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Abstract

Adaptive policies have emerged as a valuable strategy for dealing with uncertainties by
recognising the capacity of systems to adapt over time to new circumstances and surprises.
The efficacy of adaptive policies hinges on detecting on-going change and ensuring that
actions are indeed taken if and when necessary. This is operationalised by including a moni-
toring system composed of signposts and triggers in the design of the plan. A well-designed
monitoring system is indispensable for the effective implementation of adaptive policies.
Despite the importance of monitoring for adaptive policies, the present literature has not
considered criteria enabling the a-priori evaluation of the efficacy of signposts. In this paper,
we introduce criteria for the evaluation of individual signposts and the monitoring system
as a whole. These criteria are relevance, observability, completeness, and parsimony. These
criteria are intended to enhance the capacity to detect the need for adaptation in the presence
of noisy and ambiguous observations of the real system. The criteria are identified from
an analysis of the information chain, from system observations to policy success, focusing
on how data becomes information. We illustrate how models, in particular, the combined
use of stochastic and exploratory modelling can be used to assess individual signposts, and
the whole monitoring system according to these criteria. This analysis provides significant
insight into critical factors that may hinder learning from data. The proposed criteria are
demonstrated using a hypothetical case, in which a monitoring system for a flood protection
policy in the Niger River is designed and tested.
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1 Introduction

Policy failures are often due to the omission of critical uncertainties when preparing the
policy (Funtowicz and Ravetz 1990). Climate, environmental, and socioeconomic changes
are largely uncertain in the long term, posing a challenge for planners: policies that would
be satisfactory for one particular future may fail in many other futures. Adaptive policies
can help policy-makers in designing policies which are robust in the face of uncertainty. In
adaptive policies, a coherent long-term plan is assembled: this plan indicates how to adapt
over time to different possible future system evolutions. The design of adaptive policies
takes into account that uncertainty about the validity of critical assumptions affecting policy
success will resolve over time, and decisions will be adapted in response to this. Advantages
of adaptive policies are their capacity to value correctable (or scalable) decisions, modulate
response to evidence of change, coordinate short- and long-term actions, and delay decisions
to keep future options open (Hallegatte 2009; Lee 1994; Moser and Ekstrom 2010).

Various approaches for developing adaptive policies have been put forward, such as
assumption-based planning (Dewar et al. 1993), dynamic adaptive policies (Kwakkel et al.
2010), real options (Hertzler 2007; Woodward et al. 2014; Jeuland and Whittington 2014;
Blyth et al. 2007), adaptive policy-making (Walker et al. 2001; Hamarat et al. 2013), adap-
tation options (Wilby and Dessai 2010), adaptation tipping points, and adaptation pathways
(Wise et al. 2014; Haasnoot et al. 2012), and dynamic adaptive policy pathways (Haasnoot
et al. 2013). All these approaches use some type of signpost and trigger to identify when the
policy must be adapted.

Detecting change and the consequent adaptation of a policy should not be slower than the
change itself. The capacity to adapt on time, i.e. reacting sufficiently before the occurrence
of negative consequences, depends on how much information will be available when the
decision to adapt has to be taken. For this reason, an effective monitoring system is a pivotal
element for the success of an adaptive policy. It has been suggested to base this monitoring
system on “signposts” (Dewar et al. 1993) and “triggers” (Walker et al. 2001). Signposts
specify “the information that should be tracked in order to determine whether the policy is
meeting the conditions for its success”, triggers specify “critical values of signpost variables
beyond which additional pre-specified actions should be implemented” (Haasnoot et al.
2013; Walker et al. 2001; Kwakkel et al. 2010).

Different applications of signpost selection can be found in the literature. These are
generally expert based, sometimes supported by scenario discovery (Bryant and Lempert
2010) or similar vulnerability analysis techniques. The literature, however, lacks a system-
atic approach to guide the analyst in designing a monitoring system for adaptive policies.
Hamarat et al. (2013) select signposts on the basis of an extensive model-based vulnerabil-
ity analysis using scenario discovery, while trigger values are based on expert opinion. In
a follow-up study, Hamarat et al. (2014) and Kwakkel et al. (2016) fine-tune trigger values
using many-objective robust optimisation. Zeff et al. (2016) embed the selecting of trig-
gers within a broader many objective optimisation, and Haasnoot et al. (2015) present an
in-depth analysis of developing signposts and triggers for climate adaptation for the Nether-
lands. In Herman and Giuliani (2018), signposts and triggers are identified jointly using
optimisation. Lempert and Groves (2010) and Tariq et al. (2017) use signposts based on
expert judgement. Ceres et al. (2017) investigate the level of confidence provided by the
100-year peak storm surge, used as signpost, in detecting climatic change.

