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Abstract— Breath biomarker detection has been a
significant non-invasive approach for disease diagnosis. This
method has significant potential for early diagnosis and
accurate analysis of diseases. Emission from breath contains
several volatile organic compounds. Among them, ammonia is
a very commonly found VOC and mainly responsible for
chronic kidney diseases. There exist several strategies to detect
ammonia, however they demonstrate severe limitations such as
cross-sensitivity and poor selectivity. This work demonstrates
the synergistic effect of sensor functionalization and
application of machine learning for selective detection of
ammonia in the environment. The sensor exhibits high degree
of selectivity towards ammonia owing to enormous hydroxyl
groups contributed through curcumin. At 500 ppm ammonia,
the sensor demonstrates 274% response and very high
selectivity among seven volatile organic compounds. The
machine learning models were trained with the help of sensor
transients. Random Forest and CNN models were applied to
predict the presence of ammonia in a mixture. Random Forest
achieved 96.25% accuracy compared to 89% accuracy of CNN.
Hence, Random Forest algorithms applied to curcumin
functionalized reduced graphene oxide sensors can detect
ammonia vapors with very high efficiency among a mixture of
gases.

Keywords— Ammonia Sensor, Reduced graphene oxide,
Curcumin, Random Forest, Convolutional neural network

I. INTRODUCTION

Air quality monitoring is highly essential due to an
explosion in chemical, food and automobile industry.
Highly selective and sensitive gas sensors are the backbone
of air quality monitoring systems. The main attributes of a
gas sensor includes operation at minimum power, room
temperature and high specificity. In this context, several
nanomaterials such as ZnO, Fe;Os3, WO3, SnO,, are explored
[1-3]. These semiconductor metal oxide nanostructures are
highly efficient in sensing organic and inorganic gases.
However, they typically need very high temperatures (150—
400 °C). for their optimum operation. Cross-sensitivity to
other gases except the target analyte is also a primary
concern for these type of sensing materials. High operating
temperature and large power requirements limits their
application in many wireless, flexible and hand-held
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devices.

Metal oxide-based Taguchi sensors that are available
commercially operate at 200 mW power rating. Moreover,
these sensors suffer sensitivity issues in presence of
humidity and other toxic gases.

Therefore, there is a pressing need to develop gas sensors
that operate at room temperature and are highly selective
towards a particular gas eliminating the cross-interferences.
An approach of functionalization of nanomaterials is
identified by the researchers. Here, specific functional
moieties are attached to the sensing nanomaterial to impart
high degree of selectivity. The approach of functionalization
not only benefits from high selectivity but also imparts high
sensitivity and quick response. The high surface to volume
ratio of two-dimensional nanomaterials have gained wide
attention for appropriate functionalization. Graphene, black
phosphorus, molybdenum di-sulfide, tungsten di-sulfide are
excellent candidates for fabricating functionalized gas
sensors with high efficiency. The room temperature
operation of these materials are highly beneficial as the
ignition temperatures of certain toxic gases like ammonia
and hydrogen disulfide is low.

Graphene has attracted wide attention owing to very high
surface area, high mobility, thermal and mechanical
stability, flexibility and ease in functionalization. The high
surface to volume ratio ensures most of the atoms are at the
surface. This leads to very high sensitivity to environmental
perturbations. Graphene exhibits very high response and
sensitivity due to 2D honeycomb structure and atomically
thin layer. Graphene in its pure state is free from defects
which imparts extremely small adsorption energy towards
various gases and analytes. Generation of defect states and
doping in graphene increases the adsorption energy through
charge transfer, which leads to increase in specificity
towards different analytes. A form of graphene, known as
graphene oxide (GO) is a chemically oxidized form of
graphene. The oxidation of graphene sheets allows ease in
exfoliation and separation of graphene layers. In the
oxidized form, GO is not a good candidate for sensor
applications due to its insulating nature and low immunity
towards humidity. When this form of graphene (GO) is
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reduced, the oxygen species attached to graphene sheet
vanishes to a certain extent. The graphene backbone is then
partially restored with added functionality. Moreover,
during reduction, various reducing agents with specific
functional moieties are utilized to covalently functionalize
graphene sheets. The increased mobility of the reduced
graphene oxide (rGO) sheets along with sufficient
functional groups and defects can now be an excellent
candidate for gas sensing applications at room temperature.

