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Abstract

EVP and TriMedia are embedded application processors
targeted at mobile communication and multimedia do-
mains. Both architectures originate from Philips Semi-
conductors and are currently developed by ST-Ericsson
and NXP Semiconductors, respectively. Both proces-
sors have a VLIW architecture with an exposed pipeline.
Such architectures impose different requirements on a
compiler than the majority of existing GCC targets,
which are scalar or superscalar machines with inter-
locked pipelines. First, the exposed pipeline organiza-
tion requires a compiler to schedule operations such that
all data and resource hazards are avoided. Second, a
compiler for a VLIW machine has to provide stronger
capabilities for discovering and exposing the instruction
level parallelism (ILP), as it can not rely on the hard-
ware ILP mechanisms employed in superscalar proces-
sors. We have ported GCC to EVP and TriMedia and
provided extensions to support code generation for an
exposed pipeline VLIW. To increase the amount of ex-
ploitable ILP, we have also enhanced the current GCC
mechanisms such as loop unrolling and the alias anal-
ysis. The ports were benchmarked against the existing
production compilers and encouraging results in terms
of cycle counts and code size have been achieved.

1 Introduction

ST-Ericsson and NXP Semiconductors develop embed-
dedsystems-on-chip (SoCs)providing signal or media
processing functionality for the products like mobile
phones, TVs and set-top boxes. Such an SoC consists
of several components. Thehost processorexecutes the
control tasks such as running embedded OS, providing
user interface, etc. Typically, the host processor is a gen-

eral purpose processor (GPP) based on an existing archi-
tecture, such as ARM. It controls the rest of the system
and dispatches the tasks to one or severalapplication
processors (APs)and, optionally, hardware accelerators.
An application processor provides the core functionality
of an SoC and runs the most compute intensive tasks.
The Embedded Vector Processor (EVP)[1, 2] and the
members ofTriMedia processor family [3, 4] are ex-
amples of such processors. An application processor is
required to provide very high performance/power ratio
on a limited set of algorithms from a certain media or
signal-processing domain. For example, for the inner
receiver of the LTE standard, at which EVP is targeted,
an application processor should provide 13 GOPS with
a power budget of less than 400 mW.

The algorithms mapped on APs exhibit significant
amounts parallelism which facilitate the achievement
of performance/power targets.Data-level parallelism
(DLP) is commonly exploited by means of vector in-
structions. For example, EVP uses dedicated 256-bit
vector registers, while TriMedia provides vector oper-
ations on existing 32-bit scalar registers. We remark
that contemporary GPPs take the same approach in ex-
ploiting the DLP, introducing short-vector instructions,
e.g. AltiVec and SSE ISA extensions. For exploiting
the instruction-level parallelism (ILP), however, the ap-
proaches used in GPPs and in embedded APs differ sig-
nificantly. Due to need for legacy code support, binary
code compatibility is often a must for a GPP. Therefore,
such a processor accepts sequential code and exploits
the ILP by means of hardware mechanisms which dis-
cover the independent instructions in the program flow
and issue/execute them in parallel. Compiler for such a
processor plays a limited role in exposing the ILP, leav-
ing the main responsibility to the hardware.

This approach would be too costly for an embedded pro-
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cessor in terms of area and power required for the hard-
ware ILP mechanisms. At the same time the algorithms
in the embedded domain exhibit more regularity and al-
low deeper static analysis, while the binary compati-
bility is not necessarily required. This motivated wide
adoption of theVLIW concept for exploiting the ILP in
embedded processors. In aVLIW system, the compiler
is responsible to discover independent operations and
pack them into aVery Long Instruction Word (VLIW).
EVP and TriMedia addressed in this paper have a VLIW
architecture.

Currently, EVP and TriMedia are supported by tool
chains based on proprietary compilers [5, 6]. However,
rapid development of GCC and introduction of new fea-
tures such as auto-vectorization motivated us to inves-
tigate its capabilities with respect to these processors.
This has lead to the setup of two study projects in which
we ported GCC to EVP and TriMedia and investigated
its advantages and limitations, particularly with respect
to exposed VLIW architecture support. In this paper we
present the experience gained during these projects, the
techniques we employed to target GCC, and some of
the achieved results. The goal of the projects has been
to generate correct and efficient VLIW code using GCC,
and, desirably, to achieve the level of performance com-
parable with our existing production compilers.

The main steps in VLIW compilation aresequential
code generationandscheduling. The first step consists
of converting the input code into a sequence of opera-
tions supported by the target. It corresponds to the usual
compilation flow for scalar or superscalar processors
and is performed in the same way. During the second
step, the individual operations are packed together into
VLIW instructions such that the data dependencies and
resource constraints are satisfied. This often requires
insertion of nops within and between VLIW instruc-
tions. In Section 2 we present the EVP and TriMedia
VLIW architectures and describe the scheduling task for
them in more detail. Section 3 presents how we adapted
GCC to schedule correct VLIW code, presenting the use
of the GCC’s internal DFA-based scheduler for basic
blocks, and two custom-made algorithms that we have
developed: theinter-basic block schedulingpass guar-
anteeing that the scheduling constraints across the basic
block boundaries are satisfied, and the resource-aware
branch delay slot scheduler.

To achieve performance on a VLIW target, it is crucial
that sufficient parallelism is exposed to the scheduling

pass. In Section 4 we present several common VLIW
compilation techniques used for this purpose and our
GCC implementation of them. The techniques include
loop unrolling precisely controlled by the unroll pragma
and the address-based alias analysis. We remark that
these techniques are applicable and can be beneficial for
any processor that exploits ILP. In Section 5 we present
the results which were achieved by implementing the
aforementioned methods and report the performance of
our GCC ports. Section 6 summarizes our conclusions.

