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Abstract

The Abelian sandpile model was first introduced by Bak, Tang and Wiesenfeld in 1987. Since then,
a lot of researchers have studied this model and similar models, all related by the concept of self-
organized criticality. In this thesis, we study a variant on the classical model where dissipative and
anti-dissipative vertices are incorporated in the model. These have an influence on the critical be-
haviour of the model. We first introduce a definition of criticality in this model and investigate which
levels of dissipation are required to guarantee non-critical behaviour. In studying this variant, we
encounter random walks and Green’s functions.






1 Introduction

Contents

2 The Classical Abelian Sandpile Model 3
2.1 Random walk interpretation of Dharsformula . . . . ... .. .. ... ........ 8

3 Extended Sandpile Model 13
3.1 Introducingsourcesandsinks. . . . . ... ... ... L L L L. 13

3.2 Connectiontorandomwalk. . . . . . . . ... .. . e 14

3.3 Criticality . . . . . . o e e e e e e e e e e 15

3.4 Adding SOUICESItES. . . v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 16

3.5 Connectiontotrappedrandomwalk. . . . ... ... ... ... . ... ... . ..., 19

3.6 One-dimensional dissipativemodel . . . ... ... ... ... ... ... ..., 21
3.6.1 Deterministically placed dissipativesites. . . . . . . .. ... .. ... ..... 21

3.6.2 Randomly placed dissipativesites. . . . . . . . . ... .. e 23

4 Conclusions 25
Bibliography 27

vii






Introduction

The sandpile model was first introduced just over 30 years ago, by Per Bak, Chao Tang and Kurt
Wiesenfeld in [1]. It was the first model that showed signs of so-called self-organized criticality
(SOCQ). It is a non-equillibrium system, where, in its critical state, local changes can impact the sys-
tem as a whole. One of the requirements for SOC is the appearance of power-law behaviour without
the help of fine-tuning any control parameters. Hence the term self-organized. The original au-
thors believed that this model could be used to explain many physical phenomena in our world,
because SOC would be something ingrained in nature. If we look at the occurrence and magnitude
of earthquakes for example, we can find that they show power-law behaviour.

Because the model is so simple, yet shows such a strange behaviour, it is one of the most studied
models of its kind, by both theorists and experimentalists. After the first introduction to the model,
many people started examining it. Important papers on the subject are among the most cited papers
in the scientific literature.

The model has some simple rules. The paper by Redig [8] contains an alternative interpretation
of the model in one dimension. Imagine N easily stressed students sitting next to each other at a
rectangular table. Student 1 is sitting at the left end of the table, and student N is sitting at the right
end. Then, imagine a professor handing out assignments. He will pick one student at random and
give him or her the assignment. The students are fine with assignments as long as they have less
assignments than they have neighbours, in this case 2; one on the right and one on the left. Once
a student receives a second assignment, they become too stressed, we say they are unstable, and
distribute their assignments among their neighbours. This distributing is known as toppling. For
students that are sitting at the end of the table, we can imagine them giving one assignment to their
neighbour and throwing the other assignment in the trashcan. Toppling can make a neighbouring
student become unstable, whereafter they will topple as well. The toppling of unstable students
continues until no student is unstable anymore. The system as a whole is now called stable. The
entire sequence of topplings as a result of one assignment by the professor is known as an avalanche.
After stabilizing another assignment is randomly given to a student, and the process continues. In
one dimension, the distribution converges to the uniform distribution on configurations where at
most one student has no assignment.

We can generalize the model for d dimensions, where every student has 2d neighbours, and
hence can have at most 2d — 1 assignments before becoming unstable. In these higher-dimensional
systems, the model does not converge to a minimally stable configuration. Rather, it will evolve to a
critical state, where avalanches of sizes up to the entire system itself can occur.

The students were a nice analogy, but from now on we will refer to them as sandpiles, and the
assignments as grains of sand.



2 1. Introduction

The report is structured as follows. In section 2 we will introduce the original model as proposed
by Bak, Tang and Wiesenfeld. Thereafter, in section 3, we will look at a variation on the model, where
two other types of sandpiles are incorporated into the system: sinks, dissipative vertices where mass
is lost upon toppling, and sources, anti-dissipative vertices where mass is created upon toppling.
Adding these different types of vertices can have a large influence on the behaviour of the model. For
example, when too many sites are dissipative, the model may lose criticality, meaning the avalanche
sizes do not grow indefinitely. On the other hand, with too many source are anti-dissipative, the
model may stay in an unstable state forever. Our goal is to mathematically prove some bound on
the level of dissipation for which the system no longer shows critical behaviour. Then we will see if
we can prove criticality for systems with both sources and sinks incorporated. Finally, we will focus
our attention to the one-dimensional model with only dissipative sites for a more narrow bound.



The Classical Abelian Sandpile Model

In this section we will introduce the sandpile model as originally introduced by Bak, Tang and
Wiesenfeld in [1]. The notation we use is based on Redig (2005) [8] section 3. For the model in d
dimensions we consider a simply connected set V < Z4. That will be our 'desert’. In this thesis we
will only consider a specific form for V, defined by

V=[-nn%nz?

for some n € N. To make it clear, in this thesis we always sayN = {0, 1,2, 3,...}. We define the Toppling
matrix A as minus the lattice Laplacian:

Ax,x =2d,
Ayxy=-1forx~y,
Ay,y =0, otherwise.