Ammonia is a very toxic and pungent gas used in many
industries as common reagent. The presence of ammonia in
air causes adverse respiratory diseases and also affects the
skin and eyes when exposed at concentration greater than
400 ppm [4]. When exposed to very high levels of ammonia
(several thousand ppm), complicated health issues arises
leading to death. As designated by OSHA (Occupational
safety and health administration), 15-28% of ammonia
concentration by volume is severe to human lives [5].
Moreover, ammonia being flammable, demands design of
sensors that can operate at room temperature. Few graphene
based devices have been reported for detection of ammonia
[6-8], however their poor recoverability, baseline drift and
cross-sensitive nature limits their use in most applications.
The previous research works leaves sufficient gaps in
analysis of sensor response in a mixture of gas. With proper
application of machine learning algorithms to functionalized
graphene based sensors, an efficient sensing performance is
expected to be achieved [9,10].

Electronic nose (E-nose) is a device that is used to detect
specific gases for medical, environmental and industrial
applications. It usually couples a sensor array with some
processing algorithms to track the presence of a gas. Most of
the gas sensor arrays uses a set of sensor to detect one single
gas. This research work expands this concept to detect
ammonia in presence of several gases with the help of deep
learning (DL) algorithms applied to a functionalized
graphene sensor. The proposed system minimizes
consumption of power by applying DL algorithm to a single
sensor. The DL algorithm is highly robust to even classify
noisy data sets. In this work, ammonia concentration is
predicted in presence of other interfering gases. A single
functionalized sensor is used along with Random Forest and
Convolutional neural network (CNN) for classification.
Every class is denoted with separate range of gas mixture
concentration, where the ammonia levels are varied. The use
of a single functionalized sensor and classification in a
mixture can build up high performing sensor systems for air
quality monitoring.

II. STATE OF THE ART

In a research based on graphene field effect transistor, the
authors coupled multi-layer perceptron to develop an
electronic nose [11]. The conductance of the graphene FET
was analyzed and a 4D space was used to project the
physical properties. Mobility of electrons, mobility of holes,
concentration of carrier were used as features. The feature
domain was expanded by addition of ruthenium dioxide to
the graphene FET. The system was designed to detect
ethanol, methanol and water. An accuracy of 96.2% was
achieved. However, the gases was tested individually, which
is very different from the actual scenario where multiple
gases may be present.
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In another work, eight sensors was used to fabricate a
sensor array. The sensors data trained a CNN algorithm
which was used to discriminate four test gases. The selected
gases were methane, hydrogen, carbon monoxide and
ethylene [12]. The training dataset was applied to support
vector machine. However, the highest accuracy of 95.2%
was obtained on application of CNN on the sensor array.

The authors of [13] developed a sensor system
comprising eight sensors. They coupled the sensor data to
CNN. Here, sensor data was collected as images. Data
preprocessing and images fed to CNN was used to
discriminate different gases. The accuracy of such a system
was close to 94%.

Another research group [14] developed a system based on
electronic nose using eight sensors. They coupled their
sensor data to decision tree algorithm and targeted five
gases. Carbon monoxide, carbon dioxide, hydrogen, propane
and ammonia was used for testing and validation.

The research group in [15] utilized MOSFET based
sensor array and artificial neural network to boost the
selectivity of a gas sensor array. The sensor was tested in
two specific gas mixture specifications. One such mixture
comprised of ammonia, hydrogen and ethanol, and the other
had hydrogen, air and acetone.

III. FABRICATION OF FUNCTIONALIZED SENSOR DEVICE

A p<100> oriented silicon wafer having a resistivity of 4-
20 Q-cm was used as a substrate. The silicon wafer was
oxidized thermally to grow a 200 nm silicon dioxide
insulation layer over the substrate. Prior to gold deposition,
20 nm chromium was deposited as an adhesive layer.
Chromium layer deposition followed by 200 nm gold
deposition was carried out by DC sputtering. The electrodes
were patterned photolithographically in an interdigitated
manner. The fingers of the interdigit was separated by 50
um. The gaps were filled by depositing functionalized
graphene solution over the electrodes. Room temperature
drying completed the formation of the sensor devices. The
sensing material formed the channel of the device.
Curcumin was used to reduce graphene oxide and at the
same time was used to functionalize the graphene sheets.
The schematic of the sensor device containing the
functionalized sensing layer and electrodes are depicted in
figure 1.

