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A New Harmonic Regression Approach to Interpret and
Predict Estuarine Salinity Variation
D. van Keulen1,2 , W. M. Kranenburg2,3, and A. J. F. Hoitink1

1Department of Environmental Sciences, Hydrology and Quantitative Water Management Group, Wageningen University,
Wageningen, The Netherlands, 2Deltares, Delft, The Netherlands, 3Department of Hydraulic Engineering, Section
Environmental Fluid Mechanics, Delft University of Technology, Delft, The Netherlands

Abstract In this paper, we introduce a physics‐inspired harmonic regression model to capture the
nonstationary salinity dynamics at monitoring stations in well‐mixed estuarine systems. Building on existing
hybrid harmonic regression approaches, which modify the classical harmonic analysis to cope with
nonstationary signals to predict tidal water levels, our model captures tidal and subtidal salinity variations using
a simplified analytical salt intrusion model. The harmonic regression model was tested in the well‐mixed Ems
and Scheldt estuaries using data sets spanning 2–4 years, explaining 87.4%–96.4% of the observed salinity
variance at upstream stations. A key finding is that storm surge effects typically have longer wavelengths than
the estuary's length scale, which justifies using a linear relation between vertical and horizontal excursions. In
alluvial estuaries, where the system widens, unsteadiness of the river discharge shows to be increasingly
important for more downstream stations. The model quantifies the characteristic response time of salinity to
variation in discharge. Based on a critical evaluation of the model equations, we offer a physical interpretation of
the optimized parameters. Specifically, we discuss the Van der Burgh constant, which is an empirical coefficient
commonly used in salt intrusion models. Our findings reveal that the Van der Burgh coefficient scales with the
spatial scales of dispersion and advection, relative to changes in channel geometry.

Plain Language Summary In this paper, we introduce a tool to analyze nonstationary salinity levels
at monitoring stations in estuaries. The model requires minimal input and allows for quick analysis and
prediction. It builds on traditional methods for predicting tidal water levels, extending them to capture salinity
variations caused by storm surges and variations in river discharge. We demonstrate the model's accuracy using
data from the Ems and Scheldt estuaries. One key insight is that the model described the dominant salinity
response to storm surges as a linear relationship between surge water levels and resulting currents, which is used
to demonstrate the importance of storm surges for salt intrusion. Application of the model and interpretation of
the results reveal how the response of salinity levels to discharge variations increases for stations near the coast,
where the estuary is wider. Finally, through a critical analysis of the model equations, we provide new insights
into the physical meaning of a commonly used empirical parameter. Our findings show how this parameter
depends on the estuary's geometry and hydrodynamic properties, offering insight into how salt intrusion
behaves in different estuaries.

1. Introduction
Estuaries are dynamic water bodies forming the transition zone between rivers and the coastal ocean, charac-
terized by a region with brackish water resulting from mixing of fresh water and saline seawater. The longitudinal
salinity distribution and the landward salt intrusion length change over time, resulting from the variable forcing at
the boundaries. In this paper, we propose a new model to analyze estuarine salinity variations at monitoring
stations.

Estuarine salinity levels are the result of a continuous competition between flushing by freshwater river discharge
and inward transport by dispersive mechanisms. The dispersive salt flux comprises density‐driven and tidal
contributions (Geyer & Signell, 1992; Hansen & Rattray, 1966; Jay & Smith, 1990; MacCready & Geyer, 2010),
which intrinsically involve two‐ and three‐dimensional processes. The density‐driven contribution results from a
baroclinic pressure gradient along the river to sea continuum, which drives a vertically sheared exchange flow
(Chatwin, 1976; Hansen & Rattray, 1965; Pritchard, 1952). This circulation can be strengthened by tidal straining
(Burchard et al., 2011; Jay & Musiak, 1994, 1996), which can enhance stratification during ebb and suppress it
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during flood. This asymmetry in stratification leads to enhanced vertical mixing during flood and suppressed
mixing during ebb, which induces momentum exchange enhancing the vertical circulation. Tidal dispersion
encompasses multiple mechanisms including tidal trapping, horizontal residual circulation, and tidal pumping
(Fischer et al., 1979). Although the underlying processes are different, each of these mechanisms is the result of
vertical and/or lateral velocity and salinity variations. The tide‐driven dispersive mechanisms strongly depend on
the local geometry, flow, and density, making it difficult to parameterize the resulting dispersion process (Geyer
& Signell, 1992). Which mechanism is dominant strongly depends on the setting of the estuary, and often changes
along the estuary.

Although the estuarine salinity variations involve processes that are intrinsically three‐dimensional and that
depend on the local geometry, various analytical formulations have been derived to describe and predict the cross‐
sectional averaged steady‐state salinity distribution (Brockway et al., 2006; Chatwin, 1976; Gay & O’Don-
nell, 2007; Ippen & Harleman, 1961; Kuijper & Van Rijn, 2011; MacCready, 1999; Prandle, 1981; Save-
nije, 1986; Xu et al., 2019). All these analytical expressions greatly simplify the estuarine dynamics by reducing
the dispersive mechanisms involved, assuming a simplified channel geometry and using calibration parameters
related to the dispersion coefficients. Arguably, the best substantiated models are derived for estuaries with a
constant cross‐sectional area where density‐driven circulation is the dominant exchange mechanism. For
converging systems, Prandle (1981) was among the first to derive a predictive model without a predictive
expression for the bulk dispersion coefficient at the mouth. A full set of predictive equations for the salinity
balance in converging estuaries was proposed by Savenije (1989), and applied for a variety of systems (Cai
et al., 2015; Gisen & Savenije, 2015; Nguyen & Savenije, 2006; Savenije, 1986, 1989, 1993; E. Zhang
et al., 2011). The model uses the empirical Van der Burgh relation (Van de Burgh, 1972) to obtain an expression
for the longitudinal dispersion coefficients and resulting salinity. Although the model proposed by Save-
nije (1989) has been successfully applied for a variety of systems, its physical validity has limitations. Similar
empirical expressions that avoid the use of the Van der Burgh formulations have been derived by Kuijper and Van
Rijn (2011) and Z. Zhang and Savenije (2019), which resulted in nearly identical relationships. Alternatively, Gay
and O’Donnell (2007) derived a theoretically well‐substantiated expression for the salinity distribution for lin-
early tapered systems, adopting a constant dispersion coefficient in segments of the estuary. Their model provides
insight into the along‐channel salinity distribution based on the physical parameters.

On an intertidal timescale, the tidal averaged salinity distribution is altered by the tides. Ippen and Harle-
man (1961) showed that for stratified systems experiencing a weak tidal forcing, the longitudinal salinity dis-
tribution migrates between the two periods of slack water over a distance approximately equal to the tidal
excursion length, without significantly changing its shape. For vertically well‐mixed systems, Savenije (1989)
used his steady‐state model to derive an expression for the high‐ and low‐water salinity distribution, adopting a
Lagrangian approach to describe the salinity variations over the excursion length. For these well‐mixed systems, a
longitudinal salinity distribution function that does not change its shape between the slacks can be devised.
However, for many systems, the longitudinal distribution may change over the tide, for example, due to tidal
asymmetries like tidal straining (Simpson et al., 1990). Analytical models for the unsteady salt distribution have
been derived by Ippen and Harleman (1961) for stratified prismatic channels and Xu et al. (2019) for well‐mixed
converging systems. These analytical models do not account for tidal asymmetries. However, they clearly
indicate how the intertidal salinity variations depend on the boundary conditions, tidal excursion length, and
longitudinal coordinate.

Next to the tidal motion, storm surges also influence salt intrusion lengths. In literature, the important influence of
storm surges on the along‐estuary salinity distribution has received little attention, especially compared to their
associated wind effects (Chen & Sanford, 2009; Jongbloed et al., 2022; Scully et al., 2005). Gong et al. (2018)
studied storm wave‐current interaction and effects on salt intrusion in the stratified Modaomen estuary during
typhoons. They show that advective transport resulting from a barotropic pressure gradient prevailed along the
different inlets during the surge events. These results agree with W. Kranenburg et al. (2022), who showed that
during surge events in the partially mixed Rhine‐Meuse estuary the advective salt flux reversed. The wave dy-
namics of storm surge waves in estuaries was explored by Familkhalili et al. (2020), who found that the dynamics
are similar to those of tidal waves. Hence, tidal dynamics may be used to describe the salt dynamics resulting from
storm surge waves. Most of the aforementioned studies focused on stratified systems where destratification is
short‐lived and predominately attributed to wind effects (Cho et al., 2012; M. Li et al., 2006, 2007), with
restratification occurring within days.
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The main aim of this paper is to develop a harmonic regression model that captures nonstationary salinity level
time series influenced by weekly or seasonal discharge variations, as well as aperiodic variations caused by storm
surges at a monitoring station. This objective is achieved through the following steps: (a) We extend the concept
that estuarine salinity levels depend on the intertidal dynamics as addressed by Xu et al. (2019). To achieve this,
we reformulate the approach used by Matte et al. (2013, 2014) to adjust the classical harmonic analysis to allow
for predictions of nonstationary water levels (referred to as hybrid harmonic models (Hoitink et al., 2017)), and
apply the result to estuarine salinity records. This involves extending the analytical salt intrusion model by
Savenije (1986), which describes nontidal salinity variations with a hybrid harmonic model that captures the
intertidal variability. (b) We explore the predictability of salt intrusion resulting from storm surges and vertical
excursions of the estuarine water mass in well‐mixed systems, and show how these dynamics can be integrated
into this framework. (c) We modify the harmonic analysis approach to handle a clipped harmonic signal (peri-
odically truncated tidal record) and focus on optimal constituent selection. (d) The model is then extended to
account for the unsteadiness term in the salt balance equation.