We say x ~ yif |[x—y| = 1. Aheight configuration nisamap n: V — N, and we denote by . the set of
all height configurations. A height configuration n € # is called stableif for every x € V, n(x) < Ay .
We denote the set of all stable height configurations by Q = {n € # : n(x) < A, x for all x € V}. A site
x € V for which n(x) = A, x is called an unstable site. This site will topple as defined by

T =) —Axy 2.1

This means that the site x will lose 2d grains of sand upon toppling and its 2d neighbours in V'
will each gain one grain of sand upon toppling. When x is a boundary site it will have less than 2d
neighbours. In this case, its neighbours will still gain one grain of sand, after which the excess sand
will leave the system, as if falling over the edge of our desert V. The toppling of a site x € V is called
legal if the site x is unstable, otherwise it is called illegal. We also see that for x, y € V both unstable
sites,

ToTy() =1 —Ay. — Ay, = T, T (1) 2.2)

This is called the elementary abelian property of the Abelian Sandpile Model. It follows directly from
the commutativity of addition in Z4. This property tells us that any finite sequence consisting of
the same legal topplings will produce the same end result, independent of the order of toppling.
With this information, we can look at the stabilization of a general height configuration n € # as an
operator . : & — Q, defined by

S ) =Ty ... Ty, M), (2.3)

3
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by the requirement that .#(n) is stable, and for each i € {1,..., n}, the toppling at site x; is legal.
For n € /¢ and a sequence of legal topplings Ty,,... Ty, we define the toppling numbers of that
particular sequence to be
n
ny=y I(x;i=x), (2.4)
i=1

where [ is the indicator function. Thus, we are counting how many times the toppling occurs at each
site x € V. Since the result of a sequence of legal topplings depends only on the toppling numbers
of the sites and not on the order in which they topple, an interesting lemma from the paper by Redig
[8] says the following:

Lemma 2.1. Letne A and Ty, ... Ty, be a sequence of legal topplings such that the resulting config-
uration is stable. Then the toppling numbers ny are maximal. This means that for every sequence of
legal topplings Ty, ... Ty,, the toppling numbers my satisfy my < ny forallxe'V.

With this Lemma, we can prove that our stabilization operator . is well-defined. Assume we
have Ty, ... Ty, and Ty, ... Ty, both sequences of legal topplings such that the resulting configura-
tion is stable. Then both their toppling numbers are maximal, meaning n, < my and m, < n, for
all x € V. This can only be true if ny, = m, for all x € V. Thus, they both topple exactly the same
sites exactly as often, and therefore the resulting stable configuration is the same. Therefore, the
resulting configuration .# is independent of the order of toppling. O

Having defined the toppling numbers in this way, we can now also write the result after the top-
plings as
Ty, ... Tx, () =n—An, (2.5)

where 7 is the column vector with elements n,. Because of the well-definedness of ., if we have a
height configuration n and T, ... T, and T), ... T}, two sequences of legal topplings such that the
resulting configuration is stable, then the resulting configurations are identical. Furthermore, for
all x € V, the toppling numbers are the same for both sequences. It is also important that in the
Classical ASM, the toppling numbers from a stabilization are always finite. That is, for every n € A,
there exists a finite sequence of sites xi,..., x5 € V such that

FW) =Ty, ... Ty () =0 — An (2.6)

is stable. If we define 6, as the operation of adding one grain of sand at site x € V, we can define the
addition operator a, : Q — Q by
axn=S(M+06) 2.7)

The well-definedness of . also implies that a, is well-defined and that abelianness holds:
axayn=ayan=SmM+6x+6,) (2.8)

for every n € A and every x, y € V. The abelianness of the addition operator is why we call it the
Abelian Sandpile Model. The classical ASM consists of a seqeuence of stable height configurations.
At each time 7 € N a grain of sand is added at a site x € V and the configuration is stabilized. This
process continues infinitely, creating a sequence of stable height configurations. Mathematically,
we let p = p(x) be a probability distribution on V, and demand that there is a strictly positive prob-
ability to add at each site x € V. This means p(x) > 0 for all x € V and }_,cy p(x) = 1. Starting from
an initial height configuration ny € Q, the configuration n,, at time n is given by the random variable

n
Mn = H ax;no 2.9)
i=1



where Xj,..., X, are i.i.d with distribution p. Equation (2.9) is a Markov process with state space Q
and the Markov transition operator defined on functions f : Q — R is given by
P =E(f(nino=m) =} p(x)f(axn (2.10)
xeV

For all Markov processes, the states can be divided into two classes, recurrent and transient. A con-
figuration n € Q is transient if there is a positive probability that we will never reach n again, and
recurrent otherwise. We can prove that the set of transient states is non-empty. Consider for exam-

ple the finite system
[1][o]o0]

This configuration is transient, because upon adding sand anywhere in the system we will lose the
two neighbouring zeroes. The only way to obtain a height of zero is by toppling, but then its neigh-
bour will have a height of one. For any d > 1, there are also such examples, therefore the set of
transient states is always non-empty.

Because we have a strictly positive probability of adding sand at each site x € V, we know that the
maximal configuration, defined by 7,4, = Ay x forall x € V, can be reached from every n € Q. There-
fore the set of recurrent configurations, which we will denote by %, is also non-empty.

There is a rather simple algorithm for finding out if a configuration 7 € Q is recurrent or transient,
called the burning algorithm.

Burning algorithm. Let (V,nv),nv € Q be a desert and its corresponding height configuration. Then
remove all sites x € V that satisfy

nez Y, (Axy) 2.11)
yeEV,y#x

Call the remaining sites and their corresponding height configuration (Vi,nv, ). Then apply the same
operation to get (Vo,nv,), (V5,1v4), ... until (Vys1,mv,,,) = (Vanv, ) for some n e N. Thenny is recur-
rent if and only if (Vi nv,) = @.

This means 7 is recurrent if and only if all sites are eventually burnt away. Because we defined A
as minus the lattice Laplacian we can interpret ). yev,yx (—Ay,y) as the number of sites neighbouring
x. For sites on the interior of V this will be equal to 2d, but for boundary points it will be less than
2d. An example of this algorithm in d = 2 is shown below.

1113 1|1 1
210 |— 0|— 210 |— 0|—
2121 2|1 1

In d = 2 the sites in the corners only have two neighbours. Thus, any corner with height two or
three will immediately burn. Similarly, if a site is on the boundary but not a corner, it has three
neighbours, and such a site with height three will burn in the first step of the algorithm. That is
exactly what we see happen in the first step. After that, we see that the top left corner only has one
neighbour left, and with a height of one it will be burned in the second step. This process continues
until no more sites can be burned. Because for this configuration, the algorithm eventually burns all
sites in V, we can say that this is a recurrent configuration. The burning of a transient configuration
in d = 2 is shown below.

3121 2|1 1
2/1|/0|—|2|1|0|— 110 |— 110 |— 110
3111 11 1|1 111 11

The first steps are similar to the first example, but we see that no new sites are burnt in the last step.
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This means that these sites will never be burned, and therefore this configuration is transient.
There is another useful criterion that tells us if a configuration 7 is transient or recurrent.

