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Abstract. During the service of composite airframes, damage initiates and accu-
mulates due to the manufacturing imperfections, impact damage and cyclic load-
ings, leading to the degradation in its load-bearing capacity. The nature of the
degradation process is complicated due to the multi-mode damage propagation
and complexity in the structural details of airframes. In the condition-based health
management of airframe structures, the degradation is expressed in the concept of
remaining useful life (RUL). Online prognostic healthmanagement is an emerging
field dedicated to the timely prediction of RUL using onboard sensors. This work
presents amechanics-informed approach to the prognosis of a typical airframe ele-
ment, stiffened CFRP composite panel, under compression-compression fatigue.
The fatigue degradation of axial stiffness is monitored by Lambwave velocity and
utilised for online RUL prediction via particle filter.

Keywords: Composite · Airframe · Stiffness degradation · Lamb wave · Particle
filter · SHM · PHM · RUL

1 Introduction

Stiffened panels are widely used in airframe structures due to their high strength-to-
weight ratio [1]. The growing use of high-performance composite materials has further
motivated the design of composite stiffened panels [2]. However, composite structures
are vulnerable to impact. Impact damage can significantly compromise the strength and
fatigue life of stiffened panels, particularly when the impact result in the disbonding of
stiffener [3–5]. This susceptibility of composite airframe structures to damage has led
to cautious design and maintenance approaches, resulting in overdesigned composite
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components that are either prematurely removed from service or repaired more often
than necessary. To optimise life management for more a sustainable aviation, prognos-
tic health management has attracted interest from both industry and academia. Online
prognostic health management is an emerging field dedicated to the timely prediction
of RUL using on-board sensors.

Fatigue degradation of composite materials is a complex multi-scale damage accu-
mulation process. Fatigue of simple composite laminates cause multiple types of micro
level damage accumulation such as matrix cracking, fibre-matrix interface disbonding,
fibre failure, causing macro scale degradation such as strength and stiffness reduction
[6, 7]. In addition to the micro and macro level degradation seen in simple composite
coupons, the fatigue of complex composite structures is inevitably complicated by the
geometries and complex structural behaviour [8–10].

Online prognosis of complex structures faces many challenges. First of all, an accu-
rate degradationmodel of a complex structure is often not available. Damage progression
models suitable for simple geometries may not be appropriate to complex structures.
Even if such model is available, the in-situ measurement of the model input (such as
micro-level damage parametres such as matrix crack density) is very challenging. In this
case there is a tendency of favouring data-driven methods that do not require a degrada-
tion model. However, due to the high cost of testing, produce enough data for training
such data-driven method can be time consuming and expensive, therefore is not always
an option. Even if a data set is available, data-driven (ML) methods tend to be effective
only for the same conditions of training data.

This paper proposes a mechanics informed approach to prognosis of complex air-
frame structures. This approach leverage the degradation in mechanical behaviour of
a complex structure in RUL prediction via interpreting the physical meaning of sensor
data for prognostic health indicator. The mechanical properties are assessed periodi-
cally using a distributed sensor network permanently installed on the structure. The
estimated degradation in mechanical properties then used for RUL prediction via par-
ticle filter. The proposed method is demonstrate on composite stiffened panels under
compression-compression fatigue until failure.

This paper is organised as follows. Section 2 presents the methodology of Lamb
wave based stiffness estimation. Section 3 presents the methodology of RUL prediction
using particle filter. Section 4 presents the experimental details. Section 5 presents the
result. The paper is concluded in Sect. 6.

2 Lamb Wave Based Stiffness Estimation as Health Indicator

The methodology of Lamb wave based health indicator has been presented in detail in
a previous work [11]. For the reader’s convenience and the completeness of this paper,
the key methodology is presented in this section.

For typical aeronautical grade CFRP composite laminates, the dispersion curve of
S0 mode is nearly flat in the low frequency thickness product region, indicating that
the phase velocity is almost insensitive to the thickness or frequency, and thus depicts a
quasi-nondispersive behavior which is beneficial for material characterization purposes.
The use of the S0 mode allows flexibility in the excitation frequency and it is also the
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fastest modewhich is convenient in practice. Another benefit of using the S0mode is that
the relation of phase velocity and axial young’s modulus can be derived at 0 frequency
thickness product.

