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Abstract eral purpose processor (GPP) based on an existing archi-
tecture, such as ARM. It controls the rest of the system

EVP and TriMedia are embedded application processoi@Nd dispatches the tasks to one or sevapglication
targeted at mobile communication and multimedia doProcessors (APsjnd, optionally, hardware accelerators.
mains. Both architectures originate from Philips Semi-An application processor provides the core functionality
conductors and are currently developed by ST-Ericssofif @1 SOC and runs the most compute intensive tasks.
and NXP Semiconductors, respectively. Both proces] € Embedded Vector Processor (EVR) 2] and the
sors have a VLIW architecture with an exposed pipelineMembers offriMedia processor family [3, 4] are ex-
Such architectures impose different requirements on &MPles of such processors. An application processor is
compiler than the majority of existing GCC targets,requ'red to provide very high performance/power ratio
which are scalar or superscalar machines with inter@n @ limited set of algorithms from a certain media or
locked pipelines. First, the exposed pipeline organizaSignal-processing domain. For example, for the inner
tion requires a compiler to schedule operations such th&gceiver of the LTE standard, at which EVP is targeted,
all data and resource hazards are avoided. Second @) application processor should provide 13 GOPS with
compiler for a VLIW machine has to provide stronger @ POwer budget of less than 400 mW.

capabilities for discovering and exposing theinstructionrhe algorithms mapped on APs exhibit significant

level parallelism (ILP), as it can not rely on the hard-, 6 nts parallelism which facilitate the achievement
ware ILP mechanisms employed in superscalar procesy e rformance/power targetsData-level parallelism
sors. We have ported GCC to EVP and TriMedia and(DLP) is commonly exploited by means of vector in-

provided extensions to support code generation for aq,ctions. For example, EVP uses dedicated 256-bit
exposed pipeline VLIW. To increase the amount of eXyg40r registers, while TriMedia provides vector oper-

ploitable ILP, we have also enhanced the current GCGyiong on existing 32-bit scalar registers. We remark

mgchanlsms such as loop unrolling anc! the alias _an_a{hat contemporary GPPs take the same approach in ex-
ysis. The ports were benchmarked against the existing,iing the DLP, introducing short-vector instructions,

production compilers and encouraging results in termg ;= Ajtivec and SSE ISA extensions. For exploiting

of cycle counts and code size have been achieved. theinstruction-level parallelism (ILR)however, the ap-
proaches used in GPPs and in embedded APs differ sig-

1 Introduction nificantly. Due to need for legacy code support, binary
code compatibility is often a must for a GPP. Therefore,

. _ such a processor accepts sequential code and exploits
ST-Ericsson and NXP Semiconductors develop embeqhe ILP by means of hardware mechanisms which dis-

ded systems-on-chip (SoCpjoviding signal or media e the independent instructions in the program flow

processing functionality for the products like mobile ;4 jsse/execute them in parallel. Compiler for such a

phones, TVs and set-top boxes. Such an SoC consisiS, essor plays a limited role in exposing the ILP, leav-
of several components. Ti®st processoexecutes the ing the main responsibility to the hardware

control tasks such as running embedded OS, providing
user interface, etc. Typically, the host processor is a gerFhis approach would be too costly for an embedded pro-
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cessor in terms of area and power required for the hargass. In Section 4 we present several common VLIW
ware ILP mechanisms. At the same time the algorithmsompilation techniques used for this purpose and our
in the embedded domain exhibit more regularity and alGCC implementation of them. The techniques include
low deeper static analysis, while the binary compatiHoop unrolling precisely controlled by the unroll pragma
bility is not necessarily required. This motivated wideand the address-based alias analysis. We remark that
adoption of the/LIW concept for exploiting the ILP in these techniques are applicable and can be beneficial for
embedded processors. INVAIW system, the compiler any processor that exploits ILP. In Section 5 we present
is responsible to discover independent operations anithe results which were achieved by implementing the
pack them into a/ery Long Instruction Word (VLIW) aforementioned methods and report the performance of
EVP and TriMedia addressed in this paper have a VLIWbur GCC ports. Section 6 summarizes our conclusions.
architecture.

Currently, EVP and TriMedia are supported by tool2 Architectural Overview

chains based on proprietary compilers [5, 6]. However,

rapid development of GCC and introduction of new fea-1 Neinstruction set architecture (ISAjefines the com-

tures such as auto-vectorization motivated us to inved?ll€r's (programmer’s) view of a processor and its re-
tigate its capabilities with respect to these processor$ources. The level of detail with which a processor
This has lead to the setup of two study projects in whicHS "€Presented in an ISA can vary considerably. For
we ported GCC to EVP and TriMedia and investigatedN® !SAS commonly used in general-purpose proces-
its advantages and limitations, particularly with respecf0rS: this level is rather low, describing the registers, the
to exposed VLIW architecture support. In this paper wge€mory and its addressing modes, and the instructions.
present the experience gained during these projects, tH&'® Processor pipeline details are hidden from the com-
techniques we employed to target GCC, and some diiler, which facmtates plnary compatibility of different
the achieved results. The goal of the projects has bed0C€Ssors implementing the same ISA. When, for ex-
to generate correct and efficient VLIW code using GCC@MPIe, the pipeline depth, the instruction latencies, or

and, desirably, to achieve the level of performance comthe number of instructions that can be issued in parallel

parable with our existing production compilers. change in a new generation of a processor, old binaries
can be executed without recompilation. This motivates

