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This thesis investigates the performance of quantum walk search algorithms (QWSAs) on

two-dimensional rectangular lattices and on bond percolated two-dimensional square lat-

tices. The focus is on how structural disorder, modelled by static and dynamic percolation,

affects the success probability and optimal runtime of the algorithm. In the unpercolated

case, the principal eigenvalue technique provides asymptotic expressions for runtime and

success probability. These approximations agree well with simulations on square grids,

but underestimate the runtime for rectangular grids. This seems to be a consequence of

breaking the grid symmetry, which enhances higher-frequency spectral components and re-

sults in interference effects that delay the optimal runtime. The introduction of dynamic

percolation causes a rapid drop in success probability, especially for larger grids. This

models strong decoherence, where the short timescale of structural change disrupts coher-

ent amplitude buildup. Static percolation degrades performance more gradually, with a

sharp decline only near the percolation threshold, where global connectivity is lost. These

results show that QWSAs are adversely affected by changing graph structures over time,

highlighting the importance of sufficiently long coherence times. This study provides a

way to test how well quantum search algorithms perform in disordered environments and

future work could extend this to other types of graphs or quantum walk algorithms.
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Chapter 1

Introduction

Computers are vital to our society. They are capable of quickly executing instructions

and performing computations. This makes them incredibly useful. For instance, modern

mobile phones effectively serve as portable computing devices. Moreover, computers are

also used to let robots and machines execute tasks and by scientists or engineers to make

numerical approximations [1][2]. Since computers have such a widespread use, it is im-

portant to exploit them to the best of their potential. This requires efficient algorithms

[3][4]. These algorithms, which are a list of instructions, dictate what the computer is

supposed to do. Algorithms can be either deterministic or probabilistic. Deterministic al-

gorithms always produce the same output for a given input and follow the same sequence

of steps every time [5]. Probabilistic algorithms, on the other hand, are algorithms that

use randomness in their decision making. In some cases, it can be beneficial to use these

probabilistic algorithms due to being able to quickly obtain good approximations or having

faster average performances while still producing a correct answer with high probability

[6].

In recent decades, there has been a lot of interest in quantum computers [7][8][9]. These are

computers that use qubits (quantum bits), following the principles of quantum mechanics

[10], instead of classical bits that behave as described by the laws of classical mechanics.

Quantum mechanics predicts various non-classical behaviors, such as superposition and

interference. An object in superposition means that it is in multiple different states at

the same time. How these states are combined is described by the quantum state |ψ⟩ of

the object. A measurement of the object then follows the Born rule; a given state S is

measured with a probability equal to the square of the absolute value of the amplitude of

the state S in the quantum state ψ: P [S] = |⟨S|ψ⟩|2. After measurement, the quantum

1



Chapter 1. Introduction 2

state collapses and the object is now in the state that was measured, so if state S was

measured: |ψ⟩ = |S⟩. The use of qubits allows these computers to take advantage of these

quantum phenomena to achieve a quantum speed-up [11][12]. However, to actually achieve

this speed-up, new algorithms specifically designed for quantum computers are required.

Notable examples are Shor’s algorithm for factoring numbers [13] and Grover’s algorithm

for searching unstructured databases [14]. Grover’s algorithm uses a technique called

amplitude amplification to increase the amplitude of the marked element and thereby

decrease all other amplitudes. Grover’s algorithm achieves a quadratic speed-up over

classical counterparts.

A classical random walk is a random process where a “walker” makes a probabilistic walk

on a lattice or graph [15][16]. A well-known example is the drunkard’s walk on the integers

Z: assume a walker starts at the origin and flips a coin. Depending on the outcome of the

coinflip, he either takes one step to the left or one step to the right. Now the walker is at −1

or 1 and the flip of the coin and the step are repeated. The position of the walker cannot be

predicted at any time after t = 0. However, for every time step, it is possible to determine

the likelihood of finding the walker at each position. This is the probability distribution

of the classical walker. Classical random walks are famous for modelling diffusion and

Brownian motion, but they are also useful for many efficient algorithms. In algorithms,

they are often used for searching or testing properties, such as in: Monte Carlo Markov

chain methods [17], in stochastic optimization algorithms (simulated annealing)[18] or in

graph and network analysis [19].

Figure 1.1: Probability distributions
of a symmtric classical random walk and
a symmetric quantum walk after N =
100 steps. Both walks starting at the

origin[20].

The rise of quantum mechanics in the

past century has also resulted in the de-

velopment of quantum analogues to clas-

sical random walks, called quantum walks

(QWs) [21][22][23]. Instead of a classical

“walker”, the moving object in a quantum

walk is a quantum object: the quantum

state. The movement of a quantum walk

is created by two operators, instead of the

coin flip and subsequent step of the clas-

sical walk, that act on the quantum state.

Quantum walks exhibit certain interesting

behaviors that classical walks do not ex-

hibit, such as complex interference patterns
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and ballistic spreading. Interference pat-

terns arise when an object interacts with

itself such as waves; a peak might be higher or lower when two waves come together. Bal-

listic spreading means that the standard deviation of the walker’s probability distribution

grows linearly in time; σx ∼ t. Intuitively, it can be seen as an object that propagates as

fast as a particle that moves with constant velocity. In contrast, a classical walk exhibits

diffusive behavior, which means that the standard deviation increases proportionally to

the square root of time; σx ∼
√
t. How these quantum behaviors result in probability

distributions that are significantly different from the probability distributions of classical

random walks is illustrated in Figure 1.1. Another important difference between classical

random walks and quantum walks to note is that the probability distribution in the case of

classical random walks arises from the randomness in the dynamics, whereas the dynamics

of quantum walks are deterministic. In quantum walks it is the walking object itself that

gives rise to a probability distribution, following the Born rule.

These QWs can be used in quantum counterparts to classical random walk based algo-

rithms. In particular, they can be combined with Grover’s algorithm to obtain a quantum-

walk-based search algorithm (QWSA) [24]. Grover’s algorithm is meant for unstructured

search as it disregards any underlying structure. QWSAs, on the other hand, are specif-

ically meant for structured search, these search problems typically involve an underlying

graph or lattice.

Figure 1.2: Cube (or 3D hypercube)
representing the Boolean expression “A
and B and not C” with the red dot rep-

resenting the solution.

An example of a search problem is a

Boolean satisfiability (SAT) problem. SAT

problems are NP-complete which means

there is no guaranteed way to quickly find

the solution, but a computer can quickly

check whether a solution is correct [25].

Due to the NP-completeness property, the

best way to find a solution is to guess

and verify solutions. The goal of a SAT

problem is to find a truth assignment of

a Boolean expression. A Boolean expres-

sion such as: “A AND B AND NOT C”

which has as a solution the truth assign-

ment A,B = TRUE and C = FALSE. A

truth assignment such as A,B = TRUE
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and C = FALSE can be represented in bi-

nary (1, 1, 0), this can be seen as a coordinate. This way of assigning coordinates to truth

assignments creates a hypercube associated with the search problem. For the example of

A,B = TRUE and C = FALSE this hypercube is a 3D cube, as presentend in Figure 1.2.