2 Architectural Overview

The instruction set architecture (ISA)defines the com-
piler’s (programmer’s) view of a processor and its re-
sources. The level of detail with which a processor
is represented in an ISA can vary considerably. For
the ISAs commonly used in general-purpose proces-
sors, this level is rather low, describing the registers, the
memory and its addressing modes, and the instructions.
The processor pipeline details are hidden from the com-
piler, which facilitates binary compatibility of different
processors implementing the same ISA. When, for ex-
ample, the pipeline depth, the instruction latencies, or
the number of instructions that can be issued in parallel
change in a new generation of a processor, old binaries
can be executed without recompilation. This motivates
the use of such ISAs in GPPs. We remark, however, that
in this case the processor is responsible for the correct
execution of the code. To achieve this, the processor
contains a number ofinterlocks, which control the flow
of instructions and data through the processor pipeline.
An interlock is a piece of hardware which detects if an
instruction at given pipeline stage can proceed to the
next stage without causingdata hazardsandstructural
hazards[10] (also referred asresource conflicts). If this
is not the case, the interlock hardware stalls (a part of)
the processor pipeline till all hazards are resolved.

For VLIW processors in the embedded domain, binary
compatibility is less of an issue, while the hardware
complexity should be minimized. Therefore, a VLIW
ISA employed there usually exposes more details of the
processor pipeline organization to the compiler. Typi-
cally, the number of operations which can be encoded
in a single VLIW instruction (referred as the number of
issue slots) and the latencies of the operations are visi-
ble to the compiler. The responsibility of its scheduling
pass is to bundle together the operations that can be ex-
ecuted in parallel without causing data or pipeline haz-
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ards. The unoccupied issues slots in a VLIW instruction
are padded withnops. The scheduler attempts to place
the data-dependent operations in different instructions at
sufficient distance from each other to avoid the data haz-
ards. Similarly, it tries to schedule at sufficient distance
the operations that occupy the same pipeline resource in
order to avoid resource hazards. A VLIW machine of-
ten lacks (most of the) interlocks. The effect of a hard-
ware interlock on the flow of instructions through the
pipeline is similar to an insertion of anop instruction
in the program code. In case interlocks are absent, nop
instructions should be explicitly inserted in the code by
the compiler or the programmer. For a VLIW machine
with a non-interlocked pipeline, the scheduling pass is
responsible for inserting the nops between the VLIW
instructions, so that all the hazards are avoided.

EVP is an 11-slot VLIW with a 9-stage non-interlocked
pipeline. A single EVP VLIW instruction can issue in
parallel up to 5 scalar operations and up to 6 vector oper-
ations. The individual operations can be predicated. We
remark that in order to avoid excessive number of ports
on the general-purpose register file (RF), EVP contains
separatepointer (ptr ) andoffset (ofs ) register files
for address computations, and thepredicateRF. Vector
operations typically work on 16× 256 bit general pur-
pose vector registers from thevr RF. Due to register file
port considerations mentioned above, the vector regis-
ters meant for specific type of vectors are contained in
separate vector RFs, such asvector shuffle patternRF
vsp , vector maskRF vm, and several others. EVP is
targeted at baseband signal processing, and one of its
salient characteristics is the combination of the VLIW
and vector processing with DSP features such as zero-
overhead loops and circular addressing modes. For fur-
ther details on EVP architecture, the reader is referred
to [1].

TriMedia is a classic VLIW architecture which has been
successfully implemented in several application proces-
sors targeted at multimedia domain. Its baseline instruc-
tion set consists of RISC-like operations working on
a large register file consisting of 128× 32 bit general-
purpose registers (GPRs). These registers are used for
arithmetic and memory operations, as well as for ad-
dress calculations and predication. In addition to the
typical RISC operations, TriMedia contains a rich set
of special-purpose operations for media processing (re-
ferred ascustomops). Typically, they operate on GPRs
seeing them as vector registers containing short vectors

consisting of four 8-bit or two 16-bit elements. Recent
generations provide customops operating on two con-
catenated GPRs, thereby increasing the vector length.
Most of TriMedia processors are non-interlocked 5-slot
VLIW [4].

3 Scheduling for an Exposed Pipeline VLIW
Using GCC

GCC is primarily developed for processors with inter-
locked pipelines. Therefore, by default, GCC produces
sequential assembly code and does not perform pack-
ing of VLIW instructions and insertion of nops, except
for the nops in the branch delay slots. One way to pro-
vide a GCC-based compiler for an exposed VLIW pro-
cessor would be by reusing the scheduler of an exist-
ing compiler for the machine and passing GCC’s out-
put through it. We have taken this approach for TriMe-
dia, where GCC produces sequential code1 for TriMedia
ISA, which is scheduled afterwards by the separatetm-
schedscheduler [14].

Such an approach for EVP was not feasible because its
scheduler was integrated in the proprietary CoSy-based
compilation toolchain [5] and not available standalone.
However, we were able to schedule correct and effi-
cient VLIW code for EVP using the GCC framework
by employing the internal GCC’s scheduler and provid-
ing some additional functionality, as presented in the re-
maining part of this section.

3.1 DFA-Based VLIW Scheduling of Basic Blocks

Interlocked processors do not require instruction
scheduling. Appropriate scheduling, however, facili-
tates reduction in the number of runtime interlocks and
thereby improves performance. For this reason, GCC
includes an instruction scheduler, which is implemented
in the haifa-schedpass. The main algorithm performs
top-down priority-based list scheduling on abasic block
(BB) of RTL instructions and is implemented in the
schedule_block function. At each cycle the algo-
rithm attempts to schedule instructions which areready,
i.e., the instructions of which the data dependencies
have been satisfied. In case a nonzero number of instruc-
tions have been scheduled at the current cycle, the mode
of the first one is set toTImode . If no instruction have

1This, essentially, is the code for a 1-slot interlocked machine
with TriMedia ISA.
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been scheduled, we insert in the code a new RTL in-
struction(const_int 0) which represents a nop, and
tag it with theTImode too. The nop insertion is done by
the target hookTARGET_SCHED_REORDER2, which is
called after an instruction is issued. It compares the cur-
rent cycle with the cycle at which the previous instruc-
tion has been scheduled. If the cycles are not consecu-
tive, it inserts an appropriate number of nops. Since the
mode of all other instructions isVOIDmode, TImode
tagged instructions represent the borders of VLIW in-
structions. In the final stage of the compiler we scan
the instruction sequence using theTImode tags to emit
assembly delimiters representing VLIW packing.