The Young’s modulus E can then be estimated using a low frequency S0 mode phase
velocity as [12]

E = ρ
(
1 − ν2

)
C2
p (1)

where E, ρ and ν areYoung’smodulus, density and Poisson’s ratio of themedium, respec-
tively. Assuming the change in density and Poisson’s ratio is negligible, the degradation
of the axial modulus can be described by

D = E

E0
=

(
Cp

Cp0

)2

(2)

where Cp0 denote the S0 mode phase velocity at pristine condition.
In the case ofmode conversion, S0mode converts to A0mode, and the phase velocity

of the first arriving wave changes significantly but this change cannot represent the
change in modulus. Assuming that the converted A0mode corresponds to flexural waves
in the low frequency domain, according to Kirchhoff theory [13], the modulus E can be
estimated as

E = cg2

4k2α
= cp2

k2α
(3)

At a given frequency (and thus a given wavenumber k) and under the assumption
that α is constant, the stiffness degradation can still be calculated by Eq. 2.

To obtain the correct reference phase velocity value after mode conversion, the
reference phase velocity is changed to the first available phase velocity after mode
conversion. Referring to Eq. 2, the stiffness degradation can be written as

D = E

E0
= E1

E0
· E

E1
=

(
Cpk

Cp0

)2

·
(

Cp1

Cpk+1

)2

(4)

where the subscript 0 denotes the initialwavemode, subscript k denotes the last recording
of the initial wave mode, subscript k + 1 denotes the first recording of the converted
wave mode, and Cp1 denotes the phase velocity of the current wave mode. Therefore,

the phase velocity ratio after mode conversion can be calculated as
Cpk
Cpo

· Cp1
Cpk+1

.

The axial stiffness of the structure at frequency f is estimated by the mean value of
the selected paths:

Df = Df
p (5)

where Df
p denotes the estimated axial stiffness degradation in path p at frequency f .
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If multiple Lambwave frequencies are assessed, he overall stiffness estimation is the
average of the stiffness estimation at each frequency weighted by the number of valid
signal paths wf at corresponding frequencies:

D =
∑

f wf · Df∑
f wf

(6)

A signal path is considered invalid when its signal-to-noise ratio falls below a certain
threshold.

3 Prognosis Using Particle Filter

Particle filtering (PF) is a recursive Bayesian state estimation method that uses a set of
discrete weighted samples (particles) to approximate the state distribution of a stochas-
tic process given noisy and/or partial observations [14]. PF is particularly effective in
estimating states of nonlinear and/or non-Gaussian systems, and it has been widely used
in model-based RUL prognosis [15, 16].

The general state-space model of a system takes the form:

xk = f (xk−1, θk−1) + uk (7)

yk = h(xk) + υk (8)

where xk denotes system state, θk denotes model parametres, uk denotes process noise,
yk denotes measurement, υk denotes measurement noise, f (·) and h(·) denote the state
transfer function and observation function, respectively.

The particle approximation to the state distribution at time k is

zk =
{(

xik , θ
i
k

)
, ωi

k

}N
i=1

(9)

whereN denotes the number of particles, and for particle i, xik denotes the state estimates,
θ ik denotes the parametre estimates, and ωi

k denotes the weight.
The N particles are generated from prior probability density functions, and are

assigned equal weights of ωi
0 = 1/N . When a measurement yk is available at time

k, the likelihood of each particle is calculated as

p(zk |yk) = 1

σv
√
2π

exp

[
− (yk − h(xk))

2

2σ 2
v

]
(10)

where σv is measurement uncertainty. The weight of the particle i is updated as

ωi
k = ωi

k−1 · p
(
zik |yk

)
(11)

Subsequently, the weights are normalized so that the sum of all weights equals 1:

ωi
k = ωi

k∑N
i=i ω

i
k

(12)
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To avoid particle degeneracy after updating, the number of effective particles is
estimated by

Neff = 1
∑N

i=i (ω
i
k)

2 (13)

Systematic resampling is performed if the number Neff is below a threshold NT . The
weights of the resampled particles are all re-assigned equally.

