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Abstract— Breath biomarker detection has been a 

significant non-invasive approach for disease diagnosis. This 

method has significant potential for early diagnosis and 

accurate analysis of diseases. Emission from breath contains 

several volatile organic compounds. Among them, ammonia is 

a very commonly found VOC and mainly responsible for 

chronic kidney diseases. There exist several strategies to detect 

ammonia, however they demonstrate severe limitations such as 

cross-sensitivity and poor selectivity. This work demonstrates 

the synergistic effect of sensor functionalization and 

application of machine learning for selective detection of 

ammonia in the environment. The sensor exhibits high degree 

of selectivity towards ammonia owing to enormous hydroxyl 

groups contributed through curcumin. At 500 ppm ammonia, 

the sensor demonstrates 274% response and very high 

selectivity among seven volatile organic compounds. The 

machine learning models were trained with the help of sensor 

transients. Random Forest and CNN models were applied to 

predict the presence of ammonia in a mixture. Random Forest 

achieved 96.25% accuracy compared to 89% accuracy of CNN. 

Hence, Random Forest algorithms applied to curcumin 

functionalized reduced graphene oxide sensors can detect 

ammonia vapors with very high efficiency among a mixture of 

gases.  

Keywords— Ammonia Sensor, Reduced graphene oxide, 

Curcumin, Random Forest, Convolutional neural network 

I. INTRODUCTION  

Air quality monitoring is highly essential due to an 
explosion in chemical, food and automobile industry. 
Highly selective and sensitive gas sensors are the backbone 
of air quality monitoring systems. The main attributes of a 
gas sensor includes operation at minimum power, room 
temperature and high specificity. In this context, several 
nanomaterials such as ZnO, Fe2O3, WO3, SnO2, are explored 
[1-3]. These semiconductor metal oxide nanostructures are 
highly efficient in sensing organic and inorganic gases. 
However, they typically need very high temperatures (150–
400 °C).  for their optimum operation. Cross-sensitivity to 
other gases except the target analyte is also a primary 
concern for these type of sensing materials. High operating 
temperature and large power requirements limits their 
application in many wireless, flexible and hand-held 

devices.  
Metal oxide-based Taguchi sensors that are available 
commercially operate at 200 mW power rating. Moreover, 
these sensors suffer sensitivity issues in presence of 
humidity and other toxic gases.  

Therefore, there is a pressing need to develop gas sensors 
that operate at room temperature and are highly selective 
towards a particular gas eliminating the cross-interferences. 
An approach of functionalization of nanomaterials is 
identified by the researchers. Here, specific functional 
moieties are attached to the sensing nanomaterial to impart 
high degree of selectivity. The approach of functionalization 
not only benefits from high selectivity but also imparts high 
sensitivity and quick response. The high surface to volume 
ratio of two-dimensional nanomaterials have gained wide 
attention for appropriate functionalization. Graphene, black 
phosphorus, molybdenum di-sulfide, tungsten di-sulfide are 
excellent candidates for fabricating functionalized gas 
sensors with high efficiency. The room temperature 
operation of these materials are highly beneficial as the 
ignition temperatures of certain toxic gases like ammonia 
and hydrogen disulfide is low.  
    Graphene has attracted wide attention owing to very high 
surface area, high mobility, thermal and mechanical 
stability, flexibility and ease in functionalization. The high 
surface to volume ratio ensures most of the atoms are at the 
surface. This leads to very high sensitivity to environmental 
perturbations. Graphene exhibits very high response and 
sensitivity due to 2D honeycomb structure and atomically 
thin layer. Graphene in its pure state is free from defects 
which imparts extremely small adsorption energy towards 
various gases and analytes. Generation of defect states and 
doping in graphene increases the adsorption energy through 
charge transfer, which leads to increase in specificity 
towards different analytes. A form of graphene, known as 
graphene oxide (GO) is a chemically oxidized form of 
graphene. The oxidation of graphene sheets allows ease in 
exfoliation and separation of graphene layers. In the 
oxidized form, GO is not a good candidate for sensor 
applications due to its insulating nature and low immunity 
towards humidity. When this form of graphene (GO) is 
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reduced, the oxygen species attached to graphene sheet 
vanishes to a certain extent. The graphene backbone is then 
partially restored with added functionality. Moreover, 
during reduction, various reducing agents with specific 
functional moieties are utilized to covalently functionalize 
graphene sheets. The increased mobility of the reduced 
graphene oxide (rGO) sheets along with sufficient 
functional groups and defects can now be an excellent 
candidate for gas sensing applications at room temperature.  