When the last predecessor of an instructionA is sched-
uled, the algorithm guarantees that no data hazards will
happen by sufficiently delaying the cycle whenA will
become ready. The resource hazards are avoided when
the algorithm attempts to schedule a ready instruction.
It queries theDeterministic Finite Automaton (DFA)
based pipeline hazard recognizer[9], which determines
if scheduling an instruction at the current cycle will
cause a resource conflict. In such a case the instruc-
tion is queued for the number of cycles needed to re-
solve the conflict. Pipeline resource descriptions used
by DFA can be also utilized to specify other scheduling
constraints. For example, the EVP instruction format
provides only a single opcode field for a 32-bitlong im-
mediate. Therefore, only a single operation in a VLIW
instruction can have such an a immediate operand, while
severalshort immediateoperands fitting in a narrower
range are allowed. To satisfy this restriction, we specify
a special pipeline resource representing the long imme-
diate field in the opcode, and reserve it when scheduling
an operation which requires such an immediate.

For EVP, due to a large number of issue slots and dif-
ferent instruction classes the generation time of a single
DFA scheduling automaton became impractically large.
In order to cut down the build time of the compiler
the automaton was split into two separate automata: all
functional units belonging to the scalar and address cal-
culation parts of the processor are represented in the
automatonscalar , and all vector functional units –
in the vector automaton. This split resulted in two
much smaller automata2. The majority of the instruc-
tions reserve resources from a single automaton. The

2The combined number of states and arcs in the two automata is
roughly 37000 and 250000, respectively. For a unified automaton,
these numbers would be at least a 1000 times larger.

only exception are certain vector operations that reserve
resources from thevector automaton, as well as the
long immediate unit which belongs to thescalar au-
tomaton.

3.2 Inter-Basic Block Scheduler

The scheduling algorithm described above is applied to
all basic blocks in the program’sControl Flow Graph
(CFG). For each blockB, it guarantees that the gener-
ated schedule will satisfy the constraints imposed by the
operations belonging toB. This, however, is not suffi-
cient for correct code generation. Suppose basic blockA
is an immediate predecessor ofB in the CFG. Consider
an operationopi ∈ A which is scheduled, for example,
in the last cycle ofA. Let opj ∈ B be an operation which
uses the result ofopi . To satisfy the true data depen-
dency,opj should be scheduled not earlier than at cycle
latency(opi)−1 (cycle counts in a schedule starts from
zero). When schedulingB, the algorithm implemented
in schedule_block is not aware of cross-block depen-
dencies and might assignopj to an earlier cycle, thereby
creating an incorrect schedule. To fix such mistakes, we
have implemented an additionalinter-basic blocksched-
uler.

For each basic blockB, this function iterates over all of
its instructions and checks whether dependent instruc-
tions located in all of the predecessor BBs are scheduled
at sufficient distance. To find data dependent instruc-
tions from two blocksA andB, we make use of the GCC
data structures which keep the live-in/live-out registers.
Once two dependent instructionsopi ∈ A andopj ∈ B
are detected, the algorithm calls the backend-specific
functioninsn_latency( opi , opj ) which returns the
number of cycles that have to be executed to satisfy the
dependency. In case the distance between the instruc-
tions is too small, we insert an appropriate number of
extra nops at the top ofB.

Similarly to dependencies, resource reservations related
to the scheduling of an instruction in one basic block
may impose additional scheduling constraints for in-
structions in the subsequent blocks. To account for
such effects, we provided an additional DFA-based al-
gorithm which guarantees that all the resource conflicts
are avoided. A similar mechanism have been also em-
ployed in our custom-made branch delay slot scheduler
which is described below. Both schedulers operate on
RTL code which has been already scheduled in GCC
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sched2 pass, and take place in the customizedreorg

pass executed shortly before the final assembly emit
pass3.

3.3 Branch Delay Slot Scheduling

The existing GCC Branch Delay Scheduler (BDS) takes
into account only the program data-dependencies and
ignores the resource constraints, assuming that they will
be ensured by hardware interlocks. To produce correct
VLIW code, we disabled the original BDS pass and,
initially, filled all delay slots with nops. However, the
number of delay slots in EVP is quite large (5 or 7)
and the associated performance penalty was consider-
able (e.g.≈ −20% for EEMBC-telecom). This made
evident that a BDS pass is crucial to achieve satisfac-
tory performance. The existing GCC BDS is a sophis-
ticated algorithm and making it aware of resource con-
straints would be a rather challenging task. Hence, we
decided to implement a proprietary resource-aware BDS
for EVP. The algorithm iteratively attempts to move the
branch up within the block. It starts with the last in-
struction preceding the branch and attempts to move
the branch above it. This is equivalent to moving the
instruction into a delay slot below the branch. If the
move was successful, the algorithm tries to move the
branch one more cycle up, proceeding in this was as
long as moving is possible and there are non-filled delay
slots. Each of aforementioned moves should not violate
existing dependencies and should not create resource
conflicts. The first condition is satisfied automatically:
suppose instructiony depends on instructionx andy is
moved into branch delay slot. Essentially, it means that
the branch is inserted betweenx andy, thereby increas-
ing the distance between them by 1 and satisfying the
dependency.

Avoiding resource hazards requires more care. Suppose
opi is scheduled at cyclec1 and uses resourcer at cycle
mandopj is scheduled at cyclec2 and uses resourcer at
cyclen. Consequently, resourcer is used byopi at cycle
c1 +m and byopj at cyclec2 +n. The GCC instruction
scheduler ensures thatc1+m 6= c2+n. Suppose thatopj
is moved into a delay slot. As a consequence resourcer
is used byopj at cyclec1 +n+1. In such case our BDS
has to ensure thatc1 +m 6= c2 +n+1. We solve this by

3The delay slot scheduler can introduce new nops thereby cre-
ating resource conflicts, as we illustrated above. Therefore, in our
reorg pass it precedes the the inter-block scheduler, which bears
the responsibility for guaranteeing the correctness of the final sched-
ule.

making use of the GCC instruction scheduler; we artifi-
cially impose thatopi uses the resourcer at cyclen−1
as well. For example in case of EVP thediv operation
which was using the register file write port at cycle 10,
while thealu operations use it at cycle 3. Therefore,
we impose thatdiv uses the write port also at cycle 9.
For an arbitrary processor resource utilization such so-
lution may become too costly. However, for EVP we
had to employ this technique only for a limited num-
ber of instructions. According to our benchmarking the
change in the resource utilization of those instructions
didn’t induce performance penalty.

