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In recent years, volatile fatty acid (VFA) production through anaerobic fermentation of
sewage sludge, instead of methane production, has been regarded as a high-value and
promising roadmap for sludge stabilization and resource recovery. This review first
presents the effects of some essential factors that influence VFA production and
composition. In the second part, we present an extensive analysis of conventional
pretreatment and co-fermentation strategies ultimately addressed to improving VFA
production and composition. Also, the effectiveness of these approaches is summarized
in terms of sludge degradation, hydrolysis rate, and VFA production and composition.
According to published studies, it is concluded that some pretreatments such as alkaline
and thermal pretreatment are the most effective ways to enhance VFA production from
sewage sludge. The possible reasons for the improvement of VFA production by different
methods are also discussed. Finally, this review also highlights several current technical
challenges and opportunities in VFA production with spectrum control, and further related
research is proposed.
© 2019 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
Keywords:
Sewage sludge
Anaerobic digestion
VFA production
Pretreatment
Co-fermentation
zhang@bjfu.edu.cn, (Panyue Zhang), taozhang@rcees.ac.cn. (Tao Zhang).

o-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

https://doi.org/10.1016/j.jes.2019.05.027
taozhang@rcees.ac.cn
Journal logo
https://doi.org/10.1016/j.jes.2019.05.027
Imprint logo


94 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 8 7 ( 2 0 2 0 ) 9 3 – 1 1 1
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1. Key factors influencing VFA production from sewage sludge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.1. pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
1.2. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
1.3. C/N ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.4. Retention time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.5. Organic loading rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.6. Trace elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2. Typical pretreatment methods for enhancing VFA production from sewage sludge . . . . . . . . . . . . . . . . . . . 99
2.1. Physical pretreatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.1.1. Ultrasonic pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.1.2. Thermal pretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.2. Chemical pretreatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.2.1. Alkaline pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.2.2. Free nitrous acid (FNA) pretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.3. Biological pretreatment methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.3.1. Enzyme pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.3.2. Bio-surfactant pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.4. Combined pretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3. Co-fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4. Summary and prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction

In the early 20th century, the activated sludge process began
to be applied in wastewater treatment, and now it is one of
the most widely used biological technologies around the
world. One of its drawbacks is that a large amount of excess
sludge is generated and requires proper treatment before final
disposal (Appels et al., 2013). The sewage sludge production
represents approximately 0.5%–2.0% (volume) of the influent
treated with the conventional activated sludge process in
wastewater treatment plants (WWTPs) (Montanes et al., 2013).
With more and more strict wastewater treatment and
management standards, the rapid increase in sewage sludge
production is inevitable.

By the end of 2010, sewage sludge production in Europe
reached more than 10.0 million tons/year (dry solid), and it is
estimated that it will reach 13.0 million tons/year in 2020
(Kelessidis and Stasinakis, 2012). A similar trend was observed
in North America: sewage sludge production in the United
State increased from 6.9 to above 8.0 million tons/year from
2005 to 2015 (Westerhoff et al., 2015), and Canada produces
around 4.0 million tons/year (Foladori et al., 2010). The
approximately 3300 existing WWTPs in China produced
more than 35million tons of dry sludge in 2013. It is estimated
that sludge production in China will reach 60 million tons/
year in 2020 because of stricter discharge standards and more
newly built sewage treatment plants (Yang et al., 2015).

Sewage sludge is mainly formed from microorganism
growth and particles from influent (Fig. 1) (Nielsen et al.,
2012). Among these, the flocs are characterized by the
following groups of components: (1) organic carbon com-
pounds (approximately 60% on a dry basis), in large part from
biological origin, among which are microorganisms, fiber and
extracellular polymeric substances (EPS), (2) inorganic parti-
cles, such as silicates and heavy metals, (3) pathogens and
other microbiological pollutants, and (4) water, normally
varying from 63% to more than 99% (Christensen et al., 2015;
Rulkens, 2007).

More specificially, most studies have described the char-
acterization of sewage sludge in terms of protein, carbohy-
drate, cell biomass, humic acid and DNA. Because of the
different determination methods and influent sources used,
sludge composition varies in the range of 10%–24% bacterial
biomass; 7%–19% carbohydrates; 25%–62% proteins; 8%–29%
humic substances; and <3.5% DNA (Values as % volatile
solids, VS) (Gonzalez et al., 2018). Except for humic sub-
stances, other substrates are biodegradable anaerobically.
However, sewage sludge in its combined organized structure
is difficultly biodegradable compared to its individual
components.

The disposal cost of sewage sludge usually accounts for
around 50% of the total operational cost in WWTPs (Appels
et al., 2008). With the vast amount of the generated sludge
from WWTPs, which also contains a substantial quantity of
organic matter, therefore, much attention has been focused
on the reuse and recycling of the valuable components from
sludge, such as value-added products and bioenergy. Cur-
rently, anaerobic digestion has been widely applied in practice
for sludge treatment and resource recovery. In place of
traditional treatments for methane production, anaerobic



Fig. 1 – Schematic picture of activated sludge adapted from (Nielsen et al., 2012).
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fermentation for VFA production is a promising technology in
sludge treatment and resource recovery (Fang et al., 2018). As
shown in Table 1, VFAs are short-chain fatty acids that consist
of six or fewer carbon atoms.

Compared to methane, VFAs have higher value and a
wider range of applications, such as in the food and
pharmaceutical industries as preservatives (Lee et al., 2014),
in the production of esters, bioplastics (Kleerebezem and van
Loosdrecht, 2007) and bioenergy (Uyar et al., 2009), as well as
in the biological removal of nutrients from wastewater as a
carbon source (Agler et al., 2011; Henze, 1991; Li et al., 2011).
Therefore, more and more studies have shifted to VFA
production through the fermentation of organic wastes.
However, VFA production from sewage sludge is usually
limited by low hydrolysis rates and biodegradation. To
overcome these problems, different sludge-treatment param-
eters have been thoroughly evaluated at various scales,
including bench, pilot, and large-scale. Lee et al. (2014)
reviewed the production and application of VFA derived
from various wastes and also discussed the factors influenc-
ing the VFA yields from the wastes. However, most published
studies have focused on improving VFA yields, while fewer
paid attention to investigating how to control the product
spectrum in reactors under different operating conditions.
In the present work, a glance was first taken at the main
characteristics of sewage sludge. Following this, a discussion
of the effects of the different operational parameters
Table 1 – Names, formulas and chemical structures of
volatile fatty acids.

Compound Formula Chemical structure

Acetic acid C2H4O2 CH3-COOH
Propionic acid C3H6O2 CH3-CH2-COOH
n-butyric acid C4H8O2 CH3-(CH2)2-COOH
iso-butyric acid C4H8O2 (CH3)2-CH-COOH
n-valeric acid C5H10O2 CH3-(CH2)3-COOH
iso-valeric acid C5H10O2 (CH3)2-CHCH2-COOH
n-caproic acid C6H12O2 CH3-(CH2)4-COOH
considered to influence the VFA yield and composition is
presented. In line with the discussion of the results, various
approaches (including pretreatment and co-fermentation) are
comprehensively examined. Furthermore, the underlying
mechanisms that influence the hydrolysis rate, VFA produc-
tion and composition are identified. Finally, the possible
technical issues and present research gaps for each method
are discussed and summarized.
1. Key factors influencing VFA production from
sewage sludge

As illustrated in Fig. 2, during anaerobic fermentation of
sewage sludge, the complex organicmatters, such as proteins,
carbohydrates, and lipids, are firstly converted to their soluble
forms, which are then rapidly fermented to pyruvate through
glycolysis, and finally to organic acids. Since anaerobic
fermentation is a multi-stage process with chemical and
biological reactions, different operational conditions such as
pH, temperature, C/N ratio and solids retention time (SRT), as
well as organic loading rate (OLR), have great effects on the
performance of the process, thus influencing the yield and the
distribution of VFA (Cokgor et al., 2009; Rughoonundun et al.,
2012; Wijekoon et al., 2011; Yuan et al., 2011). Most of the
researchers examined one condition at a time and there are
only a few studies evaluating their interactive effects. In view
of that, the factors affecting the VFA yields from sewage
sludge are discussed individually as follows.