The main steps in VLIW compilation argequential the use of such ISAs in GPPs. We remark, however, that
code generatiomndscheduling The first step consists in this case the processor is responsible for the correct
of converting the input code into a sequence of operaexecution of the code. To achieve this, the processor
tions supported by the target. It corresponds to the usugbntains a number ofiterlocks which control the flow
compilation flow for scalar or superscalar processor®sf instructions and data through the processor pipeline.
and is performed in the same way. During the secondn interlock is a piece of hardware which detects if an
step, the individual operations are packed together intmstruction at given pipeline stage can proceed to the
VLIW instructions such that the data dependencies andext stage without causingata hazardsandstructural
resource constraints are satisfied. This often requirdsazardg10] (also referred aresource conflicts If this
insertion of nopswithin and between VLIW instruc- is not the case, the interlock hardware stalls (a part of)
tions. In Section 2 we present the EVP and TriMediathe processor pipeline till all hazards are resolved.
VLIW architectures and describe the scheduling task for ) ) )
them in more detail. Section 3 presents how we adapteg®" VLIW processors in the embedded domain, binary
GCC to schedule correct VLIW code, presenting the us§°mpatibility is less of an issue, while the hardware
of the GCC's internal DFA-based scheduler for basicc@MPlexity should be minimized. Therefore, a VLIW
blocks, and two custom-made algorithms that we havé>A €émployed there usually exposes more details of the
developed: theénter-basic block schedulingass guar- Processor pipeline organization to the compiler. Typi-
anteeing that the scheduling constraints across the bagié!ly: the number of operations which can be encoded

block boundaries are satisfied, and the resource-awal® & Single VLIW instruction (referred as the number of
branch delay slot scheduler. issue slotsand the latencies of the operations are visi-

ble to the compiler. The responsibility of its scheduling
To achieve performance on a VLIW target, it is crucial pass is to bundle together the operations that can be ex-
that sufficient parallelism is exposed to the schedulingecuted in parallel without causing data or pipeline haz-
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ards. The unoccupied issues slots in a VLIW instructiorconsisting of four 8-bit or two 16-bit elements. Recent
are padded witmops The scheduler attempts to place generations provide customops operating on two con-
the data-dependent operations in different instructions atatenated GPRs, thereby increasing the vector length.
sufficient distance from each other to avoid the data hazviost of TriMedia processors are non-interlocked 5-slot
ards. Similarly, it tries to schedule at sufficient distanceVLIW [4].

the operations that occupy the same pipeline resource in

order to avoid resource hazards. A VLIW machine of-3 Scheduling for an Exposed Pipeline VLIW

ten lacks (most of the) interlocks. The effect of a hard- Using GCC

ware interlock on the flow of instructions through the

pipeline is similar to an insertion of mop instruction

in the program code. In case interlocks are absent, nagCC IS primarily developed for processors with inter-
instructions should be explicitly inserted in the code bylocked Pipelines. Therefore, by default, GCC produces

the compiler or the programmer. For a VLIW machineSeduéntial assembly code and does not perform pack-

with a non-interlocked pipeline, the scheduling pass id"9 Of VLIW instructions and insertion of nops, except
responsible for inserting the nops between the VLI

Wfor the nops in the branch delay slots. One way to pro-
instructions, so that all the hazards are avoided. vide a GCC-based compiler for an exposed VLIW pro-

cessor would be by reusing the scheduler of an exist-

EVP is an 11-slot VLIW with a 9-stage non-interlocked "9 compiler for the machine and passing GCC's out-
pipeline. A single EVP VLIW instruction can issue in Put through it. We have taken this approach for TriMe-
parallel up to 5 scalar operations and up to 6 vector opeflia: Where GCC produces sequential coltee TriMedia

ations. The individual operations can be predicated. w&>A Which is scheduled afterwards by the sepatate
remark that in order to avoid excessive number of port§chedscheduler [14].

on the general-purpose register file (RF), EVP containg,., an approach for EVP was not feasible because its

separatepointer (ptr ) andoffset (ofs ) register files  gopoqyler was integrated in the proprietary CoSy-based
for address computations, and ipedicateRF. Vector o mpijation toolchain [5] and not available standalone.

operations typically work on 1& 256 bit general pur- 1, ever we were able to schedule correct and effi-

pose vector registers from the RF. Due to register file cient VLIW code for EVP using the GCC framework
port considerations mentioned above, the vector regisﬁy employing the internal GCC's scheduler and provid-

ters meant for specific type of vectors are contained fhg some additional functionality, as presented in the re-
separate vector RFs, suchactor shuffle patteriRF

vsp, vector maskRF vm, and several others. EVP is

targeted at baseband signal processing, and one of its ) .

salient characteristics is the combination of the VLIWB"1 DFA-Based VLIW Scheduling of Basic Blocks
and vector processing with DSP features such as zero-

overhead loops and circular addressing modes. For futnterlocked processors do not require instruction

ther details on EVP architecture, the reader is referregcheduling. Appropriate scheduling, however, facili-
to [1]. tates reduction in the number of runtime interlocks and

thereby improves performance. For this reason, GCC
TriMedia is a classic VLIW architecture which has beenincludes an instruction scheduler, which is implemented
successfully implemented in several application procesh the haifa-schedpass. The main algorithm performs
sors targeted at multimedia domain. Its baseline instrudop-down priority-based list scheduling otbasic block
tion set consists of RISC-like operations working on(BB) of RTL instructions and is implemented in the
a large register file consisting of 12832 bit general- schedule_block  function. At each cycle the algo-
purpose registers (GPRs). These registers are used fdihm attempts to schedule instructions which e@dy,
arithmetic and memory operations, as well as for adi-e., the instructions of which the data dependencies
dress calculations and predication. In addition to théave been satisfied. In case a nonzero number of instruc-
typical RISC operations, TriMedia contains a rich settions have been scheduled at the current cycle, the mode
of special-purpose operations for media processing (redf the first one is set tdlmode . If no instruction have

ferred ascustomopp Typically, they operate on GPRS  ithjs, essentially, is the code for a 1-slot interlocked machine
seeing them as vector registers containing short vectokgth TriMedia ISA.

maining part of this section.
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been scheduled, we insert in the code a new RTL inenly exception are certain vector operations that reserve
struction(const_int 0) which represents a nop, and resources from theector automaton, as well as the
tag it with theTImode too. The nop insertion is done by long immediate unit which belongs to tkealar au-

the target hooTARGET_SCHED_REORDERghich is  tomaton.

