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Abstract

Long Short Term Memory is a standard architecture for recurrent neural network
in the field of time series analysis. It is composed of a chain of cells, each of which is
able to pass information to the following cell in the chain. This structure clearly causes
the ability of the model to retain memory of distant past values to be strictly bound
to the computational requirements of the model, supposedly limiting its performance.
This paper proposes a new architecture, which allows cells to directly access information
from all previous cells in the chain, allowing for better information passing between time
steps. In the present study, we describe the implementation details of the proposed
model and focus on assessing its performance regarding time series forecasting, by
performing a comparison with LSTM and SARIMA models.

1 Introduction

Long Short Term Memory (LSTM) layers are a particular type of Recurrent Neural Network
(RNN) that have become standard in the field of time series forecasting, classification and
regression. These neural networks are designed to retain relevant information about past
values of the input data, and are trained to interpret such information to predict the value
of a time series one time step ahead [I]. If we take the output of one cell and use it as input
for the next cell repeatedly, we can allow this architecture to forecast multiple time steps
ahead, by using each time step forecast to predict the next one. However, the architecture
of LSTM requires information that needs to be passed from one time step to another to
also go through the intermediate time steps between the origin and the destination. This
poses a significant limitation to the ability of LSTM’s to retain information about distant
past values and to learn patterns in the time series that span across several time steps,
supposedly resulting in a loss of performance.

In recent years, LSTM’s and other RNN’s have been surpassed by Multi-headed Self At-
tention Layers, also known as Transformers, in the domain of natural language processing
[2]. Unlike LSTM’s, this new architecture does not require the time series data to be pro-
cessed in order, but allows for parallel processing of the input data, significantly reducing



the required computational needs. This is done through a machine learning mechanism
known as Attention, a technique that loosely resembles cognitive attention. Attention aims
at building a model which is capable of recognizing more important parts of the input, al-
lowing to concentrate the effort of the computation on more relevant information [2].

An alternative is to allow LSTM layers to retrieve information directly from each of
the preceding time steps. This approach would drastically improve transmission of infor-
mation between distant time steps, potentially allowing this new architecture to recognize
patterns in the time series that span across significantly more time steps, while preserving
the relationship of causality between time steps. This architecture, which takes the name
of Attention Long Short Term Memory (ALSTM), would hopefully overcome some of the
issues faced by traditional LSTM layers and outperform it in some of the traditional tasks
from the domain of time series analysis.

The aim of this research is to describe how the proposed ALSTM architecture can be
implemented, in order to provide a proof of concept and to assess its performance in the task
of time series forecasting. The performance of the model is compared to that of the Seasonal
Autoregressive Integrated Moving Average model (SARIMA) [8], which is an extension of the
Autoregressive Moving Average model (ARMA) [3], a more classical approach to time series
forecasting. The ARIMA extension of ARMA allows to forecast non-stationary time series
by working on a differentiation of the time series, while the SARIMA extension is particularly
suited to forecast time-series which show seasonal trends. An additional comparison is then
made to traditional LSTM layers, which aims at showing whether the proposed architecture
can overcome LSTM’s limitations. Moreover, in the context described in Section [2] the
performance of ALSTM is also compared to that of forecasting models used in in the electric
grid operator industry. Such comparisons aims at giving context to the experimental results
obtained by the proposed model to find whether ALSTM can provide a valid tool for time
series forecasting, potentially opening up for further research on the matter.

2 Methodology

2.1 Implementation

The proposed ALSTM model was implemented in Python 3.8, using the PyTorch machine
learning framework. The reference LSTM implementation used for the comparison is the
default one provided with PyTorch E Moreover, the SARIMA model implementation used
comes from the pmdam’maﬂ Python library.