1.1. pH

pH is one of the most important factors that significantly
influence the efficiency of hydrolysis and acidification
(Horiuchi et al., 2002; Lin and Li, 2018). Even though anaerobic
bacteria have a wide adaption ability, most of the acidogens
cannot survive under extremely acidic (pH ≤ 3) or alkaline
(pH ≥ 12) conditions (Biswas et al., 2009). As shown in Table 2,



Fig. 2 – Major pathways of anaerobic fermentation of sewage
sludge.
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various studies concluded that the optimal pH for the
maximum VFA yield from sludge is in the range of 8–11
(Azman et al., 2015; Liu et al., 2012). The acidogenesis process
showed poor performance under alkaline conditions com-
pared to neutral pH (Ma et al., 2016). Hence, the increased VFA
production at alkaline pH was probably contributed by the
increased hydrolysis rate and biodegradation due to disinte-
gration and solubilization of protein and carbohydrate from
bacterial cells. Meanwhile, proteins usually are more biode-
gradable substrates than carbohydrates (Wu et al., 2009; Yuan
et al., 2006). This effect is similar to that of alkaline
pretreatment of the sludge, as discussed in Section 2.2.1. In
addition, alkaline conditions inhibit the activity of
methanogenesis, which can consume produced VFA for
methane formation (Jiang et al., 2013; Jie et al., 2014).

pH also influences the fractions of individual VFA, espe-
cially regarding acetate, propionate and butyrate (Feng et al.,
2009a). At low pH from 4.0 to 5.0, the production of ethanol
increases, while at higher pH more VFA are produced (Ren
et al., 1997). The level of butyrate is usually high and is the
dominant VFA species at pH values lower than 5.5, while
acetate is produced as the major product at neutral and
alkaline pH, and information regarding propionate
Table 2 – Effect of pH on volatile fatty acid (VFA) production and

Type of wastes pH range
studied

Optimal
pH

VFA yie

Waste activated sludge 4–11 10 196 mg/g V

Waste activated sludge 5–12 10 302 mg COD
VSS

Waste activated sludge 6–9 8 520 mg COD
VSS

Proteinaceous sewage
sludge

3–11 9 600 mg COD

Primary sludge 3–11 10 302 mg COD
VSS
dominance is seldom reported (Cokgor et al., 2009; Temudo
et al., 2007). It is necessary to further investigate the influence
of pH on specific microbial communities, which directly
dominate the VFA composition.

1.2. Temperature

Temperature is another important factor influencing VFA
production from anaerobic fermentation. Generally, anaero-
bic fermentation for VFA production from sewage sludge has
been carried out in a wide range of temperatures from
psychrophilic (<20°C), mesophilic (25–40°C) to thermophilic
(45–60°C) conditions (Ferreiro and Soto, 2003; Feng et al., 2019;
Kashyap et al., 2003; Zhuo et al., 2012). A brief literature review
is given in Table 3. Many research studies indicated that a
proper increase in fermentation temperature could lead to
enhancement in VFA production by 20% to more than 2-fold
(Skalsky and Daigger, 1995; Yuan et al., 2016). This positive
result was mainly attributed to the presence of a greater
amount of soluble proteins and carbohydrates due to higher
activities of enzymes, such as protease and α-glucosidase
(Moser-Engeler et al., 1998). Moreover, Yuan et al. (2011) stated
that the hydrolysis rate increased by over 50% when the
fermentation temperature of sludge increased from 14.6 to
24°C. From a thermodynamics point of view, the higher
temperature reduces the initial Gibbs energy in the biodegra-
dation of organic matter, leading to a faster digestion rate
(Kanokwan, 2006).

However, the influence of temperature on the VFA profile
from the fermentation process is limited and contradictory.
Ahn and Speece (2006) found that acetate was dominant
either in mesophilic or thermophilic fermentation from
primary sludge (PS). Yuan et al. (2011) performed the
fermentation of waste activated sludge (WAS) from 4.0 to
24.6°C. As the temperature increased from 4.0 to 14.0°C, the
percentage of propionate and butyrate increased slightly from
20% to 29% and from 11% to 16%, respectively; while the
percentage of acetate declined from 55% to 43%. Conversely,
Yuan et al. (2016) demonstrated that mesophilic fermentation
of WAS at (30 ± 2)°C under alkaline conditions presented
higher acetate production as the major component of VFA
compared to psychrophilic conditions at (15 ± 2)°C.

Even though several advantages were reported for opera-
tion under thermophilic conditions, some disadvantages are
worth considering. Firstly, the anaerobic microorganisms in
composition.

ld Main VFA compositions at maximal
yield

Reference

SS Acetic, propionic and iso-valeric acids Chen et al.
(2006)

/g Acetic and propionic acids Jie et al. (2014)

/g Propionic acid Feng et al.
(2009a)

/g VS Acetic and propionic acids Liu et al. (2012)

/g Acetic, propionic and iso-valeric acids Wu et al. (2009)



Table 3 – Effect of temperature on volatile fatty acid (VFA) production and composition.

Type of wastes Temperature range
studied

Optimal
temperature

VFA yield Main VFA compositions under
maximal yield

Reference

Primary sludge 10–35°C 35°C 340 mg COD/g
VSS

Acetic and propionic acids Ferreiro and
Soto (2003)

Waste activated sludge 40–60°C 50°C 240 mg/g VSS Acetic and butyric acids Xiong et al.
(2012)

Waste activated sludge 10–35°C 35°C 192 mg COD/g
VSS

Acetic acid Feng et al.
(2009a)

Waste activated sludge 10–55°C 37°C 197 mg COD/g
VS

Acetic acid Zhuo et al.
(2012)

Waste activated sludge 4–24.6°C 24.6°C About
420 mg/g VSS

Acetic and butyric acids Yuan et al.
(2011)
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thermophilic conditions are more sensitive to environmental
changes than in a mesophilic process (Kim et al., 2006). It was
reported that thermophilic process failure could occur if the
rate of temperature change exceeded 1.0°C/day, and thus the
changes in temperature should be less than 0.6°C/day to
maintain stable conditions for VFA production (Perot et al.,
1988). Besides, higher temperature increases the pKa of VFA,
which further increases undissociated fractions and raises the
toxic risk to bacteria, especially at low pH and high VFA
concentrations.

1.3. C/N ratio

The performance of anaerobic fermentation is also signifi-
cantly affected by the carbon-to-nitrogen (C/N) ratio through
influencing themicrobialmetabolism.AnoptimumC/Nratio is
required for anaerobic fermentation because an appropriate
nutrient balance is essential to anaerobic bacteria for their
growth and maintenance under a stable environment
(Guerrero et al., 1999; Yu and Fang, 2001). It was reported that
C/N ratios ranging from 15 to 70 (on a mass basis) have been
most commonly used for anaerobic digestion (Kayhanian and
Tchobanoglous, 1992). Generally, a C/N ratio range of 20–30 is
considered to be the optimumcondition for anaerobic fermen-
tation (Zhang et al., 2014). However, sludge itself is a substrate
with a high nitrogen content but low amount of biodegradable
carbon, so its C/N ratio is usually in the range between 6 and 9.
Therefore, a common method used to enhance efficiency
is by sludge co-fermentation with carbon-rich substrates
(Rughoonundun et al., 2012). Chen et al. (2013b) studied the
performance of VFA production by co-fermentation of WAS
and kitchen waste of different C/N ratios, which concluded
that the conditions for optimumVFAproductionwere found at
a C/N ratio of 22 under alkaline conditions, through signifi-
cantly enhancing the general activity of anaerobic microor-
ganisms as well as the activities of key acid-producing
enzymes. However, in recent studies it was found that the
fermentation processes performed well even at low C/N ratio
(10–20). Liu et al. (2008) concluded that themaximum total VFA
yield of 152.1 mg TCOD/g VSadded was obtained from sludge
mixtureswith a high initial C/N ratio of 15.1 compared to ratios
of 12.2 and 5.0. The above findings indicate that the C/N ratio
plays an important role in the anaerobic fermentation process
of sewage sludge. Thus, a balanced and proper C/N ratio in the
feedstock is alsoa crucial factor toboost theacidogenicactivity.
Although it has been reported that when the C/N ratio
increased from 5 to 30, the butyrate fraction gradually
increased as the acetate fraction declined (Liu et al., 2008), it
is however difficult to conclude that there is direct relationship
between C/N ratio and the distribution of individual VFAs like
that for pH. Thus, the operating parameters and characteristics
of mixed substrates other than C/N ratio may play more
important roles. Further studies should pursued in the future.