Definition 2.1. Letne /. For W <V, W # @, we call the pair (W,nw) a forbidden subconfiguration
(FSC) if forall xe W,
N < Y. (~Axy) (2.12)
yeW\x
Ifforn € Q there exists a FSC (W, nw), then we say thatn contains a FSC. A configurationn € Q is called
allowed if it does not contain forbidden subconfigurations. The set of all stable allowed configurations
is denoted by < .

The sites that are unburnt after the burning algorithm finishes form a FSC. We can see that from
the second example above.

1

This is the subset of sites that weren't burnt after Dhar’s burning algorithm. Indeed, since each
site has two neighbours, but all sites have a height of less than two, no sites are burnable. Another
example of a forbidden subconfiguration is

S| -

1

This connection between recurrence and allowedness motivates the following theorem.
Theorem 2.1. A stable configurationn € Q is recurrent if and only if it is allowed.

We will give a sketch of the proof. We know that the maximal configuration, where n, = 2d -1 for
all x € V},, is completely burnable. We also know that we cannot create a FSC by adding grains to an
allowed configuration. The maximal configuration is recurrent, since it can be reached from every
other state, and hence can we reach any other recurrent configuration from the maximal configu-
ration by adding a finite number of grains. Therefore, all the recurrent configurations are allowed.
This proves Z € /. If the reader is interested in a proof for «f € %, we refer the reader to section 3.1
of Redig’s paper [8].

Recall that we denote the set of recurrent configurations by 2. Theorem 2.1 says that #Z = «/. Going
back to our example for a transient configuration, we see that

is a FSC, and therefore each configuration containing this subconfiguration is not allowed. Then, by
theorem 2.1, each configuration containing this subconfiguration is a transient configuration.
Dhar has shown in [2] that we can find a bijection between rooted spanning trees and recurrent
configurations, namely

|Z| = det(A) (2.13)

We can also look for the stationary measure of our Markov chain, since restricted to 2, our Markov
chain is irreducible, we know there exists a stationary measure.



Theorem 2.2. The Markov process 1, with transition operator

Pfm) =) p)flaxm)

xeV

has the unique stationary measure

1
mM=—)> 6
This is the uniform distribution on %.

Proof.

Y Pfampu) = I%’I Y Y p@fam

neEx neER xeV

I.%I Y px) Y. flawm

xeV nNeR

Y p(x) ) f(@),since ay is a bijection
|'%| xeV nNeER

= (Z p(x)) EPRAL

xeV nNeEA

Z f(@),since p is a probability distribution on V
|%| =

=Y f@u@
NER

O

Now, rather than defining toppling numbers of sequences of topplings, we will define them as
the number of topplings at y as a result of addition at x.

Toppling numbers. Letn € Q. Then, forall x,y € V,,. define

N
n(x,y,mn) = Z I(x;=y) (2.14)

We can now introduce the following formula that is very important in the study of this model.

Dhar’s Formula. For the classical ASM on V,, we have
-1
Eu[n(x,y,m)] =(Axy) =G, ) (2.15)
We define G(x, y) here and call it the Green's function.
PROOE We know from equation (2.7) that
axn=SL(M+06y) (2.16)

To stabilizen + 6 x, we need to know how many times each site has toppled. After addition at x, z will
have toppled n(x, z,n) times. Each time z topples, y loses Ay, ; grains. This means we can write the
height at y after addition on x as

axn() =n(+6xy— Y. Ayzn(x,z,n) (2.17)

zeVy
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Note that the sum on the right is just the matrix multiplication of A and n. Integrating the whole
equation with respect to the invariant measure [, we get

faxn(y)du=fn(y)dwf&x,ydu—fAn(x,y,n)d;u (2.18)

Now we use the property that u is invariant on X, and that X is closed under the operator ay. This
means that [ a,n(y)du = [n(y)du. Using this and the linearity of the integral we get

Afn(x,y,n)du=6x,y (2.19)

Since [ n(x,y,mdu=E, [n(x,y,n]|, multiplying both sides by A~ gives, assuming A~" exists,

G(x,y) =E, [n(x,y,m] = (A7), (2.20)

"y
O

We can now introduce a definition of criticality for the Sandpile model. We will use the definition
given by Redig [8].

Definition 2.2. A system is called non-critical if the inverse toppling matrix €, [n(x, y,)] = (Ax,) ™"
exists and for all x € V,

lim E,|(n(x,y,n)| <oo (2.21)
Myezvn u[n(x,ym]

Otherwise it is critical.

This definition tells us that the model is critical if the expected avalanche size is infinite, as the
system size itself grows to infinity, for all x € V},. If, however, the avalanche size is always finite, the
model is non-critical.

2.1. Random walk interpretation of Dhar’s formula

Note that E, [n(x, y,n)] is the expected number of topplings at y upon adding sand at x, averaged
over all n € Q. We can make a connection between the topplings and a random walk {X},} >0 on V,.
To do this, we add a vertex {x}, called the root, to V,;. We can now define the transition probability
matrix Py , for x,y € V, U {*} as

ﬁ,forx~y,x,y€ Vi

2d-ay, (x)
g forxeVy, y=x

Py y = (2.22)

1,for x,y ==

0, otherwise

avy, (x) is the number of neighbours of x that are in V,,. This is equal to 24 for all interior vertices but
strictly less than 2d for vertices on the boundary. We see that the random walk can only travel to the
root when it is located on the boundary of V},. In this way, the root is acting like a global sink for the
system. We see that once X, leaves the system, equivalent to hitting the root, it will stay there. Now
define the hitting time of X, reaching the root as

T =inf{k > 0: X} = =} (2.23)

For x, y € V,;, we can then write the expected number of visits to y, starting at x, as

Z IX;=y) (2.24)

i=0

glx,y) =8
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This sum runs up to 7, since after hitting the root, X}, is trapped and will never reach y again. I(X; =
y) is the indicator function, meaning

_ _ 1, iin =Yy
IX;=y)= . (2.25)
0,if X;#y

So in equation (2.24), we are adding one each time the random walk is at y. We now have the fol-
lowing theorem

Theorem 2.3. The Green’s function defined by equation (2.24), which we denote by g(x, y) to prevent
confusion with the Green’s function G(x.y) defined in equation (2.15), has the property that