2.2 Data Set and Context

The data set used to assess the performance of the proposed model consists of 4 years of
hourly readings of the Spanish electric grid load in megawatt published on the ENTSO-
E portal ﬂ The data set covers the entire period from January 1, 2015 to December 31,
2018. Additionally, the data set contains hourly weather measurements for Spain’s five
most populated cities, namely Barcelona, Madrid, Valencia, Seville and Bilbao from the

Thttps://pytorch.org/docs/stable/generated/torch.nn.LSTM. html
?https://pypi.org/project/pmdarima/
3https://transparency.entsoe.eu/
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Open Weather portal El A copy of the entire data set is publicly available on the Kaggle
website [l

The weather data set consists of 9 features for each of the cities, for a total of 45 features.
Out of 9 features only the following 2 were used in practice, due to computational limitations:

e Temperature, measured in Kelvin
e Rain in the last hour, measured in millimeters

The following 7 features are present in the data set, but were not used during the conducted
experiments:

e Atmospheric pressure, measured in hectopascal

Relative humidity, expressed in percentage

Wind speed, measured in meters per second

e Wind direction, measured in degrees relative to the North

Snow in the last three hours, measured in millimeters

Clouds coverage, expressed in percentage
e Weather description identifier

Moreover, the data set contains hourly one-day ahead forecasts for the total grid load made
by the transmission system operator, based on unspecified weather forecasts and socioeco-
nomic factors.

2.3 Prediction Task

The main task proposed consists of forecasting energy loads based on previous measurements
of the grid load. Moreover, for ALSTM and LSTM weather measurements are included in
the input features, which should allow for more accurate predictions of energy demand
for both models. The forecasting task will take place over daily frequency data, due to
computational limitations. In fact, switching to a daily data set reduces the number of rows
by a factor of 24, which made it feasible to run the experiments on the limited hardware
equipment available. To do so, the data is aggragated in the following way:

e Temperature data: the hourly temperature data is aggregated into daily minimum,
maximum and average temperature measurements for each of the 5 cities, resulting in
a total of 15 features, measured in Kelvin.

e Rain data: the hourly rain data is aggregated into a sum of the rain measurements for
the day, measured in millimeters.

e Total grid load and total grid load forecasts: the grid load measurements are aggre-
gated into a daily sum, which respectively represent the daily actual and predicted
load for the day in mWh.

4https://openweathermap.org/
5h‘ctps ://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather
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The SARIMA model used is a one-dimensional model, which does not support multi-features
inputs and outputs. Therefore, the only input feature used by this model is the total grid
load measurement.

The presence of forecasts made by the transmission system operator (TSO) allows to com-
pare the considered models to a real world prediction model, opening up for conclusions
regarding the utility of the considered models in a real world scenario. However, it is im-
portant to consider that the day ahead forecasts reported by the TSO are based on weather
forecasts rather than actual weather measurements, which makes the comparison not en-
tirely fair. Moreover, the source of the data set does not specify exactly what parameters
are taken into consideration by the TSO to perform these forecasts. These circumstances
pose a clear limitation to the conclusions that can be drawn by these comparison results, but
are still valuable since they enrich the context of the assessment by providing an example
of what results are currently achieved by models that are used in the real world.

2.4 Performance Metrics

The performance comparison between the models makes use of both qualitative and quan-
titative metrics, which aim at assessing the validity of the forecasts from multiple points of
view. The proposed quantitative metrics are the following:

e Root mean squared error (RMSE): this basic metric portrays a generic picture of the
prediction quality and provides a good starting point for a comparison between models.

e Root mean squared error over first order differentiation: when performing long fore-
casts, rather than simpler one time step ahead predictions, early errors in the prediction
can cause the forecast to gain momentum towards an incorrect direction, propagating
the error throughout the entire duration of the forecast. This effect can pollute the
basic RMSE metric result, making it not suitable for long forecasts. To account for
this, RMSE is also applied to first order differentiation of the forecast, which can-
cels out the long term effect of early predictions error and provides a more suitable
quantitative metric for long term predictions.

Additionally, the performance assessment will contain a study of distribution of the
prediction error. In many real world scenarios, the cost function associated to an error
in prediction might not be linear. This means that outliers in the prediction error could
generate large costs regardless of how well the model performs on average. To account for
these scenarios, a description of the distribution of the prediction error is provided, which
might allow to identify desirable or undesirable effects produced by each model.

3 Attention Long Short Term Memory Specification

3.1 Formal Description

In the context of multi-headed self-attention, the ALSTM architecture is specified by the
following equations. First, the similarity matrix S is computed as follows:

Sk = exp (\}EXQ’“K’“XT> oL (1)

where L is the lower triangular matrix. Multiplying by L in equation [I] allows message
passing to happen only forward in time, which respects the relation of causality between



time steps, typical of time series forecasting tasks. Then, the weight matrix W and hidden
message H are computed as follows:

Wk .= sk o (sF117) (2)
H:=) oc (X0 (3)
k=1
These equations describe how a single Attention head can be implemented in this context.

If we stack several of these heads in parallel and use the sum of their results as output, we
obtain a multi-headed ALSTM.

3.2 Practical Implementation Details

The described ALSTM can not be executed in a sequential way like LSTM. In fact, with
LSTM at each time step only the current input and the outputs from the previous time
steps are needed to compute the output. Conversely, ALSTM needs input from all previous
time steps.

In practical applications of LSTM and ALSTM, it might be desirable to have hidden mes-
sages that have larger dimensions than the output, to allow better communication between
time steps. To overcome this, a simple linear layer can be applied on top of the base model,
which allows to cast the hidden message to any desired output dimension.

4 Experimental Setup and Results

The two main experiments we will consider to assess the forecasting performance of the
ALSTM model are the following:

e Following day prediction: this experiment evaluates the ability of the model to predict
the total grid load for the day, based only on data from all previous time steps and
weather measurements for the predicted day.

e Following 30 days forecast: this task consists in forecasting the total grid load for 12
distinct periods of 30 days each. The input will contain all measurements until the
beginning of the 30 days period and only the weather measurements for the 30 days
period.

The input features included for the prediction tasks are the following:

e Rain and temperature (minimum, maximum and average) data, for each of the five
cities, amounting to 20 features.

e Total grid load for the previous period: in the case of one day ahead prediction,
this feature contains the actual total grid load for the previous day. For the 30 days
forecasting task this feature contains the total grid load forecast made by the model
for the previous day. For the first of the 30 days, this feature contains the actual total
grid load for the previous day.

The only target feature is the total grid load for the current day. This setup simulates a
scenario in which we have extremely accurate weather predictions and we aim at forecasting



energy consumption. At a given time step ¢, the model is fed data from all of the previous
t - 1 time steps and at each time step outputs a prediction. The output at time step t is
the prediction of the total grid load for the time step ¢, and is what we aim at optimizing.
All the results reported in the following section are the average achieved over 7 runs of the
tests, which should mitigate the variance caused by the randomness of the initialization of
the model parameters. Sample standard deviations of the achieved results across the 7 runs
are also reported along the average, in order to assess how consistently the models converge
to the same solution.

4.1 Data Set Split

For ALSTM and LSTM, the 4 years daily data set is split in three parts. The first two years
are used as training input and the results achieved over this period are used to optimize the
model with gradient descent. Year 3 is used as a validation set. At each epoch, the model
performs gradient descent on loss over years 1 and 2 data, and is tested over year 3. The
instance at the epoch at which the year 3 loss is minimal is the one which is selected as the
fully trained model for each run. Finally, the trained model is tested over year 4 data.

For SARIMA, in order to perform forecasts on year 4, the model must be trained on data
up until the end of year 3. Therefore, the model was trained over the first three years of
data. This could prove to be an advantage for SARIMA, since the model is trained on a
significantly larger portion of the data set than LSTM and ALSTM. However, we have to
consider that LSTM and ALSTM make use of the third year of data as well during the
validation phase.

