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Abstract
Latent profile analysis is a statistical modeling approach used to identify hidden subpopulations (i.e.,
latent profiles) within a population. These latent profiles are identified based on values of observed
continuous variables, also known as profile indicators. While LPA is getting more popular in education
sciences and psychology to group people based on similar characteristics, very little is known about
the mathematical formulation. In this thesis, the mathematical foundations of LPA is introduced and
explained. This leads to a discussion on the assumptions for the model.

After investigating the mathematical foundations of LPA, we applied LPA to identify different profiles
of motivation in a student population at Delft University of Technology. We used a set of survey data
measuring four types of motivation (i.e., profile indicators). Results of the analysis showed that there
are four different student motivational profiles, each consisting of a different combination of the four
types of motivation.
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1
Introduction

The PRogramme of Innovation in Mathematics Education (PRIME) is developing mathematics courses
for engineering programmes at the TU Delft. In order to measure effects of these innovations, statistical
research is conducted in PRIME. Part of the research in PRIME is about the motivation of students to
study for a mathematics course. This thesis is about this motivational part of the research in PRIME.
We aim to identify different profiles of motivation in student populations.

Identifying hidden profiles within a population can be done in multiple ways by using different types
of cluster analyses. There are many types of cluster analysis and they often have the same goal: to
correctly classify similar cases into one of the subgroups. Individuals in a cluster tend to be more sim­
ilar to each other than unrelated randomly selected individuals (Fox, 2016). Some examples of cluster
analyses are 𝑘­means clustering, latent class analysis (LCA) and latent profile analysis (LPA). In sec­
tion 2.1 the methods 𝑘­means clustering and LCA are shortly explained. This thesis will be about the
clustering method LPA, hence we aim to identify different profiles of motivation using LPA.

Latent profile analysis (LPA) is a statistical modeling approach used to identify hidden profiles within
a population. These latent profiles are identified based on values of observed continuous variables,
also known as profile indicators. Specifically, LPA models unobserved population heterogeneity by
grouping individuals into latent profiles based on similarities in their response variable scores. (Peugh
and Fan, 2013). The individuals are assigned to a profile by using the probability of membership. They
are assigned to the profile for which their probability is the highest. This is why LPA is a model­based
(person­centered) approach.

LPA is a type of latent variable mixture model. Latent variable modeling refers to multiple statistical
procedures that use one or more (unobserved) latent variables to investigate relationships between a
larger set of observed variables. The latent variable refers to the latent categorical variable of cluster
membership, hence this cannot be measured directly from the data. The term mixture in the latent
variable mixture model refers to the fact that the data is being sampled from a population composed
of a mix of probability distributions. From this mixture of probability distributions, each probability dis­
tribution belongs to a profile, and each profile distribution is characterized by its own unique set of
parameters consisting of means and covariances. In LPA it is assumed that the distributions in the
mixture are normally distributed. (Pastor et al., 2007)

Researchers have increasingly used LPA in recent years in different fields, for example in criminology,
education, marketing and psychology (Tein et al., 2013). Since LPA is mostly used in these fields,
very little is known about the mathematical formulation of LPA. Therefore in this thesis we will give an
overview of the mathematics that is used in LPA to form latent profiles.
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2 1. Introduction

Thesis outline
In this research, statistics is applied to educational research. Before we apply the statistical method
LPA on actual data sets, it is important for us to have a good understanding on how LPA works and
the mathematics involved to identify latent profiles. By doing so, we will be able to better interpret the
results from the analysis and discuss the implications for educational research. In chapter 2, the im­
portant mathematical model equation used in LPA is given and this equation is investigated. With this
equation the latent profiles are eventually created by estimating the unique model parameters (e.g.,
means and covariances) which characterize the profile distributions. Furthermore, the equation pro­
vides estimates for the probabilities of an individual belonging to a profile.

Chapter 3 presents the research onmotivational profiles in PRIME by first explaining what PRIME is and
giving a brief explanation of the different types of motivations according to the fields of education and
psychology. In this chapter we will also bring up our main research question: ’What are the student
profiles that can be distinguished based on students’ motivation and are these profiles significantly
different?’. To answer this question we will apply LPA to the PRIME data set. To determine which model
of the LPA gives the best model fit we will use several fit indices. When the best model is determined
and the individuals are assigned to the profiles, we will check if these profiles are significantly different
by applying a statistical method.
We will also look at some previous studies on LPA. To compare our results with the results of the
previous studies we have a small research question. This sub research question is ’Are the identified
profiles comparable to those found in previous studies?’.



2
Latent Profile Analysis

In this chapter we will first explain a few examples of clustering methods. Then we will take a close look
into the mathematics that is used to create the latent profiles. One equation, the LPA model equation,
is central to the mathematical formulation of LPA. This LPA model equation is used to find estimates
for the unique parameters per profile. To find these estimates from the LPA model equation we have
to use the Expectation­Maximization (EM) algorithm.
In addition, certain specifications are defined to create the models, namely the number of profiles and
how the variables are related to one another (e.g., whether the variances and covariances are allowed
to vary between the profiles). To choose which specification gives the best model fit, we use multiple
fit indices.

2.1. Clustering methods
As mentioned before in the introduction, there are several types of clustering methods. We will shortly
explain three examples of the clustering methods, 𝑘­means cluster analysis, latent class analysis (LCA)
and latent profile analysis (LPA). We will eventually use LPA in this thesis, so therefore we will also
compare the 𝑘­means cluster analysis and LCA with LPA.

2.1.1. 𝐾­means cluster analysis
One of these modeling techniques is the 𝑘­means cluster analysis. This analysis is similar to LPA since
it also groups participants into categories based on response variable score similarities. But there are
some clear differences between the two. At first, there is some difference in the latent profile member­
ship determinations. In the k­means cluster analysis, each individual is assigned to one and only one
cluster. An indicator shows if an individual is (1) or is not (0) member of a cluster. This is seen as hard
clustering. On the other hand, latent profile analysis is a form of soft clustering. In LPA, each point is
assigned to all the clusters with different probabilities. So the latent profile membership is estimated
as a probability conditional on a participant’s response variable scores. The individuals are assigned
to the profile for which their probability is highest. (Peugh and Fan, 2013)
Another big difference between LPA and 𝑘­means cluster analysis contains the unique set of the pa­
rameters means and covariances for each profile. Unlike 𝑘­means cluster analysis, in LPA is it allowed
to vary the variances and covariances across all the latent profiles.

2.1.2. Latent class analysis (LCA)
The clustering method that is most similar to LPA is latent class analysis (LCA). Where LPA tries to
revover hidden groups based on the means of continuous observed variables, LCA does the same for
categorical variables. Another difference is that in LCA there is no assumption that the variables are
distributed in any particular way. In LCA you assume that within each class, the observed variables are
unrelated to each other (Oberski, 2016).

3



4 2. Latent Profile Analysis

2.1.3. Latent profile analysis (LPA)
LPA is a statistical modeling approach used to identify hidden profiles within a population. These la­
tent profiles are identified based on values of continuous observed variables, also known as the profile
indicators. The individuals are assigned to a profile by using the probability of membership. They are
assigned to the profile for which their probability is the highest. This is why LPA is a model­based
(person­centered) approach.

LPA is under the mathematicians mostly known as gaussian mixture model (Oberski, 2016). The name
latent profile analysis is more commonly used in the social sciences, therefore we will use LPA in this
thesis. This research is about this clustering method, the latent profile analysis.

2.2. Model description
The data that is analysed in LPA is sampled from a population that consists of a mix of distributions.
Each of these distributions belongs to a profile. So it is the goal of LPA to identify which individuals
belong to which profile distribution. Each profile distribution is characterized by its own unique set
of parameters consisting of means and covariances. This set of parameters is unknown, as is the
probability of belonging to a profile (profile membership). LPA will estimate these unknowns in order to
from the latent profiles. To estimate these parameters some assumptions are made, see Spurk et al.,
2020.

2.2.1. Assumptions
1. Within each latent profile the continuous indicators are normally distributed.

2. Unobserved heterogeneity. Unobserved population heterogeneity occurs when the variables that
cause the heterogeneity can not be observed directly from the data. In this case, the subpopula­
tions are latent and must be derived from the data.

3. The data of each individual is independent of the other individuals. We also assume that the
profiles are independent of one another. This means that every profile consists of different people.

To illustrate how LPA works mathematically, Pastor et al., 2007 provide the following concrete example.
In this example you want to identify profiles in a population based on a single factor. Suppose also that
the population consists of two different profiles of persons, so this means in the latent profile analysis
two different types of distributions. By the first assumption in 2.2.1, these two distributions are assumed
to be normal. In general the number of profiles in not known beforehand.

As mentioned before, LPA provides estimates for the probability of belonging to a profile and for the
unique set of parameters consisting of the means and covariances per profile. Say the continuous
single indicator of cluster membership for person 𝑖 is 𝑦𝑖, with a population of 𝑁 individuals (𝑖 = 1,… ,𝑁).
And assume that parameters 𝜇1 and 𝜎21 could be estimated for profile 1, parameters 𝜇2 and 𝜎22 could be
estimated for profile 2 and that the probabilities of membership, which also can be seen as the weights
given to each profile, are 𝜋1 for belonging to profile 1 and 𝜋2 for profile 2. Then the model for this
example is represented using the following equation:

𝑓(𝑦𝑖|𝜃) = 𝜋1𝑓1(𝑦𝑖|𝜇1, 𝜎21 ) + 𝜋2𝑓2(𝑦𝑖|𝜇2, 𝜎22 ), 𝑖 = 1,… ,𝑁 (2.1)

From this equation we see that the distribution 𝑓 of the cluster indicator given the model parameters
𝜃 = (𝜋1, 𝜇1, 𝜎21 , 𝜋2, 𝜇2, 𝜎22 ), is a linear combination of two different probability distributions (𝑓1 and 𝑓2)
with their own unique set of parameters.