called after an instruction is issued. It compares the cur-

rent cycle with the cycle at which the previous instruc-3 o |nter-Basic Block Scheduler

tion has been scheduled. If the cycles are not consecu-

tive, it inserts an appropriate number of nops. Since th
Ve, 1t ppropri . P ! erhe scheduling algorithm described above is applied to

mode of all other instructions OIDmode, TImode . .
& all basic blocks in the program&ontrol Flow Graph

tagged instructions represent the borders of VLIW in- .
structions. In the final stage of the compiler we scan(CFG)' For each blocl8, it guarantees that the gener-

the instruction sequence using fHnode tags to emit ated schedule will satisfy the constraints imposed by the

o . . operations belonging tB. This, however, is not suffi-
assembly delimiters representing VLIW packing. _ ) .
y P g P g cient for correct code generation. Suppose basic bock

When the last predecessor of an instructiois sched- 1S an immediate predecessoriin the CFG. Consider
uled, the algorithm guarantees that no data hazards wiin OPeratiorop € A which is scheduled, for example,
happen by sufficiently delaying the cycle whanwill in the last cycle of\. Letop; e_B be an operation which
become ready. The resource hazards are avoided wh¥f€s the result obp. To satisty the true data depen-
the algorithm attempts to schedule a ready instructiorl€NCY,0p;j should be scheduled not earlier than at cycle
It queries theDeterministic Finite Automaton (DFA) latency(op) —1 (cycle counts in a schedule starts from
based pipeline hazard recognizi, which determines  2€r0). When scheduling, the algorithm implemented

if scheduling an instruction at the current cycle will I schedule_block s notaware of cross-block depen-
cause a resource conflict. In such a case the instruélencies and might assigm to an earlier cycle, thereby
tion is queued for the number of cycles needed to recreating an incorrect schedule. To fix such mistakes, we

solve the conflict. Pipeline resource descriptions usefl2ve implemented an additionater-basic blocksched-
by DFA can be also utilized to specify other scheduling!/e"-

constraints. For example, the EVP instruction formatFor each basic blocB, this function iterates over all of

pro:j/!d;as O_Prl]y a?mgle OFCOdPT f'elld fora ??'mhgm\}'uwits instructions and checks whether dependent instruc-
mediate. theretore, only a single operation in a .tions located in all of the predecessor BBs are scheduled
instruction can have such an aimmediate operand, Wh'lgt sufficient distance. To find data dependent instruc-

severalshorltl |mrr;|ed_||_ate)|i§ rar:ﬁs f'tt'rt]g Itn a Narrower +ions from two blocksA andB, we make use of the GCC
range are allowed. To satisfy this restriction, we Spec'fydata structures which keep the live-in/live-out registers.

a special pipeline resource representing the long immeonce two dependent instructiong, € A andop; & B

diate field_inthe _opcode,.and reserve.itwher? schedulingre detected, the algorithm calls the backend-specific
an operation which requires such an immediate. functioninsn_latency( op,, op;) which returns the

For EVP, due to a large number of issue slots and dif_number of cycles that have to be executed to satisfy the

ferent instruction classes the generation time of asinglgependency. In case the distance between the instruc-

DFA scheduling automaton became impractically Iarge?Ions 'S too small, we insert an appropriate number of

In order to cut down the build time of the compiler extra nops at the top &.

the automaton was split into two separate automata: aljjmilarly to dependencies, resource reservations related
functional units belonging to the scalar and address cay, the scheduling of an instruction in one basic block
culation parts of the processor are represented in theay impose additional scheduling constraints for in-
automatonscalar , and all vector functional units — stryctions in the subsequent blocks. To account for
in the vector automaton. This split resulted in two g ;ch effects, we provided an additional DFA-based al-
much smaller automata The mapnty of the instruc- gorithm which guarantees that all the resource conflicts
tions reserve resources from a single automaton. Thge avoided. A similar mechanism have been also em-
2The combined number of states and arcs in the two automata iglo_yed_ In-our C_UStom_made branch delay slot scheduler
roughly 37000 and 250000, respectively. For a unified automatonVhich is described below. Both schedulers operate on
these numbers would be at least a 1000 times larger. RTL code which has been already scheduled in GCC




2008 GCC Developers’ Summit, DRAFT o 11

sched2 pass, and take place in the customizeag making use of the GCC instruction scheduler; we artifi-
pass executed shortly before the final assembly emdially impose thabp, uses the resourgeat cyclen—1
pass’. as well. For example in case of EVP tli operation
which was using the register file write port at cycle 10,
3.3 Branch Delay Slot Scheduling while thealu operations use it at cycle 3. Therefore,

- we impose thatliv uses the write port also at cycle 9.
The existing GCC Branch Delay Scheduler (BDS) take or an arbitrary processor resource utilization such so-

?nto account only the program data—dependencies an.l(lljjtion may become too costly. However, for EVP we
ignores the resource constraints, assuming that they er|1

be ensured by hardware interlocks. To produce correc[;[
VLIW code, we disabled the original BDS pass and
initially, filled all delay slots with nops. However, the
number of delay slots in EVP is quite large (5 or 7)
and the associated performance penalty was consider-

able (e.g.~ —20% for EEMBC-telecom). This made 3.4 Scheduling semantically equivalent operations
evident that a BDS pass is crucial to achieve satisfac-

tory performance. The existing GCC BDS is a sophis-To achieve higher performance, EVP allows scheduling
ticated algorithm and making it aware of resource conof some operations on different functional units. This
straints would be a rather challenging task. Hence, wallows several such operations to be scheduled in par-
decided to implement a proprietary resource-aware BD@&llel in a single VLIW instruction. For example, mov-
for EVP. The algorithm iteratively attempts to move theing data between two general purpose registers can be
branch up within the block. It starts with the last in- issued on two different functional units salu_1 or
struction preceding the branch and attempts to move_sIsu_s1 . These moves have different assembly syn-
the branch above it. This is equivalent to moving thetax, move andmove_slsu , and can be issued in paral-
instruction into a delay slot below the branch. If thelel. Implementing this functionality using DFA caused
move was successful, the algorithm tries to move theéhe complications described below.