A possible search method is to use a classical random walk on the hypercube and stop

once the walker encounters and verifies the solution. A quantum computer could apply

Grover’s algorithm, but it ignores the underlying structure. So with a quantum computer,

given the presence of a natural underlying structure, this problem lends itself to the use

of QWSAs.

Both classical and quantum walks require an underlying structure, typically a graph or

lattice, on which the walk is performed. Structures can however degrade or vary over

time. These variations can be modeled using percolation theory, which describes the

random process governing the presence of nodes or edges on a graph. This thesis uses

bond percolation, where each edge in a graph is open (with a probability p) or closed

(with a probability 1− p), independently of each other. For random walks it also matters

how long the percolation is applied. Static percolation percolates the structure once and

then keeps that percolated structure for the complete run of the walk. Whereas dynamic

percolation reconfigures the percolated structure each time step. It is also possible to have

some percolation period Tp, to define for how many time steps the percolated structure

remains the same.

Random walks, both quantum and classical, have been studied in the context of percola-

tion. With classical random walks, percolation can result in subdiffusive behavior or even

localization. Subdiffusive behavior means that the spreading is of a lower order than dif-

fusive spreading; σx ∼ tα, α < 1
2 . And localization means that the walker gets trapped in

a finite region of the graph. Quantum walks can also exhibit a type of localization, in the

presence of percolation, called Anderson localization. In the case of Anderson localization

the localization occurs due to destructive interference and the quantum state decreases ex-

ponentially away from the localized region [26]. Furthermore, in the context of quantum

walks, percolation has been found to act as a decoherence model [27][28]. Decoherence,

characterized by the loss of quantum coherence and interference, causes the quantum walk

to exhibit increasingly classical behavior as the degree of percolation increases.

Since the performance of quantum-walk-based search algorithms (QWSAs) is closely re-

lated to the properties of the underlying QWs, this raises questions about how QWSAs

perform in percolated environments. This thesis studies the performance of QWSAs in
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finite two-dimensional rectangular lattices and percolated finite two-dimensional square

lattices, both with periodic boundary conditions.

The performance of the QWSAs is measured by looking at two key performance indica-

tors: the success probability and the optimal runtime. The thesis combines both analyt-

ical asymptotical approximations and numerical simulations. For unpercolated grids, the

runtime and success probability can be approximated using the principal eigenvalue tech-

nique, which analyzes the dominant eigenvalues of the QWSA evolution operator. These

asymptotic predictions perform well for square lattices, but are less accurate on rectangu-

lar lattices due to the influence of higher-frequency spectral components, which introduce

beat frequencies in the quantum walk. As a result, rectangular grids exhibit a shifted

optimal runtime and a reduced success probabilities compared to the square grids.

To model environmental noise or dynamic structural changes, bond percolation is intro-

duced in two regimes: static percolation (fixed structure) and dynamic percolation (struc-

ture fluctuates at every timestep). Dynamic percolation significantly reduces QWSA per-

formance, reducing the success probability by over 80% at percolation parameter p = 0.95,

especially for larger grids that require longer coherence times. In contrast, static percola-

tion degrades performance more gradually, and the success probability remains high until

the percolation threshold is approached (p ≈ 0.5), where the lattice loses global connectiv-

ity. Also notable is the fact that under static percolation, the optimal runtime increases

with decreasing percolation parameter p, until it reaches the critical phase, after which it

rapidly decreases again due to reduced connected regions.

In total this work is further proof of how percolation models can be used to systematically

degrade QWSAs, providing a controlled way to study their robustness and the role of

coherence. The analysis of QWSA performance applied here could be extended to other

lattice geometries, percolation types, or quantum-walk-based algorithms in future work.



Chapter 2

Theory and Methods

2.1 Performing a discrete quantum walk (DQW)

A discrete-time quantum walk (DQW) is the quantum analogue of a classical random walk,

in which the walker evolves according to both a “coin toss” and a shift. In the classical

case, a coin flip determines the direction of motion at each time step. Analogously, a DQW

requires two operators at each step: a coin operator C and a shift operator S, which moves

the walker based on the coin outcome. The Hilbert space of the quantum walker is given

by H = HC ⊗HP , where HC is the coin space and HP is the position space.

For a one-dimensional walk with periodic boundary conditions and P positions, the coin

space for each position is 2-dimensional, encoding left and right directions, and the position

space is P -dimensional. The total Hilbert space then has dimension 2P . A single time

step is implemented by the unitary operator

U = S(IP ⊗ C), (2.1)

where IP is the identity operator on the position space. The coin operator is applied

independently at each site, followed by a shift conditioned on the coin state.

In this thesis, the focus lies on quantum walks performed on finite two-dimensional rect-

angular lattice of size N ×M , with periodic boundary conditions. In this case, the coin

space for each position becomes 4-dimensional to encode the directions up, down, left,

and right. The position space becomes NM -dimensional, and the total Hilbert space is

thus 4NM -dimensional.

6
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2.2 Grover’s algorithm as a quantum walk

2.2.1 Grover’s algorithm

Grover’s algorithm is a quantum search algorithm designed to locate a marked item among

N possibilities with a quadratic speedup over classical search. The algorithm operates in

an N -dimensional Hilbert space and relies on two unitary operators: a search oracle and an

inversion-about-the-mean operator. From a quantum mechanical perspective, the objective

of Grover’s algorithm can be stated as follows: the goal is to maximize the amplitude of

the marked element basis state |xo⟩ in the system’s quantum state. The search oracle is

defined as:

Rf = I − 2 |xo⟩ ⟨xo| , (2.2)

which reflects the state about the linear subspace orthogonal to |xo⟩. All amplitudes

remain unchanged, except for the marked element component |xo⟩ which undergoes a sign

inversion.

Figure 2.1: Geometric represen-
tation of a single Grover iteration.
θ is defined by sin(θ) = 1

N . The ini-
tial state ψ is taken as the uniform
superposition state |D⟩ and |D⊥⟩ is
the normalized vector of |D⟩ pro-
jected on the linear subspace or-

thogonal to |xo⟩.

The inversion-about-the-mean operator is given

by:

RD = 2 |D⟩ ⟨D| − I, (2.3)

where |D⟩ is the uniform superposition over all

basis states:

|D⟩ = 1√
N

N∑
x=1

|x⟩ . (2.4)

A single full Grover iteration, or step operator,

is then defined as:

U = RDRf . (2.5)

The Grover algorithm can be visualized, as il-

lustrated in Figure 2.1, in a single plane. This is

due to the fact that the wave vector remains in

the same plane during the whole process, specif-

ically the plane spanned by the marked wave

vector and the uniform superposition vector.
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2.2.2 QWSA

Quantum walks provide a natural framework to implement search algorithms on structures,

such as graphs and lattices. In the coined discrete-time quantum walk model, the evolution

of the walker is governed by two operators: a unitary coin operator C acting on an internal

coin space, and a shift operator S that moves the walker across the graph based on the

coin state. The main constraints are that C must be unitary and S must be local.

