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1
Introduction

1.1. Background
Due to the growing trends toward radar and communication systems operating at frequency bands
above 100 GHz, there is a demand for high gain and low cost antenna systems. The demand for low-
cost antennas is to make them accessible for mass-market applications. The high gain is required to
compensate for higher path spreading loss and lower output power sources at (sub)-mm wavelengths.
To satisfy these demands, low permittivity (εr ≤ 2.5) plastic lens antennas are a good candidate. These
plastic materials exhibit relatively low dielectric losses. Moreover, low cost fabrication techniques exist
(i.e. milling, injectionmolding) for these type of lenses. However, one downside of plastic lenses is that
steering capabilities are limited due to the curvature of the elliptical lenses in addition to the required
large off-focus feed displacements [1].

(a)

(b)

Figure 1.1: Examples of solutions addressing the low scanning performance of low density dielectric lenses, with (a) being the
dielectric grating wedge in the lens [2] and (b) is an example of a shaped dielectric lens [3].

Several solutions exist that address the low scanning performance of low density dielectric lenses (see
Fig. 1.1). For example,[2] proposes the use of a dielectric grating wedge in the lens. In [4] symmetric
dielectric pins are added into the waveguide feeder to improve the scanning capabilities of the lens an-
tenna. In this thesis, the potential in terms of scanning capabilities of lens antennas that are fabricated
in low density plastic materials is investigated further.

Onemethod that could improve the scanning capabilities ismodifying the shape of the lens antenna.
Several shaping techniques for lens antennas exist [5], [6], [7]. In this work, the effect of shape mod-
ification using a Zernike [8] expansion is investigated. Moreover, a computationally efficient analysis
method based on antenna in reception is employed as a kernel for to optimize low density shaped lens
antenna geometries.

Another approach for achieving wide scanning performance is by introducing multiple lens surfaces

1
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(see Fig.1.2) in the Quasi-Optical (QO) design. Recently, sensing and imaging systems for (sub)-mm
wavelengths have been demonstrated that require QO systems with wide scanning and wideband per-
formance. Large available bandwidths are beneficial for several applications including, 3D radar sys-
tems [9], passive radiometry [10] systems and astronomical spectrometers [11]. The image acquisition
speed in all of these applications improves with a larger number of antennas simultaneously looking at
different pixels in the image.

(a)

(b)

Figure 1.2: Examples of multi-layer lenses, with (a) being a inversely magnified dual-lens system [5] and (b) is an core-shell
leaky-wave lens antenna [12].

Several analysis techniques exist to analysemulti-lens QO components. Amulti surface Physical Optics
(PO) approach can be employed to propagate the radiation from the antenna feed through multiple
transmitting surfaces. Such analysis can also be performed by coupling commercial software such as
CST [13] and GRASP [14] with a similar PO based approach for larger lens components and full wave
simulation for integrated lenses. However, these methods are oftentimes extremely time-consuming
since the lens components are large in terms of the wavelength and placed at relatively small distances
from each other. Therefore, it is important to develop techniques that can analyse these multi-layer
QO elements efficiently. In this work, such an analysis technique of these elements is proposed and
studied.

1.2. Proposed methodology
This work proposes a computationally efficient analysis method for single layer and multi-layer Quasi-
Optical components. This method applies Geometrical Optics (GO) and ray tracing techniques to per-
form a field matching on the lens surface. For the single layer components, the developed code is the
kernel of a MATLAB optimizer. Here, the feed location, feed tilt and surface expansion coefficients
are optimized. This code allows for a time efficient analysis of the scanning performance of the single
layer components. Based on this approach, a few wide scanning scenarios using low density integrated
lens antennas are investigated by optimizing the lens antenna geometry. The performance of the opti-
mized geometries is validated by full wave simulations using commercial software. For the multi-layer
elements, a similar analysismethod is proposed. In this case, a combination of amulti transmitting sur-
face GO technique and ray tracing is used to propagate the Electromagnetic (EM) field throughmultiple
transmitting layers.
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1.3. Thesis outline
This thesis consists of six chapters. Furthermore, the thesis is split up into twoparts. The first part of the
thesis consists of four chapters, and it is focused on the optimization process for single layer shaped low
density integrated elliptical lenses. Chapter 2 introduces the lens antenna geometry considered for the
analysis. Furthermore, a shape modification method using Zernike polynomials is discussed. Chapter
3 provides a detailed explanation of the GOmethodology chosen for analyzing lenses for wide scanning
applications. In Chapter 4 the optimization process is described, where the optimization problem for
low density lens antennas is explained and the setup of the optimizer is discussed. Chapter 5 discusses
the performance of the optimized lens antennas for several application cases. Firstly, a 25° scanning
case is evaluated, and the obtained results are validated by means of a CST full wave simulation [13].
Furthermore, the bandwidth performance of the proposed shaped lens antenna is investigated. Lastly,
the theoretical scanning performance of shaped lens antennas is investigated and analysed.

The second part of the thesis consists of one chapter. Chapter 6 introduces an efficient analysis
method using a combination of cascaded GO and ray tracing to analyse multi-lens QO systems. This
method is then applied to an application casewhere a combination of plastic and siliconQOcomponents
are used. Finally, the broadside and scanning capabilities of such QO systems are investigated. The
analysis method is validated using a time-consuming multi surface PO approach.



2
Modifying the shape of lens elements fed

by a single antenna

This work focuses on improving the scanning performance of lens antennas by modifying the shape of
standard lens configurations. In this chapter, a single feed per lens antenna architecture is envisioned.
These architectures can be used as planar lens arrays generatingmultiple fixed simultaneous beams, i.e.
a Fly’s Eye configuration, for the next generation of communication systems [15][2]. Elliptical plastic
lenses are common Quasi-Optical (QO) component to realize low-cost and directive antennas above
100 GHz. However, the curvature of such lenses leads to total reflection and shadow region issues
in scanning scenarios. As a result, their scanning capabilities are limited. Therefore, this chapter is
concentrated on a synthesis and optimization procedure for shaped plastic lenses. Several parameters
are optimized to synthesize lens elements with high scanning capabilities. This objective led to the
development of a MATLAB based code capable of synthesizing shaped dielectric lenses by optimizing
lens antenna parameters. Firstly, the considered elliptical lens QO component is introduced. Secondly,
shape modification of the elliptical lens is discussed. Lastly, the lens feed definition is explained.

2.1. Lens Antenna Geometry
This section focuses on the parametrization of the elliptical lens, moreover a surface description of the
elliptical lens is given. Furthermore, the lens feed is discussed. Lastly, the shape modification of the
elliptical lens is discussed.

2.1.1. Elliptical Lens
In this work the parametrization variables are defined in (x, y, z) (Cartesian) coordinates. The surface
of an elliptical lens antenna can be expressed in terms of Cartesian coordinates, as follows

x2 + y2

b2
+

(z − c)2

a2
= 1 (2.1)

where a is the lens semi-major axis; b is the lens semi-minor axis; c is the distance from the centre
to the focus O; For a lens with known a known angular region, diameter and material, the ellipsoid
parameters as shown in Fig. 2.1 are calculated as:

a = rmin
1− e cos θ0

1− e2
(2.2)

b =
√
a2 − c2 (2.3)

c = a · e (2.4)

where e is the eccentricity, for an elliptical lens the eccentricity is related to the permittivity of the lens
material (εr) as 1√

εr
; θl0 is the subtended lens angle defined as arcsin( 1

2f#
) where f# is the lens focal

length (rmin) to diameter (Dl) ratio, f# = rmin

Dl
.

4
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The x, y and z parameters in Eq. (2.1) represent the Cartesian locations of the ellipsoid from a coor-
dinate system located at the lower focus of the ellipse, as shown in Fig. 2.1. The z coordinates of the
surface can be calculated from the two independent parameters x and y as follows:

z = a

√
1− x2 + y2

b2
+ c (2.5)

Figure 2.1 shows an illustration of the discussed lens parameters.

Figure 2.1: Illustration of the ellipse definition.

The normal vector and Jacobian of the surface of a QO component are important parameters for high
frequency analysis of these components. These parameters are computed using the derivatives of the
surface location vector, Q⃗ = xx̂+yŷ+zẑ, with respect to the independent parametersx and y. Therefore,
it is beneficial to define an expression for the normal vector of the elliptical surface S. The Jacobian is
given by Eq. (2.6) and the normal vector is given by Eq. (2.7).

Jacob = |∂Q⃗
∂x

× ∂Q⃗

∂y
| (2.6)

n̂Q = ±
∂Q⃗
∂x × ∂Q⃗

∂y

|∂Q⃗∂x × ∂Q⃗
∂y |

(2.7)

where ∂Q⃗
∂x and ∂Q⃗

∂y are the partial derivatives with respect to x and y, respectively. The± symbol relates
to the sign convention. A + defines an outward pointing normal vector n̂ and a − defines an inward
pointing normal vector n̂. For an arbitrary pointQ on the lens surface the locations in x, y, z are defined
as

Qx = x (2.8a)

Qy = y (2.8b)

Qz = a

√
1− x2 + y2

b2
+ c (2.8c)

One can find the partial derivatives with respect to x and y as

∂Qx

∂x
= 1 (2.9a)

∂Qy

∂x
= 0 (2.9b)
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∂Qz

∂x
=

−ax
b2√

1− x2+y2

b2

(2.9c)

and
∂Qx

∂x
= 0 (2.10a)

∂Qy

∂x
= 1 (2.10b)

∂Qz

∂y
=

−ay
b2√

1− x2+y2

b2

(2.10c)

respectively. Note that this calculation is shown for one pointQ on the surface S. However, this can be
applied to all the defined points on the surface S.

2.1.2. Shape Modification of the Elliptical Lens
To achieve wide scanning, one has to compensate for the phase aberrations in the lens. This compensa-
tion can be performed by changing the shape of the lens surface. In this chapter, where the focus lies on
single feed per lens geometries, the shape of the ellipsoid is modified using a non-rotational symmetric
polynomial set referred to as the Zernike expansion [16]. The elliptical lens can be transformed into
a modified surface by adding a height modification ∆s on top of the elliptical surface, as illustrated in
Fig. 2.2.

𝑧

𝜌

Lens 
𝑧-axis

𝜃௟
଴

Ellipsoidal 
surface

Δ𝑠

𝐷௟

Modified 
surface

𝑆

𝑆௠௢ௗ

Figure 2.2: Modifying the shape of the Elliptical lens.

here the modified lens surface Smod is defined as

Smod = S +∆sλ0 (2.11)

Where S is the original elliptical surface and∆s is the height modification. This height modification as
determined by the Zernike expansion is shown in Eq. (2.12).

∆s(ρ̄, ϕ) =

M∑
m=0

N∑
n=m

[Am
n cosmϕ+Bm

n sinmϕ]Rm
n (ρ̄) (2.12)

here 0 ≤ ρ̄ = ρ
Dl/2

≤ 1 and 0 ≤ ϕ ≤ 2π represent the normalized radial positions on the lens surface
and the azimuth location, respectively; M and N are the orders of the polynomials; Am

n and Bm
n are the

weights of the polynomials and Rm
n (ρ̄) is the radial function. The radial function is given by

Rm
n (ρ̄) =


∑n−m

2

l=0
(−1)k(n−k)!

k!(n+m
2 −k)!(n−m

2 −k)!
ρ̄n−2k, if n−m : even

0, otherwise
(2.13)

The number of required modes is related to the higher order phase aberration complexity. Examples
of higher order phase aberrations are shown in Fig. 2.3.
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Zernike Modes

n

m

0

1

2

0 1 22 1m
Piston

Horizontal tilt Vertical tilt

Oblique astigmatism Defocus Vertical astigmatism

Figure 2.3: Examples of the higher order phase aberrations where the z-axis ranges from -1 to 1

By definition. the Zernike polynomials are orthogonal to each other, moreover, they have well-defined
and analytical first and second order derivatives with respect to ρ and ϕ [8]. These derivatives allow for
the calculation of the normal vector and the Jacobian for a surface that is modified using the Zernike
polynomials. The partial derivatives of ∆s with respect to x and y can be calculated by applying the
chain rule as follows

∂∆s

∂x
=

∂∆s

∂ρ

∂ρ

∂x
+

∂∆s

∂ϕ

∂ϕ

∂x
(2.14)

∂∆s

∂y
=

∂∆s

∂ρ

∂ρ

∂y
+

∂∆s

∂ϕ

∂ϕ

∂y
(2.15)

The different components have been color coded, and theywill be derived separately. Firstly, the deriva-
tive of ∆z with respect to ρ is determined. The product rule is applied to calculate this derivative, and
it is given by

∂∆z

∂ρ
=

M∑
m=0

N∑
n=m

[Am
n sin (mϕ) +Bm

n cos (mϕ)]
∂Rm

n (ρ)

∂ρ
(2.16)

where ∂Rm
n (ρ)
∂ρ is defined as

∂Rm
n (ρ)

∂ρ
=

n−m
2∑

k=0

(−1)k(n− k)!(n− 2k)

k!(n+m
2 − k)!(n−m

2 − k)!
ρn−2k−1 (2.17)

The derivatives of ρ with respect to x and y are defined as

∂ρ

∂x
=

cosϕ
Dl

2

(2.18a)

∂ρ

∂y
=

sinϕ
Dl

2

(2.18b)
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and the derivatives of ϕ with respect to x and y are defined as

∂ϕ

∂x
=

− sinϕ
Dl

2 ρ
(2.19a)

∂ϕ

∂y
=

cosϕ
Dl

2 ρ
(2.19b)

Finally, the last derivative that has to be determined is the first order derivative of∆s with respect to ϕ
and it is given by

∂∆s

∂ϕ
=

M∑
m=0

N∑
n=m

[mAm
n Rm

n (ρ) cos (mϕ)−mBm
n Rm

n (ρ) sin (mϕ)] (2.20)

Now all the partial derivatives are known, and these partial derivatives are used to calculate the normal
vector and the Jacobian. Since these derivatives are well-defined and analytical in the first order with
respect to the independent parameters ρ and ϕ, a lens surface that is modified by adding the Zernike
polynomials is a smooth and well-defined shape. As mentioned before, ∆z is a function of the two
parameters ρ and ϕ. Where ρ is the normalized domain of the radial function. Since there are many
modes in the Zernike expansion, it is known [8] that the expansion has high edge values at the border
of the unity circle. To explain this, an example is shown in Fig. 2.4 where a radial polynomial is shown
for n = 2, 4, 6 and m = 0. Indeed, it can be observed that the radial function tends to 1 at the edge of
the domain border (ρ = 1).