3.4 Scheduling semantically equivalent operations

To achieve higher performance, EVP allows scheduling
of some operations on different functional units. This
allows several such operations to be scheduled in par-
allel in a single VLIW instruction. For example, mov-
ing data between two general purpose registers can be
issued on two different functional unitsc_salu_1 or
c_slsu_s1 . These moves have different assembly syn-
tax, move andmove_slsu , and can be issued in paral-
lel. Implementing this functionality using DFA caused
the complications described below.

GCC emits an assembly mnemonic for an RTL instruc-
tion based solely on the set of operand constraints which
it satisfies (recorded in GCC’swhich_alternative

variable) and is agnostic of the instruction’s DFA re-
source reservations. The two move instructions men-
tioned above have the same semantics and, therefore,
their RTL templates and the operand constraints are
identical. Hence, GCC has no means of differentiating
them and emitting different mnemonics. To resolve this
issue we have taken the following approach.

For an RTL instruction which can be issued on differ-
ent functional units (with different mnemonics), dur-
ing the sched2 pass we use the DFA to determine
the functional unit on which the instruction was sched-
uled, and append to it an additional RTL pattern of
the form: (clobber (match_operand N "const_

int")) , where the valueN of the clobber operand is
used to encode the information about the selected unit.
This information stays attached to the instruction rtx till
the final stage of compilation, allowing in this way that
the proper assembly mnemonic is emitted. For example,
the 16-bit move instruction can be issued on SALU and
SLSU unit, and assembly generation is done as follows:
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(define_insn "movhi_salu_or_slsu"
[(set (match_operand:HI 0 "reg_operand" "=d")

(match_operand:HI 1 "reg_operand" " d"))
(clobber (match_operand 2 "const_operand" "=i"))]
""
"*

{
switch (INTVAL(operands[2]))
{

case 22: return \"move %0, %1 %)%#\";
case 33: return \"move_slsu %0, %1 %)%#\";
default: break;

}
fatal_insn(\"something went wrong...\", insn);

}"
)

In order to query the DFA automaton about scheduling
decisions and to record this information in the clobber
rtx, we have implemented theevp_automaton_query

function and tied it to the target hookTARGET_SCHED_

DFA_NEW_CYCLE, which is called everytime a new in-
struction is about to be scheduled. The main param-
eter of the function isready rtx which represents the
current instruction considered for scheduling. We illus-
trate the functionality ofevp_automaton_query us-
ing the aforementioned 16-bit register move instruction
as an example. In this caseready is RTL instruction of
the form(set (reg:HI ri) (reg:HI rj)) . First,
we create two temporary RTL instructions,insn1 and
insn2 which belong toc_salu_1 and c_slsu_s1

classes, respectively. Then we attempt to schedule each
of these instructions at the current DFA state, by calling
the internal_state_transition() function. Sup-
pose scheduling ofinsn2 was successful. This fact is
memorized by assigning the variablekey=33 . After-
wards we trick the compiler into thinking thatready

should be scheduled according to thec_slsu_s1 pat-
tern as shown below:

int uid = INSN_UID(ready);
dfa_insn_codes[uid] = internal_dfa_insn_code(insn2);

The DFA scheduler uses the arraydfa_insn_codes[]

(indexed by the instruction numberuid ) in order to
store for each instruction its instruction class (and,
hence, its resource reservations). The array elements
represent the internal DFA codes of instruction classes
which can be obtained by callinginternal_dfa_

insn_code() . By assigning thedfa_insn_codes[]

for ready as shown in the code fragment above, we es-
sentially force the compiler to think that the resource
reservations ofready are as of thec_slsu_s1 class,
and to schedule it correspondingly.

The final action performed byevp_automaton_

query just before exit is the attachment of
(clobber (const_int 33)) rtx to the original
RTL pattern ofready . Upon exit from the function,
the DFA scheduler will attempt to scheduleready . It
will look up its instruction class indfa_insn_codes ,
finding that it is c_slsu_s1 , and will successfully
schedule it.

We remark that in a case where all the alternatives
contain resources from a single automaton, a different
implementation ofevp_automaton_query would be
possible, based on the existing DFA facility which al-
lows an instruction class to specify several scheduling
alternatives using the OR construct (e.g."c_salu_

1 | c_slsu_s1" ). Such an implementation, however,
would lead to creation of a considerably larger DFA then
in our method. Furthermore, in case the original DFA
has been split into two or more automata (e.g.,scalar

andvector DFAs in case of EVP) and an instruction
contains scheduling alternatives which belong to differ-
ent automata, the DFA scheduler would not treat it cor-
rectly4. Our implementation, however, can treat such
scheduling constraints properly.

4 Increasing ILP Exposed to the Scheduler

Majority of existing high-performance CPUs supported
by GCC are superscalar processors, in which hardware
mechanisms are employed to expose and exploit ILP.
For example, branch prediction and speculation allow
the processor’s fetch and decode engines to run ahead of
the execution and buffer decoded instructions from dif-
ferent basic blocks. In this way, the ILP across the basic
block boundaries is exposed to the execution hardware
which exploits it by issuing each cycle multiple instruc-
tions from the buffer, usually out-of-order, and guaran-
tees that data dependencies and recourse constraints are
respected. Effectively, it performs run-time scheduling.
Hardware register renaming and dynamic memory dis-
ambiguation are often employed to remove false register
and memory dependencies, thereby increasing the ILP
and allowing more instructions to be issued in parallel.

