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E X E C U T I V E S U M M A R Y

Introduction

The development of automated vehicles on the road is in full swing. As vehicles are
getting increasingly automated, the human factor is diminished or eventually removed from
automated driving. Until then, a combination of human input and automation is necessary
during automated driving. This research focuses on the interaction between humans and
machine and how a safe interaction can be designed by incorporating meaningful human
control. This could be achieved by including individual differences in manual and automated
driving in the design of automated vehicles. Previous studies have already shown that a link
exists between personality and manual driving behaviour. It is yet unknown how personality
is expressed during take-overs, which is critical for save driving in automated vehicles. This
research intended to investigate whether personality plays a role in driver workload, as
workload plays a vital role in take-over performance. To this end, the following research
question was formulated:

To what extent does personality interact with driver workload induced by a take-over request (TOR)?

Methodology

A driving simulation experiment was designed to investigate the role of personality in driver
workload at take-overs. However, due to COVID-19, the aim shifted to validating the design
and research set-up of the aforementioned experiment. This study therefore provides an
empirically validated set of design variables for the study regarding the role of personality
traits in automated driving. An N = 1 experiment was performed with the researcher as
the sole participant. Design variables that are found to play a role in driver workload were
varied in the validation experiment. These variables are the duration of the time budget
(0, 5, 10 and 15 seconds), traffic density (0, 5, 10 and 15 vehicles/km/lane), location of the
TOR (straight stretch and curve) and task during automated driving (monitoring or playing
Tetris). In total, the experiment included 64 scenarios, all unique in their characteristics.

Subsequently, workload was measured by a combination of subjective and physiological
indicators and driving performance. The Raw Task Load Index (RTLX), a simplification
of the NASA Task Load Index (TLX), was used for subjective workload. Heart Rate (HR)
and Heart Rate Variability (HRV) measures were included for physiological workload, and
driving performance was indicated by the take-over reaction time (TOrt), and Standard
Deviation (SD) of speed and Standard Deviation of Lateral Position (SDLP) after the
take-over. Notably, this study includes the Root Mean Square of Successive Differences
(RMSSD) and Standard Deviation of Normal to Normal intervals (SDNN) as HRV measures,
which is a novel approach in studies measuring TOR-induced workload. It was intended
to use the Tetris scores obtained during automated driving as secondary task workload
indicator. Tetris, therefore, would be both a design variable (one of the varied tasks during
automated driving) and a workload measure. However, as the scores did not reflect driver
workload, it was not used as workload measure.

Discussion of the results

The driving simulation was not experienced as very demanding, but it could also not be
considered an easy or relaxing activity. As the experiment required the participant to
repeatedly drive similar scenarios in a short time span, developments in perceived and
experienced workload were measurable. As such, it was found that using the RTLX possibly
led to respondent fatigue and response bias, a known drawback when using questionnaires
in experiments. Moreover, physiological workload decreased as the experiment progressed,
which suggests a time-on-task effect. Also, TOR-induced workload decreased as the

IX



EXECUTIVE SUMMARY X

experiment progressed, which can be attributed to the participant’s improved ability to
anticipate the TOR. Furthermore, prerequisite knowledge of the researcher about the
simulation possibly resulted in high driving performance measurements.

In general, the various workload measures did not unambiguously indicate differences in
workload for the various design variables. As such, for a longer duration of the time budget,
decreases in workload were measured by the RTLX, although the SDNN and SDLP suggested
that workload only decreased when the time budget increased from 0 to 5 seconds. For
increases in traffic density, driving performance suggested that workload increased as well.
Although, subjective and physiological workload suggested that TOR-induced workload
increased with traffic density increasing up to 10 vehicles/km/lane, but decreased at a
high traffic density of 15 vehicles/km/lane. Regarding the TOR location, the workload
measures all indicated that a TOR in a curve induced more workload than a TOR on a
straight stretch of the road. Moreover, the two tasks during automated driving led to similar
TOR-induced workload, although emerging out-of-the-loop issues were expected to result in
different effects on workload.

Conclusions

Unfortunately, due to the COVID-19 circumstances the main research question remains open
for the future study with over 100 participants regarding personality in automated driving.
However, based on the results of the N = 1 experiment recommendations are made to
include specific design variables in the future personality experiment, see Table 0.1. It is
recommended to simulate TORs at both low and high demand, as it is expected that people
differing in personality exhibit different behaviour at different task demands.

Table 0.1: Recommendations on design variables in future experiments

Design variables Recommendations

Time budget [s] Low demand: 10- or 15-second time budget
High demand: 0-second time budget

Traffic density [veh/km/lane] Low demand: 0 vehicles/km/lane
High demand: 5, 10 or 15 vehicles/km/lane

Location of the TOR Low demand: straight road
High demand: curve

Task during automated driving Short duration: monitoring
Long duration: monitoring or task with a constant demand

To measure workload, it is recommended to use a similar methodology as in the current
study, with a combination of subjective, physiological, driving performance and secondary
task measurements. The results of this study are not conclusive as to whether the RMSSD
and SDNN are sufficiently sensitive to variations in task demand. Future studies are advised
to include these measures to obtain a better understanding of the validity of the RMSSD
and SDNN as workload measure. Furthermore, it is recommended to use a different
TOrt calculation method and to use a different modality to manually resume control. As
secondary task performance measure, it is recommended to the use the proven n-back task
instead of using the Tetris scores.

Little speculation can be made about the effect of take-overs on workload in a future study
involving participants differing in personality traits. However, reference values are provided
for the workload measurements, although the values should be taken with great caution as
they are based on a N = 1 study. In addition, it is recommended to simulate only a limited
number of experiment runs per person, in a counterbalanced order, to limit learning effects
and time-on-task effects which were found in the current experiment.

All in all, this research has provided recommendations on the personality study, not
only limited to the design of the driving simulation, but also how the experiment can
be conducted and analysed. All in all, conducting an N = 1 study proved valuable
for validating the design of the driving simulation experiment, allowing a more focused
approach in future studies.



1 I N T R O D U C T I O N TO T H E S T U DY

1.1 perspectives on automated driving and road
safety

With ’Europe on the Move’, the European Commission set out an ultimate goal to reach a
’Vision Zero’ objective of almost zero road deaths by 2050 (European Commission, 2017). To
reach this goal, an intermediate goal has been set to halve the number of road deaths in
2020 compared to 2010, and to halve the number of serious injuries by 2030 compared to
2020 (Council of the European Union, 2017). However, in recent years, progress in reducing
the number of road accidents and deaths stagnated throughout Europe. Some countries are
even experiencing an increase in the number of road accidents and deaths (Adminaite-Fodor
et al., 2019).

This high number of traffic accidents and fatalities is caused by multiple factors, of which
the human factor has the biggest impact. Research by the National Highway Traffic Safety
Administration (2008) showed that in more than 90% of all crashes human factors were a
contributory factor or the sole cause. Human factors, in this case, include recognition errors,
decision errors, performance errors, and non-performance errors (National Highway Traffic
Safety Administration, 2008). Hence, the human factor must be reduced to eventually reach
the ’Vision Zero’ objective. The European Commission (2017), therefore, urges the need for
automated mobility to diminish or fully remove the human factor while driving. However,
challenges still need to be solved to ensure that automated vehicles can effectively analyse the
environment and act accordingly to ensure safety, better than a human driver. At present,
the current fleet therefore mainly consists of vehicles equipped with features that aid the
driver in performing the driving task. These features are known as the Automated Driving
System (ADS) of a vehicle and provide aid by informing the driver, by issuing warnings in
critical driving situations, by taking over the driving task and by intervening when a critical
situation appears. Ultimately, no human driver is needed.

The United States currently leads the way in on-road testing of driverless vehicles. For
instance, Waymo1 is testing their self-driving car on public roads in 24 cities across the
United States. Since 2018 Waymo began to commercially offer a self-driving ride hailing
service in Phoenix (Waymo LLC, 2020). However, these vehicles often get bad publicity
when something goes wrong during automated driving and a road user gets injured or even
dies as a result of the injuries from the accident. This became global news on March 18,
2018, when for the first time a road user died in a traffic accident involving a driverless
vehicle (Levin and Wong, 2018). In Europe, fully automated and driverless vehicles are not
yet allowed on public roads, although tests with these vehicles are allowed on a small scale.
Before these vehicles are allowed on the European market, the vehicles must be developed
and tested further. Until then, the European Commission has set high standards for vehicles
equipped with ADS. As a result, European vehicles are restricted in their functionality, for
instance, Tesla’s ’autopilot’ and ’full self-driving’ functions are limited to the extent that the
driver should always be attentive and keep their hands on the steering wheel, whilst those
functions were actually intended to allow the driver to have hands off the steering wheel as
often as possible (Tesla, 2020).

To be admitted to the European market, vehicles must comply with the guidelines of
the European Commission as adopted on April 9, 2019 (European Commission, 2019). The
guidelines are intended for vehicles of Society of Automotive Engineers (SAE) level 3 and 4

1 Formerly known as the Google self-driving car project (Waymo LLC, 2020)
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1.2 problem statement 2

that can drive automated in a limited number of situations, for instance only on the highway.
For fully automated and driverless vehicles there are no guidelines yet for admission to the
European market, as these vehicles were not expected to be ready for commercial use in 2019.
The European Commission agreed in European Commission (2019) to revise the guidelines
in 2020 to reflect technological progress, however no revision to the guidelines have been
published to date.

1.2 problem statement
Driving an automated vehicle is limited to its Operational Design Domain (ODD). Specified
in terms of conditions, the ODD of an automated vehicle is limited to drive on specific road
conditions, geographic areas, environmental conditions, a speed range, but can also include
other conditions to ensure safe automated driving (SAE International, 2018). Different levels
of automated driving can be distinguished, of which the best-known categorisation is created
by Society of Automotive Engineers (SAE) and is illustrated in Figure 1.1. Six levels are
distinguished that range from level 0 without an Automated Driving System (ADS) to level
5 where the ADS is no longer limited by an ODD. The intermediate levels have a limited
ODD.

Figure 1.1: Levels of automated driving (European Commission, 2019)

As shown in Figure 1.1, the driver does not need to monitor the ADS in conditional and
high automation. The difference between the two levels is that only with conditional
automation, the driver must always be available to take over the driving task from the ADS.
Vehicles with high automation do not require the driver to be available to take over the
driving task during automated driving. In this specified ODD the vehicle can be driverless.
When driving outside the specified ODD, the driver could be asked to take over the driving
task. In the European Commission (2019) guidelines, it is specified when the driver can be
requested to take over the driving task in vehicles with conditional and high automation:

”The system may request the driver to take over with a sufficient lead time in particular when the
system determines that it is difficult to continue [the] automated driving mode, such as when the
situation becomes outside the [ODD], or when a problem has occurred to the automated vehicle.”
(European Commission, 2019, p. 4)

The guidelines of the European Commission (2019) also contain a safety requirement about
driver availability to the take-over request (TOR):
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”If the system is designed to request the driver to take over under some circumstances, the system
shall monitor whether the driver is ready to take over driving from the system. It shall ensure through
appropriate design (e.g. driver monitoring system) and warnings that the driver remains available to
respond to take over request and prevent any foreseeable and preventable misuse by the driver in the
[ODD].” (European Commission, 2019, p. 5)

This requirement poses a challenge for designing an ADS that meets the above mentioned
standard. However, the actual challenge for designing such ADS goes beyond this
requirement, by not only designing a system which is able to ensure driver availability to
respond to the TOR but also to ensure that the driver is able to do so in a safe manner.
This issue is being studied in the MHC-ADS project, which builds on how meaningful
human control can be developed for automated vehicles to achieve a responsible transition
to automated driving. A uniform approach may not be suitable to get drivers to take over the
driving task from the ADS safely Körber and Bengler (2014). Possibly, individual differences
in manual and automated driving can be included in the design of the ADS Heikoop
et al. (2019b). Including personality in automated driving is in line with the emergence of
tailor-made Human-Machine-Interaction (HMI), which takes into account the complexity of
the driving environment and driver’s state for transferring control between the driver and the
ADS Dukic Willstrand et al. (2018). It is already known that a link exists between personality
and manual driving behaviour Taubman-Ben-Ari et al. (2004). For instance, nervousness
and anxiousness are attributed to Neuroticism (one of the Big Five Cattell (1957), which
is linked to a low tendency of risk-taking traffic behaviour Taubman-Ben-Ari and Yehiel
(2012). However, it is unknown how personality is expressed in driver workload and thereby,
automated driving behaviour and take-over performance.

Driver workload plays an important role in take-over behaviour and performance, where
both underload and overload can be detrimental Young and Stanton (2002). Vehicle
automation can result in mental underload when task demand is low, for instance during
automated driving on the highway, or mental overload when task demand is high, for
instance at the take-over Coughlin et al. (2009); Paxion et al. (2014). Workload depends
on both context-dependent factors, such as traffic density at the take-over Gold et al. (2016);
Scharfe et al. (2020) or engagement in a non-driving related task during automated driving
Merat et al. (2012); Zeeb et al. (2016), and person-dependent factors, such as age and driving
experience Wright et al. (2016). Numerous researchers studied how people differ in their
response to a TOR and how driver workload plays a role. For instance, the study by Gold
et al. (2013) showed that drivers differ in their braking and steering behaviour, but also in
their reaction time to a TOR. Driver reaction-time was found to range between 1.9 and
25.7 seconds in non-critical take-over situations depending on task engagement before the
TOR (Eriksson and Stanton, 2017). From literature, various causes can be identified for
these different response types to a TOR. Wright et al. (2016), for instance, showed that
driving experience plays a role in how well the driver is able to take over the driving task
after a TOR. Drivers aged between 25 and 59 years with more driving experience than
drivers aged between 18 and 22 years are more likely to quickly achieve situation awareness
after the TOR (Wright et al., 2016). The study by Körber et al. (2016) found a link between
driving experience and driving performance after a take-over: more experienced drivers are
able to maintain a higher Time-To-Collision (TTC) as they use the brakes more often and
more strongly. In addition, less experienced drivers experience more workload in highly
complex driving situations, causing their driving performance to deteriorate more than
experienced drivers (Paxion et al., 2014). Several other studies also confirmed the existence
of a negative relation between workload and take-over performance (see e.g. Yoon and Ji
(2019), who found that take-over time increases when drivers experience more workload).
Causes for different take-over behaviour are thus found in context-dependent factors, such
as situation complexity, but also in individual or person-dependent factors, such as driving
experience, both of which influence the degree of experienced workload that affects take-over
performance. A person-specific approach can possibly contribute to a achieve safe transitions
of control taking into account the personality of the driver. However, to date it is unknown
how personality affects driving behaviour in automated vehicles, and how this translated
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to driver workload differences. This therefore creates a clear knowledge gap as to whether
there is a relationship between personality and driver workload. Answers to this can serve
as guideline for designing a safe transfer of the driving task from the ADS to the driver.

1.3 scope
This research focuses on the effect of take-over requests (TORs) on driver workload.
Originally, the aim was to investigate whether the personality of a driver plays a role in driver
workload because of TORs. Ultimately, to develop meaningful human control for automated
vehicles to achieve a responsible transition to automated driving Heikoop et al. (2019b).
For this, a driving simulation experiment involving participants was intended to be carried
out. However, the focus of this study had to be adjusted, because the measures of Delft
University of Technology for the COVID-19 pandemic did not allow a driving simulation
experiment involving participants. Within the new focus of the research, a self-experiment
is carried out in which the researcher herself is the test subject. By means of a driving
simulation self-experiment design variables will be varied that are expected to affect driver
workload at take-overs. Ultimately, this study provides an empirically-validated set of design
variables affecting driver workload for the study regarding the role of personality traits
in automated driving. Moreover, recommendations on how to conduct the future study
regarding personality are provided, and hypotheses are formulated about the results which
can be expected.

1.4 research questions
Following the problem statement, the following research question is proposed:

To what extent does personality interact with driver workload induced by a take-over request (TOR)?

In order to answer the research question, multiple sub-questions are proposed:

1. What is a suitable design of a driving simulation experiment in which the effect of a
TOR on workload can be measured?

2. How can the interaction between personality and workload be investigated in a driving
simulation experiment regarding the effect of a TOR on workload?

3. What effect of take-overs on workload can be expected in a study involving participants,
based on the results of this self-experiment?

1.5 reading guide
This study is structured as follows. First, relevant literature on automated driving, driver
workload and personality traits are presented in Chapter 2. Based on the literature findings,
the methodology for the driving simulation was determined. The used methodology is
presented in Chapter 3. The experimental set-up is presented, by elaborating on the various
design variables, the apparatus, the design of the simulation, driver workload measurement
techniques, and the used analysis methods. Then, in Chapter 4 the results of the experiment
are presented regarding workload trends and the effect of the various design variables on
driver workload. The results will then be discussed in Chapter 5, here a reflection is given
on the effect of take-overs on driver workload, and it is argued why certain workload effects
have (not) been found in the experiment. Moreover, recommendations for future studies are
formulated. Lastly, Chapter 6 concludes this research by formulating answers to the research
question and the several sub-questions.



2 L I T E R AT U R E R E V I E W

This chapter presents the current literature on automated driving, workload and personality.
Section 2.1 first explains what automated driving is. A classification of automated driving
levels is presented and the notion of transition of control is introduced. Section 2.2 will then
elaborate on the transition of control. Here in Section 2.2.1 the notion of Dynamic Driving
Task (DDT) fallback is introduced, which is an important notion in higher levels of automated
driving. Following the DDT, the importance of the Section 2.2.2 is elaborated on. Then in
Section 2.3, workload is defined and the importance of workload in relation to the take-over
process is discussed. In this section, factors that play a role in take-over performance are
discussed. Here, the role of personality in driver workload will be discussed.

2.1 classification of automated driving levels
The levels of automation, from completely manual to fully autonomous and driverless, have
been defined by several authorities, of which the classification by the Society of Automotive
Engineers (SAE International, 2018) is best known:

level 0: no driving automation ‘The performance by the driver of the entire Dynamic
Driving Task (DDT), even when enhanced by active safety systems’.

level 1: driver assistance ‘The sustained and Operational Design Domain (ODD)-specific
execution by a driving automation system of either the lateral or the longitudinal vehicle
motion control subtask of the DDT (but not both simultaneously) with the expectation
that the driver performs the remainder of the DDT’.

level 2: partial driving automation ‘The sustained and ODD-specific execution by a
driving automation system of both the lateral and longitudinal vehicle motion control
subtasks of the DDT with the expectation that the driver completes the Object and Event
Detection and Response (OEDR) subtask and supervises the driving automation system’.

level 3: conditional driving automation ‘The sustained and ODD-specific
performance by an Automated Driving System (ADS) of the entire DDT with the
expectation that the DDT fallback-ready user is receptive to ADS-issued requests to
intervene, as well as to DDT performance-relevant system failures in other vehicle systems,
and will respond appropriately’.

level 4: high driving automation ‘The sustained and ODD-specific performance by an
ADS of the entire DDT and DDT fallback without any expectation that a user will
respond to a request to intervene’.

level 5: full driving automation ‘The sustained and unconditional (i.e., not
ODD-specific) performance by an ADS of the entire DDT and DDT fallback without
any expectation that a user will respond to a request to intervene’.

5
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According to this classification, there are 5 levels of driving automation and an extra level
0 where the vehicle is fully manual. Vehicles of all automated driving levels are equipped
with an ADS that can partially or fully take-over the driving task. Society of Automotive
Engineers (SAE) makes a distinction between a driving automation system (used for level 1

and 2 vehicles) and an ADS (used for level 3 to 5 vehicles).
The role of the user of an automated vehicle differs per level. Up to level 2, the user is

always the driver while being supported by a driving automation system, while at higher
levels of driving automation, the user is sometimes a driver and sometimes a passenger
when the ADS is performing the DDT. Specifically, the user of a level 3 vehicle is a receptive
and fallback-ready user, which entails that the user must be receptive to take-over requests
(TORs) from the ADS and be receptive to DDT performance-relevant system failures for
which the ADS does not request a take-over, i.e. a broken suspension component (SAE
International, 2018). Levels 4 and 5 do not require the user to take-over the driving task and
become the driver. Whether it is possible to become the driver in vehicles of these automated
driving levels depends on whether the vehicle is an Automated Driving System-Dedicated
Vehicle (ADS-DV), which is a vehicle that is not necessarily equipped with a user interface,
such as a steering wheel or pedals1. For level 4 non-ADS-DV vehicles, equipped with a user
interface, the user has to become the driver to complete the trip when leaving the specific
ODD for fully automated driving. For example, a level 4 vehicle is only able to drive fully
automated on the highway in low-density traffic conditions, but once the highway has to be
exited, the user must become the driver to complete the trip. In level 5, it is not necessary
to take over the DDT to complete the trip, but there is the possibility to become the driver if
the user wishes to and if the vehicle is equipped with a user interface.

2.2 transition of control
Transitioning control between the driver and the Automated Driving System (ADS) is an
essential part of, especially, driving a level 3 vehicle. The take-over is a specific type of
transition of control. Other types of transitions of control are classified by Lu and de Winter
(2015) and Lu et al. (2016), and can be found in Figure 2.1. For this categorisation, a
distinction is made between whether the user or the ADS requests the transition of control
and whether the user or the ADS executes the Dynamic Driving Task (DDT) after the request.
If the user initiates the request, a hand-over is initiated, whilst if the ADS initiates the request,
a take-over is initiated (Riener et al., 2017).

DDT performance by
driver or ADS

Driver initiates transition

Driver is in control of DDT

ADS is in control of DDT

ADS initiates transition

Hand-over

Take-over

Driver is in control of DDT

ADS is in control of DDT

Figure 2.1: Categorisation of transitions of control, based on Lu and de Winter (2015), Lu et al. (2016)
and Riener et al. (2017)

1 More information on ADS-DV can be found in SAE International (2018)
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As can be seen in Figure 2.1, there are two types of (driver-initiated) hand-overs and
(ADS-initiated) take-overs. After a hand-over, either the driver or the ADS is in control
of the DDT. For example, the driver can be initiating a transition when noticing a vehicle
failure for which the ADS has not issued a take-over request (TOR). The driver could also be
initiating a hand-over when entering the Operational Design Domain (ODD) of the ADS, for
example when entering the highway (if the ADS does not recognise this itself and requests
a take-over). An example of a take-over after which the driver is in control of the DDT is
when the ADS requests the fallback-ready user to execute the DDT when approaching the
ODD-exit. The ADS could also initiate a take-over after which the ADS itself is in control, for
example when it notices the vehicle entering the highway if this is part of the ADS’s ODD
(and if the driver has not initiated a hand-over already).

Figure 2.2 illustrates the take-over process from automated to manual driving of a level
3 vehicle. Three phases can be distinguished in the take-over process from automated to
manual driving (Petermeijer et al., 2016). First, the automated driving phase in which the
ADS executes the DDT. Secondly, the transition of control phase in which execution of the
DDT is switched between the ADS and the driver. Finally, the manual driving phase in
which the driver executes the DDT. Eventually, the driver is back into the loop.

2.2.1 Dynamic Driving Task fallback

Designing safe transitions of control is challenging, especially for level 3 vehicles as the user
is expected to be the DDT fallback. A further clarification of the DDT fallback has been
provided by SAE International (2018, p. 7):

”At level 3, an ADS is capable of continuing to perform the DDT for at least several seconds after
providing the fallback-ready user with a request to intervene. The DDT fallback-ready user is then
expected to achieve a minimal risk condition if s/he determines it to be necessary.”

Once a TOR is issued, the user is requested to immediately execute the DDT fallback (SAE
International, 2018). This does not entail that the ADS is disengaged immediately, the ADS
may be able to continue to execute the DDT for a specified time depending on the situation
(SAE International, 2018). The time between the TOR and the moment when the ADS is no
longer able to perform the DDT is defined as the time budget (Zeeb et al., 2016). Once the
user has taken over the DDT and has become the driver, driving can be continued if possible
or a minimal risk condition has to be achieved by the driver. An example of such a minimal
risk condition is moving the vehicle from the current active lane to the emergency lane.

There are several causes which necessitate the fall-back user to perform the DDT fallback,
such as a failure with the ADS or the vehicle itself, or when the exit of the ODD will be
reached soon (SAE International, 2018) (Figure 2.2). The ADS requests a take-over for an ADS
failure and when approaching the ODD-exit. However, a take-over is not always requested
when a vehicle failure occurs. Apparent vehicle failures (e.g. a flat tire) must be noticed
by the fallback-ready who must then perform the DDT fallback. The requirement of the
fallback-ready user to be receptive to TORs and to DDT performance-relevant system failures
for which no TOR is issued makes level 3 vehicles particularly challenging for ensuring
driving safety. Especially as users of level 3 vehicles are allowed to engage in Non-Driving
Related Tasks (NDRTs) during automated driving, but must also be able to respond to the
TOR and to apparent vehicle failures in a timely and safe manner (Inagaki and Sheridan,
2019).

If a driver is not receptive to a TOR, a failure mitigation strategy might be executed by
the vehicle if it is equipped with this specific feature (SAE International, 2018). With this
feature, the vehicle is able to execute a failure mitigation strategy to achieve a minimal
risk condition, as illustrated in Figure 2.2. At present, there is no European regulation yet
that requires all vehicles to be equipped with a failure mitigation strategy. Eleven major
players in the automated driving industry denounced this lack of regulation in a white paper
for standardisation of the automated driving industry (BMW et al., 2019). Three manoeuvres
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Figure 2.2: Take-over process from automated to manual driving, based on Petermeijer et al. (2016); Marberger et al. (2017) and SAE International (2018)
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as part of the failure mitigation strategy were proposed depending on the severity of the
ADS failure: a comfort stop, a safe stop and an emergency stop. Tesla vehicles with Autosteer
functionality, a feature of level 2 vehicles, deal with a non-receptive driver as proposed in the
white paper. When a driver is using Tesla’s Autosteer functionality, the driver is required to
always keep hands on the steering wheel. If the vehicle does not detect hands on the steering
wheel for a certain duration, an auditory warning will be used to ensure that the driver puts
the hands back on the wheel. In case of a non-responsive driver, hazard lights will be used to
warn surrounding traffic. The vehicle will then proceed to slow down and stop in its current
lane (Tesla, 2020).

Level 4 and 5 vehicles are able to perform the fallback and achieve a minimal risk condition.
The minimal risk condition that vehicles with a level 4 or 5 ADS are able to perform entails
either bringing the vehicle to a stop in its current travel path (but could also be a more
extensive manoeuvre that removes the vehicle from its current travel path and moves the
vehicle to a non-active or emergency lane) or, if possible, continue driving to a repair facility
with adjusted speed and using hazard lights (SAE International, 2018). Some level 4 and
5 vehicles allow the user to perform the fallback and achieve a minimal risk condition (if
needed) or continue execution of the DDT. However, the ADS of these vehicles is able to
overrule the user in order to reduce crash risk (SAE International, 2018). Level 3 vehicles
cannot overrule the user to perform the fallback, even if this would lead to a less safe
situation than could be achieved by the failure mitigation strategy (if the vehicle is equipped
with this feature).

2.2.2 Take-over time budget

An important element that influences the take-over process, which is depicted in Figure 2.2, is
the take-over time budget (also known as take-over lead-time). The time budget is defined as
the time from the TOR to the critical event or system limit for which a take-over is requested
(Zeeb et al., 2016; Marberger et al., 2017; Eriksson and Stanton, 2017). Three other measurable
moments during the take-over process can be distinguished from rthe same figure. These
are ’take-over reaction time (TOrt)’, ’remaining time budget’ and ’exceeded time budget’.
The TOrt is defined as the time between the TOR and manual resumption of the DDT. The
time between resumption of manual control and reaching the system limit of the ADS, it is
either called the ’remaining time budget’ when the driver performs the DDT fallback before
reaching the system limit (early), whereas it is called the ’exceeded time budget’ when the
driver performs the DDT after reaching the system limit (late).

Time budget plays a critical role in take-over performance. If the time budget is too limited,
the user is allowed less time for cognitive processing and action selection, so lower quality
responses are expected (Petermeijer et al., 2016; Gold et al., 2013). Therefore the European
Commission (2019, p. 4) had set a guideline regarding the time budget:

- ”The system may request the driver to take over with a sufficient [time budget] in particular
when the system determines that it is difficult to continue automated driving mode, such
as when the situation becomes outside the [ODD], or when a problem has occurred to the
automated vehicle.”

This guideline poses a requirement for providing the driver with a ’sufficient’ time budget
to ensure a safe take-over. What is sufficient differs per take-over situation (Eriksson and
Stanton, 2017). According to Eriksson and Stanton (2017), the time budget must ensure
a comfortable take-over for non-critical take-over situations, while for critical situations,
comfort is not of importance, as long as the time budget is sufficient to prevent an accident
to happen. Thus, time budget must depend on the criticality of the take-over situation.
The criticality of the take-over situation cannot be classified based on clear criteria, but it
depends on various factors, such as spatial-temporal and road characteristics, but also traffic
and weather conditions (Lu et al., 2016). However, regardless of the criticality of the situation,
the time budget itself can also provide a greater or lesser sense of urgency. For instance, if a
short time budget is provided to the user, it creates a critical take-over in terms of available
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time for processing the situation and selecting appropriate actions, even if the situation itself
is not critical (Van den Beukel and Van der Voort, 2013).

In the same study by Eriksson and Stanton (2017), the authors performed a meta-analysis
regarding time budgets in simulated driving studies. It was found that the criticality of the
take-over situation does not always go hand in hand with the criticality of the time budgets.
They concluded that often in simulated driving studies relatively short time budgets are
used for non-critical situations. For example, when approaching a highway construction site,
which can be known well in advance due to the vehicle’s connection to road information
services, the TOR is issued only a few seconds in advance. This creates an unlikely great
sense of time-criticality. However, the TOR must not be issued too early, as the reason for
the take-over will not be immediately apparent to the user (Clark and Feng, 2017). The
user might then suspect that it is a false alarm, which may lead to the user not responding
properly to the TOR.

Based on the meta-analysis by Eriksson and Stanton (2017) and by including recent
literature, an analysis is made what time budgets for different take-over situations are used
in simulated driving studies (see Table 2.1). The used definition of the type of take-over
situation is according to the respective authors of the analysed simulated driving studies.
The analysis shows that there is no unambiguous definition of take-over criticality. What
does become clear is that the time budget is often defined as the time from the TOR to
reaching an obstacle, such as a broken vehicle or construction site. Sometimes, however, the
time budget equals the time from the TOR to deactivation of the ADS. For example, Gold
et al. (2016) used a 0-second time budget for a critical take-over situation in which the ADS
immediately got disengaged when the TOR was issued, even though the Time-To-Collision
(TTC) was 7 seconds. Furthermore, in the table can be seen that Mok et al. (2015) and
Naujoks et al. (2017) characterise a missing lane markings event with a 0-second time budget
differently. Mok et al. (2015) defines it as a critical event, while Naujoks et al. (2017) defines
it as a non-critical event. This difference has to with the fact that the event used in the
study by Mok et al. (2015) occurs on a curved road section, instead of on a straight road
section. According to Naujoks et al. (2017), no immediate action is required by the user if
this event occurs on a straight road section, thus it can be defined as a non-critical event.
Furthermore, Eriksson and Stanton (2017) used an infinite time budget, this time budget
was chosen because their study aimed to analyse how long it took for drivers to take-over
the driving task, without any time pressure. Finally, Payre et al. (2016) did not classify the
take-over as critical or non-critical, but as anticipated or unforeseen. Alrefaie et al. (2019),
Baek et al. (2019), Melcher et al. (2015), Schömig et al. (2015) did not define the take-over
type at all.

From the above analysis, not a clear classification of take-over situations can be derived.
However, it can be seen that a take-over is generally considered critical when an obstacle or
construction site appears in the lane of the ego-vehicle. What can be seen from the table is
that the combination of the take-over situation and the duration of the time budget makes a
take-over critical or not. As for the time-criticality of the time budget, different definitions are
used: it is critical if the TTC is less than 10 seconds or if immediate action is needed by the
driver and is defined as uncomfortable if the time budget is less than 8 seconds (Dambock
et al., 2013; Melcher et al., 2015; Petermeijer et al., 2016; Naujoks et al., 2017).



2.2 transition of control 11

Table 2.1: Time budget in highway take-over situations, based on Eriksson and Stanton (2017)

Study Take-over type Time budget [s] Take-over event

Alrefaie et al. (2019) Not defined 0 No apparent reason
Baek et al. (2019) Not defined 6

∗ Obstacle in lane of ego-vehicle
Van den Beukel and Van der
Voort (2013)

Critical 0.5∗, 1
∗, 1.5∗ Sudden braking lead vehicle

Bueno et al. (2016) Critical 10
∗ Obstacle in lane of ego-vehicle

Eriksson and Stanton (2017) Non-critical ∞ No apparent reason
Feldhütter et al. (2016) Critical 6

∗ Obstacle in lane of ego-vehicle
Gold et al. (2013) Critical 5

∗, 7
∗ Obstacle in lane of ego-vehicle

Gold et al. (2016) Critical 0 Obstacle in lane of ego-vehicle
Kerschbbaum et al. (2015) Critical 7

∗ Obstacle in lane of ego-vehicle
Körber et al. (2015) Critical 3

∗ Obstacle in lane of ego-vehicle
Lorenz et al. (2014) Critical 7

∗ Obstacle in lane of ego-vehicle
Melcher et al. (2015) Not defined 10

∗ Appearing construction site
Mok et al. (2015) Critical 0 Missing lane markings
Naujoks et al. (2014) Critical 0

∗ Appearing construction site
Naujoks et al. (2014) Critical 0

∗ No apparent reason
Naujoks et al. (2017) Non-critical 0 Missing lane markings
Naujoks et al. (2018) Critical 8

∗ Sudden braking lead vehicle
Payre et al. (2016) Anticipated 30 Leaving highway
Payre et al. (2016) Unforeseen 2 ADS failure
Petermeijer et al. (2016) Non-urgent >10

∗ Obstacle in hard shoulder
Petermeijer et al. (2016) Non-urgent >10

∗ Right traffic lane closed
Petermeijer et al. (2016) Non-urgent >10

∗ Appearing construction site
Petermeijer et al. (2016) Non-urgent >10

∗ Traffic jam
Petermeijer et al. (2016) Non-urgent >10

∗ Leaving highway
Radlmayr et al. (2014) Critical 7

∗ Obstacle in lane of ego-vehicle
Scharfe et al. (2020) Non-critical 0 No apparent reason
Schömig et al. (2015) Not defined 12

∗ Appearing construction site
Walch et al. (2015) Critical 4

∗, 6
∗ Fog appearing

Yoon and Ji (2019) Non-emergeny 0 Changing number of lanes
Zeeb et al. (2015) Critical 4.9∗, 5.7∗, 6.6∗ Obstacle in lane of ego-vehicle
Zeeb et al. (2015) Non-critical 12

∗ Appearing construction site
Zeeb et al. (2016) Non-critical 2.5 Appearing construction site
Zeeb et al. (2016) Non-critical 4 Missing lane markings
∗Defined as the time from issuing the TOR to reaching the obstacle / fog / construction site.

All others: defined as the time from issuing the TOR to deactivation of the ADS.
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2.3 workload
In the previous section, it was explained that the available time budget plays a critical role
in the take-over process. The time budget provided to the user to respond to the take-over
request (TOR) must be of sufficient duration in order to enable the driver to respond to the
TOR in a timely and safe manner. The available time budget is found to play a role in the
experienced workload by the driver, which affects take-over performance (Gold et al., 2013).
De Waard (1996) defines mental workload as the amount of workload a driver experiences,
which depends on the difficulty of the task. The difficulty is related to the task complexity
and to drivers’ capabilities, and is thus both task- and driver-specific. Task-specific factors
are related to the demand of the processes, e.g. traffic and roadway conditions, whereas
driver-specific factors are related to the motivation, strategy, mood and state of the driver.