To incorporate Grover’s algorithm into a quantum walk, the Grover coin is used as the

coin operator [21]. For a d-regular graph, the Grover coin is defined as

G = 2 |D⟩ ⟨D| − I, (2.6)

where |D⟩ is the uniform superposition over the d coin basis states:

|D⟩ = 1√
d

d∑
j=1

|j⟩ . (2.7)

Explicitly, G is a d× d matrix in which the diagonal entries are 2
d − 1 and the off-diagonal

entries are 2
d . This coin reflects any state about the uniform direction |D⟩.

In the case of a finite two-dimensional rectangular lattice with periodic boundary condi-

tions, each vertex is connected to its four nearest neighbors: up, down, left, and right.

This makes the lattice a 4-regular graph, and thus d = 4 in the Grover coin.

The shift operator used is the flip-flop shift operator. This operator moves the walker to

a neighboring site in the direction indicated by the coin state and simultaneously flips the

coin state to its opposite. The flip-flop shift operator allows the amplitudes to convergence

faster toward the marked state in the QWSA [29]. For a 2D grid, the action of S on position

and coin states is given by:

S |x, y⟩ |r⟩ = |x+ 1, y⟩ |l⟩ , (2.8)

S |x, y⟩ |l⟩ = |x− 1, y⟩ |r⟩ , (2.9)

S |x, y⟩ |u⟩ = |x, y + 1⟩ |d⟩ , (2.10)

S |x, y⟩ |d⟩ = |x, y − 1⟩ |u⟩ . (2.11)

In a finite N×M lattice with periodic boundary conditions, the operations x±1 and y±1

are interpreted modulo N and M , respectively.
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The full step operator for the quantum walk is then given by:

U = S(IP ⊗G), (2.12)

where IP is the identity operator on the position space, and G is the Grover coin.

Now only the search oracle still needs to be added to actually perform the search. In the

coined model, the oracle must act on the full Hilbert space, including the coin space. The

oracle operator is defined as:

R = (IP − 2 |xo⟩ ⟨xo|)⊗ IC , (2.13)

where IC is the identity operator on the coin space. This operator inverts the sign of the

amplitude at the marked vertex for all coin states.

The combined step operator for the QWSA is then:

U ′ = UR. (2.14)

A specific initial state is also required. Due to the symmetry of the 2D rectangular lattice

with periodic boundary conditions, every site has the same environment and is therefore

physically equivalent to any other position. This makes the natural choice for the initial

state of the system:

|ψ(0)⟩ = |DP ⟩ ⊗ |DC⟩ , (2.15)

where |DP ⟩ is the uniform superposition over all NM positions and |DC⟩ is the uniform

superposition over the coin states.
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2.3 Computing optimal runtime and success probability

An important part of QWSAs is that they need to be stopped at the correct time so as

to maximize the amplitude of the correct node. If it is stopped too early then the marked

node amplitude has not reached its maximum value yet, but if it goes longer than the

optimal runtime then the marked node amplitude starts to diminish due to the oscillatory

nature of the quantum evolution in QWSAs [30].

To determine the optimal runtime and corresponding success probability asymptotically,

one can employ the principal eigenvalue technique [31], which utilizes a partial spectral

decomposition of the step evolution operator U ′. While the full spectrum of U ′ may be

difficult to compute analytically for arbitrary lattice sizes, this is often doable for the

spectrum of the unperturbed operator U (without the search oracle), and can be used as

the basis for approximation.

Figure 2.2: The blue dots are the
eigenvalues of U and the red crosses are
eigenvalues of U ′, for a 5x5 square lat-

tice.

Let U ′ be the total step operator of the

QWSA, and suppose eiλ is the eigenvalue

of U ′ with the smallest λ > 0 and eiλ
′
the

eigenvalue with the largest λ′ < 0. Let |λ⟩
and |λ′⟩ denote the corresponding eigenvec-
tors. Since U ′ is real and unitary, all eigen-

values lie on the unit circle and appear in

complex-conjugate pairs; hence λ′ = −λ.
An example is given in Figure 2.2, which

shows the eigenvalues of U (blue dots) and

U ′ (red crosses) for a 5x5 square lattice.

Note that the partial spectral decomposi-

tion of the operator U ′ can be written as:

U ′ = eiλ|λ⟩⟨λ|+ e−iλ|λ′⟩⟨λ′|+Ures, (2.16)

with Ures the component of U ′ that only acts on the linear subspace orthogonal to |λ⟩ and
|λ′⟩.

The probability p(t) of measuring the marked node |xo⟩ at time t is then:

p(t) = |⟨xo|(U ′)t|ψ(0)⟩|2 = |eitλ⟨xo|λ⟩⟨λ|ψ(0)⟩+ eitλ
′⟨xo|λ′⟩⟨λ′|ψ(0)⟩+ ϵ|2 (2.17)



Chapter 2. Theory and Methods 11

where ϵ = ⟨xo|(Ures)
t|ψ(0)⟩.

Under suitable limit conditions, it can be shown that ϵ(t) becomes negligible as lattice size

goes to infinity, in Appendix C it is proven that ϵ→ 0 as N,M → ∞ for a 2D rectangular

lattice.

To evaluate Equation 2.17, it suffices to compute the following quantities:

• ⟨xo|λ⟩, the projection of the marked state onto the principal eigenvector,

• ⟨λ|ψ(0)⟩, the overlap of the initial state with the eigenvector,

• The associated phase λ.

• And the corresponding quantities for λ′.

Following the method from Portugal [31], the above values can be related to the spectrum

of the unperturbed operator U using certain parameters. Because U is real it has complex

conjugate pair eigenvalues, the method then requires the two parameters:

A = 2
∑
ϕk=0

|⟨xo|ψk⟩|2, (2.18)

C =
∑
ϕk ̸=0

|⟨xo|ψk⟩|2

1− cos(ϕk)
. (2.19)

Here, the ψk form an eigenbasis of U , and ϕk are the complex arguments of the associated

eigenvectors. A is a sum that only uses zero eigenvalues and C only non-zero eigenvalues.

This distinction arises in the derivation of λ, which is also where A and C come from. The

zero eigenvalues allow the use of a Maclaurin expansion that is different from the Taylor

expansion required for non-zero eigenvalues, resulting in two distinct sums that have to

be calculated. Moreover, the Taylor expansions require that, for sufficiently big N,M ,

λ << ϕmin with ϕmin the smallest positive argument from the eigenvalues of U , this is

proven in Appendix B.