Sensing Material

Silicon
Figure 1. Schematic of functionalized graphene sensor

Chemical exfoliation of graphene sheets were carried out
for preparation of graphene oxide. Hummer’s method was
used to synthesize the graphene nanosheets. Graphite
powder was mixed with sodium nitrate and stirred for &
hours in sulfuric acid. The solution was then brought to 0 °C
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with the help of ice bath. Potassium permanganate was
added in very minute quantities while stirring. The
temperature was maintained below 12 °C. After completion
of mixing, the solution was brought to room temperature
with the help of hot plate. Addition of DI water to initiate an
exothermic reaction was carried out. The temperature of the
solution raises to 98 °C and after half an hour the reaction is
forcefully inhibited by placing the beaker in a water bath.
The solution turns blackish from its inherent brown colour.
After an hour, DI water is added followed by addition of
hydrogen peroxide. This turns the solution bright yellow.
This change in colour signifies successful formation of
graphene oxide (GO). The solution was washed several
times to ensure a pH of 7. The GO sheets were further
subjected to high power ultrasonication for more exfoliation.

Curcumin was used for simultaneous reduction and
functionalization. Ethanol was used to dissolve curcumin
(10 mg in 20 ml ethanol). The solution was stirred for a hour
and then added to GO while stirring vigorously. The pH of
the mixture was maintained at 10 by addition of ammonia
solution during stirring process. The mixture was then
transferred to a red capped reagent bottle and heated at 95
°C for 3 hours. The solution was further cooled down and
the resulting sensing solution was named cf-rGO.

IV. SENSOR LAYER CHARACTERIZATION

The fabricated sensor layer was characterized through
structural, morphological study and compositional analysis.
FESEM, HRTEM, XRD, FTIR and RAMAN spectroscopy
was conducted to analyze the physical and chemical
properties of the sensing layer. The structural
characterization of cf-rGO shows wrinkled sheet like
structures in FESEM images as depicted in figure 2(a).
Defects are the adsorption sites for such sheet like structures.
The presence of wrinkles demonstrates functional defects
created on the graphene sheets. More evidence is visible
from HRTEM images of the cf-rGO layer. Figure 2(b)
demonstrates the HRTEM images of the as prepared sensing
layer.

e

Figure 2. (a) FESEM image of Cf-rGO nanosheets (b) HRTEM
image of Cf-rGO nanosheet

The structural analysis was carried out through X-ray
diffraction. The radiation of Cu Kal (A = 1.54 A) was used
along with a parallel beam diffractometer. Figure 3(a) shows
the XRD analysis of GO and cf-rGO sensing materials. A
sharp peak at 10.48° was observed for GO which is due to
reflection from the (001) plane. Successful reduction of GO
to cf-rGO is visible from the broad peak centred around
24.57°. This peak arises from the (002) plane of the cf-rGO
sheets.

The FTIR spectra for GO and cf-rGO is depicted in figure
3(b). The O-H group vibrations are observed as broad peak
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at 3000-3500 cm! [16]. The carboxylic groups (C=0) are
generally present near the sheet edges, are evident in the
spectra at 1740 cm™. There are several functional groups
present in the GO sheet. The peaks at 1048 cm!, 1220 cm’!
and 1373 cm! accounts for C-O stretching, C-O-C
stretching and C-OH stretching respectively [16-17]. These
functional groups are eliminated when the GO is subjected
to reduction with the help of curcumin. The successful
reduction of the GO sheet is evident from the spectra in
figure 3(b). Apart from the hydroxyl groups, the other
groups are observed to vanish after reduction. The presence
of hydroxyl groups is very significant as it binds to
ammonia molecules with higher adsorption energy. Such
specific functionalization has severe benefits for selective
detection of target gas molecules.

