
I. M.O.V.E.
Bachelor Thesis - Final Report
Marie Kegeleers
Gerbert Van Nieuwaal
Wouter Posdijk

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

ii

z

I. M.O.V.E.
Bachelor Thesis - Final Report

by

Marie Kegeleers
Gerbert Van Nieuwaal

Wouter Posdijk
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University Of Technology
June 2016

Supervisors: Dr. ir. R. Bidarra, TU Delft
N. Salamon, TU Delft, Coach
BEP coordinator, TU Delft, Bachelor Project Coordinator

An electronic version of this report is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report describes the process of the bachelor end project created by Marie Kegeleers, Ger-
bert Van Nieuwaal and Wouter Posdijk. It contains the problem description, problem analy-
sis, research, development process, design choices, implementation details, testing process
and concluding evaluation of the development of the project the past ten weeks.

This project was commissioned by the TU Delft Computer Graphics and Visualization Group.
We were instructed to design and build an interactive installation for crowds in public spaces
using people’s movements and projections.

We would like to thank everyone who supported our project by providing us with all the
tools and locations we needed: Ruud de Jong, TU Delft EEMCS technical support, Philippe
van der Pal, TU Delft process coordinator CEH, and Paul Riem, TU Delft Aula technical sup-
port coordinator.

Finally, a special thanks goes out to our coach Nestor Salamon from the Computer Graph-
ics and Visualization group for his guidance and help throughout the project and our client
Rafael Bidarra from the Computer Graphics and Visualization group for his enthusiasm,
efforts and constant feedback.

Marie Kegeleers
Gerbert Van Nieuwaal

Wouter Posdijk

Delft, June 2016

iii

Summary
In our modern world of today, there are a lot of public locations with large open spaces where
all people do is wait or pass through. Some examples are train stations, airports and waiting
lines at theme parks. Even though people in these locations are surrounded by many other
individuals, there is no social interaction and generally a gloomy atmosphere. I. M.O.V.E. is
designed to change this. This interactive system based on motion tracking aims to entertain
people using projections by motivating them to move around, explore and, most importantly,
interact with each other.

To begin this project, after defining and analyzing the problem, research was done on the
subject of interaction design to discover more about how people could be attracted and en-
couraged to participate, how to detect people, interactive systems that already existed, the
necessary hardware and how to generate fun and attractive graphics. To ensure a fluent
development of the project, the development process was established beforehand describing
all tools used for collaboration, planning and general organization.

Based on the software design, I. M.O.V.E. was divided into three parts. The first part was
calibration. Because the circumstances in which this system has to run are very diverse and
unpredictable due to, for example, different projector and camera positions, the system has
to be calibrated to be able to work properly on a specific location. The next part is people de-
tection which extracts locations from people walking on the scene. The final part is the scene
which generates art based on people’s locations and movements. All the possible events in
the scene and their details are described in the system design.

The system was well tested on different locations and machines. Each individual part was
tested using specific methods and many integration tests were done to test the whole system
and to optimize it for the final installation. An evaluation was done to describe the quality of
the final product which includes a discussion and recommendations.

v

Contents

1 Introduction 1

2 Problem Description 3
2.1 Requirements. 3
2.2 Problem Definition . 3
2.3 Problem Analysis . 4

3 Research 5
3.1 Interaction design. 5

3.1.1 Crowd Attraction . 5
3.1.2 Crowd Participation. 6

3.2 Crowd Art . 7
3.2.1 Examples . 7
3.2.2 Designs . 8

3.3 Hardware . 9
3.3.1 Setup . 9
3.3.2 Calibration . 9

3.4 Image Processing . 11
3.4.1 Software . 11
3.4.2 Methods. 11

3.5 Computer Graphics. 15

4 Development process 17
4.1 Development methods . 17

4.1.1 Upfront planning . 17
4.1.2 Time boxing. 17
4.1.3 Separate responsibilities . 17
4.1.4 Continuous integration . 17
4.1.5 Pair programming . 18
4.1.6 Code standards. 18
4.1.7 Pull requests . 18
4.1.8 System testing . 18

4.2 Organization . 18
4.2.1 Progress tracking . 18
4.2.2 Code versioning . 18
4.2.3 Maintainability control . 19

4.3 General planning . 19

5 System Design 21
5.1 General . 21

5.1.1 Definitions. 21
5.1.2 Vision . 21

5.2 Light Trails . 21
5.2.1 Definitions. 21
5.2.2 Initial state . 22
5.2.3 Time-based events . 22
5.2.4 People-based events . 22

vii

viii Contents

6 Implementation 25
6.1 Software Design . 25
6.2 Calibration . 25

6.2.1 Projection . 25
6.2.2 Meter - pixel map . 26
6.2.3 Projector and camera settings . 27
6.2.4 Projection subtraction settings . 27

6.3 People detection . 28
6.3.1 Structure . 28
6.3.2 Detector . 28
6.3.3 Identifier. 29
6.3.4 Projection elimination. 30
6.3.5 Extractor . 31

6.4 Scene . 32
6.4.1 Event-based design . 32
6.4.2 Entities in the Light Trail Scene . 32
6.4.3 Physics . 33
6.4.4 Limiting the amount of trails . 34
6.4.5 Drawing . 34
6.4.6 Inversion . 34
6.4.7 Configuration . 35

6.5 Hardware . 35

7 Testing 37
7.1 Installations . 37

7.1.1 INSYGHT Lab . 37
7.1.2 Aula . 37

7.2 Methods. 38
7.2.1 Calibration . 38
7.2.2 People detection . 38
7.2.3 Scene . 38
7.2.4 The complete system. 39

7.3 Results . 39
7.3.1 INSYGHT Lab: People . 39
7.3.2 INSYGHT Lab: Robots . 40
7.3.3 Controller tests . 40
7.3.4 Aula tests . 40

8 Evaluation 43
8.1 Discussion . 43

8.1.1 Requirements for the interaction. 43
8.1.2 Objective goals . 43

8.2 Reflection . 44
8.2.1 Project structure . 44
8.2.2 Interaction design. 44
8.2.3 Application of knowledge. 44

8.3 Conclusion . 44
8.4 Recommendations . 45

A Infosheet 47
A.1 Project. 47
A.2 Team . 47

B Original project description 49

C Software Improvement Group 51
C.1 First feedback. 51
C.2 Evaluating first feedback . 52
C.3 Second feedback . 52

Contents ix

D Configuration 53
D.1 Calibration . 53
D.2 Lighttrail . 54

E Poster 57

Bibliography 59

1
Introduction

People in public spaces tend to keep to themselves. They tend to stay within their comfort
zone and do only that which they aim to do: take a break, wait for something or someone, or
get to their destination. Often people are stressed out and moving too fast, and they need to
settle down and be entertained for a moment. That is what we aim to do with I. M.O.V.E.

I. M.O.V.E. stands for Interactive Moment Of Visual Expression. With this project we aim
to pull people out of their comfort zone and let them show their true, creative colors to the
people around them. By letting people control projected art and allowing them to discover
secrets through teamwork, we want to inspire them to be themselves, connect with other
people, and turn a moment of rush or boredom into a moment of peace and entertainment.

After the description and analysis of our problem in chapter 2, the report will cover all the
topics we researched during the first two weeks in chapter 3. After the research phase, the
development process of the project started. All our methods regarding planning, development
and organization will be discussed in chapter 4. When the proper research has been done
and a general planning and development process have been established, the next step would
be to design the system itself before starting the implementation. Chapter 5 describes this
design and explains how the system behaves and what scenarios occur in different situations.
This includes concrete choices about visuals and interaction events. Based on this design
we can set up the software and start the implementation. I. M.O.V.E. is divided into three
main parts which will all be discussed in depth in chapter 6 along with a few words about
hardware and an introduction to the structure of the software explaining the software design.
The parts described in the implementation chapter as well as the whole system need to be
well tested. Because the system is separated into these independent parts, each part and the
whole system require their own testing methods which will be described in chapter 7, which
covers everything about the testing process. Also mentioned in this chapter are the different
installations we deployed, the test results and solutions for encountered problems during
testing. Finally, we will reflect on our methods, progress, experience and the final product
in the evaluation chapter, chapter 8. We will evaluate our project through a discussion,
reflection and conclusion and end with some recommendations.

1

2
Problem Description

2.1. Requirements

The goal of the project is to let passerby-crowd generate, interact with and control displayed
projective art. Below are listed the requirements of the project.

• Location with passerby-crowd and an empty floor for the projection of at least 4m x 8m.

• Temporal setup of projective art on location.

• Crowd should be able tointeract with the projective art.

• Individuals should be able to interact with each other using the projective art.

• Changing locations of crowds/individuals must be tracked.

• Displayed projective art should be generated and controlled by individuals’ movements.

• The art must not add more constraints than physical constraints. E.g. constrain or
force movement to make the art work or require a smartphone app.

2.2. Problem Definition

The TU Delft Computer Graphics and Visualization Group came up with the idea to develop a
system that could entertain passer-by crowd in an interactive way and translated this into a
project. The goal of this project is to enable a large number of individuals to contribute to real-
time procedural art using their movements. The analysis of the crowds’ movements should
involve image processing techniques applicable to a real-time video stream and the generated
art is supposed to be shown using projection and should be generated and controlled by
people’s movements. The final result should be an interactive system that combines real-
time analysis of video content from a crowded scene with an efficient transformation into an
artistic projection stream to some output scene. Some challenges include developing real-
time methods for generating art from data on people’s actual, constantly changing location,
using crowd analytics for artistic purposes and letting different people’s interactions with the
art intermix with each other in a creative way.

3

4 2. Problem Description

2.3. Problem Analysis
Because the project description is not very constrictive, it demands us to be creative and to
decide ourselves what kind of system to design. This includes decisions about placement
of the camera and the projector, what kind of art will be projected and how to make people
interact with the system and each other.

One of the first decisions that need to be made is how the camera and projector are going
to be set up. Based on this decision, the second part to consider is the system design which
describes the art style and events that influence the projection. The goal of this project is to
generate art that people can control based on movements. Therefore, the installation needs
to be able to attract a crowd in order for it to be successful. Next, the attracted crowd needs
to be entertained and motivated to stay. Therefore, the design should encourage participants
to explore, work together and interact with each other and the system.

When the system design is complete, the software is the next part to consider. Image
processing techniques have to be implemented to apply to the video stream and detect where
people are. Based on this information, graphics have to be generated that can be projected
onto the scene. To make the system flexible, a calibration stage needs to be added for opti-
mization and adaptation to every location. These parts have to be combined and tested.

When these parts are implemented and well tested, the system should be ready to be
installed in a public space. A full scale installation can be set up on location.

3
Research

This chapter covers the research that we have done over the first two weeks regarding the
different topics needed to complete this project. The first section contains the results of our
interaction design research, which is then applied in section 2, where examples of interactive
systems and our own design ideas are given. In section 3, the hardware choices and calibra-
tion techniques are covered. Then, in section 4, we cover the image processing software and
techniques, and in section 5, we cover computer graphics software to project the designed
art.

3.1. Interaction design

For an interactive system to be effective, it is necessary that a crowd actually wants to partic-
ipate. Without people interacting with the system, it is useless. Therefore, we first of all need
to figure out how to attract a crowd. The system needs to catch people’s attention. Once it
caught some attention, people have to start participating in the interactive art. Because the
goal of this project is not only to make people interact with the system but also with each
other, multiple people need to be participating. Therefore, we will take a look at possibilities
and techniques to encourage participation.

3.1.1. Crowd Attraction
Before people start to engage with the system, it has to draw them in and attract a crowd. The
first step is to make people actually walk up to the projection before the interaction happens.
Brignull and Rogers [12] researched this subject using an interactive screen where people
could post opinions on a displayed subject. They identified three spaces of activity regarding
public interaction with the installation:

• Peripheral awareness: People do not notice the installation or merely take a look at it.
They know nothing about it and no further engagement is involved.

• Focal awareness: People engage in socializing activities associated with the installation
meaning that they are talking about, gesturing to or watching the system, possibly while
it is being used by others.

• Direct interaction: People interact with the system.

Our goal is to convince people to participate, meaning that they have to transition from the
peripheral activity space to the direct interaction activity space. From focal awareness to
direct interaction will be discussed in ’crowd participation’. Crowd attraction is about the
transition from peripheral to focal awareness. Taking some examples of interactive systems

5

6 3. Research

and their corresponding conclusions into account (e.g. [12], [25] and [10]), we can conduct
a design plan for crowd attraction specifically for our system.

There are two scenario’s we need to consider: an empty field and unknowing by-passers.
When the field is completely empty, the projection needs to show something that makes peo-
ple curious enough to go investigate it. When the field is not empty because of people walking
into the projection area, not knowing that it is an interactive system, something has to catch
their eye to point out the interactivity. This action needs to be clear enough to be noticed by
the walking person himself causing him, the unknowing by-passer, to stop and investigate
or by bystanders to encourage them to walk op to the projection. These luring actions need
to evoke positive conceptions to be able to entice people to move towards the projection [12].
This will most likely not convince anyone to step onto the scene yet which means that the
software has to detect bystanders and show something that clarifies the interactive purpose
and makes them step into the projection area. From there, as soon as people noticed the
projection and engaged by entering the projection scene, the art must change based on the
interaction. Unfortunately, because crowd attraction focuses only on creating awareness for
the installation, this is not enough to make people participate. Now that the system gained
some attention, we need to make sure that the attracted crowd actually participates.

