
 

Forecasting of SARS-Cov-2 Infections
within Dutch Municipalities
using Spatio-Temporal Graph Neural
Networks

V. Maxime Croft

M
as

te
ro

fS
cie

nc
e

Th
es

is



Forecasting of SARS-Cov-2 Infections within
Dutch Municipalities

using Spatio-Temporal Graph Neural Networks

Thesis

For the degree of Master of Science in Robotics at Delft University of
Technology

V. Maxime Croft
4390024

Thesis committee: Dr. C. Della Santina TU Delft, supervisor, chair
S.C.J.L. van Iersel, MSc RIVM, supervisor, member
Prof.dr. R. Babuska TU Delft, external member

December 31, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Forecasting of SARS-CoV-2 Infections within
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Graph Neural Networks
V. Maxime Croft1,2

Abstract—This paper presents a novel approach to regional
forecasting of SARS-Cov-2 infections one week ahead, which
involves developing a municipality level COVID-19 dataset of the
Netherlands and using a spatio-temporal graph neural network
(GNN) to predict the number of infections. The developed model
captures the spread of infectious diseases within municipalities
over time using Gated Recurrent Units (GRUs) [1] and the
spatial interactions between municipalities using GATv2 layers
[2]. To the best of our knowledge, this model is the first
to incorporate sewage data [3], the stringency index [4], and
commuting information [5] into GNN-based infection prediction.

In experiments on the developed real-world dataset, we
demonstrate that the model outperforms simple baselines and
purely spatial or temporal models for the COVID-19 wild type,
alpha, and delta variants. In combination with an average R2 of
0.795 for forecasting infections and of 0.899 for predicting the
associated trend of these variants, we conclude that the model is
well suited for predicting the spread of infectious diseases with
similar disease dynamics in real world applications. To increase
prediction performance and to improve the generalizability of
the model for infectious diseases with more complex disease
dynamics, we recommend using additional (synthetic) data or
expanding the regional forecasting scale in future work.

Index Terms—epidemic prediction, deep learning, spatio-
temporal graph neural networks, real world evidence, COVID-19,

I. INTRODUCTION

Epidemics of infectious diseases are occurring more fre-
quently, and are spreading faster and further than ever before
[6]. This has become abundantly clear between late 2019
and early 2020, when COVID-19 quickly progressed from a
local outbreak to a global pandemic. The SARS-Cov-2 virus
has infected more than 600 million individuals, resulting in
over 6 million deaths worldwide [7], and causing significant
economic damage due to large-scale quarantining and country-
wide lockdowns [8].

Prevention, containment, and mitigation of the spread of
infectious diseases is therefore key to humanity [9]. To en-
sure that policymakers can impose measures and manage the
allocation of scarce medical resources to combat the spread
of the virus, the ability to accurately forecast epidemics is
of paramount importance [8]. On a regional scale, forecasts
can be used to justify local measures tailored to particular
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regions when there are large differences in infection prevalence
[10]. Schools in affected regions could, for instance, encourage
parents and children to pay extra attention to disease symptoms
and to test preventively. In addition, regional epidemic fore-
casts can be beneficial for capacity planning within a country.
Hospitals could prepare for the potential need to relocate
patients to regions with fewer infections.

Extensive research has been devoted to developing a wide
range of effective epidemic forecasting models which can be
mechanistic [11], [12], based on statistics or machine learning
[13], [14], or both [15]–[17]. Mechanistic models are grounded
on theoretical principles of disease spread, whereas statistical
and machine learning approaches are heavily data-driven [18].

Because of the enormous global impact of COVID-19 and
the technologies we have today, this is the first time that
epidemic data is available on such a large scale. Therefore,
COVID-19 offers more opportunities for epidemic research
and data-driven modelling than ever before. As a result of
the lessons learned during this period, it is likely that for
more and more epidemics and future pandemics, necessary
data will be available. Deep learning methods in particular
have an outstanding ability to discover complex patterns from
large amounts of data [19], [20]. Lastly, they can be easily ex-
tended to various temporal and geographical scales, and other
diseases, in the presence of collected data. For these reasons,
we decided to focus on this machine learning technique.

Current deep learning approaches mainly consider epidemic
forecasting as a time-series problem. They usually assume
that forecasts for a given location are dependent only on
information from that location, without incorporating interre-
gional movements and interactions. This is despite the fact
that research has indicated that human movement between
regions contributes significantly to the transmission and spread
of infectious diseases [10]. Because of this, we believe that
data on these interregional interactions could be leveraged
to increase the prediction performance of (purely temporal)
epidemic forecasting models. This warrants a natural graph-
based representation of the problem, allowing the application
of a subcategory of deep learning called graph neural networks
(GNNs).

GNNs are capable of dealing with the irregular nature of
graphs and the complex relationships and interdependencies
between their objects [20]. The core idea of GNNs is that the
representation of each graph’s node is updated based on an



aggregation of messages received from its connected neighbors
[21]. Spatio-temporal GNNs can additionally handle data in
the temporal dimension. GNNs have successfully been applied
to a wide variety of domains and tasks where interaction
between different components is important, reaching state-
of-the-art performance [20], [22]–[24]. For example, Derrow-
Pinion et al. [25] developed a GNN that predicts the estimated
time of arrival of traffic in Google Maps, and Ying et al. [26]
introduced the large-scale GNN recommender system PinSage
that is developed and deployed at Pinterest. Due to their proven
effectiveness, we would like to examine the use of GNNs for
region-based forecasting of epidemic infections.

In collaboration with the Dutch National Institute for Public
Health and the Environment (RIVM), we decided that this
study focuses on regional SARS-Cov-2 infections in the
Netherlands. While earlier work on the regional prediction of
disease infections using GNNs exists [8], [15], [17], [21], [27],
[28], GNNs for SARS-Cov-2 infection prediction have never
been applied in the Netherlands and worldwide not at a small
municipality-level scale. We will clarify our contributions with
respect to the mentioned related works in detail in Section
II. In light of the current research gap, the objective of this
research is to develop a model for one week ahead forecasting
of reported SARS-Cov-2 infections within municipalities of
the Netherlands using GNNs.

Research has shown that for spatio-temporal GNN fore-
casting, the performance decreases as the prediction horizon
increases [17], [21], [27]. Predicting one week ahead gives
local governments time to anticipate and take required action,
without adding unnecessary uncertainty to the model’s predic-
tions. Since no information on the actual number of infections
is available, we assume that a region’s number of officially
confirmed reported cases represents this.

This work’s main contributions are:

• Developing a COVID-19 dataset containing municipality
level information of the Netherlands, including COVID-
19 statistics, demographics, and information on interac-
tions of municipalities.

• Creating a novel spatio-temporal GNN model that is
able to capture relationships over time and between
municipalities, for predicting the number of SARS-Cov-
2 infections per municipality one week ahead using the
developed COVID-19 dataset.

• Evaluating the proposed approach on the developed
COVID-19 dataset. We observe that on average, the
spatio-temporal GNN outperforms the baselines.

The remaining part of this paper is organized as follows:
Section II reviews the related work on the use of GNNs
for epidemic forecasting. Section III describes the proposed
methodology used for forecasting the number of SARS-Cov-
2 infections. Section IV explains the performed experiments,
and Section V presents the obtained results. These results are
further discussed in Section VI. Finally, Section VII concludes
this paper.