To allow adaptability of model parameters, a random walk step of model parameters
is performed following the updating step:

θk = θk + ε, ε ∼ N (0, σε) (14)

After updating, each particle is propagated using Eq. 7 until time k + l when end of
life (EOL) criteria is reached:

xik+l = f (xik , θ
i
k , e

i
k), i = 1, . . . ,N (15)

The remaining useful life estimation of particle i at time k is calculated as

RULik = tik+l − tik (16)

The distribution of RUL estimation can be skewed so the percentiles are used for
prediction interval for robustness to skewness and extreme values. RUL prediction is
the weight median/50th percentile of RUL distribution. The uncertainty of the RUL
estimation are assessed by 50% interval (25th to 75th weighted percentile) and 90%
interval (5th to 95th weighted percentile).

4 Experimental Setup

The dataset used in this work was produced at Delft University of Technology and is
available at [17]. Four nominally identical composite stiffened panels are considered.
Each specimen consists of a skin panel (300 mm × 165 mm × 1.83 mm) and a co-cured
T-stiffener (bonded foot width of 65.5 mm and web width of 46.5 mm), as shown in
Fig. 1(a). The skin and stiffener are both made from IM7/8552 unidirectional prepreg
in layup sequence of [45/-45/0/45/90/-45/0]s and [45/-45/0/45/-45]s, respectively. Two
epoxy resin tabs were moulded around the ends of the panel to distribute compressive
load. The dimension of the panel excluding the tab is shown in Fig. 1(b).

The specimens are sensorised with piezoelectric sensors (PZT patches, 20 mm in
diameter and 0.5mm in thickness) on the stiffener side for guidedwave acquisition. Eight
sensors are surface mounted on each specimen using an appropriate adhesive. Piezo
sensors, their gluing process and their electronic conditioning (LWDS) are deliverables
from CEDRAT TECHNOLOGIES.

To simulate an impact event in aircraft service conditions, a drop weight impact is
performed on the skin side of the panels prior to the fatigue test, resulting in barely
visible impact damage (BVID). The damage locations are shown in Fig. 1.
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Fig. 1. (a) Stiffened panel; (b) Dimensions (in mm) excluding tab seen from stiffener side. The
piezoelectric sensors are marked by grey circles (1 to 8). The impact location on each panel is
marked by red crosses. (c) Selected lamb waves paths, marked in orange lines.

Prior to fatigue, the buckling load and ultimate compressive load are assessed with
a quasi-static compression test of a pristine panel, which was estimated at 12.8 kN and
104 kN, respectively. The stiffened panels are tested under compression-compression
fatigue until failure with maximum load around 65% of the ultimate load with a load
ratio of 0.1. The damage locations, compressive load and the number of cycles to failure
of four stiffened panels are summarised in Table 1.

Table 1. Summary of test details

Specimen Damage type Damage
location

Minimum
compressive
load (kN)

Maximum
compressive
load (kN)

Cycles to
failure

L1-03 10 J impact Stiffener foot
edge

6.5 65 152,458

L1-04 Skin 280,098

L1-05 Stiffener foot
edge

144,969

L1-09 Stiffener foot
center

133,281

The fatigue load cycle is interrupted every 5000 cycles, and the applied load is
reduced to 0.2 kN for Lamb wave measurements. Lamb waves are excited at frequencies
of 50, 100, 125, 150, 200, 250 kHz by applying a 5-cycles tone burst signal on one
PZT sensor and are acquired using the other PZT sensors. The guided waves signals
are recorded in a round robin way, where each PZT acts sequentially as transmitter and
receiver. Each signal is recorded 10 times and averaged for noise reduction.
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5 Results

This section present the results of Lamb wave based stiffness estimation and RUL
prediction.

