<]
TUDelft

Delft University of Technology

Document Version
Final published version

Citation (APA)

Pons, J. C., Lopez, P. V., Murakami, Y., & lersel, L. V. (2025). Fence Decompositions and Cherry Covers in Non-binary
Phylogenetic Networks. IEEE Transactions on Computational Biology and Bioinformatics, 22(5), 2173 - 2183.
https://doi.org/10.1109/TCBBI0.2025.3587086

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

Sharing and reuse

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TCBBIO.2025.3587086

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.


https://repository.tudelft.nl/
https://www.openaccess.nl/en

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 5, SEPTEMBER/OCTOBER 2025

2173

Fence Decompositions and Cherry Covers in
Non-Binary Phylogenetic Networks

Joan Carles Pons ", Pau Vives L6pez

Abstract—Reticulate evolution can be modelled using phyloge-
netic networks. Tree-based networks, which are one of the more
general classes of phylogenetic networks, have recently gained
eminence for its ability to represent evolutionary histories with
an underlying tree structure. To better understand tree-based
networks, numerous characterizations have been proposed, based
on tree embeddings, matchings, and arc partitions. Here, we build
a bridge between two arc partition characterizations, namely max-
imal fence decompositions and cherry covers. Results on cherry
covers have been found for general phylogenetic networks. We first
show that the number of cherry covers is the same as the number
of support trees (underlying tree structure of tree-based networks)
for a given semi-binary network. Maximal fence decompositions
have only been defined thus far for binary networks (constraints
on vertex degrees). We remedy this by generalizing fence decom-
positions to non-binary networks, and using this, we characterize
semi-binary tree-based networks in terms of forbidden structures.
Furthermore, we give an explicit enumeration of cherry covers of
semi-binary networks, by studying its fence decomposition. Finally,
we prove that it is possible to characterize semi-binary tree-child
networks, a subclass of tree-based networks, in terms of the number
of their cherry covers.

Index Terms—Phylogenetic networks, tree-based networks,
fence decomposition, cherry cover.

1. INTRODUCTION

HYLOGENETIC trees serve as a tool for depicting non-
Preticulate evolution (e.g. [1]). Their inherent simplicity
contrasts with the impossibility of representing more complex
evolutionary scenarios involving reticulate events like hybridiza-
tions, recombinations, or lateral gene transfers. Phylogenetic
networks extend phylogenetic trees, allowing for the represen-
tation of these more complex situations [2], [3].

The space of phylogenetic networks is divided into classes
to reproduce different biologically significant scenarios or to
explore challenging mathematical and computational problems.
One can find a review of such classes in [4]. One of the ongoing
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discourses in literature is the debate regarding the nature of
evolution. It revolves around whether evolution predominantly
follows a tree-like pattern, punctuated by occasional horizontal
occurrences [5], or if evolution inherently exhibits network-like
characteristics without any resemblance to a tree structure [6].
Tree-based networks [7] were introduced to represent the net-
works of the first type. In graph theory terms, such networks
are those that have a rooted spanning tree (called a support
tree) for which the leaves are those of the network. Suppressing
elementary nodes (nodes of indegree and outdegree equal to one)
in the support tree results in a base-tree as the underlying tree
structure for the network. In general, a tree-based network can
have more than one support tree, and possibly more than one base
tree (different support trees can give rise to the same base trees).
From a biological perspective, it is not only relevant to determine
the existence of an underlying tree-like signal within a network,
but also to assess whether this tree is unique or whether there
are many different trees that could equally well serve as base
trees. Tree-based networks include several relevant subclasses
of phylogenetic networks, including, among others, tree-child
networks [8]. Equivalently, a network is tree-child if and only if
each embedded tree, that is, is a support tree [9].

In addition to the network classes mentioned above, one
typically characterizes phylogenetic networks based on the de-
gree of vertices, that is, the number of arcs that every vertex
is allowed to be incident to. This characterization is useful,
and oftentimes necessary when there are ambiguities in the
order of how evolutionary events have unfolded. These am-
biguities are caused by insufficient data (soft polytomies) or
a simultaneous divergence of multiple species from a single
speciation event (hard polytomies) [10]; we also encounter the
same ambiguities in reticulate evolution [ 11]. Roughly speaking,
one considers binary networks when assuming no ambiguities
are present, semi-binary networks when assuming ambiguities
are present for reticulate evolution, and non-binary networks
when assuming ambiguities are present in both speciations and
reticulate evolution. Here, non-binary means that the network is
‘not necessarily binary’, and thus the class of binary networks
are contained in the class of semi-binary networks, which is
itself contained in the class of non-binary networks. A formal
definition for the three classes is given in Section II-A. Note
that in the literature, semi-binary is sometimes used to describe
networks that have ambiguities in speciation events [12].

In this paper, we study and build a bridge between two char-
acterizations of tree-based networks called cherry covers and

fence decompositions, which are both based on arc partitions.
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The concept of cherry covers relative to phylogenetic networks
was introduced in [13]. Roughly speaking, a cherry cover refers
to a partition of the network arcs into sets of sizes two and three,
such that each of these sets contains arcs that share endpoints in
some way. It was shown that non-binary networks are tree-based
if and only if they have a cherry cover. On the other hand,
fence decompositions of phylogenetic networks were introduced
in [14], [15], and similarly to cherry covers, it outlines a system-
atic approach to breaking down any network into its “funda-
mental” substructures. Roughly speaking, it is an arc partition
in which every set is an “up-down path” of arcs, meaning that
each arc shares at least one and at most two endpoints with
other arcs in the set. This partition can be used to characterize
binary tree-based networks in terms of forbidden structures, or
to count support trees in binary tree-based networks. We give
formal definitions and known results on cherry covers and fence
decompositions in Sections II-B and II-C, respectively.

Both cherry covers and fence decomposition have been used
for the study of tree-based networks; even so, the concepts
have not been studied in a framework in which both can be
handled together. In Section III, we prove that the number of
cherry covers is the same as the number of support trees for
semi-binary tree-based networks. In Section IV, we show that
the number of cherry covers (and thus also the number of support
trees) of a binary tree-based network can be written as a formula
involving the elements of its fence decomposition. Notice that
the problem of counting the number of support trees in binary
tree-based networks have been previously solved in [12], [16]
by the association of a bipartite graph to the network and in [15]
by the use of the fence decomposition. In Section V we ex-
tend the fence decomposition of binary phylogenetic networks
introduced in [15] to non-binary networks. This requires the
introduction of a new set of fence structures, and in so doing, we
extend problems defined for binary networks to the non-binary
setting. In Section VI we solve two of these problems. We
extend to semi-binary tree-based networks (a) the problem of
counting the number of their cherry covers (and therefore the
number of their support trees) from the “new” fence decom-
position, mimicking the results from Section IV, and (b) the
characterisation of semi-binary tree-based networks in terms
of forbidden structures. Both generalisations require similar
approaches, albeit much more technical and tricky than their
binary counterparts. Finally, in Section VII, we prove that the
subclass of semi-binary tree-child networks can be characterised
in terms of the number of their cherry covers. The paper ends
with some concluding remarks in Section VIII.

II. PRELIMINARIES

In this section we give some definitions and results that will
be used throughout the manuscript.

