5.37E-04 8.18E-07 1.11E-06 -1.98E-04 3.58E-07 3.97E-07
5 -1.05E-04 6.85E-07 6.96E-07 5.74E-05 1.53E-07 1.56E-07

10 -6.30E-05 6.22E-07 6.25E-07 3.73E-05 9.81E-08 9.94E-08
20 -4.12E-06 5.65E-07 5.64E-07 1.88E-05 5.26E-08 5.29E-08
50 -6.67E-06 5.41E-07 5.41E-07 7.76E-06 2.45E-08 2.45E-08
75 1.11E-05 6.20E-07 6.19E-07 7.55E-06 1.93E-08 1.94E-08

100 -4.84E-05 5.46E-07 5.48E-07 -2.07E-06 1.68E-08 1.68E-08
125 5.40E-06 5.68E-07 5.67E-07 -7.23E-06 1.56E-08 1.57E-08
150 2.65E-05 7.24E-07 7.24E-07 -2.37E-05 1.78E-08 1.83E-08
175 1.47E-05 7.98E-07 7.98E-07 -6.34E-05 2.60E-08 3.00E-08
190 1.12E-05 7.96E-07 7.95E-07 -1.35E-04 4.39E-08 6.21E-08
200 1.29E-04 1.07E-06 1.08E-06 -2.05E-04 5.81E-08 1.00E-07
210 9.00E-04 2.17E-06 2.97E-06 -2.09E-04 5.56E-08 9.91E-08

MISE.hat MISE.tilde
1.33E-04 9.72E-06

Table 5.2: The Numerical Comparisons Between the Breslow Estimator (hat) and the MLE (tilde) in Less Concave Case

Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 6.33E-05 4.32E-07 4.35E-07 2.01E-04 5.86E-08 9.89E-08
0.1 6.33E-05 4.32E-07 4.35E-07 2.01E-04 5.86E-08 9.89E-08
1 1.82E-05 3.67E-07 3.67E-07 1.95E-04 5.68E-08 9.48E-08
5 1.79E-05 4.17E-07 4.17E-07 1.21E-04 2.95E-08 4.41E-08

10 -2.09E-05 4.18E-07 4.18E-07 8.47E-05 2.23E-08 2.95E-08
20 -1.09E-06 4.93E-07 4.93E-07 5.57E-05 1.92E-08 2.22E-08
50 -2.00E-05 5.62E-07 5.62E-07 1.55E-05 1.53E-08 1.55E-08
75 1.42E-05 6.95E-07 6.95E-07 -5.52E-06 1.44E-08 1.44E-08

100 3.14E-05 8.09E-07 8.10E-07 -2.31E-05 1.47E-08 1.52E-08
125 2.32E-05 8.52E-07 8.52E-07 -4.59E-05 1.53E-08 1.74E-08
150 2.72E-05 1.09E-06 1.09E-06 -7.97E-05 1.83E-08 2.47E-08
175 9.17E-06 1.47E-06 1.47E-06 -1.44E-04 3.35E-08 5.43E-08
190 6.28E-07 1.70E-06 1.69E-06 -2.14E-04 5.14E-08 9.70E-08
200 9.74E-05 1.62E-06 1.63E-06 -3.19E-04 8.56E-08 1.87E-07
210 1.16E-03 4.29E-06 5.62E-06 -3.63E-04 8.72E-08 2.19E-07

MISE.hat MISE.tilde
1.85E-04 7.56E-06

Table 5.3: The Numerical Comparisons Between the Breslow Estimator (hat) and the MLE (tilde) in Linear Case
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Points Bias.hat Var.hat MSE.hat Bias.tilde Var.tilde MSE.tilde
0.01 -1.60E-02 5.81E-07 2.56E-04 -1.53E-02 6.15E-07 2.34E-04
0.1 -3.88E-03 5.81E-07 1.56E-05 -3.18E-03 6.15E-07 1.07E-05
10 -3.32E-05 1.43E-07 1.44E-07 9.07E-06 2.53E-08 2.54E-08
50 -8.63E-07 4.62E-08 4.62E-08 1.53E-06 3.02E-09 3.02E-09

