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Abstract. Complex real-world systems pose a significant challenge to
decision making: an agent needs to explore a large environment, deal with
incomplete or noisy information, generalize the experience and learn from
feedback to act optimally. These processes demand vast representation
capacity, thus putting a burden on the agent’s limited computational
and storage resources. State abstraction enables effective solutions by
forming concise representations of the agents world. As such, it has been
widely investigated by several research communities which have produced
a variety of different approaches. Nonetheless, relations among them still
remain unseen or roughly defined. This hampers potential applications of
solution methods whose scope remains limited to the specific abstraction
context for which they have been designed. To this end, the goal of this
paper is to organize the developed approaches and identify connections
between abstraction schemes as a fundamental step towards methods
generalization. As a second contribution we discuss general abstraction
properties with the aim of supporting a unified perspective for state
abstraction.

Keywords: State Abstraction · Bounded Parameters Markov Decision
Processes · Robust Reinforcement Learning · Model Irrelevance.

1 Introduction

Intelligent agents can not reason about every details of their structured and
large world. They must necessarily base their decisions on a model of the envi-
ronment that includes only a limited number of features. Intuitively, abstraction
refers to the fundamental process to focus on important aspects of the surround-
ings while ignoring irrelevant information. Through abstraction, an agent builds
compressed representations of its environment retaining only the essential in-
formation for a specific task that can be used to solve more complex and large
problems. As a technique to ease decision making and learning algorithms in
real-world scenarios and improve their scalability, abstraction has been exten-
sively covered in artificial intelligence [24], operations research [23], theoretical
computer science [8] and game theory [14] literature.
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In this work, we focus on abstraction for Markov decision processes (MDPs)
[21], for which a variety of approaches have been proposed within different re-
search fields ranging from game-based abstraction (GBA) [19], temporal ab-
straction [26], value function approximation (VFA) [3]. Among them, state ab-
straction has been studied as a way to tackle computational and storage issues
when dealing with prohibitively large sizes of the state space. The key idea is
to form aggregated MDPs whose abstract states correspond to clusters of the
original ground states. Grouping states together necessarily entails an additional
degree of nondeterminism: it introduces further uncertainty with respect to the
actual behavior of the system due to ignoring the exact ground state of the en-
vironment. Secondly, in general, partitioning the state space results in failure of
the Markov property to hold. Consequently, the stochastic process induced can
not be modeled as an MDP straightforwardly. Several perspectives have been
adopted to deal with this issue and have led to defining abstract MDPs or other
structured processes potentially suited to approximate the stochastic process
on the abstract space. One natural way to represent the non-Markovian uncer-
tainty over the ground true states is by means of partial observability. In other
words, the dynamics over the partitioned abstract space can be interpreted as a
Partially Observable Markov Decision Process (POMDPs) [13] for a particular
choice of the observation distributions.

In this survey, we intend to highlight the close relations that ties in most of
these approaches showing that many of them coincide or are equivalent when
looking at them from the correct perspective. The goal of this investigation is to
give rise to theoretical understanding of the various approaches. Moreover, the
relevance of a unified perspective lies in the possibility to leverage techniques
and solution methods developed for specific abstraction context to different ab-
straction approaches. The unifying perspective arising from these comparisons
enlighten the key role played by the history-dependence in modeling the uncer-
tainty on the ground state space. In fact, as already remarked by [2, 17], the
state abstraction model can be viewed as a POMDP. Finally, we present a gen-
eral definition of state abstraction with the aim of conveying a more organic
perspective and support a unifying theoretical framework for state abstraction
that can generalize most of the previous efforts in this direction. Based on this
formal definition, we show how each abstraction schemes can be reinterpreted
under this point of view.

Despite the attention that this topic has received lately, to date no such uni-
fied theory has been provided, relationships between approaches are still lacking
or barely expressed and potential limitations and advantages unrevealed. With
this respect, our work serves to bridge the gap between different research areas
with the aim of inspiring new methods and techniques from the cross contami-
nation of the different abstraction perspectives.

The rest of the paper is structured as follows. We first give an overview of
previous works that survey state abstraction. We introduce a high level perspec-
tive on all the abstraction approaches and suggest an organic picture to classify
them in Section 3. In Section 5, we introduce the formal definitions and dis-
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cuss general abstraction properties. Then we formally describe the parallelism
between state abstraction and POMDPs in Section 5.1. Finally in Section 4 we
compare the different approaches by establishing connections and relations and
proving equivalences.