This was a concrete example of LPA of the univariate model, since there was only one single indicator.
When there is more than one continuous indicator we have the case of a multivariate model. In this
case the multiple indicator variables for person 𝑖 are contained in the vector y𝑖.
Another extension of the univariate model to get the multivariate model is that now the distribution for
each profile 𝑘 is characterized by a mean vector 𝜇𝑘 and covariance matrix Σ𝑘.
When the population consists of 𝐾 different distributions, all assumed to be multivariate normal, and
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you have multiple continuous indicator variables, then the multivariate representation of equation (2.1)
is given in definition 2.2.1 in equation (2.2).

Definition 2.2.1. (Pastor et al., 2007 and Morgan et al., 2016) Given that

• 𝜃𝑘 = (𝜇𝑘 , Σ𝑘) is the vector containing the mean (𝜇𝑘) and the covariance matrix (Σ𝑘) for each profile
𝑘;

• 𝜉 is the vector containing all the parameters in 𝜃1, … , 𝜃𝐾;
• 𝜋𝑘 is the probability of belonging to latent profile 𝑘, it can also be seen as the weight of the mixture
model. The weights are non­negative and must satisfy: ∑𝐾𝑘=1 𝜋𝑘 = 1;

• 𝐾 represents the total number of underlying profiles;

• 𝜓 = (𝜋1, … , 𝜋𝐾 , 𝜉𝑇)𝑇 is the vector containing all the unknown parameters in this model;
• y𝑖 represents the observed variables of person 𝑖;
• 𝑓𝑘 is the normal density function associated to profile 𝑘,

the LPA model equation is represented by the following equation:

𝑓(y𝑖|𝜓) =
𝐾

∑
𝑘=1

𝜋𝑘𝑓𝑘(y𝑖|𝜃𝑘), 𝑖 = 1,… ,𝑁 (2.2)

This model shows that the multivariate distribution of multiple cluster indicators, contained in vector y𝑖
for person 𝑖, given the model parameters 𝜓 is a weighted mixture of 𝐾 separate multivariate distribu­
tions.

2.3. Model estimation
As mentioned in section 2.2 LPA provides estimates for the unknown parameters 𝜓 of the LPA model
equation: the weights 𝜋𝑘 and the means 𝜇𝑘 and covariances Σ𝑘 of each latent profile 𝑘. With these
estimates, the latent profiles are formed. To find these estimates, we will use the maximum likelihood.
Therefore the log­likelihood derivatives need to be computed.

Proposition 2.3.1. Suppose there are 𝑁 observations y𝑗. Then the log­likelihood for 𝜓 is given by:

log 𝐿(𝜓) =
𝑁

∑
𝑗=1

log{
𝐾

∑
𝑘=1

𝜋𝑘𝑓𝑘(y𝑗|𝜃𝑘)} (2.3)

Proof. Using McLachlan and Peel, 2000 and the LPA model equation (2.2) the log­likelihood for 𝜓 is
calculated as follows:

log 𝐿(𝜓) = log
𝑁

∏
𝑗=1

𝑓(y𝑗|𝜓)

=
𝑁

∑
𝑗=1

log 𝑓(y𝑗|𝜓)

=
𝑁

∑
𝑗=1

log{
𝐾

∑
𝑘=1

𝜋𝑘𝑓𝑘(y𝑗|𝜃𝑘)}

Since there is a summation inside the logarithm, it will be complex to calculate the derivative of this ex­
pression and then solving for the parameters. We can use an iterative method to achieve this purpose.
It is called the Expectation­Maximization (EM) algorithm.
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2.3.1. Expectation­Maximization algorithm
General EM­algorithm
The Expectation­Maximization algorithm is an approach to the iterative computation of maximum like­
lihood estimates. The algorithm is used when the target data is only partially observed.

Definition 2.3.1. (Bijma et al., 2017 and Bishop, 2006)
Given the set of all observed data 𝑋, the set of all latent variables 𝑍, the set of all model parameters 𝜃
and a joint distribution 𝑝(𝑋, 𝑍|𝜃), the general steps for the EM­algorithm are the following:

1. Initialise �̃�0.

2. E­step: Given �̃�𝑖, determine the function

𝑄(𝜃, �̃�𝑖) = 𝔼�̃�𝑖 [log𝑝(𝑋, 𝑍|𝜃)] (2.4)

3. M­step: Define �̃�𝑖+1 as the point where this function takes on its maximum:

�̃�𝑖+1 ∶=max
𝜃
𝑄(𝜃, �̃�𝑖) (2.5)

The E­ and M­steps are alternated repeatedly until the likelihood values 𝑝�̃�𝑖(𝑋) converges to the maxi­
mum of the likelihood. Then �̃�𝑖 will converge to the maximum likelihood estimator.

EM­algorithm for LPA model equation
Based on McLachlan and Peel, 2000, Bishop, 2006 and Murphy, 2012 we will apply the EM­algorithm
to the LPA model equation to estimate the model parameters 𝜋𝑘, 𝜇𝑘 and Σ𝑘.

In this calculation some component­label vectors, z1, … ,z𝑛, are used to indicate if an observed variable
belongs to a certain profile. We take z as a latent variable where z𝑗 is a 𝑘­dimensional vector with

𝑧𝑗𝑘 = {
1, if y𝑗 belongs to the 𝑘th profile
0, otherwise

(2.6)

Proposition 2.3.2. Let 𝛾(𝑧𝑗𝑘) be the probability that a data point y𝑗 belongs to profile 𝑘. The estimates
for the parameters 𝜋𝑘, 𝜇𝑘 and Σ𝑘 found by the EM­algorithm are:

�̂�𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)

𝑁 (2.7)

�̂�𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)y𝑗
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)

(2.8)

Σ̂𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘)(y𝑗 − 𝜇𝑘)𝑇

∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)
(2.9)

Proof. We will perform the steps of the EM­algorithm stated in definition 2.3.1. In our approach the
parameters for the model are 𝜃 = {𝜋, 𝜇, Σ}.
Within the formulation of the mixture problem in the EM­framework, the observed­data matrix consisting
of the vectors

Y = (y𝑇1 , … ,y𝑇𝑁)𝑇

is viewed as being incomplete, and the associated component­label vectors, z1, … ,z𝑁, are not avail­
able. Using the component­label vectors defined in (2.6) we obtain the complete data­vector

Y𝑐 = (y𝑇 ,z𝑇)𝑇 ,

where
Z = (z𝑇1 , … ,z𝑇𝑁)𝑇
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So now we can try to maximize the likelihood for the complete data set {Y,Z}. The likelihood function
is given by

𝑝(Y,Z|𝜃) =
𝑁

∏
𝑗=1

𝐾

∏
𝑘=1

𝜋𝑧𝑗𝑘𝑘 (𝑓𝑘(y𝑗|𝜃𝑘))𝑧𝑗𝑘 (2.10)

Hence the log­likelihood function is given by

log𝑝(Y,Z|𝜃) =
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝑧𝑗𝑘 [log𝜋𝑘 + log 𝑓𝑘(y𝑗|𝜃𝑘)] (2.11)

The first step of the EM­algorithm is to initialise the values for the parameters 𝜋, 𝜇 and Σ. Let 𝜃∗ be the
value specified initially for 𝜃.
In the E­step we have to evaluate

𝑄(𝜃∗, 𝜃) = 𝔼 [log𝑝(Y,Z|𝜃∗)]

=∑
𝑍
𝑝(Z|Y, 𝜃) log𝑝(Y,Z|𝜃∗) (2.12)

To evaluate this function we need to know what the probability is that a data point y𝑖 belongs to profile
𝑘. Using Bayes’ rule we get the following:

𝑝(Z|Y, 𝜃) = 𝑝(𝑧𝑗𝑘 = 1|y𝑗) =
𝑝(y𝑗|𝑧𝑗𝑘 = 1)𝑝(𝑧𝑗𝑘 = 1)

∑𝐾𝑎=1 𝑝(y𝑗|𝑧𝑗𝑎 = 1)𝑝(𝑧𝑗𝑎 = 1)

=
𝜋𝑘𝑓𝑘(y𝑗)

∑𝐾𝑎=1 𝜋𝑎𝑓𝑎(y𝑗)
= 𝛾(𝑧𝑗𝑘) (2.13)

So combining equations (2.11), (2.12) and (2.13), and using the fact that the latent variable 𝑧 will only
be 1 once everytime the summation is evaluated (see (2.6)), yields

𝑄(𝜃∗, 𝜃) =∑
𝑍
𝛾(𝑧𝑗𝑘) log𝑝(𝑌, 𝑍|𝜃∗)

=
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝛾(𝑧𝑗𝑘) [log𝜋𝑘 + log 𝑓𝑘(y𝑗|𝜃𝑘)] (2.14)

In the M­step 𝑄 is being optimized with respect to 𝜋𝑘, 𝜇𝑘 and Σ𝑘. 𝑄 also needs to take the restriction
into account that all 𝜋 values should sum up to one. So we want to find the maximum of 𝑄 subjected
to the equality constraint ∑𝐾𝑘=1 𝜋𝑘 = 1. To achieve this, we will use a Lagrange multiplier 𝜆. Hence:

𝑄(𝜃∗, 𝜃) =
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝛾(𝑧𝑗𝑘) [log𝜋𝑘 + log 𝑓𝑘(y𝑗|𝜃𝑘)] − 𝜆 (
𝐾

∑
𝑘=1

𝜋𝑘 − 1) (2.15)

Maximizing this equation gives us the parameter estimates.
Estimation of 𝜋𝑘.
First we maximize (2.15) with respect to 𝜋𝑘.