branch one more cycle up, proceeding in this was as _ _ _

long as moving is possible and there are non-filled dela? CC emits an assembly mnemonic for an RTL instruc-
slots. Each of aforementioned moves should not violat&on based solely on the set of operand constraints which
existing dependencies and should not create resourdgsatisfies (recorded in GCCishich_alternative

conflicts. The first condition is satisfied automatically: variable) and is agnostic of the instruction’s DFA re-
suppose instructiog depends on instructionandy is ~ SOurce reservations. The two move instructions men-
moved into branch delay slot. Essentially, it means thationed above have the same semantics and, therefore,
the branch is inserted betwermndy, thereby increas- their RTL templates and the operand constraints are

ing the distance between them by 1 and satisfying thilentical. Hence, GCC has no means of differentiating
dependency. them and emitting different mnemonics. To resolve this

issue we have taken the following approach.
Avoiding resource hazards requires more care. Suppose . _ _ . )
op is scheduled at cycle, and uses resourceat cycle  FOr @n RTL instruction which can be issued on differ-
mandopy is scheduled at cycle» and uses resourceat ent functional units (with different mnemonics), dur-
cyclen. Consequently, resources used byop atcycle N9 the sched2 pass we use the DFA to determine
c1+mand byop; at cyclec, +n. The GCC instruction the functional unit on which the instruction was sched-
scheduler ensures that+m# c, +n. Suppose thaip, uled, and append to it an additional RTL pattern of
is moved into a delay slot. As a consequence resaurceth® form: (clobber (match_operand N “"const_

is used byop, at cyclec; +n+ 1. In such case our BDS INt)) . where the valua\ of the clobber operand is
has to ensure that - m+ ¢, +n-+ 1. We solve this by USed to encode the information about the selected unit.
This information stays attached to the instruction rtx till
°The delay S'OIfT_C:‘edU'ef can i”t"cidaceb”ew nops t?ereb_y créthe final stage of compilation, allowing in this way that
Feong  pass f pecedes the the nter blook scheculer winich beard1© PTOPE assembly mnemonic is emitted. For example,
the responsibility for guaranteeing the correctness of the final schedl® 16-bit move instruction can be issued on SALU and

ule. SLSU unit, and assembly generation is done as follows:

ad to employ this technique only for a limited num-

er of instructions. According to our benchmarking the
'change in the resource utilization of those instructions
didn’t induce performance penalty.
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(define_insn "movhi_salu_or_slsu” The final action performed byevp_automaton_

[(set (match_operand:HI 0 reg_operand” "=d") query just before exit is the attachment of
(match_operand:HI 1 "reg_operand d")) ) .

(clobber (match_operand 2 “"const_operand" "=i"))] (clobber (const _int 33)) rx to the Orlglnal

RTL pattern ofready . Upon exit from the function,
the DFA scheduler will attempt to scheduksady . It
switch (INTVAL(operands[2])) will look up its instruction class imifa_insn_codes

case 22: retum \"move %0, %1 960" finding that it isc_slsu_s1 , and will successfully

"y

case 33: return \"move_slsu %0, %1 %)%#\"; schedule it.
default: break;
Yoo . W We remark that in a case where all the alternatives
fatal_insn(\"something went wrong...\", insn); . . .
3 contain resources from a smgle automaton, a different
) implementation okevp_automaton_query ~ would be

possible, based on the existing DFA facility which al-
In order to query the DFA automaton about schedulindows an instruction class to specify several scheduling
decisions and to record this information in the clobberlternatives using the OR construct (e.gc_salu_
rtx, we have implemented theep_automaton_query 1| c_slsu_s1" ). Suchanimplementation, however,
function and tied it to the target hod®®RGET_SCHED_ would lead to creation of a considerably larger DFA then
DFA_NEW_CYCLBwhich is called everytime a new in- in our method. Furthermore, in case the original DFA
struction is about to be scheduled. The main paramhas been split into two or more automata (esgalar
eter of the function iseady rtx which represents the andvector DFAs in case of EVP) and an instruction
current instruction considered for scheduling. We illus-contains scheduling alternatives which belong to differ-
trate the functionality obvp_automaton_query ~ us-  €ntautomata, the DFA scheduler would not treat it cor-
ing the aforementioned 16-bit register move instructiorfectly’. Our implementation, however, can treat such
as an example. In this cassady is RTL instruction of ~Scheduling constraints properly.
the form(set (reg:HI ri) (reg:HI rj)) . First,
we create two temporary RTL instructiorissnl and 4
insn2  which belong toc_salu_1 and c_slsu_s1

classes, respectively. Then we attempt to schedule each . . _ .
of these instructions at the current DFA state, by callin R/Iajorlty of existing high-performance CPUs supported

theinternal_state_ transition() function. Sup- goy GCC_ are superscalar processors, in which har_dware
pose scheduling ahsn2 was successful. This fact is mechanisms are employed to expose and exploit ILP.

) o : i For example, branch prediction and speculation allow
memorized by assigning the variatkey=33 . After- , .
. S L the processor’s fetch and decode engines to run ahead of
wards we trick the compiler into thinking tha¢ady

. the execution and buffer decoded instructions from dif-
should be scheduled according to thalsu_s1 pat- ) : :
) ferent basic blocks. In this way, the ILP across the basic
tern as shown below: o .
block boundaries is exposed to the execution hardware
which exploits it by issuing each cycle multiple instruc-
tions from the buffer, usually out-of-order, and guaran-
tees that data dependencies and recourse constraints are
respected. Effectively, it performs run-time scheduling.
] X ) ) . Hardware register renaming and dynamic memory dis-
('ndeX?d by tt;]e_ instruction numbedd ) in olrder 0 ambiguation are often employed to remove false register
store or eac instruction |t.s instruction class (andand memory dependencies, thereby increasing the ILP
hence, its resource reservations). The array elemenig, j 5 1owing more instructions to be issued in parallel.
represent the internal DFA codes of instruction classes
which can be obtained by callingpternal_dfa_ For VLIW processors like EVP and TriMedia, the task
insn_code() . By assigning thelfa_insn_codes][] of exposing and exploiting the ILP is shifted to the
for ready as shown in the code fragment above, we es e ——— 0 the attenti ¢ Viadimi
. . . e have broug IS ISsue 10 e attenton O adimir
Semla”y force the compller to think that the res‘OurceMakarov, the developer and maintainer of DFA functionality. For

reservations ofeady are as of thec_slsu_s1 class, the details we refer an interested reader to a corresponding discus-
and to schedule it correspondingly. sion in the GCC mailing list.

