BIM and 3D City Models as input for Microclimate Simulation

Natasja van Heerden

Microclimate

Simulation

3D models

Research scope

Research questions
Outline

The Microclimate

- What is the microclimate?
 - Small area where climate circumstances deviate from the surrounding climate (i.a. temperature, humidity, wind)
- How is the (urban) microclimate influenced?
 - Geometry, materials, pavements, vegetation, etc.
- Why is the microclimate important to consider?
 - Avoid analyses with wrong information

Microclimate Simulation

3D models

Research scope
Research questions
Outline

Microclimate simulation

Uses:

- Realistic input data for (energy demand) calculations
- Urban comfort
- Other analyses
- Microclimate simulation with ENVI-met
 - Complete & adaptive
 - Suitable for research

Microclimate

Research questions

Simulation 3D models Outline

- **IFC**
- **Building level**
- Detailed

Images from delft 3dfier and subzero pay

Microclimate Simulation 3D models

Research scope

Research questions
Outline

Research framework

Microclimate
Simulation
3D models
Research scope
Research questions
Outline

Research questions

- How can IFC and CityGML models be used as input for microclimate simulation software ENVI-met?
 - What data is needed for microclimate simulation? Where can this information be found in IFC and CityGML schemas and data from practice?
 - What characteristics should the data have, in order to allow their suitable use in the process?
 - How to convert and combine IFC and CityGML information effectively into the ENVI-met format?

Microclimate
Simulation
3D models
Research scope
Research questions
Outline

Background
Methodology
Requirements
Characteristics
Conversion
Testing
Conclusions

Outline

- Theoretical background and related work
- Methodology
- Data requirements for microclimate simulation in ENVI-met
- Characteristics of the data
- Conversion of IFC and CityGML model data to microclimate simulation software ENVI-met
- Testing: resulting products and case study
- Conclusions

Introduction Background **ENVI-met** CityGML **IFC** Methodology Requirements Characteristics Conversion Conclusions

ENVI-met

- Surface-plant-air interactions
- Orthogonal 3d grid (voxels)
- Area input file, simulation file, database

Introduction Background **ENVI-met** CityGML **IFC** GeoBIM Methodology Requirements Characteristics Conversion

Conclusions

CityGML

- GIS domain
- City level
- Classes
 - I.a. Buildings, Relief, Transportation, Vegetation and WaterBodies
 - Level of Detail (LOD)
 - LOD2: volumes with extensions and different shaped roofs (e.g. sloped)

Background

ENVI-met CityGML

IFC

GeoBIN

Importing models

Methodology

Requirements

Characteristics

Conversion

Testina

Conclusions

- Building domain
- Building level
- Highly detailed
- Each building element defined as separate entity
 - Supports complex geometry
 - Related information to element
- Multiple interpretations and user error

Introduction Background **ENVI-met** CityGML **IFC GeoBIM** Methodology Requirements Characteristics Conversion **Testing** Conclusions

GeoBIM

- Integrating BIM and GIS
 - Enriching GIS data with detailed BIM data
 - Providing context for BIM data with larger scale GIS data
- Similar challenges and problems:
 - Entity selection, typological errors, working with location data

Introduction Background **ENVI-met** CityGML **IFC** GeoBIM Importing models Methodology Requirements Characteristics Conversion **Testing** Conclusions

Importing existing models in ENVI-met

- Importing vector based models (like shapefiles) and worldwide databases (like open street map) into MONDE
- Coupling CityGML with ENVI-met
- 3D models mostly done by hand

Introduction
Background
Methodology
Overview
Approach
Requirements
Characteristics
Conversion
Testing
Conclusions

Overview of the methodology

Introduction
Background
Methodology
Overview
Approach
Requirements
Characteristics
Conversion
Testing
Conclusions

Conversion approach

- Extract
- Convert
- Combine
- Format

Introduction Background Methodology Requirements

Process

ENVI-met input
Representation
Comparison
What from where?
Characteristics
Conversion
Testing

Conclusions

Data inspection

Introduction Background Methodology Requirements **Process ENVI-met input** What from where? Characteristics Conversion **Testing** Conclusions

Input

- Area input file (.inx)
- Simulation file (.simx)
- Database (.edb)
- Area input file elements:
 - Model geometry, location data, nesting, buildings (2d & 3d), building, single and green walls and roofs, simple and 3d plants, soils, pollution, elevation (2d & 3d)

Introduction Background Methodology Requirements **Process ENVI-met input** What from where? Characteristics Conversion **Testing**

Conclusions

Building 3D Example

- Voxel based 3d matrix
- Attribute:
 - Building voxels
 - <buildingFlagAndNumber>
 - List of voxels that contain building
 - Each voxel (I,J,Z,f,nr):
 - Grid location
 - Building flag
 - Building number

(1,0,0,1,1)

(1,0,0,1,1)

(1,0,1,1,1)

Introduction Background Methodology Requirements Process **ENVI-met input** Representation What from where? Characteristics Conversion