𝜕𝑄(𝜃∗, 𝜃)
𝜕𝜋𝑘

=
𝑁

∑
𝑗=1

𝛾(𝑧𝑗𝑘)
𝜋𝑘

− 𝜆 (2.16)
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Setting this equal to zero gives:

𝑁

∑
𝑗=1

𝛾(𝑧𝑗𝑘)
𝜋𝑘

− 𝜆 = 0

⇔
𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘) = 𝜋𝑘𝜆 (2.17)

⇔
𝐾

∑
𝑘=1

𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘) =

𝐾

∑
𝑘=1

𝜋𝑘𝜆 (2.18)

We know that the weights 𝜋𝑘 must sum up to one. Since 𝛾(𝑧𝑗𝑘) is a probability distribution, these
probabilities over 𝑘 must also sum up to one. Then from (2.18) it follows that 𝜆 = 𝑁. Using this result
and (2.17) we get the following estimation for 𝜋𝑘:

�̂�𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)

𝑁 (2.19)

Estimation of 𝜇𝑘
To find the estimate of 𝜇𝑘, we have to maximize 𝑄(𝜃∗, 𝜃) in (2.14) with respect to 𝜇𝑘. To do this maxi­
mization we use the assumption that the profiles are normally distributed with 𝑓𝑘 as the profile­specific
normal density function with profile­specific mean vector 𝜇𝑘 and covariance matrix Σ𝑘.
From this assumption and (2.14) it follows that:

𝑄(𝜃∗, 𝜃) =
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝛾(𝑧𝑗𝑘) [log𝜋𝑘 + log 𝑓𝑘(y𝑗|𝜃𝑘)]

=
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝛾(𝑧𝑗𝑘) [log𝜋𝑘 + log [
exp(−12(y𝑗 − 𝜇𝑘)

𝑇Σ−1𝑘 (y𝑗 − 𝜇𝑘))
√(2𝜋)𝑁|Σ𝑘|

]]

=
𝑁

∑
𝑗=1

𝐾

∑
𝑘=1

𝛾(𝑧𝑗𝑘) [log𝜋𝑘 −
1
2 [log(|Σ𝑘|) + (y𝑗 − 𝜇𝑘)

𝑇Σ−1𝑘 (y𝑗 − 𝜇𝑘) + 𝑁 log(2𝜋)]] (2.20)

We want to calculate the derivative of (2.20) with respect to 𝜇𝑘. Hereby we will use the fact of taking
vector derivatives (x is a vector, B is a constant matrix):

𝑑
𝑑xx

𝑇Bx = 2Bx.

This calculation of the derivative results in:

𝜕𝑄(𝜃∗, 𝜃)
𝜕𝜇𝑘

= Σ−1𝑘
𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘) (2.21)

Setting this equal to zero gives the following estimate for 𝜇𝑘:

Σ−1𝑘
𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘) = 0

�̂�𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)y𝑗
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)

(2.22)
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Estimation of Σ𝑘 To find the estimate of Σ𝑘, we have to calculate the derivative of (2.20) with respect
to Σ𝑘. We can make this calculation easier, by using the trace­trick which reorders the scalar inner
product x𝑇Ax using the trace function (Murphy, 2012):

x𝑇Ax = 𝑇𝑟(x𝑇Ax) = 𝑇𝑟(xx𝑇A) = 𝑇𝑟(Axx𝑇)

Let Σ−1𝑘 = Λ. We rewrite 𝑄(𝜃∗, 𝜃) of (2.20) using this trace­trick:

𝑄(𝜃∗, 𝜃) =
𝐾

∑
𝑘=1

𝑁

∑
𝑗=1
(𝛾(𝑧𝑗𝑘) log𝜋𝑘 −

𝑁
2 𝛾(𝑧𝑗𝑘) log(2𝜋)) −

1
2

𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘) log |Λ|

− 12𝑇𝑟 {(
𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘)(y𝑗 − 𝜇𝑘)𝑇)Λ} (2.23)

We take a derivative of this expression with respect to Λ. Hereby we use the fact that taking a derivative
of the trace of a matrix goes as follows, with A and B matrices (Murphy, 2012):

𝜕
𝜕A𝑇𝑟(BA) = B𝑇 .

Taking the derivative of (2.23) and setting it equal to zero yields

𝜕𝑄(𝜃∗, 𝜃)
𝜕Λ = −12 (

𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘))Λ−𝑇 −

𝑁

∑
𝑗=1
𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘)(y𝑗 − 𝜇𝑘)𝑇 = 0 (2.24)

Λ−𝑇 = Λ−1 = Σ̂𝑘 =
∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)(y𝑗 − 𝜇𝑘)(y𝑗 − 𝜇𝑘)𝑇

∑𝑁𝑗=1 𝛾(𝑧𝑗𝑘)
(2.25)

2.3.2. Creating the latent profiles
After each profile distribution is characterized by the estimates from the EM­algorithm, the persons have
to be classified. Each individual is assigned to the profile with the highest probability of membership.
So in order to classify a given person, these probabilities of membership have to be calculated.
From the proof of proposition 2.3.2 (equation (2.13)) the probability of membership is derived.

Corollary 2.3.1. The probability of membership of individual 𝑖 to profile 𝑘 is

𝑝𝑖𝑘 = ℙ(individual 𝑖 ∈ group 𝑘|y𝑗; �̂�) =
�̂�𝑘𝑓𝑘(y𝑖|�̂�𝑘)

∑𝐾𝑎=1 �̂�𝑎𝑓𝑎(y𝑖|�̂�𝑎)
(2.26)

With this the latent profiles are formed and the persons are classified. To select the best types of
profiles, you can use some test statistics. This is explained in section 2.5.
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2.4. Model specification
There are several specifications in terms of to what extent each indicator varies and how the profile
indicators relate to one another. The model can thus be specified in terms of whether and how the vari­
ances and covariances are estimated, and so there are different parametrizations of the covariance
matrix Σ𝑘. In all the models the means are freely estimated in the different profiles.

Following Pastor et al., 2007 and Johnson, 2021 we are going to consider four different types of models.
Here we use that there are 𝑟 profile indicators.

1. Equal variances and covariances fixed to 0
In this model the variances are equal across profiles. But the variances are allowed to differ
across indicators within a profile, this is indicated by the different subscripts for the variances in
the covariance matrix (2.27). In this matrix the covariances are fixed to 0, so this means that the
indicators are uncorrelated to one another both within and across the clusters. In other words, in
this specification the amount of variation around the mean for a specific variable is the same in
each profile.

Σ𝑘 =
⎡
⎢
⎢
⎣

𝜎21
0 𝜎22
⋮ ⋮ ⋱
0 0 … 𝜎2𝑟

⎤
⎥
⎥
⎦

(2.27)

2. Varying variances and covariances fixed to 0
In this model the variances are allowed to differ both within and across profiles, this is indicated
by the additional subscript 𝑘 in the covariance matrix (2.28).
If we look at this model in terms of variations, then we could say that in this specification the
amount of variation of a profile indicator can be different in each profile.

Σ𝑘 =
⎡
⎢
⎢
⎣

𝜎21𝑘
0 𝜎22𝑘
⋮ ⋮ ⋱
0 0 … 𝜎2𝑟𝑘

⎤
⎥
⎥
⎦

(2.28)

3. Equal variances and equal covariances
In this model both the variances and covariances are constrained to be equal across profiles.
The covariances are allowed to be freely estimated within a profile.

Σ𝑘 =
⎡
⎢
⎢
⎣

𝜎21
𝜎21 𝜎22
⋮ ⋮ ⋱
𝜎𝑟1 𝜎𝑟2 … 𝜎2𝑟

⎤
⎥
⎥
⎦

(2.29)

4. Varying variances and varying covariances
In this model both the variances and covariances are allowed to vary both within and across
profiles.

Σ𝑘 =
⎡
⎢
⎢
⎣

𝜎21𝑘
𝜎21𝑘 𝜎22𝑘
⋮ ⋮ ⋱

𝜎𝑟1𝑘 𝜎𝑟2 … 𝜎2𝑟𝑘

⎤
⎥
⎥
⎦

(2.30)

The first and second models are much alike. In the first model the variances are equal and in the sec­
ond the variances are varying. If we compare these two models then we can conclude that the simpler
model (so equal variances and covariances fixed to 0) is less computationally intensive, because there
are less parameters that need to be calculated, since in the first model only one overall parameter for
the variances in a profile indicator have to be calculated and in the second model one parameter for
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each profile has to be calculated. But on the other hand, the first model is less realistic, since in this
model the variances are equal in every profile.

In the first two models the profile indicators are not allowed to relate to another. In the third and fourth
model the variables can relate to another, due to the unfixed covariances. The third model is the
simplest of the two because there the covariances are equal across the profiles, so this means that the
covariance between two profile indicators must be the same in every profile. In the fourth model this
doesn’t have to be the case, because here the covariance can be freely estimated within each profile,
so this means that when for example two profile indicators are statistically significant in one profile, this
does not have to be the case in another profile.

2.5. Evaluating model fit
We want to find out the optimal number of profiles in the data. This typically involves estimating models
with incremental numbers of latent profiles. Then using statistical indicators the best fitted model can
be found. Multiple statistical indicators have to be used to find the optimal number of latent profiles,
because every statistical fit indicator uses different values to indicate the best fit and also not every fit
index indicates the same model to have the best fit.
There are a lot of different statistical indicators available. We will discuss the most common statistical
indicators used in latent profile analysis; AIC, BIC, entropy, BLRT and ICL (Tein et al., 2013).

Information­based criteria (IC) indices are based on the log likelihood function of a fitted model, where
the ICs impose a penalty on the number of parameters and/or sample size (Nylund et al., 2007). We
will describe two IC indices, namely the AIC and BIC.

Definition 2.5.1. (Fox, 2016)
The Akaike information criterion (AIC) is deined as

AIC = −2 log𝑒 𝐿(�̂�) + 2𝑠

where log𝑒 𝐿(�̂�) is the maximized log­likelihood under the model, 𝜃 is the parameter vector for the
model and 𝑠 is the number of estimated parameters.