In this paper, we introduce criteria for signposts evaluation, specifically: relevance,
observability, completeness, and parsimony. We present how models, in particular, the use
of stochastic models in an exploratory manner, can be employed for evaluating these cri-
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teria. The identification of these criteria is based on an analysis of the information chain,
from system observations to policy success, and based on principles of information the-
ory (Cover and Thomas 2012), focusing on how data becomes information. This analysis
provides significant insight into critical factors that may hinder learning from data.

The paper is structured accordingly. In Section 2, we analyse the problem of monitor-
ing in adaptive policies, we introduce criteria for selecting signposts and for testing the
effectiveness of the whole monitoring system. In Section 3, we discuss the role of mod-
els in evaluating these criteria. In Section 4, the proposed criteria are used to define the
monitoring system for an adaptive policy for flood protection. In Section 5, we present our
conclusions.

2 The problem of monitoring in adaptive policies

In complex systems, learning from evidence can be difficult. As a result, learning can be
weak and slow (Sterman 2006). This constitutes a barrier to adaptation (Moser and Ekstrom
2010). Information on specific variables or relations can be either ambiguous or noisy.
Ambiguity arises from the presence of multiple valid interpretation of data. Noise arises
from the presence of nonmeaningful information in the data. Delay in learning is exacer-
bated in case of monitoring for protection against extreme events: their rarity reduces the
capacity to observe and identify them. For example, detecting change in flood risk is ham-
pered by the large interannual variability and the scarcity of valuable data points. As a
consequence, an ill-conceived monitoring system can jeopardise the efficacy of the entire
adaptive policy.

The design of the monitoring system for an adaptive policy involves identifying the infor-
mation that is necessary for adapting the policy in order to ensure its continued success
over time. The design of a monitoring system happens in the context of a specific decision-
making problem, in which the system, the set of possible actions, the critical uncertainties,
and the criteria for the policy success have been already identified. In this case, the analyst
can build up the monitoring system by defining the information on which the implementa-
tion of adaptive actions has to be based (Haasnoot et al. 2013; Walker et al. 2001; Kwakkel
et al. 2010). When the information to be used in the monitoring system is not readily avail-
able, economic criteria should be used to gather the new information that has the higher
marginal net benefit (Raso et al. 2018).

A monitoring system is effective if it is capable of detecting relevant change on time.
“Relevant” refers to the possible influence on policy success, and “on time” refers to the
moment at which a decision on adapting the policy must be taken. Ultimately, a planner
is interested in identifying if and when to implement a new action. Taking a new action
is required if the changing conditions threaten the necessary conditions for success of the
policy. That is, policy success is no longer guaranteed. In the literature on adaptive plan-
ning, this situation is sometimes called the “adaptation tipping point” (Haasnoot et al.
2013). Related ideas are scenarios that illuminate vulnerabilities of a policy as identified
by scenario discovery (Bryant and Lempert 2010) or through decision scaling (Brown et al.
2012). Designing an effective monitoring system involves the identification of signposts
and triggers which enable the timely detection of relevant changes.

A signpost is a statistic, i.e. a rule that aggregates, transforms, or filters data in order
to extract from it the relevant information. An example of a signpost, later utilised in the
test case, is the 90th percentile of annual maximum discharge at a certain location over a
window of 30 years.
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We need to separate the object of observation from its meaning: using the terminology
borrowed from probability theory (Dekking 2005), a signpost is the “parameter” that we
track using our best “estimate” of its true value: the parameter is the quantity of interest that
a signpost is intended to track; the estimate is the observed value obtained from data. Con-
tinuing on our example, if the parameter is the 10-year flood, i.e. the flood that is expected
to return once every 10 years, one possible estimate of this parameter would be the 90th
percentile of annual maximum discharge.

Figure 1 zooms in on the relationship between the signpost and the critical uncertain-
ties. Critical uncertainties are conditions that are presently uncertain or subject to change in
the future, which strongly affect the success of the policy. The signpost estimate, notwith-
standing being a transformation of raw data, is still data. The signpost parameter is the
link between the signpost estimate and the critical uncertainty. In this sense, the signpost
parameter allows the signpost estimate to be the interpreted from, and assimilated into, the
existing knowledge (Liu and Gupta 2007), hence be used to assess the state of the critical
uncertainties.

Signpost parameters are only partially measurable: a signpost estimate contains both a
signal about the parameter that we are interested in, and the noise that we want to ignore.
The larger the noise the more difficult it will be to detect the signal. The noise must thus
be properly “filtered” (Papoulis 1977) in order to retain the information about the signpost
parameters. When filtering the data in order to extract the signal, one must bear in mind that
it is not possible to extract more information than there is in the original raw data (Cover and
Thomas 2006; Weijs 2011). Nonetheless, when synthesising information using a signpost
estimate, the information extraction process must be kept under control in order to minimise
information loss. This has important consequences on criteria for signposts selection, as it
will be discussed in the following.