A. Phylogenetic Networks

A (non-binary) phylogenetic network, or simply a network,
N = (V, A) onaset X of taxa, is adirected acyclic graph (V, A)
without parallel arcs such that any node v € V' is either:
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1) a root, with indegu = 0, outdegu = 1 (and there can
only be one such node), or

2) aleaf, with indegu = 1, outdegu = 0, or

3) atree node, with indeg u = 1, outdegu > 2, or

4) a reticulation, with indeg u > 2, outdegu = 1,

together with a bijective function between X and the set of
leaves. Vertices in V' \ X are called interior nodes.

The arc incident to the root is called the root arc, and arcs
that feed into a reticulation node are called reticulation arcs.
For a given arc a € A, where a = uv, we define the rail of a
as tail(a) = u and the head of a as head(a) = v. A network
is semi-binary if all tree nodes have outdegree 2 (reticulations
with indegree greater than 2 are allowed), and it is binary if,
in addition to these conditions, all reticulations have indegree
2. We write non-binary to mean not necessarily binary. So the
class of binary networks are contained in the class of semi-binary
networks, which are themselves contained in the class of non-
binary networks.

In this paper we focus on some relevant subclasses of phylo-
genetic networks, mainly tree-based and tree-child networks.

A (non-binary) network N is tree-based 7], [12] with base-
tree T'when N can be obtained from 7" by the following process:

1) subdivide some arcs of T' generating elementary (inde-
gree and outdegree equal to one) nodes called attachment
points;

2) add new arcs between pairs of attachment points and from
nodes in 7" to attachment nodes, in such a way that N
remains acyclic, without parallel arcs, and such that each
attachment point maintains indegree or outdegree 1;

3) suppress every elementary node.

Removing all arcs added in step (2) gives a subdivision of 7',
called a support tree of N. In other terms, a tree (possibly
containing elementary nodes) obtained from N by removing
all but one incoming reticulation arcs from each reticulation
without creating new leaves is a support tree. Note that the set
of vertices of a support tree for N is also the set of vertices of
N.

A (non-binary) network is tree-child [8] if every interior node
has at least one child which is a tree node or a leaf. The class
of tree-child networks is included in the class of tree-based
networks.

B. Cherry Covers

We adapt here some definitions and results from [13]. Let
N = (V, A) be a semi-binary phylogenetic network.

A cherry shape in N is a subgraph of N composed by
three different nodes =, y,p € V and two arcs px, py € A. We
denote the cherry shape by its set of arcs {px,py}. We will
refer to p as the internal node and to = and y as the rerminal
nodes. A reticulated cherry shape in N is a subgraph of N
composed by four differentnodes x, v, p,, p, € V and three arcs
D, PyPz, PyY € A, with p, a tree node and p, a reticulation.
Similarly as in the previous case, we denote the reticulated cherry
shape as {p,x, pyps, pyy }, and we call p,, p, the internal nodes,
x,y the terminal nodes, and pyp, the middle arc. We refer to
both cherry and reticulated cherry shape as shapes.



PONS et al.: FENCE DECOMPOSITIONS AND CHERRY COVERS IN NON-BINARY PHYLOGENETIC NETWORKS

N

Fig.1. A semi-binary network N and its bulged version B(N') with a possible
cherry cover {C1,C2,Cs, R1, Ra2, Rz }. The different line type indicates the
edges of each cherry shape.

A set P of shapes is a cherry cover for a binary network N =
(V, A), if every arc in A, apart from the root arc, is contained
in a single shape of P. To adapt the concept of cherry covers to
semi-binary networks, we require the following definition. The
bulged version of a semi-binary network NV, denoted by B(N ), is
the multigraph obtained from N by replacing the outgoing arc of
eachreticulation node v withindeg w = k£ by k — 1 parallel arcs.
Notice that the bulged version of a binary network is (isomorphic
to) the network itself. Then a cherry cover of the bulged version
B(N) of a semi-binary network NN is a set P of shapes such
that each arc of B(IV), apart from the root arc, is contained in a
single shape of P. See an example in Fig. 1.

Cherry covers can be used to characterize the class of tree-
based networks.

Theorem 1 (adapted from Theorem 3.3 of [13]): A semi-
binary phylogenetic network NV is tree-based if, and only if,
B(N) has a cherry cover.

C. Fence Decomposition

We include here another static characterization of binary
tree-based networks based on an arc partition, called maximal
zig-zag trails [14], [15]. Let NV be a binary network. A zig-zag
trail of length k is a sequence (ai,as,...,a;) of different
arcs where k > 1, where either head(as;—1) = head(as;) and
tail(as;) = tail(ag;j41) holds for i € [[£]] = {1,2,..., %]}
and j € [[ 552 ]], or tail(ag;—1) = tail(az;) and head(as;) =
head(az;41) holds fori € [[ £]]and j € [| 232 |]. We call a zig-
zag trail Z maximal if there is no zig-zag trail that contains Z as a
subsequence. Depending on the nature of tail(a;) and tail(ay,),
we have four possible maximal zig-zag trails.

e Crowns: k>4 is even and tail(a;) = tail(ar) or
head(a;) = head(ax). By reordering the arcs, assume
henceforth that head(a;) = head(ay).

e M-fences: k > 2 is even, it is not a crown, and tail(a;) is
a tree vertex for every i € [k].

e N-fences: k > 1 is odd and tail(a;) or tail(ay ), but not
both, is a reticulation. By reordering the arcs, assume
henceforth that tail(a, ) is a reticulation and tail(ay) a tree
vertex.

e W-fences: k > 2is even and both tail(a;) and tail(ay, ) are
reticulations.

We call aset .S of maximal zig-zag trails a fence decomposition

of N if the elements of S partition all arcs, except for the root arc,
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3 A ol b3
Crown: “%4/2% M-fence: /I}LQJ‘Z\? N-fence: 1\:!§~W-fence: 1\:2/( j\a{

Fig. 2. Representation of the different zig-zag trails present in the binary set-
ting and a network IV with fence decomposition S = US_, {M;} U {N;} U
{W1}U{C1}. The different line types indicates the arcs of each maximal
zig-zag trail.

of N. See an example in Fig. 2. One can characterize networks
using such a decomposition.

Theorem 2 (adapted from Theorem 4.2 of [15]): Any binary
network /V has a unique fence decomposition.

One can also obtain a forbidden structure characterization of
binary tree-based networks using the decomposition.

Lemma 3 (adapted from Corollary 4.6 of [15]): Let N be a
binary network. Then NV is tree-based if and only if it has no
W -fences.

For non-crown maximal zig-zag trails, we require the notion
of endpoints to be used in later proofs. Let A = (a1, ..., ay) be
a maximal zig-zag trail. We shall write End(A) to denote the
set of endpoints of A. If A is an M-fence, then End(A) =
{head(a;),head(ax)}. If A is an N-fence, then End(A) =
{tail(ay),head(ay)}. If A is a W-fence, then End(A) =
{tail(ay), tail(ax)}.

III. CHERRY COVERS AND SUPPORT TREES IN SEMI-BINARY
NETWORKS

Recall that cherry covers in the semi-binary setting were
defined over the bulged version of the network, obtained by
adding, between each reticulation and its child, as many parallel
arcs as the indegree of the reticulation considered minus 1. Over
this bulged version, the definition of a cherry cover is given
as in the binary case. These additional parallel arcs may present
duplicates when counting the number of cherry covers for a semi-
binary network. For example, consider two reticulated cherry
shapes {a1,b,c} and {ag,b, c}, where a; and ay are parallel
arcs. Clearly, one should consider the shapes to be equivalent;
in this vein, we say that such two reticulated cherry shapes are
isomorphic. Additionally, we say that two cherry covers P; and
P; are isomorphic if there exists a one-to-one correspondence
between their set of reticulated cherry shapes into isomorphic
reticulated cherry shapes. Informally, the isomorphism between
two cherry covers can be understood as an isomorphism between
the parallel arcs added in the bulged version (in a sense that we
do not distinguish them).
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We denote by Py and Sy the set of all (non-isomorphic)
cherry covers and the set of support trees of a semi-binary
network N, respectively. Notice that from Theorem 1, Py # ()
if and only if N is tree-based. Moreover, by definition, N
is tree-based if and only if Sy # . In the next proposition
we prove that the number of cherry covers coincides with the
number of support trees in semi-binary networks.