Definition 2.5.2. (Fox, 2016)
The Bayesian information criterion (BIC) is defined as

BIC = −2 log𝑒 𝐿(�̂�) + 𝑠 log𝑒 𝑛

where log𝑒 𝐿(�̂�) is the maximized log­likelihood under the model, 𝜃 is the parameter vector for the
model, 𝑠 is the number of estimated parameters and 𝑛 is the number of observations.

The AIC and BIC will take each of the models with different numbers of latent profiles and rank them
from best to worst. For both the AIC and BIC it holds that the model with the lowest values is considered
as the best fitting model.

Definition 2.5.3. (Tein et al., 2013 and Pastor et al., 2007)
The entropy statistic 𝐸 is

𝐸 = 1 −
∑𝑁𝑗=1 ∑

𝐾
𝑘=1(−𝑝𝑗𝑘 log(𝑝𝑗𝑘))
𝑁 log(𝐾) (2.31)

where 𝑝𝑗𝑘 is the probability of belonging to a cluster:

𝑝𝑗𝑘 =
𝜋𝑘𝑓𝑘(y𝑗|𝜇𝑘 , Σ𝑘)

∑𝐾𝑎=1 𝜋𝑎𝑓𝑎(y𝑗|𝜇𝑎 , Σ𝑎)
(2.32)

Higher entropy values represents a better fit, it indicates more precision in group membership clas­
sification. Values larger than 0.80 indicate that the latent profiles are very distinguishable from each
other.
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Definition 2.5.4. (Nylund et al., 2007 and Tein et al., 2013)
The bootstrap likelihood ratio test (BLRT) compares a 𝑘 − 1­profile model with a 𝑘­profile model. The
BLRT uses a bootstrap resampling method to approximate the p­value, which indicates if the null hy­
pothesis that the (𝑘 − 1)­profile provides a significantly better fit than the 𝑘­profile model should be
rejected in favor of the alternative hypothesis that the 𝑘­profile model provides a better fit than the
𝑘 − 1­profile model. A statistically significant p­value (𝑝 < 0.05) indicates that the null hypothesis
should be rejected, so then it will indicate a significant improvement in the model fit. This test can only
be used for models that use the same parametrization.

Definition 2.5.5. (Scrucca et al., 2016)
The integrated complete­data likelihood (ICL) is defined as

ICL = BIC+ 2
𝑛

∑
𝑖=1

𝐺

∑
𝑘=1

𝑧𝑖𝑘 log(𝛾𝑖𝑘)

where 𝛾𝑖𝑘 is the conditional probability that y𝑖 belongs to the 𝑘th mixture component, and 𝑧𝑖𝑘 = 1 if the
𝑖th datapoint is assigned to cluster 𝑘 and 0 otherwise (like is stated in section 2.3.1). Models with the
lowest ICL gives the best fitted model.



3
PRIME research

In this chapter we will look into an application in PRIME. We will identify different profiles of motivation
in a student population at Delft University of Technology. For this we will use LPA. In LPA the profiles
are identified based on values of continuous observed variables identified as profile indicators. So
before we can really apply LPA on the dataset, we have to prepare the dataset by making the observed
variables continuous. This is done by factor analysis. Then we will use R to apply LPA to the prepared
data. When the profiles are created we will ensure that the profiles are clearly differentiated using a
statistical method.

3.1. PRIME
The PRogramme of Innovation in Mathematics Education (PRIME) (“PRIME”, n.d.) redesigns mathe­
matics courses for the engineering programmes of the TU Delft. Using a blended learning cycle design
PRIME aims to:

• enhance teaching and learning,

• improve connection between mathematics and engineering,

• increase student active participation and motivation.

The third aim is most relevant for our current research where we examine the motivational profiles of
students. To increase student’s motivation it is helpful to identify clusters of the students based on their
motivation. In this thesis we will make this overview by dividing the students into different profiles based
on their motivations. The profiles can’t be measured directly, so they are latent variables. Therefore we
will use latent profile analysis to identify those latent profiles. To do this research the following research
question is formulated:
Main research question:
What are the student profiles that can be distinguished based on students’ motivation and are
these profiles significantly different?

3.1.1. Motivations and Motivational Profiles
In this research, motivation is considered form the perspective of self­determination theory (Deci and
Ryan, 2000). According to the self­determination theory, students’ motivation can be differentiated by
the autonomy that is experienced. Therefore, an important distinction is made between autonomous
and controlled motivation.

Controlled motivation is about acting with a sense of pressure. Controlled motivation consist of two
subtypes: introjected and external motivation. Introjected motivation is experienced when feelings of
pressure come from yourself, so for example shame. External motivation is experienced when feelings
of pressure come from an external source such as demands from an authority figure.

13
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Autonomous motivation concerns the sense of volition and the psychological freedom. There are also
two types of autonomous motivation: identified and intrinsic motivation. With identified motivation, the
activity is personally important or valuable. With intrinsic motivation, students study out of individual
interest or the satisfaction the task or activity brings them.

Previous research shows that autonomous and controlled motivation can be experienced by the same
student (Wijnia and Baars, 2021). Therefore, it is important to examine whether both types of motiva­
tions benefit learning or whether one type of motivation is more beneficial for learning than the other.
Studies that used a person­centred approach have identified two to six motivational profiles. Among
the different motivational profiles identified across studies, four types of motivational profiles were most
common. The labels attached to the four motivational profiles were:

1. Good­quality: high levels of autonomous motivation and low levels of controlled motivation

2. Poor­quality: low levels of autonomous motivation and high levels of controlled motivation

3. High­quantity: high levels of both autonomous and controlled motivations

4. Low­quantity: low levels of both autonomous and controlled motivation.

Besides the four most common motivational profiles, studies also identified other motivational profiles,
such as moderately autonomous motivation and moderately unmotivated where the differences be­
tween autonomous and controlled motivation were less extreme. Differences in the number and types
of motivational profiles in the studies could be due to the differences in the studies in which the mo­
tivational profiles were investigated. One of the differences is the educational context and learning
environment. For example, students may experience higher levels of autonomy in a blended learning
environment than in a traditional on­campus learning environment. Another difference is the level of
specificity in which motivation is being measured. Moderate profiles were more commonly identified in
studies that used a finer­grained representation of motivation (i.e., intrinsic, identified, introjected, and
extrinsic) compared to a higher order dimension (i.e., autonomous and controlled).
Therefore, it is of interest to examine how the number and types of motivational profiles identified in
our study will compare to previous studies. The types of motivational profiles are for example, students
studying math in a blended learning environment and motivation measured at a finer­grain. Hence, a
small research question of my research is:
Are the identified profiles comparable to those found in previous studies?

3.1.2. Prior research and hypothesis
There has been prior research on motivational profiles in education using latent profile analysis. Wijnia
and Baars, 2021 made a review of all prior research that has been done. This investigation of prior
research identified between two to six motivational profiles. Wewill use this observation in our research.
This investigation also concluded that among the different motivational profiles identified across studies,
the mode of number of profiles is four. This leads to the following hypothesis for our research:
The number of student profiles that can be distinguished based on students’ motivation of the PRIME
dataset is four.

3.1.3. Data
PRIME has collected the answers on a survey from students of an engineering programme at the
TU Delft. This survey was about the motivation to study for a mathematics course. It is a validated
survey adapted from the Journal of Educational Psychology (Vansteenkiste, 2009). It consisted of 16
statements, which where of answers to the question ’Why are you studying in general? I am studying...’.
Each statement belongs to one of the four types of motivations: external, introjected, identified and
intrinsic. In section 3.1.1 these types of motivation are explained. There are 4 statements per type of
motivation. Here are examples of one statement per type of motivation:

• External motivation:
Because that’s what others (parents, friends, etc.) force me to do.

• Introjected motivation:
Because I want others to think I’m a good student.
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• Identified motivation:
Because I want to learn new things.

• Intrinsic motivation:
Because I enjoy doing it.

All the 16 statements of the survey can be found in Appendix A.

Students indicated how important each of the listed motives is for them to study using a 5­point Likert
scale, where 1 indicates completely not important, and 5 indicates very important. Data of 187 students
can be used.

3.2. Preparing survey data for analysis
The data consists of ordinal data, namely the 16 survey items per person. There are 4 survey items
per latent variable (type of motivation). To use this data with the fact that four survey items relate to a
specific type of motivation we have to convert the 16 survey items into 4 composite values. This can
be done in several ways. We have investigated three different ways and checked which one will work
in our research. These different ways are using the total score for each subscale, using the median
and using weighted factor loadings. We will eventually use the weighted factor loadings in our research.

3.2.1. Using total score
An approach to convert the ordinal data into some composite value is to use the total score. In this
approach the four items associated with each factor are used to form a sum subscale total, in order to
represent each of the four types of motivations. This approach has been used in multiple latent profile
analysis researches (Pastor et al., 2007). Hence, the subscale scores are on a scale of 4­20.
With this approach there can’t be any weight assigned to a factor, hence this approach treats every
answer of a statement as contributing to the composite score equally. But this is not the case, since
the order in the numbers have some important meaning. Therefore this approach will not be as good
as the other one and will not be used in this research.

3.2.2. Using median
Another approach is to convert the ordinal data into a composite value using the median. With this
approach attention is payed to the fact that every answer of the statements does not have to be treated
equally, since here the median is taken from each of the four items associated with each factor. Since
in this approach only the median is used, it is quite a simple way to handle this. It doesn’t really give a
fine understanding of the problem. We have performed the latent profile analysis using this approach,
but this approach will not be used in the main analysis of this research. If you are interested in the
latent profile analysis when the ordinal data is converted into a composite scores using the median, we
refer you to appendix B.

3.2.3. Using weighted factor loadings
When converting ordinal data into composite value it is important to note that in the points from the
5­point scale the order matters (e.g., 1 = ’completely not important’ and 5 = ’very important’). An ap­
proach which we can use to achieve this is by using factor analysis to generate the composite scores.
This approach is used in our research and explained in the remainder of this section.