1.1 Related Surveys

The intuitive idea of abstraction as a map from one problem representation to a
new one which preserves certain properties has been introduced by [8]. In [23]
the authors describe aggregation techniques and corresponding error bounds to
reduce the computational burden in solving large-scale optimization problems.
Although state abstraction for MDPs is directly addressed, they mainly focus
their attention on discussing aggregation choices. The work [6] represents the
first attempt to introduce a fairly general framework for state abstraction us-
ing propositional logic formalism. This work covers only cases where the states
aggregated together share the same dynamics but not the rewards, thus only
partly addressing the approximate abstraction case.

The recent growing interest in reinforcement learning along with the un-
derstanding of the potential of abstraction gave rise to several new abstraction
approaches. Nonetheless, relatively few articles attempt to provide a compre-
hensive survey on the topic. Among them, [15] introduces a classification of
abstraction approaches arranged in a hierarchical fashion according to the level
of information that each of them preserves. The authors also propose a unified
theoretical framework which generalizes over many of the previous aggregation
mechanisms, specifically those based on bisimulations [9, 5], MDP homomor-
phisms [22], utile distinction [17] and policy irrelevance [12]. However, sev-
eral important approaches can not directly be framed in their classification.
Specifically, game-based abstraction [19], bounded parameters MDPs [10] and
approaches based on robust control [20] are excluded and the tight connections
that bind each other are neglected. We explore them in details in Section 4.

2 Background and Notation

A Markov Decision Process (MDP) is a tupleM = (S,A, T ,R, γ) where S and
A are finite state and action spaces, T (s′|s, a) and R(s, a) are the transition and
reward functions and γ ∈ (0, 1) the discount factor [21]. To interact with the
environment, an agent employs a policy π : S −→ A mapping states to actions.
The objective of an agent is to maximize its expected cumulative reward obtained
by executing a policy π, that is the value

V π(s) = E

[ ∞∑
t=1

γtRt|s, π

]
when the process starts in state s. The target solution of the sequential decision
problem modeled by the MDP is a policy π∗ which maximizes the value π∗ =
argmaxπ V

π.
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A partially observable Markov decision process (POMDP) is an MDP in
which the agent is unaware of the actual state of the system. Instead, it receives
partial information on the environment state through an observation. Formally,
a POMDP is a tuple (S,A,O, T , Ω,R, γ), where (S,A, T ,R, γ) describes an
MDP and O, Ω(o|a, s′) are the observation space and probabilities [13]. Given
an action-observation history ht = (a0, o1, . . . , at−1, ot), the agent can keep track
of a belief over the underlying state b(s|ht), as the probability of being in state
s at time t given that history ht. A POMDP can be transformed into an MDP
over the space of all the possible histories, or equivalently the belief space, with
rewards and deterministic transitions defined by

ρ(b, a) =
∑
s∈S
R(s, a)b(s|ht)

b(s′|ht+1) =
Ω(o|a, s′)

∑
s∈S T (s′|s, a)b(s|ht)
P (o|a, ht)

(1)

for ht+1 = (ht, a, o). See [13] for more details.
We mark all the corresponding abstract objects with an overlying bar, as for

instance the abstract state space as S̄ or an abstract policy π̄ : S̄ −→ A.
We use ∆(K) for the probability distributions simplex over the set K.

3 Abstraction Choices Overview

Different choices of modeling have led to the wide diversity of the state abstrac-
tion literature. Here we give an overview of the process of creating abstractions,
pointing out places where different modeling choices can be made and how this
gives rise to different approaches. The idea is that identifying a general procedure
and attaching every approach to the specific stage of the abstraction process may
help to avoid frequently encountered misconceptions, inconsistent comparisons
and foster terminology alignment.

In the context of MDPs, abstraction describes the process of mapping one
MDP into a new representation that retains, to some extent, the Markov prop-
erty. The general abstraction process can be thought as the sequential application
of the following steps:

1. Selection of the aggregation space.
2. Choice of the aggregation criteria.
3. Definition of the abstract dynamics.
4. Identification of a solution concept.