Conclusions

Danis		D	1-1:	D		D		D	
Required								Representation	
elements		in	IFC	in	existing	in	CityGML	in	existing
		schema		IFC data		schema		CityGML	
								data	l
Location data		\checkmark		~		\checkmark		\checkmark	
Building 2D/3D		✓		✓		✓		√	
Wall/single wall		✓		✓		~		~	
Greening		~		\sim		X		X	
3D Plants		√~		~		✓		~	
Simple plants		✓~		~		✓		~	
Soils	Soils	√~		~		~		Χ	
	Infra	\checkmark \sim		~		√		~	
	Water	~		X		√		\sim	
Sources		X		X		X		X	
DEM 2D/3D		✓		~		✓		~	

Introduction
Background
Methodology
Requirements

Process
ENVI-met input
Representation
Comparison
What from where?
Characteristics
Conversion
Testing
Conclusions

Building 3d example

- IFC:
 - IfcBuildingElement
 - IfcWall, IfcSlab, etc.
 - Attribute: representation
- CityGML:
 - Class: Building
 - Multisurface
- Comparison:
 - Both contain buildings
 - Level of detail

Introduction
Background
Methodology
Requirements

Process

ENVI-met input

Representation

Comparison

What from where?

Characteristics

Conversion

Testing

Conclusions

Introduction
Background
Methodology
Requirements
Characteristics
Process
Example
Conversion
Testing
Conclusions

Mapping

Introduction
Background
Methodology
Requirements
Characteristics
Process
Example
Conversion
Testing
Conclusions

Building 3d example

- Mapping:
 - CityGML: Building -> lod2multifurface
 - IFC: IfcBuildingElement -> IfcSlab/IfcWall -> representation
 - Property: isExternal
- Guidelines:
 - CityGML: Buildings Class used, lod2multisurface representation present
 - IFC: One buildings, in mm, IfcSlab used correctly

Introduction
Background
Methodology
Requirements
Characteristics
Conversion
Process
Tool design
Example

Testing

Conclusions

Steps within conversion phase

Introduction Background Methodology Requirements Characteristics Conversion **Process** Tool design **Testing** Conclusions

Model design

- Site (IFC), border(CityGML), empty outer grid
- Model height

Introduction Background Methodology Requirements Characteristics Conversion **Process** Tool design **Testing** Conclusions

Transformation & conversion

- Transformation between different reference systems
 - Existing reference system
 - Custom local reference systems
- Conversion between geometry representations
 - From solid and boundary representation to voxel representation

Introduction Background Methodology Requirements Characteristics Conversion **Process** Tool design Example **Testing** Conclusions

Conversion building 3d example

CityGML:

- Extract multisurface
- Check if middle of each voxel within bounding box building, lies within building geometry
- IFC (2.5d):
 - Extract all horizontal surfaces from floors and roofs
 - Check from both underneath and top when line crosses these surfaces

Introduction
Background
Methodology
Requirements
Characteristics
Conversion
Testing
Process
Workflow
Test study

Conclusions

Testing

Introduction Background Methodology Requirements Characteristics Conversion **Testing Process** Workflow Conclusions

User input

- IFC input model
- CityGML input model
- Output file path
- Border width
- Resolution
- Border grid

Introduction Background Methodology Requirements Characteristics Conversion **Testing Process** Workflow Conclusions

Conversion

- Command line tool
- Runs automatic
- Feedback

```
loading ifc [input/Myran2.ifc]...
loading citygml [input/floriade.gml]...
input files loaded
calculation parameters...
extracting buildings from input files...
converting IFC building...
converting CityGML building 18 of 18...
extracting and generating dem...
extracting and converting trees...
creating 'ENVI-met area input file'...
writing to file [output/final_reshalf.INX]...
```


Introduction Background Methodology Requirements Characteristics Conversion **Testing Process** Workflow Conclusions

Verification and editing

- ENVI-met SPACES
 - Deleting buildings
 - Adding extra border grid cells
 - Assigning materials to building walls
 - Adding more elements like trees, infrastructure, etc.

Workflow
Test study

Conclusions

Input models

- CityGML:
 - Floriade model
- IFC:
 - Myran model

Process

Workflow

Test study

Conclusions

Conversion result 2d

Testing

Process

Workflow

Test study

Conclusions

Testing

Process

Workflow

Test study

Conclusions

Result details

Testing

Process

Workflow

Test study

Conclusions

Result details

Testing

Process

Workflow

Test study

Conclusions

TUDelft

Simulation results

Testing

Process

Workflow

Test study

Conclusions

Figure 1: NewSimulation 14.00.01 10.08.2019

x/y Cut at k=3 (z=7.0000 m)

Wind Speed

Min: 0.00 m/s Max: 13.50 m/s

Wall: Temperature Node 1/ outside

Min: -20.62 °C Max: 46.06 °C

Testing

Process

Workflow

Test study

Conclusions

Figure 1: NewSimulation 14.00.01 10.08.2019

x/y Cut at k=3 (z=7.0000 m)

Wind Speed

Min: 0.00 m/s Max: 13.50 m/s

Wall: Temperature Node 1/ outside

Max: 46.06 °C

Introduction
Background
Methodology
Requirements
Characteristics
Conversion
Testing
Conclusions

Conclusions

- Successfully used IFC and CityGML as input for microclimate simulation
- Proof of concept
 - Does not handle all cases
- Simplifies the use of ENVI-met

Thank you for your attention

BIM and 3D City Models as input for Microclimate Simulation

Natasja van Heerden