1 -1
578 = (A7), (2.26)
PROOE First observe that for x,y € V,,
Axy=2d(I-P)yy (2.27)

This follows from our definition of A and equation (2.22). We now condition equation (2.24) on the
first step

T
ERW YI(Xi=y)IXi=z|P(X1=zlXo=x)+1(Xo=y) (2.28)

i=1

ZH&aﬂ=2ﬂW

i=0 zeVy,

Now see that P (X = z|Xo = x) = Py, ;. And since our random walk starts atx, I (Xo=y)=I(x=y) =
O x,y, this is shortened notation for the indicator function. Now we have

T

Y IXi=1y)

i=0

T

Y I(Xi=y)

i=0

e -y e

zeV,

Pyz+8yy (2.29)

Using the definition of g(x, y) in equation (2.24), equation (2.29) becomes

g, y)= ) Py.8(2y) +6xy (2.30)

zeV,

The sum on the right side of equation (2.30) is the matrix multiplication of P and G. Subtracting this
[from both sides and writing everything in matrix form gives

(I-P)g=1 (2.31)

We now make use of equation (2.27) to write this as

1
gAg =1 (2.32)
Multiplying both sides by A™*
1
578 AL (2.33)
O

We see that, up to a multiplicative constant, the expected lifetime of the random walk that starts
at x and is killed upon leaving V,, is equal to the expected number of topplings at y after addition of
sand at x.
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Corollary. Since g(x,y) is a scalar multiple of (Ax,y)_l, Dhar’s formula tells us that an equivalent
definition for non-criticality is
lim g(x,y) <oo (2.34)
fim, 2,

We now state and prove the following theorem.

Theorem 2.4. The classical ASM, where A is defined to be the inverse Laplacian, is critical for all
d=1.

PROOE Recall from equation (2.24) that

T
g,y =8| Y I(Xy = y)] (2.35)
k=0
Plugging this in equation (2.21) gives
T
. RW _
lim 3 B Y I(Xe=1) (2.36)
yeV, k=0

Now we should be careful, since the results we got for finite volume may not hold anymore if we go
towards infinite volume, as we will see. In [7] by Novak, it was proven that for d < 2, the random
walk on Z% is recurrent. This means that the random walk will visit every point an infinite number
of times with probability 1. In this case, g(x,y) from equation (2.35) is already infinite. Hence, we
know the classical ASM is critical for d < 2. For d = 3, the random walk on Z% is transient, meaning
the random walk will always have a finite number of visits to a point. To continue, using the linearity
of the expectation, we can take the sum into the expectation and swap the sums, so we obtain

lim EXW
n—oo

i > I(Xk= y)] 2.37)

k=0yeV,

Now we know that Xy € V,,. Therefore, if we take the sum over all y € V,,, one of these will be equal to
Xy. This means that

Y IXk=y) =1 (2.38)
YEV,

Therefore the sum always equals one, reducing the equation to

T

>l

k=0

lim E

RW
n—oo %

(2.39)

Now we know that as n goes to infinity, our domain becomes infinitely large, and the probability of
leaving this domain goes to zero. This means that

lim 7 =00 (2.40)

n—o0

Using equation (2.40), we get

=00 (2.41)
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The connection between the random walk and the expected number of toppling numbers made
proving this much easier. Another interesting fact about the Green’s function was proven in Section
4.3 of the book by Lawler and Limic (2010) [6]. It turns out that, for x, y — oo,

1
Y~ ——
8,y x— a2
Here we see the occurrence of power-law behaviour, another indication of the existence of self-
organized criticality. In the next section we will introduce a variation on the classical model, where
criticality is not always guaranteed anymore.






Extended Sandpile Model

3.1. Introducing sources and sinks

We will introduce different sites to our model. Define V,, = [-n,n] N 7% our finite lattice. We denote
by D,, c V,, the set of dissipative or sink sites, and let S;, c V;; be the set of anti-dissipative or source
sites. R, < V,, will be the set of regular sites that we have seen in the previous section. Then we can
write V;, = D, U S, U R, as a union of disjoint sets. Because we are going to have V;, grow infinitely
large when talking about criticality, define D, S, R c Z¢ such that D,, = V,,n D, and analogously for S

and R. We can then define our toppling matrix AQ }’S” as

—Lforx,yeV,lx—yl=1

2d,forx=y,x€R
ARy = PrE 3.1
’ 2d+1,forx=y,x€ Dy,

2d-1,forx=y,x€S,

We can interpret these rules in the following way. Where the regular sites we introduced in the
last section topple with requirement 1, = 2d, dissipative sites topple when 1, = 2d + 1 and, upon
toppling, they give 1 grain of sand to each of their neighbours, and the 1 grain left over is sent to an
invisible sink. Conversely, source sites topple when 1, = 2d — 1. They also give 1 grain of sand to
each of their neighbours, and to do so they create 1 grain of sand from nothing.

One important thing we need to think about when we add different sites to our model is stability.
In the Classical ASM we know that the stabilization always consists of a finite number of topplings.
Everytime a sink site topples, 1 grain of sand is removed from the system. This means the total
number of topplings will still be finite. If we incorporate source sites, they can be problematic, as
stability can be lost. We will only concern ourselves with sink sites for now, and add source sites
afterwards.

Without source sites, our original definitions for the stabilization operator . and addition op-
erator ay are still well-defined. The markov process is unchanged and we can describe the recurent
configurations as

RO =m+v,ne R v {0,1Vxe D, Nix:n,=2d -1} 3.2)

This notation says we can create all recurrent configurations for the model with dissipative sites
from the recurrent configurations for the classical ASM. For every site that is at maximal height for a
regular site, (2d —1), if it is a sink site we can add one more grains of sand on top, giving us a different
configuration that can obviously be reached from other recurrent configurations.

13
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3.2. Connection to random walk

Just like in Chapter 2, we can make the connection between the expected number of topplings and
arandom walk. This random walk is called upon leaving V,,, equivalent to hitting the root, *. Recall
our transition probability matrix Py,

1
m,forx~y,x,y€ Va

2d-ay,, (x) _
T,for XeEVy,y==x

Pyy = (3.3)
wY 1,for x,y = *
0,otherwise
We have shown in chapter 2 that when D, = @, the Green’s function is given by
T
gl y) =R Y 1(X; = y)] (3.4)
i=0

We will now let D,, # @, and find the Green’s function according to the model.

Theorem 3.1. The ASM extended with dissipation, where A is defined as equation (3.1), is governed
by the Green’s function

T ( 2d )lk(Dn)

) =ERW
8l6y) =kx (kzz‘b 2d+1

where I (Dy,) is defined to be the number of visits by Xy to D, at time k. In other words, the number
of time the random walk is at a dissipative site.

(X = J’)) (3.5)

More formally, we say

k
Ik(Dp) =) I(X; € Dy) (3.6)
i=0
PROOE We know from equation (3.1) that
Axx=Q2d+1)I(xeDy)+2d)I(x¢ Dy) (3.7)

Remind also that if z ~ x then P(x,z) =1/2d = —Ay, ;/2d. We claim that
1
-1 _
Ary=578(>Y) 3.8)
Now we first split out the contribution from time k = 0 in G(x, y)

YX  I(XieDy)
RW

. E

8% y) * ((2d+1
( 2d
2d+1

2d )I(XOEDn)( r( 2d

I(Xo =
(Xo yH,; 2d+1

I(Xka)))

)6x,y1(x € Dp) +6xyI(x ¢ Dy)

T ( 2d )zi-;ll(xieDn)

(2d+1)I(XED")[Ex (Z 2d+1

(X = J/))
k=1

+

T ( 2d )Zf=11(Xt€Dn)

I0eg DB ( by 2d +1

I(Xy = J/))
k=1

2d
5711 | Sry (X € D)+ 05y 1(xd Dy)

2d —Ax,z
I(xeD Zg(z,
(2d+1) (xe ");y 2a 8@

_AX,Z (Z )
2a %Y

+

+

I(xgDp) Y
z~y
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As a consequence,

2d+1)I(x€D,)g(x,y)
2d8yyI(xeDy) +1(xeDy) Y. —Ay28(2,) (3.9)

zZ~X

and

2d)I(x ¢ Dp)g(x, )
2d6.yI(x g Dp)+1(x¢Dy) Y —Ax28(2,Y) (3.10)

Adding up equations (3.9) and (3.10), using equation (3.7) yields

Ax,x)8(x,y) =2dbxy+ ) —Ay28(2,y)

z~y

which gives
Z Ay z8(2,y) = 2d5x,y
zeV,
showing that
=@d)'g

as desired O
3.3. Criticality

It is important to note that Dhar’s formula still applies, given stability of the system. We know that
adding dissipation will never corrupt this property, so we can still apply Dhar’s formula. Then all
definitions of toppling numbers and criticality still apply for this variation of the model. We will
now show that if the system is made up completely of dissipative sites, criticality is lost.

Theorem 3.2. The system consisting of only dissipative sites is non-critical.

PROOE From equation (3.5) we know that

RW T zd lk(Dn)
) =E e I1(X; = 3.11
glx,y) =y kgo(ZdH) Xk =) (3.11)
If all sites are dissipative, then l.(Dy) = k. Then
T I (Dy)
lim 3 g(x,y) = lim Y ERW Z( I(Xp=y ] (3.12)
er yEV k=
T
= lim Y E&W ( ) ] (3.13)
fi—oo yEV g
RW T 2d
= lim E; X = 3.14
= oo (Zd i 1) ZV k=) (3.14)
X ( 2d
— ERW ( 1
_ 1
T =24 (3.16)
2d+1
=2d+1 (3.17)
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This tells us that somewhere between zero and full dissipation lies the border of criticality. It has
been proven in [9] by Redig, Ruszel and Saada, that if the distance between sink sites is uniformly
bounded, the system is also non-critical. Therefore, the density of sink sites in V;; must decrease to
0 as n goes to infinity.

3.4. Adding source sites

We have seen what source sites are in the previous section. If we add source sites in the system,
stability is no longer guaranteed. This is because mass can build up inside the system, never reach-
ing a stable configuration. We will find and prove the Green’s function for this model, assuming the
system is stable, meaning there are always a finite number of topplings required to stabilize.

Theorem 3.3. The ASM extended with dissipation and anti-dissipation, where A is defined as equa-
tion (3.1), is governed by the Green's function

T 2d Ik (Dy) 2d I (Sp)
) ()

- ERW
glxy) =ky (Z 2d+1

I(Xy = y)) (3.18)
k=0

where l;.(D;,) = Z;‘:O I(X; € Dy,) is the number of visits to Dy, up to time k. Likewise, I;.(Sy) is the
number of visits to S, up to time k, and Xy, k = 1 is the discrete random walk killed upon exiting V;,
(attimeT).

PROOE The proof follows the same structure as the proof of Theorem 3.3. We know from equation
(3.1) that

Axx=Qd+1)I(xeDy)+@2d—-1)I(x€S,) +2d)I(x€Ry) (3.19)

Remind also that if z ~ x then P(x,z) = 1/2d = —Ay ;/2d. Again we first split out the contribution
from time k=0 in G(x,y)

AW 2d I(XoeD,,) 2d I(Xo€S,) 24 ZLI(XL‘ED”) 0 ZL[(X,ES”)
glx,y) = E; 2d+1 2d-1 I(XO—J/)+Z s e 1K= )
2d 2d
- \2d+ 1)5xyl(xeDn)+(zd_1)6X»J’I(x€Sn)+5x,y1(x€Rn)

2d-1
,1I(XieDn)( 2d )zf_ll(xiesn)

2d )zfll(xieDn)( 2d )zfll(xiesn)

2d rw | < _
+ m)I(xeDn)[Ex (;(2d+1 I(Xk—y))

2d -1

2d-1

b [ I(xES)[ERW i
" = 2d+1

(X = J/))

RW T 2d Z I(XIED,Z) 2d Zf:l 1(X;€S,)
! Ru)E PR I(Xy =
+ I(x€Ry) (;(zd+1) (2d_1) (Xk y))
2d d
= 5271 1)5x,yl(x€Dn)+(—zd_1)6x,y1(x€Sn)+6x,yl(x€Rn)
+ 2d )I(xeD )Z (2,7)
2d+1 n = 2d g y
2d
1 S
" 2d - ) (e i~y 2d
+ I(x€Ry)