The method from Portugal then states that, using A and C, the marked node probability

becomes:

p(t) =
⟨ψ(0)|xo⟩2

AC
sin2(

√
(AC)t) (2.20)

The probability amplitude is maximal when:

t =
π
√
C

2
√
A
. (2.21)
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Since this QWSA employs a discrete quantum walk, the runtime from Equation 2.21 has

to be rounded up or down when used for a QWSA run. Rounding Equation 2.21 should

produce a good approximation for the runtime at which the marked node probability

attains a maximum. The maximum probability amplitude for successfully finding the

marked node, at the runtime given by Equation 2.21, is approximately:

psucc =
|⟨ψ(0)|xo⟩|2

AC
. (2.22)

The last step to finding a formula for topt and psucc in terms of N and M is to evaluate,

or more specifically find bounds for, A and C. First notice that the only eigenvector of U

that has non-zero overlap with |xo⟩ is the uniform superposition state, so

A =
2

#nodes
=

2

NM
(2.23)

The inner products in the sum C can be determined using the eigenvectors for an N ×M

grid (see Appendix A). Also ϕk can be found in the same section, C can then be reduced

to:

C =
1

NM

N−1,M−1∑
k,l=0

(k,l) ̸=(0,0)

1

1− 1
2(cos(

2πk
N ) + cos(2πlM ))

=
1

NM
× SNM (2.24)

The identity 1−cos(a)
2 = sin2(a2 ) and the fact that sin2(x) is symmetric around π

2 combine

to produce:

SNM =

N−1,M−1∑
k,l=0

(k,l) ̸=(0,0)

1

sin2(πkN ) + sin2( πlM )
(2.25)

= 4×
⌊N

2
⌋,⌊M

2
⌋∑

k,l=1

1

sin2(πkN ) + sin2( πlM )
+ 2× (

⌊N
2
⌋∑

k=1

1

sin2(πkN )
+

⌊M
2
⌋∑

l=1

1

sin2( πlM )
) (2.26)

The following identity will be used to find bounds for the sums in Equation 2.25:

4a2

π2
≤ sin2(a) ≤ a2 (2.27)
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Bounds for the term in brackets are found, using the inequalities from Equation 2.27

(details in Appendix D):

1

π2
(N2 +M2) ≤

⌊N
2
⌋∑

k=1

1

sin2(πkN )
+

⌊M
2
⌋∑

l=1

1

sin2( πlM )
≤ π2

24
(N2 +M2) (2.28)

The double sum in Equation 2.25 is first bounded by using Equation 2.27 again. Af-

terwards, integral approximations are used for these bounds. These steps result in the

following bounds:

1

π2

∫ M
2

1

∫ N
2

1

1

( x
N )2 + ( y

M )2
dxdy ≤

⌊N
2
⌋,⌊M

2
⌋∑

k,l=1

1

sin2(πkN ) + sin2( πlM )
≤ 1

4

∫ M
2

1
2

∫ N
2

1
2

1

( x
N )2 + ( y

M )2
dxdy.

(2.29)

These integrals can be solved analytically (see Appendix E) combining this result with

Equation 2.28 produces the asymptotic bounds for SNM :

1

π
NM(ln(NM)+D+O(

1

N
+

1

M
)) ≤ SNM ≤ π

4
NM(ln(NM)+E+O(

1

N
+

1

M
)) (2.30)

with D,E constants that depend on the ratio N
M . So in the limit of N,M → ∞: C =

k1(ln(NM) + k2).

Finally, substituting A and C into the previously obtained Equation 2.21, the approxima-

tion for the optimal runtime for an N ×M grid is:

topt =
π
√
k1NM(ln(NM) + k2)

2
√
2

(2.31)

with k1 and k2 constants that depend on the geometry (specifically on the ratio between

N andM). Since QWSA performs a discrete quantum walk, the time needs to be rounded

to an integer when performing the QWSA. Now note that | ⟨ψ(0)|x0⟩ |2 = 1
NM since ψ(0)

is the uniform superposition state. Then the corresponding success probability is:

psucc =
1

2k1(ln(NM) + k2)
. (2.32)

The asymptotic approximation of the optimal runtime, Equation 2.31, contains two un-

determined constants. The sum of C will be determined exactly for several geometries

and sizes, these values can be used to determine the runtime via Equation 2.21. Then the



Chapter 2. Theory and Methods 14

formula from Equation 2.31 will be fitted through these runtimes to obtain the parameters

k1 and k2. The values from the principal eigenvalue technique obtained by exactly evalu-

ating the sum C and the fitted formula will be compared to the actual optimal runtimes

determined by performing quantum walks.

Moreover, given the parameters k1 and k2 also fix the Equation 2.31. This formula will also

be compared to the maximum probabilities determined by performing the corresponding

quantum walks in subsection 3.2.1.

2.4 Percolation

Percolation is a way to model connectivity or variation in a graph [32][33]. There are two

types of percolation: site percolation and bond percolation. In site percolation each node

of the graph is open with probability p and closed with probability 1−p. Bond percolation

does the same with the edges; a subgraph is chosen where each bond independently is either

present with probability p or missing with probability 1 − p. The probabiliy p that each

edge has of being present is called the percolation parameter. In this thesis only bond

percolation is applied.

These models bring an element of uncertainty and variation into the graph. But con-

nectivity also is an issue when some links are missing, as even a connected graph can

become disconnected when percolation is applied. It turns out that such a percolated

graph has three distinct connectivity phases dependent on the percolation parameter [32].

The supercritical phase, p > 0.5 for infinite square graphs, is characterized by large scale

connectivity. To be precise, the probability that a node is a part of an infinite connected

cluster (connected group of nodes) is equal to one. In the subcritical phase, p < 0.5 for

infinite square graphs, there is no infinite cluster present. This means that all clusters

are finite and connectivity is only local. The critical phase, p = 0.5 for an infinite square

graphs, has clusters of all sizes but no infinite cluster. This means that the system is at a

transition point, which is why the percolation parameter pc = 0.5 is called the percolation

threshold or critical percolation parameter [34]. In the case of finite graphs defining the

critical percolation becomes more subtle. The most important result is that the critical

phase becomes smeared out, for a finite square lattice (side length L) the critical regime

becomes pc ±∆p still with pc = 0.5 and ∆p scales with L− 3
4 [35][36].

In the context of a QWSA, percolation can be applied at various moments. For instance

the graph could be percolated only once at the beginning (static percolation) or at every
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timestep the graph is percolated again (dynamic percolation). In the context of quantum

walks, percolation can be seen as a decoherence model [37] [27]. Static percolation can be

interpreted as a siuation where the change in time of the graph takes much more time than

the runtime of the QWSA, so a decoherence time that is long compared to the required

coherence time. And dynamic percolation can be seen as a situation where the change in

time of the graph takes much less time than the timestep of the QWSA, in this case the

decohorence time is short compared to the required coherence time.

Quantum walks, including quantum-walk-based search algorithms (QWSAs), evolve uni-

tarily and deterministically: given a specific initial state, the final state is entirely deter-

mined by the applied operators. In such systems, coherence and interference play essential

roles in enabling quantum speed-up over classical algorithms [28]. When percolation is

added as a means to study the impact of disorder on QWSAs, then there is a stochastic

element in the evolution of the system. This thesis examines the influence of bond per-

colation by performing multiple quantum walk simulations on percolated 2D rectangular

lattices. This will be done in both the static percolation domain and the dynamic perco-

lation domain. These simulations are then used to determine how the success probability

after runtime Equation 2.31 changes as a function of the percolation parameters. More-

over, the runtime at which the average walk, of a certain percolation parameter value,

attains its maximum probability is plotted against the percolation parameter.



Chapter 3

Results and Discussion

This section is largely split into two parts. Part 1 is made up of: section 3.1 and sec-

tion 3.2. Part 2 comprises: section 3.3, section 3.4 and section 3.5. Part 1 compares the

principal eigenvalue technique results from section 3.1 with data from unpercolated grid

QWSA simulations for different grid dimensions. Part 2 is an analysis of the influence of

percolation on QWSAs.