Although we do not assume that every approach has been conceived following
this scheme, we believe that each of them can be characterized according to the
authors choices about these four stages.
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3.1 Aggregation Space

The key advantage of abstraction lies in leveraging representations to reduce the
size of the initial problem and thus ease the solution search. This naturally leads
to aggregation as a method to define abstract spaces and raises the question:
what is a suitable space to aggregate on? We distinguish between approaches
where aggregation is performed at the level of action-state histories as in fea-
ture MDPs [11] or influence-based abstraction (IBA) [18]. The second possibility
consists of aggregating over the state space. Clearly, the distinction is subtle: ag-
gregation over histories turns into state aggregation when considering states as
trajectories of actions and states. In our work we mainly target the second class
but it is important to underline how aggregating over spaces including the time
dimension have the potential to directly overcome the non-Markovianity issue.
In fact, as a POMDP regainsthe Markov property when considering histories
ht as states, by enriching the state space with histories it is more likely to find
aggregation schemes that preserve the Markovianity of the system.

3.2 Aggregation Criteria

Concretely, to define state abstraction we need to establish a partition over
the state space. A practical way to induce a partition is as the preimage of an
aggregation function.

Definition 1. An aggregation function φS̄ : S −→ S̄ for an MDP
M = (S,A, T ,R, γ) maps each ground state s to an abstract state s̄ = φS̄(s)
with generally |S̄| � |S|.
With a slight abuse of notation, we use s̄ to denote the abstract class φ−1

S̄ (s).
Moreover, in the following text we implicitly assume the context of a ground
MDP M = (S,A, T ,R, γ) and an aggregation function φS̄ , unless otherwise
stated.

Several aggregation criteria, that is choices of the aggregation function, have
been proposed based on different measures of similarity ranging from stochas-
tic bisimulations [9, 5], irrelevance criteria [15, 1], MDP Homomorphisms [22],
factors irrelevance [4]. Despite the diversification of notions, they overlap con-
sistently. For instance, irrelevance criteria generalizes bisimulations: they are
equivalent to one of the irrelevance characterizations identified by [15] as model
irrelevance. MDPs homomorphisms also correspond to model irrelevance as long
as the aggregation space is augmented by the action space. Factors irrelevance
targets domains whose state space can be represented by some state variables
and abstracts away entire factors that are irrelevant to the model dynamics. As
such, it only induces exact abstraction, i.e. aggregation functions which cluster
together states with the same transition functions. We will discuss how the exact
case of every approach coincides for every choice of the aggregation function and
model dynamics. Also heuristic approaches have been considered as utile dis-
tinction [17] and policy irrelevance [12] and there have been introduced methods
to learn the aggregation function as model reduction techniques [9]. We refer to
[7] for a complete survey of metrics for state similarity for MDPs.



6 E. Congeduti et al.

3.3 Abstract Dynamics and Solutions

Given an aggregation function, we can consider the stochastic process that an
MDP naturally induces over the sets of aggregated states. In general, the aggre-
gated process does not inherit the Markov property. The only exception is when
states that have the same probability of reaching any abstract state are clustered
together. If in addition the reward functions are preserved then the stochastic
process is an MDP which we refer to as an exact abstraction.

Definition 2 (Exact Abstraction). The aggregated process induced over S̄
satisfies the Markov property if and only if for every s̄ ∈ S̄ and s1, s2 ∈ s̄∑

s′∈s̄′
T (s′|s1, a) =

∑
s′∈s̄′

T (s′|s2, a) ∀s̄′,∀a (2)

Moreover, if the reward function satisfies

R(s1, a) = R(s2, a) ∀a (3)

then we call exact abstraction the MDP M̄ = (S̄, A, T̄ , R̄, γ) with transitions and
rewards defined as

T̄ (s̄′|s̄, a) =
∑
s′∈s̄′

T (s′|s1, a)

R̄(s̄, a) = R(s1, a)

for any of the representative state s1 ∈ s̄.

Note that in general, an abstract policy π̄ : S̄ −→ A can be naturally extended to
a ground policy as π̄(s) = π̄(s̄). In the exact case, the optimal abstract solution
π̄∗ for the abstract MDP M̄, as ground policy, coincides with the optimal solution
for the underlying MDP [15].