-~y
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As a consequence,

@2d +1)I(x€ Dyg(x,y)
= 2d8,,I(xeDy) +IxEDy) Y ~Ay.8(2,Y) (3.20)

zZ~X

2d-1)I(xe Sy gx,y)
= 2dbyy I(x€Sp)+1(x€Sy) Y —Ay28(2,Y) (3.21)

Z~X
and

d)I(x€ Rp)g(x,y)
= 2db6yyl(x€Ry)+I(x€Ry) Y —Ay:8(2,) (3.22)

Z~X

Adding up equation (3.20), (3.21) and (3.22), using equation (3.19) yields

A, x)g(x,y) =2d6yy+ Y —Ay28(2,Y)

z~y
which gives
Z Ax,zg(Z, J/) = Zdax,y
zeV,
showing that
Al=@d) g
as desired O

If we let S;, = @ in equation (3.18), we get equation (3.5) back, so this is the general form for
mixed systems with both sources and sinks. We can now prove criticality for systems with both
sources and sinks incorporated.

Theorem 3.4. Define a system with only sinks and sources, meaning V;,, = D,, U S,,. If we distribute
the sources and sinks such that

limy,— oo ERW [1(S ERW [1(S)] 1
k—o0 k k—o0 k 2

then one of the following is true
1. The system is not stabilizable
2. The system is critical

The condition in equation (3.23) says that the expected number of times the random walk is on
a source site after k steps, is equal to k/2, as the system grows infinitely large. This is not a trivial
condition. If we were to place sinks all around the origin such that half the area is covered, and fill
the rest of the space around it with sources, it is not necessarily true that this holds. One example of
distributing sources and sinks to achieve this is to put them in a checkerboard formation. Then on
even and odd steps it will alternate between sources and sinks, guaranteeing the limit as k — co. A
different approach is to define each vertex to be either a source or a sink, each with probability 1/2,
independently.
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PROOE In section 3 of the paper by Jongbloed [5], it is shown that certain configurations of sources
result in a system that is not stabilizable. Assuming we have a configuration that does stabilize, we
will prove that it is critical. From V, = D, N Sy, we know l;.(Dy) = k — 11(Sy). This means

T 2d \k@n) [ 2g kS
)= ERW _) (_)
y;’/n g(x y) y;/n * ];) 2d +1 2d -1

~ ZERW i 2d )k_lk(sn)( 2d )lk(Sn)
e - \(&led+t

I1(Xg = y)) (3.24)

5d—1 I(Xy = y)) (3.25)

T od \K(2d+ 1\ [ ag |k

RS ) ( ( ) I(Xy = 3.26
T 2d \c(2d+1)\kS

i ) ( (X = 3.27

yezvn * ;;) 2d+1) \2d—-1 Xi=y) 3.27)

Now observe again that }_ ey, [(Xy = y) = 1, and we can use linearity of the expectation to take the
sum into the expectation. this means that

T (2d \F(2d+1)SY
)=y ERW ( )( ) I(Xy = 2
yEZVng(xy) yezvn X (kZ:O iRty (Xi =) (3.28)
T 2d \*(2d+1)kS)
=ERW ( ) ( ) 3.29
* (,;) 2d+1) \2d-1 (5:29)

X
Because (%Zﬂ) is a convex function, we can employ Jensen’s inequality with x = I}.(S,) to get

2d \*(2d+1)%S
hm X,¥) = hm [ERW ( ) ( ) 3.30
y;,g( V= Z 2d+1) \2d-1 (3:30)
I 2d \F(2d+1)\E kS
Er}ggo “ 2d+1) 2d—1) (8-:31)
Now we know thatt — oo and S;, — S as n — co. So we can write this as
® (2d \F(2d+1\E" O
lim X, V)= 3.32
im, % gten= 3 (5055 (5 @32
Now we can use the root test to prove divergence and thus criticality.
2d \K(2d+1\E" IO E 2d \(2d+1)
= lim 3.33
im | (a51) (o) im [sasi)aa) 339
Now we use the condition in equation (3.23) to write this as
2d+1 4d? 2d + 1) (3.34)
2d+1 2d—-1 (2d+1)2 2d—1 '
=\ —— (3.35)

4d2—1

Which is greater than 1 for all d = 1. That proves that the system is critical. O



3.5. Connection to trapped random walk 19

We can in fact generalize the result we just obtained. If we alter the condition in equation (3.23)

to
ERYL(S)] 1

lim =——=— 3.36
kl—I>Iolo k N (3-36)

Then, we can use the same derivations as above to obtain (3.32). Applying the root test now gives

2d \F(2d+1\EV 1] & 2d \(2d+1)"

=1 — || — 3.37
koo (2d+1) (Zd—l koo 2d+1) 2d—1) (3:37
_( 2d ) 2d+1)A1/ 5.38)

\2d+1/\2d-1 '

1

_ ( 2d )N(2d+1) v (3.39)

~\2d+1) (2d-1 '
_( 4d? )( 2d )N—z (3.40)

“\4a2-1)\2d+1 ’
(3.41)

The system is critical if the quantity in equation (3.40) is greater than 1. Since the first term is always
greater than 1, this is true if and only if

( 2d )NZ 4d? -1
> (3.42)

2d +1 4d?

If we pick some d = 1, then we can solve this equation to get a critical value for N. This result is in
line with our previous calculations. If we let N = 2, we get condition (3.40) back. The left hand site is
1 and this is greater than the right hand site, regardless of our choice for d. On the other hand, if we
let N — oo, then the left hand site will converge to 0 and so we will never have a critical model. But
if N — oo, then the system is completely made up of dissipative sites, and we have already proven
that this will indeed never be critical.