4.2 Data Set Normalization

The entire data set has been normalized column-wise to obtain values between 0 and 1
relative to maximums and minimums of the training portion (year 1 and year 2). As a
consequence, all values from the training data set are within the range from 0 to 1, while
occasionally values from the validation and test data set have values outside of these bound-
aries. This is done to mimic a real world forecasting task in which one would not know what
the future maximums and minimums would be. All the reported losses and plots will show
losses relative to the normalized data set, unless stated otherwise.

4.3 Hyperparameters

The following hyperparameters were used throughout these experiments:
e LSTM learning rate: 2 x 107°
e ALSTM learning rate: 4 x 1076
e LSTM and ALSTM hidden message size: 64
e ALSTM number of heads: 64

SARIMA seasonality: 7, due to the daily nature of the data set



4.4 Following Day Prediction: Training
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Figure 1: Following day prediction: RMSE loss over epochs for training data (year 1 and 2)
of one sample run.

Figure [1] shows that both ALSTM and LSTM are able to correctly learn the training input
series and to perform a stable gradient descent.



Validation RMSE loss over epochs
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Figure 2: Following day prediction: RMSE loss over epochs for validation data (year 3)
of the sample runs that obtained minimal loss over the validation set. The vertical lines
indicate the epochs at which each of the models achieves the lowest loss respectively, while
the lowest achieved losses are indicated by the horizontal lines.

Figure [2 shows that both ALSTM and LSTM are able to achieve similar losses over the
validation data set. However, they both show a clear tendency to overfit, justifying the early
stopping strategy adopted.

H Model  Validation RMSE H

ALSTM  0,2219 £ 0,0087
LSTM 0,2028 £ 0,0016

Table 1: Mean and sample standard deviations of RMSE losses over validation data of the
7 runs

Table [1| reports the average results achieved by the models in the 7 runs, up to two
significant digits of the sample standard deviation. As we can see, the two models achieve
very similar losses on the validation set, with LSTM coming slightly on top of ALSTM.
However, while both samples standard deviations appear to be quite low in absolute terms,
LSTM results show significantly lower standard deviation.



4.5 Following Day Prediction: Test Results

H Model Test RMSE H
ALSTM 0,2106 + 0,0059
LSTM 0,2110 +0,0013
SARIMA 0, 1802
TSO Forecasts 0,0193

Table 2: RMSE over test data. LSTM and ALSTM results are reported as mean + sample
standard deviation over the 7 runs.

Table [2| reports the results achieved by the different models over the test data set. Analo-
gously to validation, LSTM and ALSTM show very similar results to each other, and such
results are consistent with the losses achieved over the validation data, indicating that the
models correctly generalize to previously unseen inputs. However, both models achieve
a slightly lower loss than the SARIMA model, which might be justified by the fact that
SARIMA was trained on both the train and validation data (year 1 to 3). All the proposed
models are outclassed by the forecasts made by the Transmission System Operator, which
achieves RMSE of approximately one lower order of magnitude.

4.6 Following Day Prediction: Error Distribution
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Figure 3: Histogram of the prediction error distribution achieved over the test data set.
For LSTM and ALSTM, the best performing models out of the 7 runs over the validation
set where used. The solid vertical lines indicate the mean, while the dashed lines indicate
the standard deviation for each of the models. TSO forecasts were omitted due to their
losses being extremely low compared to the other models. The histogram including the
TSO forecasts is included in Appendix [A]
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Figure 4: kernel density estimation of prediction error on the test data set. Scott’s rule was
used to choose the bandwidth parameters. For LSTM and ALSTM, the best performing
models out of the 7 runs over the validation set where used.

I Model Mean  Sample Standard Deviation ||
ALSTM -0,0233 0,210
LSTM -0,0227 0,209
SARIMA  -0,00338 0,180
TSO Forecasts  0,000272 0,019

Table 3: Mean and sample standard deviation of the prediction error. For LSTM and
ALSTM, the reported results are relative to all of the 7 runs.