2.1 Signposts selection: relevance and observability

A signpost is to be selected according to its informativeness. Informativeness refers to the
capacity of a signpost estimate to identify the value of critical uncertainties from data. Sign-
post informativeness can be decomposed into relevance and observability, as in shown in
Eq. 1, and demonstrated in Appendix A, Eq. A.1.

Informativeness = relevance x observability (D)

Relevance is the capacity of a signpost parameter to track the critical uncertainties that it
is intended to monitor. Observability is the capacity of a signpost to determine the signpost
parameter from the signpost estimate. Observability can be further decomposed into accu-
racy and precision. Accuracy refers to the closeness of a signpost estimate to the true value
of the parameter. Accuracy is a description of the systematic error. ISO calls this “true-
ness” (1994). Precision is a measure of the statistical variability, i.e. the noise present in the
observations.

Stochastic Model ™! FEzxploratory Model

Signpost Signpost Critical
—_— —_—

Estimate Parameter Uncertainties

Fig. 1 Decomposition of the relationship between signpost and critical uncertainties, and role of stochastic
and exploratory models in the evaluation of observability and relevance
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If a critical uncertainty can be observed directly, then the signpost parameter is the critical
uncertainty itself, directly tracked by the signpost estimate. Otherwise, the signpost is a
proxy, i.e. its parameter is indirectly related to the critical uncertainty. In this case, the
analyst must relate the first to the latter. Continuing the flood risk example, assuming that
the 100-year flood is the critical uncertainty, then the 90th percentile of annual maximum
discharge over a 30-year window is a proxy.

A signpost is rarely dominant on all criteria (i.e. relevance, accuracy, and precision).
Instead, a typical signpost is a tradeoff among them. Consider, for example the selection of
the appropriate window length in a moving window statistics. A larger window length will
use more data points, resulting in more precision, but it will also be less reactive to change
and, being biased, its accuracy will be lower. Generally speaking, the further removed a
signpost is in the causal chain from the critical uncertainty, the lower the relevance of the
signpost. Getting closer to the critical uncertainty, however, may result in a loss of observ-
ability due to a decrease in accuracy and/or precision. Using again the flood risk example,
monitoring the 100-year flood directly would have the maximum relevance, but also an
extremely low observability that would require a much lunger time window and which
would likely fail to detect nonstationary change timely.

2.2 How many signposts? Completeness and parsimony

The success of an adaptive policy hinges almost always on multiple critical uncertain-
ties; therefore, monitoring often requires more than one signpost. The number of signposts
should be as small as possible (i.e. parsimony), conditional on the capacity of guaranteeing
completeness of the overall monitoring system. Completeness is the capacity to track all
critical uncertainties which affect the success of a policy. All critical uncertainties must be
monitored in order to adapt in case any of these uncertainties unfolds in an undesirable way.
This does not mean, however, that each critical uncertainty requires a signpost. Ambiguity
about which of the critical uncertainties is unfolding in an undesirable way is allowed as
long as singling out critical uncertainties is not required for taking action. As an example,
consider a river flood protection policy where the adaptive action is raising higher levees:
future precipitation and future land use may be uncertain, but rather than monitoring both
of those, one could just monitor change in streamflow only.

The schema in Fig. 2 gives an example of the relation between the number of sign-
posts, critical uncertainties, and actions. Ambiguity between critical uncertainty A and B

Uncertainty A \
Signpost 1 / Action «
Uncertainty B

Signpost 2 Uncertainty C —» Action f3

Fig.2 Correspondence between the number of signposts, critical uncertainties, and actions, illustrative exam-
ple. Signpost 1 tracks critical uncertainties A and B; signpost 2 tracks critical uncertainty C. The arrows
represents the link between critical uncertainties and their conditional actions to be implemented
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is allowed because distinguishing between them is not required for taking action «. There-
fore, a single signpost is sufficient for tracking both uncertainties. A single signpost for all
three uncertainties, however, would not enable the identification of whether action « or 8 is
to be implemented. Ambiguity between C and A or B is not allowed. Therefore, a second
signpost is necessary.

Guaranteeing the completeness of the monitoring system requires considering not just
the total number of signpost; it also requires considering the mutual dependency of two
or more signposts (Cover and Thomas 2006). If two signposts have high mutual depen-
dency, one of them is in principle redundant. Redundant signposts, apart from reducing
parsimony without necessity, could have the additional disadvantage of providing an
illusory sense of confirmation, which is instead just the result of the signposts mutual
dependency.

