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Featured Application: The proposed clearance contact model and dynamic modeling 

method can be used not only for the dynamic control of polishing robots, but also for 

planar or spatial robots with different topological structures. 

Abstract: The accuracy and stability of robotic systems are significantly influenced by joint 

clearances, especially in precision applications like optical mirror polishing. This study 

focuses on a 5-DOF (Degree of Freedom) parallel manipulator designed for optical mirror 

polishing. The study conducts dynamic modeling by incorporating prismatic joint clear-

ance and examines the resulting dynamic response. Previous studies on dynamic model-

ing have primarily focused on planar mechanisms with rotational or ball joint clearances, 

whereas research on parallel manipulators with spatial prismatic joint clearances remains 

limited. This study introduces a comprehensive dynamic modeling framework for paral-

lel manipulators with prismatic joint clearance, utilizing the Lagrange multiplier method 

(LMD). First, the prismatic joint models of the guideway and slider in the parallel manip-

ulator are simplified, enabling the determination of different contact states and the calcu-

lation of friction and contact forces for various contact types. Second, the dynamic equa-

tions of the parallel manipulator are derived by establishing system constraint equations. 

Finally, the dynamic responses of various clearance-related factors are determined 

through a combination of theoretical calculations and ADAMS simulations. This study 

provides a framework for modeling the dynamics of parallel manipulators with prismatic 

joint gaps, offering valuable insights into the design and control of high-precision robotic 

systems. 

Keywords: parallel manipulator; dynamic model; prismatic joint clearance; LMD 

 

1. Introduction 

Optical processing robots, particularly in the field of optical mirror polishing, have 

garnered significant a�ention in recent years. Due to their high mechanical precision and 

stability, optical machining robots are also employed in high-tech industries such as aer-

ospace, military, and semiconductor manufacturing [1]. In precision operations, these ro-

bots must operate within an extremely small error range to ensure the final product’s 
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quality. With ongoing technological advancements, optical processing robots have 

evolved from traditional single-degree-of-freedom manipulators to multi-degree-of-free-

dom parallel robots, offering greater flexibility and finer control [2]. However, as the DOFs 

(degrees of freedom) have increased, clearance issues between the robot’s joints have 

emerged, becoming a critical factor affecting its dynamic response, accuracy, and stability 

[3,4]. 

Joint clearance has a very pronounced effect on the kinematic and dynamic perfor-

mance of a robot. Several studies have employed hybrid contact force models to simulate 

the dynamic behavior of joint clearances. Li et al. [5] simulated a crank-slider mechanism 

with multi-clearance joints utilizing a nonlinear contact force model for joint internal force 

assessment. Ren [6] derived the dynamic equations of a four-bar mechanism with a gap 

in a microgravity environment and demonstrated experimentally that the gap reduces the 

accuracy of the mechanism’s motion. Friction factors of gap size, relative velocity, and 

material between moving joints can significantly affect the dynamic response and lead to 

chaotic behavior [7]. Current research on joint clearance effects primarily focuses on pla-

nar or connecting rod mechanisms, where the analyzed clearance typically involves only 

two-dimensional contact, lacking comprehensive spatial contact collision analysis. 

Joint clearance in spatial mechanisms significantly impacts their dynamic perfor-

mance. Erkaya [8] studied a spatial slider-crank mechanism and found joint clearance 

caused chaotic kinematic and dynamic responses. Chen et al. [9] compare the effects of 

different frictional contact models on the dynamical properties of space mechanisms. N. 

Cretescu et al. [10] studied the impacts of clearance, friction, and rod flexibility on a Delta 

robot through simulation. Wang [11] modeled the dynamics of a compound swing jaw 

crusher with a gap and investigated the effects of driving speed on the dynamic of the 

crusher. Wang [12] examined joint clearance in a wine box base assembly robot, formulat-

ing the dynamic equation and studying its impact, finding that larger gap sizes affect the 

end-effector’s dynamic performance. Current research has predominantly focused on the 

contact collision modeling of ball and rotational joint gaps, whereas studies on prismatic 

joint gaps remain limited. 

Prismatic joints are prevalent in multibody systems, and contact detection is crucial 

for understanding and optimizing the system’s dynamic behavior. Qian [13] designed a 

planar clearance-containing mechanism, analyzed basic methods of gap joints, and stud-

ied the mechanism’s dynamic characteristics via experiments and simulations. Qi [14] 

simplified the contact pa�ern of spatial prismatic joints by introducing a gap function. T. 

N. [15] considered joint flexibility, clearance, and friction in a 3-PRS series mechanism, 

finding that increased joint clearance and friction coefficient raise joint contact forces, af-

fecting the dynamic response and natural frequency. Qian et al. [16] classified the contact 

pa�erns in translational joints and proposed a method for contact pa�ern recognition in 

planar mechanisms. Most existing studies on the impact of joint gaps on mechanism dy-

namics have concentrated on spatial prismatic joints within linkage mechanisms. 

To the best of our knowledge, research on prismatic joint clearance for space-parallel 

robots with multiple DOFs and complex structures remains highly limited. This study 

focuses on a polishing robot with joint clearance as the research object, analyzing the dy-

namic characteristics of the mechanism through theoretical modeling and computer sim-

ulations. 

The paper is organized as follows. Section 2 outlines the contact modes of spatial 

prismatic joints, which include 18 point–line–surface contact configurations. Section 3 pre-

sents the dynamic model of the 3-UPRU+UP parallel manipulator, incorporating pris-

matic joint clearance. Section 4 provides the numerical results of the dynamic model, an-

alyzing the effects of different clearance sizes and friction factors. Section 5 discusses the 

findings and the implications. Finally, Section 6 presents the conclusions of the study. 
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2. Modeling of Spatial Prismatic Joint Clearance 

The polishing robot, as shown in Figure 1a, consists of three active branches, UPRU 

(Universal joint—Prismatic joint—Rotational joint—Universal joint), and a constraint 

branch UP (Universal joint—Prismatic joint). Point Ui (i = 1, 2, 3) is on the static platform, 

and Point Uk (k = 5, 6, 7) is on the moving platform. The length of the cylinder block com-

ponents is La,i, and the mass is ma,i; the length of the telescopic rod components is Lb,i, and 

the mass is mb,i; the length of the rotating rods is Lc,i, and the mass is mc,i. The UP branch 

chain is rigidly connected to the moving platform and is treated as a single component 

with a mass of mm. The coordinate system, shown in Figure 1b, is established, where W-

XYZ represents the world coordinate system. The origin of the static coordinate system is 

placed at S0, which is the center of the static platform. 


0 3SU  and 


1 2UU  are the x-axis and 

y-axis positive directions, respectively, of the local coordinate system S0-xyz, and the right-

hand rule determines the z-axis. The origin of the moving platform coordinate system is 

placed at M0, with the positive direction of x0 axis aligning with 


0 7MU , and the positive 

direction of y0 aligning with 


5 6UU . Define the joint local coordinate system ai-xyz, bj-xyz, 

and ci-xyz at the centers of mass of the cylinder assembly, telescopic rod assembly, UP 

branch chain, and rotating assembly, respectively. 

 
(a) 

 

(b) 

Figure 1. Hybrid processing robot: (a) 3D structure, (b) schema. 

2.1. Contact Mode Description 

The prismatic joint in the UP branched-chain, as shown in Figure 2a, consists of two 

components: the slide and the guide rail. Let the guide rail be denoted as L and the slide 

as K, and define coordinate systems  1 2 3

l l l lO ee e ,  1 2 3

k k k kO e e e  at the centers of mass of the 

guide rail and the slide. When L is in contact with K, the contact between the two can be 
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determined by the relative position of the surface points. A simplified model of the guide 

and slider is shown in Figure 2b. 

 
(a) (b) 

Figure 2. Prismatic joint in UP branch chain: (a) structure, (b) simplified model. 

Due to the presence of prismatic joint gaps, the guideway and the slider are subject 

to different contact pa�erns, each corresponding to a different a�itude. By calculating the 

positions and velocities of points P1–P8, the contact state between the track and the slider 

can be obtained. 

ξ l  and ξ k  are the position vectors of the center of mass of L and K in O-i1i2i3, re-

spectively. Let the vectors between the two center of mass coordinate systems be 

 q


l kOO ,  p


1 1

lO P , and  P


1 1

kO P , and the position vectors of point P1 in  1 2 3

l l l lO e e e  

and k k k k

1 2 3O e e e  coordinate systems are r1
l  and R 1

l  respectively. Tl and Tk are the coor-

dinate transformation matrices of L and K relative to the coordinate system O-i1i2i3. The 

following, Equation (1), can be derived from the closed-loop vector relationship: 

 

      


   

R q p ξ ξ T r

R A P A T r

1 1 1

1 1 1
( )

l k l

l

k T T l k l

k k l

 (1)

When  R e1 1 / 2k k a , point P1 contacts the upper surface, and when  R e1 2 / 2k k b , 

point P1 contacts the side surface. The relative position vector of P1 is δ R 
1

k

. The normal 

contact force between two objects in contact acts in a direction is e 1

k

 or e 2

k

. Similarly, the 

contact mode of points P1–P8 can be obtained. 

Table 1 provides a summary of the identified contact modes. 

Table 1. Contact mode of the prismatic joint. 

Order Diagram Description Order Diagram Description 

1 

 

Single point of 

contact 
9 

 

Double lines of 

contact 

2 

 

Double points of 

contact 
10 

 

Three lines of 

contact 
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ke
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ke
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3 

 

Three points of 

contact 
11 

 

Four lines of 

contact 

4 

 

Four points of 

contact 
12 

 

Single line and 

single plane of 

contact 

5 

 

Single point and 

single line of contact 
13 

 

Double lines and 

single plane of 

contact 

6 

 

Single point and 

double lines of 

contact 

14 

 

One plane of 

contact 

7 

 

Double points and 

single line of contact 
15 

 

Two planes of 

contact 

8 

 

Single line of contact    

2.2. Contact Force Calculation Under Different Contact Modes 

Due to the clearance, during the motion of the mechanism, the contact surfaces of the 

two elements will experience friction and wear, leading to high temperatures. Ignoring 

factors such as wear and lubrication, the contact forces between L and K are the normal 

force (FN) and the tangential force (FT). Depending on the type of contact between the two, 

the calculation of normal force is divided into the following three types: 

2.2.1. Contact Force Calculation for Plane Contact 

After calculating FN, FT can be determined using the Coulomb friction model. FT is 

shown as follows: 

T NF F  (2)

where µ represents the coefficient of sliding friction. 

Since the Coulomb friction model cannot describe the relationship between friction 

over time, a dynamic friction coefficient based on the change in velocity is used to more 

accurately describe the friction process [17]. 








 
  

 




 
       
   

sin( )
2

( ) 1
( )cos( )

2 2

d d

s s

s

ss d

s d s d

d s

V V

V
V V

V

V V
V V V

V V

 (3)
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where Vs and Vd represent the velocities for transitions from stick-slip and static-to-sliding 

friction; µs and µd represent the coefficients of static friction and sliding friction, respec-

tively. 

The slider and the guideway form a rectangular contact area. The FN (δ) between the 

slider and the guideway can be expressed as follows [18]: 


 


( )N

EA

l
F  (4)

where E represents the material’s elastic modulus, A denotes the area of the contact part, 

δ indicates the compression depth, and l corresponds to the material’s thickness along the 

primary compression axis. 

2.2.2. Contact Force Calculation for Line Contact 

In the line contact, the contact surfaces have rectangular contact areas, and this inter-

action is known as cylindrical contact. The contact forces are distributed in a cylinder as 

described below [19]: 


 2 2

2

2
( )

P
x a x

a b
F  (5)

where x is the perpendicular distance; a and b are the width and length of the contact area, 

respectively; P denotes the pressure per unit length; R is the equivalent radius of curvature; 

and the penetration depth δ is as follows [20]: 


  

 
 3

[1 In( )]
P PR

E l E l
 (6)

2.2.3. Contact Force Calculation for Point Contact 

In the point contact mode, the FN can be obtained from the L-N contact model [21]: 

   e

N
K DF  (7)

where K represents the Her�ian contact stiffness, D denotes the damping coefficient, δ 

indicates the penetration depth, and 

 denotes the relative velocity. 

3. Dynamic Modeling of 3-UPRU+UP with Prismatic Joint Clearance 

3.1. Dynamic Modeling with Ideal Joints 

The polishing robot has a topological configuration of 3-UPRU+UP. The spatial 

mechanism consists of 10 active components, as shown in Figure 1b. Each active compo-

nent is characterized by six independent motion parameters within the W-XYZ. The gen-

eralized coordinates of all active components are expressed as follows: 


   

T

,1 ,2 ,3 ,1 ,2 ,3 ,1 ,2 ,3 60 1a a a b b b c c c mq q q q q q q q q q q  (8)

The system constraint equations encapsulate the limitations imposed by all constitu-

ent joints and ideal actuators. These constraints restrict the relative movement between 

adjacent rigid bodies and are described through the relationships between vectors on 

these bodies. The 3-UPRU+UP polishing robot features four kinds of joint: U, P, R, and 

composite UP joint, along with three actuators. Consequently, 60 independent constraint 

equations must be established. The formulation of these constraint equations for the spec-

ified joints and actuators is as follows. 
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3.1.1. Constraint Equation of the U-Joint 

Figure 3 shows the constraint vector of the U-joint. The U-joint has two DOFs, which 

limit the motion of the a�ached rigid body in four directions, forming four independent 

constraint equations. The do�ed line represents the two orthogonal rotation axes of the U-

joint, and point P is the center point. ri and rj are the position vectors of the two rigid 

bodies connected by the U-joint in OW-XYZ; o
P

i  and o j

P

 represent the position vectors 

of point P in the U-joint in oi-xiyizi and oj-xjyjzj, respectively; doi and doj are unit vectors fixed 

to rigid bodies i and j along the rotational axes of the U-joint, respectively. During the 

motion process, doi must always be perpendicular to doj, and the constraint equation of the 

U-joint is as follows: 

  

   
   
  

4 1
( )

p p

i i i j j j

U T

i oi j oj

o o
0

r R r R
Φ

R d R d
 (9)

where Ri and Rj are the rotation matrix from oi-xiyizi and oj-xjyjzj to W-XYZ, respectively. 

 

Figure 3. Constraint vector of the U-joint. 

3.1.2. Constraint Equation of the P-Joint 

The P-joint has one DOF, which forms five independent constraint equations. The 

constraint vector diagram of the prismatic joint is shown in Figure 4, where the do�ed line 

denotes the moving axis. Establish a local coordinates system on the two rigid bodies con-

nected by prismatic joints, where zi and zj are parallel to the moving axis. dxi, dyi, and dzi 

are unit vectors fixed on rigid body i, with dzi parallel to the moving axis; dxj, dyj, and dzj 

are unit vectors fixed on rigid body j, with dzj parallel to the moving axis; point P is on the 

moving axis of rigid body i, and point Q is on the moving axis of rigid body j. During 

motion, the line connecting P and Q is always parallel to dzj, which means,  xiPQ d , 

 yiPQ d . Simultaneously, dxi⊥dzj, dyi⊥dzj, dxi⊥dyj. The constraint equation for the P-joint 

can be expressed as: 



 
 
 
    
 
 
 
  

0

T

T

T
5 1

T

T

( )

( )

( 1,2,3; 1,2,3)( ) ( )

( ) ( )

( ) ( )

ij

j

j j

ii xi

ii yi

P

x

yj xi

zj i yi

i zi

QP

QP

i j

Rd

Rd

Φ R d Rd

R d Rd

R d Rd

 (10)
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Figure 4. Constraint vector of the P-joint. 

3.1.3. Constraint Equation of the R-Joint 

The R-joint has one DOF, which restricts relative rotation in two directions and rela-

tive movement in three directions between the two connected rigid bodies, resulting in 

five independent constraint equations. The constraint vector diagram of the R-joint is 

shown in Figure 5. Rigid bodies i and j form a rotational joint at point P/Q. The do�ed line 

represents the rotation axis. Establish a local coordinates system on the two rigid bodies 

connected by rotational joints, where zi and zj are parallel to the rotation axis. dxi, dyi, and 

dzi are unit vectors fixed on rigid body i, with dzi parallel to the rotation axis; dxj, dyj, and 

dzj are unit vectors fixed on rigid body j, with dzj parallel to the rotation axis. During mo-

tion, due to the motion characteristics of the rotational joint, dzi is always perpendicular to 

dxj and dyj. Points P and Q remain coincident. The constraint equation for the R-joint is as 

follows: 



   
 
 
 
 

r

= T

T

5 1( ) ( )

( ) ( )

i i i j j j

R i zi j x

P
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i i j

P

z yj

o o

0

r R R

Φ Rd R d

Rd R d

 (11)

 

Figure 5. Constraint vector of the R-joint. 

3.1.4. Constraint Equation of the Composite UP Joint 

The composite UP joint has three DOFs, which restricts relative rotation in one direc-

tion and relative movement in two directions between the two connected rigid bodies, 

resulting in three independent constraint equations. Figure 6 shows the constraint vector 

diagram of the composite UP joint. Points P and Q are the centers of the static and moving 

platforms, respectively. The do�ed line represents the moving axis of the P-joint; doi and 

doj are the rotation axis of the U-joint. During motion, the line connecting P and Q is always 

perpendicular to doi and doj on the moving platform. Simultaneously, doi and doj are 
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perpendicular to each other. The constraint equation for the composite universal and pris-

matic joint can be expressed as: 

  

 
 

  
 
  

T

T
3 1

T

( )

( )

( ) ( )

i oi

UP i oj

i oi j oj

QP

q QP

R d

Φ 0R d

R d R d

 (12)

 

Figure 6. Constraint vector of the composite UP joint. 

The polishing robot is actuated by three prismatic joints. The mechanism has three 

DOFs, allowing the three actuators to produce specific movements. To conduct dynamic 

analysis, the trajectory of the moving platform needs to be determined. Through kine-

matic analysis, the displacement curves fn(t) (n = 1, 2, 3) of the three actuators are deter-

mined, and the derivation of the driving constraint equation is presented as follows: 

1 5 1

2 6 2 3 1

3 7 3

( )

( )

( )

D

f t

f t

f t



  
 

    
 

   

ρ ρ

Φ ρ ρ

ρ ρ

0  (13)

where ρi (i = 1, 2, 3, 5, 6, 7) denotes the vector position of Ui (i = 1, 2, 3, 5, 6, 7) in W-XYZ. 

According to Equations (8)–(13), the complete constraint equation of the polishing 

parallel manipulator is as follows: 



 
  
 

T

1 2 3 5 6 7

60 1

1 2 3 1 2 3

( ) U U U U U U UP

P P P R R R D

q 0
Φ Φ Φ Φ Φ Φ Φ

Φ
Φ Φ Φ Φ Φ Φ Φ

 (14)

3.2. Dynamic Modeling with Joint Clearance 

The constraint equation at the clearance is substituted with the contact force con-

straint, and the constraint equation corresponding to Equation (14) is removed. The con-

straint equation with prismatic joint clearance is derived as follows: 



 
  
 

T

1 2 3 5 6 7

60 1

1 2 3 1 2 3

( ) U U U U U U U

s

P P P R R R D

q 0
Φ Φ Φ Φ Φ Φ Φ

Φ
Φ Φ Φ Φ Φ Φ Φ

 (15)

Through the calculation of partial derivatives of Equation (14) in terms of t (time), the 

velocity and acceleration constraint equations of the system are solved as follows: 

  
sq st

Φ q Φ v  (16)

     Q q Q q q q   2sq sq sqt stt
q

Φ Φ γ  (17)

where Φsq is the matrix of derivatives of the constraint equations in terms of the general-

ized coordinates q; q represents the first derivative of the generalized coordinate; Φst is 

the derivative of the constraint equation; v is the right side of the velocity constraint 
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equation; q is the generalized acceleration column vector; Φsqt is the derivative matrix of 

the Jacobian matrix of the constraint equation; and γ is the right side of the acceleration 

constraint equation. 

The dynamic equation of the 3-UPRU+UP parallel manipulator with Lagrange mul-

tipliers is obtained as follows: 

  T

sq
qM Φ F  (18)

where M is the generalized mass matrix; λ is the Lagrange multiplier; Φ T

sq  is related to 

the joint constraint reaction force/torque and driving force/torque; and F is the generalized 

external forces. 

By combining Equations (17) and (18), we can obtain the following dynamic equa-

tion: 



    
     

    

T

s 0
sq

q

M Φ q F

Φ γ
 (19)

When solving dynamic equations using integral methods, the accumulation of errors 

over time leads to growing constraint violations, which reduces the accuracy of the final 

results and may even produce incorrect outcomes. To improve this method, Baumgarte 

[22] applied the correction idea from control systems, making corrections in real time 

based on the violation of position and velocity constraints. Equation (19) can be rewri�en 

as: 

 

    
    
       


 22

T

sq

b s ssq 0
b

FM Φ q

γ - Φ - ΦΦ
 (20)

where αb and βb are stability coefficients, and their values are selected from experience. 

 2
b s
Φ   and  2

sb
Φ   play the role of control terms. The function ode45 of the MATLAB 

method was used to integrate the differential equation of the 3-UPRU+UP parallel manip-

ulator. When the Baumgarte parameters are taken αb = 5 and βb = 1, the violation amount 

of the position constraint equation is below 1 × 10−10m. 

The dynamic simulation solution flowchart of the 3-UPRU+UP parallel manipulator 

considering the clearance joint is shown in Figure 7. 

 

Figure 7. Dynamic simulation solution flowchart. 
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4. Dynamics Simulation 

In the optical mirror processing process, the grinding tool, by a certain trajectory, 

speed, and acceleration, accurately traverses the mirror surface to be processed on each 

removal point; when the grinding trajectory is a circle, the grinding tool does not need to 

change direction frequently in the process of movement, and can make the grinding tool 

in the process of grinding processing and the mirror surface type match, suitable for the 

rotary symmetry class of optical component processing. This study examines the impact 

of joint clearance on the dynamic characteristics of a polishing robot by conducting motion 

trajectory planning for its moving platform as follows: 






  


   




0

0

0

cos( )

sin( )

c

c

vt
X X r

r
vt

Y Y r
r

Z Z

 

(21)

where (Xc, Yc, Z0) is the position of the center of the trajectory circle in W-XYZ, r is the 

radius of the trajectory circle with r = 0.2 m, θ0 is the initial position of the center of the 

moving platform on the trajectory circle, and v is the linear velocity of the moving plat-

form with v = 0.05 m/s. 

The structural parameters and the dynamic simulation parameters are shown in Ta-

ble 2 and Table 3, respectively. 

Table 2. Structural parameters of the 3UPRU+UP parallel manipulator. 

Parameter Value  

Mass of UP branched-chain and moving platform mm/kg  138.239 

Inertia matrix of UP branched-chain and moving platform 

Jm/kg·m2 
diag[35.509,35.478,1.452] 

Circumcircle radius of universal joints Ui rs/m 0.4 

Circumcircle radius of universal joints Uk rm/m 0.15 

Length of cylinder block components La,i/m 0.6 

Mass of cylinder block components ma,i/kg 70.8 

Inertia matrix of cylinder block component Ja,i/kg·m2 diag[14.264,14.598,0.203] 

Length of telescopic rod components Lb,i/m 1.2 

Mass of telescopic rod components mb,i/kg 29.85 

Inertia matrix of telescopic rod component Jc,i/kg·m2 diag[5.94,5.94,0.02] 

Length of rotating rod components Lc,i/m 0.09 

Mass of rotating rod components mc,i/kg 1.3 

Inertia matrix of rotating rod component Jc,i/kg·m2 diag[0.004,0.004,0.004] 

External load/kg 118.5 

Table 3. Dynamic simulation parameters. 

Parameter Value Parameter Value 

Young’s modulus 200 Gpa static friction coefficient µs 0.80 

Restitution coefficient ce 0.9 sliding friction coefficient µd 0.16 

Baumgarte αb  5 MATLAB integration step 0.0001s 

Baumgarte βb 1 MATLAB integral function ode45 

The simulation time is 0.3 s, with an initial step size of 0.0001 s. The motion curves of 

the moving platform of the 3-UPRU+UP parallel manipulator are obtained through 

MATLAB numerical solution and ADAMS simulation. Figure 8 shows that the MATLAB 

and ADAMS curves share a similar overall kinematic trend. However, due to different 



Appl. Sci. 2025, 15, 3197 12 of 17 
 

solution methods and modeling approaches in MATLAB and ADAMS, the gap simula-

tions are random. This results in varying initial collision positions and peak times for col-

lision forces. If the mechanism is stable, the two curves will be nearly identical, thus vali-

dating the selected dynamic model once more. 

  

(a) (b) 

 

(c) (d) 

  
(e) (f) 

 
 

(g) (h) 

 
(i) 

Figure 8. Dynamic responses of the moving platform with clearance: (a−c) displacement, (d−f) ve-

locity, (g−i) acceleration. 

As shown in Figure 8a−c, during the operation of the robot, the joint clearance can 

lead to displacement errors due to the separation of the elements. Clearance joints have a 

negligible effect on the displacement of the moving platform: a joint clearance of 0.01 mm 

results in a displacement error of 0.1 mm. Figure 8d−f shows the velocity of the moving 

platform. The effect of the joint clearance on velocity is more pronounced than its effect 

on displacement, being an order of magnitude greater. The velocity swings sharply 

around the ideal curve due to sudden changes in acceleration. As shown in Figure 8g−i, 

when joint clearance is present, the acceleration curve exhibits high-frequency 
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fluctuations, indicating that clearance has the most pronounced effect on the acceleration 

of the parallel manipulator. The acceleration undergoes a sudden change. This is caused 

by the joint clearance resulting in collision and friction between the guide and the slider. 

The sudden change in friction and contact force indicates that the contact between the 

elements has altered, consistent with the results of the point–line–surface contact model 

used earlier. 

After a long period of operation of the mechanism, the joints are subjected to wear 

and tear phenomena, which lead to a larger clearance size. Therefore, it is necessary to 

investigate the effect of clearance size on the dynamics of the mechanism. The displace-

ment, velocity, and acceleration curves for the moving platform are plo�ed. As shown in 

Figure 9a−c, when the clearance size gets larger, the displacement error of the moving 

platform becomes more significant. The displacement in X and Y directions of the moving 

platform is basically unchanged, but the displacement deviation in Z direction becomes 

larger, and the displacement deviation in Z direction is 1.6 mm, 3.3 mm, and 5.4 mm, 

respectively, with the increase in clearance. By comparing Figure 9d−f, it is evident that, 

with the growth in the clearance size, the fluctuations in the velocity curve become more 

conspicuous. Z-direction vibration amplitude is relatively large, 0.15, 0.19, and 0.26 m/s, 

respectively. As shown in Figure 9g−i, the clearance has a large effect on the acceleration 

of the moving platform. The larger the clearance is, the larger the acceleration peak is, and 

the amplitude of the sudden change in acceleration in the Z direction is 0.21, 0.32, and 0.61 

m/s2, respectively. This results in greater vibration and instability during the operation of 

the mechanism. The reason behind this is that the enlarged gap size causes frequent alter-

ations in the contact state between the slider and the guideway. Moreover, the fluctuations 

and amplitudes of the clearance collision force increase, thus influencing the stability of 

the mechanism’s movement. 

Collision and sliding at the gap inevitably generate friction. Figure 10 shows the dy-

namic response of the parallel manipulator with friction coefficients of 0.02, 0.05, and 0.08, 

and a clearance of 0.1 mm is simulated and solved. As shown in Figure 10a−c, when the 

clearance size gets larger, the displacement error of the moving platform becomes more 

significant, and the displacement of the moving platform in X and Y directions is very 

small, but the displacement deviation in Z direction becomes larger, and, with the increase 

in clearance, the displacement deviation in Z direction is 2.2 mm, 3.3 mm, and 5.4 mm, 

respectively. As shown in Figure 10d−f, it can be seen that, with the increase in the friction 

factor, the vibration amplitude changes slightly, and the Z-direction vibration amplitude 

is relatively large, the Z-direction amplitude being 0.08, 0.13, and 0.20m/s, respectively. 

From Figure 10g−i, it can be observed that the friction factor has a large influence on the 

acceleration of the moving platform, the fluctuation amplitude of the acceleration curve 

changes with the change in the friction factor, and the fluctuation amplitude of the accel-

eration curve in the Z direction is 0.19, 0.32, and 0.42 m/s2, respectively. Contact force in 

prismatic joints increases with increasing coefficient of friction. As depicted in Figure 11, 

it a�ains a maximum value of 408 N, which has a substantial impact on the stable opera-

tion of the mechanism. 

  
(a) (b) 
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(c) (d) 

  

(e) (f) 

 
(g) (h) 

 
(i) 

Figure 9. Dynamic responses of the moving platform with different clearance sizes: (a−c) displace-

ment, (d−f) velocity, (g−i) acceleration. 

 

(a) (b) 

  
(c) (d) 
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(e) (f) 

 

(g) (h) 

 
(i) 

Figure 10. Dynamic responses of the moving platform with different friction coefficients: (a−c) dis-

placement, (d−f) velocity, (g−i) acceleration. 

 

Figure 11. Contact forces in prismatic joint. 

5. Discussion 

The research presented in this study significantly contributes to the field of robotic 

dynamics, particularly for optical machining robots with prismatic joint clearances. By 

modeling the dynamics of a space-parallel robot with joint clearances, the simulation re-

sults demonstrate that the effects of clearances on the moving platform’s dynamics align 

with previous literature: joint clearances significantly impact the robot’s dynamics and 

must be compensated for and controlled through specific measures. Additionally, the cur-

rent model incorporates certain simplifications in joint contact mechanics and material 

properties. Future work could explore more complex contact modeling and experimental 

validation to enhance the accuracy of dynamic predictions. 

6. Conclusions 

In this paper, a method for modeling parallel manipulators with prismatic joint clear-

ances is presented, and this method is based on the LMD. Firstly, a simplified prismatic 

joint model is used to describe 15 different point–line–surface contact modes between the 

slider and the guide rail, and formulas for contact and friction forces in different contact 
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modes are provided. Then, based on the LMD, constraint equations for four typical joints 

are given, and the dynamic model of the 3-UPRU+UP parallel manipulator with prismatic 

joint clearance is derived. Numerical calculations are carried out using ADAMS and 

MATLAB to verify the correctness of the dynamic model. Finally, the dynamic responses 

of the robot under different joint clearance sizes and different friction factors are obtained, 

and it is found that the impact of clearance on the robot’s dynamics becomes more signif-

icant as the clearance increases. 

This study provides a theoretical reference for the joint design of parallel manipula-

tors and for compensating for the gap effect through algorithms. 
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