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a Artificial Intelligence Lab,
Vrije Universiteit Brussels,

Pleinlaan 2, B-1050 Brussels, Belgium

Many real-world problems are inherently multi-objective environments with conflicting objectives. Multi-
armed bandits is a machine learning paradigm used to study and analyse resource allocation in stochastic
and noisy environments. We consider the classical definition for the multi-armed bandits where only one
arm is played at a time and each arm is associated with fix equalrange stochastic reward vectors. When arm
i is played at time stepst1,t2,. . ., the corresponding reward vectorsXi,t1 , Xi,t2 , . . . are independently and
identically distributed according to an unknown law with unknown expectation vector. The independence
holds between the arms.

We design a novel multi-armed bandit framework [3] that considers multi-objective (or multi-dimensional)
rewards and that imports techniques from multi-objective optimization into the multi-armed bandits algo-
rithms. We call this frameworkmulti-objective multi-armed bandits(MO-MABs).

Multi-objective MABs lead to important differences to the standard MABs. There could be several
arms considered to be the best according to their reward vectors. Let’s consider two order relationships.
Scalarization functions, like linear and Chebyshev functions, transform the rewardvectors into scalar re-
wards. Pareto partial orderallows to maximize the reward vectors directly in the multi-objective reward
space. By means of an example, we compare these approaches ona non-convex distribution of the best
arms. We highlight the limitations of the linear scalarization functions for optimizing non-convex shapes.
Linear scalarization is currently a popular choice in designing multi-objective reinforcement learning algo-
rithms, like the multi-objective MDPs from [4] but these algorithms have the same limitations as scalarized
MO-MABs in exploring non-convex shapes. We consider a variety of scalarisation functions, and compare
their performance to our Pareto MAB algorithm.

We propose three regrets metrics for multi-objective MAB algorithms. A straightforward regret for
scalarized multi-objective MAB transforms the regret vector into a value using scalarization functions. This
regret measure, however, does not give any information on the dynamics of the multi-objective MAB al-
gorithm as a whole. Multi-objective MAB algorithms should pull all optimal arms frequently. Therefore,
we also introduce anunfairnessindicator to measure the lack of variance in pulling the optimal arms, and
it is especially useful in pointing out the weakness of scalarized multi-objective MAB in discovering and
choosing a variety of optimal arms. An adequate regret definition for the Pareto MAB algorithm measures
the distance between thesetof optimal reward vectors and a suboptimal reward vector.

Pareto UCB1 algorithm uses the Pareto dominance relationship to store and identify all the optimal arms
in each iteration. As initialization step, each arm is played once. Each iteration, for each arm, we compute
the sum of its mean reward vector and its associated confidence interval. A Pareto optimal reward setA′

is calculated from these resulting vectors. Thus, for all the non-optimal armsℓ 6∈ A′, there exists a Pareto
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We select uniformly at random an optimal arm fromA′ and pull it. Thus, by design, this algorithm is fair in
selecting Pareto optimal arms. After selection, the mean value x̄i and the common counters are updated. A
possible stopping criteria is a maximum number of iterations.

The expected upper bound of the Pareto regret for Pareto UCB1is logarithmic in the number of plays
n, the number of dimensionsD and the number of optimal armsA∗. The worst-case performance of this
algorithm is when the number of armsK equals the number of optimal arms|A∗|. The algorithm reduces to
the standard UCB1 forD = 1. Then, in most of the cases,|A∗| ≈ 1. In general, this Pareto UCB1 performs
similarly with the standard UCB1 for small number of objectives and small Pareto optimal sets.

Two scalarization multi-objective variants of the UCB1 classical multi-armed bandits [1, 2] are proposed.
These UCB1 algorithms assume a set of scalarizated reward vectorsS = (f1, . . . , fS),S ≥ 1, with different
weights. The first algorithm is a straightforward generalization of the single-objective UCB1 that arbitrarily
alternates different scalarization-based UCB1s. In initialization, each scalarization function fromS and
each arm is considered once. Until a stopping criteria is met, choose uniformly at random a scalarization
function fromS and run the corresponding scalarized UCB1. Letnj be the number of times the function
f j is pulled, and letnj

i be the number of times the armi under functionf j is pulled. LetIE[f j(x̄i)] be the
expected reward of armi under the scalarization functionf j . Given a scalarization functionf j , pull the arm

that maximizes the termIE[f j(x̄i)] +
√

2 ln(nj)/nj
i , and update the counters. Update the counters and the

expected value of̄xi = (x̄1
i , . . . , x̄

D
i ). Note that each scalarized UCB1 has its own counter, such that the

individual expected value for each arm is updated separately. Therefore, the upper scalarized regret bound
is the same as in [1] and the upper bound for the scalarized regret of the scalarized multi-objective UCB1 is
the sum of all upper bounds of the scalarized UCB1s.

In the case we can assume the Pareto front is convex and bounded we can use Lizotte et al [4]’s method,
and obtain the minimum set of weights needed to generate the entire Pareto front. Then, the scalarized
multi-objective UCB1 is fair in selecting the Pareto optimal arms. In a general setup, where the shape of the
Pareto optimal sets is unknown, several sets of weights should be tried out in a scalarized multi-objective
UCB1. Consider linear scalarization functions. Not all thereward vectors fromanyPareto optimal reward
set are reachable with this scalarization and, thus, there will be always a positive regret between the true and
the identified Pareto optimal set of rewards. The unfairnessof this algorithm is increasing with the number
of plays because an arm identified as optimal is increasinglypulled whereas other optimal arms that are not
recognized as optimal are scarcely pulled. A possible fix to these problems is given in the second scalarized
UCB1 algorithm that is an improved UCB1 that removes scalarization functions considered not to be useful.

We compare runs of the proposed multi-objective UCB1 algorithms on multi-objective Bernoulli reward
distributions, the standard stochastic environment used to test multi-armed bandits. Pareto UCB1 performs
the best and is the most robust from the tested algorithms. Toconclude, our Pareto UCB1 algorithm is the
most suited to explore/exploit the multi-arm bandits with reward vectors.
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