Increasing ILP Exposed to the Scheduler

int uid = INSN_UID(ready);
dfa_insn_codes[uid] = internal_dfa_insn_code(insn2);

The DFA scheduler uses the arrify_insn_codes|]
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scheduling pass of the compiler. Specific architecture e Scheduling scope increasprovides the scheduler
features and compilation techniques are employed, al-  with larger number of operations, and therefore in-
lowing the scheduler to statically carry out the tasks creases the chance to find the independent ones,
which in superscalar processors are performed dynam-  which can be executed in parallel.

ically by the ILP hardware. For example, in order to _ . _ _
remove the anti and output register dependencies, su-® Reéducing dependenciedetween operations in-
perscalar processors dynamically rename the compiler ~ Ccréases the scheduling freedom thereby increasing
visible registers described in ISA to a larger set of hard-  the chance to schedule them in parallel.

ware registers. To achieve similar effect in TriMedia, a

much larger set of registers is provided directly in theThe enhancement to GOGop-unrollingwhich allows
ISA, and the compiler statically renames the registergcheduling scope increase in a precisely controlled fash-
that cause false dependencies. ion is presented in Section 4.1. The scheduling scope in
The scheduler operates on a certagfeduling scope our port. has been also_lnc.reased by application of if-
conversion and tail duplication. For these passes, how-

also referred ascheduling unit This scope is usually . . .
given in terms of basic blocks, and can range from gueh we employe_d the_eX|-st|ng GCC |mplemeqtat|_ons,
single BB to the complete CFG. As the ILP availabIeWh'Ch have certain I|m|_tat|ons. GCC tal|'dup|IC8..'[I0n
in a single block is limited, superscalar processors emPasS: for example, ap‘?"‘?s the transformation Te'y'”.g on
ploy branch prediction and speculation to discover thénternal compiler heuristics and does not provide direct

ILP across the block boundaries. To achieve a similaf‘:.OntrOI to a programmer. Development of such func-

effect, scheduling for VLIW machines is performed Ontloqallty WQUId enhance this technique and con.stltutes
. . . . ._an interesting subject for the future work. Section 4.2

multiblock scheduling units. For example, a TrlMedlaoI ibes thaddr based ali nalvais the RTL

scheduling unitis decision tree (dtreewhich is a CFG escribes thaddress-based alias analysm the

. ; . . which we implemented in order to improve the existin
subgraph with the single entry and multiple exits {14] GCC memorF;/ disambiguation capabﬁities Alias anagly-

The task of a VLIW scheduler is to assign to each opysis allows static disambiguation of memory accesses
erationop in the scheduling unit an integeftop) > 0,  thereby reducing number of false dependencies between
which denotes the order of the VLIW bundle to which them.

it belongs. This integer is also the number of the cycle

(counted from the beginning of scheduling unit execuy 1 controlled Loop Unrolling

tion) at which the operation will be issued. The gen-

erated parallel code should preserve the semantics of o _ _
original program. To achieve this, the scheduler detects@0P unrolling is a common code transformation which

data and control dependencies between the Operaﬂoﬁ%plicates the loop body several times. It creates a larger

and schedules them such that the dependencies are pp€gment of non-loop code and, consequently, facilitates
served. creation of a larger scheduling scope. Additionally,

it decreases the number of updates of induction vari-
The quality of the final schedule depends on two mairables and the number of loop exit tests. GCC contains
factors: the amount of ILP present in the scheduling unitwo unrolling phases: the first one works at the Gim-
and the capability of the scheduling algorithm to extractple level and does total loop unrolling while the sec-
and utilize this parallelism. The latter factor constitutesond one operates at the RTL level and does partial un-
a complex subject for a standalone study which falls outrolling. These phases did not completely suit our needs
side the scope of this paper. Therefore, the remainingnd had the following limitations. The total loop un-
part of this section is dedicated to a number of techroll phase requires the iteration count to be a statically
niques which increase the amount of ILP and describenown constant, which is not always the case. Further-
how they were supported in our GCC ports for EVP andnore, the code size penalty resulting from the total un-
TriMedia. Two approaches are commonly used to exroll can be unacceptable. Partial unrolling is more suit-
pose more ILP: able for our purposes. However, the corresponding GCC
5We remark that GCC supporBxtended Basic Block (EBB) phase induces the unroll factor based on heuristics, and

scheduling units; an EBB is a rudimentary form of a superblock and>@n be controlled by the programmer only indirectly by
hence, different than a dtree. means of the following hoOk®ARAM_MAX_AVERAGE _
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UNROLLED_INSNS,PARAM_MAX_UNROLL _TIME®d We remark that the instruction is declareduaspec_
PARAM_MAX_UNROLL_TIME®espite using these fa- volatile in order to avoid it being moved away from
cilities, we were not able to steer the compiler towardghe corresponding loop during the optimization passes.
achieving the optimal unroll factor for all the cases and,

consequently, observed significant performance penaj; , Address-Based Alias Analysis on RTL

ties on certain benchmarks. A TriMedia or EVP pro-

grammer chooses the unroll factor very carefully. In- . _ .

sufficient unrolling does not expose enough parallelism™/ias analysis (AA) is a technique that allows to rec-

Excessive unrolling, on the other hand, leads to inognize if two pointers do not refer to the same address

creased code size and creates too much register pressufé- alias). Stronger alias analysis allows to reduce the
which results in spills and performance degradation. if"umber of dependencies between memory operations in
TrimMedia, the selected unroll factor is communicated® Scheduling unit. - This increases amount of ILP that

to the compiler by means of the unroll pragma of the fol-can be utilized an.d, pote_ntlally, Igads to a shorter sghed-
lowing form: #pragma TCS_unroll n , wheren rep- ule. Strong AA is particularly important for making

resents the unroll factor. This pragma is heavily utilized©0P unrolling and software pipelining to be effective
for optimization of the production code. on a VLIW machine. In this techniques, scheduling

scope consists of operations belonging to several loop
As the support for such precisely controlled unrollingiterations. Consequently, memory operations from dif-
was missing from GCC, we have added it in our backferent iterations will be present in the scope. If AA is
end. Initially, we have considered the GCC facility for weak, spurious dependencies will be created between
adding attributes which could have potentially being exthe memory operations. These dependencies limit the

tended to support the unroll pragma. However, currentlgcheduling freedom and the amount of cross-iteration
the attributes can be only attached to functions and ngt_p that can be utilized.