One of the ironies of automation has to do with low and high workload, which is a concern
for safety when driving in automated vehicles (Bainbridge, 1983). Figure 2.3 shows how both
little and high demand cause high workload, negatively influencing driving performance.
High workload as a result of little demand is known as underload, whereas high workload
as a result of high demand is known as overload (Coughlin et al., 2009). De Waard (1996),
however, defines underload as a state of high workload, because a larger proportion of the
remaining capacity is required for task execution. Mental underload can thus be found in
performance region D. In performance region A, the driver can reach high performance of
the task execution. In performance regions A1 and A3, however, the driver must make
extra effort to maintain high performance. Subsequently, in performance region B, the driver
cannot sustain extra effort causing the performance to deteriorate. Eventually leading to a
state of mental overload and low performance in performance region C.

Figure 2.3: Workload and driving performance as a function of task demand (De Waard, 1996)

Mental underload can cause drowsiness, inattention, and slower reactions (Bainbridge, 1983;
Endsley, 2019). It can occur when the Automated Driving System (ADS) takes over (part
of) the Dynamic Driving Task (DDT), i.e. lateral and longitudinal vehicle motion control
and Object and Event Detection and Response (OEDR). As discussed in Section 2.2.1, the
user of a vehicle equipped with conditional driving automation, is allowed to engage in
Non-Driving Related Tasks (NDRTs) while the ADS is engaged until the user is expected
to take over control. Users of such vehicles can, therefore, experience underload when the
ADS controls the DDT (Endsley, 2019). The requirement of users of such vehicles to be DDT
fallback-ready, is therefore challenging for users if they are in a mental underload state.

As previously discussed in Section 2.2.1, some level 3 vehicles are equipped with a failure
mitigation strategy if the user is not responsive to a TOR. Therefore, especially for level
3 vehicles which are not equipped with such a failure mitigation strategy, users’ mental
underload is an important factor for take-over performance, as underload can cause inability
of the driver to execute the DDT safely or to move the vehicle to a minimal risk condition.
Studies by De Winter et al. (2014) and Dambock et al. (2013) compared the workload of users
in level 3 vehicles, to level 2 vehicles, to level 1 vehicles equipped with Adaptive Cruise
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Control (ACC), and to level 0 vehicles without any ADS. Their comparison demonstrated
that users of level 3 vehicles are more likely to be involved in an accident in a critical take-over
event if they are not attending to the road and prepared to take over. The irony of level 3

vehicles, is therefore the expectation of the user to be the DDT fallback, while being allowed
to engage in NDRTs, which can cause the user to experience underload which is detrimental
for driving safety.

2.3.1 The role of task engagement

Level 3 vehicles do not require a driver to monitor the ADS (Section 2.1), this therefore
allows drivers to engage in NDRTs during automated driving (Gold et al., 2016). However,
users of level 3 vehicles still play an important role when driving outside the Operational
Design Domain (ODD) of the ADS, as well as when an issue occurs to the ADS, or to the
vehicle itself during automated driving (Section 2.2). It was also mentioned that a receptive
fallback-ready user has to perform the DDT fallback when requested. However, before
being able to perform the DDT fallback, the fallback-ready user has to shift attention to
the road and to cognitively process the situation before being able to safely execute the DDT
fallback (Petermeijer et al., 2016). These are two necessary steps in the take-over process.
The study by Gold et al. (2013) showed that the duration of this last step is critical in terms
of safety. Their study showed that receptive users are able to respond quickly to a TOR
even with little time for cognitive processing, but the quality of the response is generally
lower compared to situations where the user was allowed to have more time for cognitive
processing and action selection. Gold et al. (2013), based the quality of the response on
the number of mirror gazes and shoulder checks, acceleration and brake usage, where less
gazes and checks and increased acceleration and brake usage were qualified as lower quality
responses. However, involvement in a NDRT prior to the TOR creates cognitive distraction
which slows down these two steps (Radlmayr et al., 2014; Gold et al., 2016). The study
by Merat et al. (2014) showed that this is not necessarily an issue when driving in a low
complexity driving environment, however drivers take-over performance deteriorates when
driving in a complex driving environment (for example, during increased traffic density).
When engaged in a NDRT, a TOR can result in a sudden increase in workload which can be
detrimental to driving safety (Merat et al., 2014). Clark and Feng (2017) studied the effect of
age and NDRT engagement on take-over performance in a situation without any traffic and
found that NDRT engagement had no effect on take-over performance, which is in line with
the conclusion by Merat et al. (2014).

2.3.2 The role of situation complexity

The traffic density at the take-over location is found to be of great influence on workload and
take-over performance (Gold et al., 2016). Their research showed how both low traffic density
and high traffic density affect driving performance after the TOR. Deterioration in driving
performance was reflected in an increased duration to respond to the TOR, by accelerating
and braking more often and excessively and by an increased frequency of lane changes. All
in all, both low and high traffic density result in restless driving behaviour after resumption
of manual control.
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2.3.3 The role of personality

Besides external factors that play a role in workload and take-over performance, such as
involvement in a NDRT before the TOR or the take-over location, also intrinsic factors, such
as the personality of the driver, could play a role. Namely, people share personality traits that
influence how situations are experienced and how people behave accordingly (Fox, 2008).
Therefore it can be hypothesised that people with different personality traits experience
workload differently.

Multiple models have been created for describing personality based on a set of personality
traits. The most common and accepted way of describing personality is by using the
five-factor model (FFM) of personality traits, also known as the Big Five. This five-division
of core personality traits has been demonstrated by multiple researchers, independently of
each other, who all found roughly the same five factors (Fox, 2008). Famous studies are those
by Cattell (1957), Goldberg (1990, 1992) and McCrae and Costa (1985, 1987). Table 2.2 gives
an overview of the Big Five and provides an explanation of the characteristics for each factor.

Table 2.2: The Big Five personality model (Fox, 2008)

Big Five factors Characteristics

Extraversion Tendency to experience positive emotions easily
Tendency to seek company of others
Talkative and outgoing
Energetic
Tendency to seek stimulation

Agreeableness Tendency to be compassionate
Co-operative
Trusting of others
Accepting of others

Conscientiousness Tendency to show self-discipline
Dutiful and responsible
Planned rather than spontaneous behaviour
Aim for achievement

Neuroticism Tendency to experience negative emotions easily
Often nervous and anxious

Openness Appreciation for art and adventure
Unusual ideas
Imaginative
High degree of curiosity

The Big Five represent personality at the highest level (John and Srivastava, 1999). However,
it does not imply that personality can be reduced to these five levels only. The levels
are composed of multiple lower-order personality traits which describe personality more
specifically. In questionnaires used to determine an individual’s personality, questions are
asked as to whether people identify themselves with those lower-order personality traits.
Based on their answer for all those lower-order traits, it can be determined to what extent
each Big Five factor is present in the personality of that individual.

The evaluation of the Big Five by John and Srivastava (1999) showed that the model is both
replicable and generalisable in language and cultures. Because of these two factors, the Big
Five became a common and wide-spread used classification of personality. However, there is
considerable criticism of the model. Contradictory to the evaluation by John and Srivastava
(1999), there is still criticism of the validity of the model in different cultures. The Big Five
is said to be consistent in individualistic cultures, but not in accordance with collectivist
cultures (Triandis, 1989; Markus and Kitayama, 1991).
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Other critiques are related to the hierarchical order of the Big Five model. Different
hierarchical orders are found by DeYoung et al. (2002) and Musek (2007) for example.
DeYoung et al. (2002) found correlation between the Big Five factors, such that a shared
variance of agreeableness, conscientiousness and neuroticism indicated the existence of a
higher-order factor: stability. Shared variance of extraversion and openness also gave an
indication of the existence of another higher-order factor of personality: plasticity. These
two higher-order factors were called the Big Two. Musek (2007) went one step further and
found evidence for a General Factor of Personality (GFP), the Big One. The Big One is
defined as the highest-order factor determined by high or low values for the Big Five factors
on the one hand, or high or low values for the Big Two on the other hand.

Despite the existence of multiple personality classifications, the Big Five is the most used
classification. By using the Big Five as personality classification in this study, use can be made
of the Big Five Inventory (BFI), a widely used method for distinguishing people according to
their personality. In addition, the results of this study can be compared more easily to other
studies that also used the Big Five.

By distinguishing drivers’ personalities based on the Big Five, Taubman-Ben-Ari and
Yehiel (2012) categorised four driving styles of the Multidimensional Driving Style Inventory
(MDSI) that was defined by Taubman-Ben-Ari et al. (2004), namely: the reckless and careless
style, the anxious style, the angry and hostile style, and the patient and careful style. It
has been found that the reckless and careless style, and the angry and hostile style are both
associated with a lower tendency of agreeableness and conscientiousness. People that score
high on either agreeableness, conscientiousness, or openness are related more often to the
patient and careful driving style. While the anxious driving style is more likely for people
that score high on neuroticism and low on conscientiousness.

The attentional control theory by Eysenck et al. (2007) states that people who score high
on trait-anxiety (which is part of the neuroticism trait) have an increased allocation of
attention to threat-related stimuli compared to other personalities. A TOR can be qualified
as threat-related stimulus as it warns the fallback-ready user that the ADS will soon or
immediately be stopped. Therefore, it can be hypothesised that a faster response time to a
TOR is expected for people who score high on neuroticism, compared to people scoring high
on other personality traits.
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Originally, the aim was to study whether personality plays a role in experienced workload
and thereby take-over performance. However, the COVID-19 pandemic made it impossible
to carry out a driving simulation experiment with participants, taking into account the
measures taken by Delft University of Technology. Therefore, the focus of this study
shifted to conducting a validation experiment regarding the set-up of the driving simulator
experiment on the role of personality in driver workload induced by a TOR. For this purpose,
an N = 1 experiment was performed with the researcher as the sole participant. The design
of the experiment is validated by varying various factors that are expected to affect workload.
Ultimately, this study will provide an empirically validated set of design variables for the
study regarding the role of personality traits in automated driving.

This chapter is organised as follows, Section 3.1 provides a short introduction to the
experimental approach of the original study regarding the role of personality. After
that, the methodology for conducting the N = 1 validation experiment is presented in
Section 3.2. First the design variables which are varied in the experiment are presented
in Section 3.2.1, then in Section 3.2.2 it is explained how driver workload will be measured.
The experimental design and schedule are presented in Section 3.2.3 and 3.2.4. After that
follows an explanation of the used apparatus in Section 3.2.5. The design of the simulation
and the procedure of the simulation are presented in Section 3.2.6 and 3.2.7. After that
follows an explanation of the analysis methodology for the various workload measures in
Section 3.2.8. At last, the risks and limitations associated with the used methodology are
presented in Section 3.2.9.

3.1 study regarding the role of personality
The aim of the original study was to investigate whether personality plays a role in the
workload experience of drivers in vehicles equipped with an Automated Driving System
(ADS), where the driving task is switched between the ADS and the user. For this, a driving
simulator experiment would take place with over 100 participants, differing in personality.
This research was approved by the Human Research Ethics Committee of Delft University of
Technology (Appendix B).

Participant recruitment

For this experiment, volunteers were recruited through the use of advertisements at the
Dutch driving licensing agency (Dutch: CBR), at the Royal Dutch Touring Club (Dutch:
ANWB), at Delft University of Technology, and through a personal network. The only
requirement to participate was owning a driver’s license. There was no requirement for
a certain level of driving experience and previous driving simulator experience. Application
was open to both Dutch- and English-speaking individuals.

To apply for participating in the driving simulation experiment, volunteers had to fill in
an online application form (Appendix C). Because personal data is used in this study, a
data management plan was made and approved by the Human Research Ethics Committee
of Delft University of Technology. To protect the personal data, the application form
was created in Qualtrics. The form contained multiple questionnaires: a demographic
questionnaire, a driving experience questionnaire, a health questionnaire, and the 44-item
Big Five Inventory (BFI). Forms were available in both Dutch and English. The Dutch
version of the BFI is a translation by Denissen et al. (2008) of the original English version
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by Goldberg (1992) and John (1990) The BFI in both Dutch and English can be found in
Appendix C and Appendix D.

Participant selection procedure

The filled-in questionnaires are analysed with MATLAB to determine the personality of
the volunteer. It was intended to include the most extreme personalities per trait in the
experiment. To do so, the answers to the 44-item BFI were translated into scores for each of
the five personality traits. As the BFI uses a five-point Likert scale, answers were translated
into scores ranging from 1 to 5 points, where 1 point is awarded to ’strongly disagree’ and 5

points to ’strongly agree’. The volunteers’ scores for the BFI are calculated using the scoring
instructions provided by John et al. (2008). The score for each Big Five factor is calculated
by summing the answers to specific questions, see Table 3.1. Some numbers in the table are
underlined, meaning that the inverse of the score on that question is used. Thus, ’strongly
disagree’ is awarded 5 points, whereas ’strongly agree’ 1 point. After summing all the scores,
the total score for each Big Five factor is normalised by dividing the score by the maximum
score that can be obtained for that specific factor. This way a scale score is obtained for every
Big Five factor.

Table 3.1: Scoring method 44-item BFI

Big Five factors Summation of item numbers BFI

Extraversion 1, 6, 11, 16, 21, 26, 31, 36

Agreeableness 2, 7, 12, 17, 22, 27, 32, 37, 42

Conscientiousness 3, 8, 13, 18, 23, 28, 33, 38, 43

Neuroticism 4, 9. 14. 19, 24, 29, 34, 39

Openness 5, 10, 15, 20, 25, 30, 35, 40, 41, 44

Every volunteer is awarded a scale scores for each personality trait. Subsequently the
volunteer is assigned to their dominant trait (i.e. trait with highest scale score). The 20

highest scoring volunteers per trait are selected to participate in the driving simulation
experiment. When participants are selected for the study, they are sent an information sheet
and informed consent form. A more detailed explanation of the experiment and procedure
is provided, explaining the risks involved in participating, the privacy of the participants,
sharing of results, ethical approval and consent form for the previous mentioned details. The
participants are asked to read the information sheet and informed consent form carefully.
The English and Dutch information sheet and informed consent form can be found in,
respectively, Appendix E and F.

3.2 validation experiment
A validation experiment is conducted with the aim to provide an empirically validated set of
design variables for the study regarding the role of personality traits in automated driving.
In the validation experiment, the driving task is transferred from the Automated Driving
System (ADS) to the driver in a Level 3 vehicle under varying task demand conditions.
A driving simulation experiment is designed for this purpose, in which the researcher is
the only participant in the experiment. To validate the design of the experiment, multiple
design variables of the driving scenario will be varied and their effect on take-over request
(TOR)-induced workload is analysed. As explained in Section 2.3, workload depends on
the difficulty of the task, which in turn depends on two factors: task complexity and driver
competence. If in this validation experiment it can be validated that the measured workload
reflects the degree of task complexity with only one driver, variations in workload in an
experiment regarding the role of personality in workload and take-over performance can be
attributed to changes in driver competence, in which personality may play a role.
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3.2.1 Design variables varied in the experiment

The task complexity of the driving simulation experiment depends on several design
attributes that affect demand processes of the scenario. To measure the extent to which
workload is experienced at a TOR, the design of the take-over is of great importance. The
design attributes that are chosen to be varied in the experiment are the time budget of the
TOR, the traffic density and road shape at the TOR location, and whether the user engages in
a Non-Driving Related Task (NDRT) during automated driving. An overview of the design
attributes and their attribute levels varied in the experiment can be found in Table 3.2. It
is chosen to vary the four design attributes because these attributes are expected to lead to
measurable differences in task demand and complexity, and, in turn, lead to differences in
workload measurements.

Table 3.2: Demand processes to be varied in the experiment

Design attributes Attribute levels

Time budget of the TOR 0 seconds
5 seconds
10 seconds
15 seconds

Traffic density at TOR location 0 vehicles/km/lane
5 vehicles/km/lane
10 vehicles/km/lane
15 vehicles/km/lane

Location of the TOR Straight road
Curve

Task during automated driving Monitoring
Playing a game

As elaborated in Section 2.2.2, take-over behaviour and performance is related to the time
budget that is provided to the user to respond to the TOR. If the time budget is too limited,
a lower quality take-over performance is expected (Gold et al., 2013). By varying the time
budget, different degrees of task complexity can be simulated. Four attribute levels are
chosen, which are 0, 5, 10 and 15 seconds. With these attribute levels, the effect of both urgent
as non-urgent time budgets on workload and take-over performance can be investigated.
Here, urgent is defined as a time budget of less than 10 seconds and non-urgent as 10

seconds or greater, as defined by Petermeijer et al. (2016). Moreover, the 0 and 15-second
time budget are included as attribute level, as it provides insight into the effect on workload
of, respectively, no time budget or a very great time budget. It is chosen to use a 15-second
time budget instead of an infinite time budget as Eriksson and Stanton (2017) did, in order
to assure orthogonality of the attribute (more information on orthogonal designs is provided
in Section 3.2.3). As an average take-over reaction time (TOrt) of 2.06 and 3.10 seconds for 5-
and 7-second time budgets was found by Gold et al. (2013), it is expected that a 15-second
time budget is sufficient for drivers to take-over the driving task.

The traffic density at the take-over location is found to also be of influence on workload
and take-over performance (Gold et al., 2016). For this design attribute, the following
equidistant attribute levels are chosen: 0, 5, 10 and 15 vehicles per kilometre, which are
defined as a, respectively, zero, low, medium and high traffic density. A traffic density of 15

vehicles per kilometre is used, instead of greater traffic densities, as in the study by Stanton
and Young (2005) a ceiling effect above this traffic density on workload was found. Moreover,
traffic flow becomes unstable with traffic densities greater than 18 vehicles per kilometre at
a speed of 120 km/h (Schöpplein, 2013, as cited in Gold et al., 2016). By including zero, low,
medium and high traffic densities as attribute levels, it can be studies whether increasing
traffic densities affect workload to such an extent that take-over performance deteriorates, as
can be expected from literature.
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The third attribute that is varied in the experiment is the road shape at the take-over location.
As mentioned previously in Section 2.2.2, a take-over can be defined as non-critical if it
occurs on a straight road section, and critical if it occurs on a curved road section (Naujoks
et al., 2017; Mok et al., 2015). As the driver has to take immediate action when a TOR is
issued in a curve, this take-over is expected to have a greater effect on workload and thereby
lower quality take-over behaviour can be expected.

The fourth and final attribute that is varied in the experiment is whether the driver
is engaged in a NDRT during automated driving. According to the requirements set by
SAE International (2018), users of level 3 vehicles are allowed to engage in NDRTs during
automated driving. As elaborated in Figure 3.2.8, various NDRTs are used to study the effect
on, amongst others, take-over performance. It is chosen to use Tetris as NDRT, as it assures
engagement in the task by requiring continuous visual and cognitive attention.

3.2.2 Measuring driver workload

To measure driver workload, different types of measures can be used that differ in their
sensitivity to workload at different levels of task demand (De Waard, 1996; Mehler et al.,
2011) Four types of workload measures can be distinguished: subjective and physiological
workload measures, driving performance indicators, and secondary task performance
measures (De Waard, 1996). In order to gain a complete image of workload at different
levels of task demand, a set of four workload measures is used in the experiment.

Subjective workload

Commonly used subjective workload measures are the Subjective Workload Assessment
Technique (SWAT) and the NASA Task Load Index (TLX) (Rubio et al., 2004). In this study
it is chosen to measure subjective workload by means of the Raw Task Load Index (RTLX),
which is a simplification of the NASA TLX. The RTLX measures workload on six scales:
mental demand, physical demand, temporal demand, performance, effort, and frustration.
The TLX uses the same scales, but requires pairwise comparisons between all the scales,
making it a more time-consuming measure than the RTLX, which only calculates the mean
value of the six scales (Hart and Staveland, 1988; Hart, 2006).

Physiological workload

Popular physiological measures for workload are heart activity (Heart Rate (HR) and Heart
Rate Variability (HRV), blink rate, breathing rate, Skin Conductance Level (SCL) (also known
as Galvanic Skin Response (GSR)) and brain activity (Van Gent et al., 2017; Mehler et al.,
2011). HR is a commonly used measure in studies examining workload in response to
changes in driving demand. As measuring heart activity is low-cost and can be done
in non-intrusive way with easy-to-use measures, it is chosen to analyse heart activity as
physiological workload measure in this study (Van Gent et al., 2017). Lohani et al. (2019)
reviewed studies that researched HR and HRV as a function of workload. They concluded
that HR increases with workload as a result of increasing cognitive demand, and HRV
decreases with workload in increasing task demands. Furthermore, it has been found that
”HRV is sensitive to workload increases due to vigilance and situational awareness demands
of the task”. Some studies, however, found no such relationship between workload and HR
and HRV, e.g. Shakouri et al. (2018), who found that only subjective workload measures
showed differences in workload due to task demands. Despite this result, Lohani et al.
(2019) conclude that both HR and HRV can be used as workload measure in changing task
demand settings. They urge nonetheless, that it is important to consider contextual factors
that can impact the measurement of HR and HRV. For instance, it has been found that
both heart activity measures have a time-on-task effect. As the task becomes less difficult
over time, the participants become more relaxed, disengaged or demotivated, influencing the
measures. Moreover, the study by Paxion et al. (2014) found that HR also reflects energetic,
thermoregulatory, respiratory, emotional processes, as well as emotional strain and physical
activity.
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In literature, there are many different HRV parameters used to measure changes in workload.
These measures use the R-to-R Interval (RRI), which is derived from the QRS-complex of the
heartbeat, see Figure 3.1. The RRI is also known as Peak-to-Peak Interval (PPI), Inter-Beat
Interval (IBI), or Normal-to-Normal Interval (NNI) (Selvaraj et al., 2008; Paxion et al., 2014).
From the RRI, the Low-Frequency (LF)/High-Frequency (HF) ratio can be derived, which
provides a robust overall method to assess workload (Mehler et al., 2012). HRV measures
can be categorised in two groups: time-domain and frequency-domain measures. Common
time-domain measures are Standard Deviation of Normal to Normal intervals (SDNN),
Root Mean Square of Successive Differences (RMSSD) and NN50 which is defined as the
number of adjecent NNIs that differ more than 50ms. With regards to frequency-domain
measures, common measures are the Ultra-Low-Frequency (ULF), LF-, and HF-domain, and
the LF/HF-ratio (Task Force of the European Society of Cardiology and Electrophysiology,
1996).

Figure 3.1: The QRS-complex of the Electrocardiogram (ECG) (Peterkova and Stremy, 2015)

For this study it is chosen to include the following measures: HR in beats per minute (bpm),
HRV indicated by RMSSD, SDNN and HF-power. This way, both frequency and time-domain
HRV measures will be included. Mean HR and changes in HR after a TOR are a commonly
used workload measure (Alrefaie et al., 2019; Mehler et al., 2012). However, using the RMSSD
and SDNN as workload measure is a novel approach for measuring TOR-induced workload.
Currently there is no consensus on the usefulness of these HRV measures as workload
measure Mehler et al. (2011); Luque-Casado et al. (2016); Hidalgo-Muñoz et al. (2019). As
far as is known, only Pakdamanian et al. (2020) (published at the time of writing this study)
used RMSSD and SDNN to measure TOR-induced workload. Pakdamanian et al. (2020)
conducted an exploratory study with two participants who experienced four TORs under
two weather conditions (sunny / rain) and alert modalities (visual-auditory / auditory).
Other studies used the RMSSD and/or SDNN to measure workload differences between
low and high task demands during automated driving Mehler et al. (2011); Luque-Casado
et al. (2016); Hidalgo-Muñoz et al. (2019); Heine et al. (2017); Shakouri et al. (2018); Heikoop
et al. (2018). There is no consensus yet on using these indicators as workload measure, as
these measures did not always indicated the expected direction of the effect on workload.
HF-power will be used as substitute to the LF/HF-ratio, which is one of the most common
HRV indices for measuring TOR-induced workload. However, as the LF/HF-ratio requires
at least 5 minutes of data, it is not suitable to use in a driving simulation experiment with a
short duration of driving before and after the TOR (Section 3.2.6) (Shaffer and Ginsberg,
2017). The HF requires only 1 minute of data, which is therefore suitable to use for
simulations with a short duration. Moreover, the HF was found to measure workload reliably
in high task demand situations (Mehler et al., 2011). As the TOR is expected to result in a
high task demand, it is expected that the HF will prove to be a valuable workload measure.

Driving performance

Driving performance indicators will be used, which provide insight into the driver
reaction-time to the TOR and if and when driving performance is affected during manual
driving after the take-over. Commonly used indicators in studies regarding transitions of
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control can be grouped into three groups. Firstly, longitudinal control ability indicated
by the minimum, maximum, mean and Standard Deviation (SD) speed. Secondly, lateral
control ability indicated by the Standard Deviation of Lateral Position (SDLP) and steering
wheel movements (i.e. maximum angle, maximum angle, number of 1

◦ reversals, number
of corrections). Thirdly and lastly, time indicated by the TOrt and Time-To-Collision (TTC)
(Reimer et al., 2012; Merat et al., 2014; Bueno et al., 2016; Varotto, 2018). For this study, it
is chosen to use a combination of these indicators: the SD speed, the SDLP and the TOrt.
The SD speed is used, as it is one of the most common driving performance indicators in
workload studies. Furthermore, the SDLP is used as the steering wheel of the used driving
simulator is not able to sufficiently accurately log movements to the steering wheel, whereas
SDLP requires a less accurate calculation method based on the position of the ego-vehicle
on the XYZ-plane logged by the simulator. The TOrt is used as in this study non-critical
transitions of control will be simulated.

Secondary task

By using a secondary task during automated driving, cognitive distraction from the driving
task can be simulated. For instance, with the commonly used n-back task a series of
numbers are verbally presented to the driver and the driver has to recall from memory and
respond with the n’th number that was presented before the current number (Mehler et al.,
2009). However, for this experiment, playing the game Tetris is used as secondary task. The
advantage of this task over other tasks, such as the n-back, is that it is possible to engage in
this task without the requirement of any other researcher to prepare the task or be involved
during the experiment; so it is suitable for a self-experiment. In addition, while playing
Tetris, the user cannot be distracted from the game and still monitor the road, so it ensures
that the user is continuously involved in the task (Section 3.2.1).

In sum, the following measures are used:

1. Subjective workload: RTLX, a simplification of the NASA TLX;

2. Physiological workload: HR in bpm and RMSSD, SDNN and HF-power as HRV
indicators;

3. Driving performance indicators: TOrt and longitudinal (SD speed) and lateral control
ability (SDLP);

4. Secondary task performance: Tetris score.

3.2.3 Experimental design

A full factorial design of the simulation runs is used to vary the four design attributes in the
experiment, A full factorial design ensures uncorrelated attributes and preserves attribute
level balance. Furthermore, it prevents multicollinearity as it leads to zero correlations
between attributes, which results in low standard errors. Because of attribute level balance,
all attributes have the same standard error, and thus have the same level of precision. A
full factorial, orthogonal, experimental design is created using Ngene (ChoiceMetrics, 2018).
Ngene is a software for designing experimental designs, mostly used for designing stated
choice experiments. It allows designing profiles in which attributes and their respective
levels are varied between choice alternatives, or in this case between simulation runs.

Ngene software provides many different design options, from designing full or fractional
factorial designs, to orthogonal or efficient designs. For this validation experiment, it is
chosen to make use of a full factorial, and thus orthogonal, design. An advantage of this
design type over other design types is that it allows to estimate both main and interaction
effects. A fractional factorial design does not allow to estimate interaction effects. A
downside is, however, that using a full factorial design results in more profiles than using
a fractional factorial design, thus it takes more time to complete the validation experiment.
The full factorial design generated by Ngene consists of 64 profiles: multiplying the attribute
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levels of the chosen design attributes of Table 3.2 gives 4 ∗ 4 ∗ 2 ∗ 2 = 64 profiles. An
orthogonal fractional factorial design would have yielded 48 profiles for the chosen design
attributes (ChoiceMetrics, 2018). However, as including interaction effects is necessary for
this validation experiment it is chosen to use a full factorial design instead of an orthogonal
fractional factorial design. By estimating interaction effects, it is possible to determine
whether certain combinations of design attributes and levels lead to an even greater increase
in the workload experience. Thus, with a full factorial design, the effect of increasing task
complexity on workload can be measured.

The experiment consists of 64 scenarios in which a single TOR is simulated. The
experimental design of the 64 scenarios is provided in Table 3.3. In the schedule, the
scenarios are listed in a randomised order to prevent bias because of order effect. Only
one take-over is included per run, as this minimises the time-on-task effect that biases the
workload measurements. A pause between the runs in which the data from the run will be
exported and the next run is set up will minimise the time-on-task effect. Moreover, if more
take-overs per run would be included, the simulation had to be paused for completing the
RTLX or it had to be completed during automated driving after the hand-over. Completing
the questionnaire during automated driving limits the duration of monitoring or playing
Tetris. Now, the RTLX will be completed after finishing the simulation run. Therefore there
will be no interference with the NDRT, as the time required for completing the questionnaire
varies and could thus bias the workload measurements.

Table 3.3: Experimental design of the validation experiment

Profile scenario Profile scenario

# TB* TD* Location Task # TB* TD* Location Task

1 10 5 Straight Monitoring 33 15 10 Curve Tetris
2 0 0 Curve Tetris 34 5 10 Curve Tetris
3 5 5 Straight Monitoring 35 10 0 Straight Monitoring
4 15 10 Straight Monitoring 36 15 10 Curve Monitoring
5 15 15 Curve Tetris 37 15 0 Curve Monitoring
6 5 5 Curve Tetris 38 10 15 Curve Tetris
7 10 5 Curve Monitoring 39 5 15 Straight Tetris
8 5 10 Straight Monitoring 40 5 5 Curve Monitoring
9 5 5 Straight Tetris 41 0 15 Straight Monitoring
10 5 15 Curve Tetris 42 10 10 Straight Monitoring
11 15 15 Straight Tetris 43 0 5 Curve Monitoring
12 15 15 Curve Monitoring 44 15 10 Straight Tetris
13 10 15 Curve Monitoring 45 10 10 Curve Monitoring
14 0 5 Straight Tetris 46 10 5 Straight Tetris
15 0 10 Curve Monitoring 47 0 10 Straight Monitoring
16 0 15 Straight Tetris 48 0 0 Curve Monitoring
17 15 15 Straight Monitoring 49 5 10 Curve Monitoring
18 5 0 Straight Monitoring 50 0 10 Curve Tetris
19 0 0 Straight Monitoring 51 10 10 Straight Tetris
20 0 15 Curve Monitoring 52 5 0 Curve Monitoring
21 15 0 Straight Monitoring 53 10 0 Curve Tetris
22 0 0 Straight Tetris 54 5 0 Straight Tetris
23 10 0 Curve Monitoring 55 15 5 Straight Tetris
24 15 5 Curve Monitoring 56 0 15 Curve Tetris
25 15 0 Straight Tetris 57 15 5 Curve Tetris
26 10 0 Straight Tetris 58 0 10 Straight Tetris
27 0 5 Straight Monitoring 59 15 0 Curve Tetris
28 5 15 Curve Monitoring 60 10 15 Straight Tetris
29 10 15 Straight Monitoring 61 5 15 Straight Monitoring
30 15 5 Straight Monitoring 62 5 0 Curve Tetris
31 10 5 Curve Tetris 63 10 10 Curve Tetris
32 5 10 Straight Tetris 64 0 5 Curve Tetris

* TB = Time budget [s], TD = Traffic density [vehicles/km/lane]
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3.2.4 Experiment schedule

As experimenting days were limited due to the COVID-19 circumstances, a daily schedule
was made (Table 3.4). For every experiment run, 20 minutes were scheduled for setting
up of the experiment, conducting the experiment, and finalising (i.e. data exporting). In
the schedule, experimenting was scheduled on five alternating days over two weeks which
were limited from 9AM to 5PM because of the campus opening hours of Delft University of
Technology. In the schedule, the first 30 minutes of the day are scheduled for setting up the
first runs, which takes longer than setting up other runs because the driving simulator must
be started and the equipment needs to be set up for the day. It was expected that three runs
could be completed every hour. After every hour a 15-minute break was scheduled, as well
as a 45-minute lunch break after the first six runs of the day. The last few hours of the day,
a 15-minute break was scheduled after every two runs instead, to account for fatigue that
occurs after performing many simulation runs. At the end of the day, time was scheduled for
turning off the driving simulator and for disinfecting all equipment. All things considered,
it was expected that 16 runs could be completed per day. Therefore, the experiment could
have been completed in four days, if everything went well. The final day of experimenting
was scheduled as slack time in case some issues occurred during experimenting or with the
data collection.

Table 3.4: Daily schedule validation experiment, example day 1: April 29, 2020

Duration Task

09:00 09:30 Start of day: preparing driving simulator and equipment
09:30 10:30 Run 1-2-3

09:30 09:35 Set up run 1
09:35 09:45 Driving run 1
09:45 09:50 Completing run 1: NASA RTLX & data export
09:50 10:10 Run 2
10:10 10:30 Run 3

10:30 10:45 Break
10:45 11:45 Run 4-5-6
11:45 12:00 Break
12:00 13:00 Run 7-8-9
13:00 13:45 Lunch break
13:45 14:45 Run 10-11-12

14:45 15:00 Break
15:00 15:40 Run 13-14

15:40 15:55 Break
15:55 16:35 Run 15-16

16:35 17:00 End of the day: turn off driving simulator and disinfect equipment
Next experiment days: May 1, 6, 8 & 12, 2020

3.2.5 Apparatus

The driving simulator that is used for this study is located at the department of Transport
and Planning at Delft University of Technology. The simulator is fitted with three high
resolution screens providing a 180

◦ field of view. As depicted in Figure 3.2, the three
screens simulate the two side windows and the windshield of the vehicle. Furthermore,
the simulator is equipped with a Fanatec haptic steering wheel and clutch, brake and gas
pedal, a gear stick, hand break, car seat and seat belt. Unfortunately, the vibration function
in the driver’s seat does not work. This reduces the sense of reality of the driving simulation.
Thus, no vibrotactile feedback can be used for the TOR, which was expected to reduce the
TOrt (Petermeijer et al., 2016; Eriksson and Stanton, 2017). Simulator data is logged at 50Hz.
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A tablet was placed on a holder on the right side of the driver’s seat, used for playing Tetris
as NDRT during automated driving.

Figure 3.2: Driving simulator used for the experiment

For measuring physiological workload, an optical sensor is mounted on the participant’s
right index finger that measures light transmission through the fingertip, as can be seen in
Figure 3.3 (Allen, 2007). With this optical sensor a Photoplethysmography (PPG) can be
obtained, which is logged at 100Hz. An Atmel ATMega328p embedded processor board
powers the recording of the data.

Figure 3.3: Finger sensor used for the experiment

Traditionally, the ECG is the standard for measuring heart activity (Selvaraj et al., 2008).
However, it is chosen to use PPG for this study as it is a low-cost measure and it measures
heart activity in a less intrusive manner as it only required placing a sensor on the
participants’ fingertip instead of placing multiple electrodes on the participants’ chest. This
makes PPG also less less time-consuming compared to ECG. A disadvantage of PPG over
ECG is, however, that it is sensitive to recording ambient noise van Gent et al. (2019). By
using HeartPy, an algorithm to handle heart activity data from PPG developed by van Gent
et al. (2019), the data can be filtered and estimates for HR and HRV can be obtained, making
PPG a valid alternative for ECG. For noise filtering, a low-pass Butterworth filter with a
cutoff of 3Hz is used to remove all data points that resulted in a HR of 180 bpm and greater.

Although HeartPy can filter noisy PPG data, large movements to the sensor may result
in data collection problems which HeartPy cannot solve. For this, the Polar H10 chest strap
is used as an additional method to measure HR (Figure 3.4). Polar H10 data is logged at
1Hz, which allows chest strap data to only be used as substitute for mean HR data when
data collection issues have occurred with the finger sensor. Chest strap data is used when
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the finger sensor data deviates more than 3 bpm (after the data filtering) from the mean HR
measured by the chest strap Jo et al. (2016).