The resulting model is applicable to analyze time series of yearly salinity variations that are long enough to
distinguish between the dominant tidal constituents (i.e., the time series should typically cover at least 1 year). For
these periods, the model helps to unravel the contribution of various physical forcings to site‐specific salinity
variations, and provides insight into how salt intrusion behaves. The mechanistic salt transport processes are
modeled using a parameterized approach, where model coefficients offer a synoptic understanding of the system's
functioning. The salinity time series may include prolonged periods of low salt levels, representing river salinity,
as well as occasional periods when the salt front reaches the station, although this limits the identification of tidal
constituents. Finally, the model allows for short‐ to medium‐term predictions (days–weeks in advance), which is
the typical period for which predictions of discharge and water levels at the seaward boundary are available.

The structure of the remainder of this paper is as follows. Section 2 outlines the theoretical background of the
harmonic regression model, including the steady‐state salinity distribution as described by Savenije (1986), and
discusses storm surge effects. Section 3 focuses on the harmonic regression model itself. In Section 3.1, the
regression equations are derived, accounting for subtidal, intertidal, storm surge, and unsteadiness effects.
Section 3.2 provides a summary of the regression and optimization procedures. In Section 4, a concise description
of the Ems and Scheldt estuary systems is provided, along with a discussion of the observations used. Subse-
quently, the steady‐state harmonic regression model is applied, followed by a sensitivity analysis of the results to
the model parameters. Section 5 assesses the influence of the down‐estuary boundary condition and unsteadiness
effects, and tests the model formulation that accounts for unsteadiness. A critical evaluation of the adopted model
is presented in Section 6, where the formulation of Savenije (1986) is compared with that of Gay and O’Don-
nell (2007) to discover the physical meaning of the optimized model powers. Section 7 discusses the broader
implications of the model results, and conclusions drawn in Section 8.

2. Theoretical Background
2.1. The One‐Dimensional Salt Balance

Temporal variations of estuarine salinity are generally the result of flushing by the river discharge, longitudinal
exchange mechanisms, and dispersion of salt through tidal dynamics. In a one‐dimensional perspective, temporal
salinity variations are the result of advection of the salinity gradient and dispersion through a Fickian dispersion
coefficient. The latter describes the down‐gradient salt flux resulting from exchange flows and/or tidal dispersion.
The one‐dimensional cross‐sectionally and tidally averaged salt balance reads as follows:

Ax
∂Sx
∂t
+
∂(QSx)
∂x

−
∂
∂x
[AxDx

∂Sx
∂x
] = 0, (1)

with Sx being the cross‐sectional averaged salinity, Ax the average cross‐sectional area, x the longitudinal co-
ordinate,Q the discharge, andDx the longitudinal dispersion coefficient. If the subtidal salinity distribution is in a
quasi‐steady state, it may be described by the balance between advection and dispersion as follows:

QrSx − AxDx
∂Sx
∂x

= 0. (2)
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Equation 2 describes the subtidal salt balance best when the discharge has remained constant long enough for the
salt front to adjust (Kuijper & Van Rijn, 2011; Monismith et al., 2002) and requires that there is a zero net salt flux
trough the estuary.

2.2. Salt Intrusion Model

The harmonic regression model requires a shape function for the longitudinal salinity distribution, for which the
empirical steady‐state formulation of Savenije (1986) is adopted. To obtain an expression for the longitudinal
profiles of salinity, Savenije (1986) employs an empirical relation for the longitudinal gradient of the dispersion
coefficient (Van de Burgh, 1972), which reads as follows:

dDx

dx
= − K

|Qr|

Ax
, (3)

where K is a dimensionless coefficient. Substituting Equation 2 into Equation 3 and integrating over x yield a
relationship between the salinity and dispersion coefficients, as in

Sx − Sr
S0 − Sr

= (
Dx

D0
)

1
K

, (4)

where D0 is the dispersion at the mouth, Sx is the local salinity, S0 is the salinity at the downstream boundary, and
Sr is the river salinity. An equation for the longitudinal dispersion coefficient is obtained by integrating Equa-
tion 3. Depending on whether the cross‐sectional area is assumed to be constant or converging in the landward
direction, an equation for the longitudinal dispersion coefficient is obtained for a prismatic or a converging
channel. Substituting the relation for an exponentially decaying cross‐section into Equation 4 yields

Sx − Sr
S0 − Sr

= (1 −
KLa|Qr|

A0D0
( e

x
La − 1))

1
K

, (5)

where A0 is the cross‐sectional area at the mouth and La is the convergence length of the cross‐sectional area. In
Equation 5, the parameters D0 and K are used to tune the salinity curve and their influence is illustrated in Figure
S1 in Supporting Information S1.

Focusing on the dispersion coefficient at the mouth, various predictors have been proposed (Gisen & Save-
nije, 2015; Kuijper & Van Rijn, 2011; Savenije, 1993). Gisen and Savenije (2015) derived a predictive equation
from bulk estuarine parameters, based on reanalysis of the dimensionless parameters used by Savenije (1993).
Using data from 30 different estuaries, the following expression for the nondimensional dispersion coefficient
was found:

D0
v0E0

= 0.40N0.57r,0 (
g
C2
)

0.21

, (6)

with v0 the tidal velocity amplitude, E0 the tidal excursion length, Nr,0 the horizontal estuarine Richardson
number, g the gravitational acceleration, and C the Chézy coefficient. The subscript 0 indicates that the pa-
rameters have been evaluated at the downstream boundary. The horizontal estuarine Richardson number,
introduced by Fischer (1972), expresses the balance between the potential energy required for full mixing against
buoyancy and the available kinetic energy from the tidal currents, to accomplish mixing, and reads as follows:

Nr,0 = π
Δρ0
ρ

gh0
v30

Qr

A0
, (7)

with h0 the average depth, Δρ0 the horizontal density difference over the intrusion length, and ρ the density of
fresh water. The estuarine Richardson number can be used to quantify the degree of stratification for an estuary
(Fischer, 1976).
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2.3. Storm Surges and Their Effects

Advective transport (i.e., excursion of the salinity curve) is assumed to be the dominant mechanism of storm
surges for well‐mixed systems. Tidal theory can be adopted to estimate the relation between surge water levels
and the resulting excursion length, because storm surges have typical periods close to those of tides and both are
long waves (Familkhalili et al., 2020).

A relation between the water level variations, estuarine shape, and the resulting vertical excursion length for
funnel‐shaped and long estuaries is given by the geometry‐tide relationship (Savenije, 2006; Toffolon
et al., 2006):

E = H(
rsLa
h
) (

cos ε
1 − δuLa

), (8)

with E the tidal excursion length, H the tidal range, La the convergence length of the cross‐sectional area, δu the
damping number of the horizontal tide, ε the phase lag between high water and high‐water slack (describing the
wave character), and rs the dimensionless ratio of the storage width to the stream width. The wave has a standing
character when ε equals 0, a mixed character when 0< ε< π

2, and is progressive when ε is
π
2. Toffolon et al. (2006)

derived explicit formulations for ε and δu for mixed and standing waves, expressed in terms of the estuary number

γ = (
c0
ωLa
) and the friction number X = (

g
C2

c0
hω

η
h) , where c0 is the classical wave celerity, ω is the angular

frequency (ω = 2π
T ), η is the tidal amplitude, and T is the tidal period. Based on these equations, the wave

character of storm surges and the resulting excursion length may be estimated when the amplitude and duration
are known. Figure S2 in Supporting Information S1 visualizes the dimensionless phase lag and the damping
number in the X‐γ plane. As γ increases, the phase lag ε becomes independent of the estuary and the friction
number. Similarly, δ becomes independent of the friction number, and the damping is solely determined by the
shape of the estuary and the surge wavelength. When the typical wavelengths of storm surge events are larger than
the length scale of the estuary, the relation between the vertical and horizontal excursion may be approximated by
the classical relation E ≈ H ( rsLah ). Avoiding a dependence on ε and δu has the advantage that a (near) unique
relation exists between storm surge water levels and the resulting horizontal excursion over a range of
frequencies.

3. Regression Model for Salinity Time Series
This section proposes a harmonic regression model for estuarine salinity. First, Section 3.1 describes the modified
version of Savenije (1986) and the extensions to capture tidal and surge variations. Second, Section 3.2 describes
the implementation and optimization procedure.

3.1. The Regression Equations

3.1.1. Tidal Averaged Salinity Variations

For width‐converging systems, the tide averaged (TA) salinity distribution can be described by Equation 5. To
describe the salinity variations at a monitoring station, indicated by the subscript s, Equation 5 is simplified by
lumping all time‐independent variables in a single term as follows:

(
Ss − Sr
S0 − Sr

)

K

=
Ds

D0
= 1 − a0

K|Qr|

D0
. (9)

The coefficient a0 describes the degree in which the relative dispersion coefficient is reduced at xs. Note that K is
maintained in Equation 9 because it appears in the power of the RHS of Equation 9. The tide‐averaged salinity
variations at the location of the monitoring station are described by Qr and D0.

3.1.2. Intertidal Salinity Variations

Savenije (1989) approximated the TA and low‐water slack (LWS) salinity distribution by assuming that the high‐
water slack distribution migrates over the horizontal excursion length (E). Following this reasoning, the salinity
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variations observed over a tidal cycle, relative to the tide‐averaged salinity, approximate the salinity observed at
xt = xs + E

2 cos(ωt + ϕ), where t is time, andω and ϕ are the angular frequency and phase of the dominant tidal
constituent, respectively. To obtain an expression for the intertidal salinity variations and parameters that can be
determined through regression, x in Equation 5 is substituted by xt. We simplify the equation to separate the tide
averaged from the intratidal variations, which yields the following:

(
Ss − Sr
S0 − Sr

)

K

=
Ds

D0
≈ 1 − K

|Qr|

D0
La
A0
(e

xs
La − 1) + (

1
2
K
|Qr|

D0A0
e
xs
La)E cos (ωt + ϕ). (10)

The third term on the RHS of Equation 10 is obtained by subtracting the TA expression from the modified version,
including the tidal excursion. Subsequently, a first‐order Taylor approximation for E ( e(δ) ≈ 1 + δ) around 0 is
used in the natural exponent, to separate the tide averaged from the tidal variation. By lumping all time‐
independent variables in Equation 10, rewriting the harmonic part in terms of tidal constituents yields the
following:

(
Ss − Sr
S0 − Sr

)

K

= 1 − a0K
|Qr|

D0
+∑

n

k=1
[ac1,kK

|Qr|

D0
cos(ωkt) + as1,kK

|Qr|

D0
sin(ωkt)]. (11)

In Equation 11, the amplitudes ac1,k and as1,k determine the phase and amplitude of each tidal constituent k. Note
that based on the Taylor approximation, an error is made, which is small when E

La < 1. Equation 11 is more ac-
curate when the channel geometry is closer to being prismatic. For prismatic channels, the equation is exact.