In the post-buckling compression-compression fatigue, the deflection due to buck-
ling is likely to introduce matrix cracking perpendicular to the loading (axial) direction.
Therefore, the signal paths predominantly along the loading axis are selected to assess
the axial phase velocity, as shown in Fig. 1(c). Figure 2 shows the pre-processed signals
recorded after impact at 0, 5000, 10000 and 15000 C-C fatigue cycles. Two fundamental
wave modes can be observed at the first arrival of the signals over the acquired frequency
range. The fundamental asymmetric (A0) mode is mainly seen at 50 kHz and the funda-
mental symmetric (S0) mode exists at higher frequencies. The change in amplitude and
phase of the guided wave signals can be observed at all acquired frequencies, while more
changes are seen at 50 kHz to 150 kHz compared to 200 kHz and 250 kHz. Considering
the stronger response, flexibility in frequency selection, and convenience in material
characterization of S0 mode, S0 mode dominant guided waves response at 100 kHz, 125
kHz and 150 kHz are considered in this work, as marked in Fig. 2.

Fig. 2. Lamb wave signals at 0, 5000, 10000, 15000 C-C fatigue cycles recorded by path 1–5 of
specimen L1-03. Signals at 100 kHz, 125 kHz and 150 kHz are used in this work (marked with
red rectangles).

The stiffness degradation estimation of the four specimens using Lamb waves is
shown in Fig. 3. The EOL criteria is set to be the highest failure stiffness, which is
0.945.

A stiffness degradationmodel is required for RULprediction. The degradationmodel
should capture the degradation trendwhile remain a simple form for general applications.
In this work, a strictly decreasing linear degradation model is considered:

x(k) = 1 − a · k, a > 0 (17)
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Fig. 3. Normalised stiffness degradation estimated using Lamb waves

where a is model parameter. The state transition function is

�x(k) = −a + u

x(k) = x(k − 1) + �x(k)
(18)

The prior distribution of model prametre a is determined using Eq. 15 on data pre-
sented in Fig. 3, which is N(0.3752,0.1028). 600 particles are sampled from the prior
distrbution. The process noise and measurement noise are sampled from u ~ N(0,0.001)
and v ~ N(0,0.001), respectively.

Particle filtering is performed at every 100 cycles, and the particleweights are updated
every 5000 cycles when Lamb wave measurement is acquired, and a random walk of
the model parametre a with 10% of its prior standard deviation is performed after each
update. Systematic resampling is performed when the precentage of effective particle
number falls below 75%. The history of filtered observation and the parametre evolution
of specimen L1-03 is show as an example in Fig. 4.

(a) (b)

Fig. 4. (a) History of filtered observation. (b) Evolution of model parametre
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TheRUL is predicted after eachupdate. Figure 5 shows theRULprediction of the four
specimens as function of operational time (the number of fatigue cycles). The prediction
median converges to the true RUL and the prediction intervals shrink as operational
times increases.

Fig. 5. RUL prediction

The RUL performance is evaluated using performance indices listed in Table 2.

Table 2. RUL performance indices

Error ek = RULTruek − RULk

Accuracy ek = 1
K

∑K
k=1ek

Precision

√∑K
k=1(ek−ek )

2

K−1

Mean absolute percentage error (MAPE) 1
K

∑K
k=1

∣∣∣∣ 100•ek
RULTruek

∣∣∣∣

The performance indices are summarised in Table 3. The RUL prediction has the
best performance in specimen L1-09. The average accuracy and precision are 21800
cycles and 12700 cycles, respectively. The average MAPE is 30.3%.
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Table 3. Performance of RUL prediction

L1-03 L1-04 L1-05 L1-09 Average

Accuracy (×100 cycles) 186 −374 196 114 218

Precision (×100 cycles) 106 164 158 118 137

MAPE (%) 32.8 43.2 29.1 15.9 30.3

6 Conclusion

A mechanics informed approach to online prognosis of complex airframe structures
is proposed in this paper. This approach utilises the global fatigue degradation phe-
nomenon of a complex structure for prognosis. The degradation in stiffness is assessed
periodically by a distributed piezoelectric sensor network permanently installed on the
structure. Particle filter is then used to predict RUL using estimated stiffness. The pro-
pose approach achieved good result in a typical composite airframe element, composite
panels with T stiffeners, under compression-compression fatigue subjected to impact at
various locations.
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References