II. RELATED WORK

Numerous studies on the application of GNNs in the field of
epidemiology have been performed. These studies are focused
either on forecasting epidemic spreading [8], [15], [17], [21],
[27]–[31], extracting the full state of a spreading epidemic
[32], reconstructing their evolution [33], [34], generating
mobility-control policies [35], or prioritizing vaccine or test
receivers [9], [36]. Below, the existing methods on location-
based spatio-temporal forecasting of the number of infections
are discussed.

A. Spatio-temporal Graph Neural Networks for Epidemic
Forecasting

Deng et al. [27] developed a graph neural network called
Cola-GNN to predict weekly influenza-like illness cases in
the United States and Japan, without the use of an underlying
graph. Their framework combines learned temporal feature
embeddings with a cross-location attention matrix that cap-
tures how locations influence each other.

La Gatta et al. [15] take a different approach. Their proposed
hybrid model consists of a GNN framework that estimates
the contact rate parameter used to predict infections with the
epidemiological SIR and SIRD models. The authors evaluate
their approach using COVID-19 data from the regions and
provinces of Italy.

Kapoor et al. [8] propose another spatio-temporal GNN
method for next-day COVID-19 case prediction. Their model
learns from a single spatio-temporal graph, where the spatial
edges capture United States county-to-county movement, and
a county is connected to a number of past instances of itself
with temporal edges. This is the first paper that uses a graph
based on data from GPS-enabled mobile devices to model how
regions affect each other based on interregional mobility.

Furthermore, Murphy et al. [28] propose a GNN architecture
that can learn contagion dynamics on a network from time
series data. The approach is demonstrated to be accurate for
different contagion dynamics of increasing complexity and can
be used to simulate dynamics on arbitrary network structures.
The applicability of the approach is demonstrated using real
data for predicting infections during the COVID-19 outbreak
in Spain.

Most similar to our method are the works of Gao et
al. [17] and Panagopoulos et al. [21]. The hybrid spatio-
temporal attention network (STAN) of Gao et al. [17] uses
real-world COVID-19 data of US counties, and information on
demographic similarity and geographical proximity between
different forecasting locations as input. Different to our work,
the network integrates pandemic transmission dynamics into
a deep learning model for enhancing long-term predictions.

More recently, Panagopoulos et al. [21] employed a GNN
to predict the number of future COVID-19 cases in the regions
of four European countries. To account for the low quantity of
available training data, their method utilizes transfer learning
to shift disease-spreading models from countries where the
epidemic has been stabilized to other countries where the virus
is in its early stages.



TABLE I: Features in Related Works

Paper Inf Hos Dec Sew Rul Dem Dis Com GPS
[27] 4 2 2 2 2 4 4 2 2
[15] 4 4 4 2 4 4 2 2 4
[8] 4 2 4 2 2 2 2 2 4
[28] 4 2 2 2 2 4 2 2 4
[17] 4 4 4 2 2 4 4 2 2
[21] 4 2 2 2 2 2 2 2 4
Our work 4 4 2 4 4 4 2 4 2

TABLE II: Models in Related Works

Paper Temporal Spatial
Deng et al. [27] RNN & CNN MPNN [37]
Kapoor et al. [8] MLP GCN [38]
Murphy et al. [28] RNN GCN [38]
La Gatta et al. [15] LSTM GCN [38]
Gao et al. [17] GRU GAT [39]
Panagopoulos et al. [21] LSTM MPNN [37]

Our work GRU GATv2 [2]

In addition to being the first epidemic prediction GNN
applied to the Netherlands at the fine-grained municipality
scale, we show in Table I that we also introduce new dataset
features to improve predictions. In the Table, the infections
(Inf) category includes various measures of infection status,
such as the number of reported infections, active infections,
incidence rate or recovered infections. Other categories include
hospitalizations (Hos), deceased patients (Dec), virus loads in
sewage water (Sew), and features related to the strictness of
the COVID-19 rules (Rul). Demographic (Dem) features such
as the population size and density are also included. Finally,
either the distance (Dis) between municipalities, commuting
information (Com), or GPS-based mobility data (GPS) are
used to connect regions. In this work, we are the first to incor-
porate virus loads in sewage water and commuter information
into our analysis. Additionally, our approach to incorporating
the strictness of COVID-19 rules more accurately reflects real-
world conditions. Further details about feature selection can be
found in Section III-A. Furthermore, our study distinguishes
itself by the fact that we have collected data over a period
of almost two years, allowing us to compare the results of
different COVID-19 variants.

In Table II, we compare the temporal and spatial layers of
the models used in previous works with our own approach.
All the spatio-temporal GNN methods discussed consist of
temporal layers that model the evolution of the epidemic over
time and spatial layers that capture the interactions between
different locations. In addition to these core components,
these models may also incorporate additional deep learning
components such as fully connected layers, dropout layers,
and skip connections to improve performance. Our approach
is the first to use GATv2 [2] as a spatial component, and we
propose a unique and optimized combination of deep learning
components, which will be further described in Section III-B.

Fig. 1: Input graph G consisting of a set of nodes V corre-
sponding to the municipalities of the Netherlands and a set of
edges E representing the connections between them.

III. METHODOLOGY

In this section, we present the methods used for developing
the COVID-19 dataset and predicting the course of the dis-
ease. More specifically, Section III-A presents the constructed
graph, Section III-B reviews the proposed model architecture,
Section III-C clarifies how we optimize this model, and
Section III-D describes how the optimized model is used for
making predictions.

A. Graph Construction

In order to make municipality-level predictions for the
Netherlands using GNNs, we developed a graph-structured
dataset containing information on COVID-19 statistics, demo-
graphics, and information on interregional interactions. The
resulting undirected graph G(V, E) represents the model’s
input data and consists of a set of nodes V with node features,
and a set of edges E with associated weights. In addition, we
use the graph’s node labels as a ground truth for supervised
learning.

Graph nodes: In the graph G, all 344 Dutch municipalities
are modeled as an individual node. Here, n = |V| denotes the
number of nodes. The graph is visualized in Figure 1.

Graph edges and weights: We construct the edges of the
graph based on the assumption that mobility rates between
pairs of municipalities influence each other’s infection rates
[10]. We use a proxy to quantify mobility, as travel data
of people between municipalities is not available for privacy
reasons. To determine the most effective proxy for our ap-
plication, we constructed and evaluated various graphs with
different edge configurations and weights. Besides a randomly
chosen graph configuration, the edge locations and weights we
tested are based on distance between municipalities, distance



in combination with population sizes [40], a fitted gravity
model [41], and commuter information [5]. We adopted the
last graph configuration for the remainder of this research,
since this was found to be the most effective. The data about
the place of residence and work of employees is collected
by Statistics Netherlands (CBS). In our graph, edges connect
municipality pairs with at least 1000 daily commuters. Please
note that, limited by the available data, we assume that this
measure of mobility remains constant over time. Furthermore,
we presume that travelling individuals visit only one region
and return to their home region directly afterward.

As a result, we obtain the adjacency matrix A ∈ Rn×n.
This matrix indicates which municipalities are connected and
how strong these connections are, and is defined as

Aij =

{
wij if eij ∈ E and i ̸= j

0 otherwise,
(1)

where wij is the normalized weight for each two regions i
and j with an existent edge eij between them.