Figure 3.4: Polar H10 chest strap used in the experiment Polar (2020)

The RTLX is used for measuring subjective workload, which is a simplification of the NASA
TLX. The RTLX measures workload on six scales: mental demand, physical demand,
temporal demand, performance, effort, and frustration. The scale ranges from low (0%)
to high (100%), except for the performance scale that ranges from good (0%) to poor (100%).
The TLX uses the same scales, but requires pairwise comparisons between all the scales,
making it a more time-consuming measure than the RTLX, which only calculates the mean
value of the six scales (Hart and Staveland, 1988; Hart, 2006). The scales range from low
(0%) to high (100%), except performance that ranges from good (0%) to poor (100%) and are
defined by Hart and Staveland (1988) as follows:

- Mental demand: ”How much mental and perceptual activity was required (for
example, thinking, deciding, calculating, remembering, looking, searching, etc)? Was
the task easy or demanding, simple or complex, forgiving or exacting?”

- Physical demand: ”How much physical activity was required (for example, pushing,
pulling, turning, controlling, activating, etc)? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?”

- Temporal demand: ”How much time pressure did you feel due to the rate or pace at
which the tasks or task elements occurred? Was the pace slow and leisurely or rapid
and frantic?”

- Performance: ”How successful do you think you were in accomplishing the goals of
the task set by the experimenter (or yourself)? How satisfied were you with your
performance in accomplishing these goals?”

- Effort: ”How hard did you have to work (mentally and physically) to accomplish your
level of performance?”

- Frustration level: ”How insecure, discourages, irritated, stressed, and annoyed versus
secure, gratified, content, relaxed, and complacent did you feel during the task?”

The RTLX is filled in on the tablet by the participant after completion of the simulation run.
The ”NASA-TLX” iPhone application is used (NASA, 2016), see Figure 3.5 for an impression.
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Figure 3.5: Impression ”NASA-TLX” iPhone application (NASA, 2016)

3.2.6 Design of the simulation

The driving simulation scenario is developed with Unity game-development software, using
C# programming language. Relevant scripts that were developed for this driving scenario
are available via 4TU, DOI: 10.4121/13102763.

Road and road environment

For the experiment, the fictive Dutch A3 highway is simulated, which is designed as a 2x2

lane highway. The highway has multiple on- and off-ramps to the city of Amsterdam and
fictive towns, named Achthof and Brugstad. Halfway along the highway, the highway has a
large loop, after which it crosses the highway again via a viaduct. This loop is an essential
element in the design of the experiment, as this allows to validate the combination of a
15-second time budget with a TOR that is issued in a curve, without the vehicle not being
located in the curve after the simulated ADS disengages after 15 seconds. As experiment
days were limited, it was chosen to design scenarios with a short duration. In total, the
highway measures 7 kilometre for scenarios with a TOR on a straight road section, and
measures 5.5 kilometre for scenarios with a TOR in a curve. The distance is measured from
the start to the end point of the experiment on the highway, see Figure 3.6.
Trees and buildings are located near the highway in order to simulate a realistic highway
environment. Moreover, high-mast lighting and guard rails are placed on the sides of
the highway and in the central reservation between the lanes. The lanes of the highway
have a width of 3.50 meters, which is in accordance with the Dutch Guidelines Design
Motorways (Dutch: ROA) (Rijkswaterstaat, 2019). An impression of the scenario can be
found in Figure 3.7.

Ego-vehicle and other traffic

During the experiment, four different traffic densities are simulated: 0, 5, 10, and 15 vehicles
per kilometre per lane. These traffic densities are only applied to the two lanes in the
direction of the ego-vehicle. No traffic is driving in the opposing direction in order to
reduce CPU usage. Moreover, behaviour of traffic was limited to only being able to keep
to the set following distance. Vehicles, except the ego-vehicle, were not able to overtake
other slower driving vehicles, as this caused the simulation to slow down. Thus, it was
not possible to simulate vehicles varying in speed. To nevertheless design a more realistic
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Start location vehicle

Hand-over

Take-over - curve

Stop location - curve

Take-over - straight

Stop location - straight

Figure 3.6: Highway layout of the driving simulation experiment

Figure 3.7: View on the highway

driving environment with vehicles overtaking other slower vehicles, it was chosen to set
a speed limit of 100 km/h for vehicles on the right lane and 120 km/h on the left lane.
Therefore, vehicles were either spawned on the left or right lane, kept to that lane and drove
at the set speed limit. Traffic is arranged with a constant and equal distance between the
vehicles of 200, 100 and 66.6 meters for a traffic density of, respectively, 5, 10 or 15 vehicles
per kilometre. To reach this constant and equal distance, the vehicles were spawned at a
regular interval. For low traffic density scenarios, the spawn delay was set to 6 seconds for
vehicles on the left lane and 7 seconds for vehicles on the right lane. The spawn delay for
moderate traffic density scenarios is set to 3 seconds for the left lane and 3.5 seconds for the
right lane. For the high traffic density scenario, the spawn delay was set at 1.5 and 2 seconds
for respectively, the left and right lane.

The participant drove a Ford Focus ST with automatic transmission. At the start of the
experiment, the vehicle is located on the on-ramp, as illustrated in Figure 3.6. The dashboard
is equipped with a speedometer and tachometer. The car is equipped with the regular
mirrors, i.e. interior mirror and left and right exterior mirrors. The vehicle is not equipped
with a navigation system as this is not necessary for the experiment. During automated
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driving, the ego-vehicle adheres to the maximum speed of 120 km/h if possible. In the case
of slower traffic driving in front of the ego vehicle, the simulated ADS adjusts its speed to
maintain a following distance of at least 1 second (at a speed of 120 km/h this equals 50

meters). If possible, the vehicle will overtake slow-moving traffic.
When the ego-vehicle during manual driving drives between all other traffic, the vehicles

were set to always maintain the predefined following distance. During overtaking, when the
ego-vehicle is moved from the right to the left lane, traffic driving behind the ego-vehicle
will decrease their speed temporarily to reach the set following distance. Therefore, rear-end
collisions caused by other traffic are not possible in the current design of the simulation. So,
even with a long TOrt, no traffic will collide with the ego-vehicle.

Hand-over and take-over

During the experiment, the participant experiences one hand-over from manual to
automated driving and one take-over from automated to manual driving. The script used
for simulating the hand-over and take-over are available via 4TU, DOI: 10.4121/13102763.
The triggers are set at predefined locations in the scenario, as illustrated in Figure 3.6. It was
decided to place the take-over on the straight and curved road section close to each other,
in order to prevent the driver from predicting whether the take-over would take place in a
straight or curved section, in order to prevent bias. Moreover, the design of this validation
study created a requirement of locating the TOR of the curved road section in a location
where after the 15-second time budget the vehicle would still be located on the curved road.
In addition, the take-over that is issued on a straight road section is located after the bridge,
in order to prevent additional task demand by issuing the TOR on the bridge which reduces
the view on the road. However, an entry road is located near this TOR location, but it is
expected that this would not lead to additional task demand as no traffic is driving on this
entry road.

During the experiment runs, a take-over is simulated, where the fallback-ready user (i.e.
participant, in this case the researcher) is expected to take over the driving task. The
simulated take-over is not triggered by an obstacle on the current lane which the ADS cannot
handle, such as road works or a stationary car (see table Table 2.1), but is triggered with no
apparent reason as is done before in, for example, the studies by Eriksson and Stanton (2017)
and Naujoks et al. (2014). The advantage of such a non-critical take-over, is that it allows to
vary the time budget provided to the user in the experiment. The driver is notified of the TOR
by an auditory signal after 2:00 minutes or 2:30 minutes of automated driving when issued in
a curve or straight road section, respectively. The used duration of automated driving before
the TOR, as well as the duration of manual driving after the take-over is based on previous
driver simulation studies regarding take-overs in a highway setting (Van den Beukel and
Van der Voort, 2013; Bueno et al., 2016; Gold et al., 2016; Körber et al., 2016). In this study,
the duration of automated driving before the take-over equals 03:30 minutes when the TOR
was issued on a straight road section and equals 02:45 minutes when the TOR is issued on
a curved road section. The duration of manual driving after the take-over equals 1 minute,
which is the same duration as used in the studies by Bueno et al. (2016), Gold et al. (2016) and
Körber et al. (2016). As in this study the effect of a take-over on driver workload is measured
by means of driving performance measures, among other things, a period of manual driving
is necessary after the take-over.

3.2.7 Simulation procedure

Before starting the experiment, the finger sensor and chest strap were set and checked for
correct placement. At the start of the experiment, the vehicle was located on the on-ramp.
The participant was asked to merge onto the highway when feeling ready. During manual
driving, the participant is allowed to choose their own preferred speed, even though they are
asked to adhere to the speed limit of 120 km/hand follow regular Dutch traffic laws. As the
vehicle is not limited to 120 km/h, it is possible to drive below or above the speed limit. After
approximately 30 seconds of manual driving, a hand-over took place which shifts manual to
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automated driving. The driver would then proceed by monitoring the simulated ADS and
vehicle or plays Tetris until the TOR. Without an apparent reason to the driver, the driver
was notified of the TOR by an auditory signal after 2:00 minutes or 2:30 minutes when issued
in a curve or straight road section, respectively. The driver was asked to take-over as soon
as safely possible. To take-over before expiration of the time budget, a key-combination had
to be pressed on the keyboard, which was located on the dashboard of the driving simulator.
The duration of manual driving after the take-over equalled 1 minute, which is the same
duration as used in the studies by Gold et al. (2016); Bueno et al. (2016) and Körber et al.
(2016). After the run, the RTLX was filled in by the participant to assess subjective workload.

3.2.8 Driver workload analysis

Table 3.5 provides an overview of the variables that have been collected during the driving
simulation experiment. Using these variables, driver workload is assessed by the various
workload measures. Here follows an overview of the workload measures and calculation
methods.

Table 3.5: Data and variables collected in the validation experiment

Experiment data Source Collected variables

Subjective workload RTLX Mental demand
Physical demand
Temporal demand
Performance
Effort
Frustration

Physiological workload Chest strap HR
Finger sensor HR

HRV
Performance measures Driving simulator Position ego-vehicle

Lane number
Driving mode [automated/manual]
Position surrounding traffic

Secondary task Tetris Tetris score

Subjective workload

For subjective workload, the filled in RTLX questionnaires are used:

- Overall workload score: obtained by averaging the scores on the six scales of the RTLX
(Hart, 2006). Scale ranges from 0% to 100%, where 100% is the maximum subjective
workload.

- The scores on the six scales will also be presented for the various design variables.
Again, the sale range from 0% to 100%, where 100% is the maximum subjective
workload.

Physiological workload

The data that has been collected during the experiment cannot always be used directly to
calculate the workload metrics. Therefore, the raw data must first be translated into workable
data. In particular, the collected data by the finger sensor must be validated, because the
finger sensor is sensitive to ambient noise from bumps to the sensor during the take-over
manoeuvre. It is even possible that as a result of bumping the sensor, the sensor does not
longer record data. Moreover, as the finger sensor is sensitive to the blood pressure in the
tip of the finger, it can occur that the sensor is not able to record when the blood vessels are
too small. Therefore, checking the finger sensor data is necessary. First of all, a visual check
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of the data is done. Figure 3.8a, provides an example of the worst PPG HR data that has
been collected during the experiment. The figure shows many rejected peaks that affect the
calculation of the HR and HRV workload metrics. See also Figure 3.8b, which illustrates that
most peaks are rejected by HeartPy.
HeartPy rejects a peak if it results in a significantly smaller or bigger RRI than the average.
When many peaks are rejected, this can lead to deviating HR values calculated by HeartPy
from the true values. In the case of run 7 (see Figure 3.8a and Figure 3.8b) it turned out that
much ambient noise had been recorded. As noise generally has a different frequency than
the heartbeat, it can be filtered out of the data. To do so, a low-pass Butterworth filter with a
cutoff of 3Hz is used to remove all data points that result in a HR of 180 bpm and greater. If
after the data filtering, the finger sensor data deviated more than 3 bpm from the chest strap
data, the chest strap data is used as substitute for the mean HR (Jo et al., 2016). It cannot be
used as substitute for the effect of the TOR on HR, nor for the mean or effect of the TOR on
the various HRV indices. Figure 3.8 illustrates the effect of applying the Butterworth filter
on noisy data.

A moving window approach is often chosen as approach to analyse HR and HRV
measurements. In order to analyse a certain duration of data, the data is cut in multiple
sections that are averaged. For instance, 5 minutes of HR data that is cut in 5 1-minute
sections for which the average SDNN is calculated. The 5 1-minute SDNN values are then
averaged to get the average SDNN value of the 5 minute section. As a result of using this
approach, the curve of found data points is smoothed, which mitigates the effect of outliers.
For this study, however, it is not suitable to use a moving window approach, because the
duration of the experiment is so limited that a single window will yield more reliable data
than averaging multiple smaller windows (Munoz et al., 2015; Cho et al., 2015).

The following HR and HRV measures are used, which are calculated using HeartPy (Gent,
2019):

- Average HR [bpm]: calculated from the moment when driving starts to the moment
when the vehicle is brought to a full stop at the end of the run.

- The effect of the TOR on HR [bpm]: calculated as the average value of 1 minute
following the TOR. This value is compared to a baseline which is the HR before the
TOR, which is also calculated as the average value of 1 minute. Moreover, the 1 minute
following the TOR is divided into nine 5-second sections to illustrate the heart rate
course before and after the TOR (Cho et al., 2015). Increased in HR indicate increases
in task demand Mehler et al. (2012).

- Average RMSSD [ms]: calculated from the moment when driving starts to the moment
when the vehicle is brought to a full stop at the end of the run.

- The effect of the TOR on RMSSD [ms]: calculated over 1 minute of data following
the TOR (Munoz et al., 2015). A baseline value is obtained by applying the same
method over 1 minute of data prior to the TOR. The data is not divided into 5-second
segments, as RMSSD is not valid for such short durations (the minimum duration for
valid measurements is an average over three 10-second durations) (Munoz et al., 2015).
Decreases in RMSSD indicate increases in task demand Mehler et al. (2012).

- Average SDNN [ms]: calculated from the moment when driving starts to the moment
when the vehicle is brought to a full stop at the end of the run.

- The effect of the TOR on SDNN [ms]: calculated over 1 minute of data following
the TOR (Munoz et al., 2015). A baseline value is obtained by applying the same
method over 1 minute of data prior to the TOR. The data is not divided into 5-second
segments, as SDNN is not valid for such short durations (the minimum duration
for valid measurements is an average over three 10-second durations, or a 30-second
duration) (Munoz et al., 2015). Decreases in SDNN indicate increases in task demand
Mehler et al. (2012).
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BPM: 123.76
Rejected peaks

Heart rate signal

70000 72000 74000 76000 78000 80000

1000

300

400

500

600

Time [sampled at 100Hz]

Si
gn
al
 a
m
pl
it
ud
e

700

800

900

(b) Zoomed in raw HR data of run 7
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(c) Filtered HR data of run 7
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(d) Zoomed in filtered HR data of run 7

Figure 3.8: Example of raw HR data and effect of filtering with a low-pass Butterworth filter
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- HF power (ms): calculated from the RRI of the heartbeat in the 0.04 to 0.15Hz
spectrum (Task Force of the European Society of Cardiology and Electrophysiology,
1996; Shakouri et al., 2018). A reduction in HF is associated with increasing task
demand Mehler et al. (2012). This metric is calculated as the average value of 1 minute
of data prior and following the TOR. Again, the data is not divided into smaller
sections.

Driving performance

Multiple variables are collected by the driving simulator during the experiment, see Table 3.5.
Using these data, the following performance metrics will be calculated:

- TOrt [s]: take-over reaction time is used to determine how long it takes for the driver
to shift attention to the driving task. It is measured as the time between the TOR and
the moment when the first manoeuvre is executed, this is defined as: the moment
when the button in the driving simulator is pushed to shift from automated to manual
driving when the available time budget is sufficient, or the first time the steering wheel
or pedals are used when the time budget is exceeded (Bueno et al., 2016). Take-over
reaction time (TOrt) is an important performance metric to gain insight into the safety
aspect of take-overs. If the TOrt exceeds the available time budget, it means that the
vehicle is not driven by neither the driver nor the ADS. In reality, however, the ADS
may have performed a minimal risk manoeuvre to prevent an accident.

- SD speed [km/h]: provides information about the longitudinal control ability of the
driver. Less speed variation indicates a better control ability of the driver.

- SDLP [cm]: provides information about the lateral control ability of the driver. Again,
smaller values for SDLP indicate better control ability of the driver.

Matlab scripts used for determining aforementioned driving performance indicators are
available via 4TU, DOI: 10.4121/13102763.

Secondary task

As secondary task performance measure, the following measure is used:

- Tetris score: the Tetris score is used to analyse driver distraction from the driving
task. Higher scores provide an indication of greater secondary task engagement and
therefore a greater distraction from the driving task.

Statistical analysis

The N = 1 study design combined with the short experiment duration, possibly time-on-task
and learning effects could be found which bias the workload measurements. To determine
whether these effects have occurred, trend analysis will be performed on the various
workload measurements. Linear workload trends are determined for all runs combined,
but will also be determined for the runs of the various days, half-days and parts. Parts are
defined as a series of consecutive runs with no breaks in between. Linear trends are obtained
by the least squares method and provide insight into the average increase or decrease per
run in the workload measurements. A linear regression will be performed over all runs to
determine whether the found trend significantly differs from zero. Significance is assumed if
p < 0.05, the trend is then assumed to be significantly different from zero, thus presumably
time-on-task or learning effects have played a role in the workload measurements.

With the aim of this study to provide an empirically validated set of variables for the future
study regarding personality, statistical analysis of the workload measures is found of added
value. By not only being able to demonstrate differences in workload measurements, but
also to be able to demonstrate significant differences, it reinforced the indication of finding
workload differences in the future study regarding personality (with over 100 participants).
However, it is expected that because of the limited number of observations (due to the
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N = 1 study design) and the expected large SDs of the workload measurements, significant
differences will only be found to a limited extent. Tests for significant differences between
attribute levels of the design variables (i.e. between the 0-, 5-, 10- and 15-second time
budget) are performed by means of the one-way ANOVA or the Kruskal Wallis test when the
residuals are not normally distributed. Checking for normally distributed residuals is done
by a face validation of the the QQ-plot of the residuals. Levene’s test is performed to check
for equal variances, significance is assumed if p < 0.05. In case this cannot be assumed,
the Welch and Borwn-Forsythe test are used instead of the ANOVA. As the same data set
is analysed multiple times a Bonferroni correction is applied which lowers the significance
level to p < 0.0125. The Bonferroni divides the significance level (p < 0.05) by the number of
statistical tests performed on the same data (four tests to analyse the effect of time-budget,
traffic density, location of the take-over, and NDRT on workload).

3.2.9 Risks and limitations of this study

A limitation of using driving simulator study is that it not fully represents the real world for
multiple reasons: graphical representation may distort the drivers perception and behaviour,
there is no risk involved for the driver (the participant might show behaviour which deviates
from their real behaviour) and there is no or little feedback in the form of sound or sense
of movement. Therefore, some argue that results of a driving simulator study can not be
generalised to a real traffic situation. However, there are also advantages of a driving
simulator study over using real vehicles. For instance, it is possible to control every
condition, enabling standardisation of driving scenarios and reproduction of the research
data (De Winter et al., 2012). Another advantage is the ease of data collection of a driving
simulator. Where in a real-world experiment weather can influence data collection, this
cannot hurt the data collection in a driving simulator. Lastly, the participant in a driving
simulator will never be physically at risk, whereas this is not the case for experiments in
real-vehicles. Despite all the pros and cons, since this study included a N = 1 self-experiment
during COVID-19, conducting a driving simulation experiment was the only option. Namely,
TOR can be simulated in a real world driving environment, but this is done through a
Wizard of Oz experiment where the participant is tricked during automated driving as the
researcher or assistant is driving the vehicle during automated driving. This was certainly
not possible with an N = 1 self-experiment, making it the only logical choice to conduct a
driving simulator experiment.

Another risk of this study, is the use of HR and HRV indices as workload measure. HR
and HRV are relatively simple to measure, but interpretation and analysis of the results
can be difficult. HRV can reflect the participants task-related effort, but can also reflect the
participant’s physical state, such as blood pressure and respiratory rate. Moreover, both HR
and HRV are found to reflect a time-on-task effect (De Winter et al., 2014; Heikoop et al.,
2019a). As participants get more accustomed to the experiment and associated decreases
in driver vigilance, the HR drops, and the HRV increases. Therefore, interpretation of an
increase or decrease in these measures can be difficult, as it can be attributed to multiple
factors. However, by combining HR and HRV with the RTLX for subjective workload
and driving and secondary task performance measures, increases or decreases in HR and
HRV could be attributed to other confounding factors instead of variations in workload. In
addition, by conducting the simulation runs in randomised order, the time-on-task effect on
workload measurements can be reduced (Section 3.2.3).

Data collection issues could pose a problem, however, as various workload measurements
will be included, it is expected that a data collection issue in one of the measurements will
not be detrimental for the study. In addition, as the finger sensor is sensitive to record
ambient noise to such an extent that the recording becomes unusable, a chest strap will also
be used to record physiological workload during the experiment. However, as the chest strap
logs data at only 1Hz, the data can only be used as substitute to the mean HR and not for
all other physiological workload measures.
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A limitation to the statistical analysis methodology is the increased probability of finding
Type II errors, where a non-significant difference is not rejected (i.e. increased probability of
a false-negative). However, by applying a Bonferroni correction which reduces the statistical
significance level from 5% to 1.25%, the probability of Type II errors.

Another limitation of this study is the design of the driving simulation itself. Namely,
some design variables varied in the simulation runs are already revealed to the participant
at the start of the experiment. e.g. The traffic density at the start of the experiment is the
same as the traffic density at the TOR location. Therefore possibly, TOR-induced workload
will be less in this experiment compared to an experiment which only reveals all relevant
design variables at the TOR location. Moreover, the used take-over modality will probably
need some reconsideration in future experiments, as it is preferred to allow overruling of the
ADS by pressing the driving pedals or pressing a button on the steering wheel.



4 R E S U LT S O F T H E E X P E R I M E N T

In this chapter, the results of the driving simulation study are presented. First, the results of
the selection procedure for participating in the experiment regarding the role of personality
are presented in Section 4.1. Descriptive statistics of the applicants and the 100 participants
if the experiment was continued are provided. After that, the results of the validation study
are presented. In Section 4.2 the measurements of the different workload measures are
validated. After that, the effect on workload of the four task load conditions that were varied
in the driving simulation scenarios are presented. First, the effect of the four time budgets is
presented in Section 4.3. Second, in Section 4.4 the effect of the different traffic densities on
workload is presented. Third, the effect on workload of the location of the TOR is presented
in Section 4.5. Fourth and last, the effects of the two NDRTs on workload are presented in
Section 4.6.

4.1 personality experiment: participant selection
A total of 159 people applied for participating in the driving simulation experiment
regarding personality and automated driving. 58 women applied and 101 men with an
average age of 46.2 years. 138 applicants have the Dutch nationality and 21 a foreign
nationality. On average, they have held a driver’s license for 26.5 years. 35.0% of the
applicants drive daily, 20.1% four to six days a week, 22.6% one to three days a week,
10.0% once a week, 10.7% less than once week, and 1.6% never drive. 52.2% of the
applicants had no previous experience with any Automated Driving System (ADS). The
dominant personalities of the applicants are illustrated in Figure 4.1. Neuroticism is the
most represented dominant personality trait, with 28.9% of the applicants having this trait
as the most dominant trait. Openness is the least represented dominant personality trait,
with 14.5% of the applicants having openness as dominant personality trait. Extraversion,
agreeableness and conscientiousness are almost equally represented, with a distribution of,
respectively, 17.6%, 19.5%, and 19.5%.

Extraversion; 28

Agreeableness; 31

Conscientiousness; 31

Neuroticism; 46

Openness; 23

Figure 4.1: Distribution of dominant personality of the applicants, N = 159

For each personality trait, the 20 highest scoring participants are selected for the experiment.
This resulted in the selection of 100 participants, consisting of 57 men and 43 women, with
an average age of 45.9 years. 86 participants held the Dutch nationality and 14 a foreign
nationality. On average, they have held a driver’s license for 26.3 years. Of the selected
participants, 35.0% drive daily, 20.0% four to six days a week, 28.0% one to three days a

35
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week, 7.0% once a week, 9.0% less than once week, and 1.0% never drive. 54.0% of the
participants had no previous experience with any ADS. Table 4.1 provides insight into
the dominant personality trait scores of the participants selected for the experiment. No
participant achieved the maximum possible score for the neuroticism trait, with a maximum
score of 36 points instead of the possible 40 points.

Table 4.1: Distribution dominant personality traits of selected participants of the experiment

Dominant personality trait N Max. possible score Max. obtained score Mean SD

Extraversion 20 40 40 36.55 2.04

Agreeabless 20 45 45 41.55 2.16

Conscientousness 20 45 45 41.85 2.08

Neuroticism 20 40 36 28.15 3.05

Openness 20 50 50 43.80 3.47

4.2 patterns in workload measurements
The experiment has been performed on five alternating days for which a 5-day schedule
was proposed (Table 3.4). Ultimately, this schedule was not adhered to as initial tests on
the first day of the experiment revealed issues with the road network in the scenarios that
led to vehicle crashes and stuttering of the scenario. Eventually, on the third day available
for the experiment, the driving simulation experiment was started. In total, 64 scenarios
were prepared for the experiment with different task load conditions. However, 72 runs
have been performed for 63 scenarios, as one scenario was accidentally tested twice and
eight scenarios have been rerun due to expected data collection issues after a face validation
of the data. After the validation of the collected data after completion of the experiment,
it was found that nine scenarios still had incorrect or missing finger sensor data, therefore
for these scenarios missing data is reported in the analysis. No missing or incorrect data
is reported for the Raw Task Load Index (RTLX), chest strap, driving metrics and Tetris.
Table 4.2 provides an overview of the scenarios that encountered data collection issues.

Table 4.2: Scenarios with data collection issues, if a scenario is rerun, the run number is listed

Scenario Issue Rerun # Scenario Issue Rerun #

4 Finger sensor - 23 Face validation 66

5 Finger sensor - 30 Finger sensor -
6 Finger sensor - 31 Finger sensor -
10 Finger sensor 72 32 Finger sensor -
11 Finger sensor 67 35 Finger sensor -
12 Finger sensor 65 36 Finger sensor -
13 Finger sensor 69 37 Finger sensor -
14 Finger sensor 70 44 Face validation 71

16 Not ran* - 45 Face validation 68

∗Instead, scenario 54 was run, for its characteristics see Table 3.3

On average, a run took 3:46 minutes to complete, adding up to a total of 4:31 hours of driving
time to complete all 72 runs. On Day 1 of experimenting 37 runs have been completed, 27

runs on Day 2 and eight runs on Day 3. The final eight runs were reruns as incorrect finger
sensor data was expected for eight scenarios. During the 72 runs, no accidents have occurred
that would have led to early termination of the run.

In this section, the data which is collected during the experiment is validated, and
workload trends are obtained. When a workload measure is found invalid, the measure is
not used in the assessment of the effect of the different design variables (time budget, traffic
density, location of the take-over request (TOR), and the Non-Driving Related Task (NDRT))
on workload). The workload trends were obtained by analysing the 72 runs in ascending
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order. This way, workload was analysed for the different days and half-days (morning and
afternoon). Experiment parts are distinguished, which are defined as a series of runs that are
performed without breaks in between. The linear workload trend provides insight into the
average trend by which the workload score on average increases or decreases per run. The
method of determining workload trends is explained in Figure 3.2.8. The linear workload
trend provides insight into the average increase or decrease of the workload measurement
per run as the experiment progressed. Figures are provided illustrating the workload scores
per run in ascending order, besides the linear workload trend also polynomial trends are
illustrated. The polynomial trends are included for illustrative purposes as a distinction of
the different parts. Tests for significance are done by performing a simple linear regression
analysis over all 72 runs, in order to test whether the found trends are significantly different
from zero.

4.2.1 Subjective workload

The results of the RTLX are used for assessing the subjective workload that was experienced
during the simulation. For this, the workload scores on the six RTLX scales (mental demand,
physical demand, temporal demand, performance, effort, and frustration) are presented,
as well as the overall workload score which is obtained by averaging the scores of the six
workload scales. Figure 4.2a illustrates the overall workload for runs 1 to 72. The workload
as measured on the six RTLX scales is illustrated in Figure 4.3a to 4.3f. The scale ranges from
low (0%) to high (100%), except the performance scale that ranges from good (0%) to poor
(100%). See Table 3.2.8 for definitions of the scales.

Overall workload

All runs combined, an overall workload score of 31.12% and a trend of +0.04% is measured
(Table 4.3). By means of a simple linear regression this trend is analysed and was found to
be non-significant (F(1, 70) = 0.168 and p = 0.683). The runs on Day 1 show a negative trend
of -0.71%, which is due to a large difference in mean overall workload between the morning
and afternoon runs. For Day 2, a positive trend of +0.28% is found. From Figure 4.2a it can
be seen that in part 8 (the first part of Day 2) lower overall workload is reported compared
to the other parts of that day. The runs of part 9 report a relatively higher overall workload
score. With regards to Day 3, a positive linear trend of +0.22% is found.

Table 4.3: Trend analysis RTLX overall workload, scores range between low (0%) and high (100%)

Overall workload [%]

N Mean(SD) Trend

All runs 72 31.12(16.98) + 0.04

Day 1 37 27.97(17.34) - 0.71

Morning 16 37.97(16.50) + 0.11

Afternoon 21 20.36(14.01) - 0.11

Day 2 27 35.34(17.39) + 0.28

Morning 19 36.40(20.25) + 1.19

Afternoon 8 32.81(7.62) + 1.22

Day 3 8 31.46(11.68) + 0.22

Morning 8 31.46(11.68) + 0.22



4.2 patterns in workload measurements 38

Workload on the six RTLX scales

Despite the scale ranging from 0% to 100%, almost all workload scores on the different
scales of the RTLX report values below 50% (Table 4.4). The effort and temporal demand
scales measure a relatively high workload compared to the other scales, with an average
workload of 37.78% and 37.22%, respectively. The performance scale reports the lowest
average workload over all 72 runs of 19.44%. No scale reports a constant positive or negative
trend over all days. Therefore the linear trend over all runs is small, frustration reported
the largest trend of +0.12% over all runs. A linear regression was performed, and found
no significant trends: F(1, 70) = 0.058 with p = 0.811 for mental demand, F(1, 70) = 0.103
and p = 0.750 for physical demand, F(1, 70) = 0.093 and p = 0.761 for temporal demand,
F(1, 70) = 0.128 and p = 0.722 for performance, F(1, 70) = 0.173 and p = 0.679 for effort,
and F(1, 70) = 1.007 and p = 0.319 for frustration.

Table 4.4: Trend analysis RTLX scales. Scores range between low (0%) and high (100%), except the
performance scale that ranges from good (0%) to poor (100%).

Mental demand [%] Physical demand [%] Temporal demand[%]

N Mean(SD) Trend Mean(SD) Trend Mean(SD) Trend

All runs 72 33.82(19.78) + 0.03 29.51(10.05) - 0.03 37.22(28.72) + 0.05

Day 1 37 31.08(21.67) - 0.76 26.89(21.32) - 1.08 33.24(26.62) - 0.69

Morning 16 42.50(19.49) - 0.60 41.56(20.87) - 0.39 40.63(23.93) + 1.51

Afternoon 21 22.38(19.40) + 0.28 15.71(13.72) - 0.10 27.62(27.72) - 1.58

Day 2 27 35.19(15.60) - 0.26 33.15(16.12) + 0.21 44.26(32.51) + 0.24

Morning 19 37.11(16.78) + 0.14 33.95(18.97) + 0.85 45.00(33.21) + 0.67

Afternoon 8 30.63(12.08) - 0.42 31.25(5.82) + 1.67 42.50(32.95) + 4.88

Day 3 8 41.88(22.98) + 2.80 29.38(17.00) + 0.89 31.88(22.02) + 2.08

Morning 8 41.88(22.98) + 2.80 29.38(17.00) + 0.89 31.88(22.02) + 2.08

Performance [%] Effort [%] Frustration [%]

N Mean(SD) Trend Mean(SD) Trend Mean(SD) Trend

All runs 72 19.44(14.81) + 0.03 37.78(21.06) + 0.05 28.96(20.38) + 0.12

Day 1 37 16.35(14.08) - 0.61 35.68(22.27) - 0.38 24.59(18.27) - 0.75

Morning 16 24.38(16.01) - 0.21 43.75(22.99) + 0.49 35.00(18.62) - 0.16

Afternoon 21 10.24(8.58) - 0.17 29.52(20.12) + 0.79 16.67(13.72) - 0.05

Day 2 27 25.19(15.84) + 0.37 40.93(21.26) + 0.59 33.33(22.62) + 0.52

Morning 19 26.05(17.53) + 1.50 40.79(24.28) + 1.57 35.53(25.81) + 2.41

Afternoon 8 23.13(11.63) - 0.54 41.25(12.75) + 0.92 28.13(11.93) + 0.77

Day 3 8 14.38(8.21) - 1.01 36.87(14.37) - 3.75 34.38(19.72) + 0.30

Morning 8 14.38(8.21) - 1.01 36.87(14.37) - 3.75 34.38(19.72) + 0.30
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Figure 4.3: Overall workload and scores on the six RTLX scales for all 72 runs performed during the experiment
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4.2.2 Physiological workload

The results of the physiological workload measurements are presented in this subsection.
Both the mean Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD), and
Standard Deviation of Normal to Normal intervals (SDNN) during the entire experiment are
presented as well as the effect of the TOR on these measures. These measures are elaborated
in Section 3.2.8. Figure 4.4 to 4.6 illustrate the mean physiological workload during the
experiment and Figure 4.7 illustrates the effect of the TOR on these measures. The found
results are tabulated for the different days and half-days in Table 4.6.

During the experiment, the driver wore a finger sensor and chest strap to measure
physiological workload. Chest strap data was used when the finger sensor data deviated
more than 3 beats per minute (bpm) (after the data filtering) from the mean HR measured
by the chest strap. Due to the low sampling rate of the chest strap (Section 3.2.5), the chest
strap data is only used as substitute for the mean HR. Missing data is therefore reported for
the mean RMSSD, SDNN and effect of the TOR on HR, RMSSD and SDNN.

Heart Rate

Figure 4.4 illustrates the HR as it fluctuates between run 1 and run 72. Chest strap data is
used for some runs that encountered finger sensor data collection issues (Table 4.2). The
finger sensor data is illustrated by a circle and chest strap data by a cross. In total, 14 runs
encountered issues with the collected finger sensor data. The mean HR and linear workload
trends by which the mean HR fluctuates are presented in Table 4.7a. The average highest
HR was measured in the afternoon on Day 1, which is caused by the elevated HR in Part 5

(the first part of the afternoon). During the experiment, mean HR decreased on average by
- 0.10 bpm per run. This trend was found significant by a simple linear regression analysis
(F(1, 70) = 6.042 and p = 0.016).

The increases and decreases in HR after the TOR are illustrated in Figure 4.7a and
tabulated in Table 4.7b. Runs 21 and 23 report a close to zero effect on HR of, respectively,
+0.04 and +0.01 bpm. The greatest decreases in HR are reported in Runs 52 and 66,
respectively with a decrease of -6.57 and -7.70 bpm after the TOR. The largest increases in
HR are reported in runs 8 and 38, with an increase of +6.10 and +6.59 bpm, respectively. The
large average effect of the take-over in the morning runs of Day 1 of +2.83 bpm stands out,
as on average an effect of +0.85 bpm is reported. A linear regression analysis was performed
and found a non-significant trend in the effect of the TOR on HR (F(1, 56) = 1.321 and
p = 0.255).