3.1.2. Crowd Participation
According to Maynes-Aminzade et al. [17], people lose interest within 30 seconds if the in-
teractive experience is not entertaining enough. This means that when a few people appear
on scene, the interaction has to start right away and make everyone want to participate.
Furthermore, as soon as there appears to be some participation and the interaction with art
has began, participants need to remain entertained during the whole experience to prevent
them from discontinuing. Churchill et al. [15] confirms this as they found out that users
need constant encouragement to keep interacting with these kinds of public interactive sys-
tems. Maynes-Aminzade et al. [17] defined seven design principles to optimize audience
participation in interactive systems out of which four of those apply to our project as well:

Focus the design on the activity and not the technology Even though interactive systems like
this are not very common and people are easily impressed by the technology, it is very
important to shift their focus to the activity to ensure participation.

Make the control mechanisms obvious Intuitively this means that mechanisms have to be
easy to understand and execute. In our project, because people can arrive and start
participating at any time during the experience, it is not possible to show everyone a
tutorial to explain the controls and therefore they need to be easily derivable from the
combination of movement and projection. On the other hand, making the control mech-
anisms obvious also means showing people that they actually are in control. This can
be done by optimizing the controls to make projections accurately follow movements.

Vary the pacing of the activity This principle focuses more on interaction design instead of
system design in general. Maynes-Aminzade et al. claim that interaction with high
intensity work best when combined with periods of relaxation. If our system contains
multiple types of arts or different phases, they should be combined with short pauses
to allow the audience to cheer and prepare for the next part.

Ramp up the difficulty of the activity As mentioned before, in our case a tutorial is not an
eligible option to explain mechanisms. A better way is to start off with a fairly simple
interactions to make the crowd discover the controls and offer more advanced controls
for the additional effects.

Now we can deploy these principles in the design of our system as described above. These
techniques should optimize crowd attraction and crowd participation and contribute to an
entertaining interactive experience for everyone.

3.2. Crowd Art 7

3.2. Crowd Art
Next, we will show some examples of actual interactive systems and finish with two design
ideas for our project.

3.2.1. Examples
Public interactive systems using real time crowd tracking are currently not widespread. Most
are temporary, non public, small crowd installments, or not tracked by computers. We list
some of these examples below, which fed our choice for interaction design.

Spotlight
ACCESS lets you track anonymous individuals in public places, by pursuing them with a
robotic spotlight and acoustic beam system [38]. The spotlight is moved by a human watching
a live camera feed using a joystick. However two beware-statements are given byMarie Sester:
Some individuals may not like being monitored, some individuals may love the attention [39].

Interactive Art Wall
This installation wall uses a Kinect [43] to let shoppers take control of the iconic Stachus
gate and thereby bring the ancient medieval structure to life by jumping, dancing, waving
and gyrating.

Gymnastics Motion Art
A series of animations based on the motion of athletes. Even though it is not real time and
created by human hands, it is derived from the original footage to create motion art from
movement [26].

Red Nose Game
The Red Nose Game [30] is a collaborative game played on the BBC Big Screens. The game
begins with small red ‘blobs’ (like clown noses), placed randomly across the screen. The
camera is put above the space in front of the Big Screen where the players are located. The
goal of the game is to push the virtual blobs together into a single big blob. Image processing
techniques are used to determine people movement using the live feed of the camera.

Snowball
Electrabel’s TV commercial eindejaarscampagne 2013 [19] shows two people interacting with
a LED display showing winter effects like snow, snowball fight and creating a big snowball.
The wall is a vertical interaction display. Effects are probably not interactive, due to it only
being a commercial.

(a) ACCESS Spotlight (b) Interactive art wall using Kinect (c) Gymnastics motion art

(d) The Red Nose Game
(e) Electrabel TV spot einde-
jaarscampagne 2013

8 3. Research

3.2.2. Designs
Below we designed two interactive art ideas that follow the guidelines specified earlier to
increase participation. For all arts hold that the scene should never be in a static state and
for every action a visible rewarding effect should be included.

Fluid
Fluid is a kind of art that acts like real life fluid which changes color, speed and location based
on people’s movement through the projection. This can also include changes on random
inserted places to keep the scene dynamic and attractive. An example of what the projection
might look like can be seen in Figure 3.2. This idea follows the guideline to create curiosity
in case of an empty projected field to grab the attention of passer-by crowd and attract them
to participate. This also follows the guideline to create curiosity when one or multiple people
walking through the projected art: fluid will move based on the movement of the people.
Each person gets assigned a primary color which they spread by moving. To create a longer
participation, objects can be included, such as a ball, to be guided through the fluid.

Figure 3.2: An experimental fluid simulation

Light Trails
Light Trails is a kind of art which draws ever moving glowing dots leaving a light trail that
swarm around each person on the scene. Two people close to each other exchange these
light trails. When a person leaves the scene, his light trails move to a person who is still in
the scene to encourage engagement. When there is no one on the scene, the light trails pick
spots to circle around to activate interest of passer-by crowd and encourage them to interact
with the light trails. Each person entering the scene starts with a unique color of light trails.
This idea was inspired by the iPhone app Spawn Glow [29] visible in Figure 3.3.

Figure 3.3: iPhone app Spawn Glow [29]

3.3. Hardware 9

3.3. Hardware

To fulfill the requirement to have a setup of projective art and use tracking of movement, the
following choices have been made.

3.3.1. Setup
In this subsection we will select the most likely setup options to a feasible setup for creating
the procedural crowd art.

Player Perception
Multiple solutions exist for the player to be perceiving feedback: audio, visuals, vibrations,
smell and taste. Smell and taste are however not (yet) far developed for this purpose. For
a public space, vibrations and audio feedback are very intrusive, so only visual feedback
remains. Multiple solutions for visual perception exist: lasers, LED walls or floors and pro-
jectors. We chose an off-the-shelf and a fast-to-implement solution, the projector, to con-
centrate on the actual interactive art in software. The projector should have a resolution of
about 720p to prevent a pixel perception of the player. Additional requirements are added
when using a projector:

• A location with a high ceiling with a clear space between floor and ceiling that allows
the projector to display the scene unimpeded in the required size.

• A location with a low light setting and a minimum of daylight.

• The ability to hang the projector on a high place.

• A projector with approximately 5000 ANSI lumen, depending on the of amount external
light [16] [8].

Tracking Players’ Locations
There are multiple ways to track the players: high participation threshold player-added-
technology such as smartphone apps or other external devices for measuring, but also low
participation threshold technology such as radar, laser, infrared, sound or camera. To
achieve the highest participation rate possible and use the cheapest off-the-shelf solution
available, a regular video camera will be our choice. The resolution to be able to capture
individuals from a high distance is required to be about 720p.

If projection subtraction, described in subsection 3.4.2, is too time consuming in terms
of development and therefore not feasible, an alternative is to use an infrared camera. A
drawback of the infrared information is that a surface heats up when a person sits or lays
down for a while. When the person leaves the spot, it leaves a temporal heat signature. This
may result in the detection of two people instead of just one. A method would be required to
be implemented to eliminate this infrared trail stamp.

Processing Device
To process the input and transform it to the output art, we will require a device which can
handle camera input and projector output. A common computer, laptop or embedded device
with a regular CPU, USB and VGA or HDMI will be enough, preferable including a Ubuntu op-
erating system, but probably a Windows system for the installation setup. Further it should
be able to process the visual input and output fast enough to prevent participants from ex-
periencing latency which will cause them to leave quickly.

3.3.2. Calibration
The setup of projector and camera requires the located participants to be mapped to projected
dots on the ground. Arising challenges are: non orthogonal projector and ground and ground-
camera angles for x, y and z parameters, non parallel projector-camera setup and maybe even
including lens corrections.

10 3. Research

Camera calibration
Camera calibration can be done using a checkerboard plane on the floor [31]. The camera
distortion can be calculated using the pinhole camera model extrinsic and intrinsic proper-
ties. This distortion can be used to change the input image to create a non-distorted square
image.

Projector calibration
To calibrate a projector, the approach used for camera calibration can be applied the reversed
way. This method also requires a projected checkerboard pattern on the floor. It also requires
a calibrated camera which captures the complete projected image. The captured image is
used to find the inverted pinhole camera model of the projector to be able to project an image
which is non-distorted and square.

Self-calibration
He Zhoa [44] created an application which retrieves the camera and projector calibrations
from a series of images using the non-calibrated camera and projector. The implementation
is for e.g. Windows and OSX and might require a port to Ubuntu for development. This
self-calibration will speed up our setup time.

Detected object to projector coordinate mapping
Daniel Moreno and Gabriel Taubin [28] show the mapping between the captured image and
the image to be projected. This can be used to map detected objects to coordinates onto the
projection image for processing location and movement into the art to make it interactive on
the correct positions.

3.4. Image Processing 11

3.4. Image Processing

To detect participants and their movement, image processing techniques need to be used. In
this section, we will cover the software aspect of image processing, and the various methods
that we have tried or learned about with regards to solving the problems that come with
finding and tracking participants and their movements.

3.4.1. Software
The choices made in the software aspect concern the library that we are going to use, and in
which language we are going to employ said library.

Libraries
We prioritized selecting a good, well-documented library over picking a specific language;
the quality of the library is a really significant factor in our development speed, whereas an
unknown language is often easy to adapt to. We have found several options.

OpenCV is the industry beast used by big companies like Google and Microsoft [4]. This is
our first and most straightforward option. There is a lot of documentation on this library
and there is an active community. These are very important factors when trying to solve
difficult problems using this library. OpenCV is slightly low-level, and is therefore a little
hard to get into. Conversions between different kinds of images and interpretation of
method results can often prove to be difficult and provide significant overhead. However,
when used right, OpenCV can provide significant performance.

CCV is the next found option [2]. This was quickly dismissed, however, due to its severe lack
of documentation and an active community.

SimpleCV is one option that is considered due to its simplicity [6]. This is a Python library
that is basically a wrapper around OpenCV and some other image processing libraries
or algorithms, to make them easier to work with. This can be seen as the more high-level
version of OpenCV. It allows for fast prototyping, but requires to implement C-bindings
for Python for self created high performance algorithms [32].

Because we need to be able to process the input of the camera real-time, performance is
a high priority for us. Therefore, OpenCV seems like the most sensible option. It allows for
maximum control and simplicity to develop the whole system in the same language. Sim-
pleCV may be used to quickly test different kinds of approaches on a higher level.

Language
Since we picked OpenCV for its low-levelness, it seems sensible to pick a language that
follows that trend. C++ seems the most straightforward choice, simply because C++ is the
only language that OpenCV works in natively. Working in Python or Java would significantly
reduce performance or requires creating bindings [32].

3.4.2. Methods
In this subsection, we will cover the different ways to solve a multitude of problems that are
posed in the process of spotting and tracking people and their movements, along with the
considerations that go into picking the right approach.

Background subtraction
There are many ways to manage background subtraction. We tried out a few of the lightest
ones in OpenCV.

12 3. Research

(a) Two men (b) The background (c) The difference

Figure 3.4: In (c) you see the result of the operation (a) - (b).

In the first approach, one frame is simply selected as a background, as seen in Figure
3.4b. Then applying a simple minus operation:

diff = image− background (3.1)

And after that applying a simple threshold for every color channel 𝑖:

thresh። = {
255 if diff። ≥ 50
0 otherwise

(3.2)

Figure 3.5: The result from thresholding the difference in Figure 3.4c

(a) Two women (b) The difference (c) After threshold

Figure 3.6: A case where this manner of background subtraction does not work.

By applying this threshold we get the result you see in Figure 3.5. The men can be
distinguished fairly well. However, there is also some background noise that is detected as
foreground, which might pose a problem. There is another issue, though, as seen in Figure
3.6. The women have colors very similar to the background, and as a result they fail to get
past the threshold. Because of that, they are not recognized. On top of that, this method
is not at all resistant to changes in the luminosity of the area filmed; the sun might start

3.4. Image Processing 13

shining brighter, causing more daylight to show up. In such a case, all of the image would
be classified as foreground.

(a) Two women (b) KNN result

Figure 3.7: The result of the application of the K-Nearest Neighbor background subtraction algorithm.

Taking all these issues into account, it seems like we need a more complex approach.
When applying the K-nearest neighbor (KNN) algorithm as covered by Zivkovic and van der
Heijden [45], we see the results in Figure 3.7. In the experiment the KNN algorithm shows a
better result. Additionally, since this algorithm adapts every frame, it can adapt to changes
in lighting just as in this experiment.

Should we want to experiment with other algorithms, M. Piccardi [35] has given a clear
overview of what a number of options are. The algorithms by Zivkovic and van der Heijden
have the advantage of already being implemented in OpenCV.

Shadow elimination
In order to detect objects successfully, we need to make sure that shadows are not detected
as ’foreground’ by the background subtraction. Prati et al. [36] have given an overview
of numerous algorithms to spot shadow in a frame. The KNN background subtraction in
OpenCV employs one of these algorithms to find shadows, and gives them a grey color. This
works very well, as can be seen in Figure 3.8.

Figure 3.8: Detection of a shadow. The black values are background, the white values are foreground, and the gray values are
shadow.

Object detection
The first and simplest step in object detection is simply finding areas where a lot of pixels
are classified as foreground. This is called blob detection. This yields the results seen in
Figure 3.9. If two people are far enough away from each other, blob detection works just
fine. However, if they get too close together, they will be seen as a single blob and therefore a
single person. An example of this can be seen in Figure 3.10. Of course, the higher resolution
of this second case may also play a role. Putting a camera as high on top as possible will
reduce those errors.