3.1.3. Storm Surge Variations

Sections 2.3 discussed how storm surge waves, under the assumption that tidal theory applies to storm surges,
depend on the dimensionless friction number and the estuary shape number. Because storm surge waves do not act
on a predefined frequency and amplitude, some simplifications are required. Here, we assume that storm surges
act as standing waves, which applies when the typical wavelengths are larger than the length scale of the estuary.
For a standing wave, high and low water is reached everywhere at the same time (i.e., no phase lag and ε = 0).
Damping becomes independent of friction, causing that damping coefficients vary little between different pe-
riods. Under these conditions, the surge‐related excursion lengths may be approximated by E = H Lars

h
. The

salinity variation introduced by storm surges, under the assumption of a linear relation between water levels and
currents, are implemented similarly as the intertidal variations as follows:

(
Ss − Sr
S0 − Sr

)

K

= 1 − a0K
|Qr|

D0⏟⏞⏞⏟
TA

+ a1K
|Qr|δw
D0⏟̅̅⏞⏞̅̅⏟

SURGE

+∑
n

k=1
[(ac2,kK

|Qr|

D0
+ ac3,kK

|Qr|δw
D0

)cos(ωkt) + (as2,kK
|Qr|

D0
+ as3,kK

|Qr|δw
D0

)sin(ωkt)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

TIDAL

.

(12)

In Equation 12, δw denotes the surge water level. In addition, the surge‐related water level fluctuation amplifies or
attenuates the amplitudes of the intertidal salinity variation. Hence, the surge‐induced salinity variation also
appears in the harmonic model.

3.1.4. Accounting for Unsteadiness

Equations 11 and 12 rely on that the system can be adequately described by a steady‐state model. However, in
many systems, variations in river discharge can occur over periods shorter than the time required for the salinity
field to fully adjust. To account for this, empirical models for the salt intrusion length often incorporate these
effects trough an autocorrelation process (Monismith et al., 2002; Reyes‐Merlo et al., 2013). This approach is also
adopted here. Specifically, Equations 11 and 12 can be extended with an autoregressive AR(1) term, which for
Equation 12 yields
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(
Ss − Sr
S0 − Sr

)

K

= 1 − a0K
|Qr|

D0⏟⏞⏞⏟
TA

+ a1K
|Qr|δw
D0⏟̅̅⏞⏞̅̅⏟

SURGE

+ a2D̃t⏟⏞⏞⏟
LAG

+∑
n

k=1
[(ac3,kK

|Qr|

D0
+ as4,kK

|Qr|δw
D0

+ ac5,k D̃t)cos(ωkt) + (as3,kK
|Qr|

D0
+ as4,kK

|Qr|δw
D0

+ as5,k D̃t)sin(ωkt)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

TIDAL

,
(13)

where D̃t = (
Ss − Sr
S0 − Sr

)
K
− 1

⃒
⃒
⃒
⃒
t − Δt

, and where Δt is set to 1 day. Furthermore, Equation 13 implicitly assumes a time

step Δt, which is lumped into the regression parameters coefficients. An empirical response time, TR, can be
defined as TR = 1/ (1 − a1) . Typically, this response time varies between high‐ and low‐discharge conditions.
However, in this study, a single‐response time is used. Although Equation 13 allows for more accurate predictions
when unsteadiness is significant, this approach does not handle truncated salinity signals effectively.

3.1.5. Modelling the Dispersion Coefficient at the Mouth

The dispersion coefficient at the downstream boundary D0 is not yet specified in Equations 9–13. A modified
version of Equation 6 is here proposed. First, based on Equation 6, it can be seen thatD0 is proportional to Nr,0, as
in the power law D0

v0E0
= αNP

r,0, where α is a constant. In the regression model we devise, the power P is allowed to
deviate from the empirically derived value of 0.57 to optimize the model. Second, assessing Nr,0 requires velocity
time series. Generally, only records of tidal elevation are available. Therefore, the horizontal tidal amplitude at the
downstream boundary (v0) is replaced by an appropriate velocity scale v = ηω La

h and the tidal excursion length is
written as E = vT

π . For ω, the typical tidal frequency of the system is used. Substituting these relations into
Equation 6 and rearranging the variables related to Nr,0 into a new dimensionless group yields the following:

D0 ∝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h30π
L3aB0

(
g
ω2
)

⏟̅⏞⏞̅⏟
constant

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

P⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δρ0
ρ

Qr

η30ω⏟⏞⏞⏟
varying

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

P

(
La
h0
)

2

⏟⏞⏞⏟
constant

(η20ω)⏟⏞⏞⏟
varying

. (14)

In Equation 14, two constant and two variable terms are indicated. The constant terms in Equation 14 can be
absorbed in the coefficients αi of Equations 9–13, and are resolved based on regression.

3.1.6. Salinity at the Boundaries

The relative salinity in Equations 9–13 depends on the salinity input from the river, which generally varies with
the discharge. These variations are smaller (i.e., within 0–1 psu), but are important to distinguish when the salinity
is influenced by the oceanic boundary or is solely determined by the river (also see Section A1). In order to
estimate the river salinity for the discharge, the following model is adopted:

Sr =
Cb

Qr
+ Sc, (15)

where Sc is the salinity concentration of the discharge and Cb a background load that is diluted by the discharge.
The values for Sc and Cb are determined by regression according to Equation 15, using observed river salinity.

Similarly, the salinity at the used down‐estuary boundary S0 can either be considered constant. Alternatively,
measured values of S0 can be used, or a parameterization which proceeds from a simplified version of
Equation 13:

(
S0 − Sr
Soc − Sr

)

K

= 1 − a0K
|Qr|

D0
+ a1D̃t, (16)
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where Soc is the salinity at sea. The advantage of Equation 16 is that it allows to partially account for unsteadiness
effect through the parameterized boundary condition such as used in Equations 9–12, which can deal with
truncated salinity signals.

3.2. The Regression and Optimization Procedure

Estuarine salinity records often contain tidally periodic or prolonged periods of low salinity, where the salinity
matches that of the river water (this introduces clipped harmonic records). To facilitate the optimization pro-
cedure, a priori assessment is conducted to isolate data windows where the salinity does not significantly exceed
river salinity, excluding those windows from the optimization. The optimization procedure optimizes the
regression coefficients and powers in Equations 9–12 through an iterative process that extends NS‐TIDE (Matte
et al., 2013, 2014). Furthermore, an adjusted version of the twofold strategy used by Matte et al. (2013) is applied
for constituent selection and error estimates. However, for irregularly sampled data—introduced by excluding
data points where salinity does not exceed river salinity—the degree to which tidal constituents can be properly
resolved is influenced. Following Foreman et al. (2009), the correlation coefficients of the significance‐tested
constituents are monitored, discussed in Section 4.4.2. Details regarding constituent selection, optimization,
and significance testing can be found in Appendix A.

4. Application to Two Estuaries
4.1. The Ems Estuary and Scheldt Estuary

The Ems estuary is located at the border between the Netherlands and Germany (see Figure 1a). It contains a large
basin that consists of ∼80% tidal flats referred to as the Dollard. Exchange between the Dollard and the main
channel of the Ems is limited by a permeable, longitudinal training dam (the Geise dam). Tides in the Ems estuary
have a semidiurnal character with a tidal range of about 2.5 m near the entrance, but significantly amplify up-
stream of the Dollard (Winterwerp et al., 2017). The tidal wave upstream of the Dollard has a standing wave
character. A storm surge barrier is located upstream of the city of Pogum and is occasionally closed. Fresh water
input predominantly originates from the Ems River, which has an average discharge of ∼125 m3/s. The West-
erwoldse Aa constitutes another source of fresh water input, which drains ∼12.5 m3/s into the Dollard basin.

The Scheldt estuary runs from Belgium to the south of the Netherlands (Figure 1b). The Dutch part of the Scheldt
(the Western Scheldt) is wider and consists of multiple flood‐ebb channel loops (Nguyen et al., 2008). In the
Belgium part, the channels converge into a single channel that is kept at depth for the port of Antwerp. The mean
tidal range is about 3.8 m near the entrance of the system and amplifies in the upstream direction. The wave
propagation reflects that of an apparent standing wave (Savenije et al., 2008). The major contributors to the
Scheldt are the Dender and the Rupel (Struyf et al., 2004); the average discharge of the Scheldt is estimated to be
∼85 m3/s.

Figure 1. (a) Map of the Ems estuary and locations of the measurement stations. The river kilometers are referenced against
the barrier island Borgum, located between the Wadden Sea and the North Sea. (b) Same as (a) but for the Scheldt estuary.
The river kilometers are referenced against the city of Vlissingen.
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4.2. Data and Observations

To evaluate the proposed regression model, time series data sets from the Ems estuary (2 years) and the Scheldt
estuary (4 years) are used. These data sets include information on salinity, water levels, velocity, and discharge
(locations are shown in Figure 1). Here, the data are used to estimate the importance of the unsteadiness term at
different stations and to assess the extent to which a steady‐state approach is justified. Furthermore, the along‐
channel variations in geometry, salinity, and of the dispersion coefficients are discussed, and salinity varia-
tions due to surges are examined.