Ammonia is a very toxic and pungent gas used in many 
industries as common reagent. The presence of ammonia in 
air causes adverse respiratory diseases and also affects the 
skin and eyes when exposed at concentration greater than 
400 ppm [4]. When exposed to very high levels of ammonia 
(several thousand ppm), complicated health issues arises 
leading to death. As designated by OSHA (Occupational 
safety and health administration), 15-28% of ammonia 
concentration by volume is severe to human lives [5]. 
Moreover, ammonia being flammable, demands design of 
sensors that can operate at room temperature. Few graphene 
based devices have been reported for detection of ammonia 
[6-8], however their poor recoverability, baseline drift and 
cross-sensitive nature limits their use in most applications. 
The previous research works leaves sufficient gaps in 
analysis of sensor response in a mixture of gas. With proper 
application of machine learning algorithms to functionalized 
graphene based sensors, an efficient sensing performance is 
expected to be achieved [9,10].   

Electronic nose (E-nose) is a device that is used to detect 
specific gases for medical, environmental and industrial 
applications. It usually couples a sensor array with some 
processing algorithms to track the presence of a gas. Most of 
the gas sensor arrays uses a set of sensor to detect one single 
gas. This research work expands this concept to detect 
ammonia in presence of several gases with the help of deep 
learning (DL) algorithms applied to a functionalized 
graphene sensor. The proposed system minimizes 
consumption of power by applying DL algorithm to a single 
sensor. The DL algorithm is highly robust to even classify 
noisy data sets. In this work, ammonia concentration is 
predicted in presence of other interfering gases. A single 
functionalized sensor is used along with Random Forest and 
Convolutional neural network (CNN) for classification. 
Every class is denoted with separate range of gas mixture 
concentration, where the ammonia levels are varied. The use 
of a single functionalized sensor and classification in a 
mixture can build up high performing sensor systems for air 
quality monitoring.   

II. STATE OF THE ART 

In a research based on graphene field effect transistor, the 
authors coupled multi-layer perceptron to develop an 
electronic nose [11]. The conductance of the graphene FET 
was analyzed and a 4D space was used to project the 
physical properties. Mobility of electrons, mobility of holes, 
concentration of carrier were used as features. The feature 
domain was expanded by addition of ruthenium dioxide to 
the graphene FET. The system was designed to detect 
ethanol, methanol and water. An accuracy of 96.2% was 
achieved. However, the gases was tested individually, which 
is very different from the actual scenario where multiple 
gases may be present.  

    In another work, eight sensors was used to fabricate a 
sensor array. The sensors data trained a CNN algorithm 
which was used to discriminate four test gases. The selected 
gases were methane, hydrogen, carbon monoxide and 
ethylene [12]. The training dataset was applied to support 
vector machine. However, the highest accuracy of 95.2% 
was obtained on application of CNN on the sensor array.   

The authors of [13] developed a sensor system 
comprising eight sensors. They coupled the sensor data to 
CNN. Here, sensor data was collected as images. Data 
preprocessing and images fed to CNN was used to 
discriminate different gases. The accuracy of such a system 
was close to 94%.  

Another research group [14] developed a system based on 
electronic nose using eight sensors. They coupled their 
sensor data to decision tree algorithm and targeted five 
gases. Carbon monoxide, carbon dioxide, hydrogen, propane 
and ammonia was used for testing and validation.  

The research group in [15] utilized MOSFET based 
sensor array and artificial neural network to boost the 
selectivity of a gas sensor array. The sensor was tested in 
two specific gas mixture specifications. One such mixture 
comprised of ammonia, hydrogen and ethanol, and the other 
had hydrogen, air and acetone.  

III. FABRICATION OF FUNCTIONALIZED SENSOR DEVICE 

A p<100> oriented silicon wafer having a resistivity of 4-
20 Ω-cm was used as a substrate. The silicon wafer was 
oxidized thermally to grow a 200 nm silicon dioxide 
insulation layer over the substrate. Prior to gold deposition, 
20 nm chromium was deposited as an adhesive layer. 
Chromium layer deposition followed by 200 nm gold 
deposition was carried out by DC sputtering. The electrodes 
were patterned photolithographically in an interdigitated 
manner. The fingers of the interdigit was separated by 50 
μm. The gaps were filled by depositing functionalized 
graphene solution over the electrodes. Room temperature 
drying completed the formation of the sensor devices. The 
sensing material formed the channel of the device. 
Curcumin was used to reduce graphene oxide and at the 
same time was used to functionalize the graphene sheets. 
The schematic of the sensor device containing the 
functionalized sensing layer and electrodes are depicted in 
figure 1.  

 
     Figure 1. Schematic of functionalized graphene sensor 

  
Chemical exfoliation of graphene sheets were carried out 

for preparation of graphene oxide. Hummer’s method was 
used to synthesize the graphene nanosheets. Graphite 
powder was mixed with sodium nitrate and stirred for 8 
hours in sulfuric acid. The solution was then brought to 0 °C 
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with the help of ice bath. Potassium permanganate was 
added in very minute quantities while stirring. The 
temperature was maintained below 12 °C. After completion 
of mixing, the solution was brought to room temperature 
with the help of hot plate. Addition of DI water to initiate an 
exothermic reaction was carried out. The temperature of the 
solution raises to 98 °C and after half an hour the reaction is 
forcefully inhibited by placing the beaker in a water bath. 
The solution turns blackish from its inherent brown colour. 
After an hour, DI water is added followed by addition of 
hydrogen peroxide. This turns the solution bright yellow. 
This change in colour signifies successful formation of 
graphene oxide (GO). The solution was washed several 
times to ensure a pH of 7. The GO sheets were further 
subjected to high power ultrasonication for more exfoliation. 

Curcumin was used for simultaneous reduction and 
functionalization. Ethanol was used to dissolve curcumin 
(10 mg in 20 ml ethanol). The solution was stirred for a hour 
and then added to GO while stirring vigorously. The pH of 
the mixture was maintained at 10 by addition of ammonia 
solution during stirring process. The mixture was then 
transferred to a red capped reagent bottle and heated at 95 
°C for 3 hours. The solution was further cooled down and 
the resulting sensing solution was named cf-rGO.  
      

IV. SENSOR LAYER CHARACTERIZATION 

The fabricated sensor layer was characterized through  
structural, morphological study and compositional analysis. 
FESEM, HRTEM, XRD, FTIR and RAMAN spectroscopy 
was conducted to analyze the physical and chemical 
properties of the sensing layer. The structural 
characterization of cf-rGO shows wrinkled sheet like 
structures in FESEM images as depicted in figure 2(a). 
Defects are the adsorption sites for such sheet like structures. 
The presence of wrinkles demonstrates functional defects 
created on the graphene sheets. More evidence is visible 
from HRTEM images of the cf-rGO layer. Figure 2(b) 
demonstrates the HRTEM images of the as prepared sensing 
layer.  

 
Figure 2. (a) FESEM image of Cf-rGO nanosheets (b) HRTEM 
image of Cf-rGO nanosheet  
 
The structural analysis was carried out through X-ray 
diffraction. The radiation of Cu Kα1 (λ = 1.54 Å) was used 
along with a parallel beam diffractometer. Figure 3(a) shows 
the XRD analysis of GO and cf-rGO sensing materials. A 
sharp peak at 10.48° was observed for GO which is due to 
reflection from the (001) plane. Successful reduction of GO 
to cf-rGO is visible from the broad peak centred around 
24.57°. This peak arises from the (002) plane of the cf-rGO 
sheets.  
The FTIR spectra for GO and cf-rGO is depicted in figure 
3(b). The O-H group vibrations are observed as broad peak 

at 3000-3500 cm-1 [16]. The carboxylic groups (C=O) are 
generally present near the sheet edges, are evident in the 
spectra at 1740 cm-1. There are several functional groups 
present in the GO sheet. The peaks at 1048 cm-1, 1220 cm-1 
and 1373 cm-1 accounts for C-O stretching, C-O-C 
stretching and C-OH stretching respectively [16-17]. These 
functional groups are eliminated when the GO is subjected 
to reduction with the help of curcumin. The successful 
reduction of the GO sheet is evident from the spectra in 
figure 3(b). Apart from the hydroxyl groups, the other 
groups are observed to vanish after reduction. The presence 
of hydroxyl groups is very significant as it binds to 
ammonia molecules with higher adsorption energy. Such 
specific functionalization has severe benefits for selective 
detection of target gas molecules.  
 

 
Figure 3. (a) XRD analysis of GO and Cf-rGO and (b) FTIR 
spectra for GO and Cf-rGO 

 

The simultaneous functionalization and reduction of GO 
to form cf-rGO can be further validated with the help of 
Raman analysis. The Raman spectra for GO and cf-rGO is 
elucidated in figure 4(a) and 4(b) respectively. The D and G 
band of graphene oxide (GO) is observed at 1366 cm-1 and 
1607 cm-1 respectively [18]. The successful reduction of the 
graphene oxide sheets is accomplished with a left shift in the 
Raman spectra. The D and G bands of the cf-rGO was 
observed at 1357 cm-1 and 1599 cm-1 respectively, which is 
the signature that graphene oxide is successfully reduced 
[19]. Attachment of curcumin molecules with the unsaturated 
carbon atoms results in the shift of D and G bands in the 
Raman spectra. Curcumin being a reducing agent, donates 
electrons to the GO sheet, resulting in softening of phonons 
during the interaction [20-21].   

 
Figure 4. (a) Raman analysis for GO (b) Raman spectra for Cf-rGO 

V. SENSING MECHANISM AND RESULTS 

Functionalization of curcumin onto the graphene sheets was 
done during the reduction process. The prepared curcumin 
functionalized reduced graphene oxide sheet is abbreviated 
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as cf-rGO. The cf-rGO sensing layer exhibited a p-type 
sensing characteristics. Pure graphene sheets that are defect-
less are often associated with very low adsorption energies. 
When graphene sheets come in contact with ammonia 
molecules, the adsorption energy is calculated to be 0.114 
eV [22]. For sensing applications, the graphene sheets must 
be induced with several defect sites to increase the 
adsorption energy towards a particular gas. This is achieved 
through proper functionalization. When hydroxyl and epoxy 
groups are attached to graphene sheets, the adsorption 
energy towards nitrogen containing molecules were found to 
be 0.84 eV and 0.219 eV respectively [22]. Hence, with 
proper functionalization, the adsorption energy and hence 
the sensitivity can be increased.  
    The exposure of cf-rGO to ammonia molecules, lead to 
charge transfer from the ammonia molecules to the hydroxyl 
groups of cf-rGO sensing layer. Ammonia behaves as Lewis 
base and efficiently transfers electron to the cf-rGO sheets. 
These electrons recombine with the majority holes of the cf-
rGO and reduces the conductivity of the device. The highly 
efficient functionalization leads to significant increase in 
adsorption energy, given as: 
 
Eb = Eslab +Emole – Emole+slab                                                                             (1)      

 
where, Eslab is represented as the energy of the graphene 
surface, Emole is energy of the ammonia molecules and 
Emole+slab is the energy of the system comprising gas-
graphene interface and ammonia vapors. 
 

Figure. 5 Schematic of sensing mechanism for cf-rGO 
 
The charge transfer takes place through two possible 
mechanisms as elucidated in figure 5. Firstly, the ammonia 
molecules, acting as Lewis base, transfers electron to the p-
type graphene matrix. This reduces the hole concentration in 
the cf-rGO sheet leading to increase in resistance. Secondly, 
the C-OH functionalization over the cf-rGO sheet acts as 
Bronsted sites and donates proton to the incoming ammonia 
molecules, The decrease in positive charge from the cf-rGO 
sheets also induces increase in resistance. The combination 
of these two mechanisms lead to overall increase in sensor 
resistance. The change in resistance is calibrated as sensor 
response for different concentration of ammonia vapors.   
    The repeatability of the sensor was tested when it was 
exposed repeatedly to 500 ppm ammonia concentration. The 
repeatability test was conducted four times as shown in 

figure 6(a). During exposure to 500 ppm ammonia, the cf-
rGO based sensor exhibited a response time of 53 seconds. 
The recovery time was found to be 38 seconds. The cf-rGO 
sensor showed a very good recoverability with almost zero 
baseline drift. High efficiency of the sensor including fast 
recovery and response can attributed to curcumin 
functionalization of the rGO sheets. The specific hydroxyl 
groups not only facilitates efficient charge transfer but also 
ensures easy release of ammonia vapors during recovery 
cycle. Selectivity is a very significant attribute of a sensor 
which was evaluated in presence of seven VOCs. Ammonia, 
acetone, formaldehyde, toluene, benzene, methanol and 
ethanol were used to test the sensor’s specificity. The sensor 
demonstrated very high selectivity towards ammonia 
vapors, but also showed little response towards toluene, 
acetone and formaldehyde. Machine learning algorithms 
such as CNN and Random Forest models play a pivotal role 
in detecting ammonia in presence of these three gases. The 
selectivity of the cf-rGO sensor is demonstrated in figure 
6(b).   
  

 
 
Figure. 6  (a) Repeatability of cf-rGO at 500 ppm ammonia and 
(b) Selectivity of cf-rGO in presence of seven VOCs  
 

The sensor exhibited a quick response time of 23 seconds 
and decent recovery time of 71 seconds when exposed to 
250 ppm ammonia concentration. Commercial gas sensors 
have a tendency to show response fluctuations in presence 
of humidity. Previously reported graphene sensors have 
suffered humidity sensitiveness to a great extent. Thereby, 
cf-rGO based sensor was subjected to different levels of 
humidity to analyze the response deviations. As 
demonstrated in figure 7(a), the sensor showed strong 
immunity towards humidity till RH value of 80%. The 
sensor demonstrated around 6% deviation when the RH 
levels crossed 90%. The sensor was tested for stability with 
500 ppm ammonia concentration. The test was carried out 
for 50 days. The promising results signifies the potential use 
of the cf-rGO sensor for air quality monitoring.  

 
 

Figure 7. (a) Response vs humidity plot and (b) Stability plot 
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Different mixtures of gases were made to expose the sensor 
to different environments. The evaluation of response in 
cross-sensitive environments is vital for accurate detection 
of gases. Machine learning algorithms was applied to the 
derived response of the cf-rGO sensor towards these various 
mixtures. Three mass flow controllers (MFC) was used to 
create different gaseous environments. One dedicated MFC 
was used to flow different concentration of ammonia, and 
the other two MFCs were used to flow either of toluene-
acetone, toluene-formaldehyde or acetone-formaldehyde in 
different concentrations. The combinations of these four 
gases created a dataset for training the machine learning/ 
deep learning models. The created gaseous environments 
and the use of deep learning (DL) to a sensitive cf-rGO 
layer provides a highly accurate gas detection strategy in a 
mixture of gas.   
    The transient response of the sensor was collected for 
different gas mixtures and ammonia was intended to be the 
target gas. The transient response was collected by exposing 
the sensor to the differently created environment, and the 
current level was traced with respect to time at a constant 
applied voltage. For a single gas scenario, ammonia, 
toluene, formaldehyde and acetone was exposed to the cf-
rGO sensor separately at 50, 100, 250 and 500 ppm 
concentrations.  
    In the scenario where two gases are present, with 
ammonia as target gas, one of the three gases was mixed 
with ammonia to create the mixture. (Ammonia + Toluene), 
(Ammonia + Acetone) and (Ammonia + Formaldehyde) 
with different  concentration was formulated and cf-rGO 
was exposed to these gas mixtures. The transient responses 
from this binary system were collected to train the deep 
learning models.  
    Furthermore, ternary gaseous environments were created 
by mixing ammonia with two of the three gases at separate 
concentrations. (Ammonia + Toluene + Formaldehyde), 
(Ammonia + Acetone + Toluene) and (Ammonia + Acetone 
+ Formaldehyde) were used to create the three-gas mixture 
scenario. The transients were collected for individual 
mixtures with specific concentration ratios and applied to 
the DL models.  
    Through this method, the data was collected for 31 
classes of gas mixtures. In one segment, ammonia 
concentration was kept constant and the other gas 
concentrations were varied. In another segment, other gas 
concentrations were kept constant and ammonia 
concentration was varied. Deep learning models were 
trained for these different classes and then tested for 
validation.  
 

A. Data modification 

In the collected transient response from the sensor, the 
data contained current level changes with respect to time. 
The efficiency of the deep learning model was enhanced by 
converting the mono-variate time series data to multi-variate 
time series. This is done by addition of saturation and 
recovery time, saturation and recovery current levels and 
total gas mixture concentrations. The individual mixture 
classes were segregated into recovery and saturation 
regimes. The saturation parameter in the saturation regime is 

set according to equation 1 and 2. The saturation parameter 
is set to zero in the recovery regime. Similarly, recovery is 
set to zero in the saturation regime and recovery parameters 
in the recovery zone is expressed by equation 3 and 4.  
 

 
 

 

B. CNN  

In a complex gaseous environment, ammonia 
concentration is predicted using convolutional neural 
network or CNN. The application of CNN is described as 
follows: 

Initially, there is one input layer with a 32 filter, a 
convolution layer (three kernel) and an activation layer 
along with a normalization layer. Moreover, there are 
additional three convolution blocks associated with 64 filter 
each. These blocks also comprise 3 kernel convolution 
layer, activation layer and normalization stage. There is a 
third convolution block with 64 filters. There is an 
additional three convolution block each with 128 filter, 3 
kernel convolution layer, activation layer and normalization 
stage. An average pooling block is connected to the final 
block and this connects to the output layer through a dense 
system. Overall, 25 layers are used in the CNN model. 
Prevention of over-fitting is done by an Adam optimizer.  

C. Random forest 

Random Forest model is a machine learning technique 
where multiple classification algorithms are used. The final 
layers declares the class that received maximum vote as the 
output. Random Forest can be viewed as collection of 
decision trees, which selects the output class that receives 
the maximum votes. Random Forest is a hierarchical body 
with leaves, branches and nodes. The available features are 
used to construct the decision node, then the process is 
moved to the output leaf or the next node [23]. In this work, 
decision tree with 100-nodes is used to perform the 
detection of ammonia vapor in a gas mixture environment. 
 

D. Results 

The transient data collected from the sensor was divided 
into 80-20 split, 80% being the training data set and the rest 
20% being the validation data set. The training data set was 
fed to the CNN model for classification. In the training for 
CNN, the initial learning rate, stopping learning rate and 
reduction factor was chosen to be 0.001, 0.00001 and 75% 
respectively. The optimum batch size was chosen to be 64. 
Figure 8 demonstrates the 89% test accuracy including 0.27 
loss factor. Figure 9 depicts the accuracy curve analyzing 
the loss in training and validation. The loss curve shows that 
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the model demonstrate a good fit to the data.  
 

 
Figure 8: Training accuracy of CNN 

 
The same data set was also used to train the random forest 

model. The accuracy achieved was 96%. Fifteen nodes were 
set for the random forest model.  
 

 
Fig 9. Loss curve for CNN model. 

 
The 31 classes were tested with both CNN and Random 

Forest models. The models performed well with the test 
data. However, Random Forest was superior to CNN in 
terms of accuracy.  

Table 1 depicts the comparison of the fabricated cf-rGO 
sensor with the previous reports. Our sensor was found to be 
superior in terms of quick response and high selectivity.  

 
     TABLE 1: Comparison of sensor performances 
 

Sensor 

Type 
Response 

(ppm) 
Concentra

tion 
Response 

and 

recovery 

time 

Ref. 

RGO 930 400 ppm 31 s, 500 s [24] 
RGO 80 10 ppm 53 s, 554 s [25] 
RGO 12 800 ppm 505 s, 

1340 s 
[26] 

RGO 23.2 50 ppm 41 s, 198 s [27] 
SnO2 190 800 ppm 36 s, 25 s [27] 
ZnO 180 800 ppm 48 s, 10 s [27] 

Cf-rGO 201 250 ppm 23 s, 71 s This 
Work 

 
 

VI. CONCLUSIONS  

This research employs a single resistive sensor along with 
deep learning models to selectively detect ammonia within a 
complex gaseous mixture. The need for multiple sensors are 
eliminated through this study. The cf-rGO sensing layer was 
found to be highly selective towards ammonia along with 
strong immune behavior towards humidity interferences. At 
500 ppm ammonia concentration, the sensor exhibited 275% 
response. Random forest and CNN was used to classify the 
different mixture of gases with an aim to detect ammonia in 
a binary or ternary mixture environment. Random forest 
with an accuracy of 96% dominates the CNN model (89% 
accuracy). Hence, we have successfully fabricated a 
functionalized sensor that can detect ammonia among 
various interfarance. This method would also be helpful to 
accurately detect chronic kidney diseases. 
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