14 3. Research

Figure 3.9: Labeling of the people in a scene using blob detection. The red circles denote a part that was labeled as a person.

Figure 3.10: An example of side-by-side detection working with a camera from high up.

A different option would be to disregard the background subtraction altogether and use a
Histogram of Gradients (HOG) approach instead. However, this is a very slow method, and
also does not prove to be very accurate, as can be seen in Figure 3.11. We are going to look
into the use of background subtraction to find areas of interest, and then use a HOG detector
only on these areas.

Figure 3.11: The result of using HOG detection.

Object tracking
When we have found in a frame where the people are, a new challenge arises: we need to
know which object represents which person. This is useful knowledge when we want to create
person-specific effects. For example, we might want to give each person a different color to
draw with.

The simplest approach to do such a thing would be to simply say that a person in frame 𝑖
corresponds to the person in frame 𝑖 − 1 with the smallest euclidean distance to the person.
This could pose a problem when people get too close together, however; they might ’switch

3.5. Computer Graphics 15

places’, so to say. Keeping track of the color histogram of a person could be a good solution
for this problem.

Motion detection
When people are on the field, we might want to do something special with their specific
movements. For example, when they thrust their arm forward, or when they spin around,
something should happen. However, this is a very difficult task. An appropriate way to
approach this task is by using Motion History Images (MHI) and Motion Energy Images (MEI)
to distinguish certain motions. [18]. Using both of these types of images allows for a great
distinction between different kinds of motions, since certain different motions can be similar
in either MEI or MHI, but generally not in both [18]. A drawback from this approach is
that these images need to be compared to a set of images that are seen as ’model images’.
Therefore, this approach requires training.

Calibration and projection subtraction
When projecting on the plane that is also filmed by the camera, the camera will also perceive
the projection. Somehow, we need to get rid of this projection from every frame before ap-
plying any of the other methods mentioned. In subsection 3.3.2, we cover the calibration of
the camera and the projector. When calibrated, the location of the projection in the image
perceived by the camera is known. Using that data and the actual projection generated by
the graphics part of the software, we can subtract that projection from the perceived image
to a certain degree. What exactly that degree is and what other issues we may face, we will
see when we set up a testing environment for this situation.

3.5. Computer Graphics

In this section we will first choose a graphics library. After that, we validate our choice for
this library by creating an experimental projection image using this library.

Graphics library
A lot of graphical libraries are available. We have selected a list of graphics libraries that
run on our development and setup platforms: Ubuntu, Mac OS X and Windows, and are
available for the language selected for image processing to limit the development scope to
a single programming language: C++. Another requirement is that the libraries must be
available for free. Below we listed some popular libraries that follow these requirements.

FreeGLUT is a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT)
library. It is a cross-platform library that is written in C [1].

Simple and Fast Multimedia Library (SFML) is a cross-platform software development library
written in C++, designed to provide a simple application programming interface (API) to
various multimedia components in computers. It also provides a graphics module for
simple hardware acceleration of 2D computer graphics which includes text rendering
[5].

Simple DirectMedia Layer (SDL) is a cross-platform development library designed to provide
low level access to i.e. graphics hardware via OpenGL and Direct3D. SDL officially
supports Ubuntu, Mac OS X and Windows. SDL is written in C, works native with C++
[3].

For development using frequent high level utilities and developing in the C++ way, we will
choose SFML for our art.

16 3. Research

SFML Experiment
To validate our choice for the graphics library, we created an experimental projection image
with the SFML: fluid. A beautiful effect would be to simulate fluid flowing over the projected
plane. This would allow for the people to influence this fluid with their movement and get a
feeling of immersion as they fill the scene with color. Such a fluid effect requires some kind
of simulation. Simulating many ’fluid particles’ can be very computationally heavy and is
not fit for real-time use [41]. Instead, we would like to solve the differential equations that
describe the physical state of fluids. Jos Stam [41] proposes a quick Navier-Stokes equation
solver that is geared to speed over accuracy, so that it is fit for real-time use. Implementing
this solver and mapping the results to color values has yielded the results that can be seen
in Figure 3.12.

Figure 3.12: A fluid simulation using the Navier-Stokes solver proposed by Jos Stam [41].

Conclusion
Based on the goal of the project, to let passerby-crowd generate, interact with and control
projected art, and based on the requirements, we investigated interaction design for crowd
attraction and participation. We looked up examples of crowd art which do also achieve the
same project goal. We came up with Fluid and Light Trails as designs for our project art
and continued with choosing a regular camera, projector and general computer as hardware
to fulfill our requirements and looked at the calibration of the camera and projector. After
that we explained how to achieve this with image processing using the OpenCV library and
methods such as background subtraction to accurately detect objects and motion. And we
finished by explaining our choice for SFML as graphics library to display the art.

4
Development process

This chapter will describe the chosen development methods, how the project is organized
using these methods and the general planning of the project.

4.1. Development methods

This section will explain the used development methods: upfront planning, time boxing,
separation of responsibilities, continuous integration, pair programming, pull requests and
testing.

4.1.1. Upfront planning
For our project we have created a general planning upfront. This suits the project, since
the time scope is constrained and small. We have applied those constraints on the project
planning as well. As a starting point we used the already defined planning: the first two
weeks are spent doing research and next six weeks are spent on the implementation. We
planned for adaptation of the planning in the first two weeks of the implementation phase.

4.1.2. Time boxing
To increase control over our development process we have used time boxing [27] for features
and fixes in time box sizes of a week and of a day. Each week in the implementation phase we
started with a meeting on what we were planning to achieve that week. In the second half of
that week we evaluated the progress and if required we changed our approach to the problem
or extended the time required for the specific part. Each day we started with a meeting on
what we were planning to work on that day. In the second half of the day we evaluated the
progress on each part.

4.1.3. Separate responsibilities
At the beginning of the project, each team member chose a specific part of the system to be
responsible for. The team member did the researching, implementing and testing of that part
and processed feedback other team members gave about their implementation. The three
parts for our project are the light trails scene (section 6.4), people detection (section 6.3)
and the connecting component, which in turn consists of calibration (section 6.2), projection
elimination (subsection 6.3.4) and the combining architecture (section 6.1).

4.1.4. Continuous integration
[23] Due to separation into three parts, it is required that the parts are joined together into
a single system. We choose to do this as soon as possible on every finished change in a part
of the system. This way, we made sure to maximize the mergeability, because deviation from
the main branch is as small as possible.

17

18 4. Development process

4.1.5. Pair programming
Because changes in the implementation of the interface, the configuration or utilities may
conflict with other parts of the system, we used pair programming [7] for integration of these
changes into the system. For each part of the system that is changed, the responsible team
member joins the merging developer to use both of their specific knowledge on each part to
find the best way to merge the changes into the main system. This includes taking care of
the deviation from the main branch.

4.1.6. Code standards
For code standards we have used Object Oriented Programming (OOP) [37], Software Im-
provement Group (SIG) [22] maintainability check, the c++ language, which is defined strict
in itself, and standard compiler warnings as errors. OOP has required us to think in a model
driven way instead of imperatively, since the major challenge is to create the right model.
The SIG check has kept the code maintainable for the duration of the whole project including
changes after the time scope had finished. Standard compiler warnings as errors prevented
common pitfalls and created a compiler (not operating system) independent program.

4.1.7. Pull requests
Before a feature was merged on the main branch of the project, a pull request [24] had to
be made. This pull request was then reviewed by a team member and merged into the main
branch if the code complied with the code standards and appeared to be functionally correct.
Otherwise the discussed changes had to be made and again a pull request needed to be made.

4.1.8. System testing
We tested each part separately and tested the system as a whole [13]. Every individual part
was tested using specific methods chosen by the person responsible for that part. Complete
system tests were done by integrating all parts and running them on either a laptop or a
setup with camera and projector.

The testing methods and their results are more extensively covered in chapter 7.

4.2. Organization

In this section we lay out the tools and services we used for our project to control and auto-
mate our project. We used Trello for progress tracking, Git for code versioning, GitHub as a
central resource for Git and for pull requests and SIG for maintainability control.

4.2.1. Progress tracking
For tracking the progress of the project we used the digital card board service Trello [42]. We
used three card categories to organize our development process: To do’s, Doing’s and Done’s.
This gives an overview of what needs to be done, what is currently being done and what is
finished. These cards were used to track features, bugs, refactorings and communication.
Cards associated with a deadline had a due date for a clear overview of whether we were
running on schedule.

4.2.2. Code versioning
To control and automate continuous integration as explained in section 4.1.4, we used Git
[20]. Git allows to store the whole code base including every change in the history of the
project in a single repository and it helps merging code of different versions. For experiments
we also used git to create branches and merge a few features together to do a quick partial
system test or an experimental demo.

GitHub [21] was used as a freely and privately available resource to be our central server
for pushing and fetching our code. This made sure we have a central storage and authority
for our code branches.

4.3. General planning 19

4.2.3. Maintainability control
At the end of the fourth implementation week, we made use of the required submission of our
code to the Software Improvement Group (SIG) [22] for review by experts on the subject of
maintainable software development. Their feedback on our code was evaluated and changes
were applied where needed. A final maintainability check was submitted on the final code
which included those changes to check whether the code maintainability level changed com-
pared to the previous check. Due to the limited duration of the project, the result of that
check will not result in any changes for this project period, but will be of educational benefit
for future projects.

4.3. General planning
First we started with a general planning for the whole project. The project was required to be
split in two phases: the research phase during the first two weeks and the implementation
phase during the other weeks.

During the research phase we focused on people detection methods, rendering scene li-
braries and the mapping between camera and projector.

In the first week of the implementation, the general upfront design of the project was
created and thereby the interface between the people extractor and the scene. In the same
week the scene system design was created upfront and discussed with the client. This would
define the major scope of the project which is part of the project description to create this
scene system design (Chapter 5). Minor changes to both the general system design and the
scene system design were allowed throughout the whole project based on specific unseen
needs for features.

The focus of the next weeks was implementing the different part separately. In the second
implementation week the individual system parts were brought together for a first integration
and tested if they worked together properly. The next weeks this was repeated in a shorter
cycle. All parts were brought together and tested multiple times a week.

Together with that cycle, the following weeks were about testing in the real world. In the
third and fourth weeks the focus was on a small real test setup, to actually use real-time
video for an the interactive scene. The fifth and sixth week were all about testing on the
exposition location. The seventh week was a gift due to the presentation date of the project
being scheduled one week later than initially planned. This week was used for further testing
on the exposition location and start deploying the actual installation. The last weeks were
used for creating a report and a presentation of the project.

5
System Design

This chapter covers the design of the system. The system is what people see and experience
when they pass by or participate. The design describes everything that happens on the scene.

5.1. General
We start off with some general aspects of an interactive system using a camera and a projec-
tor.

5.1.1. Definitions
Camera Area on the surface which is captured by the camera.

Scene Area on the surface which the projector projects the art upon.

Bystander zone Area on the surface 0 - 1 meter distance from the scene.

Bystander Person who stand still on camera and is in the bystander zone.

Passer-by Person who walks through on camera, not entering the scene and not standing
still in the bystander zone.

Participant Person who is in the scene.

5.1.2. Vision
The goal of the system is to let passerby-crowd generate, interact with and control displayed
projective art (see chapter 2). From this follows that moving is preferred above standing
still, being a bystander over a passer-by, being a participant above a bystander and person
- person via system interaction above person - system interaction.

5.2. Light Trails
Now that the general aspects have been explained, a more in-depth description will provide
all the details specific to the system design idea we developed.

5.2.1. Definitions
Light trail A trail of light with a specific hue, 100% saturation and 50% lightness, specific

speed and specific direction.

Light source A point in the scene that sends out light trails at angles, speeds, and hue within
a certain range.

Edge An edge of the scene. It reflects light trails as though it is a mirror.

21

22 5. System Design

Gravity point A point on the scene that attracts light trails within a certain hue range, and
is meant to cause them to orbit around itself.

Anti-gravity point A point on the scene that repels light trails within a certain hue range.

Color hole A gravity point that sucks up light trails within a specific hue range. When a
participant is standing on top of the hole, all sucked up light trails shoot out of it and
return to the person who is standing in the middle of the hole.

Mixing The process wherein both participant’s gravity points change hue to their combined
average. The light trails within onemeter change hue accordingly. The result will be that
the light trails will be exchanged and the participant’s orbiting light trails hue average
should be the same for both participants.

5.2.2. Initial state
• A light source in each corner, corresponding to 4 different distinguishable hue ranges.
Each light source is also a weak gravity point for its hue range, and a very strong anti-
gravity point for the complement of its range.

• 2 types of 5 seconds time slots, time slots change alternating.

– No gravity points: random moving light trails across the screen following their last
trajectory.

– Add gravity point.

5.2.3. Time-based events
• Every 30 seconds, a color hole appears for a random hue range at a random location if
there is not already a color hole (since the last one may not yet have been removed).

5.2.4. People-based events
Empty camera Same as initial state.

Person enters camera Nothing changes.

Person enters bystander zone Randomly assign a specific hue range to person. The color is
one of the colors of the light sources of the corner. Shortly place a gravity point of that
specific color at the point in the scene closest to the person.

Bystander stands still Assign specific hue range to person. In alternating time slots do cre-
ate a gravity point for the assigned hue range at the point in the scene closest to the
bystander.

Participant enters scene A gravity point of the already assigned hue range is created on spot
of person, along with an anti-gravity point corresponding to the exact opposite of the
assigned hue range.