Apart from redundant, signposts can be more or less synergic (Goodwell and Kumar
2017). In this case, identifying the critical uncertainty can only be attained by knowing the
joint value of the synergic signposts. The XOR logic operator is a case of purely syner-
gic interaction; continuing on the river flood protection policy case, an example of partially
synergic signposts is when one signpost tracks change in precipitation intensity, another
signpost tracks change in land use impermeability, and only the combined increase of both
signposts indicates that the policy success is jeopardised. Synergic signposts cannot be
reduced, and they must be analysed together.

Notwithstanding the need to reduce the number of signposts, some additional signposts
more than the strictly required number may be appropriate. An additional signpost may
carry the extra information required to detect a situation that is not explicable by the con-
sidered hypotheses. Such a situation can trigger a reflection about the limits of the present
adaptive policy, leading to its reassessment (Pahl-Wostl 2009).

3 Role of models

Models can support the analysis of signposts with respect to the criteria of relevance,
accuracy, and precision, and the whole monitoring system with respect to the criteria of
completeness and parsimony. This requires models capable of both exploring beyond the
present behaviour of the system, and representing the uncertainty left after observations,
hence requiring features from both exploratory and stochastic modelling.

Exploratory modelling is an approach for developing and using models to map critical
uncertainties to their consequences. It relies on the use of computational experimentation
to systematically explore the multidimensional uncertainty space. The use of exploratory
modelling for policy assessment and design is well-documented in the literature (Bankes
1993; Kwakkel and Pruyt 2013). Exploratory modelling underpins various model-based
approaches for designing adaptive policies, such as (many-objective) robust decision-
making (Lempert et al. 2006; Kasprzyk et al. 2013; Kwakkel 2017). Stochastic models
(Sims et al. 1982) are used to represent the system uncertainty due to inherent variability or
imperfect knowledge (Weijs et al. 2010; Nearing et al. 2016).

Exploratory and stochastic approaches have complementary features. In the exploratory
modelling approach, models are used to map possible values of inputs, considered uncertain,
to their outputs. Stochastic models, in contrast, represent the uncertainty of model output for
a certain value of input. In long-term planning problems, both the inputs and in the inputs-
outputs relationship are uncertain; therefore, both exploratory and stochastic features are
relevant. Exploratory models enable representing a system at points beyond the observed
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behaviour, stochastic models allow the representation of the observational uncertainty at
that point.

3.1 Evaluate relevance and observability

The model can be employed to assess the relevance and observability of candidate sign-
posts. Ex-ante evaluation of the relevance of a signpost entails exploring how the signpost
parameter changes for different values of the critical uncertainties: the model can be used to
explore the value of the signpost parameter for different values of the critical uncertainties.
This relationship can be used backwards to track the value of the critical uncertainty given
the signpost parameter, and test whether the critical uncertainty has changed.

Ex-ante evaluation of the observability of a signpost requires knowing possible values
of the signpost estimate for a given value of the signpost parameter. The variation of a
signpost estimate is its sampling variability, which can be represented by a probability den-
sity function, a range, or a set of possible values. The sampling variability of the signpost
estimate must be quantified for all values of parameters of signpost, for the entire range
of the critical uncertainty, in order to map the signpost observability for all possible con-
ditions. Representing the sample variability in the estimate of the parameter requires a
stochastic model that reproduce both system variability and observational uncertainty. This
model can be used backwards to assess the likelihood of a signpost parameter given the
estimate.

When evaluating relevance and observability for parameter values outside the range of
observed behaviour, the parameter-estimate relationship is used in extrapolation. This intro-
duces the need to make assumptions about the capacity to detect the parameter from the
estimate. These assumptions can be that existing trends will continue beyond the observed
range of signpost parameters, or other conjectures.

Figure 1 summarises the role of stochastic and exploratory models in evaluating the
relationship between signpost estimate and signpost parameter, and between the signpost
parameter and the critical uncertainties. The symbol of inversion applied to the models
expresses that they are used “backwards”, i.e. we estimate the value of uncertainties for a
given output, rather than the reverse.

3.2 Evaluate completeness and parsimony

Models can be used to analyse the completeness of the monitoring system. Models can
be employed to test the effects of variating critical uncertainties on each signpost. This
analysis can be used to test if each critical uncertainty is tracked by at least one signpost.
If this is the case, then the monitoring system as a whole is capable of tracking all critical
uncertainties, hence guaranteeing completeness. Additionally, this analysis can be used to
understand which signpost tracks which critical uncertainty. It can be used to identify if
a signpost tracks more than one critical uncertainty. Such signpost, all other things being
equal, is preferable to multiple signposts, as long as resolving ambiguity among critical
uncertainties is not required for deciding among different actions.