Both parts begin with the analysis of single QWSA simulation runs providing results that

help in later discussions; section 3.1 contains unpercolated QWSA runs and section 3.3

cotainsstatically percolated QWSA runs. Furthermore, part 1 also compares the results

from the different grid dimensions, M
N = 1 and M

N = 3, with each other. Similarly, part 2

also compares the influences of dynamic percolation compared to static percolation. Only

the last section of part 2, section 3.5, exclusively looks at static percolation. The central

node in the grid is the marked node in all simulations. Note, however, that due to the

periodic boundary conditions all nodes are physically equivalent and hence the results

should be the same irrespective of what node is chosen as the marked node. Moreover,

the runtime of the QWSA refers to the number of discrete steps of the QWSA and hence

is a dimensionless quantity (in the figures [steps] will be used as the dimension). The

temporal frequency (with dimension [f ] = [ 1
runtime ]) =

1
steps) of section 3.1 is therefore also

a dimensionless quantity.

16
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3.1 Analysis of unpercolated QWSA runs

This section presents an analysis of unpercolated QWSA runs to provide insight into the

algorithm’s behavior and support the discussions in later sections. The grid sizes chosen

in this section have dimensions 1 : 1 and 1 : 3, and the number of nodes across the different

grids is approximately the same; 29× 29 = 841 and 17× 51 = 867. The section will first

point out notable observation and then in the last paragraph an explanation is discussed.

Figure 3.1 shows a single run for a square (29x29) grid, the runtime t = 96 steps cor-

responds to approximately one “period” of the walk. The QWSA simulation exhibits

a high-frequency component that initially resembles noise. However, it corresponds to

a period-2 oscillation, a known characteristic of most coin-based discrete-time quantum

walks. Another noticeable part of the run is the shape of the peak. Instead of being

rounded like a sine function as might be expected based on Equation 2.27 the top of the

graph is more like a plateau; staying constant for a while.
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Marked node probability over time (single run)

Figure 3.1: A single run of a QWSA simulation on an unpercolated 29x29 grid with
runtime t = 96 steps.

Figure 3.2 shows a single run for a rectangular (17 × 51) grid. Here, a longer runtime

t = 1050 (dimensionsless time steps) is used to reveal more of the periodic structure. Note

that, unlike the square grid, the first peak does not plateau. However, the first maximum is

achieved slightly to the right of the center of the peak. This plot also has more unexpected



Chapter 3. Results and Discussion 18

characteristics such as the splitting of the peak at t = 500 steps and the variation in the

peak height, which itself almost seems modulated by a lower frequency wave.
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Figure 3.2: A single run of a QWSA simulation on an unpercolated 17x51 grid with
runtime t = 1050 steps.

The square grid also exhibits these variations in the peak height, but the square grid peak

oscillations are significantly smaller than in the rectangular grid case.

The frequency decompositions of these QWSAs, Figure 3.3 and Figure 3.4, help explain

these phenoma. The small peaks at frequencies −0.5 and 0.5, correspond to the period 2

component typical of coin-based discrete time quantum walks. While both spectra contain

higher frequency components, both frequency decompositions clearly have a dominant

non-zero term. However, due to the broken symmetry in the rectangular grid, Figure 3.4

contains non-dominant frequencies with larger amplitudes than those in Figure 3.3. This

explains why the 29x29 QWSA marked node probabilities have a smaller variation in peak

height than the 17x51 QWSA marked node probabilities. Moreover, the plateau observed

in Figure 3.1 can also be attributed to these higher-frequency components; they interfere

constructively in such a way that the peak becomes flattened. The modulation of peak

heights in the QWSA probability signal arises from interference between the dominant

low-frequency component and the higher-frequency components, for instance in Figure 3.4

the frequency with approximate magnitude of 0.01 1
steps is in the N × 3N grid the most

important higher frequency. These additional components create beat frequencies, a type
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of lower frequency that occurs when two or more frequencies are superimposed. Beat

frequencies modulate the amplitude of the main oscillation, resulting in an envelope that

causes periodic variation in peak heights. This is a phenomen that has been observed in

quantum walks [38].
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Figure 3.3: The figure depicts the magnitude frequency decomposition for the marked
node probability of a QWSA with grid size 29x29. Runtime t = 100000 steps so as to get a
high resolution decomposition. The highest non-zero peaks correspond to the frequencies:

-0.0101 1
steps and 0.0101 1

steps .
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Figure 3.4: The figure depicts the magnitude frequency decomposition for the marked
node probability of a QWSA with grid size 17x51. Runtime t = 100000 steps so as to get a
high resolution decomposition. The highest non-zero peaks correspond to the frequencies:

-0.0092 1
steps and 0.0092 1

steps .
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3.2 Comparison of asymptotic results with QWSA simula-

tions

3.2.1 Optimal runtime

The asymptotic formula for the optimal runtime, given in Equation 2.31, is compared here

against simulation results. This formula includes two constants, k1 and k2, which depend

on the grid’s aspect ratio M
N . These constants are obtained by fitting the expression in

Equation 2.31 to runtimes determined by computing Equation 2.18 and using these in

Equation 2.21. The constants are determined for two aspect ratios: M
N = 1 and M

N = 3.

For the square grid, the runtime predicted by the principal eigenvalue method appears to

agree well with the QWSA simulations. However, there is a noticeable gap between the

optimal runtimes observed in the simulations at N = 29 and N = 31. Upon inspection

of the respective QWSA simulations, it turns out that the gap can be explained by the

plateauing behavior of square grid QWSA peaks, that was discussed in section 3.1. Up

until N = 29 the maximum is achieved at the beginning of the plateau, whereas from

N = 31 onward the maximum is achieved more at the end of the plateau.
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Optimal runtime t of a QWSA with grid side lengths NxN
Method A: Principal eigenvalue technique
Method B: Performing the quantum walk
Fit (Method A)

Figure 3.5: The figure shows the optimal runtime for a QWSAs with square grids
obtained with two methods. Method A; the runtime obtained by exactly calculating the
sums from Equation 2.18 and using this in the formula from Equation 2.21. Method B;
the runtime where the probability amplitude of the marked node is maximal in a QWSA
simulation. A fit of the formula from Equation 2.31 is made through the points obtained

by method A, results of the fit: k1 = 0.335 and k2 = 0.104.
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For the rectangular grid with aspect ratio 3, the optimal runtime observed in the QWSA

simulations is consistently higher than the optimal runtime predicted by the principal

eigenvalue method. This can be attributed to the presence of non-dominant higher-

frequency components, as seen in Figure 3.4. Specifically, as depicted in Figure 3.2, these

frequencies interfere in such a way that the peak is shifted to the right. As a result, the first

maximum in the QWSA probability occurs later than would be predicted by considering

only the dominant frequency.
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Method A: Principal eigenvalue technique
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Figure 3.6: he figure shows the optimal runtime for QWSAs with rectangular grids
(N × 3N) obtained with two methods. Method A; the runtime obtained by exactly
calculating the sums from Equation 2.18 and using this in the formula from Equation 2.21.
Method B; the runtime where the probability amplitude of the marked node is maximal
in a QWSA simulation. A fit of the formula from Equation 2.31 is made through the

points obtained by method A, results of the fit: k1 = 0.327 and k2 = 1.261.
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3.2.2 Success probability

This section compares the theoretical asymptotic success probability, given by Equa-

tion 2.32, with the success probability of a QWSA simulation using the runtime from

Equation 2.31. The geometry-dependent parameters k1 and k2 were determined in sub-

section 3.2.1; see Figure 3.5 and Figure 3.6.