Node features: Each node or municipality of the graph has a
set of associated features F to provide additional information
useful for making more accurate predictions. The node features
we include in our developed dataset are:

• Incidence: the daily number of reported COVID-19 cases
per unit of population [3], [42].

• Hospitalizations: the daily number of COVID-19 hospital
admissions [3].

• Virus load in sewage water: the average concentration
of SARS-CoV-2 RNA, converted to the daily amount
of sewage water (flow rate) and displayed per 100,000
inhabitants [3].

• Stringency Index: a country-wide composite measure in-
dicating the strictness of the applicable COVID-19 con-
trol measures, based on nine response indicators including
school closures, workplace closures, and travel bans [4],
[43].

• Population density: the number of inhabitants per square
kilometer of land area [44].

The feature selection process started with an initial set of
ten features, which was based on data and expertise available
within the RIVM. Five features were not included in the
dataset due to their relatively lower correlation with the ground
truth or their negative impact on the model’s performance.
These features include the population size, daily number of
reported infections and deaths, vaccination rate, and day of
the week.

Each feature is normalized to ensure that all features are
on the same scale, ranging from 0 to 1. Except for the
static population density, we assume that the above-mentioned
node attributes are dynamic and change on a daily basis.
Subsequently, it is important to note that at each time step t (in
days) the features are represented as vectors that stretch back d
days, including day t. This means that the values in this feature
vector correspond to days t+1-d to t. Together, these feature
vectors are presented in a time dependent feature matrix

Xt ∈ Rn×d×f , where n denotes the number of municipalities
and f = |F| the number of features.

Node labels: The graph has a time-varying associated node
label per municipality, which is equal to the ground truth.
While the goal of this paper is to forecast the number of
reported SARS-Cov-2 infections seven days ahead, we train
the model on the normalized incidence of this day instead.
The reason for training on incidence is the disproportionate
distribution of municipalities’ population sizes, and hence also
of their infection numbers. By optimizing on incidence instead
of infections, we compensate for the population size and
prevent the model from focusing too much on the forecasts
for the largest municipalities of the Netherlands. Training on
incidence means that our node label vector yt+7 ∈ Rn on
prediction day t+7 is calculated as

yt+7 = normalize
(
It+7

p

)
, (2)

where It+7 ∈ Rn represents the daily number of reported
infections per municipality on day t+7 and p ∈ Rn denotes
the region’s population sizes [3], [42].

When evaluating the performance of our trained model,
we use the data on the observed daily number of reported
infections per municipality It+7 directly. For real-world appli-
cation, it is particularly important that epidemic forecasting
models can properly predict the trend of infection rates within
municipalities. Initiating local measures or allocating resources
will in practice not occur daily, which allows policymakers
to act on a prediction of the infection trend. Therefore, we
also evaluate the model’s performance relative to the trend of
the observed infection numbers It+7trend ∈ Rn instead of these
numbers themselves. As a trend, we define the moving average
of the observed infection numbers.

B. The Model

Since we would like to capture COVID-19 spread both over
time and between municipalities, we propose a spatio-temporal
GNN model. Because recurrent neural networks provide a
way to extend deep learning to sequential data, we first apply
deep learning layers of this type to find temporal patterns in
the changing node features of municipalities. Gated recurrent
units (GRUs) and long short-term memories (LSTMs) are the
most effective sequence models used in practical applications,
due to their ability to effectively and accurately retain long-
term dependencies in sequential data [45]–[47]. Based on the
observation that the GRU outperforms the LSTM for our
application, we decided to include this technique in our model.

After applying the GRU and obtaining the resulting node
embedding ht

GRU, we employ a GNN to model the spa-
tial disease transmission patterns caused by the relationship
between municipalities. Essentially, the GNN updates each
municipality’s node embedding by aggregating the informa-
tion municipalities receive from their adjacent neighbors.
Nowadays, graph attention networks (GATs) as proposed
by Veličković et al. [39] are one of the most popular and
widespread GNN architectures [48]. Additionally, Brody et



Fig. 2: The proposed architecture is made up of three stages,
being the GRU module in orange, the GATv2 module in
yellow, and the output layer in green. Both the GRU module
and the GATv2 module are repeated once. Therefore, the
dashed input arrows Xt and ht

GRU imply that for the second
layer of their corresponding module, they are replaced by the
output embeddings of the module’s first layer.

al. [2] have proposed the closely related GATv2 recently,
which outperforms GAT on all their benchmarks. Based on
these results and the performance evaluation on our developed
dataset, we decided to use GATv2 to capture the spatial trends
in disease transmission. We modify the GATv2 model with
skip-connections between layers to avoid diluting the self-node
embeddings. Specifically, we concatenate the output of each
GATv2 layer with the learned temporal embedding, before we
apply the ReLU activation function.

Finally, we need to map the output of the final GATv2 layer
ht

GAT to the desired output dimension, for which we use a fully
connected (FC) linear output layer.

We visualize our proposed model in Figure 2, and describe
each of its elements in more detail below. Please note that
we optimized the number of layers of the architecture based
on performance, resulting in a model consisting of two GRU
modules, two GATv2 modules, and one fully connected output
layer.

1) Gated Recurrent Unit (GRU) module: The two layer
GRU module uses the node feature matrix Xt ∈ Rn×d×f

as an input. The goal is to retrieve an output embedding
ht

GRU ∈ Rn×GRU-dim, which captures the temporal patterns of
the dynamic node features over a window of the past d days
for each node. This new representation for the municipalities
corresponds to the hidden state of the last time step t of the
second GRU layer, and is calculated as follows:

ht
GRU = GRU(GRU(Xt,h0),h0), (3)

where h0 ∈ Rn×GRU-dim is a matrix filled with zeros,
corresponding to the initial hidden state before the first day of
the time window.

2) Graph Attention Network v2 (GATv2) module: In the
GATv2 module, the temporal node embedding ht

GRU is updated
per municipality by the GATv2 mechanism [2] using the
update rule

h
′

i =
∑

j∈N (i)

αijWhj , (4)

where h
′

i is the updated embedding of node i, and hj is the
node representation of node j of the previous layer, initially

being ht
GRU,j . We inject the graph structure as represented

by adjacency matrix A ∈ Rn×n into the mechanism by
exclusively summing over the nodes j that are part of the
set of neighbors of node i, N (i). We consider node i itself
to be part of this neighborhood as well. Furthermore, W is
a learnable weight matrix associated with each node’s linear
transformation and αij is the normalized attention coefficient.
This value quantifies the connective strength between the node
i and its neighbor j using an attention mechanism

αij =
exp

(
a⊤ LeakyReLU (W [hi∥hj ])

)∑
k∈N (i) exp (a

⊤ LeakyReLU (W [hi∥hk]))
, (5)

where aT is a transposed vector of learnable parameters,
and || is the concatenation operation.

To stabilize the self-attention learning process and to im-
prove its expressive power, the GATv2 model uses multi-head
attention [2], [39]. This implies that K independent attention
mechanisms perform the transformation described above, and
subsequently concatenate their outputs to create the final node
representation.

The two layered GATv2 module and its resulting spatio-
temporal embedding ht

GAT ∈ Rn×GAT-dim can thus be repre-
sented as

ht = ReLU(GATv2(ht
GRU,A) || ht

GRU)

ht
GAT = ReLU(GATv2(ht,A) || ht

GRU).
(6)

3) Output layer: Finally, we need to map the output of the
final hidden layer to the desired output dimension. Therefore,
we feed the hidden state obtained by the GATv2 module ht

GAT
to a fully connected (FC) linear output layer

ŷt+7 = FC(ht
GAT). (7)

As a result, we predict the normalized incidence vector
ŷt+7 ∈ Rn containing predictions for each municipality seven
days ahead.

C. Optimization

We propose to optimize the model for seven day ahead
prediction directly [27], following the pseudocode described
in Algorithm 1. We use the mean squared error (MSE) as our
loss function

L =
1

nT

T∑
t=1

n∑
i=1

(
yt+7
i − ŷt+7

i

)2
, (8)

since it is commonly used in regression tasks and encourages
the model to minimize large errors [49]. Here, n denotes the
number of municipalities and T the number of days on which
we train the model. Furthermore, yt+7

i refers to the reported
infection incidence for municipality i at day t+7 and ŷt+7

i to
the associated predicted infection incidence as obtained by the
model.



Algorithm 1: Training the model

Input: Time series node feature and node label data {X,y},
adjacency matrix A, learning rate η

Output: Model parameters Θ
Initialize Θ randomly
for each epoch do

for each timestep t do
ht

GRU = GRU module(Xt)
ht

GAT = GATv2 module(ht
GRU,A)

ŷt+7 = Output layer(ht
GAT)

error + = MSE(yt+7, ŷt+7)
end for
L(Θ) = 1

T error
∆L(Θ) = BackProp(L(Θ),Θ)
Θ = Θ− η∆L(Θ)

end for
return Θ

D. Prediction

We apply the trained model to predict the number of
reported COVID-19 cases Ît+7 ∈ Rn in all municipalities on
day t+7 using the equation

Ît+7 = p ∗ denormalize
(
ŷt+7

)
. (9)

Here, p ∈ Rn is the population size per municipality and
ŷt+7 ∈ Rn the predicted incidence, which is converted back
to its original scale.

IV. EXPERIMENTS

This section introduces the datasets we used in Section
IV-A, refers to our comparison methods in Section IV-B,
describes the evaluation metrics used in Section IV-C, and
explains the hyperparameters and implementation details in
Section IV-D.

A. The Dataset

We use open data from three sources: the COVID-19
dataset of the National Institute for Public Health and the
Environment (RIVM) [3], data from Statistics Netherlands
(CBS) [5], [42], [44], and the Oxford COVID-19 Government
Response Tracker [4], [43]. We fuse these datasets to obtain
the necessary graph edge, node feature, and node label infor-
mation.

While the first COVID-19 case in the Netherlands was
discovered on February 27, 2020, our study period is from
June 1, 2020, until April 10, 2022. In the Netherlands, testing
capacity was limited before June 1, 2022, so the number of
positive tests did not reflect the actual number of SARS-Cov-2
infections. The same applies to all days after April 10, 2022,
because from then on, the advice to confirm a positive self-test
at the Dutch Municipal Health Service was canceled, except
for specific target groups such as healthcare workers [50], [51].

To ensure real-world application of our method, we chose to
divide the study period into shorter time intervals of 61 days.
By training on the first 53 and validating on the subsequent 7

TABLE III: Time period characteristics

Variant Prediction period
Avg new cases
total (train/val/test)

W1 Wild type 11/06/2020 - 10/08/2020 0.5 (0.4/1.4/2.3)
W2 15/07/2020 - 13/09/2020 1.5 (1.2/3.0/3.2)
W3 18/08/2020 - 17/10/2020 7.4 (5.4/20.7/23.5)
W4 20/09/2020 - 19/11/2020 17.8 (18.1/15.2/16.5)
W5 23/10/2020 - 22/12/2020 21.3 (19.6/32.7/28.5)
W6 25/11/2020 - 24/01/2021 21.7 (22.6/15.4/14.2)

A1 Alpha 04/03/2021 - 03/05/2021 19.7 (19.6/19.2/26.6)
A2 14/04/2021 - 13/06/2021 14.7 (16.3/4.3/3.0)

D1 Delta 15/07/2021 - 13/09/2021 10.3 (10.8/6.9/5.0)
D2 17/08/2021 - 16/10/2021 6.6 (6.2/8.8/10.7)
D3 19/09/2021 - 18/11/2021 18.7 (13.8/48.7/68.0)
D4 21/10/2021 - 20/12/2021 44.1 (44.6/41.1/35.0)

O1 Omicron 13/01/2022 - 14/03/2022 178.5 (177.7/190.9/133.7)
O2 09/02/2022 - 10/04/2022 124.6 (138.5/34.4/20.6)

days of each interval, we guarantee that our model can be used
for prediction on test day 61. Because there have been only
four widespread COVID-19 variants (i.e. the wild type, alpha,
delta, omicron) [52], it is difficult for the model to capture
the differences between them. Therefore, we make sure that
in each time period at least 75% of all test samples of SARS-
Cov-2 infected persons that are sequenced by the pathogen
surveillance consist of the same variant [53].

Although users would in real life retrain the model every
day to make a prediction based on the most recent data, we
chose to predict for 14 days in this paper. This allows us to
balance the need for computational efficiency with the ability
to examine differences in performance over time and between
variants. We present the associated 14 time periods and their
characteristics in Table III.

In Figure 3, we visualize the split in training, validation,
and test data by means of a plot of the aggregated number of
infections in the Netherlands over period D3, corresponding to
a time when the delta variant was dominant, and the infection
numbers were increasing. Once the model is trained, day t is
the day up until which data is used to make t+7 predictions
for the test day on November 18, 2021. In Appendix A, these
plots are presented for the other periods as well.

B. Comparison Methods

Our approach involves applying the proposed method on
the newly developed COVID-19 dataset, which is why no
baselines yet exist to compare our model to. Therefore, we
implemented various simple and commonly used baselines [8],
[21]. According to these baselines, the prediction for day t+7
is equal to:

1) PD: the number of reported cases on day t.
2) HA: the historical average of the number of reported

cases up to and including day t.
3) HAwindow: the historical average of the number of re-

ported cases in observation window d (day t+1-d to day
t).



Fig. 3: The aggregated number of reported COVID-19 cases
in the Netherlands over the prediction days of time period D3,
with the days included in the training set in blue, the validation
set in yellow, and the test set in orange. Once the model is
trained, we use data up to and including day t (dashed orange
line) to predict infections on the test day at t+7.

4) EB: the number of reported cases on day t multiplied
with λ

(
ŷt+7 = λyt

)
, where λ is determined based on

the infection rates of observation window d.
In order to gain a better understanding of the proposed

spatio-temporal GNN’s behavior, we perform an ablation
study. We investigate the influence of the GRU and GATv2
modules on the performance of the developed model by
removing them one at a time, resulting in the following
architectures:

1) GRU: A temporal model consisting of the GRU module
and the output layer.

2) GATv2: A spatial model consisting of the GATv2 mod-
ule and the output layer.