Models can be used to test the effect of varying each critical uncertainty on multiple
signposts. This analysis permits testing the degree of mutual dependency between sign-
posts. That is, if in response to varying a single critical uncertainty, two or more signposts
show high mutual dependency, then both signposts track the same uncertainty and one of
them may be redundant. In this case, parsimony can be increased by removing one of the
redundant signpost.
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4 Application

In this section, we apply the proposed criteria on a flood protection problem in the Niger
River for a hypothetical adaptive policy designed in 1985 and applied thereafter. This hypo-
thetical setting allows us to use past data as if the adaptive policy was in its operational
phase.

4.1 Policy problem

The city of Niamey, the capital of Niger, is located along the shore of the Niger River. The
irregular flow of the river poses a risk of flood for the city. At the inception of the adaptive
policy, i.e. in 1985, the levees at Niamey protect the city until a maximum discharge of 2000
m3/s. The frequency of inundation considered acceptable is below an expectation of one
over 25 years, i.e. F* < 1/25yr—1.

In the future, climate change may put at risk the capacity of levees to offer sufficient
protection. The adaptive policy envisages the construction of higher levees, if flood hazard
exceed the acceptable value, that would raise the maximum discharge to 2700 m? /s. Raising
the levees is an expensive action; therefore, it will be taken only if it is justified by an
increase in flood hazard. The underlying critical assumption in this policy is the stationarity
of the hydrological process at Niamey.

4.2 System

Flood at Niamey may happen because of two different hydrological processes: the Guinean,
or “black” flood, and the Sahelian, or “red” flood (Aich et al. 2016). In this analysis, we
will focus on the red flood because of its unpredictable long-term change. The change in
distribution of flood magnitude poses a difficulty for the flood defence strategy at Niamey.

4.3 Signposts selection

Discharge at Niamey is directly available, and therefore, it is selected as the signpost vari-
able: We consider the red flood peak discharge taking the maximum discharge during the
rainy season of each year (Wilcox et al. 2018).

The selected signposts are as follows:

Sg  Average of annual maximum discharge at Niamey, on a 15-year moving window.
Smax Max of annual maximum discharge at Niamey, on a 25-year moving window.

SE parameter is the “yearly flood intensity at Niamey”, while Spax parameter is the “25-
year flood at Niamey”. Spax intends to observe the policy success directly; Sg intends to
partially filter out the noisy signal.

4.4 Model

The model used is a generalised extreme value (GEV) stochastic model used in a quasi-
stationary fashion. The GEV model estimates the frequency of extreme events given the
maximum values over a fixed period (Coles et al. 2001). In flood frequency analysis, the
period is generally a year, and the variable the maximum yearly discharge. The GEV model
parameters are generally estimated from historical time series, assuming stationary condi-
tions. Here, instead, we use the GEV in an exploratory mode, i.e. we explore the model
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response for a large set of possible values of critical uncertainties, assuming quasistation-
ary conditions. The critical uncertainties that we consider are the GEV location and scale
parameters. The GEV shape parameter is particularly difficult to estimate from a short-time
series, requiring a much longer horizon than the period for which we have data, or some
regional analysis (Panthou et al. 2012). To reduce ambiguity in data interpretation, we will
constrain the shape parameter assuming it to be zero. In this case, the GEV reduces to a
Gumbel distribution.

Figure 3 shows the “critical region” spanned by the critical uncertainties where the policy
is successful. The blue line in Fig. 3 correspond to the boundary of policy success: if both p
and o fall below it, the policy is successful; otherwise, there is a need for action. The frontier
line corresponds to the critical flood frequency F* = 1/25 yrs~!, derived analytically in
Appendix B.1. The point in Fig. 3 represents the location and scale parameters estimated
from historical data in 1985.

4.5 Signposts evaluation

First, we evaluate their relevance and observability of the two signposts using the GEV
model. Second, we evaluate a monitoring system made of these two signposts used together.
Here, we assess the completeness of the monitoring system by evaluating its capacity to
track all critical uncertainties. We also analyse the mutual dependency between signposts.

4.5.1 Relevance

Relevance is how well a signpost tracks one or more critical uncertainties. In this case, the
critical uncertainties are the location and the scale parameters. Figure 4 shows how param-
eters influence signpost values. In each plot of Fig. 4, the slope is a measure of signpost
relevance for that parameter.

The “Sg vs. location ” plot (top left) and the “Spax vs. location p” plots (bottom left)
show the same slope, meaning that x influences Sg and Spax alike: the two signposts have
the same good relevance for . In the “Sg vs. scale o plot (top right), instead, the slope is
almost flat. This means that ¢ has very little influence on the value of Sg, i.e. Sg has very

Stress Test
400 - ! ' ' T ' ' ' -

350 -
300 - Failure Region (F>F") -
250 -

200 - (/@
72
-

Scale o[m?¥/s]

150 -

197 success Region (F<F")

50 -
0- ' ' ' ' ' i -
800 1000 1200 1400 1600 1800 2000

Location p [m3/s]

Fig. 3 Critical region, including historical values of parameters (red point). Critical region boundary (blue
line) separates success region (below the line) from failure region (above the line)
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low relevance for o. In the “Spax vs. scale o plot (bottom right), the higher value of the
slope implies that, Smax has good relevance for o, in this outperforming Sg.