However, in most of the real-world cases few or none of such identical sit-
uations between ground states occur. Therefore, looking for exact abstractions
results in a small reduction of the state space which does not facilitate substan-
tially solutions algorithms. By relaxing the assumption on similarities between
grouped states, we can hope to induce a significant state space reduction. The
problem now consists of searching for a model which represents well the original
aggregated process endowed with a solution concept. These two stages of abstrac-
tion differentiate the abstraction strategies that we intend to discuss thoroughly
and compare in the following section.

4 A Comparison of Approaches

A first distinction between representations which strive to compensate for the
Markovianity loss concerns those identifying a single abstract MDP and those
employing families of MDPs.
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4.1 Weighting Function Abstraction

Selecting one MDP translates essentially to set probability distributions at ran-
dom for each abstract class that serve as ‘weights’ for the underlying states.

Definition 3 (Weighting Function Abstraction [15]). Given a weighting
function ω : S −→ [0, 1], i.e. a probability distribution over each abstract class
ω|s̄ ∈ ∆(s̄), a Weighting Function Abstraction (WFA) is an MDP
M̄ω = (S̄,A, T̄ω, R̄ω, γ) with transitions and rewards defined as

T̄ω(s̄′|s̄, a) =
∑
s∈s̄

ω(s)
∑
s′∈s̄′

T (s′|s, a)

R̄ω(s̄, a) =
∑
s∈s̄

ω(s)R(s, a)

Solving a WFA corresponds to find the optimal policy π̄∗ω for the abstract MDP
M̄ω.

As remarked by [2], the issue of this approach is the idea of modeling the
uncertainty over the underlying ground states by means of a stationary weighting
function which is independent on the histories. This implies that the abstract
process defined potentially deviates completely from the aggregated process and,
as a consequence, the abstract optimal policy π̄∗ω may be completely ineffective.
In fact, it corresponds to a myopic policy for a POMDP, which can have arbitrary
loss [25].

4.2 Abstract Bounded Parameters MDPs

Relaxing the assumption of approximating the belief with a constant function,
other approaches deal with uncertainty over ground states by considering fam-
ilies of MDPs. Bounded Parameters MDPs are generalizations of MDPs where
transition and reward models are replaced by real intervals defined as the suffi-
cient ranges to include the ground transitions and rewards.

Definition 4 (Abstract Bounded Parameters Markov Decision Pro-
cesses [10]). An Abstract Bounded Parameters MDP (ABPMDP) is a tuple
(S̄,A, T̄I , R̄I , γ) where the transitions and rewards intervals are defined as

T̄I(s̄′|s̄, a) =

[
min
s∈s̄

∑
s′∈s̄′

T (s′|s, a) , max
s∈s̄

∑
s′∈s̄′

T (s′|s, a)

]
(4)

R̄I(s̄, a) =

[
min
s∈s̄
R(s, a) , max

s∈s̄
R(s, a)

]
(5)

Let us consider the set of all the possible MDPs whose transitions and rewards
lie in the intervals (4), (5).

FABPMDP = {M̄ = (S̄,A, T̄ , R̄, γ) :

T̄ (s̄′|s̄, a) ∈ T̄I(s̄′|s̄, a), R̄(s̄, a) ∈ R̄I(s̄, a) ∀s̄, a, s̄′} (6)
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According to the definitions given in Section 2, the value V̄ π̄M̄ corresponds to the
expected discounted reward for using a policy π̄ in the abstract MDP M̄ ∈ F .
Then, two solution policies are identified:

– An optimistically optimal policy π̄∗opt satisfies maxM̄∈F V̄
π̄
M̄ ≤ maxM̄∈F V̄

π∗opt
M ,

for every abstract policy π̄.
– A pessimistically optimal policy π̄∗pes satisfies minM̄∈F V̄

π̄
M̄ ≤ minM̄∈F V̄

π̄∗pes
M ,

for every abstract policy π̄.

In other words, the idea is to find the polices that perform optimally in the
most and least favorable MDP of the ABPMDPs family F . Clearly, considering
a general MDP belonging to the ABMDP family would not bring better results
than fixing a weighting function. However, solutions in face of pessimisms and
optimisms allow to set lower and upper bounds for the target solution. We refer
to [10] for the proof that the solution problems are well-posed and for the details
on the bounds.