Figures 2 and 3 show the measured salinity levels and forcing variables. Both estuaries exhibit strong seasonality,
with the lowest salinity during winter. In the Ems estuary, downstream of Pogum, salinity is affected by partial
closures of the storm surge barrier, such as the closure on 7–9 October, which elevated salinity for about 2–
3 weeks (Figure 2). Figure 4 shows the geometry, the typical salinity distributions, and associated dispersion
coefficients for different discharge conditions from the measurements in Figures 2 and 3. The geometry, in both
systems can be described by an exponential decay (Figures 4a and 4b), with a break in the channel convergence
observed in both systems (most pronounced in the Scheldt). Figures 4c and 4d shows the average salinity dis-
tributions for different discharge conditions, which are bin averages of spline‐interpolated salinity values at
monitoring stations. The longitudinal salinity distribution in the Ems is characterized by a hyperbolic shape,
whereas that of the Scheldt estuary changes from concave to a convex shape with increasing discharge. Figures 4e
and 4f shows the corresponding steady‐state dispersion coefficients, estimated using Equation 2. The variations
associated with these values are quite large and therefore are only used qualitatively. For the Ems estuary, the
resulting dispersion coefficients show a (local) amplification with increasing discharge, which corresponds to
estimates from Helder and Ruardij (1982) and De Swart et al. (1997). In the Scheldt estuary, the dispersion
coefficient remains nearly constant in the downstream reach, but amplify slightly in the upstream region.

To assess the importance of the unsteadiness term ( ∂S∂t) relative to the advective term (u
∂S
∂x) in the salt balance at

various monitoring sites, the ratio of the unsteadiness term to the advective term is evaluated (Figures 5a–5h). In
both estuaries, unsteadiness is most pronounced at the down‐estuary stations. Figures 5g and 5h evaluate the
(potential) errors in dispersion coefficients when the unsteadiness term is neglected, highlighting persistent errors

Figure 2. Overview of the observed salinity time series in the Ems estuary and the forcing at the up‐ and downstream
boundaries. (a) Observed and Godin‐filtered water levels at Knock. (b–f) Observed and tide‐averaged salinity at the
individual stations. Distance is relative to the barrier island of Borkum. (g) River discharge measured at Versen.
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Figure 3. Overview of the observed salinity time series in the Scheldt estuary and the forcing at the up‐ and downstream
boundaries. (a) Observed and Godin‐filtered water levels at the Overloop van Hansweert station. (b–f) Observed and tide‐
averaged salinity at the individual stations. Distance is relative to the city of Vlissingen. (g) River discharge calculated at the
Schelle station.

Figure 4. Overview of the geometry, typical along‐channel salinity distributions, and estimated dispersion coefficients for the

Ems and Scheldt estuaries. (a and b) Cross‐sectional area and fitted exponential decay model (Ax = A0e
− x
La). (c and d) Typical

along‐channel salinity distributions under different discharge conditions. (e and f) Steady‐state dispersion coefficients
corresponding to the shown along‐channel salinity distributions. Dashed vertical lines indicate the location of the salinity
stations.
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in the Scheldt due to the influence of unsteadiness. Thus, while the unsteadiness term is larger in the Ems, its sign
is more persistent in the Scheldt, indicating a longer adjustment response time. Given these findings, a steady‐
state approach is likely more suitable for upstream stations and may introduce systematic errors for the down‐
estuary station. Furthermore, the admittance of the semidiurnal vertical tide (i.e., water level elevations),
determined through a continuous wavelet transform, was tested for the Ems and Scheldt estuaries, but was found
to show little temporal variations and is assumed stationary.

An analysis of water level, salinity, and discharge variations occurring in the 1.2–6‐day range is performed to
investigate salinity response during surge events. The lower limit of 1.2 days is used to distinguish the tidal signal
from the surge variations. However, storm surges can act in the same frequency range as tides. The upper limit
was set at 6 days, as choosing higher values caused that the filtered signal started to show variations that did not
resembled the water level variations. The filtered salinity variations covary with the filtered water levels
(Figures 6a and 6c). The water level variations are, however, not directly proportional to the observed salinity
variations. This is because the resulting salinity variations depend both on the local, instantaneous salinity
gradient and the salt water excursion resulting from storm surges. Dividing subtidal salinity variations by the local
salinity gradient yields a length scale for the surge‐induced excursion (Figures 6b and 6d). The relation between
surge water levels and the surge‐induced excursions shows a near‐linear relation for both systems. This implies
that the surge water level variations that occur over the 1.2–6‐day range are directly proportional to the horizontal
excursion of the estuarine water mass (Section 2.3).

Figure 5. Evaluation of the importance of the (neglected) unsteadiness term. (a) Comparison of the unsteadiness term
estimated from the tidally averaged salinity signal at the most down‐ and upstream stations in the Ems estuary. (b) Same
estimation for the advection of salt. (c) Ratio of the unsteadiness term to the advection term, used to measure the importance
of the unsteadiness term in the salt balance equation (Equation 1). The solid black lines indicate the monthly average.
(d) Estimation of the error introduced by neglecting the unsteadiness term in the dispersion coefficient. Note: When using
Equation 2, the dispersion coefficient is calculated as Dx =

Q
Ax

S
∂S/∂x. When using Equation 1, it is given by

Dx = (∫
xl
xs

∂S
∂t Axdx + QrS) 1

Ax∂S/∂x
, where xs is the location of the station and xls is the location where the salinity approaches

zero; the most upstream station is used here. (e–h) Same as (a–d), but for the Scheldt estuary.
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4.3. Performance of the Regression Model

This section tests the predictive skill of the steady‐state formulations (Equations 11 and 12) in predicting salinity
variations at the stations where salinity often matches river levels and unsteadiness effects between the station and
the downstream boundary are assumed minimal.

The model inputs consist of river discharge, river salinity, and tidal elevation. Furthermore, observed salinity at a
down‐estuary station, where unsteadiness effects become important, are provided for the downstream boundary
condition. The data sets are divided into a calibration period and a prediction period. For the Ems, the first
15 months are used to optimize model coefficients, with the remaining 7 months testing predictive skill. Similarly,
for the Scheldt, the last year of data is used for prediction testing. The low‐pass filtered salinity signals at Knock
and Prosperpolder provide the boundary conditions, S0, for the Ems and Scheldt estuaries, respectively.

In the Ems estuary, the best results were achieved using Equation 12 (Figure 7). This model, fitted with 40–32
regression coefficients for the various stations (used tidal constituents are listed in Table S1 in Supporting In-
formation S1), had an unexplained variance of 4.9%–11.1% and an RMSE of 1.2–1.8 psu during calibration
(Table 1). The unexplained variance increased slightly to 4.8%–11.4% with an RMSE of 0.9–1.6 psu during the
predictions, with the greatest decrease in predictive skill observed at the most upstream station. Figure 9 provides
additional details for the Gandersum station. Figure 9a shows that the model effectively captures the harmonic
variations in intertidal salinity, supported by the power spectra comparison (Figure 9d). It also accurately rep-
resents the period where the salinity signal was clipped (Figure 9c) and two significant surge events with sea level
increases of 0.96 and 1.45 m (Figure 9b). When surge variations are not included (Equation 11), the unexplained
variance increased by approximately 1%–2% during the prediction period (Figure S3 in Supporting
Information S1).

Similar results were obtained for the Scheldt estuary (Figure 8 and Figure S4 in Supporting Information S1).
Using 24–58 regression coefficients, depending on the station, the model using Equation 12 achieved an unex-
plained variance of 1.4%–8.8% and an RMSE of 0.5–0.9 psu during calibration (Table 2). Prediction variance
increased to 3.6–12.0% with an RMSE of 0.6–1.1 psu. Compared to the Ems case, excluding storm surge effects
had a smaller impact on the regression model's performance in the Scheldt estuary, likely due to its longer salt
intrusion length and weaker sensitivity to storm surge water levels (see Figure 6).

Figures 7 and 8 show that the low‐pass filtered variations closely align with observed averages, indicating that the
mean signal is well captured and suggesting minimal unsteadiness effects upstream of the imposed boundary.
However, residuals still exhibit autocorrelation. To assess the importance of the neglected unsteadiness term, it

Figure 6. Relationship between storm surge water levels and horizontal excursion for the Ems and Scheldt estuaries. (a and c)
Observed band‐pass filtered variation of salinity S̃ , water elevation ζ̃ , and discharge Q̃r , normalized by the maximal
observed value. The band‐pass filter retains variation in between 1.2 and 6 days. (b and d) Linear relationship between water
elevations ζ̃ and estimated horizontal excursions. The latter is approximated by dividing S̃ by the local salinity gradient dSdx.
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was assumed that the low‐pass filtered residuals reflect the mismatch due to unsteadiness. This accounted for
3.2%–3.8% of the variance in the Ems, with little variation between stations, while in the Scheldt, this percentage
increased upstream, ranging from 0.4% to 4.8%.

4.4. Model and Parameter Sensitivity

4.4.1. Optimized Powers and Fitted Coefficients

Section 4.3 demonstrated that accurate predictions can be achieved using Equations 11 and 12. In this section, we
assess the robustness and consistency of the model, focusing on the optimized power coefficients and fitted
regression parameters.

First, three experiments were conducted for both systems using Equation 12: one where both power coefficients
were optimized and two where either P or K was held constant. These experiments aim to determine whether
optimizing both powers is necessary. Second, for the model with both power coefficients optimized, four
additional experiments were performed to evaluate the consistency of the best‐fit values of the power and
regression coefficients when using different periods for model optimization and different discharge conditions.
The best‐fit model coefficients are shown in Figures 10 and 11 for the Ems estuary and the Scheldt estuary,
respectively.