GO 'E' W
crrGo | &
= X
< 8
z s
'z g
5 =
9
= CErGO
(a) = | ® GO

— ; . . . -
10 20 30 40 50 60 70 4000 3500 3000 2500 2000 1500 1000
20 (degrees) Wave number (cm™1)

Figure 3. (a) XRD analysis of GO and Cf-rGO and (b) FTIR
spectra for GO and Cf-rGO

The simultaneous functionalization and reduction of GO
to form cf-rGO can be further validated with the help of
Raman analysis. The Raman spectra for GO and cf-rGO is
elucidated in figure 4(a) and 4(b) respectively. The D and G
band of graphene oxide (GO) is observed at 1366 cm™ and
1607 cm™! respectively [18]. The successful reduction of the
graphene oxide sheets is accomplished with a left shift in the
Raman spectra. The D and G bands of the cf-rGO was
observed at 1357 cm™! and 1599 cm™! respectively, which is
the signature that graphene oxide is successfully reduced
[19]. Attachment of curcumin molecules with the unsaturated
carbon atoms results in the shift of D and G bands in the
Raman spectra. Curcumin being a reducing agent, donates
electrons to the GO sheet, resulting in softening of phonons
during the interaction [20-21].

—-=Cur-rGO
— D Band 1367cm’
—GBand N

——Peak D 1607 cm”
——Peak G 1366 cm”

=-=G0

(@)

1599 cm”

N

Intensity (a.u.)
Intensity (a.u.)

N 7

Do

1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
Raman Shift (em1) Raman Shift (cm™1)
Figure 4. (a) Raman analysis for GO (b) Raman spectra for Cf-rGO

V. SENSING MECHANISM AND RESULTS

Functionalization of curcumin onto the graphene sheets was
done during the reduction process. The prepared curcumin
functionalized reduced graphene oxide sheet is abbreviated
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as cf-rGO. The cf-rGO sensing layer exhibited a p-type
sensing characteristics. Pure graphene sheets that are defect-
less are often associated with very low adsorption energies.
When graphene sheets come in contact with ammonia
molecules, the adsorption energy is calculated to be 0.114
eV [22]. For sensing applications, the graphene sheets must
be induced with several defect sites to increase the
adsorption energy towards a particular gas. This is achieved
through proper functionalization. When hydroxyl and epoxy
groups are attached to graphene sheets, the adsorption
energy towards nitrogen containing molecules were found to
be 0.84 eV and 0.219 eV respectively [22]. Hence, with
proper functionalization, the adsorption energy and hence
the sensitivity can be increased.

The exposure of cf-rGO to ammonia molecules, lead to
charge transfer from the ammonia molecules to the hydroxyl
groups of cf-rGO sensing layer. Ammonia behaves as Lewis
base and efficiently transfers electron to the cf-rGO sheets.
These electrons recombine with the majority holes of the cf-
rGO and reduces the conductivity of the device. The highly
efficient functionalization leads to significant increase in
adsorption energy, given as:

Eb = Estab TEmote — Emole-+slab

)
where, Eqab is represented as the energy of the graphene
surface, Emole is energy of the ammonia molecules and
Emoletsiab 18 the energy of the system comprising gas-
graphene interface and ammonia vapors.

?Ammonia ! Nitrogen

i Hydrogen
Hydroxyl 4 [ ] g

\;—" Oxygen
C-OH bonds
(Bronsted
sites)

Figure. 5 Schematic of sensing mechanism for cf-rGO

The charge transfer takes place through two possible
mechanisms as elucidated in figure 5. Firstly, the ammonia
molecules, acting as Lewis base, transfers electron to the p-
type graphene matrix. This reduces the hole concentration in
the cf-rGO sheet leading to increase in resistance. Secondly,
the C-OH functionalization over the cf-rGO sheet acts as
Bronsted sites and donates proton to the incoming ammonia
molecules, The decrease in positive charge from the cf-rGO
sheets also induces increase in resistance. The combination
of these two mechanisms lead to overall increase in sensor
resistance. The change in resistance is calibrated as sensor
response for different concentration of ammonia vapors.