1.4. Retention time

The solid retention time (SRT) and hydraulic retention time
(HRT) influence waste hydrolysis and VFA production during
anaerobic fermentation (Jankowska et al., 2018). The SRT is
equal to HRT in most cases of VFA production from sewage
sludge, when the solid substrate and microbial culture are
mixed during continuous operation. Selecting proper HRT/
SRT can avoid wash-out of slow-growing bacteria (Ghosh and
Pohland, 1974).

While more than 20 days anaerobic digestion are required
for methane production, various research studies proposed
that a lower SRT between 5 and 10 days is beneficial to VFA
production from sewage sludge, because a relatively shorter
SRT can prevent the growth of methanogens. However, in
order to enhance the hydrolysis rate of the sludge, the
retention time should be optimized (Ferrer et al., 2010; Miron
et al., 2000; Xiong et al., 2012). Miron et al. (2000) examined the
effect of SRT between 3 and 15 days on the hydrolysis,
acidification and methanogenesis of PS. The results indicated
that acidogenic conditions prevailed when the SRT was lower
than 8 days, while the methanogenic process prevailed when
the SRT was longer than 10 days (Table 4). Similar results were
published by Yuan et al. (2009). Some authors suggested that
the SRT of PS for VFA production is 5–6 days, which is shorter
than that of WAS, because the WAS is more difficult to
solubilize due to its high fraction of cell biomass (Bouzas et al.,
2002; Jiang et al., 2007).

Unfortunately, no consistent conclusion has been reached
regarding the changes in VFA distribution from anaerobic
sludge fermentation with retention time. Yuan et al. (2009)
stated that the dominant product shifted from acetate to
higher amounts of propionate, butyrate and caproate as the
SRT increased from 6 to 10 days. In contrast, another study
showed that with the increase in SRT from 4 to 16 days, the
fraction of acetate increased and the percent of propionate



Table 4 – Effect of SRT on volatile fatty acid (VFA) production and composition.

Type of waste SRT range
studied

Optimal
SRT

VFA yield Main VFA compositions under
maximal yield

Reference

Waste activated sludge 0–312 hr 5 days 240 mg/g VSS Acetic and butyric acids Xiong et al.
(2012)

Waste activated sludge 5–10 days 10 days 140 mg/g TCOD Acetic acid Yuan et al.
(2009)

Waste activated sludge 4–16 days 12 days 192 mg COD/g
VSS

Acetic acid Feng et al.
(2009b)

Primary sludge 4–8 days 6 days 36 mg HAc/L Acetic acid Bouzas et al.
(2002)

Primary sludge 4–10 days 6 days 214 mg/g VSS Acetic and butyric acids Bouzas et al.
(2002)

Primary sludge + waste
activated sludge

About 10–30 days 9.4 days 391 mg/g VSS Propionic acid Ferrer et al.
(2010)
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decreased (Feng et al., 2009b). Probably because of different
operating conditions, a confusing view was obtained when
the SRT or HRT was considered as a single parameter. To
further understand the underlying mechanisms behind these
observations, it would be interesting to examine the microbial
community in the anaerobic fermentation process under
different SRTs.

1.5. Organic loading rate

The organic loading rate (OLR), which is calculated from the
substrate concentration and hydraulic retention time, indi-
cates how many kilograms of organic substrates are loaded
daily per unit of digester volume (Wijekoon et al., 2011; Liu
et al., 2019). So far, most OLRs in anaerobic fermentation of
waste sludge are no more than 30 g TS/(L ∙day), whether in
continuous or batch systems (Banerjee et al., 1999; Chen et al.,
2006). On the premise of system stability, a high OLR means
high sludge treatment capacity and high VFA production,
hence the yield or production of VFA increases with increas-
ing OLR within a reasonable range (Min et al., 2005). However,
at a higher OLR achieved through decreasing HRT, lower VFA
production could be observed, temporarily or permanently,
due to lower hydrolysis efficiency. For example, Banerjee et al.
(1999) demonstrated that the total VFA production from PS
fermentation decreased from 0.4 to 0.3 g/L, when the OLR
increased from 4 to 7 g TS/(L ∙day) by decreasing HRT from 30
to 18 hr.

The OLR also significantly influences the VFA distribution,
especially when the OLR is high either from an increase in the
feed concentration or decrease in HRT, commonly with a
shift from more-oxidized compounds to more-reduced com-
pounds, such as propionate production derived from the
lactate-propionate pathway (Dijkstra, 1994; Li et al., 2016;
Rodríguez et al., 2006). Yu et al. (2002) reported that under
mesophilic conditions, when the OLR increased from 4 to
24 kg COD/(m3 ∙day), the percentage of propionate increased
from 13% to 41% of the total VFA, while the percentage of
acetate declined from 40% to 17%. Similar results were
observed during VFA production from food waste and starchy
wastewater (Yu, 2001). However, if the OLR increases further
beyond a certain limit, the fermentation system could
collapse due to lactate accumulation and pH drop (Jouany,
2006). It is necessary to determine and clarify the optimal
range of OLR with different bioreactors.

1.6. Trace elements

Besides the carbon source and the nutrients nitrogen and
phosphorus, trace elements are also necessary for anaerobic
microorganism metabolism. As shown in Table 5, these trace
elements (e.g. cobalt, nickel, zinc and iron) play a very
important role in activating and maintaining enzymatic
activities in the anaerobic fermentation process (Karlsson
et al., 2012; Thanh et al., 2016). For example, Co is a cofactor of
carbon monoxide dehydrogenase (CODH), which is a key
enzyme both for the production and consumption of acetate
(Roth et al., 1996; Zandvoort et al., 2006a). Similarly, Ni and Fe
are essential cofactors of CODH. Moreover, they are also
essential for the activity of many other hydrogenases, and
thus affect both fermentative and methanogenic microorgan-
isms (Vignais and Billoud, 2007). Besides, molybdenum (Mo)
and tungsten (W) are related to formate dehydrogenases,
which catalyze formate production by propionate oxidizers
(Dong et al., 1994).

However, most researchers focused on trace elements with
the objective of improving biogas production through VFA
utilization (Zandvoort et al., 2006b; Zitomer et al., 2008;
Yazdanpanah et al., 2018), and there is very limited informa-
tion on the role of trace elements in VFA production. Lin et al.
(1998) systematically investigated the effect of trace element
supplementation on the anaerobic degradation of butyrate.
Kim et al. (2002) reported that the addition of Ca, Fe, Co, and Ni
accelerated propionate production at high concentrations in
thermophilic anaerobic digestion. Furthermore, Karlsson et al.
(2012) investigated the effect of dosing trace elements (Fe, Co
and Ni) on biogas production and indicated that the addition
of trace elements led to an increase in acetate concentration
with a concomitant increase in biogas production. In short,
few studies specifically focused on the effects of trace
elements on VFA yield and also the microbial community in
WAS fermentation processes, and further investigations
would be required to understand how trace elements enhance
VFA yield from sewage sludge.



Table 5 – Selected trace elements in functional enzymes
of the anaerobic digestion process.