100 -1.30E-06 2.91E-08 2.91E-08 -9.64E-07 1.32E-09 1.31E-09
200 2.67E-06 1.76E-08 1.76E-08 -8.45E-08 5.58E-10 5.57E-10
300 -2.82E-06 1.22E-08 1.22E-08 3.30E-07 3.66E-10 3.66E-10
400 -5.93E-07 1.18E-08 1.18E-08 -1.21E-07 2.32E-10 2.31E-10
500 -5.23E-06 9.00E-09 9.02E-09 1.71E-07 1.77E-10 1.77E-10

1000 -1.26E-06 6.23E-09 6.23E-09 -6.60E-07 8.18E-11 8.22E-11
1200 2.96E-06 7.17E-09 7.17E-09 -3.68E-07 6.76E-11 6.77E-11
1500 -2.29E-06 3.73E-09 3.73E-09 -1.15E-06 6.95E-11 7.08E-11
1800 5.66E-05 1.64E-08 1.96E-08 -1.85E-05 1.56E-10 4.99E-10
1825 5.69E-05 1.64E-08 1.96E-08 -1.82E-05 1.56E-10 4.87E-10

MISE.hat MISE.tilde
2.36E-05 3.67E-06

Table 5.4: The Numerical Comparisons Between the Breslow Estimator (hat) and the MLE (tilde) in ICTUS-Based
Weibull

5.5 Effect on the Regression Coefficient

In Section 4.6.1, we investigated the estimate the regression coefficient by inserting the true hazard. We

have seen that in this case, the estimate for the regression coefficient has a smaller variance than the partial

likelihood estimator. Now, that we already derived a consistent estimator for the baseline hazard, we would

like to assess its performance on estimating the regression coefficient via log-likelihood maximization. For

this purpose we use the scheme illustrated in Figure 5.2.

As before, we want to investigate the performance of the MLE in estimating the regression coefficient

in several Weibull distribution with decreasing hazard. We first generate the so-called Weibull-Cox dataset.

Afterwards, we maximize the partial likelihood to obtain the estimate for the regression coefficient β̂. We

use this value to maximize the log-likelihood over all possible decreasing hazard. We then do the iteration

of maximum likelihood which is illustrated in Figure 5.2. The resulting distribution for the regression

coefficient based on 1000 iterations can be seen in Table 5.5 and Figure 5.5.

For all types of Weibull distribution with decreasing hazard, we see that the regression coefficients

Type β̂ β̃

ICTUS-based mean 1.0005 0.9542
sd 0.0945 0.0960

Strong Concave mean 1.0015 0.9922
sd 0.0603 0.0600

Less Concave mean 1.0051 0.9896
sd 0.0620 0.0611

Linear mean 0.9987 0.9696
sd 0.0599 0.0576

Table 5.5: The Distribution for The Estimated Coefficient Regression using the MLE for the Baseline Hazard
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Figure 5.5: The Estimated Coefficient Regression Distribution Using the MLE for the Baseline Hazard

which are obtained by maximizing the log-likelihood function with the baseline hazard estimated by the

MLE, have a distribution which is similar to partial likelihood estimator. From this point, we see that

incorporating the shape of the baseline hazard in the sense that this baseline hazard is the MLE yields

a better estimate than using the LCM. But still, in terms of their standard deviation, the MLE for the

baseline hazard gives an estimate with a standard deviation which differs slightly from the partial likelihood

estimator.

5.6 Application on the ICTUS Dataset

In the previous sections, we have investigated the performance of the MLE for the baseline hazard in

estimating the baseline hazard and the regression coefficient in the Cox model. In conclusion, we have

a better estimator for the parameters in Cox model in the sense that those estimators simultaneously

maximizing the full likelihood. In this section, we want to estimate the parameters in the Cox model

for the ICTUS data. As in Chapter 4, we use the Cox model which involves 5 significant covariates and

Treatment. Applying the scheme in Figure 5.2 above gives the baseline hazard and all regression coefficient

which maximizes the log-likelihood. We set the stopping criterion as before. It turns out that in 242

iterations, this procedure converges and the regression coefficient values for several iterations are listed in

Table 5.6.