C. Evaluation Metrics

To quantify the difficulty of making predictions for the
developed dataset, we propose the fluctuation size per mu-
nicipality as a metric that measures the fluctuations in the
data. The fluctuation size Fli of municipality i is calculated
as follows:

Fli =
1

T -1

T−1∑
t=1

|Ĩt+1
i − Ĩti |, (10)

where T is equal to the number of time steps in the
considered time period, and Ĩt+1

i and Ĩti are the normalized
observed number of reported infections in the municipality i
at times t+1 and t.

The objective of this study is to predict the number of
SARS-Cov-2 infections as accurately as possible, which is de-
fined by the error between the observed infections It+7 ∈ Rn

and predicted infections Ît+7 ∈ Rn. Lower errors indicate
higher prediction accuracy. We especially aim to minimize
relatively large errors, as these can result in inaccurate control
measures and resource allocation. Therefore, we adopt the root

TABLE IV: Hyperparameters

Parameter Value(s) / choice of algorithm
epochs early stopping:

minimum 100 and maximum 500 epochs
50 epochs of patience

optimizer Adam
learning rate 5e-3
batch size 344

hidden dimensions [32, 32, 64, 64]
# of GATv2 heads [2, 2]

mean squared error (RMSE) [54] over all municipalities on
each test day as an evaluation metric.

Besides the RMSE, we also introduce a scale independent
metric, the coefficient of determination (R2) [54]. This met-
ric assesses the correlation between observed and predicted
number of infections. A R2 close to one suggests a perfectly
accurate prediction, while a R2 close to or below zero indicates
that the model fails to make accurate predictions. Please note
that we also use the RMSE and R2 metrics when evaluating the
performance of the model relative to the trend of the observed
infection numbers It+7

trend ∈ Rn.
When evaluating the forecast of the model for an individual

municipality on a specified day, we would like to use an
evaluation metric that is easy to interpret. Therefore, we use
the absolute error between the municipality’s observed number
of infections and the predicted number of infections.

D. Hyperparameter Setting and Implementation Details

In Table IV, we present the hyperparameters that have been
used for the final model. The mentioned hidden dimensions
correspond to the two GRU layers and the two GATv2
modules, and the number of independent attention heads K
to the two GATv2 layers. With early stopping, we store the
parameters of the model that achieved the highest validation
accuracy, and then retrieve it to make predictions about the
test samples. The model is implemented with Pytorch [55]
and Pytorch Geometric [56]. For all our experiments, we use
a look-back window d of 7 days, and the aforementioned
prediction horizon h of 7 days.

V. RESULTS

In this section, we present the obtained results, where
Section V-A focuses on the dataset and Section V-B on the
model.

A. The dataset

To evaluate the proposed approach on the developed
COVID-19 dataset, we first determine the difficulty of making
predictions for the developed dataset by calculating the fluctua-
tion sizes Fl for our time periods. Taking time period D3 as an
example, we see that during this period of time the fluctuation
size for the Netherlands as a whole is equal to 0.031, while the
average over the individual municipalities is equal to 0.098,
meaning that the fluctuation of individual municipalities is on



Fig. 4: The normalized actual number of reported COVID-
19 cases over time in the Netherlands for period D3. The
blue line corresponds to the total number of infections in the
Netherlands, the yellow line to the municipality Oost Gelre,
and the orange line to the municipality Rotterdam.

average 3.2 times as large as of the Netherlands. Averaged
over all time periods, the mean fluctuation size of individual
municipalities is 2.3 times as large as of the Netherlands as a
whole.

We present a visualization of the normalized actual number
of reported infections and its fluctuations during time period
D3 for the whole of the Netherlands and for two example
municipalities, Oost Gelre and Rotterdam, in Figure 4. Here,
the fluctuations in Oost Gelre are 3.8 times as large, and for
Rotterdam 2.5 times as large as in the Netherlands.

B. The Model

In Table V and Table VI, we report the RMSE and the
R2 performance metrics for the prediction of our spatio-
temporal GNN model, its GRU and GATv2 components, and
the baselines for the different time periods of our dataset. Here,
the numbers in bold indicate which of these concepts perform
best on the test day of each time period, and underlined
numbers present the corresponding best baseline. It is notable
that both the performance of our proposed model and the
baselines vary widely across the different time periods. The
proposed model’s minimum coefficient of determination is
0.004 for the first omicron period O1, which indicates that
the model fails to make accurate predictions during this time
period. Meanwhile, the R2 of 0.934 for the last delta time
period D4 suggests that the model explains as much as 93.4%
of the variance of our forecasts.

In Table VII and Table VIII, we report the average per-
formances over all 14 time periods (Avg), and over the four
COVID-19 variants being the wild type (WT), alpha (α), delta
(δ), and omicron (o). It is not fair to compare the RMSE over
the time periods, because the interpretation of a given RMSE
is highly dependent on the predicted number of infections.
For example, a RMSE of 10 infections while there are 200
infections predicted is not important for policymaking and
resource relocation, as opposed to a RMSE of 10 infections
with a prediction of 20 infections. Therefore, we only report

the RMSE relative to the baselines and its parts in Table VII.
Here, we notice that averaged over all time periods, the RMSE
of our model is −9.8% relative to the best performing baseline
PD, meaning that on average our proposed model achieves
a 9.8% lower RMSE than this baseline. Looking at Table
VIII, we find that the average coefficient of determination
of the proposed model 0.696, which is 3.2% higher than of
the best performing baseline PD. These results show that on
average, our model can conduct more accurate predictions
than the baselines, and that the relationship between the actual
values and our model’s predictions accounts for 69.6% of the
variation in the predictions.

By looking at the performance of the model per COVID-
19 variant in Table VII and Table VIII, we notice that our
proposed model achieves a lower RMSE and a higher R2

than all the baselines for the wild type, alpha, and delta
variant. Looking at the coefficient of determination, we see
that relative to the PD baseline, this value increases with 8.7%
for the wild type, 8.2% for the alpha variant, and 6.1% for
the delta variant. For these variants, we note that the average
coefficient of determination is 0.795. Meanwhile, we notice
that the performance of the proposed model is worse than all
baselines for the omicron variant.

1) The GRU and GATv2 modules: Table V and Table VI
also contain the RMSE and R2 evaluation metrics for the
exclusively temporal GRU model and the solely spatial GATv2
model. As with our proposed model and the baselines, there
is a large variation between the time periods. While the R2 of
the GRU and the GATv2 are both below zero for the second
omicron period O2, the GRU achieves a R2 of 0.917 for period
A1 and the GATv2 a R2 of 0.910 for period D4.

Table VII and Table VIII show that on average the RMSE of
our spatio-temporal model is 12.9% lower, and the coefficient
of determination 8.6% higher than of the temporal GRU
model. Similarly, the model’s RMSE is 15.4% lower than the
GATv2 model, and the corresponding R2 score is 8.2% higher.
For our application, the performance of the proposed spatio-
temporal GNN is thus higher than of the temporal GRU model
or the spatial GATv2.

2) Individual municipalities: To further evaluate the per-
formance of our model on the developed COVID-19 dataset,
we also look at our forecasts for individual municipalities.
Hence, we visualize the correlation between the observed and
the predicted number of reported SARS-Cov-2 infections of
period D3 in Figure 5, which we present for the other time
periods in Appendix B. The blue dots indicate the November
18, 2021, forecasts for all 344 municipalities.

It is apparent from the plot that there is a high number of
municipalities with low infection rates. Accordingly, there are
more small municipalities than large ones in the Netherlands.
The dots of most of the municipalities are quite close to the
45 degree yellow line through the origin, which corresponds
to the high coefficient of determination of 0.893 that we
presented for period D3 in Table VI. In general, the model
thus appears to be both accurate and precise. However, for
the municipalities with less than 400 infections, the mean of



TABLE V: The root mean squared errors (RMSE) of the developed model, the GRU and GATv2 components, and the
baselines for all 14 time periods. Numbers in bold indicate the lowest RMSE per time period, underlined numbers present the
corresponding best performing baseline.

RMSE (↓) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2
PD 8.04 4.97 13.59 15.57 21.52 10.02 22.39 4.49 4.34 8.16 39.08 17.88 139.81 28.4
HA 10.34 8.08 35.95 18.31 18.41 13.97 20.06 23.29 18.84 8.36 79.28 15.16 93.44 203.69
HAwindow 8.36 5.98 18.11 12.39 13.08 7.10 13.75 7.82 6.53 8.34 52.20 26.23 96.70 71.49
EB 8.32 5.27 14.44 15.97 23.16 9.74 23.75 4.07 4.31 9.12 39.73 17.47 159.33 24.51

GRU 10.55 8.25 18.79 19.54 17.94 6.93 12.64 3.10 4.87 8.40 32.11 20.65 175.90 55.25
GATv2 9.68 8.20 35.23 10.19 15.23 9.88 20.44 5.28 4.07 7.84 36.02 15.5 133.2 59.97

Model 7.03 5.76 13.02 11.19 16.12 7.92 17.10 4.29 4.60 6.91 26.56 13.22 177.10 30.31

TABLE VI: The coefficients of determination of the developed model, the GRU and GATv2 components, and the baselines for
all 14 time periods. Numbers in bold indicate the highest R2 per time period, underlined numbers present the corresponding
best performing baseline.

R2(↑) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2
PD 0.560 0.860 0.926 0.566 0.664 0.723 0.739 0.386 0.849 0.702 0.769 0.880 0.379 0.23
HA 0.274 0.630 0.482 0.400 0.754 0.461 0.790 <0 <0 0.688 0.048 0.914 0.723 <0
HAwindow 0.525 0.797 0.869 0.725 0.876 0.861 0.901 <0 0.659 0.690 0.587 0.741 0.703 <0
EB 0.529 0.842 0.916 0.544 0.611 0.738 0.706 0.497 0.852 0.628 0.761 0.885 0.194 0.427
GRU 0.243 0.614 0.859 0.317 0.766 0.867 0.917 0.708 0.810 0.685 0.844 0.840 0.018 <0
GATv2 0.362 0.618 0.503 0.814 0.832 0.730 0.782 0.151 0.867 0.725 0.803 0.910 0.437 <0

Model 0.664 0.812 0.932 0.776 0.811 0.827 0.848 0.441 0.831 0.787 0.893 0.934 0.004 0.123

TABLE VII: The average relative RMSE prediction perfor-
mance of our model with respect to its parts and the baselines
for each COVID-19 variant and in total.

RMSE (↓) WT α δ o Avg
PD -12.5% -14.0% -16.9% 16.7% -9.8%
HA -36.5% -48.2% -43.1% 2.2% -34.5%
HAwindow -3.8% -10.4% -36.4% 12.8% -11.7%
EB -15.8% -11.3% -18.7% 17.4% -11.3%

GRU -22.1% 36.8% -19.1% -22.2% -12.9%
GATv2 -20.7% -17.5% -10.0% -8.3% -15.4%

TABLE VIII: The average coefficient of determination of our
model, its parts, and the baselines for each COVID-19 variant
and in total. Numbers in bold indicate the highest R2 per
variant, underlined numbers present the corresponding best
performing baseline.

R2 (↑) WT α δ o Avg
PD 0.717 0.563 0.800 0.305 0.660
HA 0.500 0.395 0.413 0.362 0.440
HAwindow 0.776 0.451 0.669 0.352 0.638
EB 0.697 0.602 0.782 0.311 0.606

GRU 0.611 0.813 0.795 0.009 0.606
GATv2 0.643 0.467 0.826 0.219 0.610

Model 0.804 0.645 0.861 0.064 0.692

Fig. 5: The correlation between the forecasted and the ob-
served number of reported COVID-19 cases in period D3.
Here, each blue dot corresponds to the forecast for one
municipality November 18, 2021. When a dot lies on the
yellow diagonal line, it means that the prediction is perfect.



TABLE IX: The absolute error for the proposed model and its
baselines for the best performing municipalities for prediction
on 18/11/2021 (period D3).

Oost Gelre Meierijstad Opsterland
# infections 39 96 42

PD 8.0 27.0 14.0
HA 28.2 69.6 30.7
HAwindow 14.0 29.6 13.0
EB 15.8 28.3 26.6

Our model 0.2 0.2 0.2

TABLE X: The absolute error for the proposed model and its
baselines for the worst performing municipalities for predic-
tion on 18/11/2021 (period D3)

Rotterdam Maastricht Heerlen
# infections 553 288 239

PD 36.0 198.0 144.0
HA 351.1 245.6 195.0
HAwindow 148.6 184.4 141.7
EB 84.4 200.0 144.1

Our model 202.2 130.0 115.9

the dots is in an increasing manner slightly below the perfect
prediction line, indicating that the accuracy is not perfect
and that the model increasingly underestimates the number of
infections. There are only four municipalities with more than
400 observed infections, being the four biggest municipalities
of the Netherlands; Amsterdam, Rotterdam, ’s-Gravenhage,
and Utrecht. In contrast to the smaller municipalities, their
predictions are on average above the actual infections.

As an illustration of the variation between municipalities,
Table IX and Table X present the absolute difference between
the predicted and the actual number of infections for individual
municipalities on November 18, 2021. Here, Table IX shows
the three municipalities with the smallest error, being Oost
Gelre, Meierijstad, and Opsterland, and Table X the three
worst performing municipalities, being Rotterdam, Maastricht,
and Heerlen. As we have seen before with the variation
between the time periods, it appears here that the variation
on the same day between municipalities is also large, with a
minimum error of approximately zero infections in Oost Gelre,
Meierijstad, and Opsterland, and a maximum error of 202 in-
fections in Rotterdam. Relatively speaking, the differences are
also large. Indeed, the error relative to the number of infections
is below 1% for Oost Gelre, Meierijstad and Opsterland, while
it is 36.6% for Rotterdam, 45.2% for Maastricht and 48.5%
for Heerlen.

We present plots corresponding to the predictions of these
municipalities in Figure 6. Please note that, next to our
proposed model and the actual values, we chose to visualize
only the best performing baseline in each prediction for clarity.
It is noticeable here that the data contains a lot of noise due
to the rapid fluctuations. Therefore, it seems that while our
model often captures the right trend, it is unable to interpret

TABLE XI: The performance of the proposed model for trend
predictions compared to actual value predictions.