RMSSD (Heart Rate Variability)

Table 4.7a and Figure 4.5 present the average RMSSD measured in the experiment. Missing
data is only reported for runs on Day 1, 14 runs in total, of which 8 in the morning and
6 in the afternoon. The RMSSD shows a similar pattern as the mean HR; a relative large
difference is reported for runs in the morning and afternoon of Day 1, with a difference of
15.91 ms between the half-days. A mean RMSSD of 37.17 ms was measured over all runs
(Table 4.7a). This meets the norm with a mean of 42 ms and Standard Deviation (SD) of 15

ms for short-term measurements (Shaffer and Ginsberg, 2017). A trend of +0.15 ms is found
over all runs. A linear regression analysis was performed, but found a non-significant effect
(F(1, 56) = 1.765 and p = 0.189).

Figure 4.7b illustrates the effect of a the TOR on RMSSD. The effect on RMSSD varies
widely during the runs, from a decrease of -20.93 ms in Run 34 to an increase of +43.44 ms
in Run 63. On average, the TOR resulted in an increase of + 0.53 ms per run. A positive
trend of + 0.10 ms per run was measured, but found non-significant by performing the linear
regression analysis (F(1, 56) = 2.069 and p = 0.156).

SDNN (Heart Rate Variability)

The average SDNN during the 72 runs is presented in Table 4.7a.The SDNN measured on
average 37.19 ms, which meets the norm with a mean of 50 ms and a SD of 16 ms for
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short-term measurements (Shaffer and Ginsberg, 2017). The average SDNN of run 1 to 72

show a similar pattern as the RMSSD values, as can be seen in Figure 4.5 and Figure 4.6.
Over all runs a trend of +0.12 ms is found. This trend is analysed by means of a linear
regression analysis and was found insignificant(F(1, 56) = 2.889 and p = 0.095).

The linear trend of all runs and daily and half-day linear trends by which the SDNN
increases or decreases are presented in Table 4.7b. Figure 4.7b illustrates the effect of a TOR
on the SDNN. It shows that the SDNN varies widely during the runs, from a decrease of
-59.03 ms in Run 15 to an increase of +27.37 ms in Run 63. On average, the SDNN decreased
by -1.91 ms after the TOR. The effect on SDNN increased on average by +0.17 ms per run.
This trend was found significant (F(1, 56) = 4.040 and p = 0.049) by means of a linear
regression analysis.

HF power (Heart Rate Variability)

An average High-Frequency (HF) power of 21,984.22 ms2 was found over all runs. This value
lies well outside the norm for short-term measurements with a mean of 657 ms2 and SD of
777 ms2 (Shaffer and Ginsberg, 2017). Only in one run a HF is found within the norm: run
18 with a HF power of 1,058.14 ms2. As for too little runs a reliable HF power is found, HF
power will not be used as workload measure.

Table 4.6: Trend analysis physiological workload

(a) Mean physiological workload

HR RMSSD [ms] SDNN [ms]

N(*) Mean(SD) Trend N(*) Mean(SD) Trend Mean(SD) Trend

All runs 72(0) 87.33(7.48) - 0.10* 72(14) 37.62(14.04) + 0.15 37.19(11.32) + 0.12

Day 1 37(0) 89.39(8.73) + 0.06 37(14) 35.33(18.32) - 0.01 34.17(13.94) - 0.10

Morning 16(0) 83.92(6.60) - 1.32 16(8) 47.24(21.76) + 3.64 43.15(18.16) + 2.38

Afternoon 21(0) 93.55(7.91) - 1.17 21(6) 28.97(12.89) + 2.18 29.75 (8.35) + 1.26

Day 2 27(0) 84.89(4.44) - 0.13 27(0) 37.57 (9.38) + 0.07 38.32 (8.44) + 0.04

Morning 19(0) 85.56(4.11) - 0.39 19(0) 38.70 (7.41) + 0.40 39.38 (8.19) + 0.34

Afternoon 8(0) 86.68(5.37) - 1.97 8(0) 34.87(13.19) + 4.28 35.80 (9.03) + 3.23

Day 3 8(0) 82.70(6.92) - 2.69 8(0) 44.45(12.37) + 4.44 42.03(10.35) + 3.75

Morning 8(0) 82.70(6.92) - 2.69 8(0) 44.45(12.37) + 4.44 42.03(10.35) + 3.75

∗Significant at the 5% level

(b) TOR-induced physiological workload, computed as the difference between 1 minute measurements before and
after the TOR.

HR RMSSD [ms] SDNN [ms]

N(*) Mean(SD) Trend Mean(SD) Trend Mean(SD) Trend

All runs 72(14) + 0.85(2.88) - 0.02 + 0.45(11.60) + 0.10 - 1.91(13.13) + 0.17*
Day 1 37(14) + 1.01(2.41) - 0.06 - 2.38(9.97) + 0.05 - 6.37(15.16) - 0.07

Morning 16(8) + 2.83(2.18) + 0.20 - 3.21(9.51) - 0.64 - 8.70(23.16) - 2.53

Afternoon 21(6) + 0.04(1.96) + 0.20 - 1.93(10.50) - 0.48 - 4.60 (9.39) + 0.31

Day 2 27(0) + 1.04(3.00) - 0.09 + 1.66(12.37) - 0.11 + 0.46(11.24) + 0.04

Morning 19(0) + 1.09(3.16) - 0.22 + 2.04(9.42) + 0.38 + 0.89(10.54) + 0.19

Afternoon 8(0) + 0.90(2.78) - 0.20 + 0.75(18.42) + 1.28 - 0.56(13.50) + 1.45

Day 3 8(0) - 0.25(3.77) + 0.82 + 4.49(12.83) - 0.22 + 2.90 (9.97) + 1.64

Morning 8(0) - 0.25(3.77) - 0.81 + 4.49(12.83) - 0.22 + 2.90 (9.97) + 1.64

∗Significant at the 5% level
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Figure 4.4: Average BPM of the runs performed on the 1
st, 2
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rd day of experimenting, measured over the entire run. In case the finger sensor data was faulty, the average

HR as measured by the chest strap is used. The polynomial trend lines are included for illustrative purposes for distinction of the different parts.
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Figure 4.7: Effect of the TOR on physiological workload, computed as the difference between 1 minute before and after the TOR.
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4.2.3 Driving measures

Data logged by the driving simulator is used for the driving performance indicators. For
this, the average take-over reaction time (TOrt), longitudinal control ability as indicated by
the SD speed after the take-over, and lateral control ability as indicated by the Standard
Deviation of Lateral Position (SDLP) is analysed. Figure 4.8 to 4.10 illustrate the found
driving performance measures for the 72 runs in ascending order. The mean, SDs and found
trends are tabulated and can be found in Table 4.9.

Take-over reaction time

Figure 4.8 illustrates the TOrt of the 72 runs. The figure illustrates that as the experiment
progressed, the TOrt showed smaller spreading of the TOrts. The average difference between
the longest and shortest TOrt on Day 1 measured 9.22 seconds on Day 1, 7.72 seconds on
Day 2 and 5.93 seconds on Day 3. See Table 4.8 for an overview of the runs that exceeded the
available time budget. There is no clear relation between run number, time of day and the
duration of the exceeded time budget. The linear trend of all runs and daily and half-day
linear trends by which the TOrt increases or decreases are presented in Table 4.9. On average,
the runs on Day 1 report a longer TOrt with an average of 5.74 seconds. The morning
runs of Day 1 report the highest average TOrt of all half-days, with an averageTOrt of 6.40

seconds. The shortest TOrts are reported in the morning of Day 2, with an average TOrt
of 4.89 seconds. An average TOrt of 5.38 seconds is reported as well as a negative trend
of -0.02 seconds. This trend is found insignificant by means of a linear regression analysis
(F(1, 70) = 3.647 and p = 0.060).

Table 4.8: Overview of the runs in which the available time budget was exceeded, runs with a
0-second time budget are excluded from this overview.

Run number Day Part of day Exceeded time budget [s]

3 1 Morning 0.08

6 1 Morning 2.15

8 1 Morning 0.20

18 1 Afternoon 1.93

28 1 Afternoon 0.97

34 1 Afternoon 2.65

39 2 Morning 0.08

54 2 Morning 1.35

61 2 Afternoon 1.22

62 2 Afternoon 1.72

72 3 Morning 0.20

Longitudinal control ability

Figure 4.9 illustrates the speed deviation during manual control after the take-over of the
72 runs. The linear trends of all runs and respective days and half-days are presented in
Table 4.9. The speed deviations varies, with the highest speed deviation of 10.06 km/h in
Run 40 to the lowest speed deviation of 0.99 km/h in Run 9. The speed deviation on Day
3 was smallest with an average of 3.44 km/h, compared to the average speed deviation
of 4.96 km/h. The SD speed increased on average by +0.01 km/h. This trend was found
insignificant by the linear regression analysis (F(1, 70) = 1.045 and p = 0.310).

Lateral control ability

Figure 4.10 illustrates the SDLP during manual control after the take-over. The linear trends
are presented in Table 4.9. Part 8 and 11 stand out by the large spread in SDLP, as such
that the smallest and the largest SDLP are both measured in part 8: 7.65 cm in Run 42 and
67.50 cm in run 43. The SDLP increased on average by + 0.01 per run. However, this trend
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was found insignificant by performing a linear regression analysis (F(1, 70) = 0.028 and
p = 0.868).

Table 4.9: Driving performance means and trends over all runs, measured over 1 minute over manual
driving after the take-over.

TOrt [s] SD speed [km/h] SDLP [cm]

N(*) Mean(SD) Trend Mean(SD) Trend Mean(SD) Trend

All runs 72 5.38(2.06) - 0.02 4.96(1.98) + 0.01 25.39(10.33) + 0.01

Day 1 37 5.74(2.19) - 0.04 4.47(2.01) + 0.02 24.30(7.66) - 0.11

Morning 16 6.40(2.46) - 0.18 4.70(2.13) + 0.10 26.94(6.34) + 0.06

Afternoon 21 5.24(1.86) + 0.10 4.29(1.95) + 0.16 22.29(8.11) + 0.37

Day 2 27 4.98(1.98) - 0.01 6.09(1.37) - 0.06 26.93(14.21) - 0.32

Morning 19 4.89(2.10) - 0.04 6.29(1.42) - 0.08 27.47(15.12) - 0.84

Afternoon 8 5.20(1.77) - 0.25 5.84(1.31) - 0.10 25.62(12.63) + 2.41

Day 3 8 5.04(1.58) - 0.26 3.44(1.71) - 0.23 25.25(3.73) + 0.97

Morning 8 5.04(1.58) - 0.26 3.44(1.71) - 0.23 25.25(3.73) + 0.97

4.2.4 Secondary task

Two tasks during automated driving were varied in the experiment, which are the
monitoring task and playing Tetris. The scores obtained in the Tetris game were used as
secondary task measure. Figure 4.11 illustrates the Tetris scores that were obtained in the
experiment runs. The linear trends are presented in Table 4.10. Note that in 37 runs no score
is reported as these runs has a monitoring task instead of playing Tetris. The figure and table
show that the mean score increases as the experiment progresses, with an average score of
933.20 on Day 1 to an average score of 2143.67 on Day 3, with a linear trend of + 9.92 points.
This is also confirmed by a linear regression analysis, which reports a significant difference
between the Tetris scores as the experiment progressed, with F(1, 33) = 6.431 and p = 0.016.

Table 4.10: Tetris score trends and averages of all runs.

N Mean(SD) Trend

All runs 35 1105.29(571.64) + 9.92*
Day 1 11 933.20(462.88) + 4.72

Morning 8 924.75(394.59) + 58.05

Afternoon 3 942.86(563.98) - 15.16

Day 2 17 1073.88(479.87) + 7.37

Morning 10 1089.10(484.18) + 9.16

Afternoon 7 1052.14(511.36) + 135.75

Day 3 3 2143.67(604.51) - 238.76

Morning 3 2143.67(604.51) - 238.76

∗Significant at the 5% level
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Figure 4.8: Average TOrt of the runs performed on the 1
st, 2

nd and 3
rd day of experimenting.
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st, 2

nd and 3
rd day of experimenting.
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4.2.5 Main findings

A total of ten scenarios experienced data collection problems, of which for one scenario no
data was collected at all and for nine scenarios no finger sensor data is available. Data
collection issues with the finger sensor occurred to five other scenarios as well, however,
a rerun is available for these scenarios. These reruns will be used for the design variable
analysis, instead of the original runs. Thus, the rerun is analysed for subjective and
physiological workload as well as for driving and secondary task performance.

In general, few workload trends were found in the measurements of the various workload
measures. Trends were found in physiological workload, namely in the mean HR which
decreased on average by -0.10 bpm per run and in the effect of the TOR measured by the
SDNN which increased on average by +0.17 ms per run. As discussed earlier in Section 3.2.2
and 3.2.9, the physiological workload measures are prone for time-on-task effects. By using
an orthogonal design, the effect of time-on-task on the design variables is reduced as much
as possible. In addition, it was found that the HF power measurements fell far outside
the norm. Thus, the HF power wil not be used as physiological workload indicator in the
analysis of the various design variables. Furthermore, a significant trend was found in the
Tetris scores, which increased on average by +9.92pt per run. This will also be discussed
further in Chapter 5.

The clear workload differences that are measured in the various days, half-days and parts,
suggests that, indeed, the design variables affect task demand differently and thus result in
different driver workload. Namely, the various days, half-days and parts are not orthogonal,
therefore, specific design can appear more or less frequently. Thus, as clear differences in
workload are measured, this suggests that the design variables affect driver workload. What
design variables does affect driver workload most or least will be analysed in Section 4.3 to
4.6.
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4.3 time budget as design variable
Four time budgets of 0, 5, 10 and 15 seconds were varied in the experiment. The workload
experienced in the scenarios with the different time budgets are compared to analyse
the extent to which the different time budgets affected take-over request (TOR)-induced
workload. Measures used for analysing driver workload were elaborated in Section 3.2.2.
As mentioned in Section 4.2, one scenario was not tested due to an error in the experiment
preparation. This scenario had a 0-second time budget, therefore, 15 (instead of 16) scenarios
are included in the analysis of 0-second time budgets. The performed statistical analyses is
presented in Figure 3.2.8.

4.3.1 Subjective workload

The results of the Raw Task Load Index (RTLX) for the different time budgets are presented
in Table 4.11. For every attribute level, the mean and Standard Deviation (SD) of the overall
workload and workload on the six RTLX scales are given.

Overall workload

The subjective workload scores for the different time budgets show a decreasing workload
trend for every increase in time budget. Especially the 0-second time budget has a large
effect on overall workload, with an average score of 46.17%, the other three time budgets
result in a workload score of 30.31%, 26.06% and 22.24%, respectively. As the assumption for
equal variances did not hold (F(3, 59) = 7.725, p < 0.001), the Welch and Brown-Forsythe
tests were used and showed that the four time budgets were significantly different
(F(3, 31.736) = 4.508, p = 0.010 and F(3, 40.172) = 6.492, p = 0.001, respectively). The
post-hoc Games-Howell test showed that the 0-second time-budget results in a significantly
higher workload than the 15-second time budget (p = 0.008). All other differences were
insignificant.

Workload on the six RTLX scales

With regards to the workload scores on the six scales of the RTLX, a decreasing workload
trend is found in the mental, physical, temporal demand and performance scales for every
increase in time budget. This trend is not found in the effort and frustration scales. The
temporal demand scale reports the greatest difference in workload between the 0-second
and 15-second time budget, with a difference of 72.23%. All other workload scales report
smaller workload differences between the attribute levels. Only for temporal demand a
significant difference is found. The ANOVA showed that the scores for the four time-budgets
are significantly different, with p < 0.001. The post-hoc Tukey test showed that the 0-second
time budget results in a significantly higher temporal demand than all other time budgets
(p < 0.001 for all three time-budgets), furthermore the 5-second time budget resulted in a
significantly higher temporal demand than the 15-second time-budget (p < 0.001) and the
10-second time-budget results in a significantly higher temporal demand than the 15-second
time budget (p < 0.001). Thus, a non-significant difference is only found between the 5- and
10-second time-budget.
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Table 4.11: Results of the RTLX for assessing subjective workload in different task load conditions.
MD = Mental Demand; PD = Physical Demand; TD = Temporal Demand; P = Performance; E = Effort; F = Frustration

Overall [%] MD [%] PD [%] TD [%] P [%] E [%] F [%]

N(*) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Average 63(1) 31.29(17.66) 33.33(19.01) 30.00(19.20) 37.70(29.71) 20.24(15.44) 37.94(22.01) 28.57(20.55)
Time budget [s]

0 16(1) 46.17(22.70)d
39.33(25.83) 40.33(25.87) 80.67(16.89)bcd

29.67(18.85) 47.67(31.78) 39.33(29.39)
5 16(0) 30.31(10.96) 35.00(13.54) 28.75(11.76) 36.88(10.94)ad

20.94(14.86) 34.69(15.54) 25.63(15.37)
10 16(0) 27.39(14.94) 32.19(17.70) 27.81(17.41) 27.50(17.89)ad

17.81(14.94) 35.63(16.42) 23.43(19.98)
15 16(0) 22.24(11.82)a

27.19(17.12) 23.75(17.37) 8.44(8.51)abc
13.13(7.72) 34.38(20.56) 26.56(12.07)

Traffic density [veh/km/lane]
0 16(0) 24.69(18.58)cd

17.81(14.72) 21.56(19.47) 34.69(32.68) 15.94(16.75) 33.75(23.77) 24.38(20.65)
5 16(0) 34.01(16.53) 33.44(15.35) 33.13(17.21) 39.69(30.58) 23.44(15.46) 41.56(20.55) 32.81(21.29)

10 16(0) 33.80(19.07)a
38.75(18.39) 30.00(20.90) 40.94(30.94) 23.44(17.20) 38.13(21.82) 31.56(21.19)

15 16(1) 32.78(16.18)a
44.00(17.95) 35.67(17.71) 35.33(26.56) 18.00(11.46) 38.33(23.27) 25.33(19.59)

Location take-over request (TOR)
Straight 32(1) 21.99(11.85)b

25.97(16.35)b
20.00(12.45)b

30.16(26.09) 15.16(15.03)b
22.74(13.16)b

17.90(15.64)b

Curved 32(0) 40.31(17.82)a
40.47(18.90)a

39.69(19.75)a
45.00(31.55) 25.16(14.40)a

52.66(18.62)a
38.91(19.58)a

Task during automated driving
Monitoring 32(0) 30.62(19.47) 34.53(22.05) 29.06(21.38) 36.56(29.61) 19.06(15.16) 37.34(25.30) 27.19(20.48)

Tetris 32(1) 31.99(15.88) 32.10(15.53) 30.97(16.95) 38.87(30.27) 21.45(15.87) 38.55(18.40) 30.00(20.86)

* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b), third (c), fourth (d) attribute level.
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4.3.2 Physiological workload

Missing data is reported in some runs that encountered severe noise, for an overview see
Table 4.2. The mean Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD)
and Standard Deviation of Normal to Normal intervals (SDNN) during the experiment for
the different time budgets are presented in Table 4.13a. In Table 4.12 the effect of the take-over
on physiological workload is presented by including the increase or decrease in, respectively,
HR, RMSSD and SDNN after the take-over. The effect on the High-Frequency (HF)-band is
not included in the analysis, as the HF-data is found invalid (Section 4.2.2).

Heart Rate

The mean HR increases for every increase in time budget. However, the ANOVA showed
that the differences in mean HR were insignificant: F(3, 59) = 0.304, p = 0.823. From the
table it can also be seen that the TOR, on average, always led to an increase in HR. The effect
on HR does not increase with every increase in time budget. Again, the ANOVA showed
that the differences were insignificant: F(3, 50) = 0.768, p = 0.517.

RMSSD (Heart Rate Variability)

The mean RMSSD is almost equal for the 0-, 5-, and 10-second time budget, whereas the
15-second time-budget has the lowest mean RMSSD. The ANOVA showed that the mean
RMSSD does not differ for the different time-budgets: F(3, 50) = 1.040, p = 0.124. Regarding
the effect of the take-over on RMSSD, an irregular increase and decrease in RMSSD is found
for every increase in time budget. No significant differences are found by performing the
ANOVA: F(3, 50) = 0.284, p = 0.837.

SDNN (Heart Rate Variability)

The highest mean SDNN of 40.46 ms is reported in scenarios with a 0-second time-budget
and the lowest SDNN of 31.20 ms is reported for 15-second time budget scenarios. The
ANOVA found no significant difference between the time-budgets: F(3, 50) = 1.566, p =
0.209. Also for SDNN, an irregular increase and decrease is found for every increase in time
budget. The 0-, 5-, and 15-second time-budget report, on average, a decrease in SDNN after
the take-over, whilst the 10-second time-budget reports an increase in SDNN. The Kruskal
Wallis test reports an insignificant difference: H(3) = 1.746, p = 0.627.
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Table 4.12: Physiological workload in the different task load conditions

(a) Mean physiological workload

HR [bpm] RMSSD [ms] SDNN [ms]

N(∗) Mean(SD) N(∗) Mean(SD) Mean(SD)

Average 64(1) 88.19(7.28) 64(10) 36.91(13.95) 36.87(12.97)
Time budget [s]

0 16(1) 87.64(9.42) 16(1) 39.92(18.13) 40.46(15.83)
5 16(0) 88.49(5.84) 16(2) 37.06(14.67) 35.80(9.63)

10 16(0) 87.14(5.58) 16(2) 38.48(8.08) 38.57(8.84)
15 16(0) 89.47(8.21) 16(5) 30.62(12.11) 31.20(8.33)

Traffic density [veh/km]
0 16(0) 92.25(7.91) 16(2) 29.18(9.64)c

31.16(7.45)c

5 16(0) 87.20(5.47) 16(3) 36.25(10.80) 36.74(10.47)
10 16(0) 84.74(4.93) 16(3) 48.28(16.95)a

45.40(13.62)a

15 16(1) 88.61(8.69) 16(1) 34.69(11.34) 34.80(10.00)
Location take-over request (TOR)

Straight 32(1) 89.74(7.95) 32(4) 34.07(12.79) 34.41(10.05)
Curved 32(0) 86.69(6.33) 32(5) 39.76(14.72) 39.34(12.51)

Task during automated driving
Monitoring 32(0) 89.80(8.50) 32(5) 34.86(15.68) 36.41(13.26)

Game 32(1) 86.53(5.39) 32(4) 38.97(11.93) 37.34(9.69)

* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b), third (c)
fourth (d) attribute level.

(b) TOR-induced physiological workload

HR [bpm] RMSSD [ms] SDNN [ms]

N(∗) Mean(SD) Mean(SD) Mean(SD)

Average 64(10) + 1.02(2.72) + 0.31(11.93) - 2.26(12.97)
Time budget [s]

0 16(1) + 0.33(2.87) + 1.20(14.75) - 6.33(15.47)
5 16(2) + 1.84(2.88) - 0.53(11.69) - 0.49(12.92)

10 16(2) + 1.11(2.76) + 2.05(13.62) + 0.70(11.10)
15 16(5) + 0.74(2.27) - 2.06(5.42) - 2.73(11.72)

Traffic density [veh/km]
0 16(2) - 0.26(2.84) - 4.36(6.86) - 2.00(11.66)
5 16(3) + 1.13(2.20) + 0.39(11.56) - 2.74(7.28)

10 16(3) + 2.48(2.59) - 0.53(18.22) - 3.45(21.90)
15 16(1) + 0.84(2.72) + 1.73(10.01) - 0.97(7.40)

Location take-over request (TOR)
Straight 32(4) + 1.15(2.45) + 0.73(8.71) - 0.29(11.09)
Curved 32(5) + 0.89(3.00) - 0.11(14.63) - 4.23(14.56)

Task during automated driving
Monitoring 32(5) + 0.52(2.94) + 0.53(9.92) - 5.82(14.37)

Game 32(4) + 1.52(2.42) + 0.09(13.85) + 1.30(10.49)

* Number of excluded runs because of data collection errors.
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4.3.3 Driving measures

To analyse driving performance at manual resumption of the Dynamic Driving Task (DDT),
the take-over reaction time (TOrt), speed deviation and Standard Deviation of Lateral
Position (SDLP) are analysed. The found driving performance metrics for the different time
budgets are presented in Table 4.14. The table also presents whether the available time
budget was exceeded and how often an exceedance occurred in the different scenarios.

Take-over reaction time (TOrt)

The table shows that the mean TOrt increases with every increase in time budget. A
significant difference in TOrts was found by the Kruskal Wallis test: H(3) = 27.440, p < 0.001.
The 0-second time-budget resulted in a significantly lower TOrt compared to all other time
budgets, with p = 0.003 in comparison to the 5-second time budget, p = 0.001 to the
10-second time budget, and p < 0.001 to the 15-second time budget.

The time budget was exceeded in 25 scenarios, of which 15 scenarios had a 0-second
time budget and 10 scenarios had a 5-second time budget. The duration of the exceeded
time budget is significantly longer in scenarios with a 0-second time budget (Kruskal-Wallis
H(1) = 10.351, p = 0.001).

Longitudinal control ability

The speed deviation does not show large differences between the different time-budget
scenarios, this is confirmed by the ANOVA that found an insignificant result of F(3, 59) =
0.050, p = 0.985.

Lateral control ability

The time budget with the greatest effect on lateral control ability of the driver is the 0-second
time budget, for which on average a SDLP of 31.00 cm is reported. An ANOVA was
performed and found no significant differences: F(3, 59) = 1.894, p = 0.140.

4.3.4 Secondary task

Table 4.15 presents the average Tetris scores obtained during automated driving before the
take-over in the different time budget scenarios. For this analysis, 32 scenarios are analysed
as only half the scenarios included playing Tetris as Non-Driving Related Task (NDRT).
Higher average scores are reported for scenarios that had a 0- or 5-second time budget
compared to scenarios with a 10-, or 15-second time budget. An ANOVA was performed,
but found no significant difference, with p = 0.241. Thus, the different time budgets do not
result in different Tetris scores.
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Table 4.14: Analysis of driving performance metrics in different task load conditions

TOrt [s] Exceedance [s] SD speed [km/h] SDLP [cm]

N(*) Mean(SD) N Mean(SD) N Mean(SD) Mean(SD)

Average 64(1) 5.42(2.14) 25 2.27(1.72) 64(1) 5.19(1.93) 25.59(10.88)
Time budget [s]

0 16(1) 2.96(1.80)bcd
15 2.96(1.80) 16(1) 5.17(2.02) 31.00(15.84)

5 16(0) 5.66(1.14)a
10 1.23(0.90) 16(0) 5.27(2.17) 25.19(8.35)

10 16(0) 6.13(1.70)a
0 - 16(0) 5.27(1.91) 22.31(8.71)

15 16(0) 6.81(1.71)a
0 - 16(0) 5.04(1.79) 24.19(8.17)

Traffic density [veh/km]
0 16(0) 5.30(1.90) 7 3.06(2.62) 16(0) 4.12(2.05) 16.21(5.12)c

5 16(0) 4.66(2.00) 6 1.90(0.91) 16(0) 4.78(2.28) 29.92(14.25)
10 16(0) 5.39(2.34) 6 2.46(1.53) 16(0) 5.77(1.70) 23.54(6.90)a

15 16(1) 5.78(2.61) 6 1.54(1.03) 16(1) 6.12(1.72) 32.07(9.64)
Location take-over request (TOR)

Straight 32(1) 5.41(2.32) 13 1.62(1.02) 32(1) 4.41(1.83)b
23.87(11.00)

Curved 32(0) 5.45(1.98) 12 2.98(1.02) 32(0) 5.93(1.75)a
27.25(10.67)

Task during automated driving
Monitoring 32(0) 5.07(2.27) 13 1.65(0.82) 32(0) 5.18(2.00) 25.63(12.46)

Game 32(1) 5.80(1.96) 12 2.95(2.18) 32(1) 5.20(1.89) 25.55(9.18)

* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b), third (c), fourth (d) attribute level.

Table 4.15: Analysis of secondary task performance in different task load conditions
* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b), third (c), fourth (d) attribute level.

Tetris score
N(*) Mean(SD)

Average 32(1) 1009.16(477.50)
Time budget [s]

0 8(1) 1158.14(504.60)
5 8(0) 1211.88(549.06)

10 8(0) 892.75(346.61)
15 8(0) 792.50(446.13)

Traffic density [veh/km]
0 8(0) 949.75(405.88)
5 8(0) 1140.63(405.63)

10 8(0) 1038.25(378.50)
15 8(1) 893.57(338.65)

Location take-over request (TOR)
Straight 16(1) 1270.20(325.12)b

Curve 16(0) 764.44(298.73)a
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4.4 traffic density as design variable
Four traffic densities of 0, 5 (low), 10 (medium) and 15 (high) vehicles per kilometre per lane
are varied in the experiment. The workload experienced in the scenarios with the different
traffic densities are compared to analyse the extent to which the different traffic densities
affected take-over request (TOR)-induced workload. Measures used for analysing driver
workload were elaborated in Section 3.2.2. As mentioned in Section 4.2, one scenario was
not tested due to an error in the experiment preparation. This was a high traffic density
scenario with 15 vehicles/km/lane, therefore, 15 (instead of 16) scenarios are included in the
analysis of high traffic density. The performed statistical analyses is presented in Figure 3.2.8.

4.4.1 Subjective workload

The results of the Raw Task Load Index (RTLX) for the different traffic densities are presented
in Table 4.11. For every attribute level, the mean and Standard Deviation (SD) of the overall
workload and workload on the six RTLX scales are given.

Overall workload

Scenarios without traffic resulted, on average, in a lower overall workload score as reported
in the table. An ANOVA was performed and found no significant difference: F(3, 59) =
1.016, p = 0.392.

Workload on the six RTLX scales

With regards to the workload scores on the six scales of RTLX, an increasing workload trend
for every increase in traffic density is only found in the mental demand scale. All other
scales do not show such an increasing trend. Instead, an irregular increase or decrease in
workload has been observed for every increase in traffic density. By performing an ANOVA,
a significant difference between the traffic densities is found in the mental demand scale,
with p < 0.001. A significant difference is found between scenarios without traffic and
scenarios with medium and high traffic densities, with p = 0.004 and p < 0.001, respectively.
No significant differences are found for the other RTLX scales. Thus, if no traffic is simulated
this results in less mental demand compared to scenarios with 10 or 15 vehicles per kilometre
per lane. If traffic is simulated, mild/medium/high traffic densities affect workload to the
same extent.

4.4.2 Physiological workload

Missing data is reported in some runs that encountered severe noise, for an overview see
Table 4.2. The found Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD)
and Standard Deviation of Normal to Normal intervals (SDNN) values before and after the
TOR for the different traffic densities are presented in Table 4.13a. Table 4.12 presents the
effect of the TOR by including the increase or decrease in, respectively, HR, RMSSD and
SDNN after the TOR.

Heart Rate

The mean HR is highest in scenarios without traffic, with an average HR of 92.25. Small
differences in mean HR are reported for the other three traffic densities. By performing
an ANOVA a non-significant difference is found between the mean HR of the different
traffic densities: F(3, 50) = 3.311, p = 0.026 (Bonferroni correction). The mean HR does
not differ for the different traffic densities. With regards to the effect of the take-over on
HR, an increasing effect is found for every increase in traffic density, except for the high
traffic density condition that reports a smaller effect on HR compared to the medium traffic
density condition. However, a non-significant difference between the effect on HR is found
by performing the ANOVA: F(3, 50) = 2.518, p = 0.069.
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RMSSD (Heart Rate Variability)

The mean RMSSD increases for every increase in traffic density, except for the high traffic
density scenarios. The ANOVA was performed and found a significant difference between
the mean RMSSD for the different traffic densities: F(3, 50) = 5.589, p = 0.002. A significant
difference of p = 0.001 is found between zero and medium traffic density scenarios. Thus,
the low and high traffic density scenarios do not result in a different RMSSD than zero or
medium traffic densities, but the medium traffic density scenarios result in a higher RMSSD
than scenarios without traffic.

As regards to the effect of the take-over on RMSSD in the different scenarios, an irregular
increase and decrease is found. The ANOVA was performed and found a non-significant
difference of the effect of traffic densities on RMSSD: F(3, 50) = 0.099, p = 0.960.

SDNN (Heart Rate Variability)

The mean SDNN shows a similar pattern as the RMSSD for the different traffic densities. An
ANOVA was performed and found a significant effect: F(3, 50) = 5.589, p = 0.008. Likewise
the RMSSD, a significant difference is found between scenarios with a zero and medium
traffic density, with p = 0.005.

The effect of the take-over on SDNN is not similar to the RMSSD. Instead, for every traffic
density it reports a decrease in SDNN after the take-over. The effect increases for every
increase in traffic density, except for the high traffic density scenarios that report the smallest
average effect on SDNN. A Kruskal Wallis test was performed and found, however, no
significant differences between the traffic densities on the effect on SDNN: H(3) = 0.598,p =
0.897.

4.4.3 Driving measures

To analyse driving performance at manual resumption of the Dynamic Driving Task (DDT),
the take-over reaction time (TOrt), speed deviation and Standard Deviation of Lateral
Position (SDLP) are analysed. The TOrts found for the different traffic densities are presented
inTable 4.14. The table also presents whether the available time budget was exceeded and
how often an exceedance occurred in the different scenarios.

Take-over reaction time

The table presents an irregular TOrt for every increase in traffic density. The shortest TOrt
is reported for scenarios with low traffic density, whereas the longest TOrt is reported for
scenarios with high traffic density. A Kruskal Wallis test was performed and, indeed, found
no significant difference in TOrt for the different traffic densities: H(3) = 0.873, p = 0.832.

The distribution of scenarios in which the time budget was exceeded shows a constant
pattern, it is exceeded 7 times in scenarios with zero traffic density and is exceeded 6 times
in scenarios with a low, medium, and high traffic density. The duration of exceeded time
budget does also not show a regular pattern. The longest exceedance is reported in scenarios
without any traffic with an average exceedance of 3.06 seconds. Whereas the shortest average
exceedance is reported in scenarios with a low traffic density, with an average exceedance
of 1.90 seconds. The differences in duration of the exceedance is found non-significant by
performing a Kruskal Wallis test: H(3) = 2.241, p = 0.524.

Longitudinal control ability

With regards to the average speed deviation at different traffic densities, an increasing
speed deviation is found for every increase in traffic density. However, the ANOVA found
a non-significant difference between the traffic densities: F(3, 50) = 3.201, p = 0.030
(Bonferroni correction).
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Lateral control ability

The average SDLP for the different traffic densities does show an increase for every increase
in traffic density, except for the medium traffic density scenarios. An ANOVA was performed
and found a significant difference between the average SDLP of the different traffic densities:
F(3, 62) = 8.193, p < 0.001. The SDLP in scenarios without traffic was significantly smaller
compared to the SDLP found in low (p = 0.007), medium (p = 0.002), and high (p < 0.001)
traffic density.

4.4.4 Secondary task

The Tetris scores obtained during automated driving in the different traffic density scenarios
are presented in Table 4.15. In scenarios with low and medium traffic density higher Tetris
scores were obtained than in scenarios without traffic or with a high traffic density. An
ANOVA was performed, and found no significant differences in Tetris scores for the different
traffic densities, with p = 0.959.

4.5 location of the take-over as design variable
Two locations of the take-over are varied in the experiment: a take-over on a straight
road section and in a curve. The workload experienced in the scenarios with the different
locations are compared to analyse the extent to which the different take-over request (TOR)
locations affected TOR-induced workload. Measures used for analysing driver workload
were elaborated in Section 3.2.2. As mentioned in Section 4.2, one scenario was not tested
due to an error in the experiment preparation. In this scenario the TOR was issued on a
straight road section, therefore, 31 (instead of 32) scenarios are included in the analysis of
TORs on straight road section. The performed statistical analyses is presented in Figure 3.2.8.