The first row in Table 5.6 shows all regression coefficient which were obtained from the partial likelihood

estimator. We see that in the end, the change in all regression coefficient are not as big as we found in the

procedure in Chapter 4. Figure 5.6 illustrates the log-likelihood values for every iteration and the change

in estimated coefficient for Treatment covariate. The change in other covariates can be seen in Appendix

C. We see that in this way, we have an increasing log-likelihood values for each iterations which suggests

that our procedure is going on the right way.

The comparison of the Breslow estimator (before iteration) and the MLE in the last iteration are given

in the level of baseline hazard and the cumulative baseline hazard (see Figure 5.7). An interesting point

here is that actually in the first iteration, the MLE for the baseline hazard looks similar with the LCM in
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Iteration Treat Age BMIhi Hypl Dbet Mi.H
1 0.0588 0.0425 -0.3445 0.3643 0.7155 0.5238
2 0.0362 0.0430 -0.3035 0.3273 0.6806 0.5175
3 0.0368 0.0432 -0.3029 0.3292 0.6798 0.5159
4 0.0380 0.0434 -0.3023 0.3293 0.6802 0.5175
5 0.0398 0.0436 -0.2968 0.3312 0.6807 0.5174
6 0.0390 0.0439 -0.3002 0.3311 0.6791 0.5148
...

...
...

...
...

...
...

240 0.0678 0.0558 -0.2497 0.3705 0.6569 0.4987
241 0.0678 0.0558 -0.2497 0.3705 0.6569 0.4987
242 0.0678 0.0558 -0.2497 0.3705 0.6569 0.4987

Table 5.6: The Change in Regression Coefficients in ICTUS Dataset due to Implementation of MLE Iterations
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Figure 5.6: The Change in Estimated Treatment Coefficient (Left) and the Log-Likelihood Values in Each Iteration
(Right)
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Figure 5.7: Comparison Between the Breslow Estimator and MLE (Left)in the Baseline Hazard Level; (Right) in the
Cumulative Baseline Hazard Level
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Chapter 4. In the end of the iteration, the MLE procedure gives an estimate for the cumulative baseline

hazard which is close to the Breslow estimate. In Figure 5.8, we also illustrates the cumulative hazard

curve for both treatment groups in median risk score at the first iteration and in the last iteration. This

concludes that MLE for the baseline hazard is preferable than the LCM in estimating the parameters in

Cox model especially in the case where we restrict the baseline hazard to be monotone.
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Figure 5.8: (Left:) The Comparison Between the Breslow Estimator and the MLE in the First Iteration at Median Risk
Score. (Right:) The MLE in the Last Iteration at Median Risk Score

5.7 Summary

In this section, we investigated the effect of another shape constrained estimator (MLE for the baseline

hazard) in estimating the Cox parameters. Our main purpose is to find a better estimate for the regression

coefficient. In Chapter 4, we have seen that LCM-based estimator performs better in estimating the baseline

hazard, but not in estimating the regression coefficient. In the end, we see that by applying this MLE for the

baseline hazard, we obtain an estimate for the regression coefficient which has similar variance as the partial

likelihood estimator. This concludes that even we have a maximum likelihood estimator that incorporates

the information about the shape of the baseline hazard, we still could not improve the estimate for the

regression coefficient.
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Chapter 6

Conclusion

The purpose of this thesis can be divided into two main subjects. First, we want to test whether estimating

the hazard of patients with myocardial infarction is nonincreasing. The second purpose is to investigate

the effect of applying a shape constrained estimator to a semiparametric model. These issues are closely

related with the medical perspective. For the traditional estimate, either the Kaplan-Meier estimator or the

Breslow estimator, there is no assumption regarding the shape of the hazard curve. While from a biological

perspective, the hazard is decreasing. As introduced in [10], we have an estimator for a decreasing hazard.

This estimator is reasonable to estimate the decreasing hazard in ICTUS dataset as confirmed by the

statistical test in Chapter 3. Assuming that this shape constraint on the hazard is valid, we investigated

the advantages and disadvantages of this estimator, especially in the Cox model. We investigated the

effect in estimating the parameters in the Cox model, the regression coefficient and the baseline hazard.

The LCM gives a better estimate for the Cox’s baseline hazard. By means of simulation, we investigate

pointwise distribution as well as a global measure. Both of these measures confirm that the LCM estimate

for the baseline hazard gives a smaller distance to the true hazard than the Breslow estimator. The

regression coefficient in the Cox model represents the importance of the covariates. We aim to investigate

whether incorporating the knowledge of a decreasing hazard would yield a better estimate for the regression

coefficient. In Chapter 4, we see that this shape contrained estimator which is obtained by the derivative

of the LCM does not improve the estimation. It is even getting worse in the extreme case, such as a linear

cumulative hazard.

Since applying the LCM does not give a better estimate for the regression coefficient, we use another

method introduced in [16] to estimate the baseline hazard. In principle this estimator is the MLE for

the shape-restricted baseline hazard. We insert this estimator to find the maximum likelihood estimate

for the regression coefficient. In comparison with the LCM, this method gives a better estimate for the

regression coefficient. But still the standard deviation of this estimator are similar with the partial likelihood

estimator. This concludes that partial likelihood is still the best way to estimate the regression coefficient

of Cox model.

We conclude that based on the investigations in this manuscript, the MLE is still preferable in estimating

the Cox parameters than the LCM. If we compare the performance of the MLE and LCM in estimating the

baseline hazard for all distribution with decreasing hazard, we see that the MLE performs better than the

LCM (see the boxplots in Appendix A for the LCM and Appendix B for the MLE). Near zero, the MLE

gives an estimate for the baseline hazard with smaller variance than the LCM. Also, we notice that the

right-skewness of LCM at these points are relatively similar to the Breslow estimate. Another important
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comparison can be found in the ICTUS dataset. The MLE iteration procedure converges to the maximum

values and the corresponding parameters are close to the traditional estimator while this is not the case in

the LCM-based estimator.
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Appendix A

The LCM for the Baseline Hazard in
Several Weibull Distributions
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Figure A.1: The LCM (Left) and the Breslow (Right) Estimate of the Baseline Hazard in the Less Concave Cumulative
Hazard
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Figure A.2: The LCM (Left) the Breslow (Right) Estimate of the Baseline Hazard in the Linear Cumulative Hazard
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Figure A.3: Pointwise Distribution Comparison of the Baseline Hazard in Strong Concave Case
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Figure A.4: Pointwise Distribution Comparison of the Baseline Hazard in Less Concave Case
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Figure A.5: Pointwise Distribution Comparison of the Baseline Hazard in Linear Case
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Appendix B

The MLE for the Baseline Hazard in
Several Weibull Distributions
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Figure B.1: The MLE (Left) and Breslow (Right) Estimator for the Baseline Hazard in Less Concave Case
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Figure B.2: The MLE (Left) and Breslow (Right) Estimator for the Baseline Hazard in Linear Case
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Figure B.3: The MLE (Left) and Breslow (Right) Estimator for the Baseline Hazard in ICTUS-Based Weibull Case
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Figure B.4: Pointwise Distribution of the Baseline Hazard in ICTUS-Based Weibull Case
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Figure B.5: Pointwise Distribution of the Baseline Hazard in Less Concave Case
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Figure B.6: Pointwise Distribution of the Baseline Hazard in Linear Case
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Appendix C

Comparison Between LCM and MLE
Performance in the ICTUS Dataset
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Figure C.1: The Cumulative Baseline Hazard Estimate Using the LCM (Left) and Using the MLE (Right) at the First
and Last Iteration
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Figure C.2: The Baseline Hazard Estimate Using the LCM (Left) and Using the MLE (Right) at the First and Last
Iteration
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Figure C.3: The Changes in the Significant Regression Coefficient Estimates of the ICTUS Dataset
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