In the first experiment, both P and K were optimized (Figures 10a–10c and 11a–11c). For the Ems estuary, the
best‐fit values for P increased from 0.56 ± 0.01 to 0.67 ± 0.02. The obtained values for 1/K varied significantly
between stations, increasing from 1.26 ± 0.07 to 4.30 ± 0.06 at the upper station. In the Scheldt estuary, P
decreased from 0.76 ± 0.01 to 0.62 ± 0.01, while 1/K increased upstream from 1.20 ± 0.04 to 5.00 ± 0.04 at the
most upstream station. In the second experiment, P was optimized while 1/K was set to 2, consistent with the
values found by Kuijper and Van Rijn (2011) and Z. Zhang and Savenije (2019). With 1/K fixed, the model
performance was slightly adjusted, as along‐channel variations in 1/K were compensated by changes in the best‐

Figure 7. Data‐model comparison for salinity in the Ems estuary, with salinity predicted using Equation 12 and the fortnightly
averaged salinity at Knock as seaward boundary condition. (a–d) Observed and predicted salinity variations and tide
averaged (determined by a moving average, 1‐day window). The period for which the salinity is predicted is highlighted by a
gray background. (e) Residuals (predictions minus observations) of panel (a–d). The residuals include an offset for clarity of
the figure.
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fit value of P. Similarly, in the third experiment, K was optimized while adopting the power found by Gisen and
Savenije (2015) for P. These experiments highlight the equifinality in the model, where alternative sets ofK and P
can yield similar outcomes. Fixing K influences the optimized value of P, and vice versa. However, optimizing
both powers yields the most robust parameter set, and consistent regression coefficients.

In the second set of experiments (where both P and K were optimized), the model was optimized using either the
entire data set or a portion of it (as done in Section 4.3). Additionally, experiments were conducted where only
data points with below‐average discharge were used for optimization (Figures 10d–10i and 11d–11i). These
experiments show that the selected period for model optimization has little influence on the best‐fit values of P.
However, the best‐fit values of K showed more variability between periods, particularly at the most upstream
stations. Notably, when only below‐average discharge conditions were used, the values of 1/K displayed a clear
offset in both estuaries, but maintained a similar along‐channel trend. These results suggest that K is spatially
variable and depends on discharge conditions. The interpretation of K is further explored in Section 6.

Figures 10g, 10h, 11g, and 11h compare the best‐fit regression coefficients a0 and a1. The values of these co-
efficients varied between experiments and were dependent on the values of P and K. Although K differed
significantly, the longitudinal variations in a0 primarily reflect the reduction in relative dispersion as a function of
longitudinal coordinate and channel convergence, following a similar trend across all experiments. A t test (p‐
value <0.05) confirmed that the values of a0 and a1 were significantly different from zero for all experiments.
Figures 10i and 11i show the constant phase αk of theM2 constituent (see Equation A9), which increases upstream
and shows little variation between experiments.

4.4.2. Constituent Selection and the Influence of Missing Data Points

In the regression model, the constituents are selected using the adjusted Rayleigh criterion based on the length of
record and postfit significance testing. In addition, for each tidal constituent, it is tested if the contribution of the

Table 1
Overview of the Model Experiments Performed for the Ems Estuary and Results Discussed in Sections 4.3

Regression model Boundary Calibration Prediction Station (–)
Missing
(%)

Parsd

(–) P/K (–)

Cal. Pred.

rmse
(psu)

Un.
Var. (%)

rmse
(psu)

Un.
var. (%)

Tides (Equation 11) Obsa 17 months 7 months Emspier 13 31 0.57/0.77 1.8 6.8 1.8 6.6

Pogum 4 29 0.58/0.50 1.9 7.2 1.9 7.9

Gandersum 8 31 0.61/0.46 1.8 8.4 1.9 10.6

Terborg 37 25 0.66/0.29 1.3 12.2 1.0 12.6

Tides + surges
(Equation 12)

Obsa 17 months 7 months Emspier 13 40 0.60/0.82 1.7 6.0 1.6 4.9

Pogum 4 30 0.62/0.53 1.8 6.5 1.6 5.9

Gandersum 8 34 0.64/0.48 1.7 7.6 1.6 8.0

Terborg 37 32 0.67/0.44 1.2 9.8 0.9 11.1

Tides + surges
(Equation 12)

Conb 17 months 7 months Emspier 13 22 0.57/0.71 2.9 18.8 3.3 23.6

Pogum 4 24 0.50/0.48 2.9 17.4 2.8 17.7

Gandersum 8 20 0.51/0.47 2.6 17.5 3.6 19.3

Terborg 37 18 0.59/0.45 1.7 23.0 2.4 14.7

Tides + surges
(Equation 12)

Predc 17 months 7 months Emspier 13 38 0.57/0.77 1.6 5.6 1.5 4.3

Pogum 4 44 0.58/0.50 1.8 6.0 1.5 5.3

Gandersum 8 36 0.61/0.46 1.7 7.0 1.6 7.2

Terborg 37 28 0.66/0.30 1.2 10.2 0.8 8.4

Tides + surges
(Equation 13)

Conb 17 months 7 months Knock 10 15 0.29/0.83 1.1 4.5 1.9 8.9

Note. The missing percentage refers to the total percentage of missing and rejected data points, while Un. Var. refers to the unexplained variance in the model results.
aFortnightly averaged salinity at the Knock station for the seaward boundary condition. bConstant value of 35 psu for the seaward boundary condition. cParameterized
seaward boundary condition. dTotal of the fitted proportionality coefficients.
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Figure 8. Data‐model comparison for salinity in the Scheldt estuary, with salinity predicted using Equation 12 and the
fortnightly averaged salinity at the Overloop van Hansweert station as seaward boundary condition. (a–d) Observed and
predicted salinity variations and tide averaged (determined by a moving average, 1‐day window). The period for which the
salinity is predicted is highlighted by a gray background. (e) Residuals (predictions minus observations) of panels (a–d). The
residuals include an offset for clarity of the figure.

Figure 9. Data‐model comparison for salinity at Gandersum station (data same as in Figure 7). (a–c) Zoom of the observed
and predicted salinity. The gray boxes in panel (a) indicate the periods shown in panels (b and c). (d) Power spectrum of the
predicted observed salinity and predicted salinity signal. The blue triangles indicate the included tidal coefficients.
(e) Amplitude of the tidal constituents included (derived using Equation A7) and the blue error bars indicate the associated
confidence bounds.
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amplitudes related to the storm surge variations are significant (also see A5 in Appendix A). Furthermore, the
selection procedure summarized above does not account for the possible influence of clipping on constituent
selection. These two aspects are further addressed in this section.

Significant surge events occur only several times in a year. Therefore, the statistical uncertainty is higher for the
coefficients associated to storm surge terms in Equation 12. In the performed experiments, the total number of
included tidal constituents roughly varied between 10 and 18. However, only for a few constituents, the amplitude
of storm surge terms were found to contribute significantly (Tables S1 and S2 in Supporting Information S1). By
testing the individual amplitudes, instead of the overall resulting amplitudes, overfitting is prevented and the total
number of model coefficients is reduced.

To illustrate the influence of missing data, the correlation matrix of the model coefficients of the constant tidal
variations are visualized for the most down‐ and upstream stations of the Ems estuary in Figure 12. A similar
figure is found for the Scheldt in Figure S5 in Supporting Information S1. For both stations shown in Figure 12, a
518‐day period was available to optimize the regression model for the Ems, and based on the adjusted Rayleigh
criterion, a frequency separation of 1.1 10− 2 d− 1 is required. Missing and rejected data points significantly
differed between the two stations. At Emspier, in total, 12% data points were missing due to gaps in the data set,
which increased by 1% after removing the data points where salinity is insignificantly different from the river
salinity. At Terborg, 4% of the data points were missing, and an additional 33% of the data are rejected from the
optimization of the harmonic model. This allows for the use and optimization of the harmonic model, but it
influences the ability to distinguish between several tidal constituents. Constituents can become poorly identi-
fiable because the low stages of the tidal cycles are less frequently sampled (i.e., these data points are rejected
from the analysis).

For example, at Emspier, the correlation coefficients are found to be low (Figure 12a). As expected, the highest
correlation coefficients occur between neighboring tidal constituents, peaking at 0.1 for O1 and K1. At Terborg,
the correlation between neighboring tidal constituents increased, amounting to 0.18 for O1 and K1. However, a
more distinct correlation exists between astronomical and shallow water constituents that differ in frequency by a

Table 2
Overview of the Model Experiments Performed for the Scheldt Estuary and Results Discussed in Section 4.3

Regression model Boundary Calibration Prediction Station (–)
Missing
(%)

Parsd

(–) P/K (–)

Cal. Pred.

rmse
(psu)

Un.
var. (%)

rmse
(psu)

Un.
var. (%)

Tides (Equation 11) Obsa 2.5 years 1 year Lillo Meetpaal 13 31 0.72/0.97 0.5 1.5 0.6 3.8

Oosterweel 25 39 0.60/0.29 1.0 5.2 1.1 7.7

Hemiksem 19 25 0.60/0.20 0.6 9.7 0.6 12.8

Tides + surges
(Equation 12)

Obsa 2.5 years 1 year Lillo Meetpaal 32 34 0.71/0.94 0.5 1.4 0.6 3.6

Oosterweel 26 58 0.60/0.30 0.9 4.7 1.1 6.9

Hemiksem 27 24 0.60/0.20 0.5 8.8 0.6 12.0

Tides + surges
(Equation 12)

Conb 2.5 years 1 year Lillo Meetpaal 26 8 0.65/0.29 2.8 43.0 3.2 69.2

Oosterweel 26 28 0.66/0.45 2.2 26.3 2.2 27.9

Hemiksem 27 18 0.63/0.30 1.0 27.6 1.0 34.4

Tides + surges
(Equation 12)

Predc 2.5 years 1 year Lillo Meetpaal 26 28 0.73/0.94 0.5 1.4 0.6 3.6

Oosterweel 26 48 0.60/0.29 0.9 4.6 1.0 6.9

Hemiksem 27 30 0.60/0.14 0.5 8.9 0.6 12.2

Tides + surges
(Equation 13)

Conb 2.5 years 1 year Hansweert 19 31 0.46/0.98 0.5 2.3 0.9 11.6

Prosperpolder 7 29 0.47/0.47 0.5 1.1 1.4 8.9

Lilo Meetpaal 13 17 0.47/0.48 0.4 1.1 1.1 10.5

Note. The missing percentage refers to the total percentage of missing and rejected data points, while Un. Var. refers to the unexplained variance in the model results.
aFortnightly averaged salinity at Prosperpolder for the seaward boundary condition. bConstant value of 35 psu for the seaward boundary condition. cParameterized
seaward boundary condition. dTotal of the fitted proportionality coefficients.
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factor of two. For example, at Emspier, the correlation betweenM2 andM4 is only 5.7 10− 3, but increases for the
Terborg station to 0.22. Similar results are found for example, for S2 andMS4, and for N2 andMN4 (Figure 12b).