to the loops. Therefore, a different approach has been

taken, as described below. Instead of an attribute, w&CC provides AA support at both the GIMPLE and the
attach to a loop a new special-purpas®oll RTL in-  RTL level. The Gimple AA has been introduced within
struction which holds the unroll factor. During the RTL the Tree SSA infrastructure, while the RTL AA is due
unroll phase, we analyze each loop and, when preserif the old (before version 4.0) RTL-based infrastruc-
retrieve the associated unroll instruction. The unroll faciure. The Gimple AA includetype-based analysisnd

tor is extracted and applied to the loop, and the instrucpoints-to analysis Type-based analysis makes use of
tion is discarded. the C language aliasing rules. It checks the pointer types

o of two memory accesses and, in case they are different,
The association between the pragma and the specighciudes that the accesses are difoint
RTL instruction is realized as follows. First, we add a

new built-in function__unroll_pragma()  ,whichhas Points-to analysis (or pointer analysis), is a technique
a single integer parameter representing the unroll facthat establishes to which variables or storage locations
tor. Second, th&REGISTER_TARGET_PRAGMA®OK  an arbitrary pointer points to. The variables or storage
is employed to introduce the new unroll pragma to theocations are united into sets, which afterwards are used
compiler. Thetrimedia_unroll_pragma() func-  to disambiguate arbitrary pointers. Using the code frag-
tion is tied to this hook and is called during parsingment below we illustrate the capabilities of the points-to
each time when the pragma is encountered in the souremalysis.
code. This function substitutes the pragma with a call to
__unroll_pragma() . Finally, during the RTL expan-

. e s . . int *p, *t;
sion, the call to the builtin is substituted with the unroll int af10], b10], c[105;
instruction RTL:

if (d > 10

(define_insn "customop_unroll_pragma" ( p = t))

[(unspec_volatile:SI ’
[(match_operand:SI 0 "immediate_operand” "I") 6Exceptions: 1) one may use a pointer or reference to a signed

]' UNSPEC_unroll_pragma) type to access an object of unsigned type, or vice versa, 2) one can

use a pointer or reference with different const-ness or volatile-ness
than the object, and 3) one can use a pointer of type char or unsigned
) char to access any object.
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else could have been caused by the following reason. In or-
p==0 der to be effective for the case of partial loop unrolling

t = a . . .
for (ﬁu =00 <d i+ on the RTL level, next to propagating the alias infor-
) = *(p+); mation from a GIMPLE representation (where the loop

has not yet been unrolled), the algorithm would have to
additionally disambiguate each newly introduced RTL

Based on this analysis GCC correctly finds out that ) ; S
memory statement. Such functionality was missing in

points to the sefb,c} andt to the set{a}. As the teh
sets are disjoint, GCC concludes that the two pointerghe pateh.

do not alias. We remark that when points-to analySis\, 4jternative to propagating the alias information from
is employed for an unrolled loop, its capabilities areGimpIe to RTL is to enhance the AA on the RTL level.
limited. It will be able to disambiguate unrolled stores 1, 4chieve this we added flow-sensitieddress-based
(i.e., *(t+0),*(t+1)... ) from unrolled loads (i.e., alias analysisat the RTL level. Prior to our work, a

*(p+0).*(p+1)... ). However, it will not be able 10 gjnijar approach has been proposed in [13]. The corre-

dlsamblguate among different stores. As points-to analéponding patch, however, has never been added to the
ysis is performed at GIMPLE level, it can only be M- Gcc mainline due to associated increase in compila-

ployed for the loop totally unrolled using the GCC un-yio, time. Furthermore, this approach has the following
roll pass on the GIMPLE level. drawbacks:

In Section 4.1 we have presented why partial and pre-
cisely controlled loop unrolling on the RTL level is de-
sirable for a VLIW machine. After implementing this
functionality in our port, we have observed that the per-
formance gains were limited. The reason for this is
the weakness of existing AA on the RTL level. The
current RTL AA is mostly type-based and therefore,
can not disambiguate the storgsr0),*(t+1)...

from the loadg(p+0),*(p+1)... . Consequently, al-
though the loop gets unrolled, little or no cross iteration

1. The technique is based on the idea of representing
a memory address by means ofaddress descrip-
tor, which is a pair <I,Z>, where | is an operation
and Z is a mod-k residue set. An address descriptor
can keep track of only one operation (i.e., I). Due to
this limitation, this approach is not able to disam-
biguate addresses obtained by linear combinations
of values generated by more then one operation.

ILP is extracted. The purpose of the work presented in
this section is to improve AA on RTL, so that the bene-
fits of RTL loop unrolling for VLIW scheduling can be
reaped.

. The technique extracts alias information across

loop iterations, which leads to a significant increase
in the compilation time. However, as pointed out
in [11], the GCC internal scheduler deals with

acyclic graph regions and, therefore, the extraction
of alias information across loop iteration is of no
use.