The results, shown in Figure 3.7 and Figure 3.8, support the previous findings.

In Figure 3.7, the curve for the theoretical approximation, using the fitting parameters

from Figure 3.5, closely matches the values obtained from the QWSA simulations and lies

slightly above them. This is expected, as the asymptotic formula in Equation 2.32 serves

as an upper bound derived from dominant eigenvalues only.

Figure 3.7: Graph with the probability amplitude of the marked node at the aymptotic
optimal runtime given by Equation 2.31 compared with the success probability predicted

by Equation 2.32 with fitting parameters k1, k2 from Figure 3.5.

Figure 3.8 for the Nx3N gridsizes, on the other hand, shows a theoretical success probabil-

ity with fitting parameters from Figure 3.2, that is significantly above the values obtained

from the QWSA simulation.
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Figure 3.8: Graph with the probability amplitude of the marked node at the theoretical
asymptotic optimal runtime given by Equation 2.31 compared with the success probability

predicted by Equation 2.32 with fitting parameters k1, k2 from Figure 3.6.

This discrepancy can be explained by the fact that for N×3N grids, the higher-frequency

components have greater amplitudes than in square grids, as discussed in section 3.1.

This results in a more complex wave pattern for the marked node probability, which

systematically seems to lead to a smaller success probability as depicted in Figure 3.2.

For the same reason (that is, the presence of higher-frequency components with non-

negligible amplitude) QWSAs on rectangular N×3N grids are also expected to exhibit

other peaks at later times where the actual success probability exceeds the theoretical

prediction. Indeed, some of the peaks in Figure 3.2 are up to 10% higher than the 0.19

predicted that can be read from Figure 3.8.
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3.3 Analysis of a statically percolated QWSA run

Figure 3.9 shows the marked node probability of a percolated 29×29 QWSA. Similar

to Figure 3.2, but to a much greater extent, this plot reveals the presence of multiple

frequency components in the percolated QWSA simulation. There are characteristics of

the grid that help explain the presence of these additional frequencies with significant

amplitudes.

Figure 3.9: QWSA on a percolated 29x29 grid, Figure 3.10, with runtime t = 240 steps.

Figure 3.10 shows some regions that are only distantly connected to the marked node.

For example, the top right and bottom left corners are only connected due to the periodic

boundary conditions. Moreover, some paths form important connections from large areas

to the marked node, such as the narrow path linking the marked node to the left side of

the grid.
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Figure 3.10: Percolated 29x29 grid; percolation parameter 1
2 .

Some of these features are also evident in the probability distributions shown in Figure 3.11,

Figure 3.12, Figure 3.14 and Figure 3.15. In Figure 3.12. In Figure 3.12, the paths through

which a significant part probability flows are visible as lighter regions, particularly the

routes from the marked node to the left, upward, and toward the bottom right. The areas

that are distantly connected to the marked node are illustrated well in Figure 3.15.

In this figure there are certain lighter areas, such as the bottom left and the top right, the

same regions previously described as being weakly connected to the marked node. The

bright yellow nodes in the bottom right depict a connecting path to the bottom left.

The spatial asymmetry, thus obtained, provides a possible explanation for the many fre-

quencies present in the walk depicted in Figure 3.9, similar to the rectangular case com-

pared to the square case. Furthermore, note how the maximum probability reached in this

percolated 29x29 grid QWSA run, just above 0.04, is significantly lower than the maxi-

mum success probability reached in the unpercolated 29x29 grid QWSA run. This is to be

expected: symmetry and connectivity of the unpercolated grid create a distinct dominant

frequency in the QWSA, allowing a significantly greater portion of the amplitude to con-

structively interfere at the marked node at the same time. The disorder and asymmetry

in the percolated grid, on the other hand, cause the amplitudes to disperse across multiple

paths and frequencies making it less likely that a large portion of the probability converges

at the marked node.
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Figure 3.11: QWSA probability dis-
tribution at t = 60 steps of the run de-

picted in Figure 3.9.

Figure 3.12: QWSA probability dis-
tribution at t = 120 steps of the run

depicted in Figure 3.9.

Figure 3.14: QWSA probability dis-
tribution at t = 180 steps of the run

depicted in Figure 3.9.

Figure 3.15: QWSA probability dis-
tribution at t = 240 steps of the run

depicted in Figure 3.9.
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3.4 Effect of percolation on QWSA success probability

3.4.1 Dynamic percolation

The success probability, with runtime Equation 2.31, is plotted against the percolation

parameter in Figure 3.17. Figure 3.18 shows the maximum succes probability obtained

during a run of ⌊2.9× topt⌋ timesteps. The figures are very similar; they both show a rapid

decrease in success probability as the percolation parameter decreases.
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Figure 3.17: Mean and standard deviation (sample size n = 100) of the success prob-
ability for dynamically percolated QWSA simulations with runtime ⌊topt⌋ for three grid

sizes.
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Figure 3.18: Mean and standard deviation (sample size n = 100) of the maximum
marked node probability obtained from dynamically percolated QWSA simulations run

for ⌊2.9× topt⌋ timesteps for three grid sizes.

Both figures reveal a sharp decline in success probability as the percolation parameter

decreases. This is supported by the interpretation of dynamic percolation as a model

for decoherence: when the percolation parameter is low, the graph connectivity changes

rapidly, effectively scrambling quantum interference and severely diminishing the effective-

ness of the QWSA. In the dynamic percolation model, the environment evolves on a much

shorter timescale than the algorithm itself, mimicking strong environmental noise.

At a percolation parameter of 0.95, the success probability is reduced by more than 80%,

clear evidence of the strong decoherence effect modelled by dynamic percolation. Further-

more, the impact appears to scale with system size: larger grids suffer a more pronounced

decrease in success probability than smaller ones at the same percolation level. This could

be explained by the fact that the QWSA has a longer optimal runtime on larger grids,

effectively increasing the coherence time necessary for the QWSA to be performed, yet

keeping the percolation and thus decoherence timescale the same.
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3.4.2 Static percolation

In the static case, the success probability remains significantly closer to the unpercolated

value across a wider range of percolation parameters compared to the dynamic case. This

behavior is expected: unlike dynamic percolation, the static model represents a degraded

but stable environment, where decoherence occurs on a much longer timescale than the

QWSA runtime.

This means that while the success probability should decrease with a decreasing percolation

parameter, indeed as is depicted in Figure 3.19 and Figure 3.20, it should decrease more

gradually than in the dynamic case. It is really between percolation parameters 0.4 and

0.6 that a rapid decline in success probability occurs. This interval coincides with the

percolation threshold for these grid geometries, where the graph begins to lose global

connectivity. As a result of the loss of global connectivity, a significant portion of the

amplitudes cannot reach the marked node, which drastically reduces the QWSA’s success

probability.
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Figure 3.19: Mean and standard deviation (sample size n = 100) of the success proba-
bility for statically percolated QWSA simulations with runtime ⌊topt⌋ for three grid sizes.
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Figure 3.20: Mean and standard deviation (sample size n = 100) of the maximum
marked node probability obtained from statically percolated QWSA simulations run for

⌊2.9× topt⌋ timesteps for three grid sizes.