WT α δ o Avg
RMSE (↓) −31.4% −40.8% −26.3% −20.7% −29.8%

R2(↑) 9.4% 18.6% 7.3% 49.8% 15.9%

TABLE XII: The relative prediction performance for T+7 with
respect to T+1

WT α δ o Avg
RMSE (↓) 27.0% 14.9% 9.3% 125.7% 34.3%
R2(↑) -5.9% -10.5% -2.1% -78.1% -15.3%

these rapid changes.
3) The trend: As explained in before, we would also like to

analyze the performance of our proposed model for infection
trend prediction. We present an example of the actual infection
curve and the trend for Rotterdam on November 18, 2021, in
Figure 7.

If we evaluate our model against the trend rather than
actual infection values, the performance improves signifi-
cantly. Where the average coefficient of determination for
actual infection prediction is 0.692, it increases to 0.851 for
prediction of the trend, indicating a 15.9% gain. For each
variant specifically, the coefficients of determination for trend
prediction are 0.898 for the wild type, 0.831 for alpha, 0.934
for delta, and 0.562 for omicron. We give an overview of
the improvements of the trend predictions compared to the
actual value predictions of our model in Table XI. It is evident
that, across all variants and on average, our model exhibits
superior performance in predicting the trend of infection rates
compared to the highly variable actual rates.

4) The forecasting horizon: We would like to understand if
our varying performance is caused by the prediction horizon
h of 7 days, or whether the cause is in our dataset or model
itself. Therefore, we also made t+1 forecasts for the exact
same days as with the t+7 forecasts. For these t+1 forecasts,
the coefficients of determination are 0.845 on average, 0.863
for the wild type, 0.750 for alpha, 0.882 for delta, and 0.845
for omicron. We present the relative performances of our 7-
day multistep prediction with respect to the performance of
the model when predicting only one day ahead in Table XII.
Comprehensive results of the one-day ahead forecast can be
found in Appendix C.

As presented earlier in literature [17], [21], [27], we share
the observation that for both the individual COVID-19 variants
and the average, the performance of the model decreases
as the prediction horizon increases. On average, the RMSE
increases with 34.3%, and the coefficient of determination
decreases with 15.3%. By looking at the individual variants,
we particularly notice that the results of our model for the
omicron variant deteriorate relatively much, with a RMSE
increase of 125.7% and a coefficient of determination decrease
of 78.1%.



Fig. 6: The actual and predicted reported number of infections for individual municipalities on 11/18/2021 (period D3). Based
on the absolute difference between the prediction and the actual value, the upper row corresponds to the best performing
municipalities (Oost Gelre, Meierijstad, Opsterland) and the bottom row to the worst performing municipalities (Rotterdam,
Maastricht, and Heerlen). The blue line indicates the actual number of infections reported, the red line the model’s predictions,
and either the yellow or the orange line the predictions of the baselines. Note that for clarity of illustration, the plots only
visualize the best performing baseline in each prediction. In the plots, the dashed lines represent predictions in the validation
set, and the dots represent the prediction on test day 18/11/2021.

Fig. 7: The normalized actual number of reported COVID-19
cases (orange) and its trend (blue) over time in Rotterdam for
period D3.

VI. DISCUSSION

The variation in results as demonstrated in Section V-B,
can be explained by the observation that the daily numbers
of reported SARS-Cov-2 infections per municipality have a
high fluctuation size. We also note that there are significant
differences in the data between the chosen time periods and

between municipalities, such as the order of magnitude of
the infection rates and the dynamic node features (e.g. the
virus load in sewage water), and the shape of the infection
curve. Between time periods, the variants circulating vary as
well. Additionally, there are variations between municipalities
in population size, population density, and the number of
neighbors. These aspects of the dataset make it challenging
to capture the resulting complex relationships, and to obtain
accurate predictions for all time period and municipality
combinations.

Despite these challenges, the average performance of our
model in predicting the spread of SARS-CoV-2 at the mu-
nicipal level in the Netherlands is strong. We observed that
the performance of the proposed spatio-temporal GNN out-
performs its temporal and spatial components, proving the
effectiveness of modelling the spreading of epidemic diseases
as a spatio-temporal problem. Nevertheless, we hypothesize
that if related data would be available, the performance of the
spatial GATv2 module could be enhanced through the use of
a more representative strategy for selecting edge locations and
weights.

As discussed in Section V-B, both our model and the
baselines struggle to make accurate predictions for the omicron
variant. This suggests that omicron is a particularly chal-



lenging variant to predict. This may be due to the fact that
omicron is more contagious and produces milder symptoms
compared to earlier variants, leading to more rapid changes in
the number of cases [57]. Another potential explanation could
be the occurrence of natural immunity in individuals due to
the high number of infections during the omicron period [3],
leading to a decrease in transmission during this period as a
result of the increased protection.

In order to improve the overall prediction performance
(including that of the omicron variant), a model capable of
capturing more complex relationships would be required. To
obtain such models, we either increased the number of GRU
layers, the number of GATv2 layers, or the hidden dimension
sizes. Evaluation of these models demonstrated that utilizing
these adapted models with the limited available data a decrease
in performance. To effectively utilize a more complex model,
an increased amount of data, such as synthetic data or data
from other countries, would be necessary.

In future work, it may also be worth considering a larger
regional scale, such as the 25 security regions of the Nether-
lands instead of the 344 municipalities. This approach could
potentially decrease the fluctuation size and complexity of
relationships, making it easier for the model to capture the
relationship of infection numbers over time and between
regions, while still allowing for the implementation of regional
measures or resource distribution.

VII. CONCLUSION

In this paper, we introduced a novel model architecture for
forecasting reported SARS-Cov-2 infections one week ahead
using a spatio-temporal GNN. We applied our model to a
newly introduced COVID-19 dataset containing municipality-
level information for the Netherlands, including COVID-19
statistics, demographic features, and municipality interaction
data.

Our model demonstrates strong performance in predicting
the spread of SARS-Cov-2 at the Dutch municipal level for the
wild type, alpha, and delta variants. The model outperforms
the baselines and the exclusively spatial and temporal models.
Additionally, with an average coefficient of determination of
0.795 and the ability to capture the trend of the disease with
a R2 score of 0.899, we conclude that the model is well-
suited for predicting the spread of these variants in real-
world applications, allowing policymakers to anticipate and
take necessary action in response to the pandemic. However,
for more complex disease dynamics, such as those exhibited
by the omicron variant, we recommend using more (synthetic)
data or expanding the regional forecasting scale. In real-
world applications, we recommend using our proposed model
in combination with a mechanistic model in an ensemble
approach to enhance long-term predictions and to improve
prediction accuracy and robustness.
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Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, 5
2021. [Online]. Available: http://arxiv.org/abs/2104.13478

[49] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep
Learning, 2020. [Online]. Available: https://d2l.ai

[50] Rijksoverheid, “Februari 2020: Eerste coron-
abesmetting in Nederland.” [Online]. Available:
https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn/februari-
2020-eerste-coronabesmetting-in-nederland

[51] ——, “Ontwikkeling van het virus - Positieve testen.” [Online]. Avail-
able: https://coronadashboard.rijksoverheid.nl/landelijk/positief-geteste-
mensen

[52] Rijksinstituut voor Volksgezondheid en Milieu, “Varianten
van het coronavirus SARS-Cov-2,” 2022. [Online]. Available:
https://www.rivm.nl/coronavirus-covid-19/virus/varianten

[53] ——, “Covid-19 rapportage van SARS-CoV-2 varianten in Nederland
via de aselecte steekproef van RT-PCR positieve monsters
in de nationale kiemsurveillance.” 2022. [Online]. Available:
https://data.rivm.nl/meta/srv/dut/catalog.search/metadata/4678ae0b-
2580-4cdb-a50b-d229575269ae

[54] M. Z. Naser and A. H. Alavi, “Error Metrics and Performance Fitness
Indicators for Artificial Intelligence and Machine Learning in Engineer-
ing and Sciences,” Archit. Struct. Constr., 2021.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
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APPENDIX

A DATASETS

In Figure 8 and Figure 9, we visualize the aggregated number of infections in the Netherlands over time for the 14 time
periods we evaluated. As explained in Section VI, we note that there are significant differences between the chosen time periods
in the order of magnitude of the infection rates and in the shape of the infection curve.

(a) Time period W1 (b) Time period W2

(c) Time period W3 (d) Time period W4

(e) Time period W5 (f) Time period W6

Fig. 8: The aggregated number of reported COVID-19 cases in the Netherlands over the prediction days of the wild type time
periods W1, W2, W3, W4, W5, and W6. We present the training set in blue, the validation set in yellow, and the test set in
orange. Once the model is trained, we use data up to and including day t (dashed orange line) to predict one week ahead t+7
for the test day.



(a) Time period A1 (b) Time period A2

(c) Time period D1 (d) Time period D2

(e) Time period D3 (f) Time period D4

(g) Time period O1 (h) Time period O2

Fig. 9: The aggregated number of reported COVID-19 cases in the Netherlands over the prediction days of the alpha, delta,
and omicron variant time periods A1, A2, D1, D2, D3, D4, O1, and O2. We present the training set in blue, the validation set
in yellow, and the test set in orange. Once the model is trained, we use data up to and including day t (dashed orange line)
to predict one week ahead t+7 for the test day.



B CORRELATION PLOTS

In Figure 10 and Figure 11, we visualize the correlation between the observed and the predicted number of reported SARS-
Cov-2 infections for the 14 time periods we evaluated. The blue dots indicate the test day forecasts for all 344 municipalities,
and the yellow line indicates that the prediction is perfect.

(a) W1: 10/08/2020 (b) W2: 13/09/2020 (c) W3: 17/10/2020

(d) W4: 19/11/2020 (e) W5: 22/12/2020 (f) W6: 24/01/2021

(g) A1: 03/05/2021 (h) A2: 13/06/2021

Fig. 10: The correlation between the observed and forecasted number of reported SARS-Cov-2 infections during the wild type
and alpha periods W1, W2, W3, W4, W5, W6, A1, and A2. The blue dots correspond to the forecasts for each municipality
on the test day of the related time period. When a dot lies on the yellow diagonal line, it means that the prediction is perfect.



(a) D1: 13/09/2021 (b) D2: 16/10/2021 (c) D3: 18/11/2021

(d) D4: 20/12/2021 (e) O1: 14/03/2022 (f) O2: 10/04/2022

Fig. 11: The correlation between the observed and forecasted number of reported SARS-Cov-2 infections during the delta and
omicron variant periods D1, D2, D3, D4, O1, and O2. The blue dots correspond to the forecasts for each municipality on the
test day of the related time period. When a dot lies on the yellow diagonal line, it means that the prediction is perfect.



C ONE DAY AHEAD PREDICTION

In Table XIII to Table XV, we summarize the performance of our model, its components, and the baselines for one day
ahead prediction.

TABLE XIII: The root mean squared errors (RMSE) for t+1 prediction of our model, its parts, and the baselines for all 14
time periods.

RMSE (↓) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2
PD 6.23 3.95 11.60 11.46 15.35 8.75 23.40 3.63 4.90 6.44 36.07 15.00 55.58 16.99
HA 10.29 7.61 34.76 19.69 18.17 14.45 19.04 22.31 13.92 8.26 77.86 17.43 101.18 169.68
HAwindow 5.70 3.17 11.03 10.67 13.02 6.54 18.90 3.89 5.73 5.39 32.89 13.35 102.09 24.54
EB 7.24 3.37 12.97 12.17 16.28 9.29 25.24 3.57 5.05 7.70 44.60 15.69 57.92 14.81

GRU 5.65 2.55 10.58 11.15 16.29 6.70 12.06 3.46 4.81 5.37 31.61 11.09 157.10 40.83
GATv2 8.18 6.57 13.84 13.33 19.82 10.14 15.38 8.08 5.48 7.17 38.87 24.87 126.55 59.97

Model 5.65 2.92 11.41 9.70 17.06 6.81 16.22 3.45 4.87 5.43 23.39 12.95 79.90 13.19

TABLE XIV: The coefficients of determination (R2) for t+1 prediction of our model, its parts, and the baselines for all 14
time periods.

R2(↑) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2
PD 0.736 0.911 0.946 0.765 0.829 0.789 0.714 0.599 0.808 0.815 0.803 0.915 0.902 0.725
HA 0.281 0.671 0.516 0.307 0.761 0.423 0.811 <0 <0 0.695 0.081 0.886 0.675 <0
HAwindow 0.779 0.943 0.951 0.796 0.877 0.882 0.814 0.541 0.737 0.870 0.836 0.933 0.669 0.425
EB 0.644 0.935 0.933 0.735 0.808 0.762 0.668 0.613 0.796 0.777 0.699 0.907 0.893 0.790

GRU 0.783 0.963 0.955 0.778 0.807 0.876 0.924 0.636 0.815 0.871 0.849 0.954 0.217 <0
GATv2 0.545 0.755 0.923 0.682 0.715 0.716 0.877 <0 0.760 0.771 0.771 0.768 0.492 <0

Model 0.783 0.952 0.948 0.832 0.789 0.872 0.863 0.637 0.810 0.864 0.917 0.937 0.797 0.834

TABLE XV: Average relative RMSE for t+1 prediction performance of our model with respect to its parts and the baselines
for each COVID-19 variant and in total.

RMSE (↓) WT α δ o Avg
PD -10.6% -17.8% -16.3% 10.7% -10.2%
HA -47.3% -49.7% -48.7% -56.6% -49.4%
HAwindow 3.5% -12.8% -11.5% -34.0% -8.5%
EB -14.9% -19.6% -24.5% 13.5% -14.9%

GRU 2.6% 17.1% -1.7% -58.4% -5.3%
GATv2 -29.7% -25.9% -30.8% -57.4% -33.4%

TABLE XVI: Average coefficient of determination (R2) for t+1 prediction of our model, its parts, and the baselines for each
COVID-19 variant and in total.

R2(↑) WT α δ o Avg
PD 0.829 0.657 0.835 0.814 0.804
HA 0.493 0.406 0.416 0.338 0.436
HAwindow 0.871 0.678 0.844 0.547 0.790
EB 0.803 0.641 0.795 0.842 0.783

GRU 0.860 0.780 0.872 0.109 0.745
GATv2 0.723 0.439 0.768 0.246 0.627

Model 0.863 0.750 0.882 0.816 0.845
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