Nutrient Enzymes Reference

Co Corrinoids, CODH, Proteases Roth et al.
(1996)

Cu Hydrogenase, CO-dehydrogenase Zandvoort
et al. (2006a)

Fe CODH, sulphides, Formate
dehydrogenase,

Karlsson
et al. (2012)

Wo or W Formylmethanofuran-dehydrogenase,
Aldehyde-oxydoreductase

Dong et al.
(1994)
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2. Typical pretreatment methods for enhancing
VFA production from sewage sludge

The hydrolysis of sludge limits the rate and extent of organic
degradation in the anaerobic fermentation process, as pro-
teins, carbohydrates and lipids as well as soluble inert
materials are wrapped in sludge flocs and microbial cell
walls, which thus inhibit the release and degradation of
organic matter (Carrere et al., 2010). Therefore, suitable
approaches are usually employed to enhance sludge hydroly-
sis to improve the anaerobic fermentation performance
(Ariunbaatar et al., 2014). As shown in Table 6, various
pretreatment methods have been explored to enhance the
sludge solubilization and further VFA production. These
approaches are mainly divided into physical, chemical, and
biological processes, as well as their combination (Braguglia
et al., 2012; Chu et al., 2002; Ge et al., 2010; Yeom et al., 2002).

2.1. Physical pretreatments

2.1.1. Ultrasonic pretreatment
Ultrasonic pretreatment generates cavitation that leads to
physical and chemical changes in the liquid phase, which in
turn produces physical effects (shear forces) at low frequency
and even free radicals, especially under high frequency
conditions (Carrere et al., 2010). The efficiency of sludge
disintegration by ultrasonic pretreatment mainly depends
on the operating parameters such as frequency and sludge
concentration (Neumann et al., 2017; Zhang et al., 2007).
According to Show et al. (2007), the optimal range of solid
content for ultrasonic pretreatment should not be higher than
3.2% TS. Solid content above 3.2% TS hinders the formation of
cavitation bubbles and reduces the efficiency of pretreatment
as a consequence of the increase of viscosity. Generally,
ultrasonic pretreatment of sludge is conducted at 20–40 kHz.
It is worth noticing that hydroxyl radicals are generated when
the frequency is above 150 kHz, as described by Chatel (2017).

Ultrasonic pretreatment leads to sludge floc disintegration
and lysis of microorganisms (Zabaneh and Bar, 1991), reduc-
tion in particle size and cell damage, which consequently
increase the hydrolysis rate (Cella et al., 2016). Recently,
several researchers have examined the impact of the ultra-
sonic pretreatment of sludge on VFA production. According to
Yan et al. (2010), the rate and extent of hydrolysis (expressed
by soluble protein and carbohydrate concentrations) in-
creased thanks to the ultrasonic pretreatment. Maximum
VFA accumulation was reached (3110 mg COD/L) in anaerobic
fermentation of sludge under alkaline conditions. After 72 hr
of fermentation, the substrate was treated with ultrasound at
1.0 kW/L. This step increased the VFA recovery 2-fold com-
pared with the control group (not treated with ultrasound).
Similar results were also observed, where ultrasonic pretreat-
ment resulted in about 4-fold higher enhancement in VFA
yield for the pretreated sludge compared to untreated
samples (Guo et al., 2014). During the ultrasonic process, the
temperature measurably increased along with the increase in
operation time, thus it is necessary to consider and distin-
guish the different effects of temperature on solubilization
and biodegradation. In one study regarding methane produc-
tion from WAS, Le et al. (2016) found that better performance
can be achieved by coupling the effects of ultrasonic and
thermal pretreatments. When keeping a mild temperature
below 35°C, the biodegradability of WAS increased only 2%,
although an increase in soluble chemical oxygen demand
(SCOD) occurred (Cella et al., 2016). One possible reason for
this result could be explained by the contribution of thermal
effects. However, little information is available about whether
sonication or the thermal effect contribute more to the
solubility of proteins and carbohydrates and the increase in
biodegradability of sewage sludge.

Information regarding the mechanism by which ultrasonic
pretreatment influences VFA composition is limited. In the
same study performed by Yan et al. (2010), it was found that
acetate was a dominant VFA at different ultrasonic energy
densities, but its concentration decreased by approximately
7.4% while odd VFAs (propionate and valerate) increased
nearly 10%when the ultrasonic energy density increased from
0 to 4.0 kW/L. The author explained this phenomenon based
on variations of related key enzymes, while the remaining
mechanisms could merit further investigation.

In general, ultrasonic pretreatment is relatively energy-
intensive and requires careful maintenance operations due to
irradiation. Combination with other chemical pretreatment
methods, such as alkaline and acid treatments, might be a
feasible way to elevate the application potential of the
ultrasound process. Liu et al. (2009) reported that the total
VFA yield from WAS fermentation increased by 68.2% with
ultrasonic-alkaline pretreatment. Another drawback of ultra-
sonic pretreatment, besides being an energy-intensive tech-
nique, is that the sludge concentration should be below 4%;
otherwise, the efficiency significantly deceases (Pilli et al.,
2016).

2.1.2. Thermal pretreatment
Thermal pretreatment has been shown to have positive
impacts on the disintegration of sludge flocs and cell
membranes, resulting in the solubilization of organic com-
pounds, leading further to improved performance within the
anaerobic process (Haug et al., 1978; Neyens and Baeyens,
2003). The performance of thermal pretreatment depends on
the temperature and operation time, in which the pretreat-
ment temperature is more influential in sludge disintegration
than the operation time (Bougrier et al., 2008). Most studies
were carried out at mild-thermal temperatures (55–100°C) and
high-thermal temperatures (100–220°C) from minutes to



Table 6 – Effect of different pretreatment methods on volatile fatty acid (VFA) yield from sewage sludge.

Pretreatment
method

Sludge type Operating conditions VFA yield (mg
COD/g VSS)

Reference

Ultrasound Waste
activated
sludge

Frequency of 20 kHz, energy, density of 1.0 kW/L, 10 min, pH
10.0, 20°C

445 Yan et al. (2010)

Ultrasound Waste
activated
sludge

Frequency of 28 kHz, 60 min, pH 12 230 Liu et al. (2009)

Thermal Waste
activated
sludge

160°C at 6 bar, 37°C without pH control 0.2a Morgan-
Sagastume et al.
(2011)

Alkaline Waste
activated
sludge

pH 9.0 (NaOH), mesophilic (35±2)°C 298 Zhang et al.
(2009)

Alkaline Waste
activated
sludge

pH 10.0 (NaOH), 20-22°C 256.2 Yuan et al. (2006)

Alkaline Waste
activated
sludge

pH 10.0 (CaOH2), 25°C 215.5 Li et al. (2011)

Free nitrous acid (FNA) Waste
activated
sludge

(20±1)°C, 1.54 mg FNA/L, pH 10 370.1 Zhao et al.
(2015a)

Enzyme Waste
activated
sludge

Mixed enzymesb, dosage of 0.06 g/g DS, 50°C without pH control 211.7 Luo et al. (2011)

Enzyme Waste
activated
sludge

Amylase dosage of 0.1 g/g sludge, 28 hr, 35°C without pH control 93.7 Yu et al. (2013)

Bio-surfactant Waste
activated
sludge

Rhamnolipid dosage of 0.05 g/g dry sludge, 30±1°C 311 Huang et al.
(2015)

Bio-surfactant MBRe sludge Alkyl polyglcosidec, dosage of 0.2 g/g dry sludge, 35±1°C, pH
11.0

282.9 Zhao et al.
(2015b)

Alkaline + thermal Waste
activated
sludge

90°C, pH 12.0 220 Liu et al. (2009)

Surfactant + biological
enzyme

Waste
activated
sludge

Sodium dodecyl sulfate (SDS) dosage of 0.10 g/g DS + Mixed
enzymes 0.06 g/g DSd + 50°C without pH control

240.8 Luo et al. (2011)

a The unit is gVFA/g TCOD.
b Mixed (mixed-enzymes 0.06 g/g DS, protease: a-amylase = 3:1).
c Alkyl polyglucoside.
d SDS + ME (sodium dodecyl sulfate (SDS) 0.10 g/g dry sludge (DS), mixed-enzyme, 0.06 g/g DS, protease: a-amylase = 3:1.
e Membrane bioreactor.
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several hours (Chen et al., 2019; Choi et al., 2018; Mottet et al.,
2009; Nazari et al., 2017).