Proposition4.: Let N be asemi-binary network. Then |Py| =
|Sn |-

Proof: If N is not tree-based, then [Py| = |Sy|=0. So
suppose that IV is tree-based.

Let P be a cherry cover of N. Let {p,x, pypa, pyy} € P be
a reticulated cherry shape. Observe that deleting the middle arc
pyPa reduces the indegree of p, by 1 and the outdegree of p,, by
1. The degrees of all other vertices remain unchanged. Therefore,
the resulting subgraph has the same leafset as that of V. Consider
T, a tree obtained by removing all reticulation arcs of N that
are covered as middle arcs of reticulated cherry shapes in P.
By the same argument as above, 7" is a subgraph of N with the
same leafset as that of V. Thus, 7" must be a support tree. So for
every cherry cover, we can construct a support tree. This shows
that |PN| < |SN|

Let S be a support tree of N, obtained by removing all but
one incoming reticulation arcs from each reticulation. We cover
each such deleted arcs {ay,...,ar} with the middle arc of
a reticulated cherry shape. We claim that we can extend the
covering to a cherry cover of N. Since N is semi-binary, tail(a;)
is a tree vertex of outdegree-2 for each ¢. So covering a; as a
middle arc also covers the other outgoing arc of tail(a;) and
also the outgoing arc of head(a;). Covering in this way does
not cause any overlaps between the reticulated cherry shapes,
except possibly at the parallel outgoing arcs of reticulations (in
the bulged version of N). Indeed, it is not possible for both
outgoing arcs of a tree vertex to be middle arcs, since S is a
support tree of /N. At this moment, every outgoing parallel arcs
of reticulations are covered (in the bulged version of N). Let w
be a tree vertex. Either both outgoing arcs of u are covered by a
single reticulated cherry shape, or none of its outgoing arcs are
covered. In the latter case, we cover the two outgoing arcs using
a cherry shape. Repeating this ensures that all outgoing arcs of
all vertices are covered by cherry shapes and reticulated cherry
shapes. So for every support tree, we can construct a cherry
cover. It follows that |Sy| < |Py|. O

IV. COVERING FENCES USING CHERRY COVERS

In this section, we show how one can obtain a cherry cover
from a fence decomposition in binary tree-based networks. Re-
call that a network is tree-based if and only if it has a cherry cover
(Theorem 1). Additionally, a network is tree-based if and only if
has no W-fences in its unique fence decomposition (Lemma 3).
Note that, in a binary network, exactly one reticulation arc for
every reticulation is contained in a reticulated cherry shape as a
middle arc.

Let N be a network and let N be an N-fence of N. In
what follows, we shall write N := (a1,az,...,ax), and we
will let cp;_1 denote the arc connecting head(ag;—1) and its
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only child for j € [%] We refer to a; as the first arc of the

N-fence N. The first lemma states that although a tree-based
network may have non-unique cherry covers, the reticulated
cherry shapes that cover arcs of N-fences are fixed.

Lemma 5 (adapted from Lemma 13 of [17]): Let N be abinary
tree-based network that has an N-fence N of length at least 3.
Then every cherry cover of N contains the reticulated cherry
shapes {coj_1, a2, asj+1} for j € [EL].

Note that the arcs of the reticulated cherry shapes do not
exactly coincide with the arcs of N in Lemma 5. In particular,
the arc a; of N is not covered; we shall see later that a;
will be covered as an outgoing arc of a reticulation in another
fence. Also, observe that the reticulated cherry shapes cover
the arcs cpj_1, which are not in N. Such arcs are contained
as first arcs in other N-fences. They will not be covered
in other reticulated cherry shapes, similarly to how a; was
not covered by the reticulated cherry shapes corresponding
to N.

We shall show similar results for M -fences and crowns. Let
M be an M-fence of N. In what follows, we shall write M =
(a1,a2,...,a;), and we will let co; denote the arc connect-
ing head(as;) and its child for j € [£;2].

Lemma 6: Let N be a binary tree-based network, and let M
be an M-fence of length k& > 4. There exists k/2 distinct ways
of covering the arcs of M and the arcs coj for j € [%] using
cherry and reticulated cherry shapes.

Proof: In any cherry cover of IV, exactly one incoming arc
of every reticulation is covered as a middle arc of a reticulated
cherry shape. Since the M -fence contains /2 — 1 reticulations,
we must have exactly k/2 — 1 reticulated cherry shapes that
cover the arcs of M and the arcs c2i. By construction, the
remaining two arcs of M must be arcs a,, and a,, for some
m,n € [k]. Suppose without loss of generality that n > m.
We show that n = m + 1. If not, then consider the arc a that
is different from a,, in M where tail(a) = tail(a,,). Note
that a = a,,—1 or @ = a,,+1. By assumption, a is covered by
a reticulated cherry shape. But since tail(a) is a tree vertex,
and since a is covered as the middle arc of a reticulated cherry
shape, a can only be covered in a shape together with a,,,. This
gives the required contradiction, since a,, is yet to be covered.
Thus n = m + 1, and we may cover these remaining arcs as a
cherry shape, {a,, ¢mi1}-

Therefore every M -fence of length k£ > 4 must be covered
by a single cherry shape and k/2 — 1 reticulated cherry shapes
in every cherry cover. Note that the choice of arcs in the cherry
shape determines the cherry cover for the M -fence subgraph. We
conclude that there are k/2 distinct ways of covering the arcs
of M and the arcs ¢y; for j € [%52] using cherry and reticulated
cherry shapes. 0

Finally let C be a crown of N. In what follows, we shall
write C' := (a1,a2,...,ax), and we will let co; denote the arc
connecting head(as;) and its child for j € [£].

Lemma 7: Let N be a binary tree-based network, and let C
be a crown of length k£ > 4. There exists exactly 2 distinct ways
of covering the arcs of C' and the arcs ¢y; for j € (%] using
reticulated cherry shapes.
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Proof: As in the proofs of the previous two lemmas, we use
the fact that exactly one incoming arc of every reticulation is
covered as a middle arc of a reticulated cherry shape. Each
reticulated cherry shape consists of 3 arcs. The crown, together
with the arcs cpj, has exactly 3k /2 arcs in total; the crown
contains exactly & /2 reticulations. It follows that every arc of C
and the arcs cy; for each j must be covered by areticulated cherry
shape. There are two ways to do this, by considering either of
the covers

. k—2
€25, 02541, 025+2 1 ] S T U {ck,al,ag}
or

{{eaj, a95,a251} 2 j € [k/2]}

No other ways of using reticulated cherry shapes to cover the
3k /2 arcs exist. Therefore, there are exactly 2 distinct ways of
covering the arcs of C' and the arcs cy; for j € [£]. O

Theorem 8: Let N be a binary tree-based network.
Let Ml, Mg, ceey M,, denote the M-fences of N of length
k; > 4 where i € [m] and let Cy,Cs, ..., C. denote the crowns
of N. Then N has 2"k ks - - - k,, distinct cherry covers and
support trees.