The success probability in the static case remains much closer to the unpercolated success

probability for a much greater range of percolation values than in the dynamic case. This

can be explained by the idea that, in contrast to the dynamic case, static percolation

can be interpreted as modeling a degraded environment where the decoherence time is

significantly longer than the runtime. This means that while the success probability should

decrease with a decreasing percolation parameter, indeed as is depicted in Figure 3.19 and

Figure 3.20, it should decrease more gradually than in the dynamic case.

It is between percolation parameter values 0.4 and 0.6 that the success probability de-

creases quickly. This is right around the threshold of the percolation parameter value

of these geometries, at this point the graph starts to become much more disconnected.

This means that a lot of the probability cannot flow towards the marked node, drastically

decreasing the success probability of the QWSA.

Also noticeable is that, between percolation parameters 0.5 and 0.8, the maximum marked

node probability amplitude achieved during the QWSA significantly exceeds the proba-

bility amplitude at the asymptotic runtime ⌊topt⌋. This suggests a possible shift in the

average of the optimal runtime in the presence of static percolation. This is explored in

the next subsection; section 3.5.
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3.5 Optimal runtime for statically percolated QWSAs

The optimal runtime for the average walk, shown in Figure 3.21, supports the findings

from subsection 3.4.2. As the percolation parameter decreases, the time step at which the

maximum marked node probability is achieved increases progressively. This increase in op-

timal runtime continues until the longest optimal runtime is observed between percolation

parameters 0.5 and 0.55.
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Figure 3.21: The optimal runtime of the average (sample size n = 100) statically per-
colated walk, the dashed lines represent ⌊topt⌋ from Equation 2.31 with k1 and k2 from

Figure 3.5.

section 3.3 and section 2.4 provide an explanation for this increase and the following

decrease in optimal runtime. Until close to the percolation threshold, there is a high

likelihood that much of the grid remains connected to the marked node, allowing amplitude

to flow from many parts of the graph toward the marked node. But as the percolation

parameter decreases, the number of paths to the marked node also decrease, and amplitude

from distant nodes takes longer to arrive. This results in the marked node probability

peaking at increasingly later time steps. But once the percolation parameter drops below

around 0.55, the optimal runtime begins to decrease rapidly. This likely is a result of

entering the critical and subcritical percolation regimes of these geometries. As the grids

become more percolated, the area connected to the marked node tends to be smaller and
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smaller, hence the probabilities that can flow to the marked node do not need a lot of time

to get there, thus reducing the optimal runtime.

Lastly, it is noted that the peaks at or below percolation parameter 0.4 are a result of the

oscillatory behavior; in these cases it is a later peak that obtains the maximum value and

not the first. So these big peaks do not actually represent the first optimal percolation

time, the first optimal time is significantly smaller and better represented by the smallest

runtimes in this percolation parameter regime below 0.4. This explanation was verified by

examining the average walks. Above the percolation parameter of 0.4 this behavior does

not interfere, so in that region the data points in Figure 3.21 do represent the first optimal

times of the average QWSA.
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Conclusion

This thesis investigated the success probability and optimal runtime of quantum-walk-

based search algorithms (QWSAs) on rectangular lattices and percolated square lattices.

For unpercolated grids, an asymptotic approximation of the runtime, based on the prin-

cipal eigenvalue of the evolution operator, was determined. While this approximation

performed well for square lattices, it consistently underestimated the optimal runtime for

rectangular lattices. This discrepancy results from geometric asymmetry, which amplifies

the role of higher frequency components not captured by the dominant-eigenvalue-based

estimate. A similar effect was observed for the predicted success probability: the asymp-

totic formula provided reliable estimates for square grids but tended to overestimate the

probability for rectangular grids during their first optimal peak. Due to the limited num-

ber of grid sizes studied, it is still uncertain whether this trend continues for significantly

larger grids. However, in the limit of infinite grid size, the asymptotic approximation is

expected to hold.

When percolation is introduced, the symmetry and connectivity of the grid are disrupted.

Dynamic percolation in particular creates a lot of disorder and works as a model for strong

decoherence. As a consequence, the success probability of QWSAs decreases quickly as the

percolation parameter decreases. Moreover, as the size of the grid increases, the adverse

effect of dynamic percolation on the effectiveness of the QWSA increases. At the same

percolation value (less than 1), the success probability of a larger grid is reduced more,

relative to the unpercolated case, than that of a smaller grid. This is likely due to the

fact that the optimal runtime of a QWSA increases with grid size, while the timescale on

which the grid fluctuates under dynamic percolation (every timestep) remains the same.

In other words, larger grids require a longer coherence time for effective execution, but

33
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under dynamic percolation, the decoherence timescale of the grid remains fixed. This leads

to a greater decrease in performance of QWSA in the presence of dynamic percolation in

larger grids.

Static percolation also degrades the structure, but the percolated structure remains fixed

throughout the walk. As long as the percolation parameter remains in the supercritical

regime, static percolation on average still allows the QWSA to work reasonably effectively,

although the average optimal runtime is longer and the average success probability is

reduced. However, as the percolation parameter approaches the percolation threshold, the

grid loses its global connectivity, leading to a rapid decline in performance even in the

static case.

Further research could look at the effect of percolation on other types of structures; hexag-

onal lattices, hypercubes or different set of boundary conditions, for example. Also site

percolation instead of bond percolation could be interesting to study in the context of

QWSAs. Lastly, future research could look at the performance of other quantum-walk-

based algorithms, such as element distinctness determination [39] or search algorithms

based on Szegedy’s quantum walk [12], in the presence of percolation.



Appendix A

Eigenvectors of an N by M grid

Using the method of Fourier transforms, the eigenvectors and values for an N ×M grid

are obtained, see Table A.1. Where |k⟩ is the Fourier basis for the x-coordinates (side

length N) and |l⟩ is the Fourier basis for the y-coordinate (side length M). So: |k, l⟩ =∑N−1
x=0

∑M−1
y=0 ωxkαkl |x⟩ |y⟩ , with ω = e

2πi
N and α = e

2πi
M . θkl is defined by:

cos θkl =
1

2
(cos

2πk

N
+ cos

2πl

M
) (A.1)

Table A.1: Eigenvectors of an N ×M grid

Eigenvalues Eigenvectors for k = l = 0 Eigenvectors for k ̸= 0 or l ̸= 0

λ = 1 v+1 =
1
2


1
1
1
1

 |0, 0⟩ v+1 =


ωk(αl − 1)
1− αl

αl(1− ωk)
ωk − 1

 |k, l⟩

λ = −1 v−1 =
1
2


1
1
−1
−1

 |0, 0⟩ v−1 =


−ωk(1 + αl)
−(1 + αl)
αl(1 + ωk)
1 + ωk

 |k, l⟩

λ = eiθkl v+1 =
1√
2


1
−1
0
0

 |0, 0⟩ vθ =
i

2
√
2 sin θkl


e−iθkl − ωk

e−iθkl − ω−k

e−iθkl − αl

e−iθkl − α−l

 |k, l⟩

λ = e−iθkl v+1 =
1√
2


0
0
1
−1

 |0, 0⟩ v−θ =
−i

2
√
2 sin θkl


eiθkl − ωk

eiθkl − ω−k

eiθkl − αl

eiθkl − α−l

 |k, l⟩
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Requirement I: λ << θmin for

N,M → ∞

The first requirement that is proven is that λ << θmin for N,M → ∞.The first goal is to

make an asymptotic approximation for the smallest positive θkl in the limit of N,M → ∞.