Participant enters empty scene All light trails of the person assigned hue range go di-
rectly to the participant. All other trails directly return to their sources, but reflect
on the sides of the scene.

Participant enters non-empty scene New light trails from the corresponding source move
towards the participant.

Participant stands still on scene Light trails orbit around the participant’s gravity point. The
longer the participant stands still the weaker its gravity point will become, so that light
trails orbit further away from the participant and maybe even get picked up by other
participants.

Participant moves on scene Light trails follow the participant’s gravity point. Gravity gets
stronger again if the participant was standing still and his gravity was weakened.

5.2. Light Trails 23

Two participants are within two meter of each other :

Participant enters radius Light trails from participants will start exchanging and mixing
if the difference between their hue ranges is above a certain threshold. A countdown
of 5 seconds is set after which mixing is complete. If countdown is 0, mixing is
complete, both participants receive the newly created color. At this moment the
light trails fly away from the gravity points for a short moment and return to create
a short explosion effect.

Participants get closer each-other The time before mixing completeness is linearly re-
duced, this is will encourage participants to get closer and interact.

Participants distance themselves The time before mixing completion gets longer to a
maximum of five seconds. This encourages participants to stay close together and
interact.

Both participants move without distance changing Nothing changes.
Participant exits radius If the mixing countdown is not 0, hue of both players will change

to initial hue before mixing and the connection breaks. Otherwise the connection
simply breaks, the players keep the mixed color.

Participant exits scene The participant’s gravity point is removed. The light trails are shot
away upon this removal and will end up at the other participants.

Participant exits bystander zone Participant’s assigned hue is removed.

Participant exits camera Nothing changes.

Participant is within 1 meter of light source If the color of the participant is different from the
source, all his light trails fly away and he receives new ones from the source. If the color
is the same, the source and player exchange some light trails.

Participant stands on color hole The color hole explodes, sending out all the light trails it
sucked up at great speed. It then ceases to exist.

6
Implementation

This chapter covers the general software design and the important implementation parts of
calibration, people detection and the light trail scene.

6.1. Software Design
I. M.O.V.E. consists of two major applications: the I. M.O.V.E. application itself and the
calibration application. The I. M.O.V.E. application is split into two systems: people detection
and the scene.

The people detection reads the calibration configuration, which is created by the calibra-
tion application and uses this to read frames from the configured camera. After detecting
people from the camera frame, the people detection manager pushes the set of detected peo-
ple in the queue for the scene to be read. The scene pops the detected people from the queue
and uses these to show the described effects on the scene. The interaction between different
parts can be viewed in figure 6.1.

The people detection and scene both run in their own process and use shared memory for
communication. Due to the long computing time requirement of people detection for each
camera frame, the scene and the people detection both need to run on its own CPU core to
keep a high enough frames per second for the scene for real people not to notice stuttering.
Due to a limitation of OpenCV [14] and SFML on OS X [40], both systems need to run in the
main thread which results in a separate process for each system. This adds a communication
challenge. For fast communication we use a shared memory between the systems as inter
process communication. The Boost library [11] is used to ease the development of shared
memory communication. To further speed up the communication the scene frame copying
is done in a separate thread in the scene process and in the people detection process.

6.2. Calibration
Several parts of the system that differ for every camera - projector setup are required to be
measured and set as input. This influences the projection, real size per pixel, projector and
camera and the projection subtraction settings.

6.2.1. Projection
The coordinates of extracted people on the camera frame need to be mapped to scene co-
ordinates. This mapping is done using the perspective transformation offered by OpenCV
[34]. The input values are the coordinates on the camera frame. The output values are the
coordinates of the scene frame corners. The last parameter is the perspective transformation
matrix.

OpenCV offers a method which creates this perspective transformation matrix [33] from
four coordinates on the first plane, in our case the camera frame, and four coordinates on

25

26 6. Implementation

Figure 6.1: The high-level design of the software.

the second plane, in our case the scene frame. The four coordinates on the camera frame are
the set coordinates using the mouse which point to the four corners of the projection on the
camera frame. The four coordinates of the scene frame are the four corners of the rectangle
scene.

In every setup, the camera and projector have a different distance between each other.
They also have a different distance towards the floor as well as a different angle. This means
that for every setup the perspective transformation matrix needs to be calibrated. The cal-
ibration is done by indicating the four corners of the projection field of the camera frame
using the mouse pointer. The projection calibration can be seen in figure 6.2.

The researched method in subsection 3.3.2 of using a chessboard for calibration was
not very accurate and simple. The lens of both the projector and camera contain internal
calibration, so no noticeable disturbance can be found. The perspective transformation is
more intuitive, accurate and simpler for this project and is therefore the best option for this
project.

6.2.2. Meter - pixel map
Both the blob detector in subsection 6.3.2 and the scene in subsection 6.4 require to know
the size of a meter in pixels. The blob detector uses this to be able to classify the right size
of blobs as a person and the scene uses this as base unit for parameters such as the size of
a scene element. To be able to support this, the meter - pixel mapping is calibrated on the
camera frame as a distance between two points. These two points are set using the mouse
pointer with a measured distance of 1 meter between these points. An actual known meter
object or surface is required to be put on the floor on the camera frame in the calibration
phase. The meter - pixel calibration can be seen in image 6.3 below.

6.2. Calibration 27

(a) Projection boundaries set by mouse pointer us-
ing a white screen on the projector.

(b) Projection frame based on crop of camera frame.
Here: Approximately the scene top left captured on cam-
era frame bottom right.

Figure 6.2: Calibrating the projection boundary coordinates on the camera frame using a mouse pointer.

Figure 6.3: Calibrating the meter on a camera frame using two set points by a mouse pointer measured on a known length.

6.2.3. Projector and camera settings
For the perspective transformation and real size in pixels, the resolution of the camera is
required. For the perspective transformation, the projection resolution is required as well,
or at least its ratio. The camera settings are read using OpenCV, and the projector settings
are set by the operation system. The projector/scene resolution must then be set in the
calibration configuration.

Besides the resolution, the next thing is to control the focus of the camera and the auto
balancing of colors. A refocus of the camera can cause some disturbance for people detection
and requires it to reset itself. After the camera is focused, the auto focus is turned off. Auto
balance of colors is currently assumed to be done by the camera. This way, light changes due
to clouds or sunlight and the day-night cycle are automatically solved. This holds, assuming
the light changes are not fast.

6.2.4. Projection subtraction settings
For the calibration of the projection subtraction in section 6.3.4, a few parameters need to
be calibrated, because they differ on each installation. The parameter of the intensity of the
subtraction, which is based on the environment light, has to be configured. The synchro-
nization between rendered scene frames and captured camera projection frames has to be
configured as well, so that the most accurate scene frame is subtracted from the camera
frame. Finally, the optimal balance between the amount of frames and the resolution of the

28 6. Implementation

frames has to be configured. This depends on the resolution of the scene, the minimum fps
of the scene, the speed of the camera and the speed of the machine.

6.3. People detection

The second part of the implementation is the analysis of each frame received from the camera
and detection of where people are in the scene. First, the background needs to be removed
so only the people remain in the frame. Next, blob detection can identify people’s locations
and a small correction of those locations based on perspective gives us the location of their
feet. Finally, those detected locations have to be matched with people from previous frames
to know where they moved to, new people have to be created for newly detected locations and
people who left the scene have to be removed.

6.3.1. Structure
The image processing part is split up into four parts:

• PeopleDetector: Analyses each frame and detects locations where people would be.

• PeopleIdentifier: Matches new locations to the right people, creates new people for un-
matched locations and deletes people who left the scene.

• Projection elimination: Removes the scene projection from the camera frame to prevent
disturbance.

• PeopleExtractor: Prepares the frame for detection (resizing and converting to gray scale),
passes the frame to the detector and passes the detected locations to the identifier.

6.3.2. Detector

Background Subtraction
The detector receives a frame to which it applies the K nearest neighbors background sub-
traction from OpenCV. As mentioned in the research, this method works best on our test
videos to remove backgrounds and detect shadows. It also adapts to background changes
easily. The result is a gray scale image containing only three intensities: zero intensity for
areas detected as background, full intensity for areas detected as foreground and half inten-
sity for shadows. Thresholding the image to keep only the full intensity parts leaves us with
a frame with white blobs which should represent people. Using OpenCV’s blob detection we
can find the center of these blobs and the location of the people on scene. The result of this
can be seen in figure 6.4.

Figure 6.4: Example of the result of background subtraction on the left with the original frame including blue circles showing the
final detection on the right.

6.3. People detection 29

Blob Detection
One of the encountered problems with this method is that people are not always detected
as one blob. For example, a person wearing a t-shirt that has a very similar color to the
background will be represented as multiple separate blobs for the person’s head, arms and
legs leaving a black gap where the shirt was supposed to be. Another problem is that small
disturbances in a frame can be detected as foreground and are represented as a blob as well.
These issues can be solved by tweaking the parameters of the blob detection.
The two most important parameters are minimum blob area and minimum distance between
blobs. Defining a minimum area prevents smaller blobs that cannot be a person from being
detected. However, this area cannot be smaller than the area of hands, heads or feet because
these parts still need to be detected in case of similar colors of background and clothes. An
example of this can be seen in figure 6.5. Defining a minimum distance between blobs makes
the blob detection group together blobs that are closer to each other than the minimum. This
means that the hands, head and legs of the person wearing the similar colored t-shirt are
grouped together and he will be detected as a single person.
Because our system needs to be flexible and should work with any camera placed on any
height, these parameters are set based on frame resolution and the number of pixels that
define one meter on the scene. From these blobs we extract the coordinates of the center.
These coordinates are then converted to locations.

Figure 6.5: Three people whose shirt does not get detected. Their head and legs are all separate blobs.

Perspective
We now have the locations of the centers of each blob or set of blobs. However, what we
need for our projection is the location of people’s feet. If the camera is placed directly above
and in the middle of the scene, the part of the blob that is closest to the middle represent
people’s feet. Therefore, it suffices to apply a small correction on each location to pull it more
towards the middle. If the camera is placed more towards one side, the perspective point
in the middle moves towards the other side. The same correction can be made towards the
shifted perspective point. For this correction, the frame gets divided into nine equal sections.
Based on what section the location is part of, a number is added to or subtracted from the
x and/or y coordinate. This number is calculated based on the number of pixels per meter
and the height of the camera.
After all these steps we have a collection of all locations of people detected in the current
frame. Finally, all these locations are stored and passed to the identifier.

6.3.3. Identifier
As mentioned in chapter 5 about system design, each person who walks onto the scene will
get one specific (range of) color assigned to them. Therefore, it is necessary to keep track of
what person moved where so they can keep the same color. This is the identifiers task. Every
frame, the identifier receives new locations of where people have moved. Because it stores

30 6. Implementation

the people who were present in the previous frame, the identifier can match those locations
to people.

Matching People
The first part of matching is done by going over all people from the previous frame first and
checking which location is closest to each of them. When a close location is found, the
person’s location gets updated to the new one. When there is no location close enough where
the person could have moved to, there are two options. The first one is that the person is
standing still but was not detected because they faded into the background. As mentioned
before, the background subtraction algorithm adapts to changes. Therefore, if someone is
standing on the same location for too long, the algorithm will classify them as background.
Because the system encourages movement and people lose their light trails if they stand in
one place for too long and because change in brightness or other factors can cause wrongly
detected locations in some frames, it is not an option not to remove anybody until they
actually leave the scene. Instead, we opted for a countdown timer. When the timer reaches
zero, the person has been standing still for too long or is not a person at all which means
that this person/object has to be removed.
The other option when no near location is found is that this person left the scene. This is only
possible if their previous location was near the border of the frame. If a person was standing
near a border within a certain boundary, they will be removed immediately. This boundary
is calculated based on the number of pixels per meter and the frame resolution.

Handle Remaining Locations
Of course, there is also the possibility that new people walked onto the scene. Locations
that were matched with a person from the previous frame are removed. This means that the
remaining locations are new people who joined or disturbances in the scene due to a change
of lighting, for example. It is easy to distinguish people from these disturbances as people
walk in from the side of frame. This means that most new locations close to a border are
people and others that are located more towards the center are presumably not. For all of
these locations that are close to the border, a new person is created.

Participants and Bystanders
Also mentioned in system design chapter 5 is the distinction between participants and by-
standers. Participants are the people who are located inside of the boundaries of the projec-
tion and possibly actively interacting with the system while bystanders are located outside of
the projection. The Identifier not only receives the boundary of the frame that can be consid-
ered as ’close to the edge’ but also the boundaries of the projection. With this information,
the identifier can check each location to see if it is inside or outside of the projection and
change the type of each person accordingly.

6.3.4. Projection elimination
When trying to identify people on a camera frame while the scene is projected on the floor,
the camera captures both the people and the scene projection. When elements on the scene
have a size close to the size of a person (seen from birds eye view) or when scene elements
cluster towards the size of a person, the elements will be identified as a person due to the
chosen method of background subtraction based on movement as described in section 6.3.2.

The chosen method to reduce this detection of scene elements of the projection is pro-
jection subtraction discussed in section 3.4.2. This method selects the scene frame of a
calibrated time ago due to the delay between projection and video capturing. This selected
scene frame is then transformed to a camera sized frame on the calibrated area where the
projection is located on the camera frame. This is done using the inverse of the perspective
transformation described in subsection 6.2.1. This transformed frame then is subtracted
from the camera frame. The result is that the subtracted camera frame has reduced visibility
of the scene elements so that detection and identification will be more accurate. An example
can be seen in figure 6.6.