From Yong and Pearce, 2013 the following is known about factor analysis.
Factor analysis is a statistical approach that uses the concept that measurable and observable vari­
ables can be reduced to fewer latent variables that are unobservable and share a common variance.
The goal of factor analysis is to summarize data so that relationships and patterns can be easily in­
terpreted and understood. Factor analysis is commonly used when you want to discover the number
of factors that have an effect on variables and to analyze which variables ’belong’ to another. Factor
analysis is useful for studies that involve items from questionnaires.
In factor analysis the factor loading for a variable is a measure of how much the variable contributes to
the factor. How these factor loadings are estimated is out of scope of this thesis, because we will use
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the R­function factanal() which is available in R­Studio to perform factor analysis. For the mathe­
matical model of factor analysis and more information about this analysis, see Yong and Pearce, 2013
and Lawley and Maxwell, 1962.

From Starkweather, 2012 the general steps for generating composite scores using weighted factor
loadings are the following:

1. Recode ordinal responses to numeric responses

2. Apply a factor analysis model which shows the calculated correlation structure of the variables

3. Save the factor scores and factor loadings

4. Rescale the factor scores using the factor loadings, the weightedmean and the weighted standard
deviation of the original data. In this way the composite scores refer to the same labels (e.g.
’completely not important’) as the original scores. Here, the factor loadings are the weights for
the weighted mean and weighted standard deviation calculation.

Definition 3.2.1. The weighted mean of data 𝑥1, 𝑥2, … , 𝑥𝑛 using the set of weights 𝑤1, 𝑤2, … , 𝑤𝑛
is defined as,

�̂� =
∑𝑛𝑖=1𝑤𝑖𝑥𝑖
∑𝑛𝑖=1𝑤𝑖

Definition 3.2.2. The weighted standard deviation of data 𝑥1, 𝑥2, … , 𝑥𝑛 using the set of weights
𝑤1, 𝑤2, … , 𝑤𝑛 is defined as,

�̂� = √
∑𝑛𝑖=1𝑤𝑖

(∑𝑛𝑖=1𝑤𝑖)2 − ∑
𝑛
𝑖=1(𝑤𝑖)2

𝑛

∑
𝑖=1
𝑤𝑖(𝑥𝑖 − �̂�)2

After performing these steps we create a dataframe consisting of the rescaled factor scores as the
composite scores for each section of the questionnaire. The R­code of preparing the data can be
found in appendix C.

3.3. Formulating the model in R
3.3.1. TidyLPA
Now that we have transformed the data into ready to use data, we can formulate the model in R. There
are several packages available which you can use to carry out latent profile analysis in R. The package
that we are going to use is tidyLPA. Using tidyLPA gives you the functionality to specify different models
that determine whether and how the parameters means, variances and covariances are estimated.
TidyLPA is also able to specify and compare different solutions for the estimate of the number of profiles
(Rosenberg et al., 2018).
In tidyLPA both the input and output are a dataframe. This can then easily be used to create plots.
TidyLPA also uses the ”pipe” operator, %>% to compose functions. By piping we pass the results of one
function to the next. These functions that the results can be passed on to are stated below (Rosenberg,
2020).

• select():
Picks variables based on their names from the dataset.

• scale():
Scale the data.

• estimate_profiles():
Estimates latent profiles. In this command you can specify the number of profiles and the type of
model that you want to use.
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• plot_profiles():
Plot the latent variables with the variable means and variances. In this profile plot there is being
payed attention to the visualization of classification uncertainty. This is done by showing:

1. Bars which show a confidence interval for the class mean point
2. Boxes which show the standard deviations within each profile
3. Raw data, where the posterior class probability is used to weight the transparency of the

data. In this way each datapoint is most clearly visible for the profile where it is most likely
to belong to.

• compare_solutions():
Compares the fit of several estimated models. These models have varying numbers of profiles
and model specifications, so this function helps select the optimal number of classes and model
specification.

• mutate():
Adds new variables to a dataframe that are functions of existing variables.

• get_data():
Get data from objects generated by tidyLPA. This function returns the original data frame, with
variables that are outcomes of the profiles included. So in this data frame among others the
variables used to create the profiles and the profiles assignments are given. This function is
often used when you want to use the estimated profiles in subsequent analyses.

In tidyLPA you first have to mention the name of the dataframe followed by the names of the variables
used to create the profiles, using the select() function. Then you also specify the number of profiles
and the type of model that you want to use, this is done by the estimate_profiles function. The
four models explained in section 2.4 can be specified in tidyLPA.

3.3.2. Mclust
TidyLPA is a ”wrapper” to the mclust package. This means that tidyLPA uses mclust functions to carry
out LPA, hence it provides ”wrappers” to these functions that make them easier to use (Rosenberg,
2021). From Scrucca et al., 2016 mclust is a popular R­package for Gaussian mixture modelling for
model­based clustering, classification and density estimation. It provides functions to estimate the
parameters by the EM­algorithm to form the latent profiles. There are also functions that combine
model­based hierarchical clustering, EM for mixture estimation and fit indices for model selection. In
mclust the default fit index for selecting a model is the BIC. Mclust gives an extensive strategy for clus­
tering, density estimation and discriminant analysis. It is also possible to perform single E­ and M­steps
of the EM­algorithm. Some additional functions are also available to display and visualise fitted models
along with clustering, classification, and density estimation results. There are also functions available
where you can visualise the fit indices for several models with multiple number of profiles.

In section 2.3.1 the EM­algorithm was explained. There it is stated that you have to have to initialise
values for the parameters with which you can start the EM­algorithm. These initial parameters can
be collected by first performing another clustering method. By Scrucca et al., 2016, mclust uses the
partitions obtained frommodel­based hierarchical agglomerative clustering (MBHAC) method to collect
these initial parameters.

Definition 3.3.1. (Scrucca and Raftery, 2015)
Model­based hierarchical agglomerative clustering (MBHAC) is an approach where 𝑘 clusters are ob­
tained from a large number of smaller clusters by recursively merging the two clusters that have the
smallest dissimilarity in a model­based sense, i.e. the dissimilarity used for agglomeration is derived
from a probabilistic model. The dissimilarity based on a Gaussian mixture model is equal to the de­
crease in the classification likelihood resulting by merging of two clusters.

3.4. Results from tidyLPA
We will perform the latent profile analysis using the dataframe of the composite values that is created
in section 3.2.3. The names of these composite scores that we will use in R are:
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• External motivation: ext.composite.score

• Introjected motivation: ijt.composite.score

• Identified motivation: idt.composite.score

• Intrinsic motivation: int.composite.score

We want to estimate all the possible models, such that we can then use the fit indices to select the
best model of all the models. We will estimate the models with the number of profiles between 2 to 6,
because this is what has been investigated in prior research (see section 3.1.2) and also the four types
of models from section 2.4, this is all specified using the estimate_profiles function of R. In the
tidyLPA package the models from section 2.4 have different numbers:

• Model 1 in R: Equal variances and covariances fixed to 0.

• Model 2 in R: Varying variances and covariances fixed to 0.

• Model 3 in R: Equal variances and equal covariances.

• Model 6 in R: Varying variances and varying covariances.

The R­code of LPA using tidyLPA can be found in appendix C.

This estimation in R using tidyLPA gives the different types of models that are formed. These are every
type of the 4 different models. And for each of these models the number of profiles from 2 to 6 are
being estimated. For each type of model the fit indices are given:

tidyLPA analysis using mclust:

Model Classes AIC BIC Entropy prob_min prob_max n_min n_max BLRT_p
1 2 1438.90 1480.48 0.83 0.85 0.98 0.17 0.83 0.01
1 3 1423.55 1481.13 0.71 0.79 0.92 0.14 0.59 0.01
1 4 1405.92 1479.49 0.67 0.75 0.87 0.12 0.33 0.01
1 5 1387.50 1477.06 0.76 0.79 0.95 0.02 0.38 0.01
1 6 1385.17 1490.72 0.77 0.79 0.91 0.04 0.40 0.17
2 2 1424.73 1479.10 0.75 0.92 0.93 0.33 0.67 0.01
2 3
2 4
2 5
2 6
3 2 1384.68 1445.45 0.69 0.90 0.92 0.45 0.55 0.01
3 3 1365.65 1442.42 0.71 0.77 0.92 0.20 0.52 0.01
3 4 1363.75 1456.50 0.69 0.68 0.93 0.09 0.46 0.18
3 5 1373.85 1482.60 0.57 0.00 0.93 0.00 0.43 0.99
3 6 1325.19 1449.93 0.87 0.85 0.98 0.01 0.48 0.01
6 2 1355.11 1447.87 0.81 0.88 0.96 0.22 0.78 0.01
6 3 1329.48 1470.22 0.72 0.84 0.93 0.20 0.45 0.01
6 4 1286.76 1475.47 0.92 0.95 1.00 0.10 0.64 0.01
6 5 1293.12 1529.81 0.88 0.86 0.99 0.10 0.38 0.44
6 6

From the results it is noticeable that model 2 can’t be estimated for 3 to 6 profiles, and model 6 can’t be
estimated for 6 profiles. The reason these models can not be estimated is that the EM algorithm fails
to converge. This happens due to singularity in the covariance matrix estimate (Scrucca et al., 2016).
What this singularity exactly means and why it follows from this that some models can’t converge is not
investigated in this research, we focus on the models that are estimated. In the discussion (chapter 5)
we will give a recommendation how to continue with this non­convergence models.
The other models do give some results. So we will continue the analysis with these models. To find
the best model we are using the fit indices explained in section 2.5. The probabilities minimum and
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maximum (prob_min and prob_max) are theminimum andmaximum of the average latent class prob­
abilities for most likely class membership, by assigned class. So since the individuals are assigned to
the profiles they have the highest probability of belonging to, these prob_min and prob_max should
be as high as possible, since this reflects greater classification certainty.