Proof: We can partition every cherry cover so that each block
corresponds to a maximal zig-zag trail, together with outgoing
arcs of the reticulations of the trail. This follows from the fact that
every arc with a reticulation tail must be covered by a reticulated
cherry shape. By Lemmas 5, 6, and 7, we know thateach N-fence
of length at least 3, M-fence of length k£ at least 4, and crown
(together with outgoing arcs of reticulations in each zig-zag trail)
can be covered in 1, k/2, and 2 ways. The permutations are
counted locally within each zig-zag trail, and they have no effect
on one another. It follows that there are

m

2¢ x H% =2 "kyky -
i=1

many possible cherry covers. By Proposition 4, this is also the
number of support trees for V. |

V. EXTENDING FENCES TO NON-BINARY NETWORKS

The goal of this section is to generalize the existence of a
unique fence decomposition from binary networks (Theorem 2)
to non-binary networks.

We start by extending the definitions of fences and crowns,
introduced in Section II-C, to non-binary networks. In extending
crowns, we shall glue together a crown to a W-fence, an N-
fence, or to another crown. Roughly speaking, one can view
non-binary crowns as structures that contain a binary crown.
In particular, a binary crown will also be considered to be a
non-binary crown. For the W, N, M -fences, we impose that they
do not contain any binary crowns. In the binary case, if a zig-
zag trail contains a crown, then the degree constraints on the
vertices imply that the entire trail must be a crown. Thus, the
extra crown-less condition over the W, N, M -fences for the non-
binary case is not a more restrictive condition on the binary
case. Consequently, this definition is also appropriate for binary
structures.
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Let N be non-binary; we introduce five more zig-zag trails.

Let (a1,as,...,ax,c1,Ca,. .., Cop ) be a zig-zag trail, of differ-
entarcs, where (c1, . . ., cop) is a crown. We say that such a path
isa

e Lower (Upper) W-crown: k > 1 is odd (k > 2 is even),
(ai,...,ax) does not contain a crown, head(ay)=
head(cy) (tail(ay) = tail(cy)).

e Lower (Upper) N-crown: k > 2 is even (k > 1 is odd),
(a1,...,a) does not contain a crown, head(ay) =
head(cy) (tail(ag) = tail(cy)).

® Double-crown: There exists a j <k such
(a1,a2,...,a;) forms a crown and (ajt1,..
does not contain a crown.

As in the binary case, we define endpoints of the new
structures. Formally, if A is an upper/lower W-crown, then
End(A) = {tail(a1)}, and if A is an upper/lower N-crown,
then End(A) = {head(a,)}.Fig. 3 shows some examples of all
the different types of zig-zag trails that we can find in non-binary
networks.

We now extend the notion of zig-zag trails to non-binary
networks. Specifically, we generalize the concept of maximal
zig-zag trails by considering them maximal within one of the
previously defined classes, that is, maximal W, N, M -fences,
crowns, double-crowns and lower and upper N, W-crowns. This
means that, in the non-binary case, a maximal zig-zag trail may
be contained within another zig-zag trail, as long as it does
not belong to any of the defined classes. Another difference
between maximal zig-zag trails in binary and those in non-binary
networks is that two maximal zig-zag trails can overlap at arcs
in the latter. Let IV be a non-binary network, and let A, B be
two maximal zig-zag trails of V. We say that A and B intersect
if they share at least one common arc. Let () denote the
set of all maximal zig-zag trails of N. We call a subset F'
of F(N) an extended zig-zag trail if for any element A € F,
either F' = { A}, or for any other element B € F, there exists a
sequence A = Ay, ..., A; = B of maximal zig-zag trails in F',
such that A; intersects with A; 1 fori € [k — 1]. Such aset F'is
called maximal if there is no other extended zig-zag trail G such
that F' C G. We call the set of all maximal extended zig-zag
trails an extended fence decomposition.

Let F be an extended zig-zag trail. We denote by V (F)
and A(F) the set of vertices and arcs of F, respectively. By
considering an extended fence decomposition D of the network,
it is clear that each arc must be covered by exactly one maximal
extended zig-zag trail F' € D.Let G C F. We say that G covers
F, or that G is a covering of F, if A(G) = A(F). Fig. 4 shows
an example of an extended zig-zag trail together with two of its
possible coverings.

Additionally, let F' = {Ay,..., A, C1,...,Co}, where C;
represents all the crowns and double-crowns in F, and A;
represent the other trails. We denote by End(F') the set of
endpoints of each A;. We call this set the set of endpoints of
F.

Proposition 9: The extended fence decomposition of a non-
binary network N = (V, A) induces a partition of A.

Proof: Let N = (V, A) be a non-binary network and let D
be its extended fence decomposition.

that
L) ak)



2178
Extended binary structures
W-fence: .\‘7'1 “2/\~ cee Japoa a/,:
Y
N A
M-fence: /1 2\/ T k1%
N-fence: .\"'1 az/\ c.e.agp_qay

New structures

VAL

ay ag

V
PAANIA

ay ag cap_qap ¢y

V

Lower W-crown: cag—1ap cp

Upper W-crown:

ap ag

Y
A

ap ag

AT

Lower N-crown:

Upper N-crown:

ANSNCA N

1.... a] ajiq e

Double crown: “i—
Cok’

Fig. 3.  Example of the new fences introduced in the non-binary case. The
upper part illustrates the extension of binary structures to the non-binary case.
The additional condition on trails ensures that these structures replicate those
from the binary case, preventing crowns from forming within the trail. The lower
part presents the new structures. Note that for the lower and upper W-crowns, we
have that tail(a1 ) is a reticulation. For the lower and upper /N-crowns, we have
that head (a1 ) is a tree node. For the double crown, there are four possibilities
to connect the two binary crowns. Here, we show one case, where the binary
crowns are connected at the reticulations.

First, we show that any two distinct maximal extended zig-zag
trails F, F' € D must be disjoint. Suppose, for contradiction,
that there exists a maximal zig-zag trail B € F N F'. Let B’ €
F'. By the definition of an extended zig-zag trail, there exists a
sequence of maximal zig-zag trails B = Ay, ..., Ay = B’ such
that A; intersects A, forall i € [k — 1]. Since Ay = B € F’
and each A; intersects A;1, it follows by the maximality of F’
that every A; € F". In particular, B’ € F’. Similarly, for every
C € I, we necessarily have C € F, which implies F' = I,
contradicting the assumption that I and F” are distinct. Thus,
different maximal extended zig-zag trails in D are disjoint.

Next, we prove that each arc of N is contained in exactly one
extended zig-zag trail. Let a = ugvy € A. We will show that a
is contained in at least one maximal zig-zag trail. To do this, we
construct a maximal zig-zag trail by extending the trail in both
directions from ug and v until no further extension is possible.
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AL AT A
AA '\/\A WA

Fig. 4. Example of a non- binary network N and a non-trivial maximal
extended zig-zag trail F' = {NCJ/VC,N Nl,NQ,Ng,Ml,Mg} of N.
The hlghllghted edges represent different zig-zag trails: Nl, Ny and N3 are
N-fences; M1 and M2 are M -fences; NC is an upper N-crown; NC is a
lower N-crown; and W is a lower W-crown. The sets of maximal zig-zag
trails G1 = {]\71, M, Mg} and Go = {NC, We, NC} represent two differ-
ent coverings of F'. Observe that Ny and N€ do not share any edges, but they
belong to the same extended zig-zag trail F' since Ny and M; intersect, and
M 1 and N intersect.

First, let us assume that a is not contained in any crown of V.
In this case, we consider a zig-zag trail of the form

(b, bg—1, - - -,

where ug = tail(by) and vg = head(ay), and such that no fur-
ther edge can be added to either end of the trail without violating
the conditions of a zig-zag trail. Depending on the parity of k and
k', the constructed trail represents a maximal W, M, or N-fence,
determined by whether the endpoints of the trail are reticulations
or tree nodes.

Now, let us assume that a is contained in some crown. Let C' =
(c1,...,cor) be a crown with a = ¢; for some ¢ € [2k]. If no
arca; € A\ A(C) exists such thathead(ay) € {head(¢;) : i €
[2k]} ortail(ay) € {tail(¢;) : @ € [2k]}, then C itself is a maxi-
mal zig-zag trail. Otherwise, assume that exists a; € A\ A(C)
such that either head(a;) = head(c;) or tail(a;) = tail(c;)
(rearranging the edges of C, if necessary).

Consider the case where head(a;) = head(c;). Then, we can
extend the trail to a zig-zag trail of the form

bi,bo = a =ag,a1,...,ax)

(a'kﬁa/k:’fla" '70'17017--'702147)’

where all the edges are distinct, no additional edge can be added
to ay, and the trail (ag,ap—1,...,a;) contains at most one
crown. If it contains no crown, the constructed zig-zag trail is
a maximal lower N-crown (if k&’ is even) or a maximal lower
W -crown (if £’ is odd). If it contains a crown, let us denote it by
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say (a;, a;_1,...,a;_9), then the zig-zag trail

(aiyaifla ey @520, G521 -1y - -, A1,C1y . .. ,Czk)

is a maximal double crown.

A similar argument applies when tail(aq) = tail(c;), yield-
ing maximal upper N-crowns, upper W-crowns, or double
crowns.

Thus, every arc of the network is contained in at least one max-
imal zig-zag trail, which, as shown earlier, belongs to a unique
maximal extended zig-zag trail. This completes the proof. [

By construction, we have that extended zig-zag trails are
connected, so we have zig-zag trails connecting any two nodes
of the trail. The following result states that we do not only have
paths between any two nodes of the fence, but we have zig-zag
trails, which can be extended to maximal zig-zag trails.

Lemma 10: Let N be a non-binary network and let F' be a
maximal extended zig-zag trail in N and u,v € V(F'). Then
there exists a zig-zag trail C' (not necessarily maximal) with all
its arcs in A(F), such that End(C) = {u,v}.

Proof: Let A and B be two maximal zig-zag trails in F' such
that u is a node of A and v is a node of B. By construction of F,
there exists a sequence A = A, Ao, ..., Ay = B of maximal
zig-zag trails of F, with k£ > 2, such that A; and A;; are
intersecting for every 7. We are going to construct a maximal
zig-zag trail with arcs in A(F'), including v and v. Let d; denote
one of the arcs in the intersection of A; and A;;1. Now, we
define maximal zig-zag trails C; as follows:

1) Cp = Ay,
2) Forl <i<k:
® Denote  Cj_y = (ci',...,c;)l ) and A=
(ai,...,ay,,) and let j€[m; 1] such that
¢l =al for some [€[n;]. Suppose that

J . )
u € {tail(c; '), head(c, ")}/ _, and d; € {a}}}",.
otherwise, rearrange the trails to be in this situation.
Then, we define

1 L ,. ,.
C; = (c} s C Q41 Qg0 )
3) Denote Cj_q = (c’f’l,...,cfn‘,il). We have dj_; €

A(Cr-1) N A(Ag), so let us denote dj =ci ! =ak.
Assume that u € {tail(c} '), head(c} 1)}F_, and v €
{tail(a}), head(af)} > Otherwise, rearrange the trails.
Thus, define

_ (k-1 k-1 _k k
Cr = (] e Cp ,aqH,...,ank)

Clearly, each C; is a maximal zig-zag trail containing u that
intersects A; 1. Additionally, we can easily see the maximality
of C; from the maximality of C;_; and A;. Thus, C is amaximal
zig-zag trail containing v and v with all its arcs in F'. From
C}, we can extract a zig-zag trail from u to v with all its arcs
in F. ]

It is worth noting that, from the construction given in the
proof of Lemma 10, we can deduce that, if two disjoint fences
A and B are present within the same extended zig-zag trail F,
we can identify a new fence C' intersecting A and B, with any
two selected vertices from V (A) and V (B). Furthermore, if we
select u and v to be endpoints of F', from the proof of Lemma 10,
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the resulting extended trail C' is maximal. Accordingly, we state
the following result.

Corollary 11: Let N be a non-binary network and let F' be a
maximal extended zig-zag trail in N and v, v € End(F). Then,
there exists C' € F with End(C) = {u,v}.

VI. CHARACTERIZATION OF SEMI-BINARY TREE-BASED
NETWORKS

In this section, we extend the results of counting the number
of cherry covers (and then of support trees), Theorem 8, and the
characterization of tree-based networks in terms of forbidden
structures, Lemma 3, from binary to semi-binary tree-based
networks.

Proposition 9 states that the extended fence decomposition
partitions the set of arcs of any non-binary network. Conse-
quently, this decomposition also applies to semi-binary net-
works.

Now, our focus is to study the forbidden structures in semi-
binary tree-based networks with respect to their extended fence
decomposition. Due to the semi-binary property, in particular
since the outdegree of tree nodes is 2, it is clear that the network
cannot exhibit upper /N-crowns or upper W -crowns. Addition-
ally, we prove the absence of W -fences, lower W-crowns and
double-crowns.

Lemma 12: Let N be a semi-binary tree-based network, and
let D be its extended fence decomposition. For all F' € D, F
satisfies the following conditions:

a) F'does not contain any W -fences.

b) F does not contain any lower W-crowns.

¢) F' has at most 1 crown. In particular, F' does not contain

any double-crowns.

Proof: Letus start by proving a). Let N be a semi-binary tree-
based network, and suppose there exists a W-fence (a1, . .., ag;)
in a maximal zig-zag trail F' € D. Since N is tree-based, it
has some underlying support tree 7" as the result of iteratively
deleting all but one incoming arc of each reticulation, ensuring
that no new leaves are added at any step.

Observe that tail(a; ) and head (a4 ) are two connected reticu-
lations, then a; € E(T'). Consequently, az ¢ E(T). As tail(az)
is a tree node with outdegree 2, we have az € E(T); otherwise
tail(ag) corresponds to a (different) leaf on T'. Repeating this
reasoning, we conclude that ag—1 € E(T') and ag ¢ E(T).
This selection of arcs implies that the reticulation tail(ag;)
corresponds to a (different) leaf in the support tree which is
a contradiction.

An analogous constructive argument can be used to prove b).

Finally, let us show condition ¢). Let N be a semi-binary
tree-based network, and suppose there exists an extended zig-zag
trail F' € D with more than 1 crown. Let (aq,...,a,) and
(b1,...,by) be two different crowns. Notice that n and m
are even integers. Let us assume that tail(a;) = tail(a, ) and
tail(by) = tail(b,,), if not, we can rename the arcs to make sure
that this is the case. We distinguish the cases where both paths
either intersect in a reticulation or they do not. Let 7" be a support
tree of V.



2180

Firstly, assume they intersect in a reticulation. Then there
exists ¢ € [n] and j € [m] such that head(a;) = head(a;4+1) =
head(b;) = head(bj41). Observe that either a;, ¢ E(T) and
ai+1 ¢ E(T), or b; ¢ E(T) and bj+1 ¢ E(T). Without loss
of generality, assume that a; ¢ E(T) and a1 ¢ E(T). Since
a; ¢ E(T), by the semi-binary property, we have a;_1 € E(T),
implying a; o ¢ E(T), and this process can be iterated. Repeat-
ing the same argument for a; 1 ¢ E(T), we get a;12 € E(T),
ai+3 ¢ E(T), etc. Since n is even, we end up having ay ¢
E(T) and a,, ¢ E(T). However, due to tail(a;) = tail(a,,),
this makes tail(a;) a leaf of T, contradicting the fact that it
is a support tree of V.

Now, assume that we have two binary crowns (a1, ..
and (by,...,b,,) that are disjoint in their reticulations. By
Lemma 10, there exists a zig-zag trail (cp,...,¢) that
joins both structures, such that ¢; # a; and ¢; # by, for any
possible index combinations ¢, j, k. Due to the semi-binary
condition, head(c1) and head(¢;) are reticulations, then [ is
an even number. By relabelling arcs, we can consider the

-, Gn)

zig-zag trail (as,as,...,an,a1,C1,...,C1, 0,03, ... by, 1)
where  head(a;) = head(az) = head(c;),  head(by) =
head(by) = head(¢;), tail(a;) = tail(a,) and tail(by) =
tail(byy,).

If a; ¢ E(T) and as ¢ E(T), then applying the same argu-
ment as in the previous case we reach a contradiction. There-
fore, we either have a1 € E(T) or as € E(T). In that case,
¢1 ¢ E(T),andsinceliseven, ¢; € E(T),implyingb; ¢ E(T)
and by ¢ F(T). Again, as in the previous case this leads to a
contradiction.

Finally, since (by definition) double-crowns contain two bi-
nary crowns, then I’ does not contain those structures. U

Lemma 12 restrict the possible structures that we can find
in the fence decomposition of a tree-based network, so we can
classify the maximal extended zig-zag trails that we can find in
semi-binary tree-based networks.

Let N be a semi-binary tree-based network, D its extended
fence decomposition and let F' € D. We say that:

e ['isa generalized N-fence if F' does not have crowns and

End(F) contains exactly one reticulation.
e ['isageneralized M -fence if F' does not have crowns and
End(F) contains only tree vertices.

e F'isa generalized crown if F has one crown and End(F')

is either empty or it only contains tree vertices.

A reinterpretation of Lemma 12 shows that the previous
definitions classify the maximal extended zig-zag trails that we
can find in semi-binary tree-based networks.

Corollary 13: Let N be a semi-binary tree-based network, D
its extended fence decomposition and let /' € D. Then, one of
the following is satisfied:

1) F'is a generalized N-fence.

2) F'is a generalized M -fence.

3) F'is a generalized crown.

Proof: By Lemma 12 c¢), we have that F' either has one
crown or no crowns. Now, suppose that End(F') has at least
2 reticulations u and v. By Corollary 11, we have a maximal
zig-zag trail (aq,...,ay) that goes from w to v. If this trail
does not contain crowns, then it is a maximal W -fence, which,
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by Lemma 12 a), we know that are prohibited in tree-based
networks. If the trail has a crown, we can consider £’ € [k] to
be the smallest integer such that (a;, a;41, ..., asx) is a crown
for some 4. Thus, the zig-zag trail (ay, ..., ass) is a maximal
W -crown, which, by Lemma 12 b) are also prohibited. If F" has
a crown and End(F) has one reticulation, a similar argument
leads us to F' having a maximal W-crown. In other case, F’
satisfy (1), (2) or (3).

Now that we have described the structures that appear in
semi-binary tree-based networks, our objective is to characterize
tree-based networks and to count support trees. Recall that, to
construct a support tree 7', we have to select one reticulation arc
from each reticulated cherry shape of the network, in a way that
we do not create new leaves. Since we have to make a selection of
arcs, we would not need the whole information of each extended
zig-zag trail. Instead, we will work with covers. The following
results will give us minimal coverings (w.r.t. the inclusion), for
each extended zig-zag trail, that will be useful to count support
trees in the latter.

Corollary 14: Let F' be a generalized N-fence with
End(F) = {u,v1,...,vx}, where u is the only reticulation
endpoint and v; are tree-vertices. Let G = [J¥_, {N;}, where
J\Afi are maximal N-fences in F' going from u to v;. Then, G is
a covering of F'.

Proof: By Corollary 11, there exists zig-zag trails N; from
u to v; contained in F'. Since F' does not have crowns, these
trails do not contain crowns and must be unique. Thus, N; are
maximal N-fences in F'. Now let us prove that G = Ule {N;}
covers F. We have to prove that A(G) = A(F'). Clearly, we
have A(G) C A(F'), so we need to show the other inclusion.
Let a € A(F). By construction of F', there exists a maximal
zig-zag trail A such that a is an arc of A, so let us de-
note A= (ay,...,a;—1,a,a11,-..,0n). If tail(a;) = u and
head(a,,) = v; or head(a,) = v, and tail(a,,) = u, for some
j € [K], then Ais either N; or N; inverted. In both cases we have
a € A(Nj). Else, we have head(a;) = v; and head(a,,) = v,
for some j,1 € [k]. In this case, it is easy to see that a must be
either an arc in N or in N;. Therefore, a € A(G). O

Corollary 15: Let F' be a generalized M-fence with
End(F) = {v1,...,ux}, where v; are tree-vertices. Let G =
Ufzz{]\;[i}, where M are maximal M-fences in F' going from
v1 to v;. Then, G is a covering of F.

Proof: Analogous proof to the one presented in
Corollary 14. O

Corollary 16: Let I be a generalized crown with End(F) =
{v1,...,v}, where v; are tree-vertices. Let G = {C} U
Ule {Ni}, where C is the only crown of F and N are maximal
lower N-crowns in F’ starting at v;. Then, G is a covering of F.

Proof: Analogous proof to the one presented in
Corollary 14. (]

Now, we have concrete coverings for each extended zig-zag
trail that appears in semi-binary tree-based networks. For each
extended zig-zag trail F', and G constructed in Corollaries 14,
15 and 16, depending on the nature of F, we will refer to G
as an efficient covering of F'. We will use efficient coverings to
construct support trees.
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For a covering G = U¥_, {A;}, with A; = (a},db, . .. ,afm),
we will denote by d’ the child, if it exists, of head(a}) for
j € [m;]. Observe that, in some cases, we may have d; = le,
depending on the parity of m;. When this occurs, we treat
the situation by using only one of the two labels, choosing
appropriately based on the parity of the index. The multiplicity
of each arc ¢} := head( “)d’, in the bulged version, is equal to
the indegree of head(a ) minus one. In all cherry covers, each of
these parallel arcs W111 be covered in a reticulated cherry shape
as the lowest arc. Furthermore, no two parallel arcs appear in the
same reticulated cherry shape. The symmetry of each parallel
arc means that the order in which they are covered is irrelevant
in a cherry cover. Thus, we allow for the arc C;‘ to appear in
multiple reticulated cherry shapes. It is to be understood, that
each appearance of such arcs cj refers to different versions of
the same parallel arc.

Consider an efficient covering G = |J*_, {A;} of a general-
ized M or N fence F', where each of the A; = (a$,a, ..., al, )
start at the same node, so that a} = a? = --- = a¥. Since every
pair of maximal fences A; has different endpoints, no maximal
fence is properly contained in another maximal fence. This
means that every maximal fence A; ‘splits’ off from the other
fences at some point. In particular, each fence A; splits at
some point from the previous fences A; with j < i. Since F
does not have any crowns, once the fence splits, it ends in
a branch structure that does not intersect the previous trails
again. We define the split number of a zig-zag trail A; as
sa =min{j € {L,...,m;} | at ¢ AUZL{A})}.

Lemma 17: Let N be asemi-binary tree-based network. Let F
be a generalized N-fence of N and G = Ule{Nq} its efficient
covering, with N; = (a}, a3, ..., a}, ). Then, fori € [k]and j €

[k 5 ~1], every cherry cover of N contains the reticulated cherry

shapes {027 15 a2j,a27+1}

Proof: The arc ¢] must be covered as the bottom arc of a
reticulated cherry shape. Since a! is incident to two reticulations,
it cannot be covered as a middle arc. This means that all other in-
coming arcs of tail(c} ) must be covered as a middle arc, together
with ¢}, i.e., the shape must be of the form {c}, a}, a}}. Since
the reticulated cherry shapes contain a, this means in particular
that tail(c}) has one incoming arc aj that is already covered.
Then, all other incoming arcs of tail(c}) must be covered as
a middle arc. That is, we must cover the parallel arcs ¢4 with
reticulated cherry shapes {c},a’,al}. This argument can be
repeated for all arcs céjf1 fori e [k]and j € [k; 1] to obtain a
covering of F' and all outgoing arcs, and we are done. (]

We define the length of a generalized M -fence as the number
of arcs in F, denoted by k. For an efficient covering G =
UE_ {M;} of F, let k; denote the length of each M; and s’
its split number with respect to G. It is clear that krp = k1 +
s (ki = (s = 1)).

Lemma 18: Let N be a semi-binary tree-based network, and
let F' be a generalized M-fence of length krp > 4. Let G =
Ule{Ml} be an efficient covering of F' for some designated
vertex v, with \f; = (al,...,aj ) such that head(a}) = v, for
all i. There exists exactly kg /2 distinct ways of covering the arcs
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of Fand the arcs ch; fori € [k] and j € [£-2] using cherry and
reticulated cherry shapes.

Proof: The generalized M-fence F contains kr /2 — k retic-
ulations and kp — (k + 1) reticulation arcs, so we must have
exactly kr/2 — 1 reticulated cherry shapes covering the arcs
of F and the outgoing arcs of the reticulations. Thus, krp — 2 arcs
of F are covered by reticulated cherry shapes. The remaining
two arcs of F' must be arcs a’, and a, for some i, j € [k] and
m € [k;] and n € [k;]. Without loss of generality assume that
n > m. By a similar argument to the one given in Lemma 6, we
cansee that: = jandn = m + 1.

Therefore, every generalized M -fence of length kr > 4 must
be covered by a single cherry shape and kr/2 — 1 reticulated
cherry shapes in every cherry cover. In particular, note that the
choice of arcs for the cherry shape determines the rest of the
reticulated cherry shapes that cover the rest of the arcs of F.
Since there are kr /2 potential locations for cherry shapes, we
conclude that there are &k /2 distinct ways of covering the arcs
of ' and the arcs head (a};)ch; fori € [k] and j € [%52] using
cherry and reticulated cherry shapes. g

Lemma 19: Let N be a semi-binary tree-based network,

and let I be a generalized crown. Let G = Ule{]\?cl} u{C}

be an efficient covering of F', where C' = (by,...,bam,) is
a crown and N, = (ai,..., A boi(1)s - - - > Doy(2my)) are the
lower N-crowns, for some cyclic permutations o; : [2mg] —

[2my]. Also, let cop denote the arc between head(byy) and its
child, and c}; the arc between head(aj;) and its child. Then,
there exist exactly 2 distinct ways of covering the arcs of F', the
arcs ¢y for £ € [my] and the arcs ¢ for j € ["5+] and i € [k]
using reticulated cherry shapes.

Proof: By the semi-binary property and the fact that for each
reticulation, only one of its incoming arcs is not covered as the
middle arc of a reticulated cherry shape, we have that the arcs of
C and the arcs cg, ¢4, . . . , Cam,, can be covered in two different
ways in the bulged version of IV, as we had in the binary case.

Once the arcs of the crown are covered, the only arcs

left to cover are the arcs af,...,a}, and the arcs cj; for

J €[%t] and i € [k]. But since N, are lower N-crowns,

ehave head(ay,, ) = head(b! ,)) = head(b!, ,,, ), and we
have that either b 2(1) O by, (2m,) are covered i 1n a retrculated
cherry shape contalnrng Co,(2me)- Lhus, the cherry cover con-
tains the reticulated cherry shape {¢,, (2mq); @, + @1, -1 }- Now
we have a;,.; covered in a shape that does not contam cm _g.
Because of this, every reticulation arc incident to tail(c;, )

thatis not am _, mustbe covered as areticulated cherry shape to-
gether with ¢}, _,. Therefore, we have areticulated cherry shape
of the form {c 9y @by o, ab, 3} Note that n; is even, since

N i is a lower N -Crown. Repeatlng the argument we have retic-
ulated cherry shapes of the form {c}, 91 Q25 mrer}
for 1 < 7 < < and this hold for every i € [k]. Observe that
with this argument we covered all the arcs of F', as well as
the arcs cy¢ for £ € [mo] and the arcs cj; for j € [%5*] and
i€ [k].

Summing up, we have 2 possibilities of covering the arcs of
C, and once they are covered, the rest of the shapes that cover
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the arcs of F' are fixed. It follows that every cherry cover of NV
covers the arcs of F' in one of two possible ways. O

Theorem 20: Let N be a semi-binary tree-based network.
Let Ay, Ag, ..., A, denote the generalized M -fences of N of
length k; > 4 where i € [m] and let By, Ba, . .., B, denote the
generalized crowns of N. Then N has 27"k ks - - - k,,, distinct
cherry covers and support trees.

Proof: Let P be a cherry cover. Let D be the extended fence
decomposition of N. By Corollary 13, we know that the only
extended zig-zag trails in D are generalized N and M -fences
and generalized crowns. This decomposition gives us a partition
of the arcs of IV into disjoint blocks, each one of them of three
different types:

1) Generalized N -fences without the only arc connecting two
reticulations, and adding the outgoing arcs of the rest of
each reticulation.

2) Generalized M -fences together with the outgoing arcs of
each reticulation.

3) Generalized crowns without the arcs connecting reticula-
tions and adding the outgoing arcs of the reticulations.

By Lemma 17, we know that the type 1) structures can be
covered in 1 way. By Lemma 18, for a generalized M -fence of
length k, we have that type 2) structures can be covered in k/2
ways. And, using Lemma 19, type 3) structures can be covered
in 2 different ways. It follows that there are

m

c ki
2 x}l[l?

many possible cherry covers. i

Theorem 21: Let N be a semi-binary network, and let D be

its extended fence decomposition. Then, IV is tree-based if and

only if, for all zig-zag fences I’ € D in N, the following holds:
i) F' does not contain any W -fence.

ii) F does not contain any lower W -crown.

iii) F' contains at most 1 binary crown.

Proof: The only if part follows directly from Lemma 12. For
only if part, let us assume that N does not have any maximal
extended zig-zag trail F’ satisfying (i), (ii) or (iii). Thus, each of
the maximal extended zig-zag trails are generalized N-fences,
generalized M -fences or generalized crowns. Let us construct a
cherry cover of V. We can partition the arcs of N in its set of
maximal extended zig-zag trails, which gives another partition
in blocks of the three different types:

1) Generalized N-fences without the only arc connecting two
reticulations, and adding the outgoing arcs of the rest of
each reticulation.

2) Generalized M -fences together with the outgoing arcs of
each reticulation.

3) Generalized crowns without the arcs connecting reticula-
tions and adding the outgoing arcs of the reticulations.

If we can cover each block with cherry shapes and reticulated
cherry shapes, that would give us a cherry cover for the whole
network.

Therefore, let us consider, for each block of type 1), the set of
shapes and reticulated cherry shapes defined in Lemma 17, and
for the structures of type 2) and 3), one of the sets defined in the

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 5, SEPTEMBER/OCTOBER 2025

proof of Lemmas 18 and 19, respectively. Clearly, this gives us
a proper covering of the blocks in cherry shapes and reticulated
cherry shapes, so the union of all such sets gives us a covering
for the whole network in disjoint shapes. This is a cherry cover
for N, and by Theorem 1, N is tree-based. O

VII. CHARACTERIZATION OF SEMI-BINARY TREE-CHILD
NETWORKS

Recall that Py denotes the set of all cherry covers of a net-
work N. In this section, we characterize semi-binary tree-child
networks [8] in terms of |Py|.

Lemma 22: Let N be a semi-binary network with k retic-
ulations with indegrees r1, ..., rg, respectively. Then, |Py| <
Hf:l Ti

Proof: Observe that, in a cherry cover, once we select the
reticulated cherry shapes, the rest of the cherry cover is fixed.
Moreover, in the semi-binary case, reticulated cherry shapes are
determined by its middle arc. So we need to count the possible
selections for this middle arc. For a reticulation vertex u with
indeg u = d, there must be d — 1 reticulation arcs incident to «
covered as the middle arc of a reticulated cherry shape, and only
1 arc without this property. Now, if we denote by {u;}%_; and
{ri}i?:l, the set of reticulations and its indegrees, respectively,
we have r; possibilities to select the only arc, incident to u;,
that would not be covered as a middle arc of a reticulated cherry
shape in a cherry cover. Thus, we have Hle r; possible ways to
select such arcs, and therefore at most this many cherry covers.
Note that for some combination of reticulation arc selections, it
is possible for a cherry cover to not exist. (]

Proposition 23: Let N be a semi-binary network with r retic-
ulations. Letry, . . ., 7% denote the indegrees of each reticulation.
Then, N is tree-child if, and only if, |Py| = Hle .

Proof: First, assume that [V is tree-child. Observe that in this
case the extended fence decomposition of /V only contains M-
fences of size 2 and k generalized M -fences of size 2r;. By
Theorem 20, the result follows.

Now, assume that |Py| = Hle r; and suppose that N is not
a tree-child network. Then, there exists a non-leaf vertex u such
that all its children are reticulations. By the semi-binary property,
u either has 1 child (if it is a reticulation) or 2 children (if it is a
tree node). Assume that u is a reticulation, and let v be its only
reticulation child and h the only child of v.

Consider the graph N’ obtained by: subdividing the arc uv
with a vertex u'; adding a new vertex v’; and adding the arc v/v’.
It is clear that the result of this operation gives a semi-binary
network. Observe that, by the construction of N’, any cherry
cover of N determines, over the bulged version of N/, a unique
covering of all the arcs but «'v' and u'v. Therefore, for any
cherry cover P € Py, if we add the cherry shape {u/'v’, u'v},
we get a cherry cover for the bulged version of N’, so we have
PU{{u'v/,u'v}} € Py:. Thus, |Pn:| > [Pn| = [T0_, 7.

Also, observe that over the bulged version of N, we have
many parallel arcs between v and h, let a be one of them.
Let P be a cherry cover of N. Then, P must cover the
arc a in some reticulated cherry shape, let us denote by
{a,wv,wl}, where w is a parent of v such that it is tree
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node and [ is the child of w different from v. Observe that
w # u since u is a reticulation. Consider the set P’ = (P \
{{a,wv,wl}}) U {{a,v'v,v'v'}} U {{wv,wl}}. Itis clear that
P\ {{a,v'v,u'v'}} is not a cherry cover of N, since it does
not cover the arc a, and P’ does not contain intersecting shapes.
Therefore, P’ represents a different cherry cover than the ones
that we could build from Py. Noting that the indegrees of
the reticulations have not changed, this means that |Py/| >
Hle r; + 1, contradicting Lemma 22.

If w is a tree node and v and w represent its children, let us
construct N” from N by subdividing the arc uv with a node
u', adding a new vertex v/, and adding an arc u/'v’. A similar
argument as in the previous case leads us to a contradiction. []

VIII. CONCLUSION

To summarize our contributions, we have shown that the
number of cherry covers coincide with the number of support
trees for a semi-binary network (Proposition 4), and we showed
that for binary tree-based networks, there is a natural bridge
between its fence decomposition and its cherry covers (Theorem
8). We have extended the notion of a fence decomposition to
the non-binary setting, by introducing new types of fences in
Section V. Using this new characterization, every non-binary
network can be decomposed into its extended fence decom-
position (Proposition 9). With this decomposition, we proved
the generalized version of Theorem 8, by showing that one can
count the number of cherry covers (and therefore the number
of support trees) of a semi-binary tree-based network (Theo-
rem 20). We also gave a new characterization of semi-binary
tree-based networks based on forbidden structures within the
extended fence decomposition (Theorem 21). Finally, we gave
anew characterization of semi-binary tree-child networks based
on the number of cherry covers (Proposition 23).

We now discuss potential future directions regarding cherry
covers and extended fence decompositions, starting with open
problems on generalizations to the non-binary setting. For
example, can we show that for non-binary tree-based networks,
the number of cherry covers coincide with the number of
support trees? At first glance, this does not seem true. To
give some justification, recall that within a cherry cover for
a non-binary network, each arc may be covered more than
once (for the formal definition, see Definition 2.10 of [13]).
Consider a non-binary tree 7' on three leaves {z,y, 2z} with
a common parent ¢. Including the root p, this is a tree on 5
vertices {p, t,x,y, z} and 4 arcs {pt, ta, ty, tz}. By definition,
{{tx, ty}, {ty,tz}} and {{tz,ty}, {tx,tz}} are both cherry
covers of 7. Since T'is a tree, it has only one support tree, namely
the tree itself. Thus, naively, the equality |St| = |Pr| does not
hold. However, we note that there is exactly one maximal cherry
cover {{txz,ty}, {tx,tz}, {ty,tz}} of T, which has maximal
size over all possible cherry covers. Therefore, we conjecture
the following.

Conjecture 24: Let N be a non-binary network. Let Sy
and Py denote the set of support trees and maximal cherry
covers for N, respectively. Then |St| = |Pr|.

In another direction, one can attempt for a forbidden structure
characterization for non-binary tree-based networks. Here, the
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analysis of the extended fence decompositions quickly becomes
more complex, as upper W-crowns and upper [N-crowns are
not immediately forbidden due to the relaxation of degree con-
straints.
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