3.5. Connection to trapped random walk
An important step in proving criticality was to exploit Dhar’s formula, giving us the equivalence
between the expected avalanche size and the expected number of visits of a random walk that is
killed upon leaving the boundary. If we only consider dissipative sites, so S, = @, then we know
from theorem 3.2 that
[ & ) 1i(Dp)

glx,y) =k (k;o(ﬁ) I(Xy = y)) (3.43)
The only way dissipative sites are involved here is in I;.(D,). We see that each time a dissipative site
is reached, we multiply by 2d/(2d + 1). This is explained by the fact that there are 2d options for
the random walk, but the mass can be 2d + 1. We can define another random walk. This random
walk will still be killed upon leaving V,,, but it will also have a probability to be killed when reaching a
dissipative site. Since the height can be 2d +1, but there are only 2d neighbours, the transition prob-
abilities add up to 2d/(2d + 1). This leaves 1/(2d + 1) as the natural choice for the killing probability.
We now claim and prove

T

g(x,y) =EIRW (Z (X = y)) (3.44)
k=0

Again, we first condition the expectation on the first step

T T
E§RW(Z I(Xk=y)) =) E§RW( I(Xk =X =Z)P(X1 =2lXo=x)+0xy (3.45)
k=0 zeV, k=1
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We know from the killing probability of 1/(2d + 1), that

——, forz~x,xeD
P(Xi=z|Xo=1x) = 2d+1 "
2d’ forz~x,x¢ D,

This means that

[EgRW(Z I(szy)) I(XEDn)ﬁ )y [ETRW(Z I(Xie = y)I X _Z)
k=0 !

+1(x¢ Dn)zd Y EIRW (Z (X =y)1X1 = z) +8yy

Z~X k=1

We use the identity
1 2d 1

2d+1 2d+1 2d

Then we can write

TRW | © 2d \'ebn) TRW | ©
Ex (ZI(Xk=y))=(2d+l) Y E, (ZI(Xk:y)IXI:z +6x,y
k=0 z~x k=1

Now we use the fact that the random walk is memoryless, meaning

ELRW (Z I(Xp =YX = z) =EIRW (Z I(Xg = y))

k=1 k=0

With this we obtain

T 2d I(xeDy) 1

EXRWIY IXe=p) | = ( ) Z EIRW Z IXk=y)|+6xy

=0 2d+1 =0

The factor of
2d \lxeDw)
(Zd +1 )

is familiar, since we defined

k
lk(Dy) = Z I(X; € Dp)
i=0

If we iterate the process of conditioning on each step, we end up with

,_,(x )—[ETRW iI(X _ ) _[ERW i( 2d )lk(Dn)
g, y) =1y k=Y =k 2d+1

I( Xy = y)) =g(x,y)
k=0 k=0

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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3.6. One-dimensional dissipative model

Now that we have this interpretation of the trapped random walk, we will focus on the one-dimensional
model to try to prove a bound on the level of dissipation upon which criticality is lost. Rather than
writing it like in equation (3.44), we will interpret it in the following way.

In d =1, V}, is simply the one-dimensional lattice. We can see dissipative sites, or traps, as the
vertices {...,x_2,X_1, Xo, X1, X2,...}, and define I, = [x,_1, Xx,] as the intervals between two consecu-
tive traps. To introduce an order, we assume that {0} € Iy, meaning x_; < 0 and xp = 0. A visual
representation is given below.

I Iy h I

AN N N AN
s ~ — ~ ~

X-2 X-1 0 X0 X1

—»
X2

Then each time the random walk passes one of these points, it gets killed with a probability of
p=1/2d+1)=1/3, since d = 1. This means the amount of sinks it will pass before being killed,
N, is given by the geometric distribution with parameter p, denoted by N ~ Geo(p). Now we can
define another random walk process ¢, which denotes the intervals we traverse. This means that
we start in I¢ , then after hitting a trap and surviving, we travel to Ir,. We can see this as a "macro”"
random walk, since ¢, is determined by the smaller steps of X,,. The total lifetime of the random
walk, T, is now given by

N
T=)Y,
i=1

where Y; is the total time the random walk was in interval I¢,. Conditioning on N, We can then write
the expected lifetime of the random walk as

N
2 Vi
i=1

Criticality of the system is now equivalent to the expected lifetime of the random walk being infi-
nite, and conversely, a finite value for the expected lifetime means that the system is non-critical. It
has been proven that a finite number of sinks will not suffice to make the system non-critical. Con-
trariwise, if there is a uniform bound on the distances between sinks, it will be non-critical. So, we
are looking for some way of arranging sinks such that we will have an infinite number of them, but
distributed sparsely enough to allow for critical behaviour to occur.

There are two ways we can arrange the dissipative sites. The first we will cover is to place them
using a deterministic function. The other possibility is to distribute the sink sites randomly, as we
will see.

E(T]=L (3.56)

=Z(P(N=n)Z[E[m

n=1 i=1

3.6.1. Deterministically placed dissipative sites
We want to find an upper bound for E[T], to make claims about criticality. Let us assume we start in
Iy. We will consider the worst-case scenario, meaning the largest possible time the random walk can
survive. Therefore we assume the walk always move to the bigger interval, to make the survival time
longer. We assume that Iy is the smallest interval, and without loss of generality, we also assume the
intervals are symmetric around Iy. Then, in the worst-case scenario, we will just assume that the
walk always goes to the right. This means that ¢; = i. After hitting n sink sites, the biggest interval
we can find ourselves in is I;. In Lawler Limic (2010) [6], it was proven that the expected time it
takes for a simple random walk X, that starts at X with a < X < b to reach either x = a or x = b is
given by

(b-x)(x—a) (3.57)

For a < X < b, this is always less than (b — a)?. Therefore we have an upper bound for E[Y;].

E[Y;] = E[Time in I,] = E[Time in I;] < |I;|? (3.58)
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Where we used that ¢; = i. Using equation (3.58), equation (3.56) becomes

E(T]=) (IP(N: n) ) E[Y;] (3.59)
n=1 i=1
<Y (piv=nm} |1,-|2) (3.60)
n=1 i=1
<Y (P(N=n)nll,P) (3.61)
n=1

Where we used that the intervals are strictly increasing in size. We now define ¢ : R — R such that

() =1,° (3.62)
we can write equation (3.61) as
E(TI< ) (P(N=n)ndn) (3.63)
n=1

Since N is geometrically distributed with parameter 1/3, we can write P (N = n) explicitly,

P(N = )—l(g)n_l (3.64)
“M=313 ’
This gives us
1 @ 2 n-1
E[TI<= ), ((—) n(p(n)) (3.65)
3,3

We know that if we let ¢(n) be any polynomial in 7, the coefficients in our sum explode, as a con-
sequence of the exponential decay of the geometric distribution. Perhaps an exponential function
will be a good choice. So let

p(n) = e*" (3.66)

A nice way of rewriting exponential functions is

1
=~ (3.67)
X

n-1 _
xn—l - eln(x ) - e(n Din(x)

Using equation (3.67) with x = %, and equation (3.66), equation (3.65) becomes

1&(3
E(T)<= Y (_enln(i)nean) (3.68)
3/\2
— l i (nenln(%)+cm) (3.69)
2 n=1
- 1 i (nen(ln(§)+a)) (3.70)
2 n=1
which goes to infinity if and only if
2
ln(g +a=0 (3.71)

Therefore, a system with dissipative sites distributed via equation (3.62), where ¢(n) is defined by
equation (3.66) is critical if « = —In(2/3). If @ = —In(2/3), we cannot say that the model is non-
critical, since we used an overestimation. We do know that a > 0, so for some 0 < a < —[n(2/3), the
model should be non-critical. As a note, the decimal value of —/n(2/3) is approximately 0.4055.