The correlation between these constituents is not caused by an insufficiently long data set; it only requires about
2 days to distinguish M2 from M4. The correlation arises from the fact that the salinity signal is less frequently
sampled near LWS, which hampers the isolation of shallow water tides from astronomical tides. In our analysis,
the correlations as obtained are weaker. However, additional synthetic experiments indicate that serious errors in
the amplitudes and phases occur when ∼50% of the data signal is clipped, which agrees with the results of Evans
and Pugh (1982). When the signal contains substantial clipping, results can be improved by rejecting the shallow
water constituents from the analysis.

5. Influence of the Downstream Boundary and Unsteadiness
Section 4.3 has demonstrated the ability of steady‐state regression models to effectively predict truncated salinity
signals with an appropriate boundary condition. In the evaluation so far, the model's predictive performance
depends on the assumption of a steady state, and on salinity measurements from a down‐estuary station a
boundary condition. This section evaluates the impact of unsteadiness and of the down‐estuary boundary con-
dition. We explore the parameterizations that eliminate the need for measured salinity at the seaward boundary.

The influence of unsteadiness in the salt balance increases for stations located closer to the coast (see Section 4.2).
In Section 4.3, good results were obtained by using the low‐passed filtered measured salinity signal from a down‐
estuary station as a boundary condition. This approach captures the salinity variations caused by unsteadiness in
the lower estuary, allowing for the use of a steady‐state formulation. Relying on a constant salinity value
(S0 = 35 psu) instead of a time‐varying boundary (significantly) reduces the model's predictive skill. In the Ems,

Figure 10. Overview of model coefficients for the Ems estuary and the resulting unexplained variance, using alternative settings to optimize the power coefficients.
Results are derived from Equation 12 longitudinal profiles of the power coefficients P and K under different optimization conditions: when both powers are optimized
(P ‐ K), when 1/K = 2, or when P = 0.57. (c) Resulting unexplained variance. (d–f) Same as panels (a–c), showing the difference in optimized powers P andK when part
of the data set is used for optimization (Val.), compared to when the entire data set is used (Cal.). Additionally, the influence of discharge on the obtained power is analyzed
by using only below‐average discharge conditions (Val. (Qr ≤Qr) and Cal. (Qr ≤Qr) ), emphasizing the dependence of K on the discharge conditions. (g and h)
Longitudinal development of the fitted model coefficients of the river and surge terms. (i) Amplitudes coefficients for the M2 constituent.
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this leads to a reduction of about 15% in the explained variance. For the Scheldt, this reduction reached up to 50%
at downstream stations and 15%–25% at upstream stations when using Equation 12 (see Tables 1 and 2).

Equation 16 parameterizes the salinity at the downstream station, where unsteadiness becomes significant. This
approach enables accurate predictions of salinity at the upstream stations (with truncated signals) without the need
to know the salinity values at the downstream boundary during the prediction phase. This approach led to a less

Figure 11. Same as Figure 10, but for the Scheldt estuary.

Figure 12. Correlation matrix of the model coefficients fitted for the harmonic model (storm surge terms are not included) at
two stations in the Ems estuary, subpanels indicate the time step distribution after the data point selection. (a) Correlation
matrix for the downstream station Emspier. Model coefficients very weakly correlate for neighboring tidal constituents.
(b) Correlation matrix for the most upstream station Terborg. Weak–modest correlation is observed between neighboring
constituents K1/O1 and between the astronomical and shallow water constituents with (approximately) twice the frequency
of the astronomical constituent.
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than 5% reduction in explained variance for the Ems estuary. In the Scheldt estuary, it improved the models
accuracy especially for the downstream stations, reducing the explained variance by 2%–5% compared to the
results in Section 4.3.

For nontruncated signals where unsteadiness effects are important, Equation 13, which directly incorporates the
AR(1) lag into the model formulation, can be applied. This model is demonstrated for the two most downstream
stations—Knock and Hansweert (see Figure 13)—where unsteadiness is most pronounced. For these stations, the
unexplained variance was 8.9% and 11.5%, with RMSE values of 1.9 and 0.9 psu, respectively. In contrast, the
steady‐state approach explained only 34% and 77% of the variance, respectively. The empirical response times
(Tr) for adjustment, derived from the model, were 24 and 35 days, which is notably longer than the typical period
over which discharge variations occur. While Equation 13 better captures the salinity variations at these stations
and significantly reduces the autocorrelation in the residuals, it still does not fully capture the dynamics, but
presents an improvement over the steady‐state approach.

In the steady‐state approach, salt concentrations directly reflect the current forcing conditions. In contrast, the
unsteady approach depends on both the previous state and the changes introduced by variations in the forcing
conditions. The model embedding Equation 13 can be used to express the salinity that would be reached under

Figure 13. Data‐model comparison using Equation 13 and a constant salinity (35 psu) for the seaward boundary condition.
(a) Observed and predicted salinity variations and tide averaged (TA) (determined by a moving average, 1 day window) for
the station Knock in the Ems estuary. The period for which the salinity is predicted is highlighted by a gray background.
(b) Comparison between TA observed, TA predicted salinity variations, its equivalent steady‐state salinity, and the TA
predicted salinity when a steady‐state approach is adopted (Equation 12). (c) Residuals. (d and e) Same but for the station
Overloop v. Hansweert in the Scheldt estuary.
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unchanged forcing conditions (i.e., steady‐state), and infers whether the system is gaining or losing salt as
follows:

S̃s = (1 − a0K
|Qr|

D0
+ a1D̃t)

1/K

, (17a)

S̃st = (1 −
a0

1 − a1
K
|Qr|

D0
)

1/K

, (17b)

Ψ =
S̃s − S̃st

S̃
, (17c)

where S̃s represents the predicted scaled subtidal salinity, S̃st is the equivalent steady‐state salinity, and Ψ is the
scaled difference. Specifically, Ψ< 0 indicates gaining salt, Ψ> 0 indicates a loss of salt, and Ψ = 0 indicates a
steady state. Figures 13b and 13e illustrates the resulting values for Ψ, showing a clear seasonal cycle in both
systems. Typically, during spring and summer, the estuary gains salt, while in autumn and winter, salt loss
dominates. Similarly, the amplitudes of the harmonic component can be calculated, showing that the amplitudes
are larger during periods of increased discharge (Ψ> 0), leading to stronger along‐estuary gradients than periods
of decreased discharge (Ψ< 0).

6. Critical Evaluation of Adopted Model Formulation
The previous sections show that the proposed model, which embeds the Savenije (1986) in formulation, is well
capable of prediction of the salinity variations. This formulation is empirical rather than based on first principles.
Therefore, in this section, we compare the Savenije (1986) model with the more theoretically substantiated Gay
and O’Donnell (2007) formulation, and use the Gay and O’Donnell (2007) formulation to evaluate the obtained
best‐fit powers and interpret the meaning of the Van der Burgh constant.

6.1. Comparison With Gay and O’Donnell Model

Savenije (1986) assumes that the Van der Burgh coefficient (K) is constant. This assumption conflicts with our
best‐fit values of K, which exhibit significant site‐to‐site variations, specifically in the Scheldt estuary. Also, the
physical interpretation of K provided by Savenije (2015) does not align with the general knowledge of both
systems, nor is it reflected in the along‐channel variations in the best‐fit values.

Alternative models that avoid the use of Equation 3 have been proposed by Kuijper and Van Rijn (2011) and Z.
Zhang and Savenije (2019), resulting in similar model structures, where K is set to 0.5. Alternatively, in the Gay
and O’Donnell (2007) formulation, who derived a descriptive equation for along‐channel salinity variations
directly from Equation 1, the power in their formulation is described by physical properties. Assuming a linearly
tapered estuary and a constant along‐channel dispersion coefficient, at equilibrium, their model reduces to

Sx − Sr
S0 − Sr

= (1 −
a
A0
x)

Qr
aDx

, (18)

where a represents the estuary tapering factor, and the dispersion coefficient is constant in this model (D0 = Dx) .
A key difference with Equation 5 is that the exponent Qr

aDx
consists of physically interpretable variables. Here,

Equation 18 is used to obtain analogous equations to Equations 11 and 12 for the harmonic regression model,
resulting in Equations B1 and B2 in Appendix B. With Equation 18 as a base function, two power coefficients are
optimized: again the power P for the dispersion coefficient, and γ, which determines the magnitude of the power
γ Qr
D0
. Extending this model with an AR(1) component is less straightforward due to the time‐varying component

appearing in the power. For this reason, we used the Savenije (1986) formulation in our approach, rather than the
Gay and O’Donnell (2007) formulation.

The predictive skills of Equations B1 and B2 are comparable to the results discussed in Section 4.3, although the
explained variance is approximately 2% lower for both estuaries (Tables B1 and B2). With both models resulting
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in similar predictive skill, it is interesting to compare the best‐fit value of the optimized powers (Figures 14a–
14d). Figures 14a and 14b compare the best‐fit values for P. The values show similar along‐channel varia-
tions; however, the value obtained using Equations B1 and B2 are substantially lower in the Ems, whereas more
comparable values are obtained for the Scheldt. Figures 14c and 14d compare the best‐fit values of 1/K with the

time series‐averaged power (γ Qr
D0
) and its variability, where the overbar denotes the long‐term average. Again,

both powers show a similar trend in the up‐estuary direction, but their magnitude differs. This suggests that the
locally optimized Van der Burgh constant may have a similar physical meaning as the power in the model by Gay
and O’Donnell (2007). This is further explored in the next section.