For VLIW processors like EVP and TriMedia, the task
of exposing and exploiting the ILP is shifted to the

4We have brought this issue to the attention of Vladimir
Makarov, the developer and maintainer of DFA functionality. For
the details we refer an interested reader to a corresponding discus-
sion in the GCC mailing list.
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scheduling pass of the compiler. Specific architecture
features and compilation techniques are employed, al-
lowing the scheduler to statically carry out the tasks
which in superscalar processors are performed dynam-
ically by the ILP hardware. For example, in order to
remove the anti and output register dependencies, su-
perscalar processors dynamically rename the compiler
visible registers described in ISA to a larger set of hard-
ware registers. To achieve similar effect in TriMedia, a
much larger set of registers is provided directly in the
ISA, and the compiler statically renames the registers
that cause false dependencies.

The scheduler operates on a certainscheduling scope,
also referred asscheduling unit. This scope is usually
given in terms of basic blocks, and can range from a
single BB to the complete CFG. As the ILP available
in a single block is limited, superscalar processors em-
ploy branch prediction and speculation to discover the
ILP across the block boundaries. To achieve a similar
effect, scheduling for VLIW machines is performed on
multiblock scheduling units. For example, a TriMedia
scheduling unit is adecision tree (dtree), which is a CFG
subgraph with the single entry and multiple exits [14]5.

The task of a VLIW scheduler is to assign to each op-
erationop in the scheduling unit an integerc(op) ≥ 0,
which denotes the order of the VLIW bundle to which
it belongs. This integer is also the number of the cycle
(counted from the beginning of scheduling unit execu-
tion) at which the operation will be issued. The gen-
erated parallel code should preserve the semantics of
original program. To achieve this, the scheduler detects
data and control dependencies between the operations
and schedules them such that the dependencies are pre-
served.

The quality of the final schedule depends on two main
factors: the amount of ILP present in the scheduling unit
and the capability of the scheduling algorithm to extract
and utilize this parallelism. The latter factor constitutes
a complex subject for a standalone study which falls out-
side the scope of this paper. Therefore, the remaining
part of this section is dedicated to a number of tech-
niques which increase the amount of ILP and describes
how they were supported in our GCC ports for EVP and
TriMedia. Two approaches are commonly used to ex-
pose more ILP:

5We remark that GCC supportsExtended Basic Block (EBB)
scheduling units; an EBB is a rudimentary form of a superblock and
hence, different than a dtree.

• Scheduling scope increaseprovides the scheduler
with larger number of operations, and therefore in-
creases the chance to find the independent ones,
which can be executed in parallel.

• Reducing dependenciesbetween operations in-
creases the scheduling freedom thereby increasing
the chance to schedule them in parallel.

The enhancement to GCCloop-unrollingwhich allows
scheduling scope increase in a precisely controlled fash-
ion is presented in Section 4.1. The scheduling scope in
our port has been also increased by application of if-
conversion and tail duplication. For these passes, how-
ever, we employed the existing GCC implementations,
which have certain limitations. GCC tail duplication
pass, for example, applies the transformation relying on
internal compiler heuristics and does not provide direct
control to a programmer. Development of such func-
tionality would enhance this technique and constitutes
an interesting subject for the future work. Section 4.2
describes theaddress-based alias analysison the RTL
which we implemented in order to improve the existing
GCC memory disambiguation capabilities. Alias anal-
ysis allows static disambiguation of memory accesses
thereby reducing number of false dependencies between
them.

4.1 Controlled Loop Unrolling

Loop unrolling is a common code transformation which
replicates the loop body several times. It creates a larger
segment of non-loop code and, consequently, facilitates
creation of a larger scheduling scope. Additionally,
it decreases the number of updates of induction vari-
ables and the number of loop exit tests. GCC contains
two unrolling phases: the first one works at the Gim-
ple level and does total loop unrolling while the sec-
ond one operates at the RTL level and does partial un-
rolling. These phases did not completely suit our needs
and had the following limitations. The total loop un-
roll phase requires the iteration count to be a statically
known constant, which is not always the case. Further-
more, the code size penalty resulting from the total un-
roll can be unacceptable. Partial unrolling is more suit-
able for our purposes. However, the corresponding GCC
phase induces the unroll factor based on heuristics, and
can be controlled by the programmer only indirectly by
means of the following hooks:PARAM_MAX_AVERAGE_
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UNROLLED_INSNS,PARAM_MAX_UNROLL_TIMES, and
PARAM_MAX_UNROLL_TIMES. Despite using these fa-
cilities, we were not able to steer the compiler towards
achieving the optimal unroll factor for all the cases and,
consequently, observed significant performance penal-
ties on certain benchmarks. A TriMedia or EVP pro-
grammer chooses the unroll factor very carefully. In-
sufficient unrolling does not expose enough parallelism.
Excessive unrolling, on the other hand, leads to in-
creased code size and creates too much register pressure,
which results in spills and performance degradation. In
TrimMedia, the selected unroll factor is communicated
to the compiler by means of the unroll pragma of the fol-
lowing form: #pragma TCS_unroll n , wheren rep-
resents the unroll factor. This pragma is heavily utilized
for optimization of the production code.

As the support for such precisely controlled unrolling
was missing from GCC, we have added it in our back-
end. Initially, we have considered the GCC facility for
adding attributes which could have potentially being ex-
tended to support the unroll pragma. However, currently
the attributes can be only attached to functions and not
to the loops. Therefore, a different approach has been
taken, as described below. Instead of an attribute, we
attach to a loop a new special-purposeunroll RTL in-
struction which holds the unroll factor. During the RTL
unroll phase, we analyze each loop and, when present,
retrieve the associated unroll instruction. The unroll fac-
tor is extracted and applied to the loop, and the instruc-
tion is discarded.