Figure [f] shows the kernel density estimation of the distribution achieved by the considered
models. ALSTM and LSTM show very similar distributions, with slightly different means.
However, table |3| which takes into consideration all 7 runs, shows that the mean error
obtained by both models are extremely similar. Qualitatively speaking, both distributions
appear to be multimodal, with ALSTM showing a more pronounced trimodal tendency than
LSTM. Conversely, SARIMA shows a much more clear normal distribution, with just a hint
of multimodality close to the mean, which is consistent with SARIMA having lower RMSE
over the test data set than ALSTM and LSTM.
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4.7 Following 30 Day Forecast: Test Results
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Figure 5: Forecasts for the first of the 30 days periods, unscaled. For LSTM and ALSTM,
the best performing models out of the 7 runs over the validation set where used.

H Model RMSE H
ALSTM 0,218 40,028

LSTM 0,216 40,024
SARIMA 0,195 40,025

Table 4: RMSE for the 30 day forecasting task achieved over the test data set, across all 12
periods. For ALSTM and LSTM, the reported results are relative to all of the 7 runs.

[ Model RMSE |
ALSTM 0,226 +0,028

LSTM 0,250 £0,026
SARIMA 0,249 =+ 0,026

Table 5: RMSE over first order differentiation for the 30 day forecasting task achieved over
the test data set, across all 12 periods. For ALSTM and LSTM, the reported results are
relative to all of the 7 runs.

Table [ and Table [ report the main results achieved by the models on the 30 days forecast-
ing task. From these results we can see that the differences observed regarding following
day forecasting performances carried over to the long term forecasting task. ALSTM and
LSTM are within margin of error from each other, while SARIMA is at a slight advantage.
However, this advantage is ironed out when considering the results relative to the first order
differentiation of the time series, in which ALSTM comes slightly on top of the other two
models, although always within margin of error.
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5 Responsible Research

5.1 Ethical implications

Time series forecasting is a widespread field that finds several applications in the real world.
A clear example of a real world application is presented by the forecasting task used to
evaluate the performance of our model. In the context of electric grid load forecasting,
being able to make accurate predictions allows the Transmission System Operator to make
informed decisions about the operation of electricity generator. Additionally, with the rapid
rise of renewable energy generation technology and smart grids, the relation between weather
conditions and electricity supply is becoming more relevant [5] [6] [7]. Therefore, being able
to properly forecast the electricity demand and supply enables the grid operator to predict
electricity storage requirements, allowing for more informed decision regarding electricity
trading. Moreover, higher quality long term forecasts of the energy demands allows to
properly plan the construction of energy infrastructure. Given the rising relevance of the
ecological issue, research in this field will play an increasingly important role in building a
more sustainable society.

However, forecasts of any type should always be taken with a grain of salt. In fact, forecasts
can convey a false sense of certainty and the ability of a model to forecast the consequences
of exceptional events is limited to the amount of exposure to such events that the given
model was given during training. Often, the availability of data regarding these events
is severely limited due to their exceptional nature, which prevents adequate training of
forecasting models to deal with these scenarios. Moreover, the reader should consider that
forecasting models aim at reducing reality to a mathematical problem, which is always
significantly simpler than the reality it represents. As a result, forecasts can never be
considered certain and should always be reported with an accompanying confidence interval
for practical applications.

5.2 Reproducibility of results

The experiments conducted can easily be reproduced. In fact, the code implementation
of the ALSTM model using the PyTorch framework is trivial once its formal description is
properly understood as presented in Section[3] Moreover, Section [3|also describes how LSTM
and ALSTM can be adapted to produce outputs of any desired size. Additionally, Subsection
[2:2) clearly reports the sources of the used data set and provides links to repositories where
they are publicly available, while clearly state how the data set was manipulated for the
proposed experiments. Finally, Subsection clearly states what hyperparameters were
used to initialize the models.

6 Discussion

This section discusses the results presented in Section [ for both experiments, under the
methodology described in Subsection [2:4]

6.1 Following Day Forecasting Task

e Prediction error: the results presented in Table 2] show that ALSTM can provide a
viable tool to perform short term time series forecasting. In fact, it manages to achieve
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performance virtually identical to that of LSTM, although slightly less consistent.
However, both models were slightly outperformed by the simpler SARIMA, which
suggests that the training might not have been sufficient to fulfill their potential.
Moreover, it is possible that the chosen data set is particularly hard to forecast with
the given data, which makes a much more simple model like SARIMA perform slightly
better by betting on the seasonality the time series.

e Prediction error distribution: As shown in Figure [, ALSTM and LSTM show a simi-
lar error distribution. In fact it appears that both models produce forecasting errors
multimodally distributed, which might be undesirable in real world scenarios. In-
stead, SARIMA manages a much more composed error distribution that more closely
resembles normality, which might be more desirable for practical applications. Table
shows that SARIMA manages a mean prediction error roughly one order of magnitude
closer to 0, which along with the tighter distribution might justify the model slightly
outperforming ALSTM and LSTM in the following day forecasting task.

6.2 Following 30 Days Forecasting Task

e First order differentiation of prediction error: the results reported in Table [5] show
that ALSTM performance is in line with that of LSTM and SARIMA for long term
time series forecasting. In fact, the slight difference between the average RMSE of
the forecasts achieved by the three models is roughly within one standard deviation,
which makes such disparities negligible. This shows that ALSTM is a suitable model
for longer term forecasts, but fails at proving any kind of architectural advantage over
LSTM.

7 Conclusions and Future Work

The results presented in Section [f] show that the proposed model is a viable tool for time
series forecasting, both for short and longer forecasts, fulfilling the main objective of this
research to provide a proof of concept of the model. However, the results indicate a failure
to prove the superiority of ALSTM compared to LSTM, but rather showed how the older
model produces forecasts of very similar quality. As mentioned before, this could be due
to shortcomings in selecting a favorable prediction task for ALSTM, which did not allow it
to leverage its architectural advantages regarding the ability of non adjacent time steps to
communicate directly.

Moreover, the comparison with SARIMA suggests that the chosen time series might not
have been particularly adequate to exploit the features of either ALSTM or LSTM. In fact,
although the better performance achieved by SARIMA might be justified by the fact that
the model was exposed to significantly more training data, we must consider that training an
instance of SARIMA does not require any validation, making it fair to compare it to ALSTM
and LSTM trained on a smaller data set. Moreover, the long term forecasts plot presented
in Figure [p| show how SARIMA was far better at identifying the weekly seasonality of the
time series, but still achieved similar results to ALSTM and LSTM when performing long
term forecasts. This speaks to the difficulty of making accurate forecasts in the proposed
context, suggesting that the considered models might not have been exposed to enough data
during training.
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As expected, the comparison with the TSO forecasts offers very little insights due to the
limited available information regarding these forecasts, but suggests that the models used in
the electric grid operators industry must have access to much more appropriate data than
what was taken into consideration for this research.

The conducted experiments were significantly limited by the available computational power,
which posed a considerable challenge in evaluating the model performance. In fact, training
ALSTM over more than two years of data proved to be practically unfeasible with the avail-
able equipment. Moreover, these limitations prevented any kind of significant experiments
to be conducted on the hourly data set, which would have enriched the context of the com-
parison.

Further work on the matter is needed to draw more definite conclusion about the perfor-
mance of ALSTM, hopefully identifying scenarios in which the model is particularly ade-
quate and outperforms its competitors either by reducing the required training effort or by
achieving higher quality forecasts.

A Appendix A: Error Distribution Plots Including TSO
Forecasts
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Figure 6: Histogram of the prediction error distribution achieved over the test data set,
including TSO forecasts.
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Figure 7: Kernel density estimation of the prediction error distribution achieved over the
test data set, including TSO forecasts.
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