4.5.1 Subjective workload

The results of the Raw Task Load Index (RTLX) for the different TOR locations are presented
in Table 4.11. For every attribute level, the mean and Standard Deviation (SD) of the overall
workload and workload on the six RTLX scales are given.

Overall workload

Scenarios with a take-over in a curve resulted in a hibeats per minute (bpm)her subjective
overall workload score compared to the take-over in a straight road section, with a score of
40.31 and 21.99, respectively. The Welch and Brown-Forsythe tests showed that this workload
difference is significant: F(1, 54.100) = 23.228, p < 0.001 in both tests.

Workload on the six RTLX scales

All six RTLX scales report a higher score for scenarios with a take-over in a curve. Only
the temporal demand scale was found non-significant by the ANOVA. An ANOVA found
a significant difference for the mental demand scale (p = 0.002), performance scale(p =
0.009), and frustration (p < 0.001). The welch and Brown-Forsythe tests found a significant
difference for the physical demand scale (p < 0.001 in both tests) and effort scale (p < 0.001
in both tests).
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4.5.2 Physiological workload

Missing data is reported in some runs that encountered severe noise, for an overview see
Table 4.2. The found Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD)
and Standard Deviation of Normal to Normal intervals (SDNN) values before and after the
TOR for the different TOR locations are presented in Table 4.13a. Table 4.12 presents the
effect of the TOR by including the increase or decrease in, respectively, HR, RMSSD and
SDNN after the TOR.

Heart Rate

The mean HR in scenarios with a take-over on a straight road section was 89.74 HR and for
curve scenarios it was 86.69 HR on average. This difference is found insignificant by the
ANOVA: F(1, 61) = 2.850, p = 0.096. With regards to the effect on HR of the take-over in the
different scenarios, both scenarios report on average an increase in HR after the take-over.
Again, this difference was found non-significant by the ANOVA: F(1, 52) = 0.124, p = 0.726.

RMSSD (Heart Rate Variability)

Scenarios with a take-over in a curve report, on average, a higher RMSSD than scenarios
with a take-over in a straight road section: 39.76 and 34.07 ms, respectively. This difference
is found non-significant by the ANOVA: F(1, 52) = 2.301, p = 0.135. With regards to the
effect on RMSSD of the take-over, an increase of 0.73 ms is reported in straight road section
scenarios, whereas a decrease of 0.11 ms is reported in curved scenarios. The Welch and
Brown-Forsythe tests found that this difference is non-significant: F(1, 42.394 = 0.065, p =
0.799 in both tests.

SDNN (Heart Rate Variability)

Likewise the RMSSD, the mean SDNN is higher in scenarios with a take-over in a curve
(39.34 ms) compared to scenarios with a take-over on a straight road section (34.41). However,
this difference is found non-significant by the ANOVA: F(1, 52) = 2.542, p = 0.117. It
is found that the take-over results in a decrease in SDNN for both scenarios: -0.29 ms in
straight road scenarios and -4.23 in curved scenarios. However, again this difference is found
non-significant by the Kruskal Wallis test: H(1) = 0.399, p = 0.528.

4.5.3 Driving measures

To analyse driving performance at manual resumption of the Dynamic Driving Task (DDT),
the take-over reaction time (TOrt), speed deviation and Standard Deviation of Lateral
Position (SDLP) are analysed. The driving performance metrics found for the different
take-over locations are presented in Table 4.14. The table also presents whether the available
time budget was exceeded and how often an exceedance occurred in the different scenarios.

Take-over reaction time

An almost equal TOrt for the two take-over locations is found, with 5.41 seconds on average
for take-overs on a straight road section and 5.45 seconds for take-overs in a curve. As
expected, this difference is found to be non-significant by the Kruskal Wallis test: H(1) =
0.048 p = 0.826.

The distribution of exceeded time budgets is almost equal between the two locations, with
13 exceedances in scenarios with a TOR in a straight road section, and 12 exceedances
in scenarios with a TOR in a curve. The duration of the exceedance, however, shows a
clear difference between the two locations, with an average exceedance of 2.98 seconds for
scenarios in which the TOR was issued in a curve, and 1.85 seconds for scenarios in which
the TOR was issued on a straight road section. The difference in exceedance between the two
TOR locations was found not to differ by performing a Kruskal Wallis test: H(1) = 3.834,
p = 0.050.
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Longitudinal control ability

With regards to the average speed deviation, when the take-over occurred in a straight road
section a speed deviation of 4.41 km/h is found, whereas a higher speed deviation of 5.93

km/h is found in scenarios with a take-over in a curve. This is found significant by the
ANOVA: F(1, 61) = 11.394, p = 0.001.

Lateral control ability

The average SDLP does not show a large difference between the two take-over locations,
with 23.87 cm in scenarios with a take-over in a straight road section and 27.25 cm in a curve.
This difference is found non-significant by the ANOVA: F(1, 61) = 1.531, p = 0.221.

4.5.4 Secondary task

For secondary task performance a large difference in Tetris scores is found: 1,270.20 for
straight road sections and 764.33 for curves. This difference is found significant by the
ANOVA, with p = 0.002.

4.6 non-driving related task as design variable
Two tasks during automated driving are varied in the experiment: a monitoring task and
playing Tetris as Non-Driving Related Task (NDRT). The workload experienced in the
scenarios with the different tasks are compared to analyse the extent to which the different
tasks affected take-over request (TOR)-induced workload. Measures used for analysing
driver workload were elaborated in Section 3.2.2. As mentioned in Section 4.2, one scenario
was not tested due to an error in the experiment preparation. In this scenario, the participant
had to play Tetris as NDRT during automated driving. Therefore, 31 (instead of 32) scenarios
are included in the analysis of Tetris as task during automated driving. The performed
statistical analyses is presented in Figure 3.2.8.

4.6.1 Subjective workload

The results of the Raw Task Load Index (RTLX) for monitoring and playing Tetris are
presented in Table 4.11. For both tasks, the mean and Standard Deviation (SD) of the overall
workload and the six scales are given.

Overall workload

With regards to overall workload, Tetris on average resulted in a higher workload than the
monitoring task, with a overall workload of 30.62% and 31.99%, respectively. The ANOVA
was performed and found no significant difference: F(1, 61) = 0.093, p = 0.762.

Workload on the six RTLX scales

With regards to the workload scores on the six scales of the RTLX, small differences are
found between the two tasks. ANOVAs and Welch-Brown Forsythe tests were performed
and found no significant differences between the tasks.
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4.6.2 Physiological workload

Missing data is reported in some runs that encountered severe noise, for an overview see
Table 4.2. The found Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD)
and Standard Deviation of Normal to Normal intervals (SDNN) values before and after the
TOR for the different tasks are presented in Table 4.13a. Table 4.12 presents the effect of the
TOR by including the increase or decrease in, respectively, HR, RMSSD and SDNN after the
TOR.

Heart Rate

Scenarios with a monitoring task, on average, report a higher average HR of 89.80 compared
to the Tetris task with a HR of 86.53 on average. This difference is found non-significant by
the ANOVA: F(1, 61) = 3.287, p = 0.075.

With regard to the effect on HR, playing Tetris as game resulted in the greatest increase in
HR, with an average increase of 1.47 HR. Also the monitoring task resulted in an increase in
HR, with an average increase of 0.52. This difference is found non-significant by the ANOVA:
F(1, 52) = 1.880, p = 0.176.

RMSSD (Heart Rate Variability)

The mean RMSSD in scenarios with a monitoring task was 34.86 ms and was 38.97 ms
in Tetris scenarios. An ANOVA was performed, but found a non-significant difference:
F(1, 52) = 1.173, p = 0.284. With regards to the effect of the take-over on RMSSD, for both
scenarios an increase in RMSSD is found (+0.53 ms and +0.09, respectively). However, again,
this difference is found to be non-significant by performing an ANOVA: F(1, 52) = 0.892,
p = 0.892.

SDNN (Heart Rate Variability)

The mean SDNN between the scenarios reports a small difference, with 36.41 ms for
monitoring and 37.34 for Tetris. The ANOVA was performed and found no significant
difference: F(1, 52) = 0.086, p = 0.771. As regards to the effect on SDNN of the take-over a
decrease of 5.82 ms is found on average for monitoring scenarios and an increase of 1.30 ms
is found for Tetris scenarios. However, this difference is found non-significant by the Kruskal
Wallis test: H(1) = 3.023, p = 0.082.

4.6.3 Driving measures

To analyse driving performance at manual resumption of the Dynamic Driving Task (DDT),
the take-over reaction time (TOrt), speed deviation and Standard Deviation of Lateral
Position (SDLP) are analysed. The driving performance metrics found for the different tasks
are presented in Table 4.14. The table also presents whether the available time budget was
exceeded and how often an exceedance occurred in the different scenarios.

Take-over reaction time

A larger mean TOrt is found for scenarios in which Tetris was played during automated
driving, with an average TOrt of 5.80 seconds. The mean TOrt of monitoring scenarios
is 5.07 seconds. A Kruskal Wallis test was performed and found no significant difference
between the TOrts: H(1) = 2.084, p = 0.149.

The time budget was exceeded 13 times in scenarios when the driver was monitoring
the system and was exceeded 12 times when Tetris was played. Tetris scenarios report an
average higher exceedance of 2.95 seconds, whereas monitoring scenarios report an average
exceeedance of 1.65 seconds. The duration of the exceedance was significantly higher with
Tetris as NDRT (Kruskal Wallis: H(1) = 4.734, p = 0.030).
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Longitudinal control ability

With regards to the average speed deviation of the different scenarios, a small difference
is reported with a speed deviation of 5.18 km/h in monitoring scenarios and 5.20 km/h
in Tetris scenarios. As expected, the ANOVA found non-significant differences: F(1, 61) =
0.002, p = 0.968.

Lateral control ability

The mean SDLP also does show a small difference between the scenarios, with 25.63 cm on
average in monitoring scenarios and 25.55 cm in Tetris scenarios. As expected, the ANOVA
found no significant differences: F(1, 61) = 0.001, p = 0.978.



5 D I S C U S S I O N

The results of the study are discussed in this chapter. First, the participant selection
and analysis methodology for the personality experiment are discussed in Section 5.1.
Subsequently, the results of the self-experiment are discussed. First an overview is given
of the average effect of a take-over on the driver workload Section 5.2. Then in Section 5.3
the role of the different designs on driver workload is discussed. After that, in Section 5.4 the
used driver workload measures are discussed. Finally, in Section 5.5 recommendations were
made for the future research on personality or other driving simulation studies, regarding
the design of the scenario, regarding the apparatus and regarding the analysis of driver
workload.

5.1 personality experiment
Before COVID-19, registration for participating in the driving simulation experiment
regarding personality was already open and 159 people registered. A selection method
was presented that assigned an applicant to the personality trait for which the highest score
was obtained and subsequently selected the 20 highest scoring individuals per trait. The
relatively most extreme individuals are selected, which explains the low mean score of
the neuroticism group of 28.15 out of 40 points, while all other personality traits report a
mean closer to the maximum, see Table 4.1. Ideally, individuals would be selected who
achieved a (nearly) maximum score on one of the personality traits and a below-average
score on the other. However, a person’s personality is a mixture of these traits. For example,
one individual who applied for the experiment achieved the maximum of 40 points for
extraversion, 44 out of 45 points for agreeableness, and 49 out of 50 points for openness.
This individual was selected for extraversion and would be analysed for this specific trait.

This immediately shows the downside of using the aforementioned analysis method,
namely driver behaviour of this specific person is related to the combination of extraversion,
agreeableness and openness. Analysing persons only on their dominant trait, ignores the
interaction between the traits. For example, Taubman-Ben-Ari and Yehiel (2012) provided
a classification of driving styles based on a combination of Big Five personality traits. For
example, the reckless and angry driving style is characterised by high levels of extraversion
and lower levels for agreeableness and conscientiousness. Therefore, it it recommended to
analyse the participants based on their set of personality traits. This recommendation is not
an argument in favour of using the Big One instead of the Big Five, as the Big Five is a
validated method for distinguishing personalities. Instead, it is a recommendation for using
the Big Five to its fullest potential.

5.2 reflection on the validation experiment
Although design variables and respective attributes were chosen, which were expected
to result in significant workload differences, this was only found on a limited scale.
This has two reasons. Firstly, because of the N = 1 study design, the number of
observations was limited. Secondly, the fact that the number of variables to be analysed
in this study was maximised in as few runs as possible, resulting in large Standard
Deviations (SDs) in the workload measurements. It is therefore already exceptional that
significant differences were found. The workload differences found between the various
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designs provide sufficient indication of finding significant workload differences in the future
experiment regarding personality (with >100 participants). This indication is reinforced
when significant differences were demonstrated in the current N = 1 study.

5.2.1 Take-over requests and their effect on workload

All scenarios combined, an overall workload as measured by the Raw Task Load Index
(RTLX) of 31.29% was found, which lies within the expected range for subjective workload
measured by the RTLX in simulated automated driving studies (Heikoop et al., 2019a).
However, many studies only require the participant to respond once to a take-over request
(TOR), or use a long duration in between TORs. Therefore, it is important to compare
the found overall workload score to a study that also required the participants to regularly
respond to TORs in short time span. Namely, in this study, on average, every five minutes a
new experiment run was started in a series of consecutive runs. In between runs a short time
was used for setting up the next experiment run and to check correct placement of the finger
sensor and the chest strap. The study by De Winter et al. (2016) is similar to the current
study as it required the participants to respond to TORs every three minutes. For the two
experiment that were part of the study by De Winter et al. (2016), an average overall workload
of 31% was measured, which is comparable to the finding in the current study. However, the
reported workload scores on the six RTLX scales differ from the scores found by De Winter
et al. (2016). For instance, this study reports an average frustration of 28.96%, compared
to 45% and 46% in De Winter et al. (2016). Higher frustration in this study was expected
because of the design of the experiment that required the participant to either monitor the
Automated Driving System (ADS) and vehicle or to play Tetris during automated driving.
Monitoring requires sustained attention to the task in order to respond timely to the TOR,
which is related to increased frustration Warm et al. (2008). Less frustration is expected when
the driver is engaged in a Non-Driving Related Task (NDRT) during automated driving.
However, the short duration of the NDRT before the TOR was also expected to result in
increased frustration, as it was expected to lower the willingness to take over control Hock
et al. (2018).

For physiological workload, a mean Heart Rate (HR) of 88.19 beats per minute (bpm) was
measured during the experiment, which lies within one SD of the mean resting HR of M(SD)
= 80.2(14.8) (specifically, for people aged between 21 and 30 years, like the researcher herself)
(Avram et al., 2019). The measured Root Mean Square of Successive Differences (RMSSD)
of 36.91 ms and Standard Deviation of Normal to Normal intervals (SDNN) of 36.87 ms fall
within the standards for short-term measurements of M(SD) = 42(15) ms for RMSSD and
M(SD) = 50(16) ms for SDNN (Shaffer and Ginsberg, 2017). Simulated automated driving
was therefore not experienced as very demanding, but it could also not be considered an
easy or relaxing activity. The average increase of +1.02 bpm in HR and decrease of −2.26 ms
in SDNN after the TOR indicate that the TOR increased workload. In contrast, the average
increase of +0.31 ms in RMSSD after the TOR indicates a reduced workload after the TOR.
Alrefaie et al. (2019) and Ruscio et al. (2017) also measured the difference in HR after a TOR
and reported an increase in HR of, respectively, +0.43 bpm and +2.98 bpm after the TOR.
The results of this study are thus within the expected range, although based on Ruscio et al.
(2017), it could be argued that these results indicate a small effect size.

This study found a relatively high take-over reaction time (TOrt) of 5.42 seconds, which is
considerably longer than the TOrt found by Gold et al. (2013) of 2.06 and 3.10 seconds for
5- and 7-second time budgets, respectively. The used design of the take-over attributed to
this increased TOrt. Usually, a button on the steering wheel or pressing a driving pedal
is used to resume manual driving before the expiration of the time budget. However,
this study required the participant to press a key combination on the keyboard to resume
driving before the expiration of the available time budget. As the keyboard was placed
on the dashboard of the simulator, the driver had to reposition to be able to press the
key-combination (Section 3.2.7). Therefore, a longer TOrt is found in this study compared to
other studies. The average TOrt which was found in scenarios with a 0-second time budget
of 2.96 seconds (i.e. when no key combination is needed to resume control), is comparable
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to the TOrt found by Gold et al. (2013). The other driving performance measures reported
values within the expected range, with an average speed variation of 5.19 km/h and Standard
Deviation of Lateral Position (SDLP) of 25.59 cm. For example, Reimer et al. (2007) found a
speed deviation of 5.9 km/h, and Naujoks et al. (2014) reported an average SDLP between
15 and 30 cm after a take-over at a speed of 50 km/h.

5.3 design variables and their effect on workload

Time budget

Increases in time budget were expected to decrease take-over request (TOR)-induced
workload (Gold et al., 2013). The Raw Task Load Index (RTLX) measurements were in
accordance with the aforementioned hypothesis. Namely, an overall workload as measured
by the RTLX of 46.17% was found for scenarios with a 0-second time budget and 22.24% for
scenarios with a 15-second time budget. However, only the difference in workload between
these two time budgets was found significant. Nearly all RTLX scales showed a decrease in
workload for every increase in time budget. Especially so (and evidently) for the temporal
demand scale, which showed large workload differences between the time budgets. Only
workload between the 5- and 10-second time-budget was found non-significant. Based on
Gold et al. (2013), a larger difference in perceived workload between 5- and 10-second time
budgets was expected. Namely, already with a 7-second time budget, participants in the
study by Gold et al. (2013) were able to significantly improve their take-over behaviour
as drivers were able to analyse the driving environment before taking over. For 5-second
time budgets, drivers did not use the available time to analyse the driving environment.
Therefore, it was expected that the 5-second time-budget would result in a higher overall
workload compared to the 10-second time budget in the current study.

As for physiological workload, the measurements did not indicate an increase in workload
with every increase in time budget. Heart Rate (HR) suggested that the 5-second time budget
had the greatest effect on workload, whereas the Root Mean Square of Successive Differences
(RMSSD) indicated that the 15-second time budget has the greatest effect on workload. Only
Standard Deviation of Normal to Normal intervals (SDNN) indicated that the 0-second time
budget had the greatest effect on workload, as was expected. In contrast, SDNN and RMSSD
indicate that the 10-second time budget had the least effect on workload (in fact, suggests
that workload was lower after the TOR). HR indicates that the 0-second time budget had
the least effect on workload. All in all, the physiological workload measurements did not
appear to correlate with the RTLX workload measurements.

The take-over reaction time (TOrt) increased with every increase in time budget, despite
the intention to take over as soon as possible after the TOR regardless of the duration of the
time budget. This was expected, as a longer time budget reduces the rush to take over as soon
as possible (Gold et al., 2013). The TOrt in 0-second scenarios was found to be significantly
faster than of scenarios with a 5-, 10-, or 15-second time-budget. However, the differences
in TOrt between the 5-, 10-, or 15-second time budget were not significantly different. The
speed deviation shows little differences between the time budgets. The Standard Deviation of
Lateral Position (SDLP), although not significant, does suggest that a 0-second time-budget
leads to more workload compared to other time budgets. However, SDLP in scenarios with
a 5-, 10-, and 15-second time budgets was almost equal.

As expected, there was no significant difference in secondary task performance between
scenarios differing in the duration of the time budget. Nor do the average reported scores
suggest the existence of a relation between the Tetris score and the duration of the time
budget.

Summarising, the various workload measures did not unambiguously indicate differences
in TOR-induced workload with different time budgets. It was expected that every increase
in time budget would result in a smaller effect of the TOR on workload. The RTLX suggests,
indeed, that workload decreases with a longer available duration to respond to the TOR.
Similarly, the SDNN and SDLP suggests that the 0-second time budget has a greater effect
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on workload than time budgets of 5 seconds or greater. However, driving performance, as
indicated by the SDLP, did not seem to improve with a time budget duration greater than
5 seconds. Moreover, the SDNN provides no evidence for workload differences between
time budgets of 5 seconds or greater. Thus, although the RTLX was sensitive to variations in
task demand, the physiological workload measurements and driving performance seemed
less sensitive; only sensitive to high task demands. So if a high demand take-over is to
be simulated, it is recommended to use a 0-second time budget instead of a 5-second time
budget. Moreover, time budgets of 15 seconds are recommended for low demand take-overs,
as the RTLX found a significant difference between 0- and 15-second time budgets. Although,
it could also be argued that a 10-second time budget could be used for non-urgent take-overs.
Namely, already in this N = 1 study a significance of p = 0.056 was found for the difference
between the 0- and 10-second time budget.

Traffic density

Lower traffic densities were expected to lead to less workload (Gold et al., 2018). The RTLX
measurements were only partly in accordance to this hypotheses. Namely, scenarios without
traffic resulted in a low overall workload of 24.69%, whereas low traffic density reported an
overall workload of 34.01%, 33.80% was reported for medium traffic density, and 32.78% for
high traffic density. A significant difference was only found between zero, medium and high
traffic density, the difference with the low traffic density was found to be non-significant.
As for the six RTLX scales, only mental demand shows an increase in workload for every
increase in traffic density. It is interesting to note that temporal demand, performance
and frustration show an increase in workload from zero to low traffic density, after which
workload remained constant between low and medium traffic density, and then decreased
from medium to high traffic density. So, the RTLX appeared sensitive in distinguishing task
demands for the various time budget, but appears less sensitive in distinguished between
the various traffic densities. This suggests that low, medium and high traffic density at the
take-over location did not result in different task demands.

Regarding physiological workload, HR decreased after the TOR in no-traffic scenarios and
increased in scenarios with low, medium and high traffic density. Contrary to expectations,
take-overs in medium traffic density resulted in a greater increase in HR than take-overs at
low and high traffic density. In contrast to the HR, RMSSD reports the largest increase in
workload after the TOR for no-traffic scenarios. Furthermore, scenarios with medium traffic
density report an increase in RMSSD, whereas it reports a decrease in workload for low and
high traffic density. This raises the question if RMSSD is an appropriate workload measure
in this experiment. Namely, the RMSSD did report a different direction of the effect on
workload than was expected, for both traffic density as time budget as discussed earlier. As
regards to the SDNN, the measurements all show an increase in workload after the TOR for
all traffic densities. The greatest increase is reported for medium traffic density scenarios
and the least increase for high traffic density. Thus, both HR and SDNN appeared sensitive
to variations in traffic density. However, take-overs in high traffic density did not appear to
have resulted in the greatest effect on physiological workload, even though this was expected
based on literature (Radlmayr et al., 2014).

It was expected that the TOrt would increase with every increase in traffic density, as was
found in Gold et al. (2016). The results of this study, indeed, suggests that TOrt increases
with increases in traffic density. However, in scenarios without any traffic, a similar TOrt
was found as in scenarios with medium traffic density (i.e. a longer TOrt as compared to
the low traffic density scenarios). This suggests that, indeed, when traffic density increases,
workload increases as well. However, a longer TOrt does not necessarily indicate increased
driver workload. Namely, without traffic, it does not matter how long it takes for the driver
to take over, as no one is bothered.

Speed deviation, although not significant, does suggest an increase in workload with
increases in traffic density, from a speed deviation of 4.12 km/h in no-traffic scenarios
to a Standard Deviation (SD) of 6.12 km/h in high traffic densities. Increases in speed
deviation are not due to overtaking manoeuvres as the speed deviation around an overtaking
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is excluded in the calculation. Regarding the SDLP, the smallest SDLP of 16.21 cm is found
in no-traffic scenarios and the highest SDLP of 32.07 cm is found in high traffic density
scenarios. However, medium traffic density reported the second smallest SDLP of 23.54 cm,
whilst in low traffic density scenarios an average SDLP of 29.92 cm was found, which is
similar to the high traffic density scenarios. SDLP seemed sensitive to distinguish low from
high task demand, although appeared less sensitive in distinguishing between medium and
high task demands.

As mentioned in Section 3.2.9, traffic density of the scenario (thus, also at the take-over
location) was already revealed to the driver at the start of the experiment. Therefore, this
could have affected the Tetris scores, as possibly the driver would be less engaged in playing
Tetris at high demand scenarios. However, there was no significant difference in secondary
task performance between scenarios differing in traffic density. Neither do the average
reported scores suggest the existence of a relation between the Tetris score and the traffic
density. Thus, task engagement did not differ between scenarios differing in traffic density.
However, as traffic density is already revealed to the driver at the start of the experiment,
this could have prevented the finding of larger workload differences.

In summary, it has been found that driving performance after the TOR decreased with
increases in traffic density in the current experimental set-up. Possibly, overload developed
due to increases in traffic density, which is detrimental for driving performance (Endsley,
2019). However, the subjective and physiological workload measures did not fully indicate
overload in high traffic density scenarios. Namely, less workload was measured in scenarios
with high traffic density by the RTLX, HR, and SDNN. So, if in a future experiment, a
low demand take-over is simulated, it is preferred to use zero traffic density over a low
traffic density of 5 vehicles/km/lane, as the low and medium traffic density induced similar
workload. If high task demand must be varied, it is recommended to simulate a low or
medium traffic density of 5 or 10 vehicles per kilometre per lane. However, preference is
given to simulate a medium traffic density, as already in this experimental set-up, significant
workload differences were found between no-traffic and medium traffic density scenarios.

Location of the take-over

Based on Mok et al. (2015) and Naujoks et al. (2017), it was hypothesized that a take-over
in a curve would result in a significantly more TOR-induced workload than a take-over on
a straight road section. The RTLX subjective workload measurements were in accordance
to the aforementioned hypothesis, as a significant workload difference was found between
workload induced by a TOR in a curve or a straight road section. The TOR in a straight
road section resulted in a low mean overall workload of 21.99%, whereas the TOR in a curve
resulted in an almost double overall workload of 40.31%. All RTLX scales, expect temporal
demand, reported a significant workload difference between the locations. Even though
temporal demand was non-significant, it does suggest that a TOR in a curve induces more
workload than a TOR in a curve, with a mean temporal demand of 30.16% for the TOR on a
straight road section and 45.00% for a TOR in a curve. A difference in temporal demand was
expected, as a timely response to the TOR in a curve is critical to keep to the driving lane.

Contrary to expectations, the HR shows a greater effect of the take-over in scenarios with
a TOR on a straight road section. The HR graph in Figure 5.2c shows a small difference in
the effect on HR. Scenarios with a TOR on a straight road section report two peaks shortly
after the TOR, whereas the HR in curve scenarios increases immediately after the TOR and
remains elevated for approximately 10 seconds until it returns to the HR level of before the
take-over. The RMSSD reports a decrease in workload when the TOR in issued on a straight
road section, and reports an increase when it is issued in a curve. This is the first time that
the RMSSD indicates a direction of workload that was expected based on literature. The
SDNN, again as expected, indicated that a TOR in a curve increases workload more than a
TOR on a straight road section. In fact, a small decrease in workload in found after a TOR
that is issued on a straight road section.

The found mean TOrts are almost identical. However, a difference is found in the duration
of the exceedance of the time budget, which is greater for TORs in a curve. This is
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counter-intuitive, as explained earlier. A reason could be found in the method of TOrt
calculation, which measures the time between the TOR and the first acceleration. Namely,
the driver might not press the gas pedal to reach a lower speed which is preferable when
driving in a curve. However, the ego-vehicle is always trying to maintain a constant speed
of 120 km/h during automated driving, also when driving in a curve. Thus, the vehicle
could be at a higher speed than preferred at the take-over. The driver, therefore, delays
acceleration after the take-over to reach the desired speed for driving in a curve. Regarding
the other performance measures, a significantly greater speed deviation after the take-over is
found in scenarios with a TOR in a curve. Also, the SDLP is greater when the TOR is issued
in a curve.

As expected, there was a significant difference in secondary task performance between
scenarios with a different TOR location. As explained before, the duration of manual driving
of both scenarios is not equal, thus differences in Tetris score were expected. Namely, it was
expected that an increased game duration, would increase the average Tetris score. Indeed,
straight scenarios that are located further in the scenario, report a higher average Tetris score.

In summary, in the current experiment set-up, the TOR in a curve induced more workload
compared to a TOR on a straight road section. The difference in workload was most
evident in the difference in subjective workload measured by the RTLX. Physiologically,
the difference in workload is also found by the RMSSD and SDNN. Post-take-over driving
performance is noticeably worse when the TOR was issued in a curve, as measured by the
speed deviation and SDLP. However, a distorted TOrt is possibly found; the mean TOrt in
scenarios with a TOR in a curve is possibly shorter than measured. The used TOrt calculation
method could have attributed to the increased TOrt, which measured the time between the
TOR and the first acceleration. As the speed of the vehicle at the take-over in a curve is
approximately 120 km/h, the driver delays acceleration to reach a desired lower speed for
driving in a curve. Therefore, the measured TOrt is higher than the actual TOrt, as the
driver was already using the steering wheel for lane keeping. Therefore, it is recommended
to use a different calculation method for the TOrt based on the steering angle. For future
experiments, the use of both locations is encouraged for distinguishing between low and
high task demand, as evident workload differences were measured.

Task during automated driving

Based on the study by Merat et al. (2014), it was hypothesised that the monitoring task
would result in less TOR-induced workload compared to driver workload when Tetris was
played during automated driving. However, the RTLX measurements do only indicate a
small workload difference between the two tasks, with 30.62% when monitoring and 31.99%
when Tetris was played. This was contrary to expectations, as it was hypothesised that
the driver would not except the TOR when being engaged in the Non-Driving Related
Task (NDRT) during automate driving. However, this small workload difference can be
attributed to the experimental setup with the researcher as the only participant, which had
the disadvantage of reducing the ’surprise’ effect of the TOR. For future studies that involve
repeated participation in an experiment, it is recommended to have a variable duration of
automated driving, to have a surprise effect of the TOR.

Mental demand as measured by the RTLX is the only scale that reports a higher value
for the monitoring task. This suggests that playing Tetris during automated driving had a
relaxing effect, easing mental demand felt during the experiment run.

Physiological workload as measured by HR also shows that playing Tetris during
automated driving increased TOR-induced workload. HR increased on average by +1.52

HR after the TOR in scenarios with Tetris as NDRT, whereas an increase of +0.52 HR
is reported in scenarios with a monitoring task. On the contrary, the RMSSD reports a
decreased workload after the TOR for both tasks. Interesting is the reported decrease in
SDNN after the TOR when monitoring (indicating increased workload), and an increase
in SDNN when Tetris was played (indicating decreased workload). The expectation was
that the monitoring task would reduce the effect of the take-over on workload. However,
it can be hypothesised that monitoring could have resulted in drowsiness and inattention,
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which therefore increased the surprise effect of the TOR (Endsley, 2019). Also, because Tetris
is a cognitive task the driver could be more aware of the time that had passed since the
hand-over, which decreases the surprise effect of the TOR. The HR graph in Figure 5.2d
supports the hypothesis, by showing a steep peak immediately after the TOR in scenarios
with the monitoring task. Whereas in scenarios with Tetris as NDRT, a delayed and less
steep increase in HR is observed after the TOR.

The TOrt in scenarios with Tetris as NDRT is longer than in scenarios with a monitoring
task. This contradicts the hypothesis that monitoring resulted in drowsiness and inattention
and therefore a slower reaction time (Endsley, 2019). However, the Tetris task necessitates
the driver to reposition before being able to take-over, which increased the TOrt. Therefore
it was expected that an exceedance of the time budget occurred more frequently in scenarios
with Tetris as NDRT. However, this was not the case, even though the average exceedance
is larger compared to scenarios with the monitoring task. Speed deviation and SDLP are
similar for both tasks. The mean speed is also almost equal for the tasks. However, the
speed at take-over is on average lower in scenarios with Tetris as NDRT. This is caused by a
delayed acceleration, which is reflected by the larger average exceedance of the time budget
in scenarios with Tetris as NDRT.

In summary, it was expected that a clear difference in the effect of the TOR on workload
could be distinguished between the two tasks, i.e. when engaged in Tetris, the TOR was
expected to have a greater effect on workload compared to the monitoring task. However,
the results suggest that monitoring led to underload, resulting in a greater effect of the
TOR on workload. Moreover, the results also suggest that playing Tetris did not resulted in
underload, as was expected based on (Endsley, 2019). In the current experimental set-up,
no clear differences in the effect of workload was measured between the two tasks. Possibly,
if the duration of automated driving before the TOR was extended, playing Tetris would
have resulted in underload, and therefore the TOR would have resulted in greater workload
increases. However, due to the short duration of automated driving, playing Tetris did not
result in drowsiness, rather it resulted in increased driver vigilance.

5.4 reflection on the used driver workload measures

Subjective workload

Unique to this study is the trend analysis that provides insight into the development of
workload with repeated take-overs. It was expected that increasing underload would develop
during the experiment, which would be reflected in significant or near-significant workload
trends. Namely, as the experiment required the participant to drive an almost identical
driving scenario repeatedly in a short time span, fatigue and drowsiness were expected to
develop. This would result in underload, that required the participant to increase effort in
maintaining an equal performance in the experiment (Endsley and Kiris, 1995). A possible
factor contributing to the non-significant trends can be attributed to respondent fatigue that
occurred because of the high frequency of filling in the Raw Task Load Index (RTLX). This
could have led to response bias, that includes memory bias and decreased consideration to
the RTLX (Lavrakas, 2008). As a result, the RTLX would not reflect the true experienced
workload.

Physiological workload

The negative slope of the mean Heart Rate (HR) (-0.10 beats per minute (bpm)), and positives
slopes of the mean Root Mean Square of Successive Differences (RMSSD) (+0.15 ms) and
Standard Deviation of Normal to Normal intervals (SDNN) (+0.12 ms) indicate decreasing
workload as the experiment progresses. However, only the HR trend was found significant.
Increasing HR and decreasing RMSSD and SDNN was reported in both consecutive runs
(in the various parts) as all runs combined, this suggests the occurrence of a time-on-task
effect. This same effect was also found in Heikoop et al. (2019a). Namely, HR and Heart
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Rate Variability (HRV) are sensitive to variations in vigilance. With decreases in vigilance
resulting in decreases in HR and increases in HRV.

A diminishing effect of the take-over on HR (-0.02 bpm) was found. Although
non-significant this suggests that repeated take-overs decrease take-over request
(TOR)-induced workload. TOR anticipation improves when the driver repeatedly
experiences similar TORs. This can be attributed to the TOR, which is always issued at
the same two locations after the same two durations of automated driving.

This study included a novel approach using the RMSSD and SDNN to measure
TOR-induced workload. Currently, there is no consensus on the usefulness of these
HRV measures as workload measure (Mehler et al., 2011; Luque-Casado et al., 2016;
Hidalgo-Muñoz et al., 2019). As far as is known, only Pakdamanian et al. (2020) (published at
the time of writing this study) used RMSSD and SDNN to measure TOR-induced workload.
Pakdamanian et al. (2020) conducted an exploratory study with two participants who
experienced four TORs under two weather conditions (sunny / rain) and alert modalities
(visual-auditory / auditory). However, unfortunately their data cannot be translated to this
study, as Pakdamanian et al. (2020) only presented the mean RMSSD and SDNN after the
TOR instead of the respective increases or decreases after the TOR. Other studies used the
RMSSD and SDNN to measure workload differences between low and high task demands
during automated driving (Mehler et al., 2011; Luque-Casado et al., 2016; Hidalgo-Muñoz
et al., 2019; Heine et al., 2017; Shakouri et al., 2018; Heikoop et al., 2018). Based on the
results of this study, the SDNN appears to be a more sensitive workload measure than
RMSSD, as RMSSD often indicated a different direction of the expected effect on workload
for the various design variables. Future studies using the RMSSD and SDNN to measure
specifically TOR-induced workload are necessary to gain a better understanding of the
sensitivity of RMSSD and SDNN as (TOR-induced) workload measure, compared to other
proven physiological workload measures such as HR.

Driving performance

It was expected that learning effects in driving performance would be found due to the
repetitive nature of the experiment. However, no significant trends were found, nor do the
found trends suggest the emergence of any learning effect. Previous studies that required
participants to respond to multiple TORs did find learning effects, for instance Körber et al.
(2016). As discussed earlier in Section 5.2, the take-over reaction time (TOrt) in 5-, 10- and
15-second time budget scenarios is longer than found in comparable studies due to the
modality of resuming control before expiration of the time budget. Thus, finding no learning
effect in TOrt entails that the duration between the TOR and pressing the key-combination
on the keyboard remained constant.

Secondary task

An advantage of using Tetris as Non-Driving Related Task (NDRT) is that is assured
engagement in the NDRT. However, it was hypothesised that Tetris scores would provide
indication of NDRT engagement and, therefore, Tetris would be an appropriate workload
measure. However, this hypothesis is rejected for multiple reasons. Firstly, a significant trend
was found indicating that the participant was getting better at playing Tetris. Secondly, the
significant difference in Tetris scores between the two TOR locations. Finding this difference
was evident as the duration of automated driving (i.e. playing Tetris) differed between the
two locations. When a TOR was issued in a curve, the duration of automated driving
(playing Tetris) was shorter, thus lower Tetris scores could be expected. However, when
designing the experiment and selecting appropriate workload measures,this downside of
using Tetris as workload (task engagement) measure was overlooked. Thirdly, with a perfect
design of the simulation, the Tetris score obtained during automated driving before the TOR
should not give any indication on TOR-induced workload as the game is stopped once the
TOR is issued. However, as discussed earlier in Section 3.2.9, one characteristic affecting
TOR-induced workload was already revealed to the participant at the start of the simulation.
This was the traffic density at the take-over, which could have affected NDRT engagement.
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However, the results showed that there was no such relationship between the Tetris scores
and traffic density (Section 5.3). The question is whether revealing this characteristic had no
influence on the Tetris scores or if the Tetris scores were not sensitive enough to be able to
measure distraction. The latter is expected, therefore for future studies it is recommended to
not use Tetris as workload measure, but rather use the validated n-back task.

5.5 recommendations for future experiments

5.5.1 Design of the simulation

Some recommendations can be made for improving the current experimental design, which
in its current state affected take-over request (TOR)-induced workload. First of all, it is
recommended to design a variable duration of automated driving in future studies involving
repeated TORs. In the current study the duration of automated driving was fixed for the two
TOR locations. Therefore, the participant was able to anticipate the TOR, which mitigated the
effect of the TOR on driver workload. This has not only affected the effect of Non-Driving
Related Task (NDRT) engagement on TOR-induced workload, but has also increased the
time-on-task effect which was measured in physiological workload.

Second, it is recommended to reveal the traffic density at the take-over location. This has
two reasons. Firstly, revealing the traffic density at the start of the experiment decreased the
need to analyse the driving environment (which eases the demand of the TOR). Secondly, it
resulted in a decreased speed at the take-over. As illustrated in Figure 5.1, initial speed at the
take-over decreased with increases in traffic density (and cannot be attributed to other design
variables). As discussed in Section 5.3, the various workload measures did not measure the
greatest increase in workload in scenarios with a high traffic density of 15 vehicles/km/lane.
This could be attributed to the lower initial speed in high traffic density scenarios. The
limitation of revealing the traffic density at the start was already expected (Section 3.2.9),
however, I was unable to design it differently in Unity (even with help of others). This will
be a challenge for future researchers who will continue working on the simulation.

Third, this study found an increased take-over reaction time (TOrt), which can be
attributed to the take-over modality. A key-combination had to be pressed on the keyboard,
which resulted in an increased TOrt for scenarios with 5-, 10-, and 15-second time budgets.
Again, before the experiment it was already known that the take-over modality would
probably increase the TOrt. However, I was unable to design it differently in Unity. This
will also be a challenge for future researchers who will continue working on the simulation.

Fourth, it is recommended to increase the reality of the simulation by allowing flexible
speeds and overtaking behaviour of other vehicles. At this point, I was not possible to allow
this behaviour as it significantly deteriorated smooth-running of the simulation. However,
by reducing the number of agents (vehicles), the speed of the simulation can be improved.
This can be achieved by spawning vehicles directly behind the ego-vehicle and de-spawning
them if they are more than e.g. 500 meters away from the ego-vehicle (when out of sight).
However, I was unable to design this using Unity.
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(c) Mean speed during manual driving after take-over for the different TOR locations
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Figure 5.1: Mean speed during manual driving after resumption of control (take-over) for the
different conditions; 5-second time-steps are used to analyse 1 minute of manual driving
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5.5.2 Apparatus

The finger sensor used for the physiological workload measurements regularly recorded
ambient noise.The noise could be filtered out in most measurements. However, too much
ambient noise was recorded in 14 scenarios, and therefore limited physiological workload
data was available for these scenarios (i.e. only the mean Heart Rate (HR) was analysed
making use of the chest strap data). Moreover, the measurements were therefore not of
sufficient quality to measure to include High-Frequency (HF) power as Heart Rate Variability
(HRV) workload measure. The finger sensor recorded too little R-to-R Intervals (RRIs) to
reliably calculate frequency measurements. As a result, the calculated HF-power was far
outside the expected value (Shaffer and Ginsberg, 2017; Gent, 2019). Moreover, usage of a
finger sensor to measure physiological workload, as done in this study, is not a perfect match
with a N = 1 study. Checking for correct placement of the finger sensor is only done before
the run and is not monitored during the run, which could have prevented data collection
issues. It is therefore recommended to make use of a notification when a certain level of
ambient noise is being recorded or to make use of a different attachment method of which
decreases noise recording. Using Electrocardiogram (ECG) equipment is also recommended,
although more time-consuming than using a Photoplethysmography (PPG) finger sensor.

The following recommendation concerns the steering wheel of the driving simulation,
which was unable to steer with the vehicle during automated driving. In other words,
at the hand-over the steering wheel had a certain angle and remained at the same angle
during automated driving. If at the hand-over the steering wheel was tilted to the right, and
the TOR was issued in a curve, the driver was required to perform an excessive steering
manoeuvre to remain in the current lane. This has possibly contributed to the evident
and sometimes significant differences in TOR-induced workload between the two take-over
locations. Therefore, it is recommended to use a driving simulator with a steering wheel that
is able to follow the steering movements of the simulation during automated driving.

5.5.3 Driver workload analysis

As elaborated in Section 3.2.2, the effect of the TOR on driver workload measured by the HR
was determined over a one minute duration before and after the TOR. This has resulted in
small effect sizes measured using the HR. However, it appeared that a one minute duration
was too long for measuring the effect of the TOR on the driver workload. This is illustrated
in Figure 5.2, which shows how HR is elevated up to 25 seconds after the TOR. If a 25-second
duration was used, a larger effect size of the TOR on driver workload could be demonstrated.
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Figure 5.2: HR course 1 minute before and after the TOR in different task load conditions



6 C O N C L U S I O N

This research concerned validating the design of a driving simulator experiment regarding
the effect of take-overs on workload and the role of personality. From the aim to study
the role of personality in automated driving followed the research question of the study:

”To what extent does personality interact with driver workload induced by a take-over?” A driving
simulator experiment was designed to study the effect of the take-over on the workload
that people with different personalities experience. In this study, the design of the driving
simulator experiment was validated, and recommendations to improve the experiment were
formulated. Three sub questions were formulated in order to answer the research question,
which are answered in Section 6.1, 6.2, and 6.3. A concluding remark on the research is
formulated in Section 6.4.

6.1 design of the experiment
The first sub-question was: ”What is a suitable design of a driving simulation experiment in which
the effect of a take-over on workload can be measured?” The effect of the design of the simulation
on workload was investigated to answer this question. For this reason, four design
characteristics were varied that, based on literature, were expected to have a significant
effect on workload. Variations of these design characteristics were tested in the simulation to
determine which variation is best suited to use in the experiment. This experiment examined
the effect on workload of different time budgets of the take-over request (TOR), traffic
densities, the location of the TOR, and involvement in a Non-Driving Related Task (NDRT)
during automated driving. Based on the results of the N = 1 experiment, recommendations
were formulated on the use of the design variables in future experiments. Table 6.1 provides
an overview of the design variables and attribute levels varied in the experiment and the
respective recommendations on designs of future experiments.

Table 6.1: Recommendations on design variables in future experiments

Design variables Levels Recommendations

Time budget [s] 0 Low demand: 10- or 15-second time budget
5 High demand: 0-second time budget
10

15

Traffic density [veh/km/lane] 0 Low demand: 0 vehicles/km/lane
5 High demand: 5, 10 or 15 vehicles/km/lane
10

15

Location of the TOR Straight road Low demand: straight road
Curve High demand: curve

Task during automated driving Monitoring Short duration: monitoring
Tetris Long duration: monitoring or constant demand NDRT

81
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Time budget

The various workload measures did not unambiguously indicate differences in TOR-induced
workload with different time budgets. It was expected that every increase in time budget
would result in a smaller effect of the TOR on workload . The Raw Task Load Index (RTLX)
suggested, indeed, that workload decreases with a longer available duration to respond to
the TOR. Similarly, the Standard Deviation of Lateral Position (SDLP) suggested that the
0-second time budget had a greater effect on workload than time budgets of 5 seconds or
greater. However, driving performance as indicated by the SDLP did not seem to improve
with a time budget duration greater than 5 seconds. The Standard Deviation of Normal to
Normal intervals (SDNN) also showed how immediate disengagement of the Automated
Driving System (ADS) resulted in greater workload compared to scenarios where a time
budget was provided to the driver to respond to the TOR. So, to simulate an urgent (high
demand) take-over, it is recommended to use a 0-second time budget instead of a 5-second
time budget. Moreover, time budgets of 10 or 15 seconds are recommended for non-urgent
take-overs, as based on the results of this study it is expected that 10- and 15-second time
budgets will be significantly different from 0-second time budgets in future experiments
involving participants.

Traffic density

It has been found that driving performance after the TOR decreased with increases in traffic
density in the current experimental setup. This provides an indication of the emergence of
overload when traffic density at the take-over increases. However, no overload has occurred
in scenarios with a high traffic density, as indicated by subjective and physiological workload.
With the current experiment setup, is is recommended to simulate either a low or medium
traffic density of 5 or 10 vehicles per kilometre per lane for simulating a take-over at high
demand. Namely, both low and medium traffic density resulted in a similar higher workload
compared to zero traffic density. However, preference is given to simulate a medium traffic
density, as already in this experiment setup significant workload differences were found
between no-traffic and medium traffic density scenarios. For low demand take-overs, it is
recommended to use zero traffic density instead of a low traffic density (similar workload low
and medium traffic density). Simulating a high traffic density of 15 vehicles per kilometre
per lane was not ideal in the current design of the simulation. The ego-vehicle remained on
the right lane during automated driving. At the take-over, a lower initial speed is found
compared to the other traffic densities, which could have resulted in less TOR-induced
workload in high traffic density scenarios. High traffic density could be used for high
demand take-over in future experiments if a lower speed during automated driving can
be prevented in high traffic density scenarios.

Location of the take-over request (TOR)

In the current experiment setup, the TOR in a curve induced more workload compared to
a TOR on a straight road section. The difference in workload was especially clear in the
difference in subjective workload measured by the RTLX. Physiologically, the difference in
workload was also measured by the Root Mean Square of Successive Differences (RMSSD)
and SDNN. Post-take-over driving performance is noticeably worse when the TOR was
issued in a curve, as measured by the speed deviation and SDLP. However, a distorted
take-over reaction time (TOrt) is possibly found; the mean TOrt in scenarios with a TOR in
a curve is possibly shorter than measured. This can be attributed to the method of TOrt
calculation, which measures the time between the TOR and the first acceleration. As the
speed of the vehicle at the take-over in a curve is approximately 120 km/h, the driver delays
acceleration to reach a desired lower speed for driving in a curve. This therefore increases
the calculated TOrt, although the driver was already using the steering wheel to keep driving
on the current lane. Therefore, it is recommended to use a different calculation method for
the TOrt based on the steering angle. For future experiments, the use of both locations is
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encouraged for distinguishing between low (straight road) and high (curve) task demand, as
for both clear workload differences were measured.

Task during automated driving

It was expected that a clear difference in the effect of the TOR on workload could be
distinguished between the two tasks, i.e. when engaged in Tetris, the TOR was expected to
have a greater effect on workload compared to the monitoring task. However, in the current
experiment setup not a clear difference in the effect of workload was measured between
the two tasks. RTLX measurements were similar as well as driving performance, except
for the TOrt which was higher when Tetris was played. Physiological workload does not
provide a clear indication: Heart Rate (HR) suggests that the TOR induced more workload
when Tetris was played, RMSSD indicates a decrease in workload after the TOR and more so
when monitoring, and SDNN indicates that workload decreased after the TOR when Tetris
was played but increased greatly when monitoring. SDNN as Heart Rate Variability (HRV)
workload measures appeared to be more sensitive to variations in task demand at the
TOR, based on the workload findings for the different time budgets, traffic densities and
TOR locations. Therefore, with an assumed reliable SDNN, a clear physiological workload
difference distinguishes the two tasks. It is therefore expected that monitoring resulted
in out-of-the-loop issues, which increased TOR-induced workload. These out-of-the-loop
issued were also expected to emerge when playing Tetris. However, the short duration of
playing Tetris during automated driving resulted in sustained vigilance, whereas monitoring
decreased vigilance. Possibly, if the duration of automated driving before the TOR was
extended, vigilance would decrease when playing Tetris. Therefore, in order to simulate
out-of-the-loop driver’ issues, it is recommended to use monitoring as task during automated
driving when the duration of automated driving is short (i.e. up to 3:00 minutes). With a
longer duration of automated driving, it is expected that vigilance would also decrease when
playing Tetris. However, Tetris is not an appropriate NDRT for a long duration of automated
driving as task demand increases during the game. Instead, only a NDRT with a constant
task demand is an appropriate NDRT for a longer duration of automated driving (i.e. an
educational movie or book).

Reflection on the design

Recommendations were made to include specific designs of the driving simulation
experiment for simulating low and high demand take-overs. If either a low or high demand
is simulated in a future experiment, this will not provide a complete picture of automated
driving behaviour for different personalities. Namely, a take-over at low or high demand can
result in different behaviours for different personalities. For example, high demand, on the
one hand, could result in overload quicker for some personalities, which is detrimental for
driving safety at take-overs. Low demand, on the other hand, could cause inattention to the
driving environment for people with other personality traits, which decreases driving safety
at take-over. People differing in personality traits will therefore probably exhibit different
behaviour at different task demands. For this reason, it is recommended to simulate both
low and high task demand at the take-over in a future driving simulation experiment. It
can be decided to have participants drive two simulation runs differing in task demand in a
counterbalanced order.

By combining the recommended variables to design low or high demand at the TOR,
variations in task demand can be obtained. However, for a realistic take-over, the urgency of
the time budget must be in accordance to the critically of the take-over situation (Eriksson
and Stanton, 2017). For this reason, it is recommended to use the following design variables
for a TOR with low task demand (in the current experiment setup): issuing a TOR on a
straight stretch of the road with no traffic with a provided time budget of 10/15 seconds.
On the contrary, for high task demand, a TOR can be issued when driving on a curve with
medium/high traffic density with immediate disengagement of the simulated ADS (0-second
time budget).
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6.2 interaction between personality and workload
The second sub-question formulated for this study was: ”How can the interaction between
personality and workload be investigated in a driving simulation experiment regarding the effect
of a take-over on workload?” Besides design recommendations for studying the interaction
between personality and workload, recommendations are also formulated on the method
of measuring workload. In this study, workload was measured in four ways, namely
subjectively, physiologically, based on driving performance and secondary task performance.
Subjective workload was measured using the Raw Task Load Index (RTLX), which is
also recommended for future studies. For measuring physiological workload, both a
Photoplethysmography (PPG) finger sensor and chest strap were used. The finger sensor
was sensitive to measuring ambient noise, which was filtered out in most measurements to
accurately measure Heart Rate (HR), Root Mean Square of Successive Differences (RMSSD),
and Standard Deviation of Normal to Normal intervals (SDNN). However, too much ambient
noise was recorded in 14 scenarios, and therefore limited physiological workload data was
available for these scenarios (i.e. only the mean HR was analysed making use of the chest
strap data). It was intended to include High-Frequency (HF) power as time-frequency Heart
Rate Variability (HRV) measure, however, although noise could filtered in must runs, the
data was not of sufficient quality to accurately measure HF power. Namely, the finger sensor
is sensitive to record noise especially at the take-over as the hand is moved from a resting
position or the tablet to the steering wheel. The finger sensor could be an ideal method
for measuring workload, if movement of the sensor can be prevented, even at a take-over.
Especially as using the finger sensor over an Electrocardiogram (ECG) measurement tool is
preferred under the COVID-19 circumstances, as it minimises contact between the researcher
and the participant.

This study included a novel approach using the RMSSD and SDNN to measure take-over
request (TOR)-induced workload. There is no consensus yet on the usefulness of these
HRV measures as workload measure. As far as is known, only Pakdamanian et al.
(2020) (published at the time of writing this study) used RMSSD and SDNN to measure
TOR-induced workload. Pakdamanian et al. (2020) conducted an exploratory study with two
participants who experienced four TORs under two weather conditions and alert modalities.
Other studies used the RMSSD and/or SDNN to measure workload differences between low
and high task demands during automated driving, although not in relation to TORs. Based
on the results of this study, the SDNN appears to be a more sensitive workload measure than
RMSSD, as RMSSD often indicated a different direction of the expected effect on workload
for the various design variables. As the results of this study are not conclusive about the
usefulness of these measures, it is advised for the future study regarding personality and
other future studies to include both measures in order to obtain a better understanding
of the validity of RMSSD and SDNN as workload measure in general and in relation to
take-overs.

Regarding driving performance measures, it is advised to use the take-over reaction
time (TOrt), speed deviation and Standard Deviation of Lateral Position (SDLP) in a future
experiment with the same apparatus. Other robust driving performance measures, such as
the maximum steering wheel angle and the number of 1◦ steering wheel reversals, were
not used as workload measure in the experiment, because the steering wheel of the driving
simulation was very sensitive to small movements in the wheel. Small movements on the
steering wheel sometimes led to excessive unintended steering manoeuvres. Therefore,
the TOrt is defined as the duration between the TOR and the first acceleration. Small
unintentional movements of the steering wheel could have appeared as a driver take-over
manoeuvre. To take-over manual driving before expiration of the time budget it was required
to press a key combination on the keyboard which was placed on the dashboard of the
driving simulator. As pressing this key combination could have increased the TOrt, it is
recommended for future experiments to use a button on the steering wheel instead, or to
allow overruling of the system when the steer, gas pedal, or brake is used.

Tetris was used as both a Non-Driving Related Task (NDRT) and as secondary task
performance measure. However, it was found that the Tetris scores did not reflect driver
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workload during the experiment, instead it was a perfect example of a learning curve that
occurred in the experiment. Therefore making it unsuitable as a secondary task performance
measure. For this study it was chosen to include several workload measures in order to gain
a complete understanding of workload under different task demands. Tetris was chosen over
other tasks because it was suitable to use in a N = 1 experiment and by its low complex data
analysis. However, for future studies involving participants (or other N = 1 experiments) it
is recommended to use a n-back task instead, which is a proven workload measure.

6.3 effect of take-overs on workload in future
experiment

The third and final sub-question is: ”What effect of take-overs on workload can be expected
in a study involving participants, based on the results of this self-experiment?” Based on this
self-experiment, no hypotheses can be made about how workload is experienced by people
with different personalities. Because of researcher bias in combination with my personality,
which is not predominantly dominant in one trait (dominant personality was agreeableness
with 35pt compared to the mean of 41.55pt, Table 4.1), little can be hypothesised on the
agreeableness trait in automated driving.

Based on the self-experiment, it can be expected that learning effects and time-on-task
effects will occur when participants experience multiple simulation runs. In the present
study, time-on-task effects were found in the physiological workload because of decreased
vigilance as the experiment progressed. The results of the study also showed that
take-over request (TOR)-induced workload decreased as the experiment progressed. A
decreasing effect of the TOR on workload in consecutive runs provides indication of
a time-on-task-effect, whereas the decreasing effect of the TOR on workload between
experiment days indicates an acclimatisation effect to the experimental setting. Moreover, the
results of the current study suggest that a learning effect occurred in the take-over reaction
time (TOrt). Learning effects were also expected for speed deviation and Standard Deviation
of Lateral Position (SDLP), lack thereof can be attributed to research bias. Prerequisite
knowledge about the simulation could have improved driving performance. The researcher
knows the experiment by heart, i.e. the location of the TOR and the required action
at the take-over. The learning curve of the researcher started before the experiment,
complicating finding significant improvements in driving performance. If a participant
without prerequisite knowledge was the test subject, a learning curve in driving performance
could have been found.

Based on the N = 1 experiment, reference workload values are provided for the
aforementioned TORs at low and high demand. These reference values can be valuable for
the future experiment regarding personality in automated driving. However, it is important
to note that these values should only be used as guideline and not as golden standard
for measuring workload in the proposed experimental setting. The reference values are
tabulated in Table 6.2. The average is based on the 63 scenarios which were run in the
experiment (one was accidentally not tested). The reference values for low and high demand
are based on the average workload which was measured for every separate attribute level
pertaining to low or high demand. For low demand this entails: the average of all scenarios
with a time budget of 15 seconds, all scenarios without traffic, and all scenarios with a TOR
issued on a straight stretch of the road. For high demand: the average of all scenarios with
a time budget of 0 seconds, all scenarios with medium traffic, and all scenarios with a TOR
issued when driving on a curve.
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Table 6.2: Reference values TOR-induced workload, based on N = 1 experiment

Workload measure Average Low demand High demand

Subjective workload
RTLX overall workload [%] 31.29 22.97 40.10

Physiological workload
HR [bpm] + 1.02 + 0.54 + 1.90

RMSSD [ms] + 0.31 - 0.96 - 0.90

SDNN [ms] - 2.26 - 1.67 - 4.67

Driving performance
TOrt [s] A different calculation method and take-over modality is proposed

SD speed [km/h] 5.19 4.52 5.62

SDLP [cm] 25.59 21.42 27.26

Secondary task performance
Tetris Not recommended as workload measure

6.4 the role of personality
Unfortunately, due to the COVID-19 circumstances the main research question (”To what
extent does personality interact with driver workload induced by a take-over?”) remains open for
the future study with over 100 participants regarding personality in automated driving.
By answering the different sub-questions, this research provided recommendations for the
personality research, not only limited to the design of the driving simulation research, but
also how the experiment can be conducted and analysed.

All in all, conducting an N = 1 study proved valuable for validating the design of
the driving simulation experiment. In light of the COVID-19 conditions that complicated
conducting studies involving participants, it proved to be a valuable research method.
Besides recommendations on improvement of the design of the driving simulation
experiment, the results of the experiment provided indication of usefulness of including
the Standard Deviation of Normal to Normal intervals (SDNN) as physiological workload
measure. In the absence of the need of including participants other than the researcher, the
N = 1 study proved to be a more accessible and easily applicable method of validating
research set-ups. Based on the results of a N = 1 study, indications can be formulated as
to whether or not certain research results can be formulated which allows a more focused
approach in future studies.
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effects in automated driving. In INTERACCIÓN 2014: Proceedings of the XV International
Conference on Human Computer Interaction, pages 1–7, Puerto de la Cruz, Tenerife, Spain.

Körber, M., Gold, C., Lechner, D., and Bengler, K. (2016). The influence of age on the
take-over of vehicle control in highly automated driving. Transportation Research Part
F: Traffic Psychology and Behaviour, 39:19–32.

Körber, M., Weißgerber, T., Kalb, L., Blaschke, C., and Farid, M. (2015). Prediction
of take-over time in highly automated driving by two psychometric tests. DYNA,
82:195–201.

Lavrakas, P. (2008). Respondent fatigue. In Encyclopedia of survey research methods2. SAGE
Publications.

Levin, S. and Wong, J. C. (2018). Self-driving Uber kills Arizona woman in first fatal crash
involving pedestrian — Technology — The Guardian.

Lohani, M., Payne, B. R., and Strayer, D. L. (2019). A review of psychophysiological
measures to assess cognitive states in real-world driving. Frontiers in Human Neuroscience,
13(March):1–27.

Lorenz, L., Kerschbaum, P., and Schumann, J. (2014). Designing take over scenarios for
automated driving: How does augmented reality support the driver to get back into the
loop? In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pages
1681–1685. SAGE Publications.

Lu, Z. and de Winter, J. C. (2015). A Review and Framework of Control Authority Transitions
in Automated Driving. Procedia Manufacturing, 3:2510–2517.

Lu, Z., Happee, R., Cabrall, C. D., Kyriakidis, M., and De Winter, J. C. (2016). Human
factors of transitions in automated driving: A general framework and literature survey.
Transportation Research Part F: Traffic Psychology and Behaviour, 43:183–198.

Luque-Casado, A., Perales, J. C., Cárdenas, D., and Sanabria, D. (2016). Heart rate
variability and cognitive processing: The autonomic response to task demands. Biological
Psychology, 113:83–90.

Marberger, C., Mielenz, H., Naujoks, F., Radlmayr, J., Bengler, K. J., and Wandtner, B. (2017).
Understanding and appplying the concept of ”driver availability” in automated driving.
In Stanton, N. A., editor, Proceedings of the AHFE 2017 International Conference on Human
Factors in Transportation, pages 595–605. Springer.

Markus, H. R. and Kitayama, S. (1991). Culture and the self: Implications for cognition,
emotion, and motivation. Psychological Review, 98(2):224–253.

McCrae, R. R. and Costa, P. T. (1987). Validation of the five-factor model of personality across
instruments and observers. Journal of Personality and Social Psychology, 52(1):81–90.

McCrae, R. R. and Costa, P. T. J. (1985). Updating Norman’s ”Adequate taxonomy”:
Intelligence and personality dimensions in natural language and in questionnaires.
Article in Journal of Personality and Social Psychology.

Mehler, B., Reimer, B., and Coughlin, J. F. (2012). Sensitivity of physiological measures for
detecting systematic variations in cognitive demand from a working memory task: An
on-road study across three age groups. Human Factors, 54(3):396–412.



BIBLIOGRAPHY 91

Mehler, B., Reimer, B., Coughlin, J. F., and Dusek, J. A. (2009). Impact of incremental increases
in cognitive workload on physiological arousal and performance in young adult drivers.
Transportation Research Record, 2138(1):6–12.

Mehler, B., Reimer, B., and Wang, Y. (2011). A comparison of heart rate and heart rate
variability indices in distinguishing single-task driving and driving under secondary
cognitive workload. In Sixth International Driving Symposium on Human Factors in Driver
Assessment, Training and Vehicle Design, pages 590–597, Olympic Valley, Lake Tahoe,
California, Iowa City. IA Public Policy Center.

Melcher, V., Rauh, S., Diederichs, F., Widlroither, H., and Bauer, W. (2015). Take-over requests
for automated driving. Procedia Manufacturing, 3:2867–2873.

Merat, N., Jamson, A. H., Lai, F. C., and Carsten, O. (2012). Highly automated driving,
secondary task performance, and driver state. Human Factors, 54(5):762–771.

Merat, N., Jamson, A. H., Lai, F. C., Daly, M., and Carsten, O. M. (2014). Transition to
manual: Driver behaviour when resuming control from a highly automated vehicle.
Transportation Research Part F: Traffic Psychology and Behaviour, 27:274–282.

Mok, B., Johns, M., Lee, K. J., Miller, D., Sirkin, D., Ive, P., and Ju, W. (2015). Emergency,
Automation Off: Unstructured Transition Timing for Distracted Drivers of Automated
Vehicles. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems,
pages 2458–2464, Las Palmas. IEEE.

Munoz, M. L., Van Roon, A., Riese, H., Thio, C., Oostenbroek, E., Westrik, I., De Geus, E. J.,
Gansevoort, R., Lefrandt, J., Nolte, I. M., and Snieder, H. (2015). Validity of (ultra-)short
recordings for heart rate variability measurements. PLoS ONE, 10(9):1–15.

Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor
model. Journal of Research in Personality, 41(6):1213–1233.

NASA (2016). NASA-TLX.

National Highway Traffic Safety Administration (2008). National motor vehicle crash
causation survey: Report to congress. Technical report, U.S. Department of
Transportation.

Naujoks, F., Befelein, D., Wiedemann, K., and Neukum, A. (2017). A review of
non-driving-related tasks used in studies on automated driving. In Stanton, N., editor,
Proceedings of the AHFE 2017 International Conference on Human Factors in Transportation,
pages 525–537. Springer, Cham.
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Detektionsdaten in ein makroskopisches Verkehrsflussmodell für dreistreifige
Richtungsfahrbahnen. PhD thesis, Technische Universität Munchen.

Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., and Anand, S. (2008). Assessment of
heart rate variability derived from finger-tip photoplethysmography as compared to
electrocardiography. Journal of Medical Engineering and Technology, 32(6):479–484.

Shaffer, F. and Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms.
Frontiers in Public Health, 5(258):1–17.

Shakouri, M., Ikuma, L. H., Aghazadeh, F., and Nahmens, I. (2018). Analysis of the sensitivity
of heart rate variability and subjective workload measures in a driving simulator: The
case of highway work zones. International Journal of Industrial Ergonomics, 66:136–145.

Stanton, N. A. and Young, M. S. (2005). Driver behaviour with adaptive cruise control.
Ergonomics, 48(10):1294–1313.



BIBLIOGRAPHY 93

Task Force of the European Society of Cardiology and Electrophysiology (1996). Heart rate
variability: standards of measurement, physiological interpretation, and clinical use.
European Heart Journal, 17:354–381.

Taubman-Ben-Ari, O., Mikulincer, M., and Gillath, O. (2004). The multidimensional driving
style inventory - scale construct and validation. Accident Analysis and Prevention,
36(3):323–332.

Taubman-Ben-Ari, O. and Yehiel, D. (2012). Driving styles and their associations with
personality and motivation. Accident Analysis and Prevention, 45:416–422.

Tesla (2020). Model 3 owner’s manual europe.

Triandis, H. C. (1989). The study of the self has a long tradition in psychology. Psychological
Review, 96(3):506–520.

Van den Beukel, A. P. and Van der Voort, M. C. (2013). The influence of time-criticality
on situation awareness when retrieving human control after automated driving. In
Proceedings of the 16th international IEEE annual conference on Intelligent Transport Systems,
pages 2000–2005, The Hague, The Netherlands.

Van Gent, P., Farah, H., Van Nes, N., and Van Arem, B. (2017). Towards real-time,
nonintrusive estimation of driver workload: A simulator study. In Proceedings of the
Road Safety and Simulation Conference, pages 1–10.

van Gent, P., Farah, H., van Nes, N., and van Arem, B. (2019). Analysing noisy driver
physiology real-time using off-the-shelf sensors: Heart rate analysis software from the
Taking the Fast Lane Project. Journal of Open Research Software, 7.

Varotto, S. F. (2018). Driver behaviour during control transitions between adaptive cruise control
and manual driving: Empirics and models. TRAIL Research School.

Walch, M., Lange, K., Baumann, M., and Weber, M. (2015). Autonomous driving. In
Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications, pages 11–18. Association for Computing Machinery (ACM).

Warm, J. S., Parasuraman, R., and Matthews, G. (2008). Vigilance requires hard mental work
and is stressful.

Waymo LLC (2020). Journey.

Wright, T. J., Samuel, S., Borowsky, A., Zilberstein, S., and Fisher, D. L. (2016). Experienced
drivers are quicker to achieve situation awareness than inexperienced drivers in
situations of transfer of control within a Level 3 autonomous environment. In Proceedings
of the Human Factors and Ergonomics Society, pages 270–273. Sage Publications.

Yoon, S. H. and Ji, Y. G. (2019). Non-driving-related tasks, workload, and takeover
performance in highly automated driving contexts. Transportation Research Part F,
60:620–631.

Young, M. S. and Stanton, N. A. (2002). Attention and automation: New perspectives on
mental underload and performance. Theoretical Issues in Ergonomics Science, 3(2):178–194.

Zeeb, K., Buchner, A., and Schrauf, M. (2015). What determines the take-over time? An
integrated model approach of driver take-over after automated driving. Accident Analysis
and Prevention, 78:212–221.

Zeeb, K., Buchner, A., and Schrauf, M. (2016). Is take-over time all that matters? The
impact of visual-cognitive load on driver take-over quality after conditionally automated
driving. Accident Analysis and Prevention, 92:230–239.



Design of a driving simulation experiment regarding the effect of
take-overs on driver workload: Implications of an N = 1 study

T. Marfogliaa, D.D. Heikoopa, J.C.F. de Winterb, M.P. Hagenziekera

aDepartment of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology
bDepartment of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology

Abstract

The development of automated vehicles on the road is in full swing. As vehicles are getting increasingly automated, the human
factor is diminished or eventually removed from automated driving. Until then, a combination of human input and automation
is necessary during automated driving. This research focuses on the interaction between humans and machine and how a safe
interaction can be designed by incorporating meaningful human control. Initially, the aim was to study how different personalities
are reflected in driver workload induced by take-over requests (TORs). However, the COVID-19 circumstances changed the aim
to validate the design of the driving simulation experiment by means of an N = 1 experiment. Design variables that have been
found to play a role in driver workload are varied in the validation experiment. These variables are the duration of the time budget,
traffic density, location of the TOR and task involvement during automated driving. Subsequently, workload was measured by
a combination of subjective and physiological indicators and driving performance. Notably, this study includes the Root Mean
Square of Successive Differences (RMSSD) and Standard Deviation of Normal to Normal peak intervals (SDNN) as heart rate
variability (HRV) measures, which is a novel approach in studies measuring TOR-induced workload. Despite the study design that
involved performing an N = 1 driving simulation experiment, significant differences between attribute levels have been found. This
study provides recommendations on an empirically-validated set of design variables for future studies involving TORs and driver
workload, specifically for the future study on personality and automated driving.

Keywords: Automated driving, Driving performance, Driving simulation, Raw Task Load Index, Heart rate, Heart rate variability,
Validation, Workload

1. Introduction

At present, Level 2 automated vehicles ([1]) can be found on
the road, where the driver has to monitor the Automated Driv-
ing System (ADS). Level 3 automated vehicles that allow the
user to engage in non-driving related activities during auto-
mated driving are expected to find their way onto the road in
the coming years [2]. However, the user must take-over the
driving task in situations that exceed the Operational Design
Domain (ODD) of the ADS. The take-over from automated to
manual driving affects the safety of a level 3 automated vehicle
and is crucial for successful implementation [3].

By developing meaningful human control for automated ve-
hicles, the transition to Level 3 automated vehicles can be
achieved responsibly [4]. A uniform approach may not be suit-
able to get drivers to take over the driving task from the ADS
safely [5]. Possibly, individual differences in manual and au-
tomated driving can be included in the design of the ADS [4].
Including personality in automated driving is in line with the
emergence of tailor-made Human-Machine-Interaction (HMI),
which takes into account the complexity of the driving envi-
ronment and driver’s state for transferring control between the
driver and the ADS [6]. It is already known that a link exists

∗Corresponding author. Email address: themis.marfoglia@gmail.com

between personality and manual driving behaviour [7]. For in-
stance, nervousness and anxiousness are attributed to Neuroti-
cism (one of the Big Five [8], which is linked to a low tendency
of risk-taking traffic behaviour [9]. However, it is unknown how
personality is expressed in driver workload and thereby, auto-
mated driving behaviour and take-over performance.

Driver workload plays an important role in take-over perfor-
mance, where both underload and overload can be detrimental
[10]. Vehicle automation can result in mental underload when
task demand is low, for instance during automated driving on
the highway, or mental overload when task demand is high, for
instance at the take-over [11, 12]. Workload depends on both
context-dependent factors, such as traffic density at the take-
over [13, 14] or engagement in a non-driving related task dur-
ing automated driving [15, 16], and person-dependent factors,
such as age and driving experience [17]. Possibly, personality
plays a role in driver workload.

1.1. Aim of this research
Originally, this study aimed to investigate the role of personality
in driver workload at take-overs by conducting a driving sim-
ulation experiment. However, due to the COVID-19 circum-
stances, the aim shifted to validating the design and research
set-up of the aforementioned driving simulation experiment.
This study will provide an empirically-validated set of design
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variables affecting driver workload for the study regarding the
role of personality traits in automated driving.

This research is structured as follows. First, the methodol-
ogy of the performed N = 1 self-experiment is presented, this
includes the experimental apparatus, design of the simulation
and the procedure of the experiment, as well as the used driver
workload measures and statistical analyses. Then the results of
the experiment are presented on the effect of the varying de-
signs on driver workload. The findings are discussed, and the
most suitable designs for the future study regarding personal-
ity are proposed. Finally, concluding remarks on the study are
given.

2. Methods

An N = 1 experiment was performed with the researcher as the
sole participant. Four design attributes are varied in the experi-
ment, which are the time budget of the take-over request (TOR),
traffic density at the take-over location, location of the TOR,
and task during automated driving. Based on previous studies,
these are expected to have a significant effect on driver work-
load [13, 14, 18, 19, 20, 21]. Various workload measures are
included for measuring driver workload, including subjective
and physiological measures, as well as driving performance in-
dicators.

2.1. Apparatus
A driving simulator, located at the Department of Transport
and Planning at Delft University of Technology was used for
this study. The simulator is fitted with three high-resolution
screens simulating the windshield and side window on both
sides, providing a 180◦ field of view. As depicted in Figure 1,
the three screens simulate the two side windows and the wind-
shield of the vehicle. Furthermore, the simulator is equipped
with a Fanatec haptic steering wheel and clutch, brake and gas
pedal, a gear stick, hand brake, car seat and seat belt. Simula-
tor data was logged at 50Hz. A tablet was placed on a holder
on the right side of the driver’s seat, used for playing Tetris as
non-driving related task (NDRT) during automated driving.

Figure 1: Driving simulator used for the experiment

To measure heart rate (HR) and heart rate variability (HRV), an
optical sensor was mounted on the participant’s right index fin-

ger that measured light transmission through the fingertip (Fig-
ure 2). A photoplethysmography (PPG) was obtained, which
was logged at 100Hz. An Atmel ATMega328p embedded pro-
cessor board powers the recording of the data.

Figure 2: Finger sensor used for the experiment

Traditionally, the electrocardiogram (ECG) is the standard for
measuring heart activity [22]. However, it was chosen to use
PPG as it is a low-cost measure, and it measures heart activity
in a less intrusive manner than ECG, which requires placing
multiple electrodes on the participants’ chest. PPG is, therefore,
also less time-consuming compared to ECG. A disadvantage
of PPG over ECG is, however, that it is sensitive to recording
ambient noise [23]. By using HeartPy, an algorithm to handle
heart activity data from PPG, developed by Van Gent et al. [23],
the data can be filtered, and estimates for HR and HRV can be
obtained, making PPG a valid alternative for ECG. A low-pass
Butterworth filter with a cutoff of 3Hz is used for noise filtering.

Although HeartPy can filter noisy PPG data, large move-
ments to the sensor may result in data collection problems
which HeartPy cannot solve. For this, the Polar H10 chest strap
was used as an additional method to measure HR (Figure 3).
Polar H10 data was logged at 1Hz, which allows chest strap
data to only be used as a substitute for mean HR data when data
collection issues have occurred with the finger sensor. Chest
strap data was used when the finger sensor data deviated more
than 3 bpm (after the data filtering) from the mean HR mea-
sured by the chest strap [24].

Figure 3: Polar H10 chest strap used in the experiment [25]

To measure subjective workload, the Raw Task Load Index
(RTLX) was used, which is a simplification of the NASA Task
Load Index (TLX). By not requiring pairwise comparisons be-
tween the scales, it is a less time-consuming measure than the
TLX [26, 27].
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2.2. Environment
A 2x2 lane highway was simulated, with curves, a viaduct, and
on- and off-ramps. Halfway the simulation, the highway made
a large loop, after which it crossed the highway again via the
viaduct. The simulation measures 7 km or 5.5 km for scenarios
with a TOR on a straight road section or curve, respectively.

Start location vehicle

Hand-over

Take-over - curve

Stop location - curve

Take-over - straight

Stop location - straight

Figure 4: Highway layout of the driving simulation experiment

Trees and buildings are located near the highway in order to
simulate a realistic highway environment. Figure 5 provides an
impression of the scenario. During manual driving, the partici-
pant was allowed to choose their preferred speed, even though
the participant was asked to adhere to the speed limit of 120
km/h.

Figure 5: View on the highway

To vary the demand of the TOR, four design variables were
varied in the experiment, which includes four time budgets (0,
5, 10, and 15 seconds), four traffic densities (zero: 0, low: 5,
medium: 10, and high: 15 vehicles/km/lane), two TOR lo-
cations (straight stretch, and curve), and two tasks during au-
tomated driving (monitoring the simulated Automated Driving
System (ADS) and vehicle, and Tetris as NDRT). In total, the
experiment included 64 (= 4 ∗ 4 ∗ 2 ∗ 2) scenarios, all unique in
their characteristics.

2.3. Procedure
Experiment days were limited between 9 AM and 5 PM and
included a 1.5-hour lunch break and 10-15 minute breaks be-

tween sessions. The sessions included performing consecutive
runs with a short time in between for setting up the next exper-
iment and checking for correct placement of the finger sensor
and chest strap. The participant played Tetris on the tablet dur-
ing automated driving as NDRT, or was monitoring the simu-
lated ADS and vehicle. After the run, the RTLX was filled in
by the participant to assess subjective workload.

At the start of the experiment, the vehicle was located on the
on-ramp. The participant was asked to merge onto the highway
when feeling ready. After approximately 30 seconds of manual
driving, a hand-over took place which shifts manual to auto-
mated driving. The driver would then proceed by monitoring
the simulated ADS and vehicle or plays Tetris until the TOR.
During automated driving, the vehicle adhered to the maximum
speed of 120 km/h if possible. In the case of slower traffic driv-
ing in front of the ego-vehicle, the simulated ADS adjusted its
speed to maintain a following distance of at least 1 second (50
meters at a speed of 120 km/h). If possible, the vehicle overtook
slow-moving traffic. Without an apparent reason, the driver was
notified of the TOR by an auditory signal after 2:00 minutes or
2:30 minutes when issued in a curve or straight road section, re-
spectively. The driver was asked to take-over as soon as safely
possible. The duration of manual driving after the take-over
equalled 1 minute, which is the same duration as used in the
studies by [13, 28] and [29]. Traffic is arranged with a constant
and equal distance between the vehicles of 200, 100 and 66.6
meters for a traffic density of, respectively, 5, 10 or 15 vehi-
cles/km/lane.

2.4. Driver workload measures

The following workload measures were used for measuring the
effect of the various designs on driver workload:

• Scores on the six RTLX scales (mental demand, physical
demand, temporal demand, performance, effort, and frus-
tration), which are averaged to obtain the subjective over-
all workload score [27].

• Heart rate (HR) [bpm], calculated over a 1 minute duration
before and after the TOR.

• Heart rate variability (HRV) measured by the RMSSD
[ms] and SDNN [ms], calculated over a 1 minute duration
before and after the TOR.

• Take-over reaction time [s], calculated as the duration be-
tween the TOR and first acceleration [30].

• Standard deviation of speed [km/h], calculated over 1
minute of manual driving after the take-over. Three sec-
onds before and after a lane change were excluded from
the analysis.

• Standard Deviation of Lateral Position (SDLP) [cm], cal-
culated over 1 minute of manual driving after the take-
over. Three seconds before and after a lane change were
excluded from the analysis.
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2.5. Statistical analyses
Tests for significance were performed by the one-way ANOVA
or the Kruskal Wallis test when the residuals were not normally
distributed. Levene’s test was performed to check for equal
variances. Welch and Brown-Forsythe tests were used instead
of the ANOVA when the assumption for equal variances was
violated (when p < 0.05). Games Howell is used for post hoc
testing. As the same data-set was analysed multiple times, a
Bonferroni correction was applied, which lowered the signifi-
cance level to p < 0.0125. By applying a Bonferroni correc-
tion, the significance level (p < 0.05) is divided by the number
of statistical tests performed on the same data: four tests to
analyse the effect of time budget, traffic density, location of the
TOR, and task engagement on workload.

3. Results

In total, 72 runs have been performed for 63 scenarios, as one
scenario was accidentally not tested (instead, a different sce-
nario was tested twice) and eight scenarios have been rerun
due to expected data collection issues after a face validation
of the data. After the data filtering, the computed mean heart
rate (HR) over the entire run of the finger sensor data was com-
pared to the computed HR by the Polar H10 chest strap. Nine
scenarios encountered severe noise which resulted in inaccurate
photoplethysmography (PPG) data. For these scenarios, chest
strap data is used as a substitute for the mean HR. No miss-
ing or incorrect data is reported for the Raw Task Load Index
(RTLX), chest strap, or driving metrics.

On average, a run took 3:46 minutes to complete, adding up
to a total of 4:31 hours of driving time to complete all 72 runs.
On the first day of experimenting 37 runs have been completed,
on the second day 27 runs were completed and on the last day
eight runs were completed as incorrect finger sensor data was

expected for eight scenarios. During the 72 runs, no accidents
have occurred that would have led to early termination of the
run. The results of the driving simulation experiment are pre-
sented in Table 1.

3.1. Time budget

Workload as measured by the Raw Task Load Index (RTLX)
decreased for every increase in time budget. Especially the 0-
second time budget had a large effect on overall workload, with
an average workload of 46.17%. As the assumption for equal
variances did not hold (F(3, 59) = 7.725, p < 0.001), the Welch
and Brown-Forsythe tests were used and showed that the four
time budgets were significantly different (F(3, 31.736) = 4.508,
p = 0.010 and F(3, 40.172) = 6.492, p = 0.001, respectively).
A post hoc analysis revealed a significant a significant higher
workload in scenarios with a 0-second time budget compared to
scenarios with a 15-second time budget (p = 0.008). Figure 6a
illustrates the HR as it fluctuated 1 minute before and after the
TOR. The figure shows an increased HR in scenarios with a 15-
second time budget. HR increased immediately after the TOR,
steeply in scenarios with 5- and 10-second time budgets, and
less so for 0- and 15-second time budgets. Notably, scenarios
with a 5-second time budget show a second peak at timestamp
3.
Despite the illustrated differences in HR response to the TOR
for the different time budgets, the differences were found non-
significant (ANOVA: F(3, 50) = 0.768, p = 0.517). In ad-
dition, the response measured by the Root Mean Square of
Successive Differences (RMSSD) (ANOVA: F(3, 50) = 0.284,
p = 0.837), and Standard Deviation of Normal to Normal peak
intervals (SDNN) (Kruskal Wallis: H(3) = 1.746, p = 0.627)
were found to be non-significant as well (Table 1). Moreover,
although the illustrated mean HR differs between the various
time budgets, no significant differences were found (ANOVA:

Table 1: The effect of the take-over request (TOR) on workload

Subjective workload Physiological workload Driving performance

RTLX [%] HR [bpm] RMSSD [ms] SDNN [ms] TOrt [s] SD speed [km/h] SDLP [cm]

N(∗) Mean(SD) N(∗) Mean(SD) Mean(SD) Mean(SD) N(∗) Mean(SD) Mean(SD) Mean(SD)

Average 64(1) 31.29(17.66) 64(10) + 1.02(2.72) + 0.31(11.93) − 2.26(12.97) 64(1) 5.42(2.14) 5.19(1.93) 25.59(10.88)
Time budget [s]

0 16(1) 46.17(22.70)d 16(1) + 0.33(2.87) + 1.20(14.75) − 6.33(15.47) 16(1) 2.96(1.80)bcd 5.17(2.02) 31.00(15.84)
5 16(0) 30.31(10.96) 16(2) + 1.84(2.88) − 0.53(11.69) − 0.49(12.92) 16(0) 5.66(1.14)a 5.27(2.17) 25.19(8.35)

10 16(0) 27.39(14.94) 16(2) + 1.11(2.76) + 2.05(13.62) + 0.70(11.10) 16(0) 6.13(1.70)a 5.27(1.91) 22.31(8.71)
15 16(0) 22.24(11.82)a 16(5) + 0.74(2.27) − 2.06(5.42) − 2.73(11.72) 16(0) 6.81(1.71)a 5.04(1.79) 24.19(8.17)

Traffic density [vehicles/km/lane]
0 16(0) 24.69(18.58) 16(2) − 0.26 (2.84) − 4.36(6.86) − 2.00(11.66) 16(0) 5.30(1.90) 4.12(2.05) 16.21(5.12)bcd

5 16(0) 34.01(16.53) 16(3) + 1.13(2.20) + 0.39(11.56) − 2.74(7.28) 16(0) 4.66(2.00) 4.78(2.28) 29.92(14.25)a

10 16(0) 33.80(19.07) 16(3) + 2.48(2.59) − 0.53(18.22) − 3.45(21.90) 16(0) 5.39(2.34) 5.77(1.70) 23.54(6.90)a

15 16(1) 32.78(16.18) 16(1) + 0.84(2.72) + 1.73(10.01) − 0.97(7.40) 16(1) 5.78(2.61) 6.12(1.72) 32.07(9.64)a

Location TOR
Straight 32(1) 21.99(11.85)b 32(4) + 1.15(2.45) + 0.73(8.71) − 0.29(11.09) 32(1) 5.41(2.32) 4.41(1.83)b 23.87(11.00)

Curve 32(0) 40.31(17.82)a 32(5) + 0.89(3.00) − 0.11(14.63) − 4.23(14.56) 32(0) 5.45(1.98) 5.93(1.75)a 27.25(10.67)
Task during automated driving
Monitoring 32(0) 30.62(19.47) 32(5) + 0.52(2.94) + 0.53(9.92) − 5.82(14.37) 32(0) 5.07(2.27) 5.18(2.00) 25.63(12.46)

Tetris 32(1) 31.99(15.88) 32(4) + 1.52(2.42) + 0.09(13.85) + 1.30(10.49) 32(1) 5.80(1.96) 5.20(1.89) 25.55(9.18)
* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b), third (c), fourth (d) attribute level.
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Figure 6: HR fluctuation in in 5-second timestamps of a minute measurement before and after the TOR in different task load conditions

F(3, 59) = 0.304, p = 0.823). The differences in mean RMSSD
(ANOVA: F(3, 50) = 1.040, p = 0.124) and SDNN (ANOVA:
F(3, 50) = 1.566, p = 0.209) were non-significant as well (Ta-
ble 2).

Table 2: Mean physiological workload, measured over the entire run

HR [bpm] RMSSD [ms] SDNN [ms]

N(∗) Mean(SD) N(∗) Mean(SD) Mean(SD)

Average 64(1) 88.19(7.28) 64(10) 36.91(13.95) 36.87(12.97)
Time budget [s]

0 16(1) 87.64(9.42) 16(1) 39.92(18.13) 40.46(15.83)
5 16(0) 88.49(5.84) 16(2) 37.06(14.67) 35.80(9.63)

10 16(0) 87.14(5.58) 16(2) 38.48(8.08) 38.57(8.84)
15 16(0) 89.47(8.21) 16(5) 30.62(12.11) 31.20(8.33)

Traffic density [veh/km]
0 16(0) 92.25(7.91) 16(2) 29.18(9.64)c 31.16(7.45)c

5 16(0) 87.20(5.47) 16(3) 36.25(10.80) 36.74(10.47)
10 16(0) 84.74(4.93) 16(3) 48.28(16.95)a 45.40(13.62)a

15 16(1) 88.61(8.69) 16(1) 34.69(11.34) 34.80(10.00)
Location take-over request (TOR)

Straight 32(1) 89.74(7.95) 32(4) 34.07(12.79) 34.41(10.05)
Curved 32(0) 86.69(6.33) 32(5) 39.76(14.72) 39.34(12.51)

Task during automated driving
Monitoring 32(0) 89.80(8.50) 32(5) 34.86(15.68) 36.41(13.26)

Game 32(1) 86.53(5.39) 32(4) 38.97(11.93) 37.34(9.69)
* Number of excluded runs because of data collection errors.
abcd Significant difference at the 1.25% level with first (a), second (b),
third (c), fourth (d) attribute level.

The mean take-over reaction time (TOrt) differed significantly
between the time budgets (Kruskal Wallis: H(3) = 27.440,
p < 0.001). The 0-second time budget resulted in a significantly
lower TOrt compared to the 5-second time budget (p = 0.003),
to the 10-second time budget (p = 0.001), and to the 15-second
time budget (p < 0.001). The time budget was exceeded in 25

scenarios, evidently this comprised of all 0-second time bud-
get scenarios, and also 10 scenarios with a 5-second time bud-
get. Thus, the exceedance in 0-second time budget scenarios
equalled the TOrt reported in Table 1 of M(SD) = 2.96(1.80)
seconds. The exceedance in scenarios with a 5-second time
budget equalled M(SD) = 1.23(0.90) seconds. The duration of
the exceeded time budget is significantly longer in scenarios
with a 0-second time budget (Kruskal-Wallis H(1) = 10.351,
p = 0.001).

The driver’s longitudinal control ability as represented by the
standard deviation (SD) of driver speed does show small dif-
ferences between the time budgets which were non-significant
(ANOVA: F(3, 59) = 0.050, p = 0.985). No significant dif-
ferences were also found for lateral control ability (ANOVA:
F(3, 59) = 1.894, p = 0.140).

3.2. Traffic density

The tabulated differences in subjective overall workload sug-
gest that scenarios without traffic resulted in less workload (Ta-
ble 1). However, these differences were found non-significant
(ANOVA: F(3, 59) = 1.016, p = 0.392).

For physiological workload, the lowest mean HR of 84.74
bpm was measured in scenarios with medium traffic density
(10 vehicles/km/lane), whereas the highest mean HR of 92.25
bpm was measured in scenarios without any traffic (Table 2
and Figure 6b). Despite this illustrated and tabulated differ-
ence, these differences were found non-significantly different
(ANOVA, F(3, 50) = 3.311, p = 0.026; Bonferroni correction).
With increasing traffic density, the mean RMSSD and SDNN
also increased. However, this is not the case for high traffic
density, which resulted in the second lowest mean RMSSD and
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SDNN (Table 2). The differences in RMSSD were found sig-
nificant (ANOVA: F(3, 50) = 5.589, p = 0.002), as well as the
differences in SDNN (ANOVA: F(3, 50) = 5.589, p = 0.008).
Both RMSSD and SDNN reported a significant difference be-
tween zero (p = 0.001) and medium traffic density scenarios
(p = 0.005).

An increase in HR after the TOR is reported for all traf-
fic densities, with an immediate peak after the TOR for low
and high traffic density, whereas zero and medium traffic den-
sity showed a delayed peak at timestamp 3. The size of the
HR-response increased with increases in traffic density, ex-
cept for high traffic density that resulted in the second highest
mean HR (Table 2). However, again, the found differences in
HR response were non-significant (ANOVA: F(3, 50) = 2.518,
p = 0.069). The TOR response measured by the RMSSD and
SDNN differs. The RMSSD showed an irregular increase and
decrease in RMSSD, whereas the SDNN always decreased af-
ter the TOR. The differences in RMSSD were non-significant
(ANOVA: F(3, 50) = 0.099, p = 0.960). Although the size
of the SDNN response increased when traffic density increased
from zero to medium traffic density (the smallest effect size
is reported in high traffic density scenarios: Table 2), how-
ever the differences were found non-significant (Kruskal Wallis:
H(3) = 0.598,p = 0.897).

The TOrt increased from low to medium traffic density. The
second shortest TOrt was reported for zero traffic density sce-
narios (Table 1). However, no significant differences in TOrt
for the different traffic densities were found (Kruskal Wallis:
H(3) = 0.873, p = 0.832). The available time budget was
exceeded in 7 scenarios with zero traffic density (M(SD) =

3.06(2.62)), and in 6 scenarios with low (M(SD) = 1.90(0.91)),
medium (M(SD) = 2.46(1.53)), and high traffic density (M(SD)
= 1.54(1.03)). The differences in duration of the exceedance
is found non-significant (Kruskal Wallis: H(3) = 2.241, p =

0.524).
Speed deviation increased for every increase in traffic

density (Table 1), but the differences were found non-
significant(ANOVA: F(3, 50) = 3.201, p = 0.030; Bonferroni
correction). Moreover, the mean Standard Deviation of Lateral
Position (SDLP) for the different traffic densities increased with
increases in traffic density, except for medium traffic density
scenarios for which the second lowest SDLP was reported. A
significant difference was found between the mean SDLP in dif-
ferent traffic densities (ANOVA: F(3, 62) = 8.193, p < 0.001).
The SDLP in scenarios without traffic was significantly smaller
compared to the SDLP found in low (p = 0.007), medium
(p = 0.002), and high (p < 0.001) traffic density.

3.3. Location of the take-over request
Higher subjective overall workload was reported in scenarios
with a TOR in a curve: 40.31% vs 21.99% on a straight road
stretch. The Welch and Brown-Forsythe tests showed that this
workload difference was significant (F(1, 54.100) = 23.228,
p < 0.001) in both tests.

A similar pattern in HR during the experiment is reported for
both TOR locations (Figure 6c). A higher mean HR was re-
ported in scenarios with the TOR on a straight road section,

the difference however was found non-significant (ANOVA:
F(1, 61) = 2.850, p = 0.096). For scenarios with a TOR
in a curve, a higher RMSSD and SDNN was reported. How-
ever, the differences were found non-significant for the RMSSD
(ANOVA: F(1, 52) = 2.301, p = 0.135) and SDNN (ANOVA:
F(1, 52) = 2.542, p = 0.117).

The TOR resulted in two HR peaks in scenarios with a TOR
on a straight road section (timestamp 1 and 3), whereas the HR
after the TOR in a curve increased immediately in timestamp 1
and remained stable until timestamp 3, after which it decreased
to the pre-TOR HR. An increase in HR is reported for both
TOR locations, but the difference between the two was found
non-significant (ANOVA: F(1, 52) = 0.124, p = 0.726). Re-
garding the effect of the TOR on RMSSD, an increase of +0.73
ms was reported in straight road section scenarios, whereas a
decrease of -0.11 ms is reported in curve scenarios. Using the
Welch and Brown-Forsythe tests it was found that the differ-
ence was non-significant (F(1, 42.394 = 0.065, p = 0.799) in
both tests. The SDNN decreased after the TOR for both loca-
tions of the TOR. The difference in size of the effect was found
non-significant (Kruskal Wallis: H(1) = 0.399, p = 0.528).

The TOrt for both take-over locations showed small differ-
ences, which were non-significant (Kruskal Wallis: H(1) =

0.048 p = 0.826). The distribution of exceeded time budgets
was also almost equal between the two locations: 13 out of
31 scenarios with a TOR on a straight road section (M(SD) =

1.62(1.02)) and 12 out of 32 scenarios with a TOR in a curve
(M(SD) = 2.98(1.02)). The difference in exceedance between
the two TOR locations was found not to differ (Kruskal Wallis:
H(1) = 3.834, p = 0.050).

Speed deviation was significantly higher in scenarios with a
TOR in a curve (ANOVA: F(1, 61) = 11.394, p = 0.001). The
results tabulated in Table 1 suggest that SDLP was greater in
scenarios with a TOR in a curve, although the difference was
found non-significant (ANOVA: F(1, 61) = 1.531, p = 0.221).

3.4. Non-driving related task engagement

Overall workload as measured by the RTLX reported a slightly
higher workload when Tetris was played during automated
driving (30.62% vs 31.99% when monitoring). The differ-
ence, however, was found non-significant (ANOVA: F(1, 61) =

0.093, p = 0.762).
A higher HR during the experiment was reported in monitor-

ing scenarios (89.80 bpm vs. 86.53 bpm). However, this dif-
ference was found non-significant (ANOVA: F(1, 61) = 3.287,
p = 0.075). The RMSSD and SDNN after the TOR were higher
in scenarios when Tetris was played during automated driving.
However, no significant difference was found in mean RMSSD
(ANOVA: F(1, 52) = 1.173, p = 0.284) and SDNN (ANOVA:
F(1, 52) = 0.086, p = 0.771) between the tasks.

HR during the experiment increased steeply immediately af-
ter the TOR in scenarios with a monitoring task, whereas Tetris
scenarios showed a delayed peak at timestamp 3. On average,
an increase in HR is reported for both tasks after resumption
of manual control: + 1.52 bpm when monitoring and + 0.52
when playing Tetris. This difference was found non-significant

6

journal article 99



(ANOVA: F(1, 52) = 1.880, p = 0.176). The RMSSD also
reported an increase after the TOR for both tasks, again, the
difference in effect size was found non-significant (ANOVA:
F(1, 52) = 0.892, p = 0.892). In contrast, the SDNN re-
ported a decrease in SDNN after the TOR in monitoring sce-
narios, whereas an increase is reported when Tetris was played.
However, again, the difference in effect size was found non-
significant (Kruskal Wallis: H(1) = 3.023, p = 0.082).

The TOrt was longer in scenarios with Tetris as non-driving
related task (NDRT) (Table 1), although no significant differ-
ence was found between the TOrts of the two tasks (Kruskal
Wallis: H(1) = 2.084, p = 0.149). The time budget was ex-
ceeded 13 times in scenarios when the driver was monitoring
with a duration of M(SD) = 1.65(0.82) seconds, and 12 times
when Tetris was played with a duration of M(SD) = 2.95(2.18)
seconds. The duration of the exceedance was significantly
higher with Tetris as NDRT (Kruskal Wallis: H(1) = 4.734,
p = 0.030).

Longitudinal control ability as represented by the SD speed
did not differ between the tasks (Table 1) as indicated by a non-
significant finding (ANOVA: F(1, 61) = 0.002, p = 0.968).
Lateral control ability, as indicated by the SDLP was also sim-
ilar for the two tasks, as indicated by the non-significant differ-
ence (ANOVA: F(1, 61) = 0.001, p = 0.978).

4. Discussion

Although design variables and respective attributes were cho-
sen, which were expected to result in significant workload dif-
ferences, this was only found on a limited scale. This has two
reasons. Firstly, because of the N = 1 study design, the number
of observations was limited. Secondly, the fact that the num-
ber of variables to be analysed in this study was maximised
in as few runs as possible, resulting in large standard devia-
tions (SDs) in the workload measurements. It is therefore al-
ready exceptional that significant differences were found. The
workload differences found between the various designs pro-
vide sufficient indication of finding significant workload differ-
ences in the future experiment regarding personality (with >100
participants). This indication is reinforced when significant dif-
ferences were demonstrated in the current N = 1 study.

4.1. Take-over requests and their effect on workload
All scenarios combined, an overall workload as measured by
the Raw Task Load Index (RTLX) of 31.29% was found, which
lies within the expected range for subjective workload mea-
sured by the RTLX in simulated automated driving studies [31].
Specifically, [32], who also required a required a regular re-
sponse to take-over requests (TORs) (i.e. every three minutes),
measured a similar overall workload of 31%.

For physiological workload, a mean heart rate (HR) of 88.19
bpm was measured during the experiment, which lies within
one SD of the mean resting HR of M(SD) = 80.2(14.8) [33].
The measured Root Mean Square of Successive Differences
(RMSSD) of 36.91 ms and Standard Deviation of Normal to
Normal peak intervals (SDNN) of 36.87 ms fall within the stan-
dards for short-term measurements of M(SD) = 42(15) ms for

RMSSD and M(SD) = 50(16) ms for SDNN [34]. Simulated
automated driving was therefore not experienced as very de-
manding, but it could also not be considered an easy or relaxing
activity.

The average increase of +1.02 bpm in HR and decrease of
−2.26 ms in SDNN after the TOR indicate that the TOR in-
creased workload. In contrast, the average increase of +0.31
ms in RMSSD after the TOR indicates a reduced workload af-
ter the TOR. [35] and [36] also measured the difference in HR
after a TOR and reported an increase in HR of, respectively,
+0.43 bpm and +2.98 bpm after the TOR. The results of this
study are thus within the expected range, although based on
[36], it could be argued that these results indicate a small effect
size.

This study included a novel approach using the RMSSD and
SDNN to measure TOR-induced workload. Currently, there
is no consensus on the usefulness of these heart rate variabil-
ity (HRV) measures as workload measure [37, 38, 39]. As
far as is known, only [40] (published at the time of writing
this study) used RMSSD and SDNN to measure TOR-induced
workload. [40] conducted an exploratory study with two par-
ticipants who experienced four TORs under two weather con-
ditions (sunny / rain) and alert modalities (visual-auditory / au-
ditory). However, their data cannot be translated to this study,
as [40] only presented the mean RMSSD and SDNN after the
TOR instead of the respective increases or decreases after the
TOR. Other studies used the RMSSD and SDNN to measure
workload differences between low and high task demands dur-
ing automated driving [37, 38, 39, 41, 42, 43]. Based on the
results of this study, the SDNN appears to be a more sensitive
workload measure than RMSSD, as RMSSD often indicated a
different direction of the expected effect on workload for the
various design variables. SDNN appeared sensitive for distin-
guishing the highest task demands, but less sensitive for dis-
tinguishing between low and medium task demands. Future
studies using the RMSSD and SDNN to measure specifically
TOR-induced workload are necessary to gain a better under-
standing of the sensitivity of RMSSD and SDNN as (TOR-
induced) workload measure, compared to other proven physi-
ological workload measures such as HR.

This study found a relatively high take-over reaction time
(TOrt) of 5.42 seconds, which is considerably longer than the
TOrt found by [18] of 2.06 and 3.10 seconds for 5- and 7-
second time budgets, respectively. The used design of the take-
over attributed to this increased TOrt. Usually, a button on the
steering wheel or pressing a driving pedal is used to resume
manual driving before the expiration of the time budget. How-
ever, this study required the participant to press a key combi-
nation on the keyboard to resume driving before the expiration
of the available time budget. As the keyboard was placed on
the dashboard of the simulator, more time was needed to repo-
sition to be able to press the key-combination, which resulted
in increased TOrts. Therefore, for future experiments it is rec-
ommended to use a button on the steering wheel to take-over
the driving task, or by allowing overruling of the system when
the steer, gas pedal, or brake is used. The other driving per-
formance measures reported values within the expected range,
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with an average speed variation of 5.19 km/h and Standard De-
viation of Lateral Position (SDLP) of 25.59 cm. For example,
[44] found a speed deviation of 5.9 km/h, and [45] reported
an average SDLP between 15 and 30 cm after a take-over at a
speed of 50 km/h.

4.2. Time budget as design variable

The various workload measures did not unambiguously indi-
cate differences in TOR-induced workload with different time
budgets. It was expected that every increase in time budget
would result in a smaller effect of the TOR on workload [46].
The RTLX suggests, indeed, that workload decreases with a
longer available duration to respond to the TOR. Similarly,
the SDLP suggests that the 0-second time budget has a greater
effect on workload than time budgets of 5 seconds or greater.
However, driving performance, as indicated by the SDLP, did
not seem to improve with a time budget duration greater than 5
seconds. The SDNN showed how immediate disengagement
of the Automated Driving System (ADS) resulted in greater
workload compared to scenarios with a time budget of 5 sec-
onds or greater. So if an urgent take-over is to be simulated, it
is recommended to use a 0-second time budget instead of a 5-
second time budget. Moreover, time budgets of 15 seconds are
recommended for non-urgent take-overs, as the RTLX found a
significant difference between 0- and 15-second time budgets.
Although, it could also be argued that a 10-second time budget
could be used for non-urgent take-overs. Namely, already in
this N = 1 study a significance level of p = 0.056 was found
for the difference between the 0- and 10-second time budget.

4.3. Varying traffic densities and their effect on workload

It has been found that driving performance after the TOR de-
creased with increases in traffic density in the current experi-
mental set-up. Possibly, overload developed due to increases
in traffic density, which is detrimental for driving performance
[47]. However, the subjective and physiological workload mea-
sures did not fully indicate overload in high traffic density sce-
narios. Namely, less workload was measured in scenarios with
high traffic density by the RTLX, HR, and SDNN. So, if in a
future experiment, a low demand take-over is simulated, it is
preferred to use zero traffic density over a low traffic density of
5 vehicles/km/lane, as the low and medium traffic density in-
duced similar workload. If high task demand must be varied, it
is recommended to simulate a low or medium traffic density of
5 or 10 vehicles per kilometre per lane. However, preference is
given to simulate a medium traffic density, as already in this ex-
perimental set-up, significant workload differences were found
between no-traffic and medium traffic density scenarios. Sim-
ulating a high traffic density of 15 vehicles per kilometre per
lane was not ideal in the current design of the simulation. The
ego-vehicle remained on the right lane during automated driv-
ing. At the take-over, a lower initial speed is found compared
to the other traffic densities, which could have resulted in less
TOR-induced workload in high traffic density scenarios.

4.4. The location of the take-over request

In the current experiment set-up, the TOR in a curve induced
more workload compared to a TOR on a straight road section.
The difference in workload was most evident in the difference in
subjective workload measured by the RTLX. Physiologically,
the difference in workload is also found by the RMSSD and
SDNN. Post-take-over driving performance is noticeably worse
when the TOR was issued in a curve, as measured by the speed
deviation and SDLP. However, a distorted TOrt is possibly
found; the mean TOrt in scenarios with a TOR in a curve is pos-
sibly shorter than measured. The used TOrt calculation method
could have attributed to the increased TOrt, which measured the
time between the TOR and the first acceleration. As the speed
of the vehicle at the take-over in a curve is approximately 120
km/h, the driver delays acceleration to reach a desired lower
speed for driving in a curve. Therefore, the measured TOrt is
higher than the actual TOrt, as the driver was already using the
steering wheel for lane keeping. Therefore, it is recommended
to use a different calculation method for the TOrt based on the
steering angle. For future experiments, the use of both locations
is encouraged for distinguishing between low and high task de-
mand, as evident workload differences were measured.

4.5. Engagement in a non-driving related task

It was expected that a clear difference in the effect of the TOR
on workload could be distinguished between the two tasks, i.e.
when engaged in Tetris, the TOR was expected to have a greater
effect on workload compared to the monitoring task. However,
the results suggest that monitoring led to underload, resulting in
a greater effect of the TOR on workload. Moreover, the results
also suggest that playing Tetris did not resulted in underload, as
was expected based on [47]. In the current experimental set-up,
no clear differences in the effect of workload was measured be-
tween the two tasks. Possibly, if the duration of automated driv-
ing before the TOR was extended, playing Tetris would have
resulted in underload, and therefore the TOR would have re-
sulted in greater workload increases. However, due to the short
duration of automated driving, playing Tetris did not result in
drowsiness, rather it resulted in increased driver vigilance.

5. Conclusions

This study aimed to investigate the role of personality in
drivers’ workload induced by take-over requests (TORs) by a
driving simulation experiment. To ultimately make recommen-
dations on how to incorporate personality into the design of Au-
tomated Driving Systems (ADSs), and by making recommen-
dations on tailor-taught behaviour in automated vehicles. How-
ever, due to the COVID-19 conditions, the aim of this study
changed to validating the design of the driving simulation study
using an N = 1 approach. With this new aim, recommendations
were also provided for future N = 1 studies.

Four design characteristics were varied that, based on litera-
ture, were expected to have a significant effect on workload, i.e.
time budgets of the TOR, traffic densities, the location of the
TOR, and engagement in a non-driving related task (NDRT)
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during automated driving. Variations of these design character-
istics were tested in the simulation to determine which variation
is best suited to use in the experiment. In terms of time bud-
get, it is recommended to use 0 seconds for urgent (high task
demand) take-overs and 10 or 15 seconds for non-urgent (low
task demand) take-overs. For traffic density, it is recommended
to simulate no traffic for a take-over in low task demand. If
traffic is to be simulated, less than 5 vehicles/km/lane is recom-
mended, as this traffic density increased workload considerably.
For a high task demand take-over, it is recommended to either
simulate 10 or 15 vehicles/km/lane. Although in the current
experiment set-up, physiological indicators did not reflect the
greatest workload for high traffic density, it is expected that this
will be the case in an experiment that assures an equal speed
during automated driving. Regarding the location of the TOR,
issuing is recommended on a straight stretch for low demand
take-overs and in a curve for high demand take-overs. For sim-
ulating underload as a result of NDRT engagement, it is advised
to simulate a longer duration of NDRT engagement than used in
this study. With the brevity of NDRT engagement in this study,
instead of underload, increased driver vigilance was simulated.
In light of the COVID-19 conditions that complicated conduct-
ing studies involving participants, conducting an N = 1 study
proved to be a valuable research method for validating the de-
sign of the driving simulation experiment. Besides recommen-
dations to improve the design of the driving simulation exper-
iment, the study provided an indication of the usefulness of
including the Standard Deviation of Normal to Normal peak
intervals (SDNN) as physiological workload measure. In the
absence of the need of including participants other than the re-
searcher, the N = 1 study proved to be a more accessible and
easily applicable method of validating research set-ups. Based
on the results of an N = 1 study, hypotheses can be formulated
as to whether or not research results can be expected, which
allows a more focused approach in future studies.
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C A P P L I C AT I O N F O R M

The following questions were asked in the application form which was made available
through Qualtrix.

Table C.1: Application form personality experiment

English Dutch

General

1. Do you own a driving license? Bent u in het bezit van een rijbewijs?
2. Will you be available from March to April

to take part in our driving simulator
experiment?

Bent u in maart tot april beschikbaar om
mee te doen aan het rijsimulator

experiment?
3. I understand my participation is voluntary Ik begrijp dat mijn deelname vrijwillig is
4. I understand I am not automatically

selected after filling in this questionnaire
Ik begrijp dat ik niet automatisch

geselecteerd ben na het invullen van deze
vragenlijst

Contact details

5. Name and Surname Voor- en achternaam
6. E-mail address E-mail adres
7. Telephone number Telefoonnumber

Personal information

8. What is your gender? Wat is uw geslacht?
9. How old are you? Wat is uw leeftijd?

10. Which country are you from? Uit welk land komt u oorspronkelijk?
11. Which city do you currently live in? In welke stad woont u?
12. What is your profession? Wat is uw beroep?
13. What is your highest level of education? Wat is uw hoogst afgeronde opleiding?

Driving experience

14. For how many years have you been in
possession of your driving license?

Hoe lang bent u al in het bezit van uw
rijbewijs?

15. How often did you drive in the last 12

months?
Hoe vaak reedt u in de afgelopen 12

maanden?
16. How many kilometres did you drive in

the last 12 months?
Hoeveel kilometer reedt u in de afgelopen

12 maanden?
17. Do you have any experience with ADAS? Heeft u enige ervaring met ADAS?
18. Which ADAS did you use? Welke ADAS heeft u wel eens gebruikt?

Health questions

19. Do you use glasses or contact lenses? Gebruikt u een bril of contactlenzen?
20. Do you take any kind of drugs (including

alcohol) at present?
Gebruikt u wel eens drugs (o.a. alcohol)?

21. What kind of drugs do you normally take
and how often do you take them?

Welke drugs gebruikt u en hoe vaak?

Big Five Inventory (BFI)

22. Appendix D
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D B I G F I V E I N V E N TO R Y

The BFI listed in Table D.1 was used for selecting participants. Both an English and Dutch
version was used. The inventory started with the following introduction:

English:
A number of characteristics that may or may not apply to you are described below. Please
select for each statement a number indicating the extent to which you agree or disagree
with that statement.

Dutch:
Hieronder staan een aantal persoonlijkheidskenmerken beschreven die mogelijk op u van
toepassing zijn. Geef voor iedere stelling aan in hoeverre u het eens of oneens bent met die
stelling.

A five-point Likert scale ranging from strongly disagree to strongly agree was used.
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Table D.1: The 44-item BFI

English Dutch

1. Is talkative Spraakzaam is
2. Tends to find fault with others Geneigd is kritiek te hebben op anderen
3. Does a thorough job Grondig te werk gaat
4. Is depressed, blue Somber is
5. Is original, comes up with new ideas Origineel is, met nieuwe ideeën komt
6. Is reserved Terughoudend is
7. Is helpful and unselfish with others Behulpzaam en onzelfzuchtig ten opzichte

van anderen is
8. Can be somewhat careless Een beetje nonchalant kan zijn
9. Is relaxed, handles stress well Ontspannen is, goed met stress kan

omgaan
10. Is curious about many different things Benieuwd is naar veel verschillende

dingen
11. Is full of energy Vol energie is
12. Starts quarrels with others Snel ruzie maakt
13. Is a reliable worker Een werker is waar men van op aan kan
14. Can be tense Gespannen kan zijn
15. Is ingenious, a deep thinker Scherpzinnig, een denker is
16. Generates a lot of enthusiasm Veel enthousiasme opwekt
17. Has a forgiving nature Vergevingsgezind is
18. Tends to be disorganized Doorgaans geneigd is tot slordigheid
19. Worries a lot Zich veel zorgen maakt
20. Has a active imagination Een levendige fantasie heeft
21. Tends to be quiet Doorgaans stil is
22. Is generally trusting Mensen over het algemeen vertrouwt
23. Tends to be lazy Geneigd is lui te zijn
24. Is emotionally stable, not easily upset Emotioneel stabiel is, niet gemakkelijk

overstuur raakt
25. Is inventive Vindingrijk is
26. Has an assertive personality Voor zichzelf opkomt
27. Can be cold and aloof Koud en afstandelijk kan zijn
28. Perseveres until the task is finished Volhoudt tot de taak af is
29. Can be moody Humeurig kan zijn
30. Values artistic, aesthetic experiences Waarde hecht aan kunstzinnige en

esthetische ervaringen
31. Is sometimes shy, inhibited Soms verlegen of geremd is
32. Is considerate and kind to almost

everyone
Attent en aardig is voor bijna iedereen

33. Does things efficiently Dingen efficiënt doet
34. Remains calm in tense situations Kalm blijft in gespannen situaties
35. Prefers work that is routine Een voorkeur heeft voor werk dat routine

is
36. Is outgoing, sociable Hartelijk, een gezelschapsmens is
37. Is sometimes rude to others Soms grof tegen anderen is
38. Makes plans and follows through with

them
Plannen maakt en deze doorzet

39. Gets nervous easily Gemakkelijk zenuwachtig wordt
40. Likes to reflect, play with ideas Graag nadenkt, met ideeën speelt
41. Has few artistic interests Weinig interesse voor kunst heeft
42. Likes to cooperate with others Graag samenwerkt met anderen
43. Is easily distracted Gemakkelijk afgeleid is
44. Is sophisticated in art, music, or literature Het fijne weet van kunst, muziek of

literatuur



 
 
Information sheet regarding the experiment and study + Informed consent form 
February, 2020 
 

1. Research group 
 
1.1. Researchers in charge of the project 

 
T. Ebbers  MSc. Student Delft University of Technology 
T. Marfoglia  MSc. Student Delft University of Technology 
M.P. Hagenzieker  Professor Delft University of Technology 
J.C.F. de Winter  Associate professor Delft University of Technology 
J.A. Annema  Assistant professor Delft University of Technology 
D.D. Heikoop  Post-doctoral researcher Delft University of Technology 
 

1.2. Organizations 
 
Faculty of Civil Engineering and Geosciences, Department of Transport, Delft University           
of Technology.  
 
This study is part of the research project 'Meaningful Human Control over Automated             
Driving Systems' (MHC-ADS) of the Department of Transport and Planning, Delft           
University of Technology. 
 

2. This document 
 
This informed consent document consists of two parts: 

1) Information sheet 
2) Informed consent form 

 
You are asked to read this document carefully before signing the informed consent form.              
Information is provided regarding the purpose of this study, your participation, the procedure of              
the experiment, the expected benefits, risks associated with this experiment, information           
regarding data protection, privacy and confidentiality, the sharing of the results, and who are              
responsible for this study. If something is unclear or needs additional explanation, please contact              
any of the researchers. After reading the information sheet and if all questions or concerns are                
answered, you can choose to participate in this study. To participate, please fill in the informed                
consent form on the last page of this document. Your signature is required for participation.  
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The informed consent form is sent to the participants after they are selected to participate
in the driving simulation experiment. The form consists of two parts. First an information
sheet with a detailed explanation of the experiment and procedure, the risks involved in
participating, the privacy of the participants, sharing of results, ethical approval. The second
part is the actual consent form for the previous mentioned details. The informed consent
form is written in both English and Dutch. The Dutch version can be found in Appendix F.
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3. Purpose of this research 
 

An increasing amount of vehicles are already equipped with longitudinal and lateral automated  
support up to SAE level 2 (SAE, 2018). Nowadays, SAE level 3 automated vehicles are the next  
step in which the human driver is still a fallback-ready user in case the vehicle is requesting it.                  
This part, also called the transition of control, whereby the vehicle needs to interact with the                
human driver to take over control is interesting to research, especially when human drivers differ               
in personality traits. A driving simulator study with around 100 participants will be performed              
regarding the time it takes a driver to get full control of the vehicle. Moreover, this will be done by                    
speech-based auditory feedback in several stages of urgency. Various measurements will be            
carried out for the aim of this research and will be analyzed and published in order to contribute to                   
the research in the interaction between the vehicle and the human driver. 

 
4. Participation 

 
4.1. Location of the experiment 

 
The experiment will be held at the faculty of Civil Engineering and Geosciences at Delft 
University of Technology: Stevinweg 1, 2628CN, Delft. The driving simulators are located 
on the 4th floor, room 4.32.6.  

 
4.2. Eligibility criteria 

 
You are invited to participate in this experiment if: 

- You are 18 years or older 
- You have a car driving license 
- You are not under the influence of drugs, alcohol or other substances that 

compromise your driving ability.  
- You have not experienced (severe) simulation or motion sickness. 

 
The researchers reserve the right at any time to refuse or excuse (from an in-progress               
session) any participant who meets/no longer meets the study requirements or who is             
behaving in an unnecessarily unsafe manner. 

 
4.3. Voluntary participation and the right to refuse or withdraw 

 
Participating in this study is completely voluntary. If you have any questions or concerns              
regarding this study, please contact one of the researchers. If you do agree to participate               
in this study, you can withdraw at any moment without comment or penalty. Withdrawal              
from the experiment is possible until 10 working days after completing the experiment. In              
case of withdrawal, all personal data will be removed from this study.  
Participants will be given the opportunity to get insight into their own data obtained in this                
experiment - ask any of the researchers to provide you with this data.  
Rectification of the data is not possible.  
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5. Procedure 
 
This study consists of one driving simulator experiment. The experiment focuses on the             
personality of drivers and their behavior in automated vehicles. In the experiment, transitions of              
control between the automated driving system and the driver will be simulated. Data regarding              
how drivers experience these control transitions, and their according to driving behavior, will be              
collected. The data will be collected by the driving simulator, a camera and by sensors mounted                
on the fingers of the participants to measure heart rate and electrical conductivity of the skin. 
 
5.1. Experiment 

 
You will be asked to perform one driving sessions of approx. 30 minutes in a highway                
setting. Data from this experiment will be used to analyze the effect of personality on the                
experience of transitions of control in automated vehicles. The simulated vehicle is a             
generic sedan car. The simulated vehicle is controlled in the same way as a normal car                
with automatic gearbox: it has pedals and turn signals. Furthermore, the dashboard of the              
vehicle will be simulated showing the turn signals, speedometer and tachometer. Also            
side view mirrors and a rearview mirror are simulated.  
The following data will be collected: steering and pedal input, eye movement, heart rate,              
skin conductance level.  
 

5.2. Prior to the simulator sessions 
 
Prior to the simulator sessions, this information sheet with the informed consent form will              
be sent to you. Furthermore, you are asked to fill in a demographic questionnaire, a               
driving experience questionnaire, a healthiness questionnaire, and the Big Five          
personality test.  
Once at the experiment location, a safety instruction will be given on operating the driving               
simulator.  
 

5.3. Practice simulator session 
 
The experiment includes a practice round, in which you can get familiar with the driving               
simulator like the virtual environment and the steering wheel and pedals. This practice             
round will take around 5 minutes in which you have some freedom to drive around and to                 
follow some instructions.  
 

5.4. Simulator session instructions 
 

5.4.1. Driving 
In the experiment, you will be asked to drive as normally as you are allowed to do                 
in normal driving conditions with respect to traffic regulations. Moreover, you will            
be driving in the utmost right lane on a three-lane highway and are allowed to               
take-over slower vehicles if circumstances permit this.  
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5.4.2. Controls 
In the first part of the scenario, the vehicle is driving autonomously on the              
highway at 100 km/h. During this part of the scenario, no input of the human               
driver is necessary (like steering or gas pedal input). The vehicle could ask at a               
certain moment to take-over control of the vehicle, in which you have to put your               
hands on the steering wheel and feet on the pedals.  
 

5.4.3. Scenario 
In the scenario, other vehicles will be driving around on the highway and you              
need to treat them just like you would do in a normal driving situation. Moreover,               
the scenario allows overtaking other vehicles and driving faster than the           
maximum speed. You are asked to drive like the normal driving rules you know,              
so use your direction indicator and do not drive faster than allowed.  
The full scenario is a long stretch of a highway, in which several turns are               
included. You are driving first in automated mode, while at a certain time the              
vehicle is requesting to take-over control and drive further in manual mode till the              
vehicle again informs that it will take over the driving task from you. 
 

5.5. Duration and time commitment 
 
The experiment will take around 60 minutes, which includes the welcome, signing the             
consent form, getting familiar with the driving simulator in the test round and filling in the                
questionnaire. 
 

 
6. Expected benefits 

 
The outcome of this experiment will be used for the research into automated vehicles. It will not                 
directly benefit you as a driver immediately, but it will improve the understanding of automation               
and the interaction between a vehicle and a human driver. Your contribution to this project will                
help make automated vehicles in the future even more likely and better.  
 

7. Risks associated with participation 
 
In the simulator, participants may experience simulator motion sickness. The experiment can be             
stopped immediately if necessary, by the participant or by the researcher. Furthermore, the             
participant needs to wear the seatbelt during the experiment. Taking off the seatbelt during the               
experiment will cause the test to stop. 
If the participant loses control over the vehicle, this can result in an accident in the virtual                 
scenario. This does not harm the participant physically, but it can be emotionally demanding. To               
overcome these types of problems, no other persons are visible in the scenario and other               
vehicles are non-solid objects (the participant can drive through them).  
The simulator is located in a small room at the faculty CiTG of the TU Delft, in which no                   
mechanical ventilation is available. To get more airflow in the room, a fan will be used.                
Participants can fall over the cables of this fan or from the simulator itself. But due to the fact,                   
these cables are stuck on the floor by tape, the chance is small. During the experiment,                
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temporary cables can be necessary to fulfill the simulator study, so before the participant can               
leave the simulator, the researcher needs to take these cables away.  
 

8. Privacy and confidentiality 
 
All data collected in this study will be stored securely as of the Data Management policy of Delft                  
University of Technology. Only the researchers involved in this study can access the data. Data               
will be stored, encrypted and pseudonymised, on the TU Delft server. This data will be stored for                 
10 years. The non-identifiable data from this study will be stored in an open-access database for                
future use in comparative studies and for secondary analysis. 
 

9. Sharing of results 
 
The results of the study are presented in the research reports of the researcher. Moreover, the                
study might be presented in a scientific journal. The data of the driving simulator could be used in                  
follow-up research into this field like in related studies, simulator training and the design of               
vehicles.  
 

10. Responsibility 
 
The researchers and the institution involved in this research are not responsible for any damages               
during the travel to or from the location of the experiment. 
 

11. Questions/further information about the project 
 
If you have any questions or comments regarding the study and the experiment, or if you require                 
further information, please contact one of the researchers: 
 

Researchers E-mail addresses Telephone numbers 
T. Ebbers t.ebbers@student.tudelft.nl +31 (0)630989569 
T. Marfoglia t.marfoglia@student.tudelft.nl +31 (0)681220906 
M.P. Hagenzieker m.p.hagenzieker@tudelft.nl  
J.C.F. de Winter j.c.f.dewinter@tudelft.nl  
J.A. Annema j.a.annema@tudelft.nl  
D.D. Heikoop d.d.heikoop@tudelft.nl  

 
 

12. Ethical approval and complaints regarding the conduct of the project 
 
This study will be approved by the Human Research Ethics Committee (HREC) of the TU Delft. A                 
verification of this approval can be obtained by sending an email to HREC@tudelft.nl. If you have                
any complaints or suggestions about the ethical conduct of this project, please contact HREC by               
sending an email to the above-mentioned email address.  
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Consent form 
  

Please tick the appropriate boxes Yes No   

Taking part in the study       

I have read and understood the study information dated Februari 2020, or it has              

been read to me. I have been able to ask questions about the study and my                

questions have been answered to my satisfaction. 

□ □   

I consent voluntarily to be a participant in this study and understand that I can               

refuse to answer questions and I can withdraw from the study at any time,              

without having to give a reason. 

□ □ 

  

  

I understand that taking part in the study involves collecting data like            

video-recording, which will be transcribed as text, and completing         

questionnaires.  

 

Risks associated with participating in the study 

□ 

  

□ 

  

  

I understand that taking part in the study involves the following risks: motion             

sickness due to the experiment in a driving simulator. Emotional discomfort           

when experiencing a virtual accident.  

  □ □  

Use of the information in the study       

I understand that the information I provide will be used for Master’s theses,             

conference presentations and articles in scientific journals. 

□ 

  

□ 

  

  

I understand that personal information collected about me that can identify me,            

such as [e.g. my name or where I live], will not be shared beyond the study team. 

□ 

  

□ 
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Future use and reuse of the information by others 

I give permission for the data obtained with the sensors, camera and driving             

simulator, as well as all data from the questionnaires that I provide to be              

archived in the TU Delft repository so it can be used for future research and               

learning. 

□ 

  

  

  

  

  

□ 

  

  

  

  

  

Signatures 

 

      

  

________________________         ______________________  _____________  

Name of participant                           Signature            Date 

    

       

I have accurately read out the information sheet to the potential participant and,             

to the best of my ability, ensured that the participant understands what they are              

freely consenting. 

 

  

________________________         ______________________  _____________  

Researcher name                               Signature             Date 

      

  

________________________          _____________________  _____________  

Researchers name                              Signature            Date 

 

  

      

 

7 

english - information sheet and informed consent form 114



Document met informatie over het experiment en het daarbij behorende 
toestemmingsformulier. 
Februari, 2019  
 

1. Onderzoeksgroep 
 
1.1. Onderzoekers verantwoordelijk voor het project 

 
T. Ebbers  MSc. Student Delft University of Technology 
T. Marfoglia  MSc. Student Delft University of Technology 
M.P. Hagenzieker  Professor Delft University of Technology 
J.C.F. de Winter  Associate professor Delft University of Technology 
J.A. Annema  Assistant professor Delft University of Technology 
D.D. Heikoop  Postdoctoraal onderzoeker Delft University of Technology 
 

1.2. Organisaties 
 
Faculteit van Civiele Techniek en Geowetenschappen, afdeling Transport,        
Technische Universiteit Delft.  
 
Deze studie is onderdeel van het onderzoek 'Meaningful Human Control over           
Automated Driving Systems' (MHC-ADS) van de afdeling Transport & Planning,          
Technische Universiteit Delft. 
 

2. Inhoud van dit document 
 
Dit toestemmingsformulier bestaat uit twee delen, namelijk: 

1) Informatieformulier 
2) Toestemmingsformulier 

 
U wordt gevraagd om dit document zo zorgvuldig mogelijk door te lezen voordat u het               
toestemmingsformulier ondertekend. De verstrekte informatie bevat het doel van dit          
onderzoek, uw deelname, de procedure, de verwachte voordelen, de risico’s, informatie met            
betrekking tot gegevensbescherming, privacy en vertrouwelijke informatie. Ook wordt u          
geïnformeerd over het delen van de informatie en wie verantwoordelijk zijn voor dit             
onderzoek. Als u na het lezen van dit informatiedocument nog vragen heeft of extra uitleg wilt                
hebben, kunt u contact opnemen met een van de onderzoekers. Als na het lezen van het                
informatiedocument al uw vragen zijn beantwoord, kunt u er voor kiezen om mee te doen aan                
het onderzoek. Om uw deelname te bevestigen, vult u het toestemmingsformulier op de             
laatste pagina van dit document in. Uw handtekening is vereist voor deelname. 
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3. Doel van het onderzoek 
 

Tegenwoordig zijn een toenemend aantal voertuigen reeds uitgerust met geautomatiseerde          
rijhulpsystemen tot SAE level 2 (SAE, 2018). De volgende stap in geautomatiseerde            
voertuigen is SAE level 3, waarbij de menselijke bestuurder nog steeds verantwoordelijk is             
voor de rijtaak en gereed moet zijn om de rijtaak over te nemen in het geval het voertuig                  
hierom vraagt. Dit wordt ook wel de overgang van controle genoemd, waarbij het voertuig              
vraagt aan de menselijke bestuurder om de controle over het voertuig over te nemen. Deze               
overgang van controle is interessant voor dit onderzoek, samen met het onderscheiden van             
menselijk bestuurders met verschillende persoonlijkheidskenmerken. Een rijsimulator       
onderzoek met ongeveer 100 deelnemers zal worden uitgevoerd, waarbij gekeken wordt hoe            
lang een menselijke bestuurder nodig heeft om volledige controle over het voertuig te krijgen              
na een overgang van controle. Deze overgang zal in gang worden gezet door een op spraak                
gebaseerde auditieve feedback in verschillende fasen van urgentie. Voor het onderzoek           
zullen verschillende metingen verricht worden waarna deze geanalyseerd en gepubliceerd          
worden om bij te dragen aan het onderzoek naar de interactie tussen voertuig en de               
menselijke bestuurder.  

 
4. Participation 

 
4.1. Locatie van het experiment 

 
Het experiment zal plaatsvinden op de faculteit Civiele Techniek en 
Geowetenschappen op de Technische Universiteit Delft: Stevinweg 1, 2628CN, Delft.  
De rijsimulatoren bevinden zich op de vierde verdieping in ruimte 4.32.6.  

 
4.2. Toelatingscriteria 

 
U mag deelnemen aan dit experiment, als:  

- U bent 18 jaar of ouder. 
- U bent in het bezit van een rijbewijs. 
- U bent niet onder invloed van drugs, alcohol, of andere stoffen die uw 

rijvaardigheid beïnvloeden. 
- U heeft nog nooit (heftige) simulatie- of bewegingsziekte ervaren.  

 
De onderzoekers behouden zich te allen tijde het recht voor om een deelnemer die              
niet (langer) voldoet aan de studie-eisen te weigeren (van een lopende sessie) of die              
zich op een onnodig onveilige manier gedraagt. 

 
4.3. Vrijwillige deelname en recht tot terugtrekking 

 
Deelname aan dit onderzoek is volledig vrijwillig. Als u vragen of opmerkingen heeft             
over dit onderzoek, kunt u contact opnemen met een van de onderzoekers. Als u              
akkoord gaan met deelname aan dit onderzoek, kunt u zich op elk gewenst moment              
terugtrekken zonder gevolgen en zonder verantwoording. Terugtrekken van dit         
onderzoek is mogelijk tot 10 werkdagen na deelname aan het experiment. In geval             
van terugtrekking van dit experiment, zullen alle persoonlijke data van het onderzoek            
verwijderd worden. 
Aan deelnemers aan dit onderzoek wordt de mogelijkheid tot inzicht in eigen data van              
deze studie worden gegeven - vraag een van de onderzoekers om u deze informatie              
te verschaffen.  
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Het is niet mogelijk om uw data te veranderen.  
 

5. Procedure 
Een rijsimulator experiment is onderdeel van deze studie. Het experiment focust zich op de              
persoonlijkheid van bestuurders en hun gedrag in autonome voertuigen. Het experiment           
simuleert transities van controle tussen het autonome rijsysteem en de bestuurder. Data zal             
worden verzameld met betrekking tot hoe bestuurders deze transities van controle ervaren en             
hun overeenkomstige rijgedrag. De data zal worden verzameld met behulp van de            
rijsimulator, een camera, en sensoren op de vingers van de deelnemers om de hartslag en               
elektrische geleidbaarheid van de huid te meten. 

 
5.1. Experiment 

 
U wordt gevraagd om deel te nemen aan één rij sessie van ongeveer 30 minuten in                
een snelweg setting. Data van het experiment zal worden gebruikt om het effect van              
persoonlijkheid te meten op hoe transities van controle in autonome voertuigen           
worden ervaren. Het gesimuleerde voertuig betreft een standaard sedan voertuig. Het           
gesimuleerde voertuig wordt net zo bestuurd als een normaal voertuig met automaat:            
het is ook uitgerust met de standaard pedalen en richtingaanwijzers. Het dashboard            
van het gesimuleerde voertuig laat de richtingaanwijzers, snelheidsmeter en         
tachometer zien. Ook zij-spiegels en een achteruitkijkspiegel zijn gesimuleerd.  
De volgende data zal worden verzameld: stuur- en pedaal-input, oogbewegingen,          
hartslag en elektrische geleidbaarheid van de huid. 
 

5.2. Voorafgaand aan het simulator onderzoek 
 
Voor het simulator onderzoek zal dit toestemmingsformulier met informatie over het           
onderzoek naar u worden gestuurd. U wordt verder nog gevraagd om een aantal             
vragenlijsten in te vullen, dit zijn: een demografische vragenlijst, een vragenlijst over            
uw rijervaring, een gezondheidsvragenlijst en ten slotte de Big Five          
persoonlijkheidstest.  
Eenmaal op de experiment-locatie zal een veiligheidsinstructie worden gegeven         
betreffende het rijden in een rijsimulator.  
 

5.3. Oefen-sessie rijsimulator 
 
Het experiment omvat ook een oefensessie, waar u zich kunt familiariseren met de             
rijsimulator, dit betreft dan de virtuele omgeving, het stuur en de pedalen van de              
rijsimulator. Deze oefensessie zal ongeveer 5 minuten kosten. Tijdens deze sessie           
heeft u de vrijheid om vrij te rijden, maar zult u ook enkele instructies moeten               
opvolgen.  
 

5.4. Instructies simulator sessie 
 

5.4.1. Het rijden 
Tijdens het experiment zal u worden gevraagd om zo normaal als mogelijk te             
rijden, zoals u wordt mogelijk gemaakt onder normale rij-omstandigheden en          
met inachtneming van de verkeersregels. Verder wordt u gevraagd om in de            
rechterbaan te rijden van de drie-baans snelweg. U wordt toegestaan om           
langzaam rijdend verkeer in te halen als de rij-omstandigheden dit mogelijk           
maken.  
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5.4.2. Bediening 

Gedurende het eerste gedeelte van het scenario, zal het voertuig autonoom           
op de snelweg rijden met een snelheid van 100 km/u. Gedurende dit gedeelte             
van het scenario is geen enkele input nodig van de bestuurder (dus geen             
stuur of pedaal input). Het voertuig kan u op elk moment vragen om de              
controle over te nemen van het autonome rijsysteem, waarbij u uw handen            
op het stuur moet plaatsen en de voeten op de pedalen. 
 

5.4.3. Scenario 
In het scenario zullen ook andere voertuigen rijden op de snelweg, u wordt             
gevraagd hiermee om te gaan zoals u gewoonlijk doet tijdens het rijden. U             
wordt toegestaan om andere voertuigen in te halen en sneller te rijden dan de              
maximaal toegestane snelheid. Echter wordt u wel gevraagd zich te houden           
aan de verkeersregels, richtingaanwijzers te gebruiken en, indien mogelijk,         
zich te houden aan de maximaal toegestane snelheid.  
Het scenario bestaat uit een lang stuk snelweg met een aantal bochten. Het             
voertuig zal beginnen in autonome modus. Na een bepaalde tijd wordt u            
gevraagd om controle over te nemen van het voertuig, waarna u in            
handmatige modus zal rijden tot het voertuig u informeert dat het autonome            
systeem het rijden van u zal overnemen. 
 

5.5. Duur van het onderzoek 
Het onderzoek zal in totaal ongeveer 60 minuten in beslag nemen, dit omvat het              
invullen van de vragenlijsten en het experiment: onthaal, ondertekenen van het           
toestemmingsformulier, de oefensessie en het daadwerkelijke experiment.  
 

 
6. Verwachte resultaten 

 
De resultaten van dit experiment zullen worden gebruikt voor het onderzoek naar            
geautomatiseerde voertuigen. Deze resultaten zullen u als bestuurder niet direct ten goede            
komen, maar zal het bijdragen aan het verbeteren van de interactie tussen een voertuig en de                
menselijke bestuurder. Uw deelname aan dit project zal er aan bijdragen dat            
geautomatiseerde voertuigen beter worden en de introductie ervan op de openbare weg in de              
toekomst nog waarschijnlijker zullen zijn. 
 

7. Risico’s verbonden aan deelname 
 
Deelnemers kunnen in de simulator bewegingsziekte ervaren. Het experiment kan indien           
nodig onmiddellijk worden beëindigd door de deelnemer of de onderzoeker. Daarnaast moet            
de deelnemer te allen tijde de veiligheidsgordel dragen. Als u tijdens het experiment de              
veiligheidsgordel ontgrendeld, zal de test worden gestopt. De deelnemer kan tijdens het            
experiment de macht over het stuur verliezen, wat kan leiden tot een virtueel ongeval. Dit is                
fysiek niet schadelijk voor bestuurder, maar kan emotioneel zwaar zijn. Om deze problemen             
te voorkomen zijn er geen andere personen zichtbaar in het scenario en zijn andere              
voertuigen niet solide objecten (de deelnemer kan door andere voertuigen heen rijden).  
De rijsimulator bevindt zich in een kleine ruimte in de faculteit CiTG van de TU Delft. In deze                  
ruimte is geen mechanische ventilatie aanwezig, maar door het gebruik van een ventilator zal              
er een voldoende luchtstroom aanwezig zijn. Deelnemers kunnen over kabels van de            
ventilator of van de rijsimulator vallen. Doordat deze kabels op de vloer zijn vastgetaped is               
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deze kans zeer klein. Tijdens het experiment kunnen tijdelijke kabels worden gebruikt maar             
zullen worden verwijderd door de onderzoeker voordat de deelnemer de rijsimulator verlaat. 
 

8. Privacy en vertrouwelijkheid 
 
Alle verzamelde data van deze studie zal beveiligd worden opgeslagen volgens het Data             
Management beleid van de Technische Universiteit Delft. Alleen de onderzoekers die           
betrokken zijn bij dit onderzoek hebben toegang tot de data. De data zal worden  
worden gecodeerd en gepseudonimiseerd en zal worden bewaard op de server van de TU              
Delft. Deze data zal vervolgens worden opgeslagen voor de komende 10 jaar. Alle             
niet-identificeerbare data van deze studie zal worden opgeslagen in een vrij-toegankelijke           
database voor toekomstig gebruik in vergelijkbare studies of voor toekomstige analyse.  
 

9. Delen van resultaten 
 
De resultaten van het onderzoek worden gepresenteerd in de onderzoeksrapporten van de            
onderzoekers. Daarnaast kan het onderzoek worden gepubliceerd in een wetenschappelijk          
tijdschrift. De gegevens van de rijsimulator kunnen worden gebruikt in een vervolgonderzoek            
op dit gebied zoals gerelateerde studies, simulator trainingen of voor het ontwerp van             
geautomatiseerde voertuigen. 
 

10. Verantwoordelijkheid 
 
De onderzoekers die bij dit onderzoek betrokken zijn zijn niet verantwoordelijk voor eventuele 
schade tijdens de reis naar of van de locatie van het onderzoek. 
 

11. Vragen of verdere informatie over dit onderzoek 
 
Als u nog vragen of opmerkingen heeft over dit onderzoek, of als u nog andere informatie 
nodig heeft, kunt u contact opnemen met een van de volgende onderzoekers:  
 

Onderzoekers E-mail adressen Telefoonnummers 
T. Ebbers t.ebbers@student.tudelft.nl +31 (0)630989569 
T. Marfoglia t.marfoglia@student.tudelft.nl +31 (0)681220906 
M.P. Hagenzieker m.p.hagenzieker@tudelft.nl  
J.C.F. de Winter j.c.f.dewinter@tudelft.nl  
J.A. Annema j.a.annema@tudelft.nl  
D.D. Heikoop d.d.heikoop@tudelft.nl  

 
 

12. Ethische goedkeuring en klachten met betrekking tot de uitvoering van het project 
 
Het onderzoek is goedgekeurd door de Human Research Ethics Committee (HREC) van de             
TU Delft. Een verificatie van deze goedkeuring kan worden aangevraagd door een e-mail te              
sturen naar HREC@tudelft.nl. Als u klachten of suggesties heeft over het ethische gedrag             
van dit onderzoek, neem dan contact op met HREC door een e-mail te sturen naar het                
bovengenoemde e-mailadres. 
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Toestemmingsformulier 
  

Vink de vakjes die op u van toepassing zijn aan Ja Nee   

Deelname aan het onderzoek       

Ik heb alle informatie betreffende het onderzoek d.d. februari 2020 gelezen en            

begrepen, of iemand heeft dit mij voorgelezen. Ik heb de mogelijkheid gekregen            

om vragen te stellen over het onderzoek en mijn vragen zijn naar tevredenheid             

beantwoord. 

□ □   

Ik stem ermee in vrijwillig deel te nemen aan dit onderzoek en begrijp dat ik kan                

weigeren om vragen te beantwoorden en ik kan me op elk moment terugtrekken             

uit het onderzoek, zonder een reden op te geven. 

□ □ 

  

  

Ik begrijp dat deelname aan het onderzoek het verzamelen van gegevens omvat,            

zoals video-opnames, die als tekst wordt getranscribeerd, en het invullen van           

vragenlijsten. 

 

Risico’s verbonden aan deelname aan dit onderzoek 

□ 

  

□ 

  

  

Ik begrijp dat deelname aan het onderzoek de volgende risico's met zich            

meebrengt: bewegingsziekte door het experiment in een rijsimulator,        

emotioneel ongemak bij het ervaren van een virtueel ongeval.  

  □ □  

Gebruik van informatie uit dit onderzoek       

Ik begrijp dat de informatie die ik geef zal worden gebruikt voor masterscripties,             

congres presentaties en artikelen in wetenschappelijke tijdschriften. 

□ 

  

□ 

  

  

Ik begrijp dat persoonlijke informatie die over mij is verzameld die mij kunnen             

identificeren, zoals [bijv. mijn naam of waar ik woon], niet wordt gedeeld buiten             

het onderzoeksteam. 

□ 

  

□ 
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Toekomst (her)gebruik van informatie door derden  

Ik geef toestemming om de gegevens verkregen door middel van de sensoren,            

camera en rijsimulator, evenals alle gegevens uit de vragenlijsten, te archiveren           

in de TU Delft data-opslag zodat toekomstige onderzoeken en studies deze data            

kunnen gebruiken. 

□ 

  

  

  

  

  

□ 

  

  

  

  

  

Handtekeningen 

 

      

  

________________________         ______________________  _____________  

Naam van deelnemer                       Handtekening            Datum 

    

       

Ik heb, indien nodig, het informatie document zorgvuldig voorgelezen aan de           

potentiële deelnemer en verklaar hierbij, voor zover ik kan, dat ik gezorgd heb             

dat de deelnemer begrijpt waarmee hij/zij instemt.  

 

  

________________________         ______________________  _____________  

Naam onderzoeker                            Handtekening             Datum 

      

  

________________________          _____________________  _____________  

Naam onderzoeker                            Handtekening             Datum 
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