Reduction in particle size can be observed at a mild-
thermal temperature of 50°C after 20 min (Audrey et al., 2011),
and as expected, the deflocculation increased with increased
temperature, which improved the hydrolysis rate (Vavilin et
al., 2008). However, higher reduction in particle size was
observed at 190°C compared to the untreated sample due to
the formation of chemical bonds (Bougrier et al., 2006).
Besides, another effect of thermal pretreatment on sludge is
the increase in solubilization of proteins and carbohydrates
(Bougrier et al., 2008; Tsapekos et al., 2016). Seemingly, protein
is more prone to being solubilized than carbohydrate during
mild-thermal pretreatment. Audrey et al. (2011) demonstrated
that the solubilization degree of protein and carbohydrate
reached approximately 19% and 7%, respectively, at 95°C after
20 min. The solubilization of organic matter can increase
biodegradation, as expected. Nevertheless, the mild-thermal
pretreatment only contributed to 20% of protein and carbo-
hydrate degradation from their total fraction.

Most of the studies in recent decades have focused on the
use of thermal pretreatment to enhance the dewatering of
sludge and methane production (Gavala et al., 2003; Tanaka
et al., 1997). Although there have been few investigations on
the thermal pretreatment of sewage sludge for VFA produc-
tion, they have yielded some encouraging results (Wilson et
al., 2009). For instance, Wilson et al. (2009) investigated the
effect of thermal pretreatment on the anaerobic digestion of
sludge rich in lipid and protein, and found that the VFA
production was substantially improved by 37% after thermal
pretreatment at 170°C was applied. Besides, several re-
searchers combined thermal pretreatment and othermethods
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to obtain more favorable results (Morgan-Sagastume et al.,
2011). For example, Morgan-Sagastume et al. (2011) observed
considerably increased WAS solubilization with high-
pressure thermal pretreatment at 160°C and 6 bar in a full-
scale plant. In a sequential fermentation process, this resulted
in 2- to 5-fold increase in VFA yield and a 4- to 6-fold increase
in VFA production rate. In another study, the authors
pretreated substrates with high triglyceride content and
observed substantial enhancement in biogas production
owing to the contribution of higher VFA concentrations after
thermal pretreatment (Hiraoka et al., 1984). In contrast, Dwyer
et al. (2008) reported that sludge biodegradability started to
decrease at 170–190°C in spite of achieving high solubilization
efficiencies. Actually, too high a temperature may lead to the
formation of chemical bonds and result in the Maillard
reaction, which occurs between carbohydrates and amino
acids (Weemaes and Verstraete, 1998). There is still a lack of
relevant studies showing the precise effects of refractory
substrates on VFA production, and the optimal conditions in
which the maximal positive effects from increased solubili-
zation and minimal negative impacts of solubilized refractory
compounds at higher temperature can be sustained.

Thus, the results show that the thermal pretreatment of
WAS can enhance VFA yields, due to its high efficiency in the
solubilization of cell membranes leading to cell lysis and
subsequent release of intracellular organic matter. Moreover,
elevated temperature in thermal pretreatment processes has
the potential to produce Class A biosolids by destroying
pathogens. Compared to mild-thermal pretreatment, how-
ever, higher temperature perhaps has a negative energy
balance and attention should be paid to avoiding refractory
solubilization.

2.2. Chemical pretreatments

2.2.1. Alkaline pretreatment
Alkaline pretreatments have been widely applied in anaerobic
fermentation of sewage sludge, because the alkaline reagents
can largely destroy sludge floc structures, cell walls and cell
membranes in 10–24 hr under highly alkaline conditions (pH
8.0–12.5) by the action of hydroxyl ions (Kim et al., 2003;
Neyens et al., 2004). VFA production from sludge with alkaline
pretreatment is usually combined with pH control under
alkaline conditions (Yuan et al., 2006; Zhao et al., 2018). Due to
destruction of the amide groups in EPS during alkaline
pretreatment (Wingender et al., 1999), damage to EPS was
observed at pH 7.00–12.50, and rapid damage occurred at pH
11.50–12.00, which increased its solubilization (Xiao et al.,
2015).

Generally, the application of alkaline pretreatment could
improve VFA production from sludge in two ways: (1) by
increasing the solubilization of EPS and even intracellular
organic matter in the sludge and then providing more
biodegradable substrates for the acidogenic microorganisms,
and (2) concomitant biological processes decreasing and/or
preventing the activity of methanogens (Devlin et al., 2011;
Dogan and Sanin, 2009). Yuan et al. (2006) investigated the
VFA production from sludge fermentation in batch tests at
room temperature, which demonstrated that the maximum
VFA yield of 256 mg COD/g VSS obtained under alkaline
conditions (pH 10.0, NaOH) was 2.7-fold higher than that in
the blank group without alkaline addition. Besides, it was also
indicated that sludge fermentation under alkaline conditions
(pH 10.0, NaOH) significantly decreased methanogenic activ-
ity, resulting in lower VFA consumption and lower methane
production.

However, too much addition of alkalinity (pH > 12) would
generate refractory or toxic compounds that negatively
impact on acidogenic bacteria, resulting in a reduction in
VFA yields or increase in lag-phase time, although the SCOD
continuously increases (Chen et al., 2006). Similarly, Kim et al.
(2013) reported that the maximal methane production from
anaerobic digestion of sludge was obtained at pH 10.0, and
concluded that conversion of excess sludge to soluble matter
by NaOH is not always beneficial for anaerobic digestion.
Besides, concentrations of Na+ above 3.5 g/L can cause
subsequent inhibition of anaerobic fermentation (Appels
et al., 2008; Mouneimne et al., 2003).

The types of reagents used also affect the performance of
VFA production from sewage sludge. Due to higher solubili-
zation efficiency and VS removal than other types of alkaline
reagents, NaOH has been used as the major alkali reagent
(Chen et al., 2006; Yu et al., 2008). However, due to the function
of calcium bridging, Ca(OH)2 leads to better dewatering
performance for sludge (Su et al., 2013). As discussed in
Section 2.1, the dominant VFA composition was acetate under
alkaline conditions during the anaerobic fermentation
process.

2.2.2. Free nitrous acid (FNA) pretreatment
In recent years, a novel chemical pretreatment method based
on free nitrous acid (FNA) in enhancing the anaerobic
digestion of sludge has attracted great interest (Lu et al.,
2019; Wang et al., 2013b, 2019; Wu et al., 2018). This treatment
shows a strong biocidal effect, damaging cell membranes and
even killing 50%–80% microorganisms in sludge at ppm (parts
per million) levels within 12–48 hr (Pijuan et al., 2012; Wang
et al., 2013b). However, FNA could not destroy recalcitrant
materials in sludge, such as humic acid, within the dosage
range of positive effect on anaerobic digestion. The nitrite ion
under acidic conditions could generate several reactive
derivatives, as shown in Eq. (1):

HNO2 þHNO2↔N2O3 þH2O↔NO2 þNOþH2O ð1Þ

The produced small molecules, such as dinitrogen trioxide
(N2O3), nitrogen dioxide (NO2) and nitric oxide (NO), can easily
pass through cell membranes, and cause microbial inactiva-
tion (Jiang et al., 2011). Additionally, FNA or its derivatives also
break down EPS by oxidation and depolymerization of
proteins and carbohydrates (Zhang et al., 2015). The solubili-
zation of EPS and cells resulted in enhancement of the
hydrolysis rate and biodegradability of WAS, with the highest
improvement of approximately 50% and 27%, respectively
(Wang et al., 2013a).