6.3. People detection 31

(a) Scene frame (b) Unmodified camera frame (c) Projection subtracted frame

Figure 6.6: The projection elimination using projection subtraction reduced the visibility of scene elements so that detection and
identification will be more accurate. Note: the projector is rotated about 180 degrees compared to the camera.

The current background subtraction is limited to a calibrated constant factor subtraction
of the scene projection. For environments with a diverse floor color spectrum and intensity
the subtraction scale should be based on the floor color and intensity.

6.3.5. Extractor

Because the detector and identifier are two separate entities, there needs to be some kind
of communication between them. Furthermore, they need some information from the cali-
bration like pixels per meter. We also established that image processing was very slow at
first, which was a big problem. The solution for this was down scaling the frame and con-
verting it to gray scale. The detector takes and processes any frame of any size so there
needed to be something in between to take care of this. All this is what the extractor does.
It receives information about the camera resolution, projection boundaries and how many
pixels represent one meter. Based on that information it calculates an appropriate size to
resize the frame to and prepares all parameters to pass to the detector and identifier. When
the extractor receives a frame, it resizes it and converts it to gray scale. Next, the prepared
frame is passed to the detector who returns the detected locations. After this, the extractor
passes the locations to the identifier and receives back all the detected people in the frame.
The last step is to scale these coordinates back to the original frame size. We now have the
right location and information of each person in the frame which can be passed to and used
by other entities. Figure 6.7 and 6.8 are examples of the result of people detection.

Figure 6.7: First example of the result of image processing.

32 6. Implementation

Figure 6.8: Second example of the result of image processing.

6.4. Scene
The scene component of the software is responsible for turning the input that it gets from
the people detection component into the scene. Basically, it needs to implement everything
that is specified in the Light Trails section of the System Design.

Since we want it to be possible to easily add more types of scenes to the program without
having to change anything existing, we set up an abstract Scene class to begin with, that is
extended by the specific LightTrailScene. The Scene class is responsible for everything that
happens in every scene, whereas the LightTrailScene class is responsible only for Light Trail
Scene-specific things, such as drawing of the graphics.

A general scene loop takes the following steps:

1. Check if there is new person data received from the People Detector. If yes, update the
people.

2. Check all conditions and execute all actions.

3. Draw all effects.

6.4.1. Event-based design
When taking a quick glance at the way the System Design is structured, it becomes evident
that the design is event-based, be it time-based events or input-based events. This boils
down to a simple statement: When certain conditions are satisfied, certain actions have to
be executed. Every part of the design can be described in such a way, and therefore it seems
sensible to create abstract classes that describe the two parts of our statement:

Condition Checks whether a condition is satisfied and creates actions as a consequence.

Action Executes an action, and says when it is done, potentially providing a followup action.

Since this structure is the same for every scene, the Scene class is responsible for checking
the conditions and executing the actions. The LightTrailScene class is then responsible for
creating every condition and some initial actions.

Actions do not need to know about each other, and this is enforced in the design. If actions
would be able to know about each other, this would surely cause tight coupling between them,
with bad maintainability as a consequence.

6.4.2. Entities in the Light Trail Scene
Again following rather simply from our System Design are the entities that play a role in the
Light Trail Scene. From the definitions of the Light Trail scene the following classes have
emerged, with their respective responsibilities:

6.4. Scene 33

LightPerson Keep location, hue and status.

LightTrail Keep location, speed and hue, react to force

LightSource Generate light trails based on a set angle, speed, and hue range.

GravityPoint Keep location and gravity, calculate the force on a light trail.

ColorHole Do all that a GravityPoint does, suck up light trails.

In a Light Trail Scene, many instances of all of these entities exist at once. To keep track
of them, we have set up an abstract Repository class that provides adding, getting and setting
functionality. Because this is and abstract class, we can encapsulate the underlying data
structure by using polymorphism. As such, the data structure can be easily replaced when
needed.

These repositories keep track of a set of smart pointers towards the entities, because cer-
tain actions may need to influence any part of the scene independently. Also, using pointers
allows for polymorphism within the entities; color holes may be stored as gravity points, for
example.

Conditions and Actions clearly show which of these repositories they need access to, sim-
ply by specifying them in their constructor. This makes it clear which parts of the scene are
accessed where. For example, the ParticipantGravityPointAction, which tracks a person and
follows it with a gravity points, needs access only to one person, and the repository of gravity
points. This is clearly visible in its constructor.

6.4.3. Physics
We want the participants to attract light trails and cause these trails to orbit around them.
The first step taken to make this happen was to give each participant a gravity point that
exercises gravity on the light trails. We use Newton’s gravitational equation for this purpose.

𝐹 = 𝐺𝑚ኻ𝑚ኼ𝑟ኼ (6.1)

We assume that the mass of a light trail is 1 kg and the mass of the gravity point is defined
in the configuration. This works fine in terms of the participants attracting the trails, but
it will not cause the trails to orbit around them; the trails will simply be pulled towards the
location of the player, and then be stuck there.

(a) No dead zone. (b) Trails orbiting with dead zone.

Figure 6.9: In both images there is one gravity point that attracts red/yellow trails.

Therefore, some kind of dead zone needs to be applied. Within a certain radius from the
gravity point, the trails should not be attracted anymore, to keep them from getting stuck
in the center. However, applying a complete dead zone does not cause orbit either, and
proves to have a very unrealistic effect. Therefore, we haven taken the middle road in our

34 6. Implementation

implementation: the gravity exercised on the light trails does not get any bigger within a
certain radius. That way, the speed still increases, giving a quasi-realistic effect, and trails
will start orbiting.

6.4.4. Limiting the amount of trails
To keep the scene from becoming too busy, we limit the amount of trails that are in the scene.
The first approach we have taken to this end is giving the trails a limited lifetime. That way,
trails die out while new ones are added, and the amount of trails reaches a stable point.

However, we do not want to limit the amount of trails so much that some people will be
walking around without any. Because of that, we increase the amount of trails in the scene
with a certain amount whenever a person enters the scene. Then, when they leave the scene,
the same amount of trails are removed to keep the scene clean.

Because we want everybody to be followed by trails, we send every new person 𝑛 ’initiative
trails’. These trails ignore everything except the person, and will be added to the global trails
to be affected by everything once they are close enough to the person.

6.4.5. Drawing
After the behind-the-scenes processing of the scene is done, it needs to be drawn. Every
action has a list of effects. This list may be empty, if the action does not have any visual
aspects. When drawing the scene, all effects of all active actions are drawn. Effects, again, are
made sure to only know about what they need to know about, as specified in their constructor
parameters.

All drawing is done using the SFML library, as stated in chapter 3.
The most important effect in this scene is the Light Trail Effect, which draws the light

trails. To create the light trail effect with minimal overhead, we slightly darken (or lighten,
if inversion is enabled) everything that was already drawn, and then draw a small square at
the head of the light trail. This way, every trail will be lead by a bright head, and have a
fading line behind it. Also, trails will have a lasting effect this way, since their trails never
completely fade, but their effect is not too intrusive. Of course, we can play with the amount
of ’fade’ and get different kinds of effects, as seen in figure 6.10.

(a) No fade. (b) Low fade. (c) High fade.

Figure 6.10: The scene with different fade values.

This darkening and lightening is done by using SFML blend modes, which map directly
to OpenGL blend modes. To let part of a light trail nearly disappear completely, but not too
quickly, we decrease or increase the RGB values with the fade value, dependent on whether
or not inversion in enabled, and we decrease the alpha value with the fade value in both
cases.

6.4.6. Inversion
At a very illuminated location, such as the TU Delft Aula entrance, described in ”Testing”
subsection 7.1.2, the normal scene is not very visible. Therefore, we have created the option
to invert the scene, to provide more contrast between the trails and the background. In
inverted mode, the background is white, the trails fade to white, and colors that are perceived

6.5. Hardware 35

as lighter are darkened. In figure 6.11 you can see the difference between normal and inverted
mode.

(a) Not inverted. (b) Inverted.

Figure 6.11: The scene in normal mode and inverted mode.

6.4.7. Configuration
In order to avoid magic numbers in the software, and allow for customization of any numbers
to improve design reiteration, we have created a configuration file for the scene, that expresses
distance values in meters, and time values in seconds. Using the pixels-per-meter value that
is calculated by the calibration component, these meter values will then be mapped to pixels.
We use YAML 1.0 to describe this configuration.

Using this configuration, we can, for example, set the thickness of the light trails, change
how fast the scene fades, as seen in the previous subsection, or change the speed of mixing.
By changing these parameters we can adjust the entire experience, and more importantly,
optimize it.

Keeping the configuration maintainable has been quite the hassle. At first, due to lack
of time, we just used a big data class as the configuration that was passed around to all
the places where it was needed. We explicitly did not use the singleton pattern from the
start, though, since that would severely reduce testability; a test needs to be able to pass
its own configuration object. This data class structure, with an enormous constructor as
a result, was not ideal. Therefore, we refactored cohesive parts of the configuration into
smaller classes, creating a hierarchical configuration rather than a flat one. Though this in-
creased the number of calls necessary to get to a configuration item, it significantly improved
readability and the clarity of the configuration interface.

6.5. Hardware
The minimum requirements for the hardware are based on the previously defined design in
section 6.1. Two processes with each a main thread and a thread for communicating the
scene frame, 4 CPU cores are required for the machine to run the application at the required
speed. Tested on cores with 2.3 Ghz. A slower CPU core is not advised. For graphical
processing this is tested on a GeForce GT 720 and Quadro K1000M chip. A slower chip
might be possible, but is untested.

For the setup in the TU Delft Aula entrance, described in ”Testing” subsection 7.1.2, the
setup includes a projector with 5000 ANSI lumen of an projecting area of 7x4 meter. As
referenced in the research in section 3.3.1 this should be enough in an environment with
normal daylight and lamp light. However as can be seen in figure 6.12 the scene is not
visible, even though it is projected. This is partially because the sensor of the camera is
not optimal, because with the human eye it is (barely) visible, but it shows that the defined
amount of lumen is not enough. The conditions in the figure are clouded, high summer and
around the middle of the day.

36 6. Implementation

This means that it is required to have a better control of the environment. This is currently
planned to be done by covering the large windows from where the sun enters the Aula and a
white sheet is planned be layed out on the floor to increase reflectivity of the projected scene.

Figure 6.12: The scene is not visible with a 5000 ANSI lumen projector in the clouded summer at midday.

The 1080p Logitech HD Pro c920 Webcam is more than enough, because the people de-
tection part runs on only 384x216 pixels, and in black and white. Any variant camera with
an equivalent lens and sensor, with a resolution starting at 400x250 will probably be good
enough.

7
Testing

A system like I. M.O.V.E. requires a lot of testing. Even though not everything needs to be
exact, tracking of people brings many different possibilities and corner cases and our scene
has a wide variation of actions. This means that the system needs to be tested as much as
possible to verify all these possibilities. The kind of testing we used most was integration
testing. These tests were performed on different systems, with and without camera and
beamer and using the different installations mentioned in the first section of this chapter.
Apart from or combined with the integration tests, every part had its own testing methods,
which will be described in the second part of this chapter along with the complete system
tests. The final part is a more detailed description of the testing processes. It explains the
results and solutions of the main (scene) integration tests.

7.1. Installations
To be able to test the complete system with a camera faced down from the ceiling and an
actual projector, we were granted access to two locations where we were allowed to setp up
a full installation of our system.

7.1.1. INSYGHT Lab
From week five on, we have had a full testing setup in the INSYGHT lab on the second floor of
the EEMCS building, including a projector and a camera. This setup was not ideal; the scene
was about 2 by 1meters, and the camera hung at a height of about 3.5 meters. Because of the
low camera, a maximum of two people could be tracked at once and due to the low projector
and small projection field, we were not able to see what was being projected and wether the
tracking worked because people’s shadows blocked most of it. However, it managed to point
out a lot of errors and problems with the system as a whole in relatively early stages of the
development, and it was therefore very useful.

7.1.2. Aula
Starting in week 9, we had a full setup in the TU Delft Aula. Both a camera and projector
were available at this location and could be placed several meters above the ground. This
location was our final location where the system would be displayed for several weeks. Being
our primary location, it was, of course, the perfect place to test and tweak the software. Here,
it was possible to fully test every part of the system, including communication between parts
and system endurance.

37

38 7. Testing

7.2. Methods

Each part of the three main parts of I. M.O.V.E. was tested using different methods. Even
though these methods were not all completely seperate tests, in this section a description of
each method is given for every part seperately.

7.2.1. Calibration

Testing the mapping between camera and projector is primarily done using the installed
camera or a webcam. The expected coordinates on the projection are compared to the ac-
tual coordinates. Using the projection coordinates set by the user and using the created
perspective transformation matrix, the camera frame is transformed to only display a rect-
angle projection (here after called ”projection image”) which should correspond to what the
projector shows. For every coordinate on the camera frame the position is augmented on
the camera frame and on the projection frame. The comparison test of expected and actual
coordinates is done visually by the developer.

7.2.2. People detection

Videos
The first tests for people detection were done using videos filmed on balconies at the Aula and
the industrial design building. These gave an impression of how many people were detected
using each feature and different values for each parameter. These videos were very useful
during the beginning of the development process to test background subtraction algorithms,
basic blob detection and perspective adjustments. Further into the process they were useful
to quickly verify the workings of new features before they were tested on a full setup. The
only problem was that these videos were not filmed with a stationary camera. This means
that movement of the camera could also be detected as general movement and this caused a
lot of disturbances in the frame.