4.3 Abstract Robust MDPs

Strictly connected to the idea of allowing uncertainties in transitions and rewards
model, other abstraction formulations rely on games structures [19, 30]. The idea
is to model abstractions as a simple stochastic two-player game where a second
agent takes on the additional uncertainty introduced by aggregation. We focus
our attention specifically on methods based on robust MDP framework [29].
As BPMDPs, robust MDPs originate from the idea of MDPs with imprecise
transitions probabilities [28] as models to deal with uncertainty due to statistical
estimations of the model dynamics from historical data.

The key idea of the game-based abstraction is to represent the component
of the nondeterminism introduced through abstraction by an additional agent
whose actions, every time step, specify a probability distribution over the cur-
rent abstract state. Formally, we introduce a nature agent whose action space
corresponds to the ground state space S. Its policy is defined by a function
ξ : S̄ × A −→ ∆(S), such that ξ(s̄, a) ∈ ∆(s̄). Different choices can be made as
to what such policies condition on. We take the most widely adopted perspective
which is referred to as (s, a)-rectangularity [20]. Once set the nature policy, the
problem turns into a regular MDP.

Definition 5 (Abstract Robust Markov Decision Processes [20]). Given
a nature policy ξ, an Abstract Robust MDP (ARMDP) is an MDP Mξ =
(S̄,A, T̄ξ, R̄ξ, γ) where the transitions and rewards are defined as

T̄ξ(s̄′|s̄, a) =
∑
s∈s̄

ξ(s̄, a)(s)
∑
s′∈s̄′

T (s′|s, a) (7)

R̄ξ(s̄, a) =
∑
s∈s̄

ξ(s̄, a)(s) R(s, a) (8)
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Clearly, different choices for the nature policy lead to different MDPs. The so-
lution π̄∗ξ identified by this approach is defined assuming a fully adversarial
behavior of the nature agent, i.e. π̄∗ξ maximizes

max
π̄

min
ξ
V̄ π̄ξ (s̄) = E

[ ∞∑
t=0

γtR̄tξ | s̄, π̄

]

4.4 Relationships

Each of the approaches introduced induces a set of abstract MDPs. As FBPMDP
defined by (6) for the abstract BPMDP, we consider the families

FWFA = {M̄ω : ω ∈ ∆(S), ω|s̄ ∈ ∆(s̄) ∀s̄} (9)
FARMDP = {M̄ξ : ξ(s̄, a) ∈ ∆(S), ξ(s̄, a)|s̄ ∈ ∆(s̄) ∀s̄, a} (10)

where ω|s̄ and ξ(s̄, a)|s̄ represent the function restrictions to the states s ∈ s̄.
Equations (9) and (10) define respectively the set of all the possible weighting
function abstractions and abstract MDPs for different nature policies. The rela-
tionships that bind together all these approaches follow quite straightforwardly
from the definitions.

Theorem 1. Consider the WFA, ABPMDP and ARMDP as in definitions 3,
4, 5 and the corresponding sets of abstract MDPs FWFA, FABPMDP, FARMDP
as defined in (9), (6),(10), then

1. The family of weighting function abstractions is a subset of the abstract
MDPs generated by a nature policy which, in turn, is a subset of the ab-
stract BPMDP family, i.e. the following chain of inclusions holds

FWFA ⊆ FARMDP ⊆ FABPMDP

2. If the aggregation function defines an exact abstraction, i.e. (2), (3) hold,
then

FWFA = FARMDP = FABPMDP

and they degenerate to the same abstract MDP corresponding to the exact
abstraction.

Proof. 1. For the first inclusion we consider an arbitrary weighting function ω
and the MDP M̄ω ∈ FWFA. Then, according to (7), the nature policy ξ(s̄, a) :=
ω|s̄ induces an equivalent abstract robust MDP M̄ξ = M̄ω ∈ FARMDP. In
essence, the subset of nature policies ξ which are independent on the actions,
ξ(s̄, a1) = ξ(s̄, a2) for any a1, a2 ∈ A, span the entire family FWFA.