6.2. Interpretation of the Van der Burgh Constant

In the model of Gay and O’Donnell (2007), the power governs the time‐varying spatial scale of dispersion and
advection relative to the imposed scale over which channel geometry changes. To evaluate whether the locally
optimized Van der Burg constant could have a similar meaning as the power in the model of Gay and O’Don-
nell (2007), the values of 1/K are plotted against − La∂S/∂xS

. The latter can be expressed using Equation 2 as

− (QrLa) (DxAx)
− 1, and the same group of parameters is recognized as in Equation 5, which determines the

relative dispersion coefficient. Recognizing that − La =
Ax

∂Ax/∂x
allows to write 1/K ∝ ( Qr

Dx∂Ax/∂x
) or

1/K ∝ ( urDx

Ax
∂Ax/∂x)

, which results in the same parameter group as the power term in Equation 18. We calculate the

long‐term average salinity and its along‐channel derivative from the average salinity distribution shown in
Figure 4. For the cross‐sectional convergence lengths (La) , values of 2.2 × 103 m for the Ems and 1.8 × 103 m
for the Scheldt estuaries were used.

Based on the above, Figures 14e and 14f show the ratio − La∂S/∂xS
obtained from the data against the best‐fit values

for 1/K for both estuaries, which results in near‐linear relation for the values within one system. The relationships
differ between the Ems and the Scheldt estuaries, which is confirmed by a statistically significant difference in the
slopes of the fitted regression lines. Whether this difference in slope is due to inherent physical properties of the
estuaries or represents an artifact of the model, remains unclear. However, if the relationship seen in Figures 14e

and 14f holds within one system, it suggests that the power 1/K ∝ ( urDx

Ax
∂Ax/∂x)

and the locally optimized Van der

Figure 14. (a) Comparison of the power P obtained using Equation 12 and Equation B2 in the Ems estuary. (b) Same as (a),
but for the Scheldt estuary. (c) Comparison of the power 1/K from Equation 12 with the time series‐averaged power γ Qr

D0
obtained with B2, along with its variability, in the Ems estuary. (d) Same as (c), but for the Scheldt estuary. (e) Relationship
between − La∂S/∂xS

and the best‐fit values of K, expressed as 1K . The dashed lines represent the fitted regression line. (f) Same as
(e), but for the Scheldt estuary.
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Burgh constant indeed has a similar physical meaning as the power in the model of Gay and O’Donnell (2007).
The inverse of our locally fitted Van der Burgh constant may then be interpreted as an empirical coefficient that
scales with the average spatial scale of the dispersion and advection magnitude, relative to imposed scale of
channel geometry change. Finally, this also explains the substantially lower values for 1/K when only using low
discharge condition to optimize the model (see Section 4.3).

6.3. Sensitivity to the River Discharge

In Section 6.1, we observe that the best‐fit values for the power P, derived from using either Equation 5 or
Equation 18 as the base function, show comparable trends along the channel. However, in the Ems, values ob-
tained with Equation 18 are noticeably lower, while in the Scheldt, both equations yield similar values. Here, we
further assess the observed difference in the best‐fit values of P, which governs the sensitivity to the river
discharge.

To find out if the power P differs between the Ems and Scheldt estuaries, the relationship betweenQr andD0 was
examined by calculating the dispersion coefficient according to Equation 2, using salinity time series and the
observed gradients between different stations. The obtained dispersion coefficients are subsequently used to
obtain an estimate of P inQP

r ∝Dx, where the power is estimated by means of a regression (see Figures S6 and S7
in Supporting Information S1). For the Ems estuary, lower values of P (0.4–0.55) are obtained from the data
compared to the Scheldt estuary (0.66–0.79), which is in agreement with a substantial difference in the value of P
for the two estuaries that can be expected based on Equation 18. A likely reason for the fact that this effect is not
fully captured by Equation 5 lies in the model structure. The sensitivity to discharge variations can be accom-
modated by modifying K in Equation 5. Hence, differences in the actual values of P are compensated for by an
altered value of K. This model characteristic may partially account for the variations observed between the two
systems in the previous section. However, in both systems, estimates of P derived from the data show an increase
in the up‐estuary direction. This aligns with the along‐channel trend of best‐fit values for P in the Ems. In the
Scheldt, however, the best‐fit values indicate a decrease. The elevated value at the first station in the Scheldt is
likely due to its close proximity to the downstream boundary station, which limits the sensitivity to discharge
fluctuations.

7. Discussion
7.1. Possibilities and Limitations of the Model

The proposed harmonic regression model to predict estuarine salinity variations at monitoring sites yields
favorable results for two applications. To demonstrate in which type of systems the model works best, the Ems
and Scheldt estuaries can be projected onto the classification diagram by Geyer and MacCready (2014). This
diagram maps the estuarine parameter space based on a mixing parameter M and the freshwater Froude number
Frf . M quantifies the effectiveness of tidal mixing for stratified estuaries and Frf is a measure for stratification

driven by gravitational circulation, which scales as Fr
2
3
f (MacCready, 1999). To classify the Ems and Scheldt

estuaries in the M − Frf plane, we used the observed forcings at the boundary and geometry estimates from
Gisen and Savenije (2015), shown in Figure 15a. Both estuaries fall in the lower right quadrant of the diagram.
The Scheldt estuary is classified as a well‐mixed system, bordering the weakly stratified strain‐induced periodic
stratification (SIPS) regime. The Ems estuary falls in the SIPS regime and approximates the partially mixed
regime for higher discharges. The fact that the Ems estuary is located in the SIPS regime may explain why the
portion of unexplained variance was higher than the Scheldt.

The proposed regression model is based on a steady‐state salinity distribution, best applicable when the
adjustment timescales of the salinity front are shorter than the timescales at which the discharge varies
(C. Kranenburg, 1986; Monismith et al., 2002). An expression for the adjustment time is TA = ls 12

A
Qr
for systems

dominated by tidal stirring and TA = ls16
A
Qr
for exchange‐dominated systems (MacCready & Geyer, 2010). These

expressions indicate that the adjustment time increases with the length of the system and is inversely related to the
strength of the residual current. This suggests that the proposed steady‐state model is best applicable to systems
with shorter salt intrusion lengths and stronger residual currents, which allow for quicker adjustment to variations
in discharge. For the systems evaluated in this study, spectral analysis of the discharge time series reveals that the
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majority of discharge variations (over 75%) occurs at periods below 14 days, for both systems. The adjustment
times calculated for exchange‐dominated systems, based on average intrusion lengths (98 km for the Ems and
66 km for the Scheldt), discharges (79 m3/s for the Ems, 66 m3/s for the Scheldt), and cross‐sectional areas
(1.4 ⋅104 m2 at Knock, 1.1 ⋅104 m2 at Hansweert), are 22 days for the Ems and 33 days for the Scheldt. These
values agree reasonable well with the empirical derived response times. In both cases, the adjustment time ex-
ceeds the typical time scale of discharge variations.

The effects of unsteadiness were found to increase in the down‐estuary direction, while remaining smaller at the
more up‐estuary station (Figure 5). Hence, although in both systems the adjustment timescale exceeds the typical
timescale of discharge variations, a steady‐state model can still be applied successfully in the more up‐estuary
sections. This is possible by using a time‐varying boundary condition at a down‐estuary station, where un-
steadiness becomes more significant (see Section 4.3), or by employing a parameterized boundary condition (see
Section 5). For stations where unsteadiness is significant and the salinity signal is not truncated, the formulation
with the AR(1) extension can be effectively applied. Ideally, this approach would also be useful for stations with
truncated signals. However, for these cases, we were unable to obtain reliable estimates of the AR(1) coefficient.
Additionally, a constant empirical response time is currently used, but theoretically, an adjustment time that varies
with discharge would be more appropriate.

The importance of storm surges varied between the two systems. Including the effect of storm surges improved
the explained variance by 1%–2% and 0.2%–0.5%, respectively for the Ems and Scheldt estuaries (see Sec-
tion 4.3). The latter suggests that the Scheldt estuary is less sensitive to storm surges than the Ems estuary. This
can be explained by differences in the geometry and the intrusion lengths. A shorter intrusion length results in
larger longitudinal salinity gradients, that is, a higher sensitivity to salinity variations caused by advective dis-
placements. Similarly, the influence of tides and storm surges on local salinity often increases for higher dis-
charges (Figure 16). The shape of the estuary largely determines the relation between the vertical and horizontal
excursions (Equation 8), and scales with the channel convergence to the depth ratio ( Lah ) . This ratio is higher for
the Ems than the Scheldt estuary, and hence, a larger vertical excursion length is found for the Ems estuary
(Figures 6b and 6d). Figure 15b shows a simple matrix, based on the intrusion length and estuary shape, to
demonstrate the sensitivity of a (converging) estuary to storm surges. Estuaries where the salt intrusion length is
closer to the tidal excursion are likely more sensitive to storm surges.

The horizontal excursion resulting from storm surges is remarkably well captured by a simple linear relation. The
appropriateness of this relation depends on the wave character of the occurring storm surge. When a storm surge
wave has a standing wave character, the resulting horizontal tidal excursion varies near‐linearly with the surge
water levels (Figure 6). For the Ems and Scheldt estuaries, adding the extrahorizontal excursion resulting from
storm surge water levels allowed us to reconstruct the observed salinity variations. However, it is likely that in
other systems, such a simple relation cannot describe the dynamics. For example, C. Li et al. (2010), Gong
et al. (2018), andW. Kranenburg et al. (2022) found that in partially and stratified systems, storm surge events can

Figure 15. (a) Classification of the Ems and Scheldt estuaries in the Geyer and MacCready (2014) diagram, including
variability around the average location in the diagram that results from spring‐neap tide and discharge variations. (b) Matrix
to assess the sensitivity of advective displacements by storm surges, based the dimensionless shape factor La

h0
for converging

estuaries and a typical salinity gradient S0ls . Location of different estuaries are based on literature (Gisen & Savenije, 2015).
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significantly increase mixing and reduce stratification, arresting the estuarine circulation. In our regression model,
surge water levels increase the tidal range and mixing through Equation 14. Whether or not the regression model
is capable of capturing storm surge dynamics in more stratified systems requires further testing. In long estuaries,
where the typical wavelength of a surge wave does not exceed the length scale of the estuary, storm surge waves
may have a progressive character. These systems may require a frequency specific approach to capture the storm
surge variations.