Stationary Low Camera
At the first installation location there was a camera available which was attached to the
ceiling and facing down. With this stationary camera it was possible to test image processing
using a live feed. This solved the problem of movement in the background but brought along
some other challenges. The room did not have a very high ceiling wich was a requirement for
our system. It was a challenge to tweak the parameters in a way that the system could detect
people correctly with both the high camera in the videos or eventually the final location, and
the low camera in the lab we worked in. This test setup was sufficient enough to mimic real
life situations and challenges we would face in our final large scale setup.

Stationary High Camera
The debug mode of the system, which we used everytime the whole system was tested, dis-
plays a window on screen showing the image processing part. This way, we were always
able to track how image processing was doing. Therefore, it was easy to identify problems
concerning people detection when we tested the system at our final location for the first time.
Image processing did fine but it was clear that some parameters needed to be modified and
some situations that could not be replicated during the test setup needed to be handled.

7.2.3. Scene

For the scene we use two different kinds of tests: scene integration tests and controller tests.

Scene Integration Tests
The scene integration tests are there to verify that the scene works as a whole: they simulate
an input of people, and show the result of that. They cannot be automated, it is up to the

7.3. Results 39

person running the tests to decide whether or not the results are satisfactory. We use these
tests mainly to see if overall processes work in their entirety, even under large stress (i.e.
many people), and to see if their effects are actually visually appealing. Especially the latter
is very subjective and therefore not automatically testable.

Controller Tests
Though integration tests are a good way to see if everything is functional, it does not show
whether or not it is interesting for a person participating in it. Because of that, we set up an
application wherein people could control a virtual ’person’ walking through the scene using
an Xbox 360 controller. Using this approach, we were able to get a feel for what walking
through such a big scene may be like, and what kind of actions one might take. With this
information, we could then reiterate our design.

7.2.4. The complete system

Integration tests
The kind of testing we used most was integration testing. The three main parts were always
combined as fast as possible to test the whole system. During these tests there were multiple
debugging windows on screen for every part so we would be able to identify quickly where
the problem was located as soon as something went wrong. They were very useful to test
communication between parts as well. These tests were performed on different systems and
locations.

Endurance test
At the end of the project we ran a few endurance tests for the whole system. The system
and the machine it runs on have to be able to cope with power loss, because the machine is
supposed to run at least for a few months and possiblty even longer. The machine should
automatically power on and start the I. M.O.V.E. system after loading. The system also
has to be able to cope with unexpected system crashes and auto restart when something
happens. Both scenarios have been forcefully tested and the system has had long test runs
on different installations to test for stability of the system. All test failures were detected in
the span between the five and ten minutes, which is just outside of the normal development
test time span.

Unit Tests
We have decided not to use unit testing for this project. Unit testing is mainly important
when operations need to have very accurate results. In our case, however, a light trail mov-
ing slightly different than it should or a person being detected a few pixels off is not really a
problem. Therefore, unit testing would require us to set harsh boundaries on the functional-
ity of the system, creating unnecessary overhead. Also, testing the specific implementation
of different actions and conditions is not really important; they are compact, and their code
is easily readable. On top of that, they are supposed to be adaptable, and unit testing would
lock their interface in place. Most errors occur when the entire system is working as a whole;
edge cases generally occur as a result of inconsistencies across multiple actions or conditions.
Integration tests suffice to simulate tricky scenarios and reach these edge cases.

7.3. Results

We have run quite a few tests over the course of the project. Now that all methods have been
explained, we show an overview of these tests combined and what the results were.

7.3.1. INSYGHT Lab: People
While the INSYGHT lab location had been perfect for testing the calibration and a good tool
for testing the image processing, testing the entire system was not really possible in this
setting. However, because this was our first full test including camera and projector, some

40 7. Testing

problems were easy to identify. One of the main problems was the stuttering of the scene due
to the low amount of scene frames per second, which was due to the people detector using a
high load on the same CPU core as the scene. When this was using multiple processes, we
quickly concluded that, if we were to test the system here, we needed something smaller, but
still resembling a human. That is when it was suggested that we test with robots.

7.3.2. INSYGHT Lab: Robots
Using robots, we could not necessarily test interaction, let alone user experience, but it
definitely made it easier to test the image processing in a live and relative bigger environment.
Also, we could use our own judgment to see from the sidelines what things should be changed
about the scene.

In the first robot test, we noticed the following two things:

1. A lot of trails were flying around, making the scene too busy. We have fixed this by
making all trails that are not attracted by people return to their sources.

2. The scene detected itself a lot. Our first approach to fixing this was implementing pro-
jection subtraction, which subtracts the scene, which it knows about, from the input
frame before image processing.

In the second robot test, we found the following:

1. The scene was less busy now. Taking trails back to their sources had been successful.

2. Still, the scene detected itself a lot. We tried another approach on top of the projection
subtraction approach, which was to only let people be detected if they come in from the
side.

The results of these tests helped us to discover and solve some issues but it was still not
enough to test participant interaction. Because our client wanted to be able to experience
what the interaction was like even though there was no location and stronger projection
available we decided to set up a test with controllers.

7.3.3. Controller tests
We have done a couple of tests using controllers, to get a feel for what interacting with the
scene is like. This way, we were able to control where each person was going and try out
interactions on a large field, just like the final setup. During these tests, we quickly realized
that mixing and color holes were not really intuitive enough, and people could easily take
away trails from others, leaving some with none.

7.3.4. Aula tests
After fixing all errors and modifying parameters to make our system work properly at the
final location, the Aula, we showed it to our client. He gave us feedback on what was needed
to improve or change:

1. The scene is not visible enough. This was not something we could change as the location
of our setup is very bright. The solution was to cover up the windows directly above so
no more light could disturb the scene.

2. People who are standing still need to be detected. As mentioned in section 6.3, a person
who is standing still for too long will fade into the background. If the person has not
moved by the time the counter has run out, they will not be tracked anymore. During
our test session at the Aula it was clear that people were standing still way longer than
expected. Therefore, we increased the counter exponentially but did not add the feature
never to delete a person standing still to eliminate the risk of small disturbances staying
on the scene forever.

7.3. Results 41

3. Tracking is not located on people’s feet. Right before the demonstration to our client,
we tilted the camera a little more upwards. Now the camera was not completely facing
downward anymore which caused change in perspective. We changed the perspective
adjustment in the detector accordingly.

Finally, when these issues were solved, we continued testing at the Aula to fully optimize
the system for this location.

The environment of the Aula is currently still to be covered from intense sunlight. This
currently prohibits the scene from being in the attention of people during most daylight times.
The interviews with people to evaluate the system goal (subsection 5.1.2) will be postponed
until the environment is finished.

8
Evaluation

Finally, we evaluate our process, design choices, implementation and more through discus-
sion and reflection. We will conclude our project and give a few recommendations.

8.1. Discussion

In chapter 2 we have described the requirements for this project. In this section, we describe
how we assess whether or not each requirement was fulfilled, or why we were unable to make
such an assessment.

8.1.1. Requirements for the interaction
The goal of the project as described in chapter 1, ”Introduction”, is to let a passerby-crowd
generate, interact with and control projected art. As stated in the research section 3.1,
”Interaction design”, the hardest challenge is to change people’s attention as fast as possible
to persuade them to participate. This is of high importance, because it is the most significant
factor that increases the rate of people participating in the scene. The created system design
specifies those different stages and is modeled to add incremental value.

Testing the degree of value for participants is hardly quantifiable, because it is such a sub-
jective matter. The best option to verify this would be surveying the people passing through
the area. However, at the time of publishing this report, the single installation, at the Aula,
is not yet at its desired potential, because the windows have not been covered yet. Doing any
kind of user interviews would not give results representative for the quality of the system.
The judgment of whether or not this project has been a success is then simply left with the
client.

In a project like this that focuses heavily on interaction, the design needs to be adaptable
and, as a consequence, the software needs to be very adaptable. Due to the event-based
design, conditions and actions can be added and removed with great ease. Thus, should
the project need to be adapted after its conclusion in order to improve the quality of the
interaction, that would be relatively easy to do. Therefore, though it is not expected that the
project will be unsatisfactory, the software is prepared for the scenario.

8.1.2. Objective goals
While assessing the success of the requirements related to interaction is very difficult, the
fulfillment of objective requirements is easier to assess. In this subsection, we will cover
these objective requirements.

Tracking changing locations of crowds/individuals
The tracking of people performs very well in the Aula setting. Using testing videos we can
compare the results with our human eye, and see that the tracking is very satisfactory.
Therefore we call this requirement fulfilled.

43

44 8. Evaluation

Displaying projective art controlled by the crowd
We specified the way this goal was going to be executed in the System Design in chapter 5.
By executing and testing the software, we can see if all the events described in the system
design actually happen. It is clear to see when doing such tests that the system design is
in fact fulfilled by the software. Because of that, we will also say that this requirement has
been fulfilled.

No constraints for participation
As a natural result from good people tracking and displaying of the art, people do not need
anything other than to be in view of the camera to participate. Neither is the participant
forced at any time in the scene to fulfill an action before being able to control the scene.
Therefore, this requirement is fulfilled.

8.2. Reflection
In this section we look at our own experience with the project, what we learned and where
we applied the knowledge we have gained from the computer science bachelors.

8.2.1. Project structure
Due to the freedom of the project, we had to enforce structure upon ourselves. For the first
time in the study program, we were responsible for the entire project management ourselves.
This has been a very valuable experience. It has taught us responsibility, and perhaps more
importantly, pro activity. If we wanted something to happen we had to make sure that it
happened. Thankfully, we have had a lot of help from our client, Rafael Bidarra, when it
came to acquiring a location and the gear required for a full setup. Without his excitement
and connections it would have been very unlikely this would have happened within the frame
of the project. This teaches us that connections are important, and that we should try to
create and maintain them, should we ever want to achieve something similar.

8.2.2. Interaction design
The requirement for human interaction and encouragement thereof is deeply ingrained in
this project. Interaction design has played a role in other projects in the bachelors, but it
has not been as important as it was in this project. This has proven to be quite a challenge
for us. As computer science students, our expertise is creating software that does what is
has to do. Part of this expertise is to translate clients’ requirements and loose defined scope
into software. This is where the system design comes in. In this project the creation of the
system design was relatively difficult, since we had to base it on a part of reality that is not
at all clearly defined: human behavior. Thankfully, we are far from the first people to come
across such issues, and literature was available on the subject. However, translating this
literature into a design for our specific case was quite the challenge still.

8.2.3. Application of knowledge
The part of our curriculum that is most prominent in nearly any software project is the
Software Engineering Methods course. This course has taught us how to create good software
that adheres to the SOLID principles. We have applied our knowledge gained about this
throughout the entire project, and have been above average successful at that, judging from
our first SIG rating. In the development of the people detector, knowledge from the Image
Processing and Multimedia Analysis elective courses, which two of us have followed, has
been very applicable. Our prior experience with OpenCV and image processing techniques
made it significantly easier for us to get a good basis going for this part of the software.

8.3. Conclusion
In the past ten weeks, we have built an interactive system that uses nothing more than a
camera, a projector and a general computer. People do not need anything other than to be

8.4. Recommendations 45

physically present in order to participate.
We have done research on the methods we could use to fulfill the project requirements,

we have planned out the structure of the project, and we have extensively tested the system.
Using projection subtraction, background subtraction and blob detection, we have imple-
mented a real-time top-down people detector, along with an identifier that keeps track of
which person is whom. We have created a system design that aims to encourage interaction,
and by modeling the software design of the scene to match the event-based design of the
system, we have made the scene adaptable and maintainable. Though it is very difficult to
assess whether or not the interaction design was successful, our system is made in such an
adaptable way that it can always be changed to improve interactivity, should this be neces-
sary. Also, the system can be run in any environment with limited light, large open floor and
high enough ceiling to show a large projection, because of its calibration component.

Through all these efforts we have successfully brought I. M.O.V.E into the world. We have
created a low-budget interactive experience for everybody to enjoy. I. M.O.V.E. literally shows
people their normal surroundings in a different light and gives them the ability to control the
light, which allows them to be entertained, to explore and to express themselves.

8.4. Recommendations
In this project, we have not only created a setup that allows people to interact with each
other in a creative way, we have also laid the foundation for more of these kinds of projects
to come. The system is very adaptable and a new scene would be interchangeable with our
Light Trail Scene. A setup containing just a camera, a projector and a computer is relatively
cheap for such a large interactive experience. Therefore we recommend that this project is
expanded upon, so that many more interactive experiences such as this one may be created.

Another recommendation is to actually assess the interaction design when the windows
of the Aula are covered by interviewing people who participated in the scene. This assess-
ment will enrich the known value of the system and this feedback can be transformed and
embedded into the system for possible enhanced value.

A
Infosheet

Procedural Real-time Crowd Art

Product I. M.O.V.E. - Interactive Moment Of Visual Expression

Client Computer Graphics and Visualization group, Intelligent Systems department, Faculty
EEMCS, TU Delft

Presentation date Friday July 1st 2016

Public exposition location TU Delft Aula entrance

A.1. Project
Challenge Designing and building an interactive system based on motion tracking which

allows people to generate, control and interact with projective art.

Research Methods for stimulating crowd participation, people detection and tracking, draw-
ing a scene and calibrating the setup.