The first work dealing with VFA production fromWASwith
FNA pretreatment was carried out by Zhao et al. (2015a). They
reported that the dosage of 1.54 mg HNO2-N/L in combination
with alkaline fermentation at pH 10.0 increased SCOD
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disintegration by 193.3%, resulting in 4.7-fold improvement in
VFA yields, at 370 mg COD/g VSS. Additionally, the fermenta-
tion time decreased from 15 to 4 days when the VFA reached
highest concentration. These results were in conformity with
another study that indicated FNA pretreatment improved the
hydrolysis rate and biodegradation potential (Wang et al.,
2013b). However, the VFA yield decreased nearly 23% with
more FNA addition to 3.08 mg HNO2-N/L, while the underlying
mechanisms remain unclear. It is worth mentioning that a
limited effect on hydrolysis and biodegradability of PS by FNA
pretreatment was observed compared to that of WAS (Zahedi
et al., 2016; Zhang et al., 2016), which was probably due to the
different substrate components and the biocidal effect func-
tion of FNA.

2.3. Biological pretreatment methods

2.3.1. Enzyme pretreatment
Microorganisms hydrolyze biomass with the help of various
extracellular enzymes. It is possible to improve the solubili-
zation of particulate organic matter in sludge and further
enhance VFA yield by addition of enzymes during the
anaerobic fermentation process (Romano et al., 2009). Com-
pared to physical and chemical pretreatment methods,
enzymes hydrolyze sludge without production of refractory
products.

For sludge biomass solubilization, amylase and protease or
a combination of the two were widely tested, because
carbohydrate and protein are major components of sludge.
Among them, it seems that endogenous amylase showed
higher efficiency in solubilization than endogenous protease
or a combination of both (Yang et al., 2010; Yu et al., 2013). In
addition to major biodegradable macromolecule substances,
the existence of lignocellulosic materials in sludge that are
complex and recalcitrant in structure also limit sludge
biodegradation. Addition of cellulase and ß-glucosidase was
found to increase the anaerobic biodegradability andmethane
production of sludge (Higgins and Swartzbaugh, 1986). Simi-
larly, Roman et al. (2006) also indicated that the addition of a
combination of cellulase and pronase resulted in 4-fold higher
improvement in solid reduction compared to the control
group during anaerobic digestion of primary sewage sludge. It
is important that these enzymes are able to degrade organic
substances mainly from EPS, while not providing a direct
conversion from solid into the liquid phase (Ayol, 2005;
Watson et al., 2004). Sesay et al. (2006) observed unremarkable
cell lysis in sludge after addition of cellulase, α-amylase, and
proteinase.

He et al. (2014), who investigated the effect of lysozyme for
promoting WAS biodegradability, demonstrated that the ratio
of SCOD to TCOD increased significantly with a lysozyme/TS
ratio ranging from 5% to 15% (W/W, lysozyme weight/TS
weight) and lysozyme incubation time from 0 to 240 min. Yu
et al. (2013a) demonstrated that the addition of 10% (W/W)
crude amylase extracted from strains was efficient in increas-
ing the SCOD by 78.2% and the VFA concentration production
after 7 hr by 129.6%. The increased VFA production of sludge
with the help of enzymes mainly resulted from increased
solubilization and their own digestion function (Christ et al.,
2000; Yu and Fang, 2001).
Several factors, such as incubation time and environmen-
tal conditions, can influence enzyme activity (Sukumaran
et al., 2009). More research is necessary to elucidate the
strategies for enzyme dosing, including how and when the
addition of enzymes to the anaerobic digestion system can
improve the digestion rates and VFA yields of sludge. For
instance, enzymes could be added as enzymatic solutions or
bioaugmentation to treat sludge biomass before anaerobic
fermentation, or added to the anaerobic digestion process
(Romano et al., 2009). In short, biological pretreatment using
enzymes is a mild and environmentally friendly approach to
enhancing the hydrolysis rate and biodegradation of sludge,
even though the high cost of commercial and/or low-purity
enzymes is still a prime limitation for its wide application
(Harris and McCabe, 2015).

2.3.2. Bio-surfactant pretreatment
Recently, bio-surfactants secreted extracellularly or as a
fraction of the cell membrane by microorganisms (Zajic
et al., 1983), such as glycolipids (e.g., rhamnolipid),
lipopeptides (e.g., surfactin), saponin (e.g., tea saponin), and
phospholipids, have been applied in sludge pretreatment over
a wide range of temperatures, pH, and salinity (Ji et al., 2010;
Liu et al., 2018a; Mayer et al., 1999; Xu et al., 2018; Zhang et al.,
2010). As a novel pretreatment method, bio-surfactants can
change the affinity between microbial cells and organic
matter, thus enhancing the solubilization of EPS from the
cell surface (Wang et al., 2011a). Moreover, some reports
stated that the bio-surfactants can stimulate hydrolytic
production of enzymes such as cellulase and xylanase during
the fermentation process (Liu et al., 2006).

Research regarding the improvement of VFA production by
bio-surfactants during anaerobic fermentation is still at a
preliminary stage, but some exciting results have been
published (Yi et al., 2013; Zhou et al., 2013b). Among them,
rhamnolipids, a group of bio-surfactants, have been studied
extensively for the promotion of organic solubilization and
enhancement of VFA production from sludge. For example, Yi
et al. (2013) indicated that addition of 0.3 g rhamnolipid/g dry
sludge improved the hydrolysis of EPS approximately 4.8-fold
after 6 hr, and the VFA yields almost tripled after 3 days
compared to the blank test during the anaerobic fermentation
of WAS without inoculum sludge. In addition, Zhou et al.
(2013b) reported that the optimal dosage of rhamnolipid at
0.04 g/g TSS resulted in 3.24-fold higher VFA production than
that in the blank after 96 hr. Besides, the mechanisms of the
main three types of bio-surfactants (surfactin, rhamnolipid
and saponin) used for VFA production of sludge were
investigated (Huang et al., 2015). Surfactin mainly increases
the dissolution of organic matter to reach a high VFA
accumulation level. Rhamnolipid is a suitable candidate to
increase VFA production and also inhibits methanogenesis.
However, it simultaneously slows down the metabolism of
other microorganisms in sludge, which could undesirably
decrease dehydrogenase and acetate kinase activities and
further decrease acetate production (Huang et al., 2015). In
addition, a small part of rhamnolipid and saponin that both
have glycosyl groups could be hydrolyzed into saccharides,
which were used as substances for VFA accumulation. To
achieve the same VFA yield during anaerobic fermentation,
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the required dosage of surfactin was 2.5- and 5.0-fold less
compared to rhamnolipid and saponin, respectively (Huang
et al., 2015; Zhou et al., 2013b).

Other bio-surfactants may be more effective; however,
little information about the role of different types of bio-
surfactants in the promotion of VFA production has been
introduced (Huang et al., 2015; Zhao et al., 2015b; Xu et al.,
2019). Therefore, it is necessary to screen out suitable bio-
surfactants for sludge from different sources and further
investigate mechanisms of the enhancement by different bio-
surfactants. Some works have been carried out at lab scale,
with few works at pilot and full-scale due to the high cost of
commercial bio-surfactants. Nonetheless, bio-surfactant pro-
duction from inexpensive substrates and effective microor-
ganisms, such as agro-industrial wastes, could be considered
as a promising strategy, and could mitigate agricultural and
industrial waste treatment issues.

2.4. Combined pretreatment

The performance of sludge fermentation depends on several
factors such as sludge type, process parameters and so on.
Due to the intrinsic disadvantages and limitations of individ-
ual pretreatment methods, therefore, researchers have inves-
tigated combined pretreatments coupling two or more
pretreatment methods to create synergistic effects on the
hydrolysis and even acidification of sludge (Feng et al., 2014;
Liu et al., 2018b; Tan et al., 2012).