Note that this argument goes to zero as N,M go to infinity, this allows a Maclaurin

expansion of both sides of Equation A.1:

cos θkl = 1− 1

2
θ2kl +O(θ4kl) (B.1)

and
1

2
(cos

2πk

N
+ cos

2πl

M
) = 1− 1

2
((
2πk

N
)2 + (

2πl

M
)2) +O(

1

N4
+

1

M4
) (B.2)

Combining the expressions through Equation A.1 and simplifying the equation, produces

for the positive solution:

θkl +O(θ2kl) =

√
2(
πk

N
)2 + 2(

πl

M
)2 +O(

1

N4
+

1

M4
) (B.3)

So for the limit of N,M → ∞, the following expression for θkl is obtained:

θkl = π

√
2(
k

N
)2 + 2(

l

M
)2 (B.4)

The smallest positive argument must then have (k, l) = (1, 0) under the assumption that

N is the smaller side lengt.
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Now, according to the method from [31], λ in the scenario of a real U is given by λ =
√

A
C .

Using A and C from section 2.3, this is asymptotically equal to:

λ =

√
2√

NM × k1(lnNM + k2)
(B.5)

The ratio λ
θmin

is then asymptotically equal to:

λ

θmin
=

1

π
√
(NM + M

N )× k1(lnNM + k2)
(B.6)

The sum of the ratios N
M and M

N is constant when grid dimensions are kept the same. So

then the limit of N,M → ∞ of the ratio goes to zero which proves the first requirement.



Appendix C

Requirement II: ϵ → 0 as N,M → ∞

The second requirement that has to be proven is that ϵ→ 0 as N,M → ∞. To proof this,

the following identities from Portugal [31] are used:

⟨ψ(0)|λ⟩ = ⟨λ′|ψ(0)⟩ = ⟨ψ(0)|xo⟩ (
1

2
√
C

+
i√
A
) (C.1)

| ⟨ψ(0)|xo⟩ |2 = 1
NM , so the square of the absolute value is then equal to:

| ⟨ψ(0)|λ⟩ |2 = | ⟨λ′|ψ(0)⟩ |2 = 1

NM
(
1

4C
+

1

A
) (C.2)

Using A and C from section 2.3, in the asymtotic limit of N,M → ∞ this identity is then

equal to:

lim
N,M→∞

| ⟨ψ(0)|λ⟩ |2 = lim
N,M→∞

| ⟨λ′|ψ(0)⟩ |2 = lim
N,M→∞

1

NM
(

1

4k1(lnNM + k2)
+
NM

2
) =

1

2
(C.3)

So limN,M→∞(| ⟨ψ(0)|λ⟩ |2 + | ⟨λ′|ψ(0)⟩ |2) = 1, therefore the component in the initial

conditions that is ortogonal to |λ⟩ and |λ′⟩ becomes vanishingly small. This means that

limN,M→∞ | ⟨ψ(0)|Ures|ψ(0)⟩ |2 = 0, where Ures has eigenvalue 0 for |λ⟩ and |λ′⟩ and acts

unitary on the subspace orthogonal to them. And since |x0⟩ is normalized this means that

limN,M→∞ ϵN,M = limN,M→∞ | ⟨x0|U t
res|ψ(0)⟩ = 0. This proves the seconde requirement.
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Inequality with intermediate steps

Including the intermediate steps in the inequality from Equation 2.28 is results in:

N2

π2
=
N2

π2

1∑
k=1

1

k2
≤ N2

π2

⌊N
2
⌋∑

k=1

1

k2
≤

⌊N
2
⌋∑

k=1

1

sin2(πkN )
≤ N2

4

⌊N
2
⌋∑

k=1

1

k2
≤ N2

4

∞∑
k=1

1

k2
=
π2N2

24

(D.1)
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Solution of the integral

The integral solution is presented here; for arbitrary a the following integral needs to be

evaluated: ∫ M
2

a

∫ N
2

a

1

( x
N )2 + ( y

M )2
dxdy (E.1)

Using the substitutions x′ = x
N and y′ = y

M this becomes;

NM

∫ 1
2

a
M

∫ 1
2

a
N

1

(x′)2 + (y′)2
dx′dy′ = NM

∫ 1
2

a
M

∫ 1
2

a
N

1

y′2
1

(x
′

y′ )
2 + (1)2

dx′dy′ = (E.2)

NM

∫ 1
2

a
M

1

y′2
[y′ arctan(

x′

y′
)]

1
2
a
N
dy′ = NM

∫ 1
2

a
M

1

y′
(arctan(

1

2y′
)− arctan(

a

Ny′
))dy′ (E.3)

Now the substitution y = 1
y′ gives:

−NM
∫ 2

M
a

1

y
(arctan(

y

2
)−arctan(

ay

N
))dy = −NM(

∫ 1

M
2a

1

y
arctan(y)dy−

∫ 2a
N

M
N

1

y
arctan(y)dy)

(E.4)

This integral is in the form of a known function called the inverse tangent integral Ti2.

This produces the result:

∫ M
2

a

∫ N
2

a

1

( x
N )2 + ( y

M )2
dxdy = NM(−Ti2(1)− Ti2(

M

N
) + Ti2(

M

2a
) + Ti2(

2a

N
)) (E.5)

Note that the same results, but with M and N interchanged can be produced if the order

of integration is reversed, therefore:
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∫ M
2

a

∫ N
2

a

1

( x
N )2 + ( y

M )2
dxdy = (E.6)

1

2
NM(Ti2(

M

2a
) + Ti2(

2a

N
) + Ti2(

N

2a
) + Ti2(

2a

M
)− 2Ti2(1)− Ti2(

M

N
)− Ti2(

N

M
)) (E.7)

The following inverse tangent integral identity:

Ti2(x)− Ti2(
1

x
) =

π

2
ln(x) (E.8)

in combination with the fact that Ti2(x) = O(x) for x → 0, so as to obtain the complete

result:

∫ M
2

a

∫ N
2

a

1

( x
N )2 + ( y

M )2
dxdy = (E.9)

1

2
NM(

π

2
(ln(

M

2a
+ ln(

N

2a
))− 2Ti2(1)− Ti2(

M

N
)− Ti2(

N

M
) +O(

1

M
+

1

N
)) = (E.10)

π

4
NM(ln(NM)− (2 ln(2a) +

2

π
(Ti2(1) + Ti2(

M

N
) + Ti2(

N

M
))) +O(

1

M
+

1

N
)) (E.11)
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