In order to show the second inclusion, it suffices to observe that for any policy
ξ the transitions and rewards defined by (7) satisfy

T̄ξ(s̄′|s̄, a) ≤
∑
s∈s̄

ξ(s̄, a)(s) max
s∈s̄

{∑
s′∈s̄′

T (s′|s, a)

}
=

max
s∈s̄

∑
s′∈s̄′

T (s′|s, a)
∑
s∈s̄

ξ(s̄, a)(s) = max
s∈s̄

∑
s′∈s̄′

T (s′|s, a)
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Likewise we can show that

T̄ξ(s̄′|s̄, a) ≥ min
s∈s̄

∑
s′∈s̄′

T (s′|s, a)

therefore T̄ξ(s̄′|s̄, a) ∈ T̄I(s̄′|s̄, a) and similarly, R̄ξ(s̄, a) ∈ R̄I(s̄, a).
2. We show first that under the assumption of exact aggregation function, the

intervals (4) and (5) defining the abstract family FBPMDP consist of one point.
In fact by (2) and (3)

T̄I(s̄′|s̄, a) =

[∑
s′∈s̄′

T (s′|s1, a) ,
∑
s′∈s̄′

T (s′|s1, a)

]
R̄I(s̄, a) = [R(s1, a) , R(s1, a)]

for an arbitrary choice of s1 ∈ s̄. Thus FBPMDP contains only the abstract exact
MDP. From the inclusions given by 1., it follows the equality.

According to the second claim of Theorem 1, when complete equivalence between
aggregated states holds, all the approaches provide an exact approximation of
the aggregated process which indeed naturally inherits the Markov property.
Contrarily, when Markovianity is not preserved, in general the families do not
coincide and thus neither do the solutions. Nonetheless, a weighting function
abstraction corresponds to a nature policy independent on the agent action.
In turn, for each nature policy an abstract robust MDP can be seen as an
MDP of the abstract BPMDPs family. In general, these are all proper inclusions
determined by the different dependencies of the uncertainty model: a weighing
function is an history-independent function; the nature policy, assuming the
(s, a)-rectangularity structure, depends on the current action; abstract BPMDP
introduces an additional dependence on the next abstract state and furthermore
allows different believes for transition and rewards as we clarify in the next
section.

Another class of state abstraction approaches rely on value function approxi-
mations (VFA) [3, 27]. The key idea is to approximate the non-Markovian model
dynamics by making use of projections onto the aggregated space. More pre-
cisely, the projections account for the uncertainty over the state space: each
ground state is projected onto the abstract space by a predefined projection
function. According to the projection metric chosen, different abstract MDPs
can be defined. As such, the metrics play the same role as the weighting func-
tions and the two approaches are completely equivalent. Although we do not
discuss explicitly this case in Theorem 1, to formalize this idea it suffices to
observe that the structure of the projections used depends only on the current
abstract state and coincides precisely with that of a weighting function.

Table 1 summarizes the main features of all the approaches covered in this
survey. The global picture arising consists of abstraction schemes which deal
with uncertainty by introducing families of abstract MDPs and deriving solution
concepts by targeting a specific MDP within the family. The distinctive feature
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Table 1. Schematic representation of abstraction approaches.

Approach Aggregation Abstract Solution Type Uncertainty
Space representation Concept

IBA [18] histories MDP optimality exact -
ABPMDPs [10] states MDP set pessimism approx λ(s̄, a, s̄′)

/optimism
ARMDPs [20] states Robust MDP pessimism approx λ(s̄, a)
WFA [15] states MDP optimality approx λ(s̄)
GBA[19] states stochastic game pessimism approx -

/optimism
VFA [3] states MDP optimality approx λ(s̄)
POMDPs [2] states POMDP optimality approx λ(h̄t)

is mainly the extent to which the abstract state-action history determines the
uncertainty model. In the next section, we explore the relevance of including the
abstract trajectories in the uncertainty model and how under this perspective
abstraction can be interpreted as partial observability.

5 A General Framework

The analysis of similarities between state abstraction approaches lead us to a
universal definition which embeds them all.

We define the sets of candidate uncertainty functions as

UT = {λT (s̄, a, s̄′) : λT (s̄, a, s̄′) ∈ ∆(s̄) ∀s̄, a, s̄′}
UR = {λR(s̄, a) : λR(s̄, a) ∈ ∆(s̄) ∀s̄, a} (11)

Each pair λ = (λT , λR) ∈ UT × UR defines uniquely an abstract MDP M̄λ =
(S̄,A, T̄λ, R̄λ, γ) with transitions and rewards as

T̄λ(s̄′|s̄, a) =
∑
s∈s̄

λT (s̄, a, s̄′)(s)
∑
s′∈s̄′

T (s′|s, a)