The association between the pragma and the special
RTL instruction is realized as follows. First, we add a
new built-in function__unroll_pragma() , which has
a single integer parameter representing the unroll fac-
tor. Second, theREGISTER_TARGET_PRAGMAShook
is employed to introduce the new unroll pragma to the
compiler. Thetrimedia_unroll_pragma() func-
tion is tied to this hook and is called during parsing
each time when the pragma is encountered in the source
code. This function substitutes the pragma with a call to
__unroll_pragma() . Finally, during the RTL expan-
sion, the call to the builtin is substituted with the unroll
instruction RTL:
(define_insn "customop_unroll_pragma"

[(unspec_volatile:SI
[(match_operand:SI 0 "immediate_operand" "i")
] UNSPEC_unroll_pragma)

]
""
""

)

We remark that the instruction is declared asunspec_

volatile in order to avoid it being moved away from
the corresponding loop during the optimization passes.

4.2 Address-Based Alias Analysis on RTL

Alias analysis (AA) is a technique that allows to rec-
ognize if two pointers do not refer to the same address
(i.e., alias). Stronger alias analysis allows to reduce the
number of dependencies between memory operations in
a scheduling unit. This increases amount of ILP that
can be utilized and, potentially, leads to a shorter sched-
ule. Strong AA is particularly important for making
loop unrolling and software pipelining to be effective
on a VLIW machine. In this techniques, scheduling
scope consists of operations belonging to several loop
iterations. Consequently, memory operations from dif-
ferent iterations will be present in the scope. If AA is
weak, spurious dependencies will be created between
the memory operations. These dependencies limit the
scheduling freedom and the amount of cross-iteration
ILP that can be utilized.

GCC provides AA support at both the GIMPLE and the
RTL level. The Gimple AA has been introduced within
the Tree SSA infrastructure, while the RTL AA is due
to the old (before version 4.0) RTL-based infrastruc-
ture. The Gimple AA includestype-based analysisand
points-to analysis. Type-based analysis makes use of
the C language aliasing rules. It checks the pointer types
of two memory accesses and, in case they are different,
concludes that the accesses are disjoint6.

Points-to analysis (or pointer analysis), is a technique
that establishes to which variables or storage locations
an arbitrary pointer points to. The variables or storage
locations are united into sets, which afterwards are used
to disambiguate arbitrary pointers. Using the code frag-
ment below we illustrate the capabilities of the points-to
analysis.

int *p, *t;
int a[10], b[10], c[10];

if (d > 10)
p = b;

6Exceptions: 1) one may use a pointer or reference to a signed
type to access an object of unsigned type, or vice versa, 2) one can
use a pointer or reference with different const-ness or volatile-ness
than the object, and 3) one can use a pointer of type char or unsigned
char to access any object.
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else
p = c;

t = a;
for (int i = 0; i < d; i++)

*(t+i) = *(p+i);

Based on this analysis GCC correctly finds out thatp

points to the set{b,c} and t to the set{a}. As the
sets are disjoint, GCC concludes that the two pointers
do not alias. We remark that when points-to analysis
is employed for an unrolled loop, its capabilities are
limited. It will be able to disambiguate unrolled stores
(i.e., *(t+0),*(t+1)... ) from unrolled loads (i.e.,
*(p+0),*(p+1)... ). However, it will not be able to
disambiguate among different stores. As points-to anal-
ysis is performed at GIMPLE level, it can only be em-
ployed for the loop totally unrolled using the GCC un-
roll pass on the GIMPLE level.

In Section 4.1 we have presented why partial and pre-
cisely controlled loop unrolling on the RTL level is de-
sirable for a VLIW machine. After implementing this
functionality in our port, we have observed that the per-
formance gains were limited. The reason for this is
the weakness of existing AA on the RTL level. The
current RTL AA is mostly type-based and therefore,
can not disambiguate the stores*(t+0),*(t+1)...

from the loads*(p+0),*(p+1)... . Consequently, al-
though the loop gets unrolled, little or no cross iteration
ILP is extracted. The purpose of the work presented in
this section is to improve AA on RTL, so that the bene-
fits of RTL loop unrolling for VLIW scheduling can be
reaped7.

Improving the RTL AA can be done in many ways. One
option consists of improving the transfer of information
between Gimple and RTL. To achieve this, one has to
adapt the alias information model used by the two com-
piler representations: Gimple uses explicit representa-
tion in terms of points-to sets, while RTL is relies on
a query-based disambiguation, i.e., whenever two mem-
ory references are to be disambiguated, an alias problem
is formulated and solved. Propagation of AA informa-
tion from Gimple to RTL has been addressed in [12] and
implemented by a GCC patch and by a separate GCC
branch. We have tried both implementations but were
not able to obtain expected execution performance; in
fact we observed a small performance decrease. This

7Other RTL passes such as CSE, DSE, GCSE, and register al-
location make use of alias information calculated at RTL level and
would also benefit from more powerful AA.

could have been caused by the following reason. In or-
der to be effective for the case of partial loop unrolling
on the RTL level, next to propagating the alias infor-
mation from a GIMPLE representation (where the loop
has not yet been unrolled), the algorithm would have to
additionally disambiguate each newly introduced RTL
memory statement. Such functionality was missing in
the patch.

An alternative to propagating the alias information from
Gimple to RTL is to enhance the AA on the RTL level.
To achieve this we added flow-sensitiveaddress-based
alias analysisat the RTL level. Prior to our work, a
similar approach has been proposed in [13]. The corre-
sponding patch, however, has never been added to the
GCC mainline due to associated increase in compila-
tion time. Furthermore, this approach has the following
drawbacks:

1. The technique is based on the idea of representing
a memory address by means of anaddress descrip-
tor, which is a pair <I,Z>, where I is an operation
and Z is a mod-k residue set. An address descriptor
can keep track of only one operation (i.e., I). Due to
this limitation, this approach is not able to disam-
biguate addresses obtained by linear combinations
of values generated by more then one operation.

2. The technique extracts alias information across
loop iterations, which leads to a significant increase
in the compilation time. However, as pointed out
in [11], the GCC internal scheduler deals with
acyclic graph regions and, therefore, the extraction
of alias information across loop iteration is of no
use.