3.6. One-dimensional dissipative model 23

3.6.2. Randomly placed dissipative sites

If we assume the dissipative sites are placed on the lattice randomly, we cannot say that I, is the
biggest interval anymore. We can however say things about their expectation. The first thing we will
assume is that the intervals are again symmetric around Iy, meaning

E[lI-;1=E[lL]], foralli eN (3.72)
The other thing we assume is that their moments are increasing, meaning
E[IL;1"] =E[|Ix|"], forall k€ [-i,i] and all n €N (3.73)

Then, without loss of generality, we can say that ¢; = i is the worst-case, and thus a good idea to use
for calculating an upper bound. Then we still have

E(T]=)_ ([FD(N:n)Z[E[Yi]) (3.74)
n=1 i=1

<) ([P’(N:n)Z[E[llilz]) (3.75)
n=1 i=1

We define |I;|?> = Z;, where Z; is a random variable that may depend on i. Our argument now is that
n 9 n
Y E[ILI°] = ) E[Z] < nE [maxy<j<p Zi] (3.76)
i=1 i=1

We now want to give a bound for the expectation of the maximum of Z;. First, observe that e**, with
A >0, is a convex function, now plug in max; <;<, Z; for x and use Jensen’s inequality. This gives us

e/UE[maX1siani] <E [elmaxuisnzi] <E (3.77)

n
Z e/lZi

i=1

where the second inequality comes from the fact that the sum over all 1 < i < n must be at least
equal to the maximum, since all the terms are positive. Isolating E [max;<;<, Z;] gives us

n
E[max;<j<pZ;] < %ln(Z[E [e“f]) (3.78)
i=1

Now we need to choose our Z; a priori to see if we can calculate the border of criticality. Again, the
Z;’s cannot be uniformly bounded, since in that case we will have non-criticality for certain. As an
example, we consider Z;’s uniformly distributed on the interval [1,¢(i)], where ¢(i) has to be some
unbounded increasing function of i. Then, since each Z; is less than ¢ (i), and ¢(i) is an increasing
function, we know that

E(maxj<i<nZil = ¢(n) (3.79)

Combining equation (3.79) and equations (3.75) and (3.76), we obtain

o0
E[T]< ) (P(N =n)npn) (3.80)
n=1
Note that this is of the same form as equation (3.63). Therefore we know that if we let Z; ~ U[1, ¢p(i)],
where ¢ (i) is a polynomial in i, the system will be non-critical. The only way to obtain criticality is
if we have at least exponential growth. So let Z; ~ U [1,e'®]. Then, using the same calculations as
in the previous section, we can conclude that the system is critical if « = —/n(2/3), and non-critical
otherwise.
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In this example we did not utilize equation (3.78). During calculations of the distributions we tried
for Z;, we always ran into an issue. Nevertheless, we can say something about criticality. If we

combine equations (3.75), (3.76) and (3.78) we get

ET <Y [Pv=m in Y E[et]
n=1 A i=1

We can write out P (N = n) to get

1&((2\" ', (&1 az
[E[T]<§Z((§) Xln(;rﬁ[e ]

n=1

|

So to obtain criticality one will have to find a random distribution Z; such that

(S]] (3]

(3.81)

(3.82)

(3.83)



Conclusions

In this report we have started by examining the abelian sandpile model, as first introduced by Bak,
Tang and Wiesenfeld. Starting with this definition of the model, we have seen how Dhar’s formula
relates the expected avalanche size to the inverse of the toppling matrix A, which we called the
Green’s function. We then defined a model to be critical if the expected avalanche resulting from
one grain of sand somewhere in the system will be infinitely large, as the system itself becomes
infinitely large. If the expected avalanche is always of finite size, then the system is non-critical.

We then gave another interpretation of the Green’s function. It turns out that, up to a multi-
plicative constant, the expected avalanche size after adding a grain of sand at the site x is equal to
the expected number of visits to y of a random walk that starts at x, and that is killed upon leav-
ing V,,. With this second interpretation we have proved that the classical model is critical, and the
completely dissipative model is non-critical.

Then we introduced sources to the system. Where dissipation can lose criticality, anti-dissipation
can retrieve it. We proved that if a system has equally distributed sources and sinks and no regular
sites, the system is critical. This in a way told us that source sites are more powerful than sink sites,
in their war against each other.

Thereafter we gave a third interpretation of the Green’s function, this time of a trapped random
walk. One that is killed not only upon leaving the domain V},, but when hitting a sink site too,
with a certain probability. With this new insight, we zoomed in on the one-dimensional model and
managed to prove some bound on the level of dissipation where criticality is lost. We found that the
distance between sink sites should be exponentially increasing following e*” and the critical value
for the exponent @ above which the model is critical is equal to —/n(2/3) = 0.4055. If the dissipative
sites are placed randomly, we found the same results for uniformly distributed interval sizes. No
other distribution has been found that allows us to calculate an exact bound, but we do have the
formula that guarantees criticality if

1n(i:fl[g[eﬂzf]) . (g)n_l @.1)

We finish with some discussion on improving our results. Further research is required to find dif-
ferent possible distributions of sink sites that are able to touch on this border of criticality. Perhaps
estimates can be found for higher dimensions, but another approach will be required. Also, by using
an upper bound we have found a sufficient condition for criticality. We could look to prove some
lower bound for the expected time of the random walk to find a necessary condition for criticality.
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