Comparing the fit indices with each other gives that for model 6 (varying variances and varying covari­
ances) with four profiles has the best model fit given that the AIC (1286.76) is the lowest, the entropy
(0.92) is the highest, the probabilities minimum (0.95) and maximum (1.00) are the highest and the
BLRT p­value (0.01) is statistically significant.

In section 3.3.1 it is explained that using the function compare_solutionswe can look for the optimal
model. The results of this function are:

Compare tidyLPA solutions:

Model Classes BIC Warnings
1 2 1480.481
1 3 1481.127
1 4 1479.490
1 5 1477.060
1 6 1490.718
2 2 1479.102
2 3 Warning
2 4 Warning
2 5 Warning
2 6 Warning
3 2 1445.452
3 3 1442.415
3 4 1456.505
3 5 1482.601 Warning
3 6 1449.928 Warning
6 2 1447.871
6 3 1470.218
6 4 1475.469
6 5 1529.805
6 6 Warning

Best model according to BIC is Model 3 with 3 classes.

An analytic hierarchy process, based on the fit indices AIC, AWE, BIC, CLC,
and KIC (Akogul & Erisoglu, 2017), suggests the best solution is Model 6
with 4 classes.

The output of this function gives the BIC values for each estimated model. It also gives some conclu­
sion about the best fitted model based only on the BIC. This is model 3 with 3 profiles, since this model
has the lowest BIC value. But the output of this function also gives that the best solution of the best
fitted model is based on the multiple fit indices AIC, AWE, BIC, CLC and KIC (Akogul and Erisoglu,
2017). The function compare_solutions used all those fit indices to get the best fitted model, and
the conclusion to which this function arrived is also model 6 with 4 profiles. So this again shows that
multiple fit indices are necessary to obtain the best fitted model.

Using the plot_profiles function we can create the profile plot of the best fitted model (figure 3.1).
In this profile plot the 4 different latent profiles are displayed using different colours and with the prop­
erties which are stated in the explanation of the plot_profiles function in section 3.3.1. This plot
shows the means and variances of the four types of motivations for each profile. The plot is not really
clear, since the values of the types of motivations do vary much. Therefore we also created a table
with the means and standard deviations of the best fitted model, see table 3.1.
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At first, the number of individuals per profile (𝑛) is given in the table. From this we see that profile 1
contains the most individuals and profile 4 the least.
In this table also the means of the profiles and types of motivation can be compared. The standard
deviation indicates if the values tend to be close to the mean. A high standard deviation indicates that
the values are widely spread out and a low standard deviation indicates that the values are closely to
the mean.
These standard deviations are illustrated in the profile plot (figure 3.1) as the boxes around the mean
value. So when we look at the external motivation for example, then we would expect from table 3.1
that profile 1 should be widely spread (SD = 0.87) and profile 4 should tend to be close to the mean
value (SD = 0.13). When we look at the profile plot (figure 3.1) these expectations indeed hold.

Figure 3.1: Profile plot of the best fitted model. The means per type of motivation per profile are indicated with the points. The
boxes around the points indicate the variations of the motivation types per profile.

Means and standard deviations associated with the best fitted model
External Introjected Identified Intrinsic

Profile 𝑛 motivation motivation motivation motivation
Means SD Means SD Means SD Means SD

1 115 2.54 0.87 2.73 0.83 3.96 0.52 3.59 0.53
2 23 1.59 0.38 2.16 0.62 4.77 0.05 4.28 0.20
3 24 1.79 0.36 3.61 0.35 4.48 0.29 3.97 0.35
4 19 1.27 0.13 1.55 0.29 4.04 0.36 3.78 0.20

Table 3.1: Table for the means and standard deviations associated with the best fitted model.

To interpret the profile plot better, it is possible to scale the data before estimating the profiles. Using
the scale() function in R the data is being scaled and hence standardized means are being created.
In figure 3.2 the profile plot with the scaled data is shown. Scores below ­1 indicate low scores and
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scores above 1 indicate high scores.

Figure 3.2: The profile plot with scaled data for the best fitted model. Here the data is scaled before estimating the profiles.

The profile plots in figures 3.1 and 3.2 and table 3.1 are used to name the created profiles. We will
compare the mean scores on the four types of motivations between the profiles. Based on these com­
parisons we attach labels to the profiles. These labels are in line with the labels of previous research
in section 3.1.1.

1. Profile 1 has the lowest scores on the identified and intrinsic motivations. And the highest score
on external motivation. It scores moderately high on introjected motivation. Therefore the label
attached to profile 1 is poor quality.

2. Profile 2 has the highest value on the identified and intrinsic motivations. It has moderate scores
on external and introjected motivations. Therefore the label attached to profile 2 is good quality.

3. Profile 3 scores high values on the introjected, identified and intrinsic motivations. It has a mod­
erate score on external motivation. Therefore the label attached to profile 3 is high­quantity.

4. Profile 4 scores low values on the external and introjected motivations. And has moderately low
scores on the identified and intrinsic motivations. Therefore the label attached to profile 4 is
low­quantity.

This means that our hypothesis in section 3.1.2 that the number of student profiles that can be distin­
guished based on students’ motivation of the PRIME dataset is four holds.
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3.4.1. Checking profiles
Now that the latent profiles are created we have to ensure that the profiles are clearly differentiated.
So we have to test for differences between the four profiles. This is done by conducting a one­way
ANOVA.

Definition 3.4.1. A one­way ANOVA is a statistical test that examines the relationship between a quan­
titative response variable and a factor. It tests the equality of two oremore populationmeans by examin­
ing the variances in collected samples (Hesamian, 2016). The null hypothesis for the one­way ANOVA
is that two or more means are equal. Hence, a significant result means that the two means are unequal.

From Hesamian, 2016 and Lee and Lee, 2018 the assumptions of ANOVA are:

1. Assumption of normality.
The dependent variable is normally distributed in each group.

2. Assumption of homogeneity of variance.
Each group has the same variance.

3. Assumption of independence.
The groups should be independent. This means that the groups should be made up of different
people.

To test for the difference between the four profiles we want to conduct four times one­way ANOVA using
profile membership as the independent variable and the external, introjected, identified and intrinsic
motivations as the dependent variables. But before we conduct the one­way ANOVA we have to check
if the assumptions of the one­way ANOVA from definition 3.4.1 hold in our research:

1. Assumption of normality.
From the first assumption of the Latent Profile Analysis in section 2.2 we know that the continuous
indicators are normally distributed within each latent profile. These continuous indicators are the
four types motivations (external, introjected, identified and intrinsic) and therefore this assumption
holds.

2. Assumption of homogeneity of variance.
The best fitted model from the LPA for which we want to perform the ANOVA is the model with
varying variances and varying covariances. So this means that the variances are allowed to vary
across the profiles. Therefore the variances in each group are not equal and this assumption
does not hold.

3. Assumption of independence.
The four profiles are independent from each other, because each profile consists of different
people. Therefore this assumption holds also.

One­way ANOVA is performed only in cases where every assumption of definition 3.4.1 holds. Al­
though, it is a robust statistic that can be used even when there is a deviation from the assumption of
homogeneity of variance. When this is the case, the Games­Howell test can be applied (Lee and Lee,
2018). The Games­Howell test is applicable in cases where the homogeneity of variance assumption
is violated.

In other researches the ANOVA was applied and in Wijnia and Baars, 2021 the Games­Howell test is
also applied. These researches were researches from the social sciences, so here they didn’t check
whether the assumptions of the ANOVA were valid or whether the Games­Howell test could be applied.
We will apply the Games­Howell test also, but we recommend that in future research this part could
be more intensively investigated. Also about the mathematics behind the Games­Howell test could be
more researched.

The Games­Howell test is performed in R. Here you have to use the ANOVA fits with the profile mem­
bership as the independent variable and the external, introjected, identified and intrinsic motivations as
the dependent variables. To get these variables we use the get_data() function (see section 3.3.1).
The R­code of the Games­Howell test can be found in appendix C. The results of the Games­Howell
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test for the external, introjected, identified and intrinsic motivation are stated in tables 3.2, 3.3, 3.4 and
3.5.

Results Games­Howell test for external motivation
Mean sd n Significant group

1 2.536 0.874 115 a
2 1.590 0.382 23 b
3 1.791 0.364 24 b
4 1.272 0.126 19 c

Table 3.2: Results of the Games­Howell test for external motivation. It shows the means and standard deviations per profile,
the number of individuals per profile and the significance group indicators. Different letters indicate significantly different groups
based on the external motivation.

Results Games­Howell test for introjected motivation
Mean sd n Significant group

1 2.734 0.825 115 a
2 2.158 0.622 23 b
3 3.607 0.349 24 c
4 1.550 0.292 19 d

Table 3.3: Results of the Games­Howell test for introjected motivation. It shows the means and standard deviations per profile,
the number of individuals per profile and the significance group indicators. Different letters indicate significantly different groups
based on the introjected motivation.

Results Games­Howell test for identified motivation
Mean sd n Significant group

1 3.955 0.516 115 a
2 4.765 0.047 23 b
3 4.481 0.289 24 c
4 4.043 0.362 19 a

Table 3.4: Results of the Games­Howell test for identified motivation. It shows the means and standard deviations per profile,
the number of individuals per profile and the significance group indicators. Different letters indicate significantly different groups
based on the identified motivation.

The values for the means, standard deviations and number of individuals 𝑛 are equal to the values of
this variables in table 3.1. The letters in the last column of tables 3.2, 3.3, 3.4 and 3.5 indicate significant
differences between the profiles (p­value smaller than 0.05). When the letters are different it indicates
that these profiles are significantly different from each other. From these results we conclude that the
profiles 1­2, 1­3, 1­4, 2­4 and 3­4 are significantly different based on the external motivation (table 3.2),
all profiles are significantly different based on the introjected motivation (table 3.3), the profiles 1­2, 1­3,
2­3, 2­4 and 3­4 are significantly different based on the identified motivation (table 3.4) and the profiles
1­2, 1­3, 1­4, 2­3 and 2­4 are signigicantly different based on the intrinsic motivation (table 3.5).
For the profiles where the letters are the same per type of motivation, we can not say anything about
the significant difference between the profiles.