4.5.2 Observability

Both signposts use a moving window over a past period. A moving average is a “quasi-
stationary”’ statistic, used here to detect nonstationarity (Kharin et al. 2007). Use of a moving
window leads to some bias, i.e. a loss in accuracy.

Selecting the window size involves making a trade off between precision and accuracy:
a longer window results in higher precision and lower accuracy. Accuracy depends on the
model’s parameter rate of change. The rate of change is not included in the model, hence
accuracy cannot be evaluated quantitatively.

In Fig. 4, precision about the signposts estimate is represented by the 90% uncertainty
bands, estimated as in Appendix B.2: the larger the band, the lower the precision. The plots

Sg vs Location |

Sk vs Scale o
2500 - . . N 2500 - . : : g

2000 - 2000 - -
" 5 -
5> 1500 - 5 1500 - e -
o o ===
0 T |y R T e e
1000 - 1000 - -
P — average — average
500 -~ ) - 500 - )
— - 90% uncertainty band — - 90% uncertainty band
600 800 1000 1200 1400 1600 1800 2000 100 150 200 250 300 350 400
Location u [m?/s] Scale o [m?/s]
3000 . Smax VS Location p ‘ . 3000 ‘ Sax VS ‘Scale/g ‘ .
2500 - - 2500 - -
~ ~
©, 2000 - - ™. 2000 - -
S S
) ’ )
1500 - - 1500 - -
o — average — average
1000 - .° ) - 1000 - )
. - - 90% uncertainty band - - 90% uncertainty band
600 800 1000 1200 1400 1600 1800 2000 100 150 200 250 300 350 400
Location u [m?/s] Scale o [m?/s]

Fig.4 Top: Sk expected value and uncertainty bands for different values of critical uncertainties, i.e. location
w (left) and scale o (right). Bottom: Spax expected value and uncertainty bands for different values of critical
uncertainties, i.e. location u (left) and scale o (right)
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for signposts Spmax (bottom) present a larger uncertainty band than the plots for signpost Sg
(top): Smax has lower precision than Sg. Since Spax has lower accuracy and precision than
Sk, therefore it has overall a lower observability.

4.5.3 Completeness

We analyze here the completeness of a monitoring system based on a single signpost, either
SE or Smax. From the analysis on signpost relevance, it emerges that Sg can track p only,
whereas Spax is able to track both 1 and o.

A monitoring system made of Sg only will not completely resolve the uncertainty about
the consequences on flood frequency and the need for action, which depend on both param-
eters. A monitoring system made only of Sp,x will be ambiguous about which parameter
has changed. Importantly, however, there will be no ambiguity about the consequences on
flood frequency and the need for action. For this reason, a monitoring system made of Syax
only, despite this ambiguity, is complete.

4.5.4 Parsimony

Figure 4, plots on the left, shows that change on u results in the same change on the two
signposts. Hence, if w is the only parameter to change, the correlation between the two
signposts would be close to one, meaning that mutual dependency would be very high. The
difference between signposts is due to the scale parameter, which affects Spax only. If used
together, the information they provide is to some extent overlapping; therefore, one of the
two will be partially redundant.

4.5.5 Synthetic evaluation

We give here an qualitative evaluation, where the each criteria is classified as either positive
or negative. This highly synthetic appraisal does not reflect the completeness of signpost
evaluation as seen in the previous section, nonetheless it provides a clear synoptic overview.

Table 1 summarises the evaluation of signposts with respect to the criteria of relevance
and observability. Table 1 shows that no signpost dominates the other: S has higher observ-
ability, but low relevance for the scale parameter, and, if used alone, its lack of completeness
can lead to ambiguity; on the other hand, the advantage of Spyax in catching changes
for all parameters is counterbalanced by its lower observability, both in accuracy and
precision.

Table 2 summarises the analysis of different monitoring systems made of one or two
signposts for completeness and parsimony. Monitoring systems made of Sg and Sg + Smax
have either low completeness or low parsimony, whereas a monitoring system made of only
Smax satisfies both criteria.

Table 1 Synthetic qualitative
evaluation of signposts Sg and Signpost Relevance Observability
Smax for different criteria

njo Accuracy Precision
SE 11X 4 v
Siax I X X
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Table 2 Synthetic qualitative

evaluation of monitoring systems ~ Signposts Completeness Parsimony
made of Sg, Smax, and both, for
different criteria Sk X v

Smax / /

SE + Smax 4 X

4.6 Signposts in action

The capacity of the signposts Sg and Spax to detect change are tested on a data series
from the hypothetical policy implementation, i.e. in 1985, until the year for which we have
data, i.e. 2013. Figure 5 presents the signposts value, the 90% uncertainty bands and the a
set of possible trigger values. Signposts’ 90% uncertainty bands communicates uncertainty
about the signpost parameter, meaning that the real signpost parameter has 90% probability
of falling within these bands. Band values are calculated using the procedure defined in
Appendix B.2, using historical values of u and o. Trigger points are calculated using a
range of possible parameters value corresponding to the acceptable flood frequency, as in
the procedure defined in Appendix B.3.

At the inception of the policy in 1985, Sg suggest with sufficient confidence that the
policy is successful, whereas the noisier Smax, for which a large part of the band exceeds the
trigger value, does not offer the same level of confidence. From 1997, however, Sg starts

Sk over time

1700 - ; !
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_ I 90% uncertainty band
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900 - l i ' | l -
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— Signpost value
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2600 . 9 90% uncertainty band

2800 -
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Fig.5 Signposts value over time
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to rise, exceeding the highest trigger value in 2012. S« is always below the lowest trigger
values until 2010, when it raises, and from 2012, it exceeds its trigger value with sufficient
confidence. This implies that in 2012, the need for adaptation is sufficiently evident. For
both signposts, change is relatively rapid: the quasistationarity assumption, that has been
used for designing and assessing signpost, is not a strong one. This rapid change penalises
the precision of both signposts, but Syax is penalised more because of its larger window size.

Both signposts are successful in detecting the occurring change. Sg however, offer some
anticipation, and it can be considered as early warning signal. Spax, instead, provides more
confidence about the need for change, and it can be considered as confirmation signal.
Uncertainty in Sg is mostly due to its ambiguity in identifying whether the policy is suc-
cessful, as reflected in the large spread in trigger values. For Spax, instead, which tracks
the policy success directly, uncertainty is due to the difficulty in estimating the signpost
parameter, as evidenced by the larger uncertainty bands.

5 Conclusion and discussions

This paper presented criteria that can be used when designing a monitoring system for
adaptive policies based on signposts. These criteria have emerged from the analysis of the
information chain from system observations to policy success. The criteria are relevance,
observability, completeness, and parsimony. Individual signposts can be evaluated by their
relevance and observability. The monitoring system as a whole can be evaluated by its com-
pleteness and parsimony. These criteria can be used either for selecting the signposts that
will make up the monitoring system, or for pre-selecting a set of candidate signposts to be
evaluated and selected within a formal decision problem. In the latter case, the proposed
criteria can also be used for an a-posteriori interpretation of the selected signposts, which
would enhance their acceptability. We presented how models can be used for the a-priori
evaluation of candidate signposts and the overall monitoring system on these criteria. More
specifically, we showed how the exploratory use of stochastic models can be employed to
understand the response of signposts to change of critical uncertainties.

Single signposts are evaluated according to relevance, defined as the capacity of a
signpost parameter to track the critical uncertainties that it is intended to monitor, and
observability, defined as capacity to determine the signpost parameter from the signpost
estimate. When a model is available, relevance can be evaluated by testing if the signpost
parameter is dependent on critical uncertainties, and observability can be evaluated by test-
ing if bias (accuracy) and variability (precision) between signpost estimate and signpost
parameter is low. The whole monitoring system is evaluated according to completeness,
defined as the capacity to track all critical uncertainties which affect the success of a pol-
icy, to be guaranteed, and parsimony, i.e. the number of signposts, to be reduced. When a
model is available, completeness can be evaluated by testing that variation of each critical
uncertainty is tracked by at least one signpost, and redundant signposts can be identified by
testing if they have a high mutual dependency.

The proposed criteria and their model-based evaluation have been demonstrated on a
hypothetical case of an adaptive policy for flood protection in the Niger River, West Africa.
We identified two signposts and evaluated them using a stochastic model. We found that the
two signposts had different degrees of relevance and observability, that a monitoring sys-
tem made of a single signpost can be more or less complete, depending on the signpost,
and that a monitoring system made of both signpost would be less parsimonious but more
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complete. We applied the signpost to historic data from 1985 to 2013 to test their effective-
ness in detecting change. Despite their differences, both signposts provided the information
required for adapting the policy. The monitoring system, however, does not offer a clear-cut
signal that adaptation is required. In the face of the information provided by the monitoring
system, some uncertainty remains, and with them, the risk of taking adaptive actions when
these are not really required, or vice versa failing to detect the need for adaptive actions. The
model we used is a quasistationary GEV: even if a nonstationary GEV could offer better
results, the model used is nonetheless fitted for the analysis; therefore, we leave the testing
of better models to further research.