Our flow-sensitive address-based alias analysis over-
comes the aforementioned limitations allowing to dis-
ambiguated memory accesses present within the same
basic block. The analysis can be sketched as follows:
Suppose a memory access part of an operationopwhich
belongs to a basic blockBBs. The address of the mem-
ory access, is given by an original linear functionf . By
starting fromop and traversing in revers order theBBs

operations,f is composed with the linear expressions
representing dependent operations. In the end we ob-
tain a final linear function which represents the address
in terms of regs defined outside the BB. Afterwords,
the composition is continued over a number of control
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paths; for each such pathi a corresponding linear func-
tion fi being derived. Those control paths are obtained
as follows:

1. non-backedge paths:

Starting fromBBs compose in reverse order over
single predecessor blocks. Additionally we impose
the limitation that among those single predeces-
sor blocks at most one of them sources/sinks back-
edges. Once a BB with more more than one prede-
cessor is encountered, duplicatef , one for each of
the predecessors and continue for as long as single
predecessor basic blocks are encountered none of
those blocks sourcing/sinking back-edges.

2. backedge paths:

Starting fromBBs compose in reverse order over
single predecessor blocks. Once a BB with more
than one predecessor over incoming backedges is
encountered duplicatef , one for each of the prede-
cessors and continue for as long as single predeces-
sor without incoming/outgoing back-edges blocks
are encountered. Once a BB with more more than
one predecessor is encountered duplicatef , one for
each of the predecessors and continue for as long
as single predecessor basic blocks are encountered,
none of them sourcing/sinking back-edges nor the
originalBBs.

Once the linear functionsfi are derived for every mem-
ory accessop, two different accessesopm andopn from
the same BB can be disambiguated. The two operations
do not alias if:∀i, fi(opm)− f (opn) 6= 0.

Example Consider in Figure 1 a memory operation
that belongs to the basic blockE. As a result of our
CFG traversal 5 linear functions corresponding to 2
non-backedge and 3 backedge paths will be generated.
Those paths are as follows:

thenon-backedge pathsconsist of the following basic
blocks:{E,D,C,A,A1} and{E,D,C,B,B1}.

the backedge pathsconsist of the following basic
blocks:{E,D, I ,F}, {E,D, I ,G} and{E,D,H}.

A1 B1

H

BA

C

F G

E

D

I

back-edge back-edge

Figure 1: CFG traversal during alias analysis: with
red/blue you can see the non-backedge/backedge paths.

5 Experimental Results

The GCC ports for EVP and TriMedia have been com-
pared to the existing compilers supporting these proces-
sors. For TriMedia, ourtmGCCport has been compared
to the productiontmcccompiler which is a part of the
TriMedia Compilation System (TCS)[6]. In the TCS
toolchain, the core compilertmccgenerates the sequen-
tial code, and splits it into scheduling units, calleddeci-
sion trees (dtrees). The output oftmccis then passed to
a standalone VLIW schedulertmsched[14]. According
to the TCS convention,tmcc performs register alloca-
tion only for global registerswhich constitute a half of
the complete register file. Thetmschedscheduler per-
forms register allocation of the remaining 64local reg-
isters, peephole optimizations, and VLIW scheduling.
Scheduled code then goes through the standard assem-
bling and linking procedure to obtain the binary, which
is then simulated or run on the target hardware to obtain
the performance data. In order to generate scheduled
TriMedia code with GCC, we follow a similar approach.
Our tmGCCport acts as a core compiler generating se-
quential assembly, which is then formatted according
to tmschedrequirements, and passed to it for schedul-
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ing. After scheduling, the final binary is generated in
the same way as fortmcc.

We have experimented with a set of representative
benchmarks from the media/signal processing domain.
Our mediastonetestsuite contains audiocodecs (ac3,
mp3,dts), video algorithms (MPEG2, motion compensa-
tion), image processing kernels (color conversions and
filters), and the completeEEMBC telecomsuite. The
perf-baselinesuite contains several proprietary algo-
rithms for image and video improvement, such asup-
conversion, and custom implementation of MPEG-2 and
h264 video codecs. We remark that these are product
quality applications, where a significant part of the code
was hand optimized by programmers.

In an embedded system, the most important factors for
compiler evaluation are the performance and code size
of the generated code, while the compilation time is not
critical. Table 1 presents these metrics for the code pro-
duced using both GCC and the production compiler,
tmcc. For brevity, we report the results only for the
tm3271core. The results for thetm3260, tm5250and
tm3282were similar. In the table,tmGCC-oldrefers
to the prototype TriMedia port developed at Philips Re-
search earlier this decade. This prototype was not ma-
ture enough, lacking the ILP-enhancement features de-
scribed in Section 4. It was relying completely ontm-
schedfor ILP extraction and, essentially, can be seen as
a port to a single-issue processor with TriMedia ISA.
As depicted in the table, compared totmcc, tmGCC-
old exhibits severe performance degradations, 23.7%
and 39.7%, showing that a bare GCC port without spe-
cific VLIW support is not well-suited for TriMedia,
even when it is coupled to a mature VLIW scheduler.
We remark that in addition to ILP-enhancement tech-
niques,tmGCC-oldis missing support for some of the
addressing modes and for the new custom vector opera-
tions. This explains higher grade of degradation onperf-
baseline, as a large portion of its applications was man-
ually rewritten to utilize the new operations.