7.2. Interpretation on Causes of Salinity Variations

The regression model facilitates the examination of various factors influencing along‐channel salt distribution and
variability in salt concentration at individual sites. As discussed in Section 6, the along‐channel variations in the
best‐fit values of K seem to reflect changes in dispersive and advective magnitudes relative to the imposed scale

of channel geometry change (1/K ∝ ur
Dx

Ax
∂Ax/∂x)

. Further research is needed to confirm this relationship across

different systems and explore the sensitivity to the value of P. The harmonic regression model can elucidate the
causes of salinity variations at specific sites. For example, predictions for the Ems estuary (see Section 4.3) are
divided into contributions from tide‐averaged oscillations, tidal dynamics, and surge‐induced variations, as
shown for the most down‐ and upstream stations in Figure 16. For these stations, approximately 75% of the
variance is attributed to tidal dynamics, whereas for Pogum and Gandersum, tide‐averaged oscillations contribute
around 35%–40% of the variance. The overall contribution of storm surge variations is limited to about 2%. In the
steady‐state models, each term is scaled by Qr

D0
∝QP − 1, which predominantly reflects the discharge variations.

Hence, each term amplifies with increasing discharge. With the model to include unsteadiness effects (trough
autoregressive term) as proposed, the interpolation of the terms changes, but allows for a similar decomposition of
the salinity signal.

7.3. Comparison With Other Predictive Methods

The goal of this paper is to develop a tool capable of providing accurate short‐ to medium‐term predictions, while
also providing insights into the contributing mechanisms. An alternative approach for obtaining short to medium‐
term predictions is the use of artificial neural networks (ANNs). Several studies showed that ANNs are well
capable of providing accurate estimates of estuarine salinity (Rath et al., 2017; F. Zhou et al., 2020; X. Zhou
et al., 2017). A well‐trained ANN may outperform the regression model proposed herein in terms of predictive
skill, especially when the salinity signal contains nontidal variations and the unsteadiness of the estuary is high.

Figure 16. Components of the harmonic regression model, based on Equation 12, illustrated for the stations Emspier and
Terborg. (a) Temporal variation in Qr

D0
, which scales each term in the regression model. (b) Full signal (i.e., relative

dispersion) of panels (c–e). (c) Contribution of the tide‐averaged term, resulting from a balance between dispersion and
flushing. The red dashed line indicates the threshold value at which the signal is truncated. (d and e) Contribution of the tidal and
storm surge terms, resulting from a horizontal excursion of the salinity distribution. For clarity of the figure, an offset of±0.6 in
panel (d) and ±0.15 in panel (e) is used.
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Compared to an ANN, the advantage of the proposed harmonic regression methodology is the transparency in the
model structure, offering insight into the contribution of various physical mechanisms. This is in contrast to an
ANN approach, in which the relation between the input and the explained variables is unclear. Our approach may
better predict events of salinity intrusion, in which conditions are more extreme than what is captured by the
training data.

8. Conclusion
A harmonic regression model has been developed and evaluated to analyze and predict salinity variation at
monitoring stations. The model is based on the steady‐state salt intrusion model of Savenije (1986) and is
extended to capture variations caused by tides and storm surges. Tidal variations are represented using harmonic
functions, while storm surge‐induced changes are modeled through a linear relationship, which is theoretically
justified when the typical wavelengths of storm surges have longer wavelengths than the estuary's length scale.
An autoregressive term is introduced to capture unsteadiness effects. To accurately reproduce local salinity, the
model optimizes two power coefficients and proportionality constants. Salinity predictions are truncated to ac-
count for periods when the intrusion length occasionally reaches the monitoring station, though this truncation
affects the identifiability of higher harmonics. The model's predictive performance was demonstrated at seven
stations in the upper sections of the Ems and Scheldt estuaries, explaining between 87.4% and 96.4% of the
observed variance. The dominant salinity response to storm surge variations was well captured, with horizontal
displacement of the longitudinal salinity profile being the primary response. This reveals the sensitivity of salinity
in well‐mixed systems to storm surges, based on a simple matrix relating geometry and intrusion length. Close to
the coast, where the estuary has widened, effects of river discharge unsteadiness increases. For stations with
untruncated signals, the extended autoregressive model enabled accurate predictions at these sites, and assessed
the lagged response. The best‐fit power coefficients were critically evaluated, providing insights into the physical
interpretation of the Van der Burgh constant, showing that it scales with the spatial scales of dispersion and
advection, relative to changes in channel geometry. The proposed harmonic regression model is expected to
accurately predict estuarine salinity in well‐mixed systems. For those systems, the model can act as an analytical
tool to interpret and predict nonstationary salinity signals at monitoring stations, requiring minimal input.

Appendix A: Details Regarding the Solution Procedure
A1. Data Preprocessing

The harmonic regression models are optimized using data points that exceed a minimum salinity threshold, Smin.
Salinity sensors often exhibit deviations in their minimal detection range and accuracy, which may make the
salinity values from an upstream station unsuitable for Smin. Instead, Smin can be based on the 95% confidence
upper bounds derived from the regression model for river salinity (Equation 15). Alternatively, a constant
threshold value may be used, although this could lead to the unnecessary rejection of data points from the analysis.

The use of Equation 12 requires storm surge‐induced water level variations (δw). In de model, δw is inferred from
provided water levels record at the downstream boundary. The astronomical water level variations are estimated
using T‐TIDE (Pawlowicz et al., 2002); the nonexplained variations (residuals) are assumed to be atmospherically
forced, and subsequently band‐pass filtered to isolate the range of oscillations at periods between 1.2 and 14 days.
Surge variations at timescales smaller than 1.2 days and exceeding 14 days cannot properly be distinguished from
the tidal motion, including fortnightly variations. For the experiment discussed in Section 4, the upper limit is set
to 6 days. Furthermore, salinity variation are translated to density series based on the UNESCO (1981) formu-
lation, which is required for Equation 14.

A2. The Regression Matrix

For the optimization to obtain the best‐fit regression coefficients and model powers, Equations 9–12 are rewritten
in matrix notation as follows:

S = D ⋅ x, (A1)
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where S is a vector of the resulting relative dispersion over time minus one (i.e., the LHS minus the first term on
the RHS):

S = (
Ss,i − Sr,i
S0,i − Sr,i

)

K

− 1, (A2)

with the index i (i = 1: m) for the moment in time, used in the regression analysis (see A1 in Appendix A). The
design matrix D for Equation 12 reads as follows:

D = K
Qr

(
Δρ
ρ

Qr
η3ω)

P
(η2ω)

[1 δw,ti cos(ω1ti) … cos(ωnti) sin(ω1ti) … sin(ωkti)

δw,ti cos(ω1ti) … δw,ti cos(ωnti) δw,ti sin(ωnti) … δw,ti sin(ωnti)],

(A3)

with the index k (k = 1: n) for a tidal constituent added in the model. The unknown coefficients X are given by

X = [a0 a1 ac2,1 … ac2,n as2,1 … as2,n ac3,1 … ac3,n as3,1 … as3,n], (A4)

which contains the proportionality coefficients of the subtidal (a0) and storm surge variations (a1), and the
amplitudes for the intertidal variations (ac2,n,as2,n,ac3,n,as3,n) .

A3. The Optimization Procedure

The proportionality coefficients X and the powers P and K of the model are iteratively optimized. First, an initial
estimate for the proportionality coefficients is determined by minimizing the merit function through an ordinary
least squares regression (OLSR) as follows:

R2 = ∣D ⋅ x − S∣2, (A5)

with R being the residuals. Hereafter, the best‐fit values for the powers are found using MATLAB's lsqcurvefit
function, which minimizes the least squared error between the predicted and the observed salinities. For the
OLSR, only data points where the observed salinity exceeds Smin are used. For the predicted salinity, all valid data
points are considered. However, the predicted relative dispersion (RHS Equations 9–12) may fall outside the
range yielding physical solutions. To prevent this, a truncation is applied as follows:

Ds,i
D0,i

=

⎧⎪⎨

⎪⎩

Ds,i
D0,i

, if
Ds,i
D0,i

≥ 0

0, otherwise,
(A6)

which avoids below‐zero values. For each new estimate for P and K, a new estimate for the proportionality
coefficients is made through Equation A5, until a (local) minimum is found in the sum of squares. For the initial
estimate, P = 0.57 (from Gisen and Savenije (2015)) is used and varies between 0 and 1 in the optimization,
while K has a default for K = 0.5 and is optimized within 0.05<K < 2. The included tidal constituents are
determined based on the adjusted Rayleigh criterion and depend on the power P (see A5 in Appendix A).

A4. Amplitudes and Phases of the Tidal Constituents

The coefficients ac2,n,as2,n,ac3,n as3,n in Equation A4 are associated to the intertidal dynamics. The coefficients
related to the intertidal variations can be expressed in terms of (time‐varying) amplitudes and phases for each
individual tidal constituent added in the model (Matte et al., 2013). For this purpose, the amplitudes (Ak and Bk)
and corresponding phases (αk and βk) are defined as follows:
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Ak =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a22,kc + a22,ks
√

, (A7)

Bk = δw,T
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a23,kc + a23,ks
√

, (A8)

αk = arctan
a2,ks
a2,kc

, (A9)

βk = arctