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Abstract. We evaluated multigrid techniques for 3D diffusive electromagnetism. The Maxwell
equations and Ohm’s law were discretised on stretched grids, with stretching in all coordinate
directions. We compared standard multigrid to alternative multigrid approaches with line-
wise smoothing and semi-coarsening, both as a stand-alone solver and as a preconditioner.
Although the number of iterations was small for some variants, none of the schemes showed
grid-independent convergence rates on stretched grids.

1 INTRODUCTION

Geophysical prospecting with electro-magnetic techniques is not only used for mineral and
ore detection, but also for oil and gas exploration. With measurements performed at the earth’s
surface, only the low frequencies penetrate deep enough to detect the presence of hydrocar-
bons. At periods of the order of seconds, the light-speed waves have very small amplitudes and
wavelengths larger than the size of the earth. Diffusion dominates the propagation of induction
currents in the earth. As a consequence, electro-magnetic methods provide poor resolution.
Still, they are useful because they can distinguish between conductive and resistive layers, for
instance between non-conductive oil and conductive salty pore water. High-resolution seismic
data cannot provide this information. The combination of the two types of measurements allows
for better prospect evaluation.

During the last decade, marine applications of controlled-source electro-magnetic methods
have become popular. Currents are injected into the sea water by a wire that is towed by a ship.
Detectors are placed at the sea bottom and record the horizontal components of the electric
and magnetic fields. Because sea-water is fairly conductive and the conductivity contrast with
the sediments is not large, it is generally easier to detect resistive or conductive anomalies at
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sea than on land. For shallow waters, the so-called air-wave may pose problems, just as with
measurements on land. This air-wave is the almost static response of the highly resistive air.

Accurate and fast modelling and inversion software is required for the interpretation of
electro-magnetic measurements. The problem is governed by the Maxwell equations together
with Ohm’s law. A frequency-domain formulation is attractive because marine data are usually
provided at one or a few frequencies. We discretise the equations with the Finite Integration
Technique [13, 2], which can be viewed as a finite-volume generalisation of Yee’s scheme [15]
for tensor-product Cartesian grids with variable grid spacings. Grid stretching is applied so that
perfectly conducting boundary conditions can be used. The discretisation leads to a large, sparse
linear system of equations that can be solved by, for instance, the multigrid method. Initial tests
in [7, 8] showed that grid-independent convergence rates can be obtained on equidistant grids.
On stretched grids, however, the convergence rates deteriorate dramatically [7, 8]. This can be
partly compensated by using multigrid as a preconditioner for bicgstab?2 [11, 3]. Still, the
resulting method requires careful gridding to avoid convergence problems and is not robust. The
grid stretching introduces 3D anisotropies of varying nature into the discrete equations, which
is a well-known problem for multigrid solvers. Line-wise, plane-wise relaxation schemes are
among the several potential solutions, as is the concept of semi-coarsening in appropriate direc-
tions [10, 9]. Here, the basic relaxation method chosen is the line-wise relaxation scheme. We
prefer to avoid plane relaxation because of its high computational cost. Instead, we combine
the line relaxation with suitable semi-coarsening techniques [12].

The outline of this paper is as follows. Section 2 summarizes the equations, the discretisation,
and the different multigrid variants evaluated. Convergence results for three test problems are
presented in section 3. Section 4 lists the conclusions.

2 METHOD
2.1 Governing equations and discretisation

The propagation of electromagnetic waves in the earth can be modelled by Maxwell’s equa-
tions together with Ohm’s law. In the frequency domain, we have

iwoGE — V x 1 'V x E = —iwpueds,

where the vector E(w, x) represents the electric field components as a function of angular fre-
quency w and position x. The current source is J ;(w, x). Other quantities are 5(x) = o —iwep€,,
with o(x) the conductivity, €,(x) the relative permittivity, y,(x) the relative permeability, and
€0 and o their vacuum values. We will use SI units.

The equations are discretised on a tensor-product Cartesian grid allowing for grid stretching.
The grid points define block-shaped cells. The electric field components are defined as edge
averages. The Finite Integration Technique [13, 2] provides a discretisation with second-order
accuracy, except in the case of a discontinuous y,- which may lead to a first-order error. Perfectly
electric conducting boundary conditions are used.
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2.2 Multigrid

Multigrid methods are motivated by the fact that many iterative methods, especially if they
are applied to elliptic problems, have a smoothing effect on the error between an exact solution
and a numerical approximation. A smooth discrete error can be well represented on a coarser
grid, where its approximation is much cheaper. The design of efficient relaxation methods for
the multigrid solution of systems of partial differential equations often requires special attention.
The smoother should smooth the error for all unknowns in the equations (that are possibly of
different type) of a system.

A good indication for the appropriate choice of relaxation method for a system of equations
can be derived from the systems’ determinant. If the main operators (or their principal parts) of
the determinant lie on the main diagonal, smoothing is a straightforward matter. In that case, the
differential operator that corresponds to the primary unknown in each equation is the leading
operator. Therefore, a simple equation-wise decoupled relaxation method can efficiently be
used. If, however, the main operators in a system are not in the desired position, the choice
of an efficient smoother needs care. A first obvious choice in the case of strong off-diagonal
operators in the differential system is coupled or collective smoothing: All unknowns in the
system at a certain grid point are updated simultaneously.

Decoupled smoothing, however, is to be preferred for reasons of efficiency and simplicity.
An elegant way to describe distributive relaxation is to introduce a right preconditioner in the
smoothing procedure [14]. For the discrete problem Lyu;, = f},, we introduce new variables
w;,, where u;, = C,wy, and consider the transformed system Ly, C,wy, = f},, with Cy, chosen
in such a way that the resulting operator Ly, Cy, is suited for decoupled (non-collective) relax-
ation. Coupled and decoupled smoothing approaches have their advantages and disadvantages.
If a system of equations consists of elliptic and of other, non-elliptic, components, decoupled
relaxation allows to choose different relaxation methods for the different operators appearing.
However, for general systems of equations it may not be easy to find a suitable distributive
relaxation scheme. Furthermore, the proper treatment of boundary conditions in distributive re-
laxation may not be trivial, as typically the systems’ operator is transformed by the smoother but
the boundary operator is sometimes not considered. In this respect the use of coupled smoother
is straightforward and often robust. A significant difference in cost between coupled and dis-
tributive relaxation, however, lies in the line-wise treatment of the unknowns, which may be
necessary in the case of stretched grids. The cost of a coupled line-wise relaxation step is sub-
stantially higher than of a decoupled line-wise relaxation. The latter can be set up as a tri- (or
more) diagonal matrix, whereas in the coupled version all different unknowns at the line need
to be updated simultaneously. For Maxwell’s equations the two variants mentioned above are
basically proposed by Arnold, Falk and Winther [1] (coupled relaxation) and Hiptmair [4] (de-
coupled smoothing). The smoothers are constructed such that the null-spaces from the curl-curl
operator are handled adequately within smoothing.

The multigrid solver described in [7, 8] and also used here employs standard 3D coarsening,
combining 2 X 2 x 2 fine-grid cells into a single coarse-grid cell. Transfer operators are basic
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choices: The restriction operator is based on volume averaging, the prolongation operator on
piecewise constant interpolation in the direction of each electric-field component and on linear
and bi-linear interpolation in the plane perpendicular to that component. The smoother is of
coupled relaxation type. It is the Symmetric Block Gauss-Seidel [1] applied to the six electric-
field components that live on the edges connected to a single node. The nodes were processed
in lexicographical order and in the reverse order. This scheme does not require an additional
divergence correction. This multigrid method shows textbook convergence rates on grids with
constant spacing [7, 8]. Convergence slows down with grid stretching, because the stretching
introduces anisotropies of varying type in the discrete equations. The multigrid convergence
remedies include line or plane relaxation and semi-coarsening.

Here, we evaluate a combination of two multigrid components for handling anisotropies:
semi-coarsening combined with line-wise relaxation. The line smoother solves the simultane-
ous equations for all electric-field components that live on the edges connected to a single line
of nodes. It is thus a (costly) coupled line-wise smoother. The directions of the lines are z-,
y-, or z. The processing of the lines is done in a lexicographical Gauss-Seidel ordering or in
a zebra fashion. We compared for three examples the Symmetric Line Gauss-Seidel and zebra
relaxation. The line relaxation should partly reduce the adverse effects of anisotropy in the di-
rection of the line. Semi-coarsening should then take place in the direction of the smooth error.
If the anisotropy occurs in arbitrary directions, due to 3D grid stretching, simultaneous semi-
coarsening alternating in all directions should be used without line relaxation [6]. Although
that scheme still has O(N?3) V-cycle complexity, N being the number of cells in one coordinate
direction, it has rather large memory and cpu-time requirements in 3D.

Here, we look for reasonable compromises between efficiency and robustness of the smoother.
Therefore, we study a more simple semi-coarsening approach. We coarsen in two of the three
coordinates simultaneously. Line-wise relaxation is applied along the same two coordinate di-
rections. The direction in which coarsening is not applied, alternates between the multigrid
cycles. On the coarsest grid, the line relaxation acts as a direct solver.

We compared the performance of six methods:

1. The original scheme used in [7, 8] employs post-smoothing with Symmetric Block Gauss-
Seidel, F-cycles, and bicgstab2. The iteration count refers to the number of multigrid cycles
performed inside the bicgstab2 algorithm. One full bicgstab?2 step requires two precon-
ditioning steps, so two multigrid cycles.

2. Pre- and post-smoothing with Symmetric Line Gauss-Seidel in three directions, F-cycles,
and bicgstab2.

3. Pre- and post-smoothing with Symmetric Line Gauss-Seidel in two directions, semi-coarsening
in these two directions, and F-cycles. The direction that is not coarsened, changes after each
full cycle and remains the same within the cycle.

4. As 2, but with Zebra smoothing.

5. As 3, but with Zebra smoothing.

6. As 3, using three multigrid cycles as a preconditioner for bicgstab2. A full iteration
takes 2 x 3 cycles. Again, we use the number of multigrid cycles as iteration count. Because
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bicgstab2 may stop half way a full iteration, we will obatin multiples of three. The direc-
tion in which no coarsening is carried out, has changed through all three coordinates after three
cycles.

Note that a single smoothing step with Zebra relaxation has half the cost of a Symmetric
Line Gauss-Seidel sweep.

3 RESULTS

Three test problems were taken from [7, 8]. Two are artificial, unphysical test problems. The
third is a more realistic, marine example. Power-law grid stretching was used for the first two
problems. Away from the origin, the cell width increased by 1 + «. The marine example had
hyperbolic cosine grid stretching away from the source, with a minimum spacing h,;, and a
ratio between neighbouring cell widths in a given coordinate direction of at most 1 + .

The iterations were stopped once the norm of the residual had decreased to 10~® times its
value for a zero electric field. The computations were carried out on a 64-bit AMD Opteron
238 machine running Linux. The algorithm was coded in matlab, with the smoother and
residual evaluation written in C. The listed computer times are therefore far from optimal but
nevertheless provide some indication of the performance.

3.1 Variable conductivity

The first artificial and unphysical test problem is based on eigenfunctions on the domain
[0, 27]3 m3. The conductivity is 0 = 10+ c(z, y, 2), with ¢(z, y, 2) = (x+1)(y +2)(z — )? for
z < m and zero elsewhere. We set ¢, = 0 and p,, = 1. The electric field components are £, =
—2cos(x)sin(y) sin(z), By = —2sin(x) cos(y) sin(z), and E5 = sin(z)sin(y) cos(z) V/m.
The angular frequency is w = 10° Hz. The current source term follows from these expressions.

Tables 1 and 2 list convergence results for grids with N x N x N cells and different amounts
of grid stretching. Grid-independent convergence rates on the equidistant grids are only ob-
served for the original method 1 and the new methods 2 and 4, and perhaps 6. Methods 3 and
6, with semi-coarsening one direction and Symmetric Gauss-Seidel line-relaxation in the other
two directions, appear to be insensitive to the amount of stretching when considering a fixed
number of cells. In terms of cpu-time, methods 3 and 6 are the only one that comes close to the
original method 1 wild mild stretching. With stronger stretching on fine grids, they win.

3.2 Variable permittivity

The second problem was taken from [8]. It resembles the previous example, but now the
conductivity is constant whereas p,, = 1 for z < 7 and p, = 2 for z > 7. The electric field
component F/3 is discontinuous across z = .

Tables 3 and 4 list the convergence results for the six schemes. As in the previous example,
methods 1, 2, 4 and possibly 6 show grid-independent convergence rates on equidistant grids,
but this is lost on stretched grids. Methods 2, 3, and 6 perform reasonably well in terms of
iteration count, but are much slower than the original method 1 in terms of cpu-time on mildly
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1:bi,SGS 2:bi,SLGS3 | 3:SC,SLGS2 4:b1,Z3 5:SC,Z2
N | «o iter cpu(s) |iter cpu(s) | iter cpu(s) | iter cpu(s) | iter cpu(s)
3210 7 6.210° 3 3.710¢ 4 4.210° 4 3.610° 7 3.910
64 7 3.710¢ 4 4.3107 4 3.510? 4 3.010° 8 3.910°
128 6 2.510? 4 53103 8 8.110° 5 48102 | 12 6.9103
32 |1 0.04 8 7.810° 4 5.110¢ 4 4.310! 5 4.610¢ 9 5.610°
64 14 8.010* 4 4.310? 5 4.510? 8 6.210%| 14 7.110?
128 33 1.4103 8 1.110% 7 7.210%| 26 2.510*| 47 2.710
321006 | 10 9.610° 4 5.110¢ 4 4.110" 5 4610 | 10 6.110!
64 22 1.210? 5 5.510? 5 45102 ] 12 9410%| 21 1.110°
128 75 3.310%| 11 1.510% 7 7.310%| 63 6.110* | 133 7.610*

Table 1: Iteration counts and cpu-times in seconds for the first test problem with variable conductivity.

1:b1,SGS 3:SC,SLGS2 | 6:bi,SC,SLGS2

N | « iter cpu(s) | iter cpu(s) | iter cpu (s)
3210 7 6.210Y 4 4210 6 5.910!
64 7 3.710'| 4 3510%| 6 5.3 102
128 6 2.510? 8 8.110° 9 9.210°
32 1 0.04 8 7.810° 4 4.310" 6 6.3 10!
64 14 8.0101 5 4.510? 6 5.410?
128 33 1.4103 7 7.210° 9 9.4103
321006 10 9.610Y 4 4.110* 6 6.3 10"
64 22 1.210? 5 4.510? 6 5.410?
128 75 3.3103 7 7.3103 9 9.510°
32 1 0.1 16 1.510° 4 3.510! 6 6.4 10"
64 41 2.3107 6 5.410? 6 5.410?
128 233 9.910° 6 6.510° 6 6.510°

Table 2: Iteration counts and cpu-times in seconds for the first test problem with variable conductivity (continued).
Some data from the previous table are included.

stretched grids. Again, method 3 appears to be insensitive to the amount of stretching for a fixed
number of cells. The zebra variants, though less costly than line Gauss-Seidel, do not appear to
be competitive. Method 6, though expensive, is the most robust.

3.3 Marine example

The third example is a realistic marine example, described in [8]. Figure 1 shows the resis-
tivity (1 /o, o being the conductivity) on a logarithmic scale. A cross section at the y-coordinate
of the source is displayed in Figure 2, giving an impression of the grid stretching.

Table 5 lists iteration counts and cpu-times for the various multigrid approaches. Method
5 is left out as it performed less than satisfactory. As in the previous examples, only methods
3 and 6 come anywhere near method 1 in terms of cpu-time. The iteration counts, however,
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are not completely independent of the amount of stretching, although they do not deteriorate as
dramatically as for the other multigrid schemes.

4 CONCLUSIONS

A multigrid method for electromagnetic diffusion with a cell-wise smoother showed good
convergence rates on equidistant grids. Grid stretching, however, slowed down the conver-
gence. Here, we have attempted to construct a more robust solver that can handle grid stretch-
ing without a significant increase of the number of iterations. We considered line relaxation
with and without semi-coarsening. The number of iterations was reduced significantly in some
cases. The higher cost of line relaxation did not, however, lead to a reduction of the required
cpu time. Also, none of the schemes showed grid-independent convergence rates on stretched
grids. The best results in terms of iteration count were obtained with Line Gauss-Seidel in two
coordinate directions and semi-coarsening in the same directions. The one direction in which
no coarsening took place, alternated between multigrid cycles. The method was also used as a
preconditioner for bicgstab2, using 3 multigrid cycles. This appeared to be the most robust
approach.

Further details are given in [5]. Other suggestions for improvement are listed in [8].
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1:b1,SGS 2:bi,SLGS3 | 3:SC,SLGS2 4:b1,73 5:SC,Z2
N |« iter cpu(s) | iter cpu(s) | iter cpu(s) | iter cpu(s) | iter cpu(s)
3210 7 6.210° 4 5.110° 5 5.210! 5 4010 11 6.710¢
64 7 3.610¢ 4 4.310? 9 8.110? 4 3210%| 21 1.1103
128 7 3.0102 4 5410 19 2.010* 4 3.810%| 41 23104
321004 | 10 9.510° 4 5.110¢ 5 5.410! 5 4610 | 12 6.810!
64 16 8.410* 4 4.310? 9 8.210? 8 6.310%| 20 1.010°
128 38 1.6103 9 1.210*| 15 1.610*| 23 2210*| 56 3.210%
321006 | 12 1.110! 4 5.110* 6 6.310' 6 5510 | 14 8.410!
64 25 1.410? 6 6.6102 9 8110%| 12 9.610%| 27 1.410?
128 83 3.510%| 16 2210*| 14 1510*| 69 6.710* | 248 1.410°

Table 3: Iteration counts and cpu-times in seconds for the second test problem with variable permittivity and a
discontinuous solution.

1:b1,SGS 3:SC,SLGS2 | 6:bi,SC,SLGS2

N |« iter cpu(s) | iter cpu(s) | iter cpu (s)
3210 7 6.210° 5 5.210! 6 6.3 10!
64 7 36101 9 8110%| 9 8.110?
128 7 3.010°| 19 2.010*| 15 1.610*
321004 | 10 9.510° 5 5.410! 6 6.210"
64 16 8.410* 9 8.210? 9 8.1102
128 38 1.610% | 15 1.610*| 15 1.610%
321006 12 1.110¢ 6 6.310' 6 6.4 10"
64 25 1.410? 9 8.110? 9 8.1102
128 83 3.510%| 14 1510*| 15 1.610%
321 0.1 19 1.810° 6 6.410' 6 6.4 10"
64 55 3.110? 9 8.210? 9 8.3 102
128 325 1.410% | 13 1.410*| 12 1.310%

Table 4: Tteration counts and cpu-times in seconds for the first test problem with variable permittivity (continued).
Some data from the previous table are included.

1:b1,SGS 2:b1i,SLGS3 | 3:SC,SLGS2 4:bi,73 6:b1,SC,SLGS2
hmin | @ iter cpu(s) | iter cpu(s) | iter cpu(s) | iter cpu(s) | iter cpu (s)

50 | 0.035| 15 6.110? 5 7.110° | 14 1.510% 7 6.910° | 12 1.310*
20 [ 0.059 | 75 3.210%| 14 2010* | 14 1.510*| 31 3.110%| 12 1.310*
10 [ 0.074 | 163 7.010% | 26 3.710*| 15 1.710*| 78 7.710* | 15 1.710%

510089 | 409 1.810*| 44 6.310*| 21 2.310* | 165 1.610° | 18 2.010*

Table 5: Iteration counts and cpu-times in seconds for the realistic marine example.
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Figure 1: Model for a marine example with a resistive salt body (hmin = 50 m). The sea bottom has a depth of
about 600 m.
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Figure 2: Cross section of a subset of the model at y = 6500 for Ay, = 20 m.
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