The numbers in the third column of the table represent
the results obtained withtmGCC-current, the current
port of GCC for TriMedia. We remark that in addition to
the presented techniques,tmGCC-currentcontains sup-
port for vector operations missing intmGCC-oldand
some enhancements to the GCC software pipelining and
if-conversion passes. These techniques are currently un-
der development by the TCS compiler team and are not
reported in this paper. The presented results show that

Testsuite tmGCC-old tmGCC-current tmcc
mediastone

cycles 123.7% 102.8% 100.0%
code size 100.3% 110.2% 100.0%

perf-baseline
cycles 139.7% 105.9% 100.0%

code size 99.9% 102.5% 100.0%

Table 1: Relative Performance of the GCC ports and the
production compiler for TriMedia.

implementing the ILP-enhancing features exposes more
ILP to tmsched, allowing it to dramatically improve the
performance of the scheduled code. The performance
gap with the mature production compiler is reduced to
just 2.8% onmediastoneand to 5.9% onperf-baseline.
However, the performance improvement for mediastone
is achieved at a cost of a 10% code size increase. We
suppose that the loop-unrolling in our applications could
have been too aggressive. The unroll factors in the
benchmarks were chosen by the programmers to pro-
vide best performance withtmcc. These factors could
be not optimal when compiling withtmGCC. Carefully
selecting these factors would, probably, resolve this is-
sue, but such work fell out of the scope of our study
project. We have also identified another source of po-
tential improvement for the GCC port. Over the years
of development, a large number of peephole optimiza-
tions has been introduced totmcc. Our GCC port lacks
the vast majority of these peepholes. We remark that
the GCC facilities for peephole optimizations have lim-
itations which do not allow all thetmcc peepholes to
be easily introduced. Namely, thepeephole2 pass of
GCC handles only adjacent operations. The operations
which are non-adjacent, but connected by a data de-
pendency can be handled by thecombinepass. This
pass, however, considers for optimizations only triples
of operations connected by data dependencies, such that
the dependence graph is linear. Allowing more generic
forms of graphs would be desirable and could increase
the power of peephole optimization pass of GCC.

Similarly to experiments reported above, we have com-
pared our GCC port for EVP with the current EVP pro-
duction compiler. We remark that, differently from Tri-
Media case, our EVP port performs also VLIW schedul-
ing. To achieve correct and efficient VLIW code gen-
eration, we have implemented the techniques presented
in Section 3. The comparisons were performed on the
standard benchmark for telecommunication industry,
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EEMBC-telecom[8] and encouraging results have been
obtained. Concerning our EVP GCC port (evpGCC), we
would like to report an interesting experiment related to
a comparative performance of compiler-optimized and
hand-optimized code. In embedded systems the qual-
ity of the application code directly affects the cost and
performance of the final product, thereby motivating
significant amount of optimization effort done by pro-
grammers. This is particularly true for the telecom-
munication domain where programming using assem-
bly or compiler intrinsics is still common. Although
such programming model is costly, the numbers pre-
sented below provide a reason for this approach and
motivation for improving the power of compiler tech-
nology. For our experiment we consider a 256-point
complex FFT algorithm. First, a standard C implemen-
tation from EEMBC-telecom is taken, and is compiled
usingevpGCC. Second, we compile the tailor-made ver-
sion of the algorithm version manually optimized for
EVP [7]. Both implementations are simulated using
the EVP simulator. The obtained results are depicted in
Table2, which shows that manual optimization provide
a performance improvement by a factor of 122×.

application standard FFT optimized FFT
FFT

cycles 121086 986
code size (bytes) 3512 4936

Table 2: Performance and Code size for 256-point com-
plex FFT.

A factor of 16 out of 122 can be explained by the inabil-
ity of GCC’s vectorizer to vectorize the FFT code. In
particular, the vector shuffle patterns employed in opti-
mized implementation are hard to be auto-generated by
the compiler. In fact, a factor significantly larger than
16 can be attributed to the absence of vectorization for
the following reason. In the optimized version, the FFT
butterfly data rearrangements are performed on the vec-
tor registers, whereas for the non-optimized code they
are done via memory. This requires excessive memory
traffic making the load/store unit a bottleneck. The dra-
matic performance gap suggests that, apart of vectoriza-
tion, a number of other compiler techniques were not
effective. We were able to identify several such cases.
First, we observed that on the standard code, loop un-
rolling has not been performed by GCC, while in the
optimized version the already vectorized loop body was
further unrolled manually 4 times. The presented exam-
ple, in our opinion, provides a challenging testcase for

compiler engineers and may allow them to identify the
weaknesses of existing optimizations.

6 Conclusions

The goal of the GCC porting projects presented in this
paper was to evaluate suitability of GCC for code gen-
eration for non-interlocked VLIW processors. Out con-
clusions can be summarized as follows.

First, the obtained results illustrate that GCC can be
used in a VLIW compilation toolchain, both as a core
compiler coupled to an external VLIW scheduler, and as
the complete solution performing both sequential code
generation and VLIW scheduling. For TriMedia, which
represents the former case, where our GCC port could
benefit from a mature VLIW scheduler, the results were
particularly encouraging, and the decision to produc-
tize ourtmGCCprototype has been taken. Second, we
have identified several areas where current GCC can
be strengthened to better support VLIW compilation.
Namely, GCC loop unrolling and alias analysis on the
RTL can be improved to increase the amount of ex-
posed ILP. Furthermore, DFA mechanisms in GCC have
limitations when handling processor with significant
number of instructions with several scheduling alterna-
tives. Finally, GCC facilities for peephole optimiza-
tions,peephole2_optimize andcombine have limi-
tations, alleviating which could improve performance of
both VLIW and non-VLIW targets.

In our ports we have developed partial solutions to some
of the identified issues. However, development and in-
tegration of general solutions in the GCC framework
will be of interest for the compiler engineers in the
embedded domain considering to use GCC as a com-
piler framework for their VLIW (or non-interlocked
pipelined) targets. In particular, our approach for in-
ter basic block scheduling and for resource-aware delay
slot scheduling can be improved.

In our opinion, some of the solutions implemented in the
EVP and TriMedia ports could be beneficial to a wider
range of GCC targets. First, the techniques which in-
crease the amount of exposed ILP, such as the controlled
loop unrolling and the addresses-based alias analysis
on the RTL level, could be beneficial for non-VLIW
processors that exploit ILP, e.g., superscalar or deeply
pipelined scalar processors. Second, the DFA-related
techniques presented in Section 3.4 allow dramatic re-
duction in the DFA size and generation time for the
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cases when significant number of target instructions
have multiple scheduling options and explosive growth
of DFA is observed. Furthermore, in case the origi-
nal DFA automaton for a processor has been factorized,
our approach allows correct scheduling of instructions
which contain alternatives from two different DFA au-
tomata.
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