The repeatability of the sensor was tested when it was
exposed repeatedly to 500 ppm ammonia concentration. The
repeatability test was conducted four times as shown in
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figure 6(a). During exposure to 500 ppm ammonia, the cf-
rGO based sensor exhibited a response time of 53 seconds.
The recovery time was found to be 38 seconds. The cf-rGO
sensor showed a very good recoverability with almost zero
baseline drift. High efficiency of the sensor including fast
recovery and response can attributed to curcumin
functionalization of the rGO sheets. The specific hydroxyl
groups not only facilitates efficient charge transfer but also
ensures easy release of ammonia vapors during recovery
cycle. Selectivity is a very significant attribute of a sensor
which was evaluated in presence of seven VOCs. Ammonia,
acetone, formaldehyde, toluene, benzene, methanol and
ethanol were used to test the sensor’s specificity. The sensor
demonstrated very high selectivity towards ammonia
vapors, but also showed little response towards toluene,
acetone and formaldehyde. Machine learning algorithms
such as CNN and Random Forest models play a pivotal role
in detecting ammonia in presence of these three gases. The
selectivity of the cf-rGO sensor is demonstrated in figure
6(b).
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Figure. 6 (a) Repeatability of c¢f-rGO at 500 ppm ammonia and
(b) Selectivity of cf-rGO in presence of seven VOCs

The sensor exhibited a quick response time of 23 seconds
and decent recovery time of 71 seconds when exposed to
250 ppm ammonia concentration. Commercial gas sensors
have a tendency to show response fluctuations in presence
of humidity. Previously reported graphene sensors have
suffered humidity sensitiveness to a great extent. Thereby,
cf-rGO based sensor was subjected to different levels of
humidity to analyze the response deviations. As
demonstrated in figure 7(a), the sensor showed strong
immunity towards humidity till RH value of 80%. The
sensor demonstrated around 6% deviation when the RH
levels crossed 90%. The sensor was tested for stability with
500 ppm ammonia concentration. The test was carried out
for 50 days. The promising results signifies the potential use
of the cf-rGO sensor for air quality monitoring.

Stability over 50 days
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Figure 7. (a) Response vs humidity plot and (b) Stability plot
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Different mixtures of gases were made to expose the sensor
to different environments. The evaluation of response in
cross-sensitive environments is vital for accurate detection
of gases. Machine learning algorithms was applied to the
derived response of the cf-rGO sensor towards these various
mixtures. Three mass flow controllers (MFC) was used to
create different gaseous environments. One dedicated MFC
was used to flow different concentration of ammonia, and
the other two MFCs were used to flow either of toluene-
acetone, toluene-formaldehyde or acetone-formaldehyde in
different concentrations. The combinations of these four
gases created a dataset for training the machine learning/
deep learning models. The created gaseous environments
and the use of deep learning (DL) to a sensitive cf-rGO
layer provides a highly accurate gas detection strategy in a
mixture of gas.

The transient response of the sensor was collected for
different gas mixtures and ammonia was intended to be the
target gas. The transient response was collected by exposing
the sensor to the differently created environment, and the
current level was traced with respect to time at a constant
applied voltage. For a single gas scenario, ammonia,
toluene, formaldehyde and acetone was exposed to the cf-
rGO sensor separately at 50, 100, 250 and 500 ppm
concentrations.

In the scenario where two gases are present, with
ammonia as target gas, one of the three gases was mixed
with ammonia to create the mixture. (Ammonia + Toluene),
(Ammonia + Acetone) and (Ammonia + Formaldehyde)
with different concentration was formulated and cf-rGO
was exposed to these gas mixtures. The transient responses
from this binary system were collected to train the deep
learning models.

Furthermore, ternary gaseous environments were created
by mixing ammonia with two of the three gases at separate
concentrations. (Ammonia + Toluene + Formaldehyde),
(Ammonia + Acetone + Toluene) and (Ammonia + Acetone
+ Formaldehyde) were used to create the three-gas mixture
scenario. The transients were collected for individual
mixtures with specific concentration ratios and applied to
the DL models.

Through this method, the data was collected for 31
classes of gas mixtures. In one segment, ammonia
concentration was kept constant and the other gas
concentrations were varied. In another segment, other gas
concentrations were kept constant and ammonia
concentration was varied. Deep learning models were
trained for these different classes and then tested for
validation.