Improving the RTL AA can be done in many ways. One
option consists of improving the transfer of information
between Gimple and RTL. To achieve this, one has to
adapt the alias information model used by the two com-
piler representations: Gimple uses explicit representadur flow-sensitive address-based alias analysis over-
tion in terms of points-to sets, while RTL is relies on comes the aforementioned limitations allowing to dis-
a query-based disambiguation, i.e., whenever two menmambiguated memory accesses present within the same
ory references are to be disambiguated, an alias problefasic block. The analysis can be sketched as follows:
is formulated and solved. Propagation of AA infOI’ma-Suppose amemory access part of an operatprhich
tion from Gimple to RTL has been addressed in [12] anchelongs to a basic blodRBs. The address of the mem-
implemented by a GCC patch and by a separate GC@ry access, is given by an original linear functibnBy
branch. We have tried both implementations but wergtarting fromop and traversing in revers order tB8s
not able to obtain expected execution performance; idperations,f is composed with the linear expressions
fact we observed a small performance decrease. Thigpresenting dependent operations. In the end we ob-
TOther RTL passes such as CSE, DSE, GCSE, and register aﬁgin a final linear fungtion which represents the address
location make use of alias information calculated at RTL level andn terms of regs defined outside the BB. Afterwords,
would also benefit from more powerful AA. the composition is continued over a number of control
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paths; for each such patta corresponding linear func-
tion f; being derived. Those control paths are obtained N
as follows:

1. non-backedge paths:

Starting fromBBs compose in reverse order over
single predecessor blocks. Additionally we impose
the limitation that among those single predeces-
sor blocks at most one of them sources/sinks back-
edges. Once a BB with more more than one prede-
cessor is encountered, duplicdteone for each of

the predecessors and continue for as long as single
predecessor basic blocks are encountered none of
those blocks sourcing/sinking back-edges.

2. backedge paths:

Starting fromBB; compose in reverse order over
single predecessor blocks. Once a BB with more
than one predecessor over incoming backedges is

encountered duplicate one for each of the prede-

cessors and continue for as long as single predeceglgure 1. CFG traversal during alias analysis: with
sor without incoming/outgoing back-edges bIOCkSred/blue you can see the non-backedge/backedge paths.

are encountered. Once a BB with more more than
one predecessor is encountered duplidatne for 5 Experimental Results
each of the predecessors and continue for as long

as single predecessor basic blocks are encountered, o
none of them sourcing/sinking back-edges nor the'he GCC ports for EVP and TriMedia have been com-
original BB pared to the existing compilers supporting these proces-

sors. For TriMedia, outmGCCport has been compared
to the productiortmcc compiler which is a part of the
TriMedia Compilation System (TC$]. In the TCS

Once the linear function§ are derived for every mem- toolchain. th ila tes th
ory acces®p, two different accessesp, andop, from ooichain, the core compriémecgenerates the sequen-
téal code, and splits it into scheduling units, caltbeti-

the same BB can be disambiguated. The two operation .
do not alias if:¥i, f;(0pm) — f (0pn) £ 0 sion trees (dtrees)The output otmccis then passed to
. P} | - .

a standalone VLIW schedulémsched14]. According
to the TCS conventiontmcc performs register alloca-
tion only for global registerswhich constitute a half of
Example Consider in Figure 1 a memory operation the complete register file. Thenschedscheduler per-
that belongs to the basic blodk. As a result of our forms register allocation of the remaining Bxtal reg-
CFG traversal 5 linear functions corresponding to 2sters, peephole optimizations, and VLIW scheduling.
non-backedge and 3 backedge paths will be generate8cheduled code then goes through the standard assem-
Those paths are as follows: bling and linking procedure to obtain the binary, which
is then simulated or run on the target hardware to obtain
the non-backedge pathsconsist of the following basic the performance data. In order to generate scheduled
blocks: {E,D,C,A ,Al} and{E,D,C,B,B1}. TriMedia code with GCC, we follow a similar approach.
OurtmGCCport acts as a core compiler generating se-
the backedge pathsconsist of the following basic quential assembly, which is then formatted according
blocks:{E,D,I,F}, {E,D,l,G} and{E,D,H}. to tmschedrequirements, and passed to it for schedul-
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ing. After scheduling, the final binary is generated in| Testsuite | tmGCC-old | tmGCC-current| tmcc
the same way as famcc mediastone

cycles 123.7% 102.8% 100.0%
We have experimented with a set of representative code size 100.3% 110.2% 100.0%
benchmarks from the media/signal processing domain. perf-baseline
Our mediastonetestsuite contains audiocodecac3, cycles 139.7% 105.9% 100.0%
mp3,dt3, video algorithmsNMIPEG2 motion compensa- code size 99.9% 102.5% 100.0%

tion), image processing kernels (color conversions an
filters), and the completeEMBC teleconsuite. The
perf-baselinesuite contains several proprietary algo-
rithms for image and video improvement, suchugs

conversionand custom implementation of MPEG-2 andjmplementing the ILP-enhancing features exposes more
h264 video codecs. We remark that these are produgtp to tmscheglallowing it to dramatically improve the
quality applications, where a significant part of the codeyerformance of the scheduled code. The performance
was hand optimized by programmers. gap with the mature production compiler is reduced to
cJPSt 28% onmediastonand to 59% onperf-baseline

In an embedded system, the most important factors f . :
. . ._However, the performance improvement for mediastone
compiler evaluation are the performance and code size

. oo Is achieved at a cost of a 10% code size increase. We
of the generated code, while the compilation time is no . L
suppose that the loop-unrolling in our applications could

critical. Table 1 presents these metrics for the code pro- . .
. , . _have been too aggressive. The unroll factors in the
duced using both GCC and the production compiler
. benchmarks were chosen by the programmers to pro-
tmcc For brevity, we report the results only for the " .
vide best performance wittmcc These factors could
tm3271core. The results for then3260, tm525@nd . - .
be not optimal when compiling wittmGCC Carefully

tm3282were similar. In the tablemGCC-oldrefers lecting th fact Id babl ve this i
to the prototype TriMedia port developed at Philips Re->€1¢CtNG These Tactors Would, probably, resolve this 1s-
sue, but such work fell out of the scope of our study

search earlier this decade. This prototype was not ma- . . e
P yP roject. We have also identified another source of po-

ture enough, lacking the ILP-enhancement features de- 2~
. . . . tential improvement for the GCC port. Over the years
scribed in Section 4. It was relying completely tn-

schedfor ILP extraction and, essentially, can be seen agf development, a large number of peephole optimiza-

. : ) . . tions has been introduced tmcc Our GCC port lacks
a port to a single-issue processor with TriMedia ISA. o
. . the vast majority of these peepholes. We remark that
As depicted in the table, compared ttocg tmGCC- L .
o . the GCC facilities for peephole optimizations have lim-
old exhibits severe performance degradations,/23 . . .
X . itations which do not allow all thémcc peepholes to
and 397%, showing that a bare GCC port without spe—b iiv introduced. N vt hole2 ¢
cific VLIW support is not well-suited for TriMedia, e easily introduced. Namely, tgeephole2 pass o

even when it is coupled to a mature VLIW scheduler.GCC handles only adjacent operations. The operations

We remark that in addition to ILP-enhancement tech VICl! @ré non-adjacent, but connected by a data de-

nigues,tmGCC-oldis missing support for some of the pendency can be handled by thembinepass. This

addressing modes and for the new custom vector operg-ass' hoyvever, considers for optimizations _only triples
. . . . . of operations connected by data dependencies, such that
tions. This explains higher grade of degradatiompert-

. . . o the dependence graph is linear. Allowing more generic
baseling as a large portion of its applications was man- ) )

) o ) forms of graphs would be desirable and could increase
ually rewritten to utilize the new operations. T

the power of peephole optimization pass of GCC.