R̄λ(s̄, a) =
∑
s∈s̄

λR(s̄, a)(s)
∑
s′∈s̄′

T (s′|s, a)

Definition 6 (State Abstraction). Given an uncertainty set as U ⊂ UT×UR,
a state abstraction is the collection of MDPs

FU = {M̄λ = (S̄,A, T̄λ, R̄λ, γ) : λ ∈ U}

The uncertainty set U essentially encodes the additional nondeterminism intro-
duced by the aggregation and its characterizations formally capture the differ-
ences between abstraction approaches. In fact, if we consider independent un-
certainty with respect to actions and next abstract states U = {(λT , λR) : λT =
λR = λ(s̄) ∈ ∆(s̄)}, then the state abstraction represents the weighting func-
tion families, FU = FWFA. Instead, including the dependency on the actions as
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U = {(λT , λR) : λT = λR = λ(s̄, a) ∈ ∆(s̄)}, we obtain FU = FARMDP. Finally,
if we allow different lambda functions for transitions and rewards and depen-
dency on next abstract states, that is U = UT ×UR, we obtain FU = FABPMDP.

5.1 Abstraction as partial observability

In [2] the authors show how the stochastic process over the aggregated space
turns out to be a POMDP with the original ground MDP as the underlying
MDP and the abstract states as observations. The idea is that generally the
non-Markovian aggregated process can not be reasonably approximated by a
Markov dynamics. Instead, including histories in the dynamics allows to define
the process over the abstract space as a POMDP.

Definition 7 (Abstract POMDP). An abstract POMDP
M̄POMDP = (S,A, S̄, T , Ω, ,R, γ) is a POMDP with (S,A, T ,R, γ) as underly-
ing MDP. The observation space consists of the abstract space S̄ with determin-
istic observation probabilities defined as

Ω(s̄′|a, s′) = 1s′∈s̄

To point out the relation between the abstract POMDP and Definition 6, we
can think to expand the notion of uncertainty as to include the entire action-
abstract state history h̄t = (s̄0, a1, . . . , at−1, s̄t) by setting U = {λT = λR =
λ(h̄t) ∈ ∆(s̄t)}. Then given the transitions and rewards

T̄λ(s̄t+1|h̄t, at) =
∑
st∈s̄t

λ(h̄t)(st)
∑

st+1∈s̄t+1

T (st+1|st, at)

R̄λ(h̄t, at) =
∑
st∈s̄t

λ(h̄t)(s)R(st, at)

then the family FU includes also non-Markovian processes. If we impose the
additional constraint on the non-stationary lambda functions to follow the be-
lief update rule (1), resulting in U = {λT = λR = λ(h̄t) ∈ ∆(s̄t), λ(h̄t) =
belief-up(h̄t−1, at, s̄t)}, then the state abstraction FU is equivalent to the ab-
stract POMDP M̄POMDP and provides and exact description of the aggregated
process.

This argument reveals the necessity of including history in modeling uncer-
tainty for state abstraction. In the case of weighting function, for instance, we
are approximating the belief λ(h̄t) with an arbitrary history-independent func-
tion ω = λ(s̄t). Therefore we can expect to achieve at most the value of an
optimal memory less policy which is well-known that can obtain arbitrarily bad
performance [16].

On the other hand, one may think that by modeling state abstraction as a
POMDP we would lose all the benefits of the problem size reduction for which
abstraction has been introduced [17]. One idea may be to adopt intermediate
solutions where the history is partially included and explore trade-off situations
between problem size reduction and history dependency.
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6 Conclusions

In this paper, we survey the main approaches for state abstraction developed
within reinforcement learning, planning, operations research and game theory
communities. We characterize a general abstraction scheme by identifying stages
of the abstraction building process corresponding to the choice of the aggrega-
tion space and function, the model dynamics and solution concept. Then, we
mainly focus on comparing techniques introduced to model the abstract dynam-
ics and solutions as weighting function abstractions, bounded parameters MDPs,
robust MDPs and value function approximations. We show how they can all be
interpreted under the unified perspective of families of abstract MDPs, where
the distinctions are established by the model of the uncertainty employed. Fi-
nally we introduce a unified formal framework which generalizes all the prior
approaches and highlight how to embed the partial observability perspective
into this general definition of state abstraction.
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