A. Data modification

In the collected transient response from the sensor, the
data contained current level changes with respect to time.
The efficiency of the deep learning model was enhanced by
converting the mono-variate time series data to multi-variate
time series. This is done by addition of saturation and
recovery time, saturation and recovery current levels and
total gas mixture concentrations. The individual mixture
classes were segregated into recovery and saturation
regimes. The saturation parameter in the saturation regime is
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set according to equation 1 and 2. The saturation parameter
is set to zero in the recovery regime. Similarly, recovery is
set to zero in the saturation regime and recovery parameters
in the recovery zone is expressed by equation 3 and 4.

sat[t]=———— (1)
(1)
rec[t]=0...... (2)
sat[t]=0 ... (3)
(1=1,)
rec[t]=———"— ... (4)
(15=15)
B. CNN
In a complex gaseous environment, ammonia
concentration is predicted using convolutional neural

network or CNN. The application of CNN is described as
follows:

Initially, there is one input layer with a 32 filter, a
convolution layer (three kernel) and an activation layer
along with a normalization layer. Moreover, there are
additional three convolution blocks associated with 64 filter
each. These blocks also comprise 3 kernel convolution
layer, activation layer and normalization stage. There is a
third convolution block with 64 filters. There is an
additional three convolution block each with 128 filter, 3
kernel convolution layer, activation layer and normalization
stage. An average pooling block is connected to the final
block and this connects to the output layer through a dense
system. Overall, 25 layers are used in the CNN model.
Prevention of over-fitting is done by an Adam optimizer.

C. Random forest

Random Forest model is a machine learning technique
where multiple classification algorithms are used. The final
layers declares the class that received maximum vote as the
output. Random Forest can be viewed as collection of
decision trees, which selects the output class that receives
the maximum votes. Random Forest is a hierarchical body
with leaves, branches and nodes. The available features are
used to construct the decision node, then the process is
moved to the output leaf or the next node [23]. In this work,
decision tree with 100-nodes is used to perform the
detection of ammonia vapor in a gas mixture environment.

D. Results

The transient data collected from the sensor was divided
into 80-20 split, 80% being the training data set and the rest
20% being the validation data set. The training data set was
fed to the CNN model for classification. In the training for
CNN, the initial learning rate, stopping learning rate and
reduction factor was chosen to be 0.001, 0.00001 and 75%
respectively. The optimum batch size was chosen to be 64.
Figure 8 demonstrates the 89% test accuracy including 0.27
loss factor. Figure 9 depicts the accuracy curve analyzing
the loss in training and validation. The loss curve shows that
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the model demonstrate a good fit to the data.
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Figure 8: Training accuracy of CNN
The same data set was also used to train the random forest
model. The accuracy achieved was 96%. Fifteen nodes were

set for the random forest model.
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Fig 9. Loss curve for CNN model.

The 31 classes were tested with both CNN and Random
Forest models. The models performed well with the test
data. However, Random Forest was superior to CNN in
terms of accuracy.

Table 1 depicts the comparison of the fabricated cf-rGO
sensor with the previous reports. Our sensor was found to be
superior in terms of quick response and high selectivity.

TABLE 1: Comparison of sensor performances

Sensor | Response | Concentra | Response Ref.
Type (ppm) tion and
recovery
time
RGO 930 400 ppm 315,500s [24]
RGO 80 10 ppm 535,554 s [25]
RGO 12 800 ppm 505 s, [26]
1340 s
RGO 232 50 ppm 415,198 s [27]
SnO2 190 800 ppm 365,25 s [27]
ZnO 180 800 ppm 485,108 [27]
CfrGO 201 250 ppm 23s,71s This
Work
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VI. CONCLUSIONS

This research employs a single resistive sensor along with
deep learning models to selectively detect ammonia within a
complex gaseous mixture. The need for multiple sensors are
eliminated through this study. The cf-rGO sensing layer was
found to be highly selective towards ammonia along with
strong immune behavior towards humidity interferences. At
500 ppm ammonia concentration, the sensor exhibited 275%
response. Random forest and CNN was used to classify the
different mixture of gases with an aim to detect ammonia in
a binary or ternary mixture environment. Random forest
with an accuracy of 96% dominates the CNN model (89%
accuracy). Hence, we have successfully fabricated a
functionalized sensor that can detect ammonia among
various interfarance. This method would also be helpful to
accurately detect chronic kidney diseases.
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