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Many real-world problems are inherently multi-objectiverigonments with conflicting objectives. Multi-
armed bandits is a machine learning paradigm used to stutia@ayse resource allocation in stochastic
and noisy environments. We consider the classical definftio the multi-armed bandits where only one
arm is played at a time and each arm is associated with fix @gngé stochastic reward vectors. When arm
i is played at time steps t2,. . ., the corresponding reward vectdXs ;,, X, +,, ... are independently and
identically distributed according to an unknown law withknown expectation vector. The independence
holds between the arms.

We design a novel multi-armed bandit framework [3] that édes multi-objective (or multi-dimensional)
rewards and that imports techniques from multi-objectigéroization into the multi-armed bandits algo-
rithms. We call this frameworkaulti-objective multi-armed bandi{$10-MABs).

Multi-objective MABs lead to important differences to thearsdard MABs. There could be several
arms considered to be the best according to their rewarangect et’'s consider two order relationships.
Scalarization functionslike linear and Chebyshev functions, transform the rewattors into scalar re-
wards. Pareto partial orderallows to maximize the reward vectors directly in the molective reward
space. By means of an example, we compare these approaclesomnconvex distribution of the best
arms. We highlight the limitations of the linear scalari@atfunctions for optimizing non-convex shapes.
Linear scalarization is currently a popular choice in deig multi-objective reinforcement learning algo-
rithms, like the multi-objective MDPs from [4] but these alghms have the same limitations as scalarized
MO-MABSs in exploring non-convex shapes. We consider a %€ scalarisation functions, and compare
their performance to our Pareto MAB algorithm.

We propose three regrets metrics for multi-objective MABaaithms. A straightforward regret for
scalarized multi-objective MAB transforms the regret wednto a value using scalarization functions. This
regret measure, however, does not give any information erdyimamics of the multi-objective MAB al-
gorithm as a whole. Multi-objective MAB algorithms shouldlipall optimal arms frequently. Therefore,
we also introduce annfairnessindicator to measure the lack of variance in pulling the mptiarms, and
it is especially useful in pointing out the weakness of sizdal multi-objective MAB in discovering and
choosing a variety of optimal arms. An adequate regret diiinfor the Pareto MAB algorithm measures
the distance between tisetof optimal reward vectors and a suboptimal reward vector.

Pareto UCBL1 algorithm uses the Pareto dominance relaiptmshktore and identify all the optimal arms
in each iteration. As initialization step, each arm is pthgace. Each iteration, for each arm, we compute
the sum of its mean reward vector and its associated confideterval. A Pareto optimal reward sdt
is calculated from these resulting vectors. Thus, for alrtbn-optimal armg ¢ A’, there exists a Pareto
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optimal armi € A’ that dominates, or it is better, the afirk, + 1/ % Vf"“ ¥ X1/ 2in(n Y/DIA"]) W.
We select uniformly at random an optimal arm frothand pull it. Thus, by design, this algorithm is fair in
selecting Pareto optimal arms. After selection, the me&rew and the common counters are updated. A
possible stopping criteria is a maximum number of iteration

The expected upper bound of the Pareto regret for Pareto U€Bgarithmic in the number of plays
n, the number of dimension® and the number of optimal armé*. The worst-case performance of this
algorithm is when the number of armiS equals the number of optimal arrfy4*|. The algorithm reduces to
the standard UCB1 fab = 1. Then, in most of the casgsd*| ~ 1. In general, this Pareto UCB1 performs
similarly with the standard UCB1 for small number of objee and small Pareto optimal sets.

Two scalarization multi-objective variants of the UCB1sd&al multi-armed bandits [1, 2] are proposed.
These UCBL1 algorithms assume a set of scalarizated rewaiarss = (f*,..., f°), S > 1, with different
weights. The first algorithm is a straightforward genestlian of the single-objective UCB1 that arbitrarily
alternates different scalarization-based UCBL1s. Indhitation, each scalarization function frofhand
each arm is considered once. Until a stopping criteria is stetose uniformly at random a scalarization
function from S and run the corresponding scalarized UCBL1. h&be the number of times the function
/79 is pulled, and letz! be the number of times the ariunder functionf” is pulled. Let/E[f’(x;)] be the
expected reward of arinunder the scalarization functigfi. Given a scalarization functiofy, pull the arm

that maximizes the teri[f7(;)] + \/21n(n7)/n?, and update the counters. Update the counters and the
expected value of; = (7},...,2ZP). Note that each scalarized UCB1 has its own counter, suthitaa

individual expected value for each arm is updated sepgrafélerefore, the upper scalarized regret bound
is the same as in [1] and the upper bound for the scalarizedtrefithe scalarized multi-objective UCB1 is
the sum of all upper bounds of the scalarized UCB1s.

In the case we can assume the Pareto front is convex and bwedean use Lizotte et al [4]'s method,
and obtain the minimum set of weights needed to generatentire €areto front. Then, the scalarized
multi-objective UCB1 is fair in selecting the Pareto optlraams. In a general setup, where the shape of the
Pareto optimal sets is unknown, several sets of weightsldhogutried out in a scalarized multi-objective
UCBL1. Consider linear scalarization functions. Not all teard vectors fronany Pareto optimal reward
set are reachable with this scalarization and, thus, thiéirbenalways a positive regret between the true and
the identified Pareto optimal set of rewards. The unfaireéssis algorithm is increasing with the number
of plays because an arm identified as optimal is increasimglled whereas other optimal arms that are not
recognized as optimal are scarcely pulled. A possible fikésé problems is given in the second scalarized
UCB1 algorithm that is an improved UCB1 that removes sczédgion functions considered not to be useful.

We compare runs of the proposed multi-objective UCB1 atgors on multi-objective Bernoulli reward
distributions, the standard stochastic environment uséest multi-armed bandits. Pareto UCB1 performs
the best and is the most robust from the tested algorithmsomolude, our Pareto UCB1 algorithm is the
most suited to explore/exploit the multi-arm bandits witlvard vectors.
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