The numbers in the third column of the table represent
the results obtained wittmGCC-current the current  Similarly to experiments reported above, we have com-
port of GCC for TriMedia. We remark that in addition to pared our GCC port for EVP with the current EVP pro-
the presented techniqués)GCC-currenttontains sup- duction compiler. We remark that, differently from Tri-
port for vector operations missing imGCC-oldand Media case, our EVP port performs also VLIW schedul-
some enhancements to the GCC software pipelining andg. To achieve correct and efficient VLIW code gen-
if-conversion passes. These techniques are currently upfation, we have implemented the techniques presented
der development by the TCS compiler team and are nah Section 3. The comparisons were performed on the
reported in this paper. The presented results show thatandard benchmark for telecommunication industry,

qable 1: Relative Performance of the GCC ports and the
production compiler for TriMedia.
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EEMBC-teleconii8] and encouraging results have beencompiler engineers and may allow them to identify the
obtained. Concerning our EVP GCC pavpGCG,we  weaknesses of existing optimizations.

would like to report an interesting experiment related to

a comparative performance of compiler-optimized ands  Conclusions

hand-optimized code. In embedded systems the qual-

ity of the application code directly affects the cost andthe goal of the GCC porting projects presented in this
performance of the final product, thereby motivatingpaper was to evaluate suitability of GCC for code gen-
significant amount of optimization effort done by pro- eration for non-interlocked VLIW processors. Out con-
grammers. This is particularly true for the telecom'dusions can be summarized as follows.

munication domain where programming using assem-

bly or compiler intrinsics is still common. Although First, the obtained results illustrate that GCC can be
such programming model is Costly7 the numbers preused in a VLIW Compilation tOOIChain, both as a core
sented below provide a reason for this approach angompiler coupled to an external VLIW scheduler, and as
motivation for improving the power of compiler tech- the complete solution performing both sequential code
nology. For our experiment we consider a 256_p0ingeneration and VLIW scheduling. For TriMedia, which
complex FFT algorithm. First, a standard C implemenJepresents the former case, where our GCC port could
tation from EEMBC-telecom is taken, and is CompiledbenEfit from a mature VLIW SChEduler, the I’eSU|tS were
usingevpGCC Second, we compile the tailor-made ver- Particularly encouraging, and the decision to produc-
sion of the algorithm version manually optimized for tize ourtmGCCprototype has been taken. Second, we
EVP [7]. Both implementations are simulated usinghave identified several areas where current GCC can
the EVP simulator. The obtained results are depicted iR€ Strengthened to better support VLIW compilation.
Table2, which shows that manual optimization provideNamely, GCC loop unrolling and alias analysis on the

a performance improvement by a factor of 322 RTL can be improved to increase the amount of ex-
posed ILP. Furthermore, DFA mechanisms in GCC have
application | standard FFT] optimized FFT limitations when handling processor with significant
FFT number of instructions with several scheduling alterna-
cycles 121086 986 tives. Finally, GCC facilities for peephole optimiza-
code size (bytes 3512 4936 tions,peephole2_optimize andcombine have limi-

Table 2: Performance and Code size for 256-point Comt_atlons, alleviating which could improve performance of

plex FFT. both VLIW and non-VLIW targets.

¢ ¢ ¢ b lained by the inabil In our ports we have developed partial solutions to some
A factor of 16 out of 122 can be explained by the ina " of the identified issues. However, development and in-

ity of GCC's vectorizer to vectorize the FFT code. In tegration of general solutions in the GCC framework

particular, the vector shuffle patterns employed in OPUSill be of interest for the compiler engineers in the

mized implementation are hard to be auto-generated bé(mbedded domain considering to use GCC as a com-

tlh6e combpller. 'It;] fazt, a Lactot; S|gn|f|ca]}ntly Iar_ger_thafn piler framework for their VLIW (or non-interlocked
can be attributed to the absence of vectorization %ipelined) targets. In particular, our approach for in-

the following reason. In the optimized version, the I:FTter basic block scheduling and for resource-aware delay
butterfly data rearrangements are perfprmed on the Vegiot scheduling can be improved.

tor registers, whereas for the non-optimized code they

are done via memory. This requires excessive memaorin our opinion, some of the solutions implemented in the
traffic making the load/store unit a bottleneck. The draEVP and TriMedia ports could be beneficial to a wider
matic performance gap suggests that, apart of vectorizaange of GCC targets. First, the techniques which in-
tion, a number of other compiler techniques were notrease the amount of exposed ILP, such as the controlled
effective. We were able to identify several such casedoop unrolling and the addresses-based alias analysis
First, we observed that on the standard code, loop uren the RTL level, could be beneficial for non-VLIW
rolling has not been performed by GCC, while in theprocessors that exploit ILP, e.g., superscalar or deeply
optimized version the already vectorized loop body wapipelined scalar processors. Second, the DFA-related
further unrolled manually 4 times. The presented examtechniques presented in Section 3.4 allow dramatic re-
ple, in our opinion, provides a challenging testcase foduction in the DFA size and generation time for the



cases when significant number of target instructions
have multiple scheduling options and explosive growth
of DFA is observed. Furthermore, in case the origi-
nal DFA automaton for a processor has been factorized,
our approach allows correct scheduling of instructions
which contain alternatives from two different DFA au-
tomata.
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