For example, a combination of alkaline and microwave
pretreatments was carried out to produce VFA by anaerobic
fermentation fromWAS, resulting in about 80% enhancement
of VFA yield and reduction in fermentation time (Yang et al.,
2013). In this combinedpretreatment, the alkaline solutionwas
initially added into sludge to break down the floc structure and
weaken the cell walls of the bacteria, rendering them more
susceptible to lysis by sequentmicrowavepretreatment. These
processes can then generate a synergetic effect for hydrolysis
and acidification, thus resulting in shortening the time needed
for highVFA accumulation.Moreover, comparing the effects of
thermo-acid, thermo-alkaline, ultrasonic-alkaline and
ultrasonic-acid combined pretreatment techniques on the
solubilization and subsequent acidification efficiency of WAS,
the thermo-alkaline and ultrasonic-alkaline pretreatment
methods showed greater efficiency in VFA production due to
significant improvement inWASsolubilization by 60.2%–61.6%
(Liu et al., 2009). As discussed in Section 2.1, thermal effects
during ultrasonic pretreatment process lead to improvement
in hydrolysis and biodegradability.

Another pretreatment combination method employing a
surfactant and biological enzyme was examined in which the
added surfactant caused a marked increase in the aqueous
solubility of additional hydrolysis enzymes, leading to en-
hanced hydrolysis and acidification (Luo et al., 2011). The
combination was more effective in the promotion of sludge
hydrolysis and showed better VFA production performance
than sole SDS or sole enzyme addition.

As mentioned above, combined pretreatments usually are
beneficial because of synergetic effects on improvement of the
hydrolysis rate, which is an indicator for higher VFA produc-
tion. However, the detailed mechanisms of synergetic effects
are still missing and unclear. A techno-economic feasibility
studywould be necessary to identify the optimal pretreatment
method (Cao andPawłowski, 2012; Ruffino et al., 2015), because
occasionally the combination of pretreatment practices in-
creases the consumption of energy and chemical reagents.
3. Co-fermentation

Co-fermentation, the simultaneous fermentation of two or
more substrates, is a feasible alternative to enhance anaerobic
fermentation for VFA production. The main advantages of
this technology are as follows: (1) increase in organic content;
(2) dilution of inhibitory and/or toxic compounds; (3)
balancing the C/N ratio; (4) reduction of reactor volume; (5)
improvement of buffer capacity; and (6) optimization of
rheological qualities (Banerjee et al., 1998; Gómez et al., 2006;
Li et al., 2018; Mata-Alvarez et al., 2000). Under these
circumstances, synergistic effects may be achieved; this
means that co-fermentation produces more VFA than the
addition of the VFA produced in both digestions separately.
Sewage sludge is a feedstock characterized by a relatively low
C/N ratio (by weight), ranging from 6 to 9, and high buffer
capacity (Astals et al., 2013; Silvestre et al., 2011). In addition to
low carbon biodegradability, sludge can also evolve ammonia,
which is toxic to microorganisms and can even completely
halt the fermentation (Rughoonundun et al., 2012). Therefore,
to enhance fermentation efficiency, it would be advantageous
to combine co-substrates with easily biodegradable organic
matter and low alkalinity, such as agricultural residues and
municipal solid wastes (Li et al., 2013; Rughoonundun et al.,
2012). Table 7 is a brief summary of co-fermentation of sewage
sludge with other organic substrates to improve the perfor-
mance of the anaerobic process for VFA production (Banerjee
et al., 1999; Del Rio et al., 2014; Chen and Wu, 2010; Maharaj
and Elefsiniotis, 2001).

Unlike the typical pretreatment methods, co-fermentation
speeds up the hydrolysis rate and biodegradation mainly by
adjusting and optimizing the microbial metabolism without
direct floc breakdown or cell lysis (Huang et al., 2016; Krupp
et al., 2005; Wu et al., 2016). Examining the effect of different
C/N ratios on VFA production from WAS combined with
carbon-riched agricultural residues, Guo et al. (2015) reported
that the maximum VFA yield of 486.6 mg COD/g VSS was
obtained for straw-conditioning with a high C/N ratio (=20),
which was a 3-fold increase over a blank test due to the
remarkable accelatation of hydrolysis and conversion. Simi-
larly, co-fermentation of sludge with food waste also led to
more than a 5-fold increase in VFA yield compared to sludge
alone, at the optimal C/N ratio of 22 under alkaline conditions
(Chen et al., 2013b). Moreover, Huang et al. (2016) reported that
a novel agricultural residue, named henna plant, not only
adjusted the C/N ratio but also released an efficient electron-
shuttling mediator (lawsone) which has positive electron-
shuttling and -transformation effects that improve VFA
production.

Although there is no clear link between different types of
substrate and VFA composition, variations in substrate
composition in co-fermentation influence the VFA spectrum,
acetate being the predominant product in most cases (Ma



Table 7 – Co-digestion of sewage sludge with other organic substrates for volatile fatty acid (VFA) production.

Feedstock Result VFA yield Influencing factor Reference

Dewatered excess sludge +
food waste

Maximal VFA production of 29
g/L

392 mg/g VSS Nutrients balance Chen and Wu (2010)

Waste activated sludge +
agricultural residues

Increased 3-fold VFA yield 487 mg COD/g VSS C/N ratio Guo et al. (2015)

Waste activated
sludge + corn straw

Increased by 96% VFA yields 246 mg VFA (as
COD)/g VS

Nutrients balance Zhou et al. (2013a)

Waste activated sludge +
kitchen waste

Increased by about 5 times
VFA production

670 mg COD/g VS C/N ratio Chen et al. (2013b)

Waste activated sludge +
pretreated bagasse

Increased by about 3 times
VFA production

360 mg/g VSS C/N ratio Rughoonundun et al.
(2012)

Waste activated sludge +
food waste

Increased by about 4 times
VFA production

424 mg/g VSS Nutrients balance Li et al. (2013)

Aerobic granular sludge +
primary sludge

Increased by about 40% VFA
production

118.4±5.8 mg
COD/g VSS

Synergistic hydrolysis Del Rio et al. (2014)

Primary sludge + starch-rich
waste water

Increased by 33% VFA
production

124 mg COD/g VSS Increasing the load of biodegradable
organic matter

Maharaj and
Elefsiniotis (2001)

Primary sludge + potato-
processing wastewater

Increased by 39% VFA
production

394±93 mg/g VSS Increasing the load of biodegradable
organic matter

Banerjee et al. (1999)
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et al., 2017; Rughoonundun et al., 2012; Zhou et al., 2013a).
Another important fact is that protein-rich waste streams
such as primary sludge benefit the enhancement of odd-
numbered VFA production (Ma et al., 2017). Above 78% of
propionate was yielded from primary and activated sludge
(Min et al., 2005; Zhu et al., 2008). However, due to different
substrate components and operating conditions such as pH
and inoculum ratio, it is hard to obtain consistent results. For
instance, Zhou et al. (2013a) investigated the effect of
feedstock proportion on VFA production from anaerobic co-
digestion ofWASwith corn straw, and the results showed that
the increase in the fraction of corn straw in the feedstock led
to higher production of propionate. Besides, in the co-
fermentation of sewage sludge with pretreated bagasse
(Rughoonundun et al., 2012), the results showed that the
percentage of acetate rose along with increasing amounts of
pretreated bagasse in the mixture of substrates.

In short, this demonstrates that the anaerobic co-
fermentation of sewage sludge with one or more substrates is
a promising approach for the enhancement of VFA yield and
the regulation of VFA spectrum. However, it is worth noting
that the operational conditions, such as pH and alkalinity, as
well as trace elements, are also important for the optimization
of the C/N ratio to determine the best combination (Wang et al.,
2011b). More specific data are required to identify the optimal
operational conditions and elucidate the ways in which mixed
substrates impact on the VFA composition. Mixtures of sludge
and agricultural residues andmunicipal solid wastes have been
the most reported mixed substrates (Yuan et al., 2012), while
guaranteeing a stable supply and collection, as well as the
transportation cost of co-substrates to anaerobic digestion
plants, should be considered.
4. Summary and prospects

Anaerobic digestion of sewage sludge for methane production
can be regarded as a traditional and classic method that
combines solid stabilization and resource recovery (Appels
et al., 2008). In recent years, an alternative approach has
aimed at converting sewage sludge into VFA instead of
methane production, which has gained growing attention.
The driving force behind this trend is that VFAs are
considered as high value-added products due to their high
commercial value and wide applications (Agler et al., 2011;
Alloul et al., 2018; Lee et al., 2014).