3.5. Results from mclust
In section 3.4 we saw that there were some models that can’t be estimated. This is due to the non­
convergence in the EM­algorithm. To check this we will perform the latent profile analysis using the
mclust package, following the explanation of section 3.3.2 that the mclust package clearly uses the
EM­algorithm and contains some additional functions for the EM­algorithm. We also want to make a
clearer profile plot. For the R­code, see appendix D.

Mclust makes it possible to create plots of the fit indices, for example a BIC plot and ICL plot. The BIC
plot for the models estimated is visible in figure 3.3.
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Results Games­Howell test for intrinsic motivation
Mean sd n Significant group

1 3.593 0.533 115 a
2 4.283 0.200 23 b
3 3.971 0.354 24 c
4 3.781 0.202 19 c

Table 3.5: Results of the Games­Howell test for intrinsic motivation. It shows the means and standard deviations per profile,
the number of individuals per profile and the significance group indicators. Different letters indicate significantly different groups
based on the intrinsic motivation.

Figure 3.3: Plot for BIC model selection criteria for all the estimated models

In this BIC plot the different types of models can clearly be compared in terms of the BIC. From the
figure it is clear that mclust also can’t measure the models with varying variances and fixed covari­
ances, similar to the results from tidyLPA, since the BIC plot does not give values for models 3,4,5 and
6 of the model with varying variances and fixed covariances. From figure 3.3 is is also clear that if we
only look at the BIC fit index the models with equal variances and fixed covariances gives the worst fit
(largest BIC value) for every amount of number of profiles except 5 profiles, then the varying variance
and varying covariance gives the worst fit. The model with equal variances and equal covariances
gives the best fitted models (smallest BIC value) across all the number of profiles.

When we look at the plot for ICL model selection criteria in figure 3.4 we see that the models with
equal variances and fixed covariances still give the worst fitted models (largest ICL value) across all
the number of profiles except for 5 number of profiles, then the model with equal variance and equal
covariance is the worst. Now the best fitted model is not really clear across all the number of profiles.
Hence multiple fit indices are needed to find the best fitted models.
Since the profile plot in figure 3.2 does not really visualise the latent profiles clearly, we want to make a
clearer overview of the latent profiles that are formed in the best fitted model. Using mclust we obtain
the clear plot in figure 3.5. At the end of section 3.4 we describe the latent profiles obtained. These
profiles are now clearly visible in the figure.
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Figure 3.4: Plot for ICL model selection criteria for all the estimated models

Figure 3.5: The profile plot from mclust for the best fitted model with the composite scores calculated by weighed factor loadings





4
Conclusion

In summary, this thesis has given a mathematical overview of latent profile analysis (LPA) and how to
determine the best model fit. Furthermore we have illustrated how latent profile analysis can be applied
to find motivational profiles of a student population in service mathematics education.

We have investigated how the latent profiles are created in LPA. This is done with the LPA model
equation (equation 2.2). This equation consists among others of the unique model parameters means
and covariances which characterize the profile distributions, and parameters for the probabilities of be­
longing to a profile. These parameters are estimated using maximum likelihood estimation via the EM
algorithm.

Our main research question is ’What are the student profiles that can be distinguished based on stu­
dents’ motivation and are these profiles significantly different?’. To answer this question we performed
LPA on the data set of PRIME. LPA is performed in R using tidyLPA. During this analysis we have found
that LPA only works when certain assumptions hold, namely the continuous profile indicators must be
normally distributed within each latent profile and there must be unobserved population heterogeneity.
We have also come to the conclusion that you have to convert your ordinal data into composite scores
per profile indicator before you can use your data for LPA.

We have also found that LPA cannot estimate all models. Apparently the EM algorithm fails to converge
for certain models. This is the case when there is singularity in the covariance matrix estimate. For a
recommendation on how to continue the research for these models, see the discussion (chapter 5).

Using multiple fit indices we found that the best model fit is the model with varying variances and varying
covariances with 4 profiles. By comparing the mean scores on the four types of motivations between
the profiles we can label the four latent profiles as follows:

1. Poor quality: lowest scores on the identified and intrinsic motivations, highest score on external
motivation and moderately high on introjected motivation.

2. Good quality: highest scores on the identified and intrinsic motivations and moderate scores on
external and introjected motivations.

3. High quantity: high scores on the introjected, identified and intrinsic motivations and moderate
score on external motivation.

4. Low quantity: low scores on the external and introjected motivations and moderately low scores
on the identified and intrinsic motivations.

These labels of profiles are in line with the motivational profiles that were found in previous research
given in section 3.1.1.

27
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To check that the profiles are clearly differentiated, we conducted a Games­Howell test. We conclude
from the results of this test that:

• Profiles 1 and 2 are significantly different based on all the types of motivation.

• Profiles 1 and 3 are significantly different based on all the types of motivation.

• Profiles 1 and 4 are significantly different based on the external, introjected and intrinsic motiva­
tion.

• Profiles 2 and 3 are significantly different based on introjected, identified and intrinsic motivation.

• Profiles 2 and 4 are significantly different based on all the types of motivation.

• Profiles 3 and 4 are significantly different based on external, introjected and identified motivation.

In our hypothesis in section 3.1.2 we used the research of Wijnia and Baars, 2021 that the number
of student profiles that can be distinguished based on students’ motivation is 2 to 6 with a mode of 4
profiles. Our best fitted model is a model with 4 profiles, so therefore our analysis is in line with previous
studies and our hypothesis holds.
To compare our results with the results of the previous studies we also have a small research question.
This sub research question is ’Are the identified profiles comparable to those found in previous stud­
ies?’. Using the research of previous studies in Wijnia and Baars, 2021 our answer to this question is
that our identified profiles are indeed comparable to those found in previous studies.

During this research, we have gained a better understanding on the latent profiles are created in LPA
and the mathematical formulations underlying LPA. We have found that previous research on LPA in
social sciences lack of the mathematical formulations of LPA. In this thesis, we have attempted to
make clear how the the models in LPA is estimated and specified. The explanations in this thesis will
be of value to social science researchers who would like to make use of LPA in their research. A good
understanding of the statistics in LPA would allow researchers to be able to better interpret the results
from the analysis.
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Discussion

In this chapter some of the problems we encountered will be discussed and we will give some recom­
mendations for further research.

5.1. Models that can not be estimated
By performing latent profile analysis in R using the tidyLPA package, an error was stated that some
models could not be estimated, due to non­convergence (see section 3.4). These models are the
models with varying variances and fixed covariances for 3 to 6 profiles and the model with varying
variances and varying covariances for 6 profiles. The problem is caused by singularity in the covariance
matrix estimate (Scrucca et al., 2016). In future research it is a good idea to investigate this further.
By doing so, researchers will gain a better understanding on how to better specify models when using
LPA.
Thus a recommendation is to try to figure out why it follows from singularity in a covariance matrix
that certain models with specific numbers of profiles can not be estimated. Fraley and Raftery, 2007
suggest using Bayesian methods to avoid that models with singularity in the covariance matrix can
not be estimated, is to use Bayesian methods. From their paper it appears that using a Bayesian
regularisation makes it possible to get estimates for every model that we wanted to estimate, so future
research could investigate this and analyse these results.

5.2. Comparison with other universities
In this thesis we have discussed the small research question if our identified profiles are comparable to
those found in previous studies. To research the impact of the innovations in PRIME, it might also be
a good possibility to compare our identified profiles with those found in previous studies at other uni­
versities. By doing so you can also compare different types of teaching methods between universities
and then find out if another method can increase the learning motivations of the students.

5.3. Academic performance
Another way to research the impact of the innovations in PRIME is to investigate how the identified
profiles are related to learning outcomes and student success. PRIME has also collected the grades
for the mathematics course of the students who have filled in the survey. These grades can be used to
investigate if there are relations between grades and some specific types of motivations or combinations
of motivations. Due to lack of time we are not able to investigate this, so therefore a suggestion for
future research is to look into this question.

5.4. ANOVA and Games­Howell test
We have performed the Games­Howell test in our research to check if the student profiles are clearly
differentiated. Due to lack of time we did not investigated this test in detail, therefore a recommendation
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for future research could be to do more research in the mathematics of this statistical test and look
closely into the assumptions.

5.5. Comparison tidyLPA and mclust
We have used both tidyLPA and mclust in R to perform latent profile analysis. We described both pack­
ages in section 3.3, but we did not really compare the two packages. Therefore we would recommend
to do more research in the comparison of tidyLPA and mclust, see for example Wardenaar, 2021.

5.6. Previous research on LPA in the social sciences
During this research, we have found that it looks like that the research using LPA in social sciences just
uses the statistical methods without checking the mathematics. For example the ANOVA test is used
in many research of LPA to check if the profiles are clearly differentiated. But we showed in our re­
search that the homogeneity of variance assumption of ANOVA is violated in our case. Maybe in these
researches the mathematics is checked, but they just did not mention it. But this lack of mathematical
formulation gives some uncertainties. Therefore this mathematical research is necessary to determine
the validity of the statistical methods used.



A
Survey table

Figure A.1: Statements of the survey
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B
R­code LPA using median composite

scores
library(dplyr)
library(lavaan)
library(psych)
library(semPlot)
library(tidyLPA)
library(mclust)

#read file
df_all <­ read.csv(”Data_final_survey.csv”, header = TRUE, sep = ”;”)

# select only 16 items for motivation
df_motv <­ df_all %>%

select (1, 64:79) %>%
na.omit()

### LPA with median scores ###
df_motv_median <­ df_motv %>%

rowwise() %>%
mutate (ex_med = median(c(Motivation3,Motivation6,Motivation9,Motivation10)),

ij_med = median(c(Motivation1,Motivation5,Motivation12,Motivation14)),
id_med = median(c(Motivation4,Motivation8,Motivation13,Motivation16)),
in_med = median(c(Motivation2,Motivation7,Motivation11,Motivation15)))

median_model <­ df_motv_median%>%
select(ex_med, ij_med, id_med, in_med) %>%
single_imputation() %>%
estimate_profiles(2:6,

variances = c(”equal”, ”varying”, ”equal”, ”varying”),
covariances = c(”zero”, ”zero”, ”equal”, ”varying”))

median_model

df_motv_median %>%
select(ex_med, ij_med, id_med, in_med)%>%
single_imputation() %>%
scale()%>%
estimate_profiles(2:6,

variances = c(”equal”, ”varying”, ”equal”, ”varying”),
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34 B. R­code LPA using median composite scores

covariances = c(”zero”, ”zero”, ”equal”, ”varying”))%>%
compare_solutions(statistics = ”BIC”)

df_motv_median %>%
select(ex_med, ij_med, id_med, in_med)%>%
single_imputation() %>%
scale()%>%
estimate_profiles(2,

variances = c(”varying”),
covariances = c(”varying”))%>%

plot_profiles()



C
R­code tidyLPA

library(dplyr)
library(lavaan)
library(psych)
library(semPlot)
library(tidyLPA)
library(mclust)

#read file
df_all <­ read.csv(”Data_final_survey.csv”, header = TRUE, sep = ”;”)

# select only 16 items for motivation
df_motv <­ df_all %>%

select (1, 64:79) %>%
na.omit()

## Converting ordinal data into composite value

#function for weighted sd
weighted.sd <­ function (x, w) {

sum.w <­ sum(w)
sum.w2 <­ sum (w^2)
mean.w <­ sum (x*w)/ sum(w)
x.sd.w <­sqrt ((sum.w/ (sum.w^2­sum.w2)) * sum(w*(x­mean.w)^2))
return(x.sd.w)

}

#function for rescale to create composite score
re.scale <­ function(f.scores, raw.data, loadings) {

fz.scores <­ (f.scores + mean(f.scores))/(sd(f.scores))
means <­ apply(raw.data, 1, weighted.mean, w=loadings)
sds <­ apply(raw.data, 1, weighted.sd, w=loadings)
grand.mean <­ mean(means)
grand.sd <­mean(sds)
final.scores <­ ((fz.scores * grand.sd)+ grand.mean)
return (final.scores)

}

#function to apply to each motivation type
get.scores.fun <­ function(data) {

fact <­ factanal(data, factors =1, scores =”regression”)
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36 C. R­code tidyLPA

f.scores <­ fact $scores[,1]
f.loads <­ fact$loadings [,1]
rescaled.scores <­re.scale(f.scores,data,f.loads)
output.list <­ list (rescaled.scores, f.loads)
names(output.list) <­ c(”rescaled.scores”, ”factor.loadings”)
return(output.list)

}

# Subset data
ext <­ df_motv %>% select (Motivation3,Motivation6, Motivation9, Motivation10)
ijt <­ df_motv %>% select (Motivation1,Motivation5, Motivation12, Motivation14)
idt <­ df_motv %>% select (Motivation4,Motivation8, Motivation13, Motivation16)
int <­ df_motv %>% select (Motivation2,Motivation7, Motivation11, Motivation15)

###Apply function to get factor loadings
##extrinsic: extract rescaled factor scores
ext.score.loadings <­ get.scores.fun(ext)
ext.composite.score<­ ext.score.loadings$rescaled.scores

#introjected: extract rescaled factor scores
ijt.score.loadings <­ get.scores.fun(ijt)
ijt.composite.score<­ ijt.score.loadings$rescaled.scores

#identified: extract rescaled factor scores
idt.score.loadings <­ get.scores.fun(idt)
idt.composite.score<­ idt.score.loadings$rescaled.scores

#intrinsic: extract rescaled factor scores
int.score.loadings <­ get.scores.fun(int)
int.composite.score<­ int.score.loadings$rescaled.scores

### create data frame with composite scores
df_motv_composite <­ data.frame(ext.composite.score,ijt.composite.score,

idt.composite.score, int.composite.score)

### Perform LPA
composite_model <­ df_motv_composite%>%

select(ext.composite.score, ijt.composite.score,
idt.composite.score, int.composite.score) %>%

single_imputation() %>%
estimate_profiles(2:6,

variances = c(”equal”, ”varying”, ”equal”, ”varying”),
covariances = c(”zero”, ”zero”, ”equal”, ”varying”))

composite_model

composite_model_compare <­ df_motv_composite%>%
select(ext.composite.score, ijt.composite.score,

idt.composite.score, int.composite.score) %>%
single_imputation() %>%
estimate_profiles(2:6,

variances = c(”equal”, ”varying”, ”equal”, ”varying”),
covariances = c(”zero”, ”zero”, ”equal”, ”varying”))%>%

compare_solutions()
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composite_model_compare

composite_model_best <­ df_motv_composite%>%
select(ext.composite.score, ijt.composite.score,

idt.composite.score, int.composite.score) %>%
single_imputation() %>%
estimate_profiles(4,

variances = c(”varying”),
covariances = c(”varying”))

plot_profiles(composite_model_best)

composite_model_best_scaled <­ df_motv_composite%>%
select(ext.composite.score, ijt.composite.score,

idt.composite.score, int.composite.score) %>%
single_imputation() %>%
scale()%>%
estimate_profiles(4,

variances = c(”varying”),
covariances = c(”varying”))

plot_profiles(composite_model_best_scaled)

## Table means and standard deviations
output <­ get_data(composite_model_best)

by(cbind(output = output$ext.composite.score,
output= output$ijt.composite.score,
output = output$idt.composite.score,
output = output$int.composite.score),

output$Class, describe)

## ANOVA

res.aov.ext <­ aov(output$ext.composite.score~output$Class, data = output)

res.aov.ijt <­ aov(output$ijt.composite.score~output$Class, data = output)

res.aov.idt <­ aov(output$idt.composite.score~output$Class, data = output)

res.aov.int <­ aov(output$int.composite.score~output$Class, data = output)

### Games­Howell­test
library(PMCMRplus)
resext <­ gamesHowellTest(res.aov.ext)
resijt <­ gamesHowellTest(res.aov.ijt)
residt <­ gamesHowellTest(res.aov.idt)
resint <­ gamesHowellTest(res.aov.int)

summaryGroup(resext)
summaryGroup(resijt)
summaryGroup(residt)
summaryGroup(resint)





D
R­code mclust

library(tidyverse)
library(mclust)
library(hrbrthemes)

explore_model_fit <­ function(df_motv_composite, n_profiles_range = 1:6,
model_names = c(”EII”, ”VVI”, ”EEE”, ”VVV”)) {

x <­ mclustBIC(df_motv_composite, G = n_profiles_range, modelNames = model_names)
y <­ x %>%

as.data.frame.matrix() %>%
rownames_to_column(”n_profiles”) %>%
rename(‘Constrained variance, fixed covariance‘ = EII,

‘Freed variance, fixed covariance‘ = VVI,
‘Constrained variance, constrained covariance‘ = EEE,
‘Freed variance, freed covariance‘ = VVV)

y
}

fit_output <­ explore_model_fit(df_motv_composite, n_profiles_range = 1:6)

library(forcats)

to_plot <­ fit_output %>%
gather(‘Covariance matrix structure‘, val, ­n_profiles) %>%
mutate(
‘Covariance matrix structure‘ = as.factor(‘Covariance matrix structure‘
),
val = abs(val))

# this is to make the BIC values positive
(to align with more common formula / interpretation of BIC)

ggplot(to_plot, aes(x = n_profiles, y = val, color = ‘Covariance matrix structure‘,
group = ‘Covariance matrix structure‘)) +

geom_line() +
geom_point() +
ylab(”BIC (smaller value is better)”) +
theme_ipsum_rc()

create_profiles_mclust <­ function(df_motv_composite,
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40 D. R­code mclust

n_profiles,
variance_structure = ”freed”,
covariance_structure = ”freed”){

if (variance_structure == ”constrained” & covariance_structure == ”fixed”) {

model_name <­ ”EEI”

} else if (variance_structure == ”freed” & covariance_structure == ”fixed”) {

model_name <­ ”VVI”

} else if (variance_structure == ”constrained” & covariance_structure ==
”constrained”) {

model_name <­ ”EEE”

} else if (variance_structure == ”freed” & covariance_structure == ”freed”) {

model_name <­ ”VVV”

} else if (variance_structure == ”fixed”) {

stop(”variance_structure cannot equal ’fixed’ using this function; change this to
’constrained’ or ’freed’ or try one of the models from mclust::Mclust()”)

}

x <­ Mclust(df_motv_composite, G = n_profiles, modelNames = model_name)

print(summary(x))

dff <­ bind_cols(df_motv_composite, classification = x$classification)

proc_df <­ dff %>%
mutate_at(vars(­classification), scale) %>%
group_by(classification) %>%
summarize_all(funs(mean)) %>%
mutate(classification = paste0(”Profile ”, 1:n_profiles)) %>%
mutate_at(vars(­classification), function(x) round(x, 3)) %>%
rename(profile = classification)

return(proc_df)

}

m4 <­ create_profiles_mclust(df_motv_composite, 4, variance_structure = ”freed”,
covariance_structure = ”freed”) #best model from tidylpa

m4 %>%
gather(key, val, ­profile) %>%
ggplot(aes(x = profile, y = val, fill = key, group = key)) +
geom_col(position = ”dodge”) +
ylab(”Z­score”) +
xlab(””) +
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scale_fill_discrete(””) +
theme_ipsum_rc()

#model 2 with 3 profiles, gives error
m2_3 <­ create_profiles_mclust(df_motv_composite, 3, variance_structure = ”freed”,

covariance_structure = ”fixed”)
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