Policy success is an unstable equilibrium, similar to “dancing on the top of a needle”
(Mclnerney et al. 2012), that can be maintained only by continuous feedback and re-
adaptation: effective adaptation hinges on an well-designed monitoring system. Evidence of
change may emerge at a pace slower than expected; therefore, the capacity to detect change
sufficiently on time must be properly investigated. Analysing the effectiveness of a monitor-
ing system to detect change is required to prevent the overestimation of the capacity to adapt
over time, i.e. to avoid suggesting an adaptive capacity that cannot be attained in reality.

The proposed criteria provide the foundation for the development of a comprehensive
methodology for the integrated evaluation of an adaptive policy and its monitoring system,
which will be the aim of future research. Such a comprehensive methodology will be used
to test, prior to the policy implementation, whether the monitoring system offers sufficient
information for timely adaptation.
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Appendix A: Decomposition of informativeness

In Eq. A.1, we use the law of total probability to decompose the monitoring of critical
uncertainties into relevance and observability.

P(xild;) = /M_l()\i|8) - P(8ldy;) - d§ (A.D)
5

In Eq. A.1, A; are the ith critical uncertainty, d; is the signpost estimate, i.e. the data
obtained from observations of the real system, and §; is the signpost parameter, M is
the system model, and P (A;|d;) is the relation between critical uncertainties and signpost
estimate. The system model, M (8|1), contains the relationship between the critical uncer-
tainties and the signpost parameter, and it is used backwards to estimate the latter from the
earlier. M~1(%;|8) is a measure of how critical uncertainties change with respect to the
signpost parameter, hence the signpost relevance. P (8|d;) represents the possible values of
the signposts parameter given its estimate, hence a measure of its observability.
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Appendix B: Test-case values identification

Equation B.1 represents the Gumbel distribution.

F(q; o) = exp (— exp (—%)) (B.1)

where ¢ is the yearly maximum discharge, ; and o the location and scale parameter. The
Gumbel distribution is equivalent to a generalised extreme value distribution for & = 0,
a.k.a. type-1 GEV.

B.1. Critical region

The boundary of the critical region in u and o is the set of [u*, o*], space in R2, can be
found by inverting Eq. B.1, conditioning the flood frequency to be equal to the critical flood
frequency, i.e. F = F*, and the discharge equal to the flood threshold level, i.e. ¢ = gfiood-
Then, one can find the relation at Eq. B.2.

1" = qpiooa + log (= log (1 — F*)) - o™ (B.2)
In Eq. B.2, the relation [*, 0*] is a straight line, in which gfi00q is the intercept for o = 0,
and log(—log (1 — F™*)) its slope.
B.2. Signpost

Signposts distributions are derived analytically from Eq. B.1, assuming quasistationary
condition.
Sk is distributed according to Eq. B.3.

Sg~N <E(Q),

In Eq. B.3, \V is the normal distribution, E(g) and VAR(q) are the expected value and
variance of Eq. B.1, being E(g) = i + o - y, and VAR(g) = (% - 02)/6, where w ~ 3.14
is Greek pi, and y =~ 0.577 is the Euler—Mascheroni constant.

Smax 1s distributed according to Eq. B.4.

Sinax ~ F! (ﬁ,, (r)) (B.4)

VAR(q)
T) (B.3)

where
Fut) ~ N (f(w, (B.5)

Equation B.4 use the property that quantile g convergences to der Vaart (2000) to In
Eq.B4, F —1(.) is the inverse of the original Gumbel distribution, as defined in Eq. B.1, and
Fy(1) its empirical distribution. The empirical distribution converge to the original Gumbel
distribution as in Eq. B.5 (der Vaart 2000). In Eq. B.5, AV is the normal distribution, ¢ the
quantile, and n the sample size; for Syg, 1 = 24/25, and n = 25. Because of the low rate
of convergency, however, in this application, we estimated the quantile distribution by a
montecarlo approach, using 15000 sampling for each pair of (u, o).

}'(t)-(l—}-(t)))
n

B.3. Trigger point selection

A trigger point is the signpost value at which adaptation is required. In the test case, pol-
icy requires adaptation if flood frequency F exceeds the threshold level F*, of one over
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25 years. Flood frequency level corresponds to a [u*, o], that is a two-dimensional space
in model parameters, as in Eq. B.2.

Trigger points are selected by sampling three equidistant combinations of location and
scale parameter from the parameters space, in proximity of the parameters historically
observed. Then, the three sets of parameters are mapped over the expected signpost values,
finding the signpost values that would be measured, on average, for each set of parameters.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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