As a series of biochemical reactions, anaerobic fermenta-
tion can be affected by many environmental factors and
operating parameters such as pH, temperature, retention time
and so on. Many studies on VFA production from sludge under
various conditions have been carried out (Chen et al., 2013a; Li
et al., 2011, 2013; Tong and Chen, 2007; Wang et al., 2013a;
Zhang et al., 2009) on the VFA yield, VFA spectrum, andmicro-
community distribution in the fermentation processes. The
operational pH is of special interest from an application point
of view, since the addition of basic chemicals for pH control
can change the type of fermentation, further boosting the VFA
yield and thus improving the economic feasibility of large
scale implementation. An overall review on the microbial
community of fermenters fed with sludge (or with co-
substrate) would be conducive to our further understanding
of the underlying mechanism of VFA production and
obtaining the desired VFA spectrum by manipulating opera-
tional conditions. Furthermore, many studies have been
conducted to understand the effects of trace elements on
biogas production from sludge, while they have mainly
focused on their effects on methanogenesis rather than
hydrolysis and acidification (Hendriks et al., 2017). Hence it
is of great interest to examine the utilization of trace elements
to enhance the hydrolysis and acidification of fermentation at
the enzymatic level, leading to VFA accumulation and then
simultaneously inhibiting methanogenesis, due to the sub-
stantial differences in the metabolisms of acidifiers and
methanogens.

Hydrolysis is regarded as the rate-limiting step in anaer-
obic digestion, hence the enhancement of hydrolysis by using
different pretreatment methods is a positive step for im-
provement of VFA production. However, direct comparisons
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of the VFA production by various pretreatment methods from
different studies are unfair, because they depend upon
different sources and types of sludge, as well as the process
parameters in the fermentation process. It should be noted
that all pretreatment practices have advantages and disad-
vantages. A general comparison of the advantages and
disadvantages of various pretreatment methods on sewage
sludge is summarized in Table 8.

In general, both physical and chemical pretreatments have
shown high efficiency in sludge disintegration and VFA
production, with less process time consumption. However,
most of these methods produce by-products that may inhibit
the anaerobic fermentation process. It has been found the
residue compounds inhibited ethanol production (Parawira
and Tekere, 2011). To the best of our knowledge, however,
there are no similar reports on the effect of the physical and
chemical pretreatment by-products on VFA production.
Therefore, it is necessary to further clarify the impacts of by-
products from pretreatment methods on the consortium of
microorganisms involved in VFA production and consequent
processes. Unlike physical and chemical pretreatment
methods, biological pretreatment usually consumes much
lower energy, and it works under much milder environmental
conditions, so that few inhibitors are generated. However, it is
not as efficient as physical and chemical pretreatment
methods and, moreover, requires longer pretreatment time
and higher commercial production cost, which hampers its
application. Considerable numbers of studies have also
investigated the synernegistic effects of the combination of
several different pretreatment methods and substrates. In
fact, selection of a proper method to increase VFA production
from sludge should at least consider local regulations and
economic conditions. High-thermal pretreatment seems one
of the ideal options if sterilization or a Class A standard is
required.
Table 8 –Main advantages and disadvantages of typical
pretreatment methods for VFA production.

Pretreatment
method

Advantages Disadvantages

Ultrasonic Particle size reduction;
Scalability; No risk of
recalcitrant compounds
formation

High energy cost

Thermal High solubilization
improvement

Possible formation of
complex substrates
that are difficult to
biodegrade

Alkaline/acids Low capital costs; Short
reaction time

Corrosion of
equipment; Chemical
contamination

Ozonation High solubilization
improvement; Short
reaction time

High energy cost;
Possible formation of
less biodegradable
byproducts

Enzymes Low energy demand;
Scalability

High cost

Thermo-
chemical

Lower energy demand
than thermal alone

Risk of inhibitors
formation

Mechanical–
chemical

High solubilization
improvement; Short
reaction time

High capital cost than
alone
However, many challenges and bottlenecks facing VFA
production from sewage sludge still hinder its application.
Firstly,merelyusingCODsolubilization is improper to evaluate
the efficiency of VFA production from sludge by different
pretreatmentmethods or co-fermentation. The sludge biodeg-
radation assays using standard biomethane potential (BMP)
tests canevaluate themaximummethaneproduction (Holliger
et al., 2016). Analogous to the BMP tests, it would be interesting
to establish a standardmethod to evaluate themaximumVFA
production from various substrates.

Besides, cost-efficient pretreatment methods need to be
considered to further solubilize the sludge and increase
fermentative VFA yields. Alkaline and mild-thermal pretreat-
ments are likely to be promisingmethods due to their features
of short reaction time and low investment cost. Moreover, it
has been reported that FNA, a byproduct of wastewater
treatment created through nitritation of the anaerobic diges-
tion liquor, has been shown to cause significant elevation of
VFA production, which is a promising method (Wang et al.,
2013b). From this aspect, assessment of the cost-effectiveness
of each technique should be provided in the future. Besides,
the imbalanced nutrition in sludge is another important factor
which limits the anaerobic biodegradability potential for VFA
production. To overcome these issues, co-fermentation of
sludge with C-rich substrates would be a feasible solution.

Additionally, control of the VFA spectrum is critical
because it influences the consequent application processes,
such as PHA production and chain-elongation process (Lee
et al., 2014). However, most published studies have focused on
improving VFA yields while fewer have paid attention to
investigating how to control the product spectrum in reactors
under different operation conditions. In the future, research
regarding oriented VFA production, such as odd-number VFA
production, would probably be a promising field.

Moreover, as an important precursor, it is necessary to
deeply consider VFA production together with consequent
utilization, not simply VFA production itself. Currently,
recovering VFA from sewage sludge is still a challenge in
WWTPs. Apart from feeding BNR processes, more novel and
potential applications of the high-VFA stream produced from
the sludge should be carried out, for instance, using the
stream to feed microbial fuel cells to generate electricity or to
feed bio-electrochemical cells to produce biofuels (Kondaveeti
and Min, 2015), which can be used to meet the energy demand
of the facilities of WWTPs. Moreover, converting soluble acids
produced into higher valued products such as PHA or media
fatty acids production would be another promising method
(Spirito et al., 2014).
5. Conclusions

The slow hydrolysis step still limits fermentative VFA
production from sewage sludge. Different pretreatment
methods degrade EPS and even trigger cell lysis, resulting in
particle reduction and release of organic matter, improving
the hydrolysis rate and biodegradation of sludge. In some
cases, combined pretreatment can create a synergistic effect
on the hydrolysis and acidification of sludge, although this
can be more energetically expensive. Co-fermentation of
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sewage sludge with substrates with a higher C/N ratio can
effectively optimize the initial C/N ratio and adjust the
metabolism of the microbial community during anaerobic
fermentation, mainly speeding up the hydrolysis rate and
biodegradation of the organic matter, not resulting in direct
floc breakdown or cell lysis. The yield and composition of the
VFAs generated during the anaerobic fermentation of sewage
sludge are influenced by several factors, such as the type of
sludge and operating parameters (pH, temperature and
others). However, the existing data regarding the effects of
operating parameters on VFA composition are often contra-
dictory, since different operation conditions are employed in
each research study. Hence, it is necessary to develop a
standardized protocol for the assessment of VFA production
in the future to help to compare different pretreatment
methods and their effects on VFA yield and composition.
Moreover, to better understand the underlying mechanisms
of each approach, more attention should be directed to the
conversion of specific components, not merely into SCOD.
More importantly, an assessment of the cost-effectiveness of
each technique should be provided from technical, economic
and environmental perspectives in the future. Furthermore,
more attention still needs to be paid to the conversion of, and
structural changes in, the different complex components of
waste activated sludge when various pretreatment methods
are applied.
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