Process Upfront general planning and general design, separate responsibilities, agile de-
velopment with time boxes of weeks and days and system testing. Unexpected chal-
lenges interprocess communication and projecting in a bright space were solved resp.
by shared memory mapping and controlling the environment

Product An interactive light trail scene for passerby-crowd with colorful light trails following
your movements and a variation of events to discover.

Outlook Deployed at TU Delft Aula entrance.

A.2. Team
Rafael Bidarra R.Bidarra@tudelft.nl, client contact, CGV group, TU Delft

Nestor Salamon N.ZiliottoSalamon@tudelft.nl, coach, CGV group, TU Delft

Marie Kegeleers Marie@Kegeleers.be, team member
Activities: planning, people detection

Gerbert van Nieuwaal G.vanNieuwaal@McDuck.eu, team member
Activities: communication, calibration

Wouter Posdijk W.Posdijk@gmail.com, team member
Activities: general design, scene

This final report can be found at: http://repository.tudelft.nl

47

http://repository.tudelft.nl

B
Original project description

[9] Experimental interactive experiences have sometimes been set up in public places but they
mostly limit this interactivity to a few individuals. This project aims at developing interactive
image processing techniques for enabling large, moving crowds to contribute to the real-time
creation of procedural projection art (as inspiration only, see e.g. the excerpt of Seventh
Sense at https://youtu.be/iQlDEPLHPyQ).

Context
Large infrastructures like stations and malls often contain huge surfaces (e.g. floors and
walls) where passer-by crowds could both generate, control and enjoy displayed projective
art. The experimental outcome of this project aims at being actually used in such a setting.

Assignment
In this project we will investigate how to combine the real-time analysis of high-resolution
video content form a crowded scene with its efficient transformation into an artistic projective
stream to some output scene. The main challenges to approach include the development of
real-time methods for, among (many) other things:

• procedurally generating abstract geometry from data on actual people’s (changing) lo-
cations

• letting trails left by walking people creatively intermix and interact (e.g. based on color,
speed, direction,…)

• using heatmap and other crowd analytics information for artistic purposes

In addition, the project will explore some more directly game-oriented crowd interaction,
like e.g. leading people to (possibly collectively) perform some action(s) and/or adjust their
behavior, either for entertainment or for some gamified purpose(s).

Requirements
Good programming skills, in particular on CG topics, are a pre.

49

https://youtu.be/iQlDEPLHPyQ

C
Software Improvement Group

The chapter attaches the first feedback from the Software Improvement Group (SIG), covers
the evaluation for the project and attaches the second feedback from SIG.

C.1. First feedback

De code van het systeem scoort bijna 4.2 sterren op ons onderhoudbaarheidsmodel, wat
betekent dat de code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald
door een lagere score voor Unit Interfacing.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkeli-
jker te begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere
methodes in dit systeem, zoals bijvoorbeeld de ’Calibration::createFromFile’-methode in Cal-
ibration.cpp, zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen wor-
den naar aparte methodes. Commentaarregels zoals bijvoorbeeld ’// read frames_projector_
camera_delay from yml using OpenCV FileNode; default if not existing’ en ’// retreive cam-
era resolution from OpenCV VideoCapture’ zijn een goede indicatie dat er een autonoom stuk
functionaliteit te ontdekken is. Het is aan te raden kritisch te kijken naar de langere meth-
odes binnen dit systeem en deze waar mogelijk op te splitsen.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een boven-
gemiddeld aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op
een gebrek aan abstractie. Daarnaast leidt een groot aantal parameters nogal eens tot ver-
warring in het aanroepen van de methode en in de meeste gevallen ook tot langere en com-
plexere methoden. ‘LightTrailConfiguration’-methode in LightTrailConfiguration.cpp bijvoor-
beeld heeft 21 parameters. Het Unit interfacing score can beter worden als de relevante meth-
ode parameters door nieuwe classes ingekapseld worden: bijvoorbeeld een ‘Gravity’ class die
‘_participantGravity’, ‘_bystanderGravity’, and ‘_bystanderGravityDelay’, etc inkapselt.

Om bij toekomstige aanpassingen duidelijker te maken wat er precies meegegeven moet
worden aan deze methodes is het aan te raden een specifiek type te introduceren voor deze
concepten.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te
behouden tijdens de rest van de ontwikkelfase.

Als laatste nog de opmerking dat er weinig (unit)test-code is gevonden in de code-upload.
Het is sterk aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit
automatische tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen
niet voor ongewenst gedrag zorgen.

51

52 C. Software Improvement Group

C.2. Evaluating first feedback
Our code is above average maintainable. This is an achievement with which we are happy.
Before we submitted the code to SIG, we knew that the classes ’LightTrailConfiguration’ and
’Calibration’ were too large. These classes were ment to only hold data and therefore assessed
the risk to be low for our project and thereby putting our focus on other parts. The change
in design has been postponed until the second submission to SIG.

To reduce the Unit Size the class ’Calibration’ (renamed to ’ImoveConfiguration’) is sub-
divided into classes ’CameraConfiguration’, ’ProjectorConfiguration’ and ’Projectionelimina-
tionConfiguration’. Corresponding methods such as ’Calibration/ImoveConfiguration ::cre-
ateFromFile’ are hereby split up into their own method ’<class>::createFromNode’.

To reduce the Unit Interfacing the class ’LightTrailConfiguration’ has been subdivided into
classes ’TrailConfiguration’, ’GravityConfiguration’ and ’EffectConfiguration’. These classes
have again been subdivided into in smaller classes. Hereby the amount of parameters of the
constructor has been reduced and become manageable.

We have chosen to use no (unit)test-code in our project. The risk is that changes to the
code may result in unexpected behavior of the application. More information about this
chosen method can be found in subsubsection 7.2.4.

C.3. Second feedback
In de tweede upload zien we dat het codevolume sterk is gegroeid, terwijl de score voor on-
derhoudbaarheid ongeveer gelijk is gebleven.

In de feedback op de eerste upload werden Unit Size en Unit Interfacing als verbeterpunten
genoemd. Bij Unit Interfacing zien we een zichtbare verbetering, zowel in het refactoren van
de bestaande code als in de nieuwe code, maar bij Unit Size is dat anders. Jullie hebben
daar weliswaar de genoemde voorbeelden aangepast, maar die verbeteringen worden weer
grotendeels ongedaan gemaakt doordat de nieuwe code ook weer nieuwe lange methodes
bevat. Daarnaast is aan bestaande methodes nieuwe functionaliteit toegevoegd, waardoor
die methodes ook langer zijn geworden (CalibrationProjectionWindow::drawImage is hier een
voorbeeld van). Dat soort situaties is vrij normaal, maar het is de bedoeling om tijdens het
aanpassen dan tegelijk na te denken of die methode eventueel kan worden gerefactored.

Jullie hebben zoals gezegd vrij veel niewue code toegevoegd, maar daar staat tegenover
dat er nog steeds weinig testcode is. Dit is wat ons betreft een gemiste kans, aangezien je na
elke aanpassing het hele systeem nu met de hand moet gaan testen.

Uit deze observaties kunnen we concluderen dat een deel van de aanbevelingen van de
vorige evaluatie zijn meegenomen in het ontwikkeltraject.

D
Configuration

This appendix covers the configurable parameters for the calibration and the lighttrail scene
and gives their unit and definition.

D.1. Calibration
This section shows the configurable parameters for the calibration and gives their unit and
definition.

Parameter Unit Definition
General
Debug_mode bool When 1 shows debug images
Camera
Camera_device unsigned char Operating system defined id

(id) for camera
Resolution_camera tuple in pixels Resolution of the camera

(width, height)
Meter_camera float Amount of pixels on a camera frame

(pixels/meter) per measured meter
Projector
Fullscreen_projector bool When 1 show projector fullscreen on

most left screen, when 0 as window
Resolution_projector tuple in pixels Resolution of the scene

(width, height)
Maximum_FPS_scene unsigned int Limits the frames per second of

(frames / second) the frame
Meter_projector float Amount of pixels on a scene frame

(pixels / meter) per measured meter
Projection
Projection_top_left tuple in pixels Coordinate on camera frame of top

(x, y) left corner of the projection
Projection_top_right tuple in pixels Coordinate on camera frame of top

(x, y) right corner of the projection
Projection_bottom_left tuple in pixels Coordinate on camera frame of bottom

(x, y) left corner of the projection
Projection_bottom_right tuple in pixels Coordinate on camera frame of bottom

(x, y) right corner of the projection
Projection subtraction
Projector_background_light float Intensity to subtract projection
FPS_capture_scene unsigned int Amount of scene frames to catch per

53

54 D. Configuration

Parameter Unit Definition
Projection subtraction (continued)
Factor_resize_capture_scene unsigned int Higher means faster receiving by

people detection, but lower accuracy
(frames / second) second for projection subtraction

Frames_projector_camera_delay unsigned int Amount scene frames delay before
(scene frames) subtracting projection

Iterations_delay_peopleextracting unsigned int Aligning people detector by amount
delay iterations

D.2. Lighttrail
This section shows the configurable parameters for the lighttrail scene and gives their unit
and definition.

Parameter Unit Definition
General
Resolution tuple(pixels) The resolution of the screen.
Meter pixels The amount of pixels that represents a me-

ter in real life.

Light Source Hues
TopLeftHue tuple(degrees) The hue range of the top left corner.
TopRightHue tuple(degrees) The hue range of the top right corner.
BottomRightHue tuple(degrees) The hue range of the bottom right corner.
BottomLeftHue tuple(degrees) The hue range of the bottom left corner.

Light Sources
SendOutDelay seconds The amount of time the light sources wait

before sending out the next trail.
SendOutSpeed tuple(𝑚/𝑠) The range of speeds the trails send out trails

at.
TrailCap int The maximum amount of trails in an empty

scene.
SourceHueChangeRange meters The radius around a light source wherein a

person changes color.

Participant
ParticipantGravity float The gravity of a participant.
ParticipantAntiGravity float The antigravity of a participant.
ParticipantGravityRange meters The radius wherein a particpant attracts

trails.
ParticipantGravityDistance meters How far in front of a participant their gravity

point is placed.
ParticipantMovedThreshold 𝑚/𝑠 How fast a player needs to move to alter

what their ’front’ is.
ParticipantSideThreshold meters How close a person needs to be to the side

before their gravity point is not placed in
front anymore.

Bystander
BystanderGravity float The gravity of a bystander.
BystanderGravityDelay seconds The time it takes to switch the bystander

phase (see system design).
BystanderGravityRange meters The radius wherein a participant attracts

trails.

D.2. Lighttrail 55

Parameter Unit Definition
Alternating Gravity Points
AlternatingGravity float The gravity of an alternating location gravity

point.
AlternatingGravityDelay seconds How long the alternating gravity point waits

before changing its location.
AlternatingGravityRange meters The radius wherein an alternating gravity

point attracts trails.

Dead Zone
ProximityRange meter The radius of the gravity dead zone.
ProximityModifier float The number the gravity is multiplied by

within the dead zone.

Light Trails
SidesEnabled bool Whether or not the trails bounce off the

sides of the scene.
SpeedCap 𝑚/𝑠 The maximum speed of a light trail.
TrailThickness 𝑚ኼ The total area of the head of a trail.
TrailMaxLength meters The max length of the head of a trail.

Drawing
Fade uint8 How much the trails fade every frame.
Inverted bool Whether or not the colors should be in-

verted.

Mixing
MixingSpeed degrees/s How quickly mixing goes at the largest dis-

tance.
MixingDistance meters The distance wherein people engage in mix-

ing.
MixingRevertTime seconds How long it takes to revert mixing.
MixingTrailRange meters The radius wherein trails are affected by

mixing.
MixingEffectThickness meters How thick the mixing effect is.

Explosion
ExplosionAntigravity float The antigravity of an explosion effect.
ExplosionGravity float the gravity of an explosion effect.
ExplosionExTime seconds The duration of the antigravity of an explo-

sion.
ExplosionInTime seconds The duration of the gravity of an explosion.

Light Source Gravity
LightSourceGravity float The gravity of a light source.
LightSourceGravityRange meters The radius wherein a light source attracts

trails.

Color Hole
ColorHoleDelay seconds How long it takes before a new player is se-

lected as the color hole.
ColorHoleGravity float The gravity of a color hole.
ColorHoleGravityRange float The radius wherein a color hole attracts

trails.

56 D. Configuration

Parameter Unit Definition
Color Hole (continued)
ColorHoleRange float The radius wherein a color hole consumes

trails.
ColorHoleEffectThickness meters How thick one of the circles of the color hole

effect is.
ColorHoleEffectPeriod seconds The time between the creation of each color

hole effect circle.

Stars
StarAmount integer The amount of stars in the background.
StarSpeed 𝑚/𝑠 The maximum speed of the background

stars.

Initiation
StandingStillFadeTime seconds How long it takes for a person that is stand-

ing still to lose all gravity.
InitiateTrailRange meters How close initating trails need to be to a per-

son to be added to the scene.
BystanderInitiateTrails integer How many trails are created for a by-

stander.
ParticipantInitiateTrails integer How many trails are created for a partici-

pant.

Light Source Effect
SourceTrailAmount integer How many trails are in the light source ef-

fect.
SourceTrailPlacementRange meters The radius wherein trails can be placed for

the light source effect.

E
Poster

57

Bibliography
[1] The freeglut project :: About. URL http://freeglut.sourceforge.net/. Accessed:

25-4-2016.

[2] Ccv. http://libccv.org/, . Accessed: 25-4-2016.

[3] Simple directmedia layer, . URL https://www.libsdl.org/. Accessed: 25-4-2016.

[4] Opencv. http://opencv.org/. Accessed: 25-4-2016.

[5] Simple and fast multimedia library. URL http://www.sfml-dev.org/. Accessed: 25-
4-2016.

[6] Simplecv. http://simplecv.org/. Accessed: 25-4-2016.

[7] Dynelle Abeyta. What is pair programming? URL http://www.galvanize.com/blog/
what-is-pair-programming/#.V2k-kO2lilM. Accessed: 21-6-2016.

[8] AENC. Lichtopbrengst. URL http://www.beamerplanet.nl/lichtopbrengst.html.
Accessed: 29-4-2016.

[9] Rafael Bidarra. Procedural real-time crowd art. URL https://bepsys.herokuapp.
com/projects/view/165. Accessed: 29-4-2016.

[10] Aaron F Bobick, Stephen S Intille, James W Davis, Freedom Baird, Claudio S Pinhanez,
Lee W Campbell, Yuri A Ivanov, Arjan Schütte, and Andrew Wilson. The kidsroom: A
perceptually-based interactive and immersive story environment. Presence: Teleopera-
tors and Virtual Environments, 8(4):369–393, 1999.

[11] boost c++ libraries. Chapter 15. boost.interprocess - 1.54.0. URL http://www.boost.
org/doc/libs/1_54_0/doc/html/interprocess.html. Accessed: 21-6-2016.

[12] H. Brignull and Y. Rogers. Enticing people to interact with large public displays in public
spaces. Human-Computer Interaction INTERACT ’03, pages 17–24, 2003.

[13] ISTQB Exam Certification. What is system testing? URL http://
istqbexamcertification.com/what-is-system-testing/. Accessed: 21-6-2016.

[14] Nomis Ch, Shervin Emami, Vincent Ravier, Gus K Lott, Sanjiv K Bhatia, and
Peb Aryan. opencv-users - imshow(), waitkey() from within a thread –> not
updating the display. URL http://opencv-users.1802565.n2.nabble.com/
imshow-and-waitkey-from-within-a-thread-gt-not-updating-the-display-td6918493.
html. Accessed: 21-6-2016.

[15] Elizabeth F Churchill, Les Nelson, Laurent Denoue, Jonathan Helfman, and Paul Mur-
phy. Sharing multimedia content with interactive public displays: a case study. In
Proceedings of the 5th conference on Designing interactive systems: processes, practices,
methods, and techniques, pages 7–16. ACM, 2004.

[16] Coolblue. Advies over beamers = beamercenter.nl. URL http://www.beamercenter.
nl/advies/beamers.html. Accessed: 29-4-2016.

[17] R. Pausch D. Maynes-Aminzade and S. Seitz. Techniques for interactive audience par-
ticipation. ICMI, 2006.

59

http://freeglut.sourceforge.net/
http://libccv.org/
https://www.libsdl.org/
http://opencv.org/
http://www.sfml-dev.org/
http://simplecv.org/
http://www.galvanize.com/blog/what-is-pair-programming/#.V2k-kO2lilM
http://www.galvanize.com/blog/what-is-pair-programming/#.V2k-kO2lilM
http://www.beamerplanet.nl/lichtopbrengst.html
https://bepsys.herokuapp.com/projects/view/165
https://bepsys.herokuapp.com/projects/view/165
http://www.boost.org/doc/libs/1_54_0/doc/html/interprocess.html
http://www.boost.org/doc/libs/1_54_0/doc/html/interprocess.html
http://istqbexamcertification.com/what-is-system-testing/
http://istqbexamcertification.com/what-is-system-testing/
http://opencv-users.1802565.n2.nabble.com/imshow-and-waitkey-from-within-a-thread-gt-not-updating-the-display-td6918493.html
http://opencv-users.1802565.n2.nabble.com/imshow-and-waitkey-from-within-a-thread-gt-not-updating-the-display-td6918493.html
http://opencv-users.1802565.n2.nabble.com/imshow-and-waitkey-from-within-a-thread-gt-not-updating-the-display-td6918493.html
http://www.beamercenter.nl/advies/beamers.html
http://www.beamercenter.nl/advies/beamers.html

60 Bibliography

[18] J. W. Davis and A. F. Bobick. The representation and recognition of human move-
ment using temporal templates. In Computer Vision and Pattern Recognition, 1997. Pro-
ceedings., 1997 IEEE Computer Society Conference on, pages 928–934, Jun 1997. doi:
10.1109/CVPR.1997.609439.

[19] ENGIE Electrabel. Electrabel tv spot: eindejaarscampagne (nl). URL https://www.
youtube.com/watch?v=nCf8E6QrGqc. Accessed: 25-4-2016.

[20] Git. Git. URL https://git-scm.com/. Accessed: 21-6-2016.

[21] GitHub. Github. URL https://github.com/. Accessed: 21-6-2016.

[22] SIG (Software Improvement Group). Getting software right. URL https://www.sig.
eu/nl/. Accessed: 21-6-2016.

[23] Steffan Harries. Continuous integration. URL http://books.stuartherbert.com/
if-i-knew-then/continuous-integration.html. Accessed: 21-6-2016.

[24] Mark Johnson. What is a pull request? URL http://oss-watch.ac.uk/resources/
pullrequest. Accessed: 21-6-2016.

[25] S. Robertshaw K. O’Hara, M. Glancy. Understanding collective play in an urban screen
game. Proceedings of the 2008 ACM Conference on Computer Supported Cooperative
Work, 2008.

[26] Tim Maly. Using motion capture and code, to turn gymnasts
into data art. URL http://www.fastcodesign.com/1669232/
using-motion-capture-and-code-to-turn-gymnasts-into-data-art/1. Ac-
cessed: 25-4-2016.

[27] MindsTools. Timeboxing - time managment training from mindtools.com. URL https:
//www.mindtools.com/pages/article/timeboxing.htm. Accessed: 21-6-2016.

[28] Daniel Moreno and Gabriel Taubin. Simple, accurate, and robust projector-camera cali-
bration. In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT),
2012 Second International Conference on, pages 464–471. IEEE, 2012.

[29] Elements of Design LLC. ’spawn glow free’ (art, fireworks and light-show)’ in de app store.
URL https://itunes.apple.com/nl/app/spawn-glow-free-art-fireworks/
id377851369?mt=8. Accessed: 29-4-2016.

[30] Kenton O’Hara, Maxine Glancy, and Simon Robertshaw. Understanding collective play
in an urban screen game. In Proceedings of the 2008 ACM conference on Computer
supported cooperative work, pages 67–76. ACM, 2008.

[31] OpenCV. Opencv: Camera calibration, . URL http://docs.opencv.org/3.1.0/dc/
dbb/tutorial_py_calibration.html#gsc.tab=0. Accessed: 25-4-2016.

[32] OpenCV. Opencv: Introduction to opencv-python tutorials, . URL http://docs.
opencv.org/3.1.0/d0/de3/tutorial_py_intro.html#gsc.tab=0. Accessed: 29-4-
2016.

[33] opencv dev team. Geometric image transformations - opencv 2.4.13.0 documen-
tation, . URL http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_
transformations.html#getperspectivetransform. Accessed: 21-6-2016.

[34] opencv dev team. Operations on arrays - opencv 2.4.13.0 documentation, . URL
http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#
void%20perspectiveTransform(InputArray%20src,%20OutputArray%20dst,
%20InputArray%20m). Accessed: 21-6-2016.

https://www.youtube.com/watch?v=nCf8E6QrGqc
https://www.youtube.com/watch?v=nCf8E6QrGqc
https://git-scm.com/
https://github.com/
https://www.sig.eu/nl/
https://www.sig.eu/nl/
http://books.stuartherbert.com/if-i-knew-then/continuous-integration.html
http://books.stuartherbert.com/if-i-knew-then/continuous-integration.html
http://oss-watch.ac.uk/resources/pullrequest
http://oss-watch.ac.uk/resources/pullrequest
http://www.fastcodesign.com/1669232/using-motion-capture-and-code-to-turn-gymnasts-into-data-art/1
http://www.fastcodesign.com/1669232/using-motion-capture-and-code-to-turn-gymnasts-into-data-art/1
https://www.mindtools.com/pages/article/timeboxing.htm
https://www.mindtools.com/pages/article/timeboxing.htm
https://itunes.apple.com/nl/app/spawn-glow-free-art-fireworks/id377851369?mt=8
https://itunes.apple.com/nl/app/spawn-glow-free-art-fireworks/id377851369?mt=8
http://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html#gsc.tab=0
http://docs.opencv.org/3.1.0/dc/dbb/tutorial_py_calibration.html#gsc.tab=0
http://docs.opencv.org/3.1.0/d0/de3/tutorial_py_intro.html#gsc.tab=0
http://docs.opencv.org/3.1.0/d0/de3/tutorial_py_intro.html#gsc.tab=0
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#getperspectivetransform
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#getperspectivetransform
http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#void%20perspectiveTransform(InputArray%20src,%20OutputArray%20dst,%20InputArray%20m)
http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#void%20perspectiveTransform(InputArray%20src,%20OutputArray%20dst,%20InputArray%20m)
http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#void%20perspectiveTransform(InputArray%20src,%20OutputArray%20dst,%20InputArray%20m)

Bibliography 61

[35] M. Piccardi. Background subtraction techniques: a review. In Systems, Man and Cy-
bernetics, 2004 IEEE International Conference on, volume 4, pages 3099–3104 vol.4, Oct
2004. doi: 10.1109/ICSMC.2004.1400815.

[36] A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara. Detecting moving shadows: algo-
rithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(7):918–923, July 2003. ISSN 0162-8828. doi: 10.1109/TPAMI.2003.1206520.

[37] Quora. What is object-oriented programming? - quora. URL https://www.quora.com/
What-is-object-oriented-programming. Accessed: 21-6-2016.

[38] scottmahoy. Access - an interactive art installation by marie sester. URL https://www.
youtube.com/watch?v=678EaXPekFo. Accessed: 25-4-2016.

[39] Marie Sester. Access - an interactive art installation by marie sester, 2003. URL http:
//accessproject.net/. Accessed: 25-4-2016.

[40] SFML. Opening and managing a sfml window (sfml / learn / 2.3 tutorials). URL http:
//www.sfml-dev.org/tutorials/2.3/window-window.php. Accessed: 21-6-2016.

[41] Jos Stam. Real-time fluid dynamics for games. Game Developer Conference, 2003.

[42] Trello. Trello. URL https://trello.com/. Accessed: 21-6-2016.

[43] xboxde. Kinect interactive art installation - full version. URL https://www.youtube.
com/watch?v=wKkMPYmdFHI. Accessed: 25-4-2016.

[44] He Zhao. hezhao/calibrator: Calibrate your projector-camera system on a single click.
URL https://github.com/hezhao/Calibrator. Accessed: 25-4-2016.

[45] Zoran Zivkovic and Ferdinand van der Heijden. Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern Recognition Letters, 27(7):773
– 780, 2006. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.patrec.2005.11.005.
URL http://www.sciencedirect.com/science/article/pii/S0167865505003521.

https://www.quora.com/What-is-object-oriented-programming
https://www.quora.com/What-is-object-oriented-programming
https://www.youtube.com/watch?v=678EaXPekFo
https://www.youtube.com/watch?v=678EaXPekFo
http://accessproject.net/
http://accessproject.net/
http://www.sfml-dev.org/tutorials/2.3/window-window.php
http://www.sfml-dev.org/tutorials/2.3/window-window.php
https://trello.com/
https://www.youtube.com/watch?v=wKkMPYmdFHI
https://www.youtube.com/watch?v=wKkMPYmdFHI
https://github.com/hezhao/Calibrator
http://www.sciencedirect.com/science/article/pii/S0167865505003521

	Introduction
	Problem Description
	Requirements
	Problem Definition
	Problem Analysis

	Research
	Interaction design
	Crowd Attraction
	Crowd Participation

	Crowd Art
	Examples
	Designs

	Hardware
	Setup
	Calibration

	Image Processing
	Software
	Methods

	Computer Graphics

	Development process
	Development methods
	Upfront planning
	Time boxing
	Separate responsibilities
	Continuous integration
	Pair programming
	Code standards
	Pull requests
	System testing

	Organization
	Progress tracking
	Code versioning
	Maintainability control

	General planning

	System Design
	General
	Definitions
	Vision

	Light Trails
	Definitions
	Initial state
	Time-based events
	People-based events

	Implementation
	Software Design
	Calibration
	Projection
	Meter - pixel map
	Projector and camera settings
	Projection subtraction settings

	People detection
	Structure
	Detector
	Identifier
	Projection elimination
	Extractor

	Scene
	Event-based design
	Entities in the Light Trail Scene
	Physics
	Limiting the amount of trails
	Drawing
	Inversion
	Configuration

	Hardware

	Testing
	Installations
	INSYGHT Lab
	Aula

	Methods
	Calibration
	People detection
	Scene
	The complete system

	Results
	INSYGHT Lab: People
	INSYGHT Lab: Robots
	Controller tests
	Aula tests

	Evaluation
	Discussion
	Requirements for the interaction
	Objective goals

	Reflection
	Project structure
	Interaction design
	Application of knowledge

	Conclusion
	Recommendations

	Infosheet
	Project
	Team

	Original project description
	Software Improvement Group
	First feedback
	Evaluating first feedback
	Second feedback

	Configuration
	Calibration
	Lighttrail

	Poster
	Bibliography