Figure 2.4: Examples of the behaviour of the radial polynomial for n = 2, 4, 6 andm = 0

These high edge values lead to discontinuities at the edge of the lens. A specific mapping is applied that
increases the angular domain of the lens such that the edge of the border is now located at D̄l/2. The
surface expansion is then applied to this increased domain, however, the original domain of the lens is
used for the actual analysis. Fig. 2.5 illustrates this principle. Where the grey dotted lines illustrate the
increased angular region with an angle of θmod. The corresponding diameter is D̄l and ρ̄ is defined as
ρ = ρ

D̄l/2
. The actual usable part of the lens has a corresponding diameter ofDl and an angular region of

θl0. This method eliminates the high edge values at the border of the unity circle of the relevant domain.
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Figure 2.5: Increasing the domain of the lens from ρ to ρ̄.

2.1.3. Lens Feed Definition
In this work, a feed with a Gaussian pattern is used as the lens feed. This two-dimensional pattern can
be described in terms of u and v coordinates, as follows

F (u, v) = e[−( u
u0

)2−( v
v0

)2] (2.21)

where u = sin θ cosϕ and v = sin θ sinϕ, u0 and v0 are the variances of this Gaussian distribution. In
this work, the Gaussian pattern is assumed to be symmetric, meaning that u0 = v0. One can then
calculate the variance for a specific edge taper level Te at a lens angle θl as

u0 =
sin (θl)√

− log(10(
−Te
20 ))

(2.22)

In this work, the variance is determined for a −10 dB edge taper level at the lens angle θl = 35°. These
values are chosen such that the feed’s Gaussian profile models the far field pattern of the leaky wave
antenna feed, as presented in [1]. Fig. 2.6 shows the feed definition in an infinite dielectric medium of
a relative permittivity εr. In this work, the dielectric medium is plastic with εr = 2.3.

Antenna 
feed

Far field 
sphere

Figure 2.6: A Gaussian feed modeled in a dielectric with a relative permittivity of εr .

The far field of the feed in Fig. 2.6 is given by

E⃗ff
feed = CF (u, v)

e−jkdRFF

4πRFF
p̂ (2.23)

where C is a constant representing the amplitude; kd is the propagation constant in the dielectric
medium;RFF is the far field sphere radius; and F (u, v) is the Gaussian pattern as defined in Eq. (2.21).
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The power radiated by the feed into an infinite medium is defined as

Ptx =

2π∫
0

π/2∫
0

1

2
ℜ[E⃗ff

feed × H⃗ff∗
feed · r̂]R

2
FF sin θdθdϕ (2.24)

where E⃗ff
feed is the electric far field; H⃗

ff∗
feed is the magnetic far field;

For scanning cases, the antenna feed can be moved in the vertical and horizontal direction with
respect to the lens axis. This change in location results in a modification in the feed’s far field phase
profile inside the dielectric material. These locations can be optimized to compensate for the linear and
quadratic phase terms. Fig. 2.7 illustrates the displacement of the feed in the horizontal direction with
respect to the lens axis. In addition, it shows the displacement of the feed in the vertical direction with
respect to the lens axis. To improve the radiation from the dielectricmedium to air, the feed can be tilted
such that the critical angle regions on the lens surface are avoided. This concept is also shown in Fig. 2.7.
When a tilt angle is introduced, u = sin θ cosϕ − sin θtilt cosϕtilt and v = sin θ sinϕ − sin θtilt sinϕtilt.
This definition is then substituted in Eq. (2.21).

𝑥

𝑦

𝑧

Δ𝑥

Δy Δz

𝑧

𝑦

𝑥
𝜃௧௜௟௧

Figure 2.7: An illustration of the lateral and vertical feed displacement in addition to the introduced tilt angle.



3
Optimization Kernel

In previous works, analyses of lens antennas have been predominantly performed on the equivalent
lens aperture [3]. This concept is illustrated in Fig. 3.1. In this method the forward Geometrical Optics

Figure 3.1: Analysis on a lens antenna performed on the equivalent aperture. [15]

(GO) propagation is from the feed to the lens aperture, this results in an irregular grid on the aperture.
Therefore, intermediate interpolation steps are required for this analysis method, which results in a
time-consuming analysis. To eliminate the intermediate interpolation steps, the analysis can be per-
formed via a field correlation on the lens surface instead. In this method, the analysis is based on the
antenna in reception (Rx) methodology. This analysis method is the foundation of the employed opti-
mization kernel, and this method will be discussed in this chapter. Firstly, the goal of the optimization
kernel is explained. Secondly, the analysis on the lens surface is discussed. Afterwards, the transmitted
field analysis is explained. Lastly, the incident field analysis is explained.

3.1. Shaped Lens Antenna Optimization Kernel
In this section the kernel is explained and to aid this explanation, a general scenario is considered. The
scenario under investigation is for a lens antenna that is illuminated by a plane wave from broadside,
as illustrated in Fig. 3.2.

11
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Incident 
Plane Wave 

Lens
-axis

Antenna 
feed

Equivalent Aperture

Plane wave 
phase front

Figure 3.2: The scenario under investigation with a standard elliptical lens antenna illuminated by a plane wave.

Let us consider the geometry as described in Fig 3.2. Here, the lens is illuminated by an incident plane
wave from a broadside. The objective is to maximize the received power by the antenna feed. Equiva-
lently, the objective is to maximize the aperture efficiency of the lens antenna. A Thevenin equivalent
circuit [2] in reception is considered to define an expression for the received power as

Prx =
|VocItx|2

16P feed
rad

(3.1)

where Prx is the power received by the feed, Voc is the open circuit voltage, Itx is the current feeding the
antenna, and P feed

rad is the total power radiated by the feed. This received power is used to define a cost
function for the optimization problem. The total efficiency of the lens is defined as

ηtot =
Prx

Pin
=

|VocItx|2

16P feed
rad Pinc

(3.2)

This antenna receiving efficiency can be split up into two terms, where the first term is the reflection
efficiency

ηref =
P lens
tx

P feed
rad

(3.3)

The reflection efficiency is defined as the ratio between the total power radiated by the antenna P feed
rad ,

and the power transmitted out of the lens surface P tx
lens. The second term is the field match efficiency:

ηFM =
|VocItx|2

16P tx
lensPinc

(3.4)

This efficiency represents the field match between the incident and transmitted fields. The total effi-
ciency, as described in Eq. (3.2) is the product of these two efficiency terms. The analysis is performed
on the lens surface when calculating these efficiency terms. The next section explains the analysis sur-
face choice.

3.1.1. Reaction integral over the lens surface
As mentioned before, the Thevenin equivalent circuit is applied, it is therefore important to calculate
the open circuit voltage Voc. To do this, one can express the voltage as a reaction integral which is
defined over an induction surface. In this work the induction surface is the surface of the lens taken
just outside the lens, see Fig. 3.3. The expression of the reaction integral is as follows

VocItx =

∫∫
S+

(H⃗inc · M⃗tx − E⃗inc · J⃗tx)dS (3.5)
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where [E⃗inc, H⃗inc] are the fields generated by the incident plane wave from Fig. 3.2 on the surface S;
[J⃗tx, M⃗tx] are the equivalent currents related to the transmitted field at S generated by the lens feed.
These two sets of fields are clarified in the next sections.

Lens 
-axis

Antenna 
feeder

Figure 3.3: The induction surface S with the equivalent magnetic and electric currents defined on the surface.

3.1.2. Transmitted fields
To find the equivalent transmitted electric and magnetic currents as defined in the previous section,
one has to calculate the transmitted electric and magnetic fields outside the lens at S+. To find this
field, a two-step procedure is applied. Firstly, the feed’s far field is propagated to the inside of the lens
surface (S−). Secondly, Snell’s law of reflection and refraction is applied to obtain the transmitted field
on the outside of the lens surface (S+). By propagating the far field as described in section 2.1.3 to the
inside of the lens surface, one arrives at the following expression for the far field

E⃗ff
feed = Ce−(( u

u0
)2+( v

v0
)2) e

−jkd|r⃗lens|

|r⃗lens|
p̂ (3.6)

where C is a constant that represent the amplitude of the far field; kd is the propagation constant in
the dielectric medium; p̂ represents the generic polarization unit vector of the far field; |r⃗lens| is the
distance between the antenna feed and the lens surface as shown in Fig. 3.4.

Lens 
-axis

Antenna 
feeder

Figure 3.4: Defining point Q1 on the inside of the lens

To find |r⃗lens|, a high frequency technique known as backwards ray tracing is applied. Assuming that a
point on the lens surface Q⃗1 and the location of the feed ∆⃗feed is known, the direction is determined as

r⃗lens = Q⃗lens − ∆⃗feed (3.7)

and the distance between the feed and the lens surface is defined as

|r⃗lens| =
√

r⃗lens · r⃗∗lens (3.8)
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The unit vector can also be calculated, and it is defined as

r̂lens =
r⃗lens
|r⃗lens|

(3.9)

It is also important to find the relative u and v in this scenario. Assuming that the feed is displaced and
tilted, u and v are defined as

u = sin θ′ cosϕ′ − sin θtilt cosϕtilt (3.10a)

v = sin θ′ sinϕ′ − sin θtilt sinϕtilt (3.10b)

here, the tilt angle is expressed as a displacement in the u− v domain. θ′ and ϕ′ can be related to r⃗lens
in a reference system located at the feed, see Fig. 3.5. They are expressed as follows

θ′ = arccos
r⃗lens · ẑ
|r⃗lens|

(3.11a)

ϕ′ = arctan
r⃗lens · ŷ
r⃗lens · x̂

(3.11b)

Next, the far field has to be propagated to the outside of the lens surface S+. This surface is denoted by
the purple dotted line in Fig. 3.4. The transmitted electric and magnetic fields are shown in Eq. (3.12)
and in Eq. (3.13) respectively.

E⃗tx = ¯̄T · E⃗ff
inside (3.12)

H⃗tx =
1

ζ
k̂t × E⃗tx (3.13)

where k̂t is the transmit direction of propagation; ¯̄T is the dyadic transmission coefficient. The dyadic
transmission coefficient is expressed as

¯̄T = τ⊥p̂⊥t p̂
⊥
i + τ∥p̂

∥
t p̂

∥
i (3.14)

where p̂
⊥/∥
i/r/t are the corresponding polarization unit vectors for the parallel (TM) and perpendicular

(TE) components; τ⊥/∥ are the perpendicular andparallel transmission coefficients, which canbe found
by applying Snell’s law to an assumed locally flat surface on the lens as illustrated in Fig. 3.5.

Lens 
-axis

Antenna 
feeder

Figure 3.5: A zoom in of the surface around pointQ1. Where Snell’s law is applied to determine the field on the outside of the
lens at point Q1.

These steps are shown for one point on the lens, but this approach can be applied to the remainingN−1
points on the lens.

Once the transmitted electric and magnetic fields are determined, the equivalent currents of the
transmitted field evaluated on the lens surface can be calculated. In this case, Mtx is the magnetic
equivalent current and Jtx is the electric equivalent current.

M⃗tx = −n̂× E⃗tx (3.15)
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J⃗tx = n̂× H⃗tx (3.16)

The power that is radiated into free space by the lens is defined as

P tx
lens =

∫∫
S+

1

2
ℜ{E⃗tx × H⃗∗

tx} · n̂dS (3.17)

where S+ represents the surface of the lens. Finally, to find the far field, the currents are radiated using
a standard Fourier transform far field approach with the free space Green’s function.

3.1.3. Incident field definition
Another important component for the calculation of the reaction integral is to determine the incident
field. Reciprocity is applied, and the analysis is performed in reception mode. In reception mode, the
lens antenna is illuminated by an incident plane wave as shown in Fig. 3.2. The incident plane wave
radiation profile is defined as

E⃗inc = e
−((

Uref
uinc

)2+(
Vref
vinc

)2)
ejk0z p̂ (3.18)

The radiation profile is similar to the radiation profile of the antenna feed, where the introduced Gaus-
sian taper allows for a better side lobe level control over the desired radiation profile. This sidelobe
level control is shown in Fig. 3.6, which shows the Fourier transform of the incident field truncated
over a circular aperture (Dl).

Figure 3.6: The Fourier transform of the incident field, to illustrate the side lobe level control.

Assuming a plane wave relation between the incident electric- and magnetic field, the magnetic field
can be expressed as

H⃗inc =
1

ζ
k̂i × E⃗inc (3.19)

where ζ is themedium impedance and k̂i is the incident direction of propagation. The incident received
power is calculated as

Pinc =

∫∫
S+

1

2
ℜ{E⃗inc × H⃗∗

inc} · −n̂dS (3.20)

here E⃗inc is the incident electric field; H⃗inc is the incident magnetic field; and n̂ is the normal vector of
the lens surface.
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Figure 3.7: The incident field definition for a scanning case, where the shadow region is shown as the grey region on the lens.

Incident field definition for scanning
For scanning cases (see Fig. 3.7), where the incident plane wave’s elevation and azimuth angles, θscan
and ϕscan, are known, one must identify the usable region of the lens.
This usable region is bound by identifying the first and last possible ray that hit the lens. To find these
rays, one must first determine the Cartesian components of the incident direction of propagation k̂i.
These components are defined as

k̂ix = − sin θscan cosϕscan (3.21a)

k̂iy = − sin θscan sinϕscan (3.21b)

k̂iz = − cos θscan (3.21c)

For example, for a broadside incident plane wave, only a z-component of the incident direction of prop-
agation exists. As illustrated in Fig. 3.2. The last ray that hits the lens can be found by calculating θi
as

θi = arccos (k̂i · n̂l) (3.22)

where k̂i is the incident direction of propagation; and n̂l is the normal vector of the lens. When θi >
90° the rays do not intersect with the lens surface anymore. Therefore, if this condition is applied to
all points on the lens, the entire usable region of the lens is found. The portion of the quasi-optical
component (lens) that is not illuminated by a skewed incident plane wave is defined as the shadow
region. Fig. 3.7 shows this region on the left side of the lens.

Because of the incident field definition, a Gaussian taper can be applied to the incident field. For
this, the top view of the equivalent aperture as shown in Fig. 3.8 is useful.
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Figure 3.8: The top view of the equivalent aperture

Ideally, one would want to place the amplitude taper in the middle of the aperture. To do this, one can
determine the maximum x and y locations of the aperture. Afterwards, Uref and Vref as defined in Eq.
(3.18) can be calculated as

Uref =
Xap − xmid

xmax − xmid
(3.23a)

Vref =
Yap − ymid

ymax − ymid
(3.23b)

here xmid, xmax, ymid and ymax are defined as shown in Fig. 3.8. Xap and Yap are the points on the
aperture itself.



4
Optimization procedure

Shape optimization of reflectors to directly maximize the aperture efficiency has been widely applied in
the reflector antenna community [17]. For integrated lens components, the direct approach does not
necessarily result in optimal geometries, mainly because the shaping of transmitting surfaces results in
regions of the lens with poor transmission or regions where total internal reflections are present. An
alternative approach that can be taken is to maximize the radiation and taper efficiency of the lens an-
tenna, which can be achieved using a multi-objective optimizer. This chapter focuses on the implemen-
tation of this optimizer. Firstly, the optimization problem and parameters are introduced. Secondly,
optimization setup is discussed. Moreover, a code structure is presented, and finally some optimizer
results are discussed.

4.1. Optimization problem
As previously mentioned, the objective of this work is to optimize specified lens antenna parameters in
order to improve the radiation performance of the lens. Fig. 4.1 shows the to be optimized parameters
in red.

𝑧

𝜌

Lens 
𝑧-axis𝜃௧௜௟௧

Δ𝑧 Δ𝜌⃗

𝜃௟
଴

Ellipsoidal 
surface 

Δ𝑠

𝐷௟

Antenna 
feeder

Figure 4.1: An illustration of a lens antenna geometry and the considered parameters for the optimization procedure

The considered optimization parameters are listed as follows:

1. The lens f#, which is related to the lens maximum solid angle θ0l
2. The lateral and vertical location of the antenna feed (∆ρ⃗ and∆z⃗)
3. The tilt angle (θtilt) of the feed
4. The Zernike expansion coefficients Am

n and Bm
n , which results in a change of∆s

A block diagram is presented that shows the structure of the optimizer code architecture.
The blocks that are of interest for this chapter are the initialization block and the setup block. Firstly,
the initial guess block is discussed, which is followed up by a discussion of the bounds specification.

18
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Figure 4.2: Top level illustration of the optimizer setup

4.2. Initial Guess Points
When using an optimizer, there is an opportunity to provide an initial guess. By providing an adequate
initial guess, the optimization time could significantly decrease. The initial guesses that are calculated
in this work are related to the optimization parameters as discussed in the previous section.

4.2.1. Initial guess for the f-number
The initial guess for the f# is determined as follows:

fguess
# =

1

2 · sin θl
(4.1)

where θ0l is defined as:

θ0l = arcsin(

√
− log(10

TdB
e
20 · u0)) (4.2)

where T dB
e represents the normalized edge field taper at the θl angle. Finally, the initial guess for the

tilt angle is chosen to be θguesstilt = θi.

4.2.2. Initial guess for the lateral displacement
The initial guess for the lateral displacement can be found by placing the feed in a location which com-
pensates, to the first-order, the linear phase present in the focal plane due to illuminating the lens by a
plane wave from a (θi, ϕi) angle. The relationship between the incident angle (θi) and the transmitted
angle (θt) is expressed as √

εr sin θt =
√
εi sin θi (4.3)

where εr is the relative permittivity of the lens material, and εi is the relative permittivity of the ma-
terial outside of the lens. In this case the material outside the lens is vacuum, therefore εi = 1. The
transmitted angle θt is expressed as

θt = arcsin (sin θi
1

√
εr

) (4.4)

the displacement is found by applying a geometrical relation that relates the displacement of the feed
and the location of the feed to the focal distance F of the lens. Where F is defined as f#/D. Therefore,
the initial guess for the displacement is given by

ρ⃗guess = tan (arcsin (
sin θi√

εr
)) ·D · fguess · [cos(ϕi − π)x̂+ sin(ϕi − π)ŷ (4.5)
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Eq. (4.5) shows a general expression to determine the displacement of the feed in ρ. Where the ϕi

angle decides howmuch the feed is displaced in the x- or y-direction. The initial guess discussed in this
section are provided as an input for the optimizer such that a reasonable starting point is obtained.

4.3. Parameter Search Range
It is also beneficial to determine a proper search range for the optimizer. A proper range should consider
the geometrical limitations of the structure under analysis, as well as the search time of the optimizer.
Preferably, the search range should be as small as possible to improve the execution time while still
containing a meaningful search space for the optimized parameters.

Table 4.1 displays the parameters and their respective bounds. In particular, the minimum lens
f# is limited by the critical angle of plastic, whereas the upper limit is determined by the limitations
in directivity of the considered feed. Even though the theoretical lower limit for the f# is limited by
the critical angle, in this case it is limited by a lens angle of 40°; For the feed lateral displacement, a
±30%deviation from the initial guess is considered; a±20%deviation from the initial tilt angle guess is
considered; the weight of the Zernike modes,Am

n andBm
n are limited to±2λ0 to ensure that the surface

modification can compensate for the remaining phase mismatch.

Table 4.1: Upper and lower bounds for the optimization parameters.

Parameter Lower bound Upper bound

f#
1

2∗sin(40) 2

∆x 0.7xguess 1.3xguess

∆y 0.7yguess 1.3yguess

θtilt 0.8θi 1.2θi

∆z 0 10λ0

Am
n −2λ0 2λ0

Bm
n −2λ0 2λ0

4.4. Setup of the optimizer and optimizer choice
This section discusses the setup of the optimizer as well as the considerations related to the optimizer
choice. For the function definition, the inputs are usually the known initialization variables and the
unknown optimization parameters. The optimizer setup itself consists of determining the settings, the
stop conditions. In this work, theUseParallel kernel run in parallel. TheMaxTime setting is a variable
that changes according to the difficulty of the optimization problem. For optimizers, it is required to
define a cost function to minimize. To define this cost function, one can consider the efficiency terms
as discussed in the previous section. The cost functions are defined as

• f1
c = 1

ηtot

• f2
c = 1

ηref ,
1

ηFM

These cost functions are appropriate depending on the difficulty of the problem. For a less complex
optimization problem, a less complex optimization process is required. For example, for a broadside
optimization case where one would only consider changing the lens f-number and the location of the
feed, a global solver such as surrogateopt [18] fromMATLAB’s global optimization toolbox will suffice.
Additionally, the cost function for this case is defined as 1

ηtot
. The output of such an optimization process

is shown inFig. 4.3, where the cost function is shownon the y-axis and thenumber of iterations is shown
on the x-axis. It can be observed that the function value indeed decreases and that the optimizer tries to
find a minimum. The previously mentioned optimizer is sufficient for less complex optimization cases,
however, for a more complex objective function (i.e. for a scanning case with lens shape optimization)
it was observed that the two separate efficiency terms seem to follow a different trend. Therefore, a
switch is made to a multiobjective optimizer (gamultiobj) [18]. This optimizer is capable of optimizing
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Figure 4.3: The output of the surrogateopt optimizer.

two separate cost functions 1
ηref

and 1
ηFM

. This optimizer uses a genetic algorithm to find a local Pareto
front. Fig. 4.4 shows the Pareto solutions of the two competing objective functions. Here the grey
shaded area denotes the region where the usable solutions are located, and each cross represents an
optimized solution and its corresponding efficiency terms. In this work, a solution is considered to be
sufficient if ηFM ≥ 0.6 or ηref ≥ 0.6.

Figure 4.4: The Pareto solutions of the two competing objective functions, where the grey shaded area shows the usable
solutions.



5
Case study: plastic elliptical lens

The Terahertz range is important for many applications. An example of one of these applications is the
next generation of communication systems. High-gain antennas are required in the frequencies above
100 GHz where these communication systems are envisioned [1]. There has also been an increase in
the employment of low permittivity elliptical lenses for these applications. Low permittivity elliptical
lenses are adequate for these applications for a few reasons:

• They are cost-effective
• The materials are readily available
• The material is lightweight and low loss

Even though, there are many advantages in using low permittivity elliptical lenses, there are some
disadvantages as well. One of these disadvantages is the reduced beam steering capabilities for scan-
ning cases [2]. In a lens design for scanning applications, this disadvantage manifests itself as a higher
reflection loss at the lens-air boundary, shadow and total reflection regions on the lens surface. There-
fore, a significant performance loss for scanning cases occurs [2].

One solution proposed in[2] is to implement dielectric gratings as shown in Figure 5.1

Figure 5.1: Dielectric gratings implemented in a lens antenna.

These gratings are located at a vertical distance z from the ground plane inside a low permittivity ellip-
tical lens. The objective of the gratings is to achieve an enlarged angular field of view (FoV) over a wide
band of operation. The gratings are able to create a linear phase shift in the aperture field of the lens
feed [2]. This linear phase shift translates into a beam-tilt in the far field of the antenna feed that leads
to a more efficient illumination of the lens surface [2]. As a result, spill-over and reflection losses are
decreased.

For a 25° beam steering configuration as shown in Fig. 5.2, a scan loss of approximately −4 dB was
achieved at the centre frequency fc of 180 GHz. A−8 db scan loss was achieved when no gratings were
used. The gratings improved the scanning performance, however, the amount of possible beam-tilt is
limited.

In thiswork, the optimization procedure is focused on the describedFly’s eye plastic lens scenario. It
is studied if shaping the lens will further improve the scanning performance of plastic lenses than those

22
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Figure 5.2: Scan loss for a 25° beam steering case in an integrated plastic lens [1].

reported in [1]. In addition, shape modification is applied for wider scanning applications (up to 60°).
In the following sections, a plastic lens with a relative permittivity of εr = 2.3 is studied to optimize the
scanning performance of such lenses. Firstly, a scanning case of 25° is considered. Afterwards, a similar
lens geometry is simulated in CST [13] to validate the proposed methodology. Lastly, the capabilities
of free form plastic lenses are investigated.

5.1. Scanning to 25 degrees in a plastic lens
In this section, a scanning case with a 25° incident plane wave is investigated. Firstly, the scanning
scenario and the specifications are introduced. Secondly, an optimization case is considered where the
lens parameters are optimized while the lens surface is fixed to its canonical shape. i.e, an ellipsoid.
Lastly, a similar optimization case is considered where both the lens parameters and the lens shape
are optimized. This approach allows us to investigate the influence of the lens shape on the overall
scanning performance of the lens.

5.1.1. Scanning case in the H-plane
Let us now consider the scanning case in [1] as a reference case for the optimization of a plastic lens
antenna. The geometrical specification of this optimization case are as follows:

1. Frequency of operation: f = 180 GHz
2. Lens diameter: D = 18λ0

3. Permittivity of the material: εr = 2.3

4. Incident plane wave angle: θipw = 25°, ϕi
pw = 0°

The used feed is considered ideal, and it has the same definition as described in Chapter 2 (Eq. (3.6)).

Base lens
Prior to the optimization procedure, a base lens geometry and its results are presented. This lens geom-
etry achieves a scan loss that is comparable to the−8 dB scan loss presented in Fig. 5.2. The scan loss is
defined as the loss in gain with respect to the broadside case. This lens serves as a proper starting point
for the optimization process. Moreover, it can be used to measure how well the optimizer performs.
Table 5.1 shows the f-number and the horizontal feed displacement. Table 5.2 shows the obtained ef-
ficiencies for this lens geometry. As can be seen, the reflection efficiency is very low, this is because
there is a large critical region present on the lens as shown in Fig. 5.3c. Table 5.3 shows the directivity,
gain, side lobe level and the scan loss for this geometry, respectively. What can be observed is that the
obtained scan loss is approximately −7.3 dB, which is comparable to the −8 dB scan loss found in [2].
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Table 5.1: Base lens parameters.

Parameter Value

f# 0.9

∆x −5.9λ0

Table 5.2: Base lens results.

Efficiency Value

η 0.17

ηref 0.28

ηFM 0.61

Table 5.3: The directivity, gain maximum achieved sidelobe levels, and scan loss of the target versus the optimized pattern.

Target Optimized

Directivity (dB) 34.6 32.5

Gain (dB) 34.6 26.9

SLL (dB) −17.5 −12.4

Scan Loss (dB) −7.3

Fig. 5.3 shows the tangent incident and transmitted fields on the lens surface in 2D. What can be
observed from this is that the transmitted field, shown in Fig. 5.3c, is mostly radiated on the left side
of the lens close to the critical angle. This also causes the reflection efficiency to be low.
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Figure 5.3: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase for
the base lens.

Optimization of lens antenna without modifying the lens shape
The lens antenna geometry is optimized following the in reception procedure as described in Chapter
3. The considered test antenna feed has a Gaussian profile in the far field, as described in Eq. (3.6)
with an edge taper of−10 dB at 35°. Table 5.4 shows the optimized geometrical lens parameters for the
canonical elliptical lens case. The parameters listed in this table are the ones as described in Section
4.1 The tangent, with respect to the lens surface, magnitude and phase of the incident plane wave are

Table 5.4: Optimized parameter results.

Parameter Value

f# 1.05

∆x −5.76λ0

θtilt 21.1°

∆z 1.67λ0

shown in Fig.5.4a and Fig. 5.4b respectively. The transmitted fields of the feed are shown in Fig. 5.4c
and Fig. 5.4d, respectively. In this case, ηref is 0.65. The added tilt allows for the maximum of the
feed’s far field to be guided towards the relevant region without the critical angle. This becomes clear
when comparing Fig. 5.3c to Fig. 5.4c. In conclusion, more power can be transmitted out of the lens
even if the critical angle region still exists on the left side of the lens surface.
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(a) (b)

(c) (d)

Figure 5.4: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase for
the unshaped lens.

Table 5.5 shows the efficiencies found as a result of the optimization process.

Table 5.5: Efficiencies after the optimization process.

Efficiency Value

η 0.50

ηref 0.65

ηFM 0.77

Fig. 5.5 shows the resulting far field patterns for this optimization case. The scan loss of the optimized
geometry is −2.5 dB. This performance is a substantial improvement compared to the scan loss that
was reported in [2]. This improvement is partially due to the increased tilt angle. In the previous
design in [2] the tilt angle was approximately 5.7°. This was the maximum tilt possible using a physical
grating. The proposed larger tilt angle can be achieved using a novel QO architecture, such as the
recently proposed core-shell lens geometry in [12].
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Figure 5.5: The radiated far fields for the target and the optimized lens antenna for a scanning case of 25°.

Table 5.6 compares the gain, directivity, and sidelobe level of the target pattern and the optimized
pattern. As can be observed, the loss of directivity with respect to the optimizer target is 1.1 dB, which
corresponds to the field matching efficiency. The loss in Gain from the target value, is approximately 3
dB. This value can also be reported in terms of the total efficiency of the lens antenna (0.5), as shown in
Table 5.5. The side lobe level of the optimized geometry is approximately 3.4 dB higher than the target
(cost function) of the optimizer. The higher side lobe level of the optimized lens antenna pattern is also
reflected in the directivity and field match efficiency of this geometry. One could potentially improve
the side lobe level if an additional optimization criteria is introduced.

Table 5.6: The directivity, gain and maximum achieved sidelobe levels of the target versus the optimized pattern.

Target Optimized

Directivity (dB) 34.6 33.5

Gain (dB) 34.6 31.6

SLL (dB) −17.4 −13.9

Scan Loss (dB) −2.5

Optimization of a lens antenna by modifying the lens shape
In this subsection, the surface shape modification is added to the optimization process. In this case,
the order of the Zernike expansion is 3 (m = n = 3). One can assume that the addition of a surface
modification increases the complexity of the optimization process. This implies that a longer optimiza-
tion time is necessary to achieve reasonable results. In this case, the chosen maximum optimization
time is topt = 60 minutes. The results of the optimization process are shown in Table 5.7. There are
some differences if we compare the previous optimization results to these optimization results. What
can be noted is that the f# has decreased from 1.05 to 0.71. There also appears to be a difference be-
tween the lateral and vertical feed displacementm as well as the tilt angle. A part of the phasemismatch
between the incident field and the transmitted field (Eq. (3.5)) is now compensated for by the surface
modification. Therefore, the optimized lateral and vertical feed displacement differ with respect to the
previous case. Furthermore, the optimum tilt angle can change by modifying the shape of the surface,
since the optimizer attempts to find a tilt angle such that most of the power from the feed of the lens is
transmitted out of the lens.
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Table 5.7: Optimized parameter results.

Parameter Value

f# 0.71

∆x −4.1λ0

θtilt 23.8°

∆z 2.6λ0

Fig. 5.6a shows the ray tracing and the modified lens surface. Fig. 5.6b shows the added surface∆s
of the modified lens.

(a)
(b)

Figure 5.6: The ray tracing plot for the 25° scanning case (a) and the added surface∆s of the modified lens (b).

When comparing the amplitudes of the tangent transmitted fields in Fig. 5.4 and Fig. 5.7, it can be seen
that there is a significant improvement. Due to the curvature of themodified lens surface, a small region
of the lens surface is in the shadow with respect to an incident plane wave arriving from a 25° elevation
angle. What’s more, the critical angle region has decreased, as shown in Fig. 5.7. This decrease of
critical angle region leads to an overall increase of ηref from 0.65 to 0.87. The remaining efficiencies are
displayed in Table 5.8. Modifying the lens surface provides more degrees of freedom for the optimizer
to achieve a conjugate phase match between the incident and transmitted field, therefore, the field
match efficiency is improved from 0.77 to 0.87.

Table 5.8: Efficiencies after the optimization process.

Efficiency Value

η 0.76

ηref 0.87

ηFM 0.87
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(a) (b)

(c) (d)

Figure 5.7: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase

The improvement in the field match efficiency becomes apparent in the far field pattern of the lens
antenna in transmission mode, shown in Fig. 5.8. The main lobes of this far field in both planes are
matched better to the optimizer target. Moreover, the maximum sidelobe level is reduced to approxi-
mately −15 dB. The scan loss in this case is −0.52 dB, which is a significant improvement with respect
to the reference case (4 dB [2]) and with respect to the results found in the previous step (2.5 dB).

Table 5.9 compares the gain, directivity, and sidelobe level of the optimizer’s target pattern and the
optimized pattern for this optimization case.

Table 5.9: The directivity, gain and maximum achieved sidelobe levels of the target versus the optimized pattern.

Target Optimized

Directivity (dB) 34.7 34.1

Gain (dB) 34.7 33.5

SLL (dB) −17.4 −15.5

Scan Loss (dB) −0.52
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Figure 5.8: The radiated far fields for the target and the optimized lens antenna for a scanning case of 25°.

5.2. CST validation
In the previous section, the optimization results for a shaped plastic lens scanning to 25° were pre-
sented. To validate the proposed analysis methodology in reception in combination with the optimiza-
tion process, a full wave simulation of a similar lens antenna geometry is presented here. The full wave
validation is performed using CST STUDIO SUITE [13]. The specifications of the validation case are as
follows:

• Frequency of operation: f = 180 GHz
• Lens diameter: D = 10λ0

• Permittivity of the material: εr = 2.3

• Incident plane wave angle: θipw = 26°, ϕi
pw = 0°

• A tapered Huygens’ source is used the test feed antenna

The parameters are similar to the parameters from the previous case, except for the lens diameter. The
lens diameter is reduced to 10λ0 to reduce the configuration cost of a full wave simulator like CST. A
similar optimization process to the one described in Section 5.1 is performed for the described scenario.
The lens shape, the lateral and vertical displacement, the feed tilt angle, and the lens f-number are opti-
mized. The far field pattern after the lens and relevant performance metrics of the optimized geometry
are provided in Fig. 5.9 and Table 5.10, respectively.

Table 5.10: The performance metric of the optimized lens antenna obtained using the MATLAB based analysis code.

Parameter Value

Directivity 28.7 dB

SLL −16.5 dB

Gain 28.1 dB

Scan loss −0.89 dB

η 0.65
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Figure 5.9: The far field of the optimized lens antenna evaluated in transmission using the analysis method in transmission.

5.2.1. Setting up the full wave simulation
The goal is tomodel the shaped lens surface in CST, however, a surfacewith Zernike polynomials cannot
be modeled directly in CST. A surface can be modeled if a STEP file is provided. To obtain this file, the
following steps have to be taken:

1. The optimized weights of the Zernike polynomials are exported to TICRA Tool’s GRASP software
[14];

2. The Zernike polynomials are added to the original elliptical shape of the lens in the GRASP envi-
ronment

3. The total modified lens surface is export from GRASP as a step file
4. The step file is imported to the CST environment. The imported lens surface is shown in Fig. 5.10

within the CST environment.

In order to represent the same geometry analyzed in MATLAB, the lens itself is a lossless plastic with
a relative permittivity of εr = 2.3. In addition, a lossy plastic material with a relative permittivity of
εr and a loss tangent of δtan = 0.001 are added to the lens lateral sides as an absorber (see Fig. 5.10).
Finally, a PEC layer is added on top of the dielectric box to remove the effect of side radiation in the
CST simulation (see Fig. 5.10).
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Figure 5.10: The optimized lens antenna geometry exported to the CST environment.

The antenna feed was modeled in CST using the imported source option. In this case, the source is a
Huygens’ source with a Gaussian taper. Where the Huygens’ source is defined as

|J⃗ | = e−(
ρ2

ω2
0

) (5.1)

and ω0 is defined as

ω0 =

√
8.868

Te

Df

2
(5.2)

where Te is the taper level, and Df is the diameter of the feed (see Fig. 5.11). The characteristics of a
Huygens’ source are as follows:

1. |M⃗ | = ζ|J⃗ |
2. M⃗ · J⃗ = 0

3. J⃗ × M⃗ = ẑ

The imported CST source modeling the described Huygens’ source is shown in Fig. 5.11. To model a
tilted feed, this imported source is rotated with respect to the axis of the lens component. The E- and
H-plane cuts of this far field are shown in Fig. 5.12 where the z-axis of the far field is rotated to the tilt
angle as marked in Fig. 5.10. The 3D pattern of the feed is shown in Fig. 5.13.
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Figure 5.11: The designed feed in CST.

Figure 5.12: The radiated far field of the Huygens’ source implemented in CST.
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Figure 5.13: The 3D pattern of the feed.
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5.2.2. Results: Optimizer vs. Full Wave Simulator
Fig. 5.14 and Fig. 5.15 show the far field patterns of the optimized lens antenna compared to the results
obtained using the MATLAB based analysis for the H- and E-plane cuts, respectively. What can be
observed is a very good main lobe match. In addition, the pointing angles are in agreement as well.
The sidelobe levels differ with approximately 2 dB.

Figure 5.14: The H-plane of the radiated far field from CST versus the H-plane of the radiated far field from the optimizer.

Figure 5.15: The E-plane of the radiated far field from CST versus the E-plane of the radiated far field from the optimizer.

Table 5.11 shows the comparison of the performance metrics of the optimized lens antenna using CST
and the MATLAB based analysis in transmission. What can be observed is that the CST results are
slightly better than the results of the MATLAB simulation. The primary reason for this small discrep-
ancy is how the transmitted fields are modeled in the critical angle region of the lens in the MATLAB
based code. Specifically, in this region, the analysis code assumes that no transmitted field is present;



5.3. Bandwidth performance of the proposed shaped lens antennas 36

however, in a full wave simulation, higher order field effects are included in the critical angle region of
the lens.

Table 5.11: CST versus optimizer results

CST Optimizer

Directivity (dB) 28.9 28.7

Gain (dB) 28.3 28.1

SLL (dB) −18.2 −16.5

ηrad 0.87 0.87

ηt 0.78 0.75

η 0.68 0.65

Scan loss (dB) −0.71 −0.89

5.3. Bandwidth performance of the proposed shaped lens an-
tennas

Since the conjugate field matching of the transmitted and incident fields in the described analysis in
reception method is frequency dependent, an important step to consider in designing a shaped lens
antenna is its bandwidth performance. As a result, the focus of this subsection is to determine the
bandwidth performance of such shaped lens antennas. This is relevant because the surfacemodification
is limited by the upper and lower bounds of the Zernike coefficients, as discussed in Chapter 4.

Fig. 5.16 shows the bandwidth performance of the optimized shaped lens antenna that was de-
scribed in section 5.1. For this analysis, the same Gaussian feed is assumed over the entire bandwidth.
Therefore, the only limit should come from the lens focusing properties. In addition, all the optimized
parameters and the geometry of the lens antenna are fixed at the central frequency (180 GHz), and
the geometry is analyzed in terms of the efficiency terms and far field patterns over a 130 − 230 GHz
bandwidth. This frequency range is chosen to be similar to the one of the lens antenna design in [2],
where the bandwidth was ultimately limited by the matching performance of the antenna feed into a
waveguide port.

In this figure, themaximumachievable theoretical directivity, which is also known as the diffraction
limited directivity, is shown. The directivity and gain of the shaped lens antenna are also shown in this
figure as a function of the frequency. As expected, the directivity and gain of the geometry increases
with the operation frequency. The difference between the gain and the directivity (reflection efficiency)
remains constant (≈ 1.7 dB). However, the difference between the diffraction limited directivity and
directivity (field match efficiency) increases when the frequency increases.
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Figure 5.16: The bandwidth performance of the lens.

The total time elapsed for theMATLAB based optimization process is 90minutes where the kernel code
of the optimization process, i.e. the analysis in Rx, takes 2 seconds to elapse. On the other hand, the
full wave validation of the optimized geometry took 371 minutes to complete. As a result, performing
this type of optimization process using a full wave simulation would be an extremely time-consuming
process. Both results were obtained using a single core Intel i5-9500 processor with a clock frequency
of 3 GHz, and a RAMmemory of 8 GB.

5.4. Scanning in the E- and D-plane
The previous results were obtained in the H-plane for 25° incident angle. However, it is also important
to consider the performance of the optimization procedure in the E- andD-plane. The numerical results
for the E-plane case are shown in Table 5.12. Fig. 5.17 shows the tangent incident and transmitted fields

Table 5.12: Optimized parameter results for the E-plane.

Parameter Value

η 0.72

ηref 0.84

ηFM 0.83

Directivity (dB) 34.1

Gain (dB) 33.31

SLL (dB) −12.2

Scan Loss (dB) −0.77

on the lens surface in both amplitude and phase for the E-plane case. With the achieved tilt, it can be
observed that the radiation is pointed towards the top half of the lens. The total efficiency has decreased,
and the side lobe level is also worse compared to the H-plane case (see Fig. 5.18).
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(a) (b)

(c) (d)

Figure 5.17: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase for
the E-plane
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Figure 5.18: The radiated far fields for the target and the optimized lens antenna for a scanning case of 25° in the E-plane.
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Table 5.13 shows the optimization results for the D-plane case. The total efficiency has decreased even
more, however, the side lobe level is better. This improved side lobe level is due to the increased field
match efficiency. The scan loss is also slightly lower in this case. Therefore, it ismost difficult to perform
the optimization in the D-plane. However, the optimizer appears to show consistent performance for
the three different cases. Fig. 5.19 shows similar fields, however, now they are shown for the D-plane.

Table 5.13: Optimized parameter results for the D-plane.

Parameter Value

η 0.66

ηref 0.76

ηFM 0.87

Directivity (dB) 34.2

Gain (dB) 33

SLL (dB) −16

Scan Loss (dB) −1.1

Again, it can be observed that feed is properly tilted in the correct direction for a D-plane scanning case.
Furthermore, the radiated far fields are shown in Fig. 5.20.

(a) (b)

(c) (d)

Figure 5.19: The tangent incident (a,b) and transmitted fields (c,d) on the lens surface in 2D in both amplitude and phase for
the E-plane
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Figure 5.20: The radiated far fields for the target and the optimized lens antenna for a scanning case of 25° in the D-plane.

5.5. Testing the theoretical scanning performance of plastic
lens antennas

As mentioned in the introduction of Chapter 2, plastic lenses are commercially viable candidates for
the next generation of communication systems operating at frequencies above 100 GHz. However, the
canonical elliptical lenses made in plastic are fundamentally limited in scanning capabilities, due to
their curvature [1]. In this section, the scanning capabilities of shaped plastic lenses are explored to
determine the possible performance increase by changing the shape from the canonical one. The two
explored cases are a 45° scanning case and a 60° scanning case in the H-plane. The relevant parameters
for these scanning cases are listed as follows:

• Frequency of operation: f = 180 GHz
• Lens diameter: D = 18λ0

• Permittivity of the material: εr = 2.3

• Incident plane wave angle: θipw = 45°, 60°; ϕi
pw = 0°

5.5.1. 45 degree scanning scenario
Table 5.14 shows the optimized parameters. In this case, the Zernike expansion of order 4, is consid-
ered to modify the lens shape. Moreover, since the required optimization goal is more complicated to
achieve, the optimization time has been increased to topt = 90minutes.

Table 5.14: Optimized parameter results.

Parameter Value

f# 0.91

∆x −8.09λ0

θtilt 41.2°

∆z 3.73λ0

Fig. 5.21a shows the ray tracing in transmission with the shaped lens. The blue rays correspond to the
incident field and the green rays correspond to the transmitted field. A significant shadow region is
present on the lens. Fig 5.21b shows the added surface modification∆s.
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(a) (b)

Figure 5.21: The ray tracing plot for the 45° scanning case (a) and the added surface∆s of the modified lens (b).

Fig. 5.22 shows the tangent fields on the lens surface. With Fig. 5.22a showing the tangent incident
fields and Fig.5.22b shows the transmitted fields.

(a) (b)

(c) (d)

Figure 5.22: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase

Fig. 5.23 shows the far field patterns of the lens antenna in both the E- and H-plane. There is some
asymmetry in the pattern, which is most likely due to the asymmetry of the Zernike surface expansion.
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Figure 5.23: Far field pattern for the 45° case

Table 5.15 shows the directivity, side lobe level, gain and scan loss related for a 45° scanning case. The
total efficiency is also shown.

Table 5.15: The performance metric of the optimized lens antenna for a 45° scanning case, obtained using the MATLAB based
analysis code.

Parameter Value

Directivity (dB) 33.0

SLL (dB) −12.2

Gain (dB) 31.9

Scan loss (dB) −2.2

η 0.48

5.5.2. 60 degree scanning scenario
Table 5.16 shows the optimized parameters. Again, the Zernike expansion of order 4, is considered to
modify the lens shape. However, the optimization time has been increased to topt = 120minutes, since
the required optimization goal is even more complicated to achieve compared to the optimization goal
for the 45° scanning scenario.

Table 5.16: Optimized parameter results.

Parameter Value

f# 0.85

∆x −11.26λ0

θtilt 54.3°

∆z 4.36λ0

Fig. 5.24a shows the ray tracing with the shaped lens. Once more, the blue rays correspond to the
incident field and the green rays correspond to the transmitted field. As expected, the shadow region
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is even larger. Fig. 5.24b shows the added surface modification∆s.

(a)
(b)

Figure 5.24: The ray tracing plot for the 60° scanning case (a) and the added surface∆s of the modified lens (b).

Fig. 5.25 shows the tangent fields on the lens surface.

(a) (b)

(c) (d)

Figure 5.25: The tangent incident (a,b) and transmitted (c,d) fields on the lens surface in 2D in both amplitude and phase

Fig. 5.26 shows the far field patterns of the lens antenna in both the E- and H-plane. Table 5.17 shows
the directivity, side lobe level, gain and scan loss related for a 60° scanning case. The total efficiency is
also shown.
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Figure 5.26: Far field pattern for the 60° case.

Table 5.17: The performance metric of the optimized lens antenna fora 60° scanning case obtained using the MATLAB based
analysis code.

Parameter Value

Directivity (dB) 32.9

SLL (dB) −11.0

Gain (dB) 31.3

Scan loss (dB) −2.8

η 0.42

5.5.3. Scan loss versus scan angle
Fig. 5.27 shows the scan loss versus the scan angle. As can be seen, the synthesis of shaped lens anten-
nas using the proposed optimization process can theoretically achieve scan losses of< 3dB for scanning
angles up to 60°.
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Figure 5.27: Scan loss versus scan angle.

A comparison can be made of the lens surfaces for the three considered scanning cases. This allows us
to evaluate how the surface changes when the scan angle increases. Fig. 5.28 shows the lenses obtained
by the optimizer. What can be observed is that the lens surface becomes flatter for larger scan angles. In
conclusion, it is shown that it is theoretically possible to enhance the scanning performance of plastic
lens antennas by moving away from a canonical elliptical shape. It is worth noting that the overall
optimization process is significantly more complex for plastic lenses compared to lenses made out of
denser materials. As a result, the proposed methodology also holds for such denser lens geometries
while requiring a less complex shapemodification and smaller feed tilt tangles because of the shallower
curvature of such lenses.

(a) (b) (c)

Figure 5.28: The shaped lenses for the 25°, 45° and 60° case, respectively.



6
Multi lens analysis

Recently, large Field of View (FoV) sensing systems and sub-mm imaging systems are demonstrated.
Several applications benefit from a large available bandwidth, from security [9] imaging systems to as-
tronomical spectrometers [11]. Multiple pixels working simultaneously can decrease the image acquisi-
tion time. It is therefore important to develop Quasi-Optical (QO) systems that are capable of achieving
wide band and wide scanning. Most of these systems consist of multiple QO components, and there ex-
ist PO based methods that are capable of analysing these multi QO component chains. However, these
methods are oftentimes extremely time-consuming. Therefore, the objective of this chapter is to imple-
ment an efficient method to analyse said multi QO component chains. In addition, this time efficient
method can be used as a kernel for an optimizer similar to the one discussed in Chapter 3.

The developed method combines ray tracing techniques with a cascaded Geometrical Optics (GO)
technique, thereby allowing for a less time-consuming analysis of the multi QO component chains. In
previous works, multi-lens components were studied using a single transmitting surface GO and simple
geometrical approximations were considered to use this propagation technique for multi transmitting
surfaces. However, in this work, an accurate multi surface GO method is implemented where off-axis
performance of the QO system is accurately evaluated.

This chapter explains the analysis of multi QO component chains. Firstly, the QO setup is intro-
duced, and the components are parametrized. Secondly, the analysis of the system in reception and
transmission mode is explained. Thirdly, the ray tracing method is discussed. Afterwards, the GO
method for multi layer lenses is introduced. In addition, the codes are validated using a Physical Op-
tics approach and a few example cases are discussed.

6.1. Multi lens example scenario
In this work, an example case as shown in Fig. 6.1 is considered. In this example case, a silicon extended
hyper-hemispherical lens (blue) and a plastic hyperbolic lens (green) as shown in Fig. 6.1 are analyzed.

46



6.1. Multi lens example scenario 47

Feed focal plane

Virtual focus

Figure 6.1: Dual lens setup with the silicon hyper-hemispherical lens shown in blue and the plastic hyperbolic lens shown in
Green

The considered feed is the Gaussian feed as described in Chapter 2. However, for this application, the
feed has a −11 dB taper at 45°. The centre frequency for this example case is fc = 480 GHz.

The specifications of the extended hyper-hemispherical lens are as follows

• The relative permittivity of the lens εr = 11.9

• The diameter of the lensDl1 = 48λ0

• The focal length of the lens Fv = 106.8λ0

where λ0 is the free space wavelength.
The specification of the hyperbolic lens are

• The relative permittivity of the lens εr = 2.4

• The diameter of the lensDl2 = 82.3λ0

• The focal length of the lens Fl2 = 164.6λ0

• The thickness of the lens hl2 = 28λ0

6.1.1. Lens parametrization
Asmentioned, the two canonicalQOcomponents that are analysed in this section are the hyper-hemispherical
lens antenna and the hyperbolic lens antenna. Similar to Chapter 2, a lens parametrization procedure
is applied to these QO components. In addition, the derivatives are given, which are needed for the
calculation of the normal vector and the Jacobian.

Hyper-hemisperical lens
The z coordinates of the hyper-hemispherical surface are calculated as follows:

zlens = Le + h+
√
R2

s − (x2
lens + y2lens) (6.1)
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where the extension length Le = Rs√
εr
; h = Fv − Rs − Le, with Fv being the virtual focus; xlens and

ylens are the surface locations of the lens in the ρ plane. For an arbitrary point Qhh on the hyper-
hemispherical lens surface the locations in x, y and z are defined as

Qhh
x = x (6.2a)

Qhh
y = y (6.2b)

Qhh
z = Le + h+

√
R2

s − (x2 + y2) (6.2c)

The partial derivatives with respect to x and y are defined as

∂Qhh
x

∂x
= 1 (6.3a)

∂Qhh
y

∂x
= 0 (6.3b)

∂Qhh
z

∂x
=

−x√
R2

s − (x2 + y2)
(6.3c)

and
∂Qhh

x

∂x
= 0 (6.4a)

∂Qhh
y

∂x
= 1 (6.4b)

∂Qhh
z

∂y
=

−y√
R2

s − (x2 + y2)
(6.4c)

respectively.

Hyperbolic lens
The surface of a hyperbolic lens antenna can be expressed in terms of Cartesian coordinates, as follows

(zhyp − c)2

a2
−

x2
hyp + y2hyp

b2
= 1 (6.5)

where a is the semi-major axis; b is the semi-minor axis; c is the distance from the centre to a focus.
These parameters are defined as:

a =
Fl2

1 + e
(6.6)

b =
√
c2 − a2 (6.7)

c = a · e (6.8)

where Fl2 is the focal length of the hyperbolic lens; e is the eccentricity of the hyperbolic lens, defined
as e =

√
εhyp. The z coordinates of the hyperbolic surface can be calculated as follows

zhyp = a

√
1 +

(x2
hyp + y2hyp)

b2
+ c (6.9)

Similarly, for an arbitrary point Qhyp on the hyperbolic lens surface the locations in x, y and z are
defined as

Qhyp
x = x (6.10a)

Qhyp
y = y (6.10b)

Qhyp
z = a

√
1 +

(x2
hyp + y2hyp)

b2
+ c (6.10c)
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The partial derivatives with respect to x and y are defined as

∂Qhyp
x

∂x
= 1 (6.11a)

∂Qhyp
y

∂x
= 0 (6.11b)

∂Qhyp
z

∂x
=

ax
b2√

1 + x2+y2

b2

(6.11c)

and
∂Qhyp

x

∂x
= 0 (6.12a)

∂Qhyp
y

∂x
= 1 (6.12b)

∂Qhyp
z

∂y
=

ax
b2√

1 + x2+y2

b2

(6.12c)

respectively.

6.2. Multi layer lens analysis
A similar approach can be taken as the one discussed in Chapter 3 to analyse and then optimize multi
layer lenses. Again, one can perform the reaction integral defined as

VocItx =

∫∫
S

(H⃗inc · M⃗flat
tx − E⃗inc · J⃗flat

tx )dS (6.13)

over an induction surface taken at the top of themulti layer structure (see Fig. 6.2). Here H⃗inc and E⃗inc

are the incident magnetic and electric fields, which can be defined as described in Chapter 3; M⃗flat
tx and

E⃗flat
tx are the transmitted equivalent currents on the surface generated by the multi layer lens feed. Fig.

6.2 shows the two lenses and the surface s+ where the reaction integral is performed.

Figure 6.2: The enclosed surface s+ where the reaction integral is performed.

To determine the equivalent magnetic and electric currents on the surface, a code is developed that
combines ray tracing and a cascaded GO method. The next section explains these methods.



6.2. Multi layer lens analysis 50

6.2.1. Ray tracing for multi layer components
As mentioned in the introduction of this chapter, an efficient multi surface GO code is implemented to
compute the fields throughmultiple lens surfaces. In order to determine the progressive phase and am-
plitude spreading using a GO method, a ray tracing technique is needed to determine the propagation
distance of each ray that travels through the multi lens surface. For this, a forward ray tracing method
is applied, and the ray tracing procedure is subdivided into three separate parts.

1. From the feed to the lens surface of the hyper-hemispherical lens
2. From the hyper-hemispherical lens to the hyperbolic lens
3. From the hyperbolic lens to the flat extension

Fig. 6.3 shows an illustration of the steps as previously discussed, and this procedure is explained step
by step in the next subsections.

Figure 6.3: Schematic overview of the lens with its respective regions considered for the ray tracing procedure.

From feed to lens surface
The first part of the ray tracing method focuses on the propagation from the feed to the surface of the
hyper-hemispherical lens. This approach is the same as the one taken in Chapter 3. Therefore, the
propagation distance is defined as |r⃗lens| as shown in region 1 in Fig. 6.3.

From hyper-hemispherical lens to hyperbolic lens
The next step focuses on the propagation distance from the hyper-hemispherical lens to the hyperbolic
lens, as shown in region 2 in Fig. 6.3. This propagation distance S1 is determined by setting up and
solving the general system of equations:

Qx
2 = Qx

1 + S1stx (6.14a)

Qy
2 = Qy

1 + S1sty (6.14b)

Qz
2 = Qz

1 + S1stz (6.14c)

hereQx
1 ,Q

y
1 andQz

1 represent the points on the surface of the hyper-hemispherical lens;Qx
2 ,Q

y
2 andQz

2

represent the points on the surface of the hyperbolic lens; stx, sty and stz represent the components of
transmission propagation vectors. As previously discussed, the z-locations of the hyperbolic lens can
be calculated in terms of its x- and y- locations as shown in Eq. (6.9). Therefore, by substituting Eq.
(6.14a) and Eq. (6.14b) into Eq. (6.14c), the ray tracing system of equations is reduced to the following
quadratic equation

[
a2

b2
(s2tx + s2ty)− s2tz]S

2
1 + [

a2

b2
(2s2txxhh + 2s2tyyhh)− 2s2tzzhh]S1 + [a2 +

a2

b2
(x2

hh + y2hh)− z2hh] (6.15)

Therefore, the propagation distance S1 is found by applying and solving the abc formula. Note that
this formula gives two solutions, so it is important to select a feasible solution. This means a solution
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that represents the forward propagation of the ray towards the upper hyperbola. The other solution
represents a backward ray travelling to a hyperbola located at locationswith negative z values, therefore,
this solution is discarded.

From hyperbolic lens to the flat extension
Lastly, the propagation distance from the hyperbolic lens to the top of the flat extension has to be de-
termined. This propagation distance S2 is represented by region 3 in Fig. 6.3. The extension length h
is known. The propagation vector in transmission is determined using Snell’s law. Therefore, the S2 is
found by

S2 =
(Qzmax

2 + h)−Qz
2

stz2
(6.16)

the points on the flat surface are determined by the following system of equations:

Qx
3 = Qx

2 + S2stx2 (6.17a)

Qy
3 = Qy

2 + S2sty2 (6.17b)

Qz
3 = Qz

2 + S2stz2 (6.17c)

An example of the resulting ray tracing picture is shown in Fig. 6.4.

Figure 6.4: The result of the ray tracing procedure after steps 1− 3.

6.2.2. Geometrical Optics for multi lens QO systems
To determine the field on the flat side of the hyperbolic lens as shown in Fig. 6.2, the field that is
transmitted by the feed has to be propagated through multiple surfaces. Therefore, one can resort to
a GO based code for multi transmitting surfaces. In this section, the general principle behind this GO
analysis is explained. Firstly, the GO propagation in a homogeneous medium is discussed. Afterwards,
the field interaction with transmitting surfaces is explained.

Geometrical optics propagation in a homogeneous medium
GO is a technique that is often used to determine wave propagation at high frequencies. The GO rep-
resentation summarized in this chapter is based on derivations in [19]. This method is also known as
ray optics, since the EMwaves can be approximated as tubes of rays. First let us consider a generalized
problem, where an EMpropagation in a homogeneousmedium is represented by a surfaceA1 as shown
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in Fig. 6.5. Such a wavefront is spherical for far field radiations, planar for plane wave radiations or
cylindrical for cylindrical propagations (i.e. surface waves). In more general terms, this wavefront is
defined as an astigmatic surface that has two radii of curvature ρi1 and ρi2. The point P0 is defined on
the wavefront around the axial ray originating from point A.

Figure 6.5: The primary wavefront A1.

Using a GO approximation, one can determine the amplitude and phase of this EM field when it is
propagated a certain distance along its axial ray. To do so, the following two steps are taken:

1. Determine the secondary wavefront surface at a location along the axial ray.
2. Form a relation between the primary and secondary wavefront in terms of power density and field

intensity.

Firstly, let us define an elementary area dA1 of wavefrontA1 as shown in Fig. 6.6. This elementary area
has the same radii of curvature as wavefront A1. The paraxial rays that form a tube of rays are found
by considering the rays emerging from dA1.
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Figure 6.6: The elementary area around point P1 defined as dA1.

Now, one can estimate the EM fields when the wavefront A1 is propagated a certain distance S within
the homogeneous medium. The secondary wavefront at distance S is shown in Fig. 6.7. An elementary
surface surrounding the center point P can be defined as dA2.

Figure 6.7: The secondary wavefront A2 with its respective elementary area around point P defined as dA2.

As mentioned before, the direction of power flow is along the rays. Therefore, the principle of conser-
vation of energy can be applied and the following relation holds:

|E⃗i
1|2dA1 = |E⃗i

2|2dA2 (6.18)

where E⃗i
1 and E⃗i

2 are the electric field values in dA1 and dA2, respectively. Equation 6.19 show the
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relationship between the two elementary areas of the wavefronts in terms of their radii of curvature.

dA1

dA2
=

ρi1ρ
i
2

(ρi1 + S)(ρi2 + S)
(6.19)

These relationships allow for an expression to be determined that expresses the incident field at the
secondary wavefront in terms of the known incident field, as follows:

E⃗i
2(P ) = E⃗i

1(P0)

√
ρi1ρ

i
2

(ρi1 + S)(ρi2 + S)
e(−jk1S) (6.20)

where the exponent term signifies the progressive phase term, and k1 is the propagation constant in
the homogeneous medium. In addition, the propagation direction, which is along the axial ray, is rep-
resented by ŝi. The principal direction of the wavefront X̂i

1 and X̂i
2 are the unit vectors tangent to the

two primary planes of the wavefront (see Fig.6.7). They have the following relation with respect to the
incident propagation direction.

X̂i
1 ⊥ X̂i

2 ⊥ ŝi (6.21)

Geometrical optics interaction with transmitting surfaces
After representing the propagation of EM fields inside a homogeneousmedium, we would like tomodel
the propagation of EM field through multiple lens surfaces using GO approximations. Therefore, it is
necessary to analyze the interaction of GO fields with a transmitting surface. Let us assume that the
field given by Equation 6.20 is incident upon a surface as shown in Fig. 6.8.

Figure 6.8: The field is incident upon a transmitting surface

The transmitted field can be written as

E⃗t(S) = E⃗i(P0) · ¯̄T(P0)

√
ρt1ρ

t
2

(ρt1 + S)(ρt2 + S)
e(−jk2S) (6.22)

where ¯̄T is the transmission dyad; ρt1 and ρt2 are the principal radii of curvature of the transmitted
wavefront. In order to calculate the transmission dyad using available Fresnel coefficients, a coordinate
system based on TE and TM polarizations is desired. This coordinate system (ŝi, â, b̂) is shown in Fig.
6.9.
However, the radii of curvature for the transmittedwavefront are calculated using the radii of curvature
of the incident wavefront, the principal direction of the wavefront and the surface curvature. These
calculations are straightforward in a reference system based on X̂i

1, X̂
i
2 and ŝi, when the continuity of

the phase at the intersection surface is considered. As a result, there are two different reference systems
present, and it is necessary to relate them. This can be achieved by introducing a rotation matrix Jα.

Jα =

[
cosα sinα
− sinα cosα

]
(6.23)
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Figure 6.9: The two different coordinate systems shown in point P on the wavefront.

where α is the rotation angle between the two coordinate systems, as shown in Fig. 6.9. α is calculated
as

α = arccos (X̂i
1 · â) (6.24)

The principal radii of curvature of the transmitted wavefront are determined by solving the transmis-
sion curvature matrix At as detailed in [19].

At =

[
kiA

i
11+hC11

kt

sec θt(ki cos θiA
i
12−hC12)

kt

sec θt(ki cos θiA
i
12−hC12)

kt

sec2 θt(ki cos θi
2Ai

22−hC22)
kt

]
(6.25)

where
h = ki cos θi − kt cos θt (6.26)

the Cmatrix is defined as the curvature of the interface in the neighbourhood of point P0. The matrix
is defined as

C =

[ 1
R1

0

0 1
R2

]
(6.27)

where R1 and R2 are the principal radii of curvature of the intersection surface [20]. The derivations
of R1 and R2 are shown in Appendix B. The A

i matrix is defined as the incident field curvature matrix.
This matrix is defined as

Ai =

[
cosα2

ρi
1

+ sinα2

ρi
2

cosα sinα[ 1
ρi
1
− 1

ρi
2
]

cosα sinα[ 1
ρi
1
− 1

ρi
2
] sinα2

ρi
1

+ cosα2

ρi
2

]
(6.28)

here ρi1 and ρi2 are the incident radii of curvature. Using these matrices, the principal radii of curvature
of the transmitted wavefront are determined by

1

ρt1,2
=

At
11 +At

22 ±
√

(At
11 −At

22)
2 + 4(At

12)
2

2
(6.29)

In this section, a general principle behind the cascading GO analysis has been explained. The next step
is to apply this principle to the analysis problemwith the hyper-hemispherical and hyperbolic lens. This
is discussed in the next section.

6.3. Propagation of the EM fields through the multi-lens ge-
ometry

In this section, the generalized GO analysis is applied to the multi-lens example scenario to find the
transmitted fields on the surface S+ (see Fig. 6.2). Once more, this can be subdivided into three parts
as shown in Fig. 6.10.
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Figure 6.10: The lens setup with the three evaluation pointsQ1,Q2 andQ3.

6.3.1. Finding the field outside the hyper-hemispherical lens
The field at point Q1, (E⃗1(Q1)) on the outside of the surface of the hyper-hemispherical lens is found
in a similar manner to the method described in Chapter 3. The initial radii of curvature ρi1 and ρi2 are
defined as |r⃗lens|. The principal directions of the wavefront are defined as

X̂i
1 = ŷ × ŝi (6.30a)

X̂i
2 = ŝi × X̂i

1 (6.30b)

using these principal radii of curvature and the principal directions of the wavefront, the transmitted
radii of curvature and transmitted directions of the wavefront can be calculated. Here, the principal
radii of curvature (ρt1 and ρt2) are calculated according to Eq. (6.29). The transmitted direction of the
wavefront (X̂t

1, X̂
t
2) are calculated as

X̂t
1 =

(At
22 − 1

ρt
1
)x̂t

1 −At
12x̂

t
2√

(At
22 − 1

ρt
1
)2 +At

12

(6.31a)

X̂t
2 = ŝt × X̂t

1 (6.31b)

where x̂t
1 = n̂Q1 × ŝt and x̂t

2 = ŝt × x̂t
1. With n̂Q1 being the inward pointing normal vector at point Q1.

6.3.2. Finding the field outside the hyperbolic lens
Using the results from the previous section, the field at point Q2 can be defined as

E⃗2(Q2) =
¯̄T(Q1) · E⃗1(Q1)

√
ρt1ρ

t
2

(ρt1 + S1)(ρt2 + S1)
e(−jk0S1) (6.32)

To find the transmitted field at point Q2, one needs to find the transmitted radii of curvature, and the
transmitted direction of the wavefront. This principle is similar to the previous discussed steps.

6.3.3. Propagating the field to the flat surface
Once the steps are performed, the field E⃗3(Q3) determined. This field is described as

E⃗3(Q3) =
¯̄T(Q2) · E⃗2(Q2)

√
ρt11 ρt12

(ρt11 + S2)(ρt12 + S2)
e(−jkdS2) (6.33)

where ρt11 , ρt12 are the principal radii of curvature, and kd is the propagation constant in the dielectric of
the hyperbolic lens. The field on the outside of the surface S+ (see Fig. 6.2) is given by

E⃗flat
tx (Q3) =

¯̄T(Q3) · E⃗3(Q3) (6.34)
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The equivalent currents are then expressed as

M⃗flat
t (Q3) = −n̂flat

Q (Q3)× E⃗flat
tx (Q3) (6.35)

J⃗flat
t (Q3) = n̂flat

Q (Q3)× H⃗flat
tx (Q3) (6.36)

here, n̂flat
Q is the normal vector of the flat surface; E⃗flat

tx and H⃗flat
tx are the transmitted electric and

magnetic fields, respectively. Similar to the process in Chapter 3, the currents are radiated using a
standard Fourier transform far field approach with the free space Green’s function to find the far field.

6.3.4. Efficiency terms for a multi lens QO system
Similar to Chapter 3, the total efficiency ηtot is defined as

ηtot =
Prx

Pin
=

|VocItx|2

16P feed
rad Pinc

(6.37)

this efficiency can also be split up into multiple terms as follows

ηtot = ηFMηhhrefη
hyp
ref (6.38)

where ηFM is the field match efficiency; ηhhref is the reflection efficiency of the hyper-hemispherical lens

and ηhypref is the reflection efficiency of the hyperbolic lens. For an optimization problem one could again
consider using a multi-variable optimizer with two cost functions ( 1

ηFM
and 1

ηhh
refη

hyp
ref

).

Reflection efficiency of the hyper-hemispherical lens
The reflection efficiency of the hyper-hemispherical lens is calculated as:

ηhhref =
Phh
tx

P feed
rad

(6.39)

where P feed
rad is the transmitted power out of the feed, and it is calculated as previously discussed in

Chapter 2. Phh
tx is the power transmitted out of the hyper-hemispherical lens, and it is calculated as:

Phh
tx =

∫∫
S

1

2
ℜ{E⃗hh

tx × H⃗hh∗
tx } · n̂hhdS (6.40)

where E⃗hh
tx is the transmitted electric field out of the hyper-hemispherical lens; H⃗hh

tx is the transmitted
magnetic field out of the hyper-hemispherical lens; S is the hyper-hemispherical surface and n̂hh is the
normal vector of the hyper-hemispherical lens.

Reflection efficiency of the hyperbolic lens
The reflection efficiency of the hyperbolic lens is calculated as:

ηhypref =
P flat
tx

Phh
tx

(6.41)

where P flat
tx is the transmitted power out of the flat part of the lens, and it is calculated as:

P flat
tx =

∫∫
S

1

2
ℜ{E⃗flat

tx × H⃗flat∗
tx } · n̂flatdS (6.42)

where E⃗flat
tx is the transmitted electric field out of the flat part of the hyperbolic lens; H⃗flat

tx is the trans-
mittedmagnetic field out of the flat part of the hyperbolic lens; S is the flat part of the hyperbolic surface
and n̂hh is the normal vector of the flat part of the hyperbolic lens.
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Field match efficiency
The field match efficiency representing the field match between the incident and transmitted fields is
calculated as:

ηFM =
|VocItx|2

16PincP
flat
tx

(6.43)

where Pinc is the incident power.

6.4. Physical Optics validation
A Physical Optics (PO) approach is taken in order to validate the results produced by the developed
code. In the PO approach, the field that is radiated by a QO component is calculated using the radiative
part of the Green’s function (GF) as shown in Eq. (6.44) and Eq. (6.45), respectively.

E⃗i
PO(r⃗) =

∫∫
S′

jk⃗i × M⃗ i
eq

e−jki|r⃗−r⃗′|

4π|r⃗ − r⃗′|
dS′ − jωµ

∫∫
S′
[J⃗ i

eq − (k̂i · J⃗ i
eq)k̂

i]
e−jki|r⃗−r⃗′|

4π|r⃗ − r⃗′|
dS′ (6.44)

H⃗i
PO(r⃗) = −jki

ζi

∫∫
S′
[M⃗ i

eq − (k̂i · M⃗ i
eq)k̂

i]
e−jki|r⃗−r⃗′|

4π|r⃗ − r⃗′|
dS′ −

∫∫
S′

jk⃗i × J⃗ i
eq

e−jki|r⃗−r⃗′|

4π|r⃗ − r⃗′|
dS′ (6.45)

where k⃗i = ki r⃗−r⃗′

|r⃗−r⃗′| . The incident direction of propagation ŝi as shown in Fig. 6.11 can be approximated
by the calculating the pointing vector as

S⃗ =
1

2
E⃗i

PO(r⃗)× H⃗i∗
PO(r⃗) → ŝi =

S⃗

|S⃗|
(6.46)

here the pointing vector is calculated using the incident electric and magnetic field E⃗i
PO and H⃗i

PO, re-
spectively.

Figure 6.11: An visualisation of the PO validation for the considered scenario

The electric and magnetic transmitted fields from the outside of the secondary sur face to the inside of
the secondary surface are calculated as in Eq. (6.47) and Eq. (6.48), respectively. From these fields,
the transmitted equivalent currents are calculated on the second surface. As a result, the PO analysis
can be cascaded.

E⃗t
PO(r⃗) = ¯̄τ(r⃗) · E⃗i

PO(r⃗) (6.47)

H⃗t
PO(r⃗) =

1

ζt
ŝt × E⃗t

PO(r⃗) (6.48)
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6.5. Application cases
As mentioned before, the goal is to analyse double lens geometries using a double GO method. For
comparison’s sake, the same amount of evaluation points are considered for both the GO and POmeth-
ods. This section focuses on three different cases, and results for the previously mentioned analysis
methods are shown and compared. The three different analysis cases are considered; a broadside case;
a 5 beams scanning case; and a 15 beams scanning case. All of these three cases are validated using the
PO approach.

6.5.1. Broadside case
For the broadside case, the tangent electric fields are shown on three different surface of the QO compo-
nent chains. Fig. 6.12 shows both the amplitude and the phase of the fields on the hyper-hemispherical
surface of the lens.

(a) The amplitude of the tangent electric field on the
outside of the hyper-hemispherical lens obtained by the

GO code.

(b) The phase on the surface of the hyper-hemispherical
lens obtained by the double GO code.

Figure 6.12: The amplitude and phase on the hyper-hemispherical lens

Fig. 6.13 shows the amplitude and phase on the outside of the hyperbolic lens obtained by the double
GO code. In addition, the results of the PO validation are shown. As can be observed, both codes
produce similar amplitude and phase profiles. Where the amplitude profile has a tapered distribution.
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(a) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the GO code.

(b) The phase on the surface of the hyperbolic lens
obtained by the double GO code.

(c) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the PO

validation method.

(d) The phase on the surface of the hyperbolic lens
obtained by the PO validation method.

Figure 6.13: The amplitude and phase on the hyperbolic surface using the GO method (a,b) and the PO validation method
(c,d).

Fig. 6.14 shows the amplitude and phase on the flat part of the hyperbolic lens. While the amplitude
profiles show similarity, the phase profiles show some discrepancies. For the double GO code, there
appears to be a phase difference from the edge to the centre of the lens of approximately 10°. However,
the phase profile still remains relatively flat.
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(a) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the GO code.

(b) The phase on the flat part of the second lens surface
obtained by the GO code.

(c) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the PO

validation code.

(d) The phase on the surface of the flat part of the second
lens obtained by the PO validation code.

Figure 6.14: The phase and amplitude on the flat surface of the hyperbolic lens with the results of the GO method shown in
(a,b) and the results of the PO method shown in (c,d).

The far fields obtained by bothmethods are compared for the broadside case, they are shown inFig. 6.15.
It is apparent that both methods produce similar results. There is a substantial difference between the
operation time of the code. The PO code took approximately 12.5 hours to run, however, the GO code
took 15 seconds to run. The gain and directivity are shown in Table 6.1.

Figure 6.15: The radiated far field for the broadside case.
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Table 6.1: The gain and directivity for the broadside case.

Parameter Value

Directivity (dB) 47.5

Gain (dB) 46.2

6.5.2. Scanning cases
It is also important to determine how well the GO code performs for off-broadside cases. In this work,
two scanning cases are considered, a 5 beam scanning case and a slightly more extreme 15 beams scan-
ning case. The feed horizontal displacement for an N beams scanning is determined as

xant =
f#√
εhhr

λdN (6.49)

where εhhr is the relative permittivity of the hyper-hemispherical lens and λd is the wavelength of the
hyper-hemispherical lens. These number of beams can also be translated into an angular value that
corresponds to the incident angle of the wave. This leads to the following expression

θi = −
√
εhhr xant

L+Rsph

1√
εhypr

180

π
(6.50)

where εhypr is the relative permittivity of the hyperbolic lens.

5 beams scanning results
Fig. 6.16 shows the ray tracing results for the 5 beams scanning case. What can be observed is that
there is a section of the hyperbolic lens that is not illuminated, this is due to displacement of the feed.
There are also some rays on the left side of the hyper-hemispherical lens that are not transmitted to the
hyperbolic lens, because they would not hit the hyperbolic lens.

Figure 6.16: The ray tracing results for 5 beams scanning

For the 5 beams scanning case, the tangent electric fields are shown on three different surface of the
QO component chains. Fig. 6.17 shows both the amplitude and the phase of the fields on the hyper-
hemispherical surface of the lens.
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(a) The amplitude of the tangent electric field on the
outside of the hyper-hemispherical lens obtained by the

GO code.

(b) The phase on the surface of the hyper-hemispherical
lens obtained by the double GO code.

Figure 6.17: The amplitude and phase on the hyper-hemispherical lens

Fig. 6.18 shows the amplitude and phase on the outside of the hyperbolic lens obtained by the double
GO code. In the GOmethod, the rays that do not hit the lens will produce a field that is zero. However,
for the PO results, there are some non-zero fields. Moreover, the PO results show some oscillations,
which is expected when the evaluation is done when the observation and source grid are close to each
other.

(a) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the GO code.

(b) The phase on the surface of the hyperbolic lens
obtained by the double GO code.

(c) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the PO

validation method.

(d) The phase on the surface of the hyperbolic lens
obtained by the PO validation method.

Figure 6.18: The amplitude and phase on the hyperbolic surface using the GO method (a,b) and the PO validation method
(c,d).

Fig. 6.19 shows the amplitude and phase on the flat part of the hyperbolic lens. As expected for a
displacement, the phases show a linear phase profile.
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(a) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the GO code.

(b) The phase on the flat part of the second lens surface
obtained by the GO code.

(c) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the PO

validation code.

(d) The phase on the surface of the flat part of the second
lens obtained by the PO validation code.

Figure 6.19: The phase and amplitude on the flat surface of the hyperbolic lens with the results of the GO method shown in
(a,b) and the results of the PO method shown in (c,d).

The far fields obtained by both methods are compared for the 5 beams scanning case, they are shown
in Fig. 6.20. Even for a small displacement, both codes appear to give similar results. In addition, the
pattern is less symmetrical than for the broadside case. The gain and directivity are shown in Table 6.2.

Figure 6.20: The radiated far field for the 5 beams scanning case.



6.5. Application cases 65

Table 6.2: The gain and directivity for the 5 beams scanning case.

Parameter Value

Directivity (dB) 46.6

Gain (dB) 45.3

15 beams scanning results
Fig. 6.21 shows the ray tracing results for the 15 beams scanning case. What can be observed, is that
in this case nearly half of the hyperbolic lens is not illuminated anymore. The region on the hyper-
hemispherical lens where the rays do not transmit has also become larger.

Figure 6.21: The ray tracing results for 15 beams scanning

(a) The amplitude of the tangent electric field on the
outside of the hyper-hemispherical lens obtained by the

GO code.

(b) The phase on the surface of the hyper-hemispherical
lens obtained by the double GO code.

Figure 6.22: The amplitude and phase on the hyper-hemispherical lens

Fig. 6.23 shows the amplitude and phase on the outside of the hyperbolic lens obtained by the double
GO code.
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(a) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the GO code.

(b) The phase on the surface of the hyperbolic lens
obtained by the double GO code.

(c) The amplitude of the tangent electric field on the
outside of the hyperbolic lens obtained by the PO

validation method.

(d) The phase on the surface of the hyperbolic lens
obtained by the PO validation method.

Figure 6.23: The amplitude and phase on the hyperbolic surface using the GO method (a,b) and the PO validation method
(c,d).

Fig. 6.24 shows the amplitude and phase on the flat part of the hyperbolic lens. As expected for a
displacement, the phases show a linear phase profile.
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(a) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the GO code.

(b) The phase on the flat part of the second lens surface
obtained by the GO code.

(c) The amplitude of the tangent electric field on the flat
part of the second lens surface obtained by the PO

validation code.
(d) The phase on the surface of the flat part of the second

lens obtained by the PO validation code.

Figure 6.24: The phase and amplitude on the flat surface of the hyperbolic lens with the results of the GO method shown in
(a,b) and the results of the PO method shown in (c,d).

The far fields obtained by both methods are compared for the 15 beams scanning case, they are shown
in Fig. 6.25. Now it becomes apparent that both the codes produce much more dissimilar results for a
more extreme scanning case. It is especially noticeable in the H-plane (solid lines).

Figure 6.25: The radiated far field for the 15 beams scanning case.
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The gain and directivity are shown in Table 6.1. In this chapter, a time efficient method has been pre-

Table 6.3: The gain and directivity for the 15 beams scanning case.

Parameter Value

Directivity (dB) 40.3

Gain (dB) 38.4

sented that is capable of analysing multi layer QO systems. Table 6.4 shows the time elapsed for both
methods.

Table 6.4: The time elapsed for the cascaded GO and the PO analysis.

Nbeams GO time PO time

0 14.9 sec 12.5 hours

5 16.1 sec 12.6 hours

15 24.5 sec 13.1 hours

From the table, it can be observed that the GO is fast compared to the PO method. Moreover, the
results presented in this chapter are sufficiently accurate. Therefore, this developed kernel is a feasible
solution for more involved design problems.



7
Conclusion

7.1. Summary and Conclusion
In this thesis, time efficient methods have been presented for the analysis of singe lens and multi lens
QO systems. In the first part of the thesis, the focuswas predominantly on the analysis and optimization
of low permittivity elliptical plastic lenses.

In Chapter 2 the lens antenna geometry under investigation was introduced. The lens geometry
was shaped by adding a Zernike expansion with varying weights to the canonical ellipsoidal shape. The
expression and the derivatives for the Zernike expansion were presented, and some examples of the
modes were shown. Finally, the definition of the lens feed was presented. Here a Gaussian pattern was
chosen with a −10 dB edge taper level at the lens angle of θl = 35°. This representation models the far
field pattern of the leaky wave antenna feed in [1].

In Chapter 3 the concept of field correlation on the lens surface is introduced to form a foundation
for the optimization kernel. Firstly, the objective of the optimization kernel was explained and the
efficiency terms were introduced. Afterwards, the incident and transmitted fields to perform a field
correlation were discussed. The transmitted field was determined by a GO plus ray tracing method.
The incident field was defined as a plane wave with an amplitude taper.

In Chapter 4 the optimization problem was introduced. The considered optimization parameters
were the lens focal length to diameter ratio; the lateral and vertical displacement of the feed; the tilt
angle of the feed; and the Zernike expansion coefficients. Furthermore, the setup of the optimizer
was presented, where the initial guess points of the optimizer were given in addition to the parameter
search range. Lastly, the optimizer choice was presented where a comparison was performed between
two MATLAB optimizers and a multi-variable optimizer was chosen. This choice was based on the
nature of our optimization problem, where multiple cost functions following different trends must be
optimized together.

To conclude the first part of the thesis, a case study of a plastic shaped elliptical lens was introduced
in Chapter 5. The main objective was to investigate the performance of the low density integrated lens
antennas for large beam steering scenarios. For this, a Fly’s eye example case, similar to [1], for a 25°
scanning scenario was chosen. The effect of the introduced optimization parameters was investigated
and a scan loss of −0.52 dB was obtained. In addition, a validation was performed using CST STUDIO
SUITE [13] confirming the performance of the optimization process and the kernel. Furthermore, the
bandwidth performance of the shaped lens antenna was presented. Finally, the theoretical scanning
performance of plastic lens antennas was investigated, where lens antenna geometries were optimized
for 45° and 60° scanning cases. The geometries achieved a scan loss of≤ 3 dB, showing the potential of
low density lens antennas for wide scanning scenarios.

The second part of the thesis focused on the analysis of multi lens systems in Chapter 6. The multi
lens analysis was investigated using an example scenario of a hyper-hemispherical and hyperbolic lens
based QO system. Firstly, the lens elements were introduced and parametrized. Afterwards, the con-
cept of the cascading GO analysis was explained. The described GO analysis paired together with ray
tracing techniques forms the basis for the computational analysis of such multi lens systems. Finally,

69
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the methodology was validated using a multi surface PO analysis. The analysis method was tested for
broadside, 5 and 15 beams scanning cases. From this chapter, it can be concluded that the analysis
method is significantly more time efficient compared to the physical optics method. The result are ac-
curate for the broadside and 5 beams scanning case. However, for 15 beams scanning case, the results
obtained by the two methods diverge.

7.2. Future Outlook
This developed codes form a basis for the analysis and optimization of QO elements. They have been
proven to be time efficient with respect to the solutions obtained by commercial software.

Several improvements can be made regarding the multi objective optimization approach. The first
improvement is to be able to automatically choose the correct number of polynomials based on the
complexity of the problem. In addition, it would also be useful to develop a more consistent method of
choosing the best solutions from the solution set of the optimizer.

The developed optimization process including the proposed upgrades will be packaged into a MAT-
LAB based Graphical User Interface (GUI). This can serve as a valuable tool to provide optimized lens
antenna solutions for various scanning cases.

The considered feed tilt in the optimization processes is a theoretical assumption. In the future, a
realization of such tilt angles using solutions that are compatible with other QO components is neces-
sary.

For the multi layer lenses, a similar surface expansion can be implemented to compensate for the
phase aberrations in a scanning case. This surface expansion can be implemented by means of a sym-
metrical polynomial for scenarios with an antenna feed array below a single lens. For single feed per
lens element scenarios, a Zernike expansion can be used, which allows for asymmetric shape modifica-
tion.
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A
Derivatives of the Zernike expansion

In this Appendix the detailed derivation of the derivatives for the Zernike expansion is shown. One can
define the ρ and ϕ coordinates as

ρ =

√
(
x
Dl

2

)2 + (
y
Dl

2

)2 (A.1a)

ϕ = arctan(
y

x
) (A.1b)

Where x and y are defined as

x =
Dl

2
ρ cosϕ (A.2a)

y =
Dl

2
ρ sinϕ (A.2b)

The derivative of ρ w.r.t x is given by

∂ρ

∂x
=

x

(Dl

2 )2
√

( x
Dl
2

)2 + ( y
Dl
2

)2
=

Dl

2 ρ cosϕ

(Dl

2 )2ρ
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cosϕ
Dl

2

(A.3)

The derivative of ϕ w.r.t x is given by

∂ϕ

∂x
=

1

( yx )
2 + 1

−y

x2
=

−Dl

2 ρ sinϕ

(Dl

2 )2ρ2 sinϕ2 + Dl

2 )2ρ2 cosϕ2
=

− sinϕ
Dl

2 ρ
(A.4)

Applying similar steps, one can find the derivatives with respect to y:

∂ρ

∂y
=

sinϕ
Dl

2

(A.5a)

∂ϕ

∂y
=

cosϕ
Dl

2 ρ
(A.5b)
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B
Derivations for the radii of curvature of

an arbitrary surface

In this appendix the derivation of the R1 and R2 terms are provided. This is based on the theory dis-
cussed in [20]. One can define an arbitrary surface as

z = f(u) (B.1)

where

u =
x2 + y2

2
(B.2)

K2 = 1 + 2u[
df(u)

du
]2 (B.3)

The principal radii of curvature are then defined as

R1 =
1

1
K

df(u)
du

(B.4a)

R2 =
1

1
K3 [

df(u)
du + 2ud2f(u)

du2 ]
(B.4b)

The derivatives for a hemispherical lens are given by

df(u)

du
= − 1√

R2
sph − 2u

(B.5a)

df2(u)

du2
= − 1

(R2
sph − 2u)

√
R2

sph − 2u
(B.5b)

The derivatives for a hyperbolic lens are given by

df(u)

du
=

a
b2√

1 + 2u
b2

(B.6a)

df2(u)

du2
= −

a
b4

(1 + 2u
b2 )

√
1 + 2u

b2

(B.6b)
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