1. Chu, S., Featherston, C., Kim, H.A.: Design of stiffened panels for stress and buckling via
topology optimization. Struct. Multidiscip. Optim. 64(5), 3123–3146 (2021). https://doi.org/
10.1007/s00158-021-03062-3

2. Nagendra, S., Jestin, D., Gürdal, Z., Haftka, R.T., Watson, L.T.: Improved genetic algorithm
for the design of stiffened composite panels. Comput. Struct. 58, 543–555 (1996)

3. Greenhalgh, E.,Meeks,C., Clarke,A., Thatcher, J.: The effect of defects on the performance of
post-buckled CFRP stringer-stiffened panels. Compos. Part A Appl. Sci. Manuf. 34, 623–633
(2003)

4. Meeks, C., Greenhalgh, E., Falzon, B.G.: Stiffener debonding mechanisms in post-buckled
CFRP aerospace panels. Compos. Part A Appl. Sci. Manuf. 36, 934–946 (2005)

5. Raimondo, A., Riccio, A.: Inter-laminar and intra-laminar damage evolution in composite
panels with skin-stringer debonding under compression. Compos. B Eng. 94, 139–151 (2016)

6. Ansari, M.T.A., Singh, K.K., Azam, M.S.: Fatigue damage analysis of fiber-reinforced
polymer composites—a review. J. Reinf. Plast. Compos. 37, 636–654 (2018)

7. Li, X., Kupski, J., De Freitas, S.T., Benedictus, R., Zarouchas, D.: Unfolding the early fatigue
damage process for CFRP cross-ply laminates. Int. J. Fatigue 140, 105820 (2020)

8. Alderliesten, R.C.: Critical review on the assessment of fatigue and fracture in composite
materials and structures. Eng. Fail. Anal. 35, 370–379 (2013)

9. Abramovich, H., Weller, T., Bisagni, C.: Buckling behavior of composite laminated stiffened
panels under combined shear-axial compression. J. Aircr. 45, 402–413 (2008)

10. Broer, A., Galanopoulos, G., Benedictus, R., Loutas, T., Zarouchas, D.: Fusion-based damage
diagnostics for stiffened composite panels. Struct. Health Monit. (2021)

https://doi.org/10.1007/s00158-021-03062-3


484 N. Yue et al.

11. Yue, N., Broer, A., Briand, W., Rébillat, M., Loutas, T., Zarouchas, D.: Assessing stiffness
degradation of stiffened composite panels in post-buckling compression-compression fatigue
using guided waves. Submitted for publication

12. Tao, C., Ji, H., Qiu, J., Zhang, C., Wang, Z., Yao, W.: Characterization of fatigue damages
in composite laminates using Lamb wave velocity and prediction of residual life. Compos.
Struct. 166, 219–228 (2017)

13. Grahn, T.: Lamb wave scattering from a circular partly through-thickness hole in a plate.
Wave Motion 37, 63–80 (2003)

14. Goebel, K., Daigle, M.J., Saxena, A., Roychoudhury, I., Sankararaman, S., Celaya, J. R.:
Prognostics: the science of making predictions (2017)

15. Cadini, F., Sbarufatti, C., Corbetta, M., Giglio, M.: A particle filter-based model selection
algorithm for fatigue damage identification on aeronautical structures. Struct. Control Health
Monit. 24(11), e2002 (2017)

16. Zhang, L., Mu, Z., Sun, C.: Remaining useful life prediction for lithium-ion batteries based
on exponential model and particle filter. IEEE Access 6, 17729–17740 (2018)

17. Zarouchas, D., Broer, A., Galanopoulos, G., Briand, W., Benedictus, R., Loutas, T.: Com-
pression compression fatigue tests on single stiffener aerospace structures. DataverseNL
(2021)


	Mechanics Informed Approach to Online Prognosis of Composite Airframe Element: Stiffness Monitoring with SHM Data and Data-Driven RUL Prediction
	1 Introduction
	2 Lamb Wave Based Stiffness Estimation as Health Indicator
	3 Prognosis Using Particle Filter
	4 Experimental Setup
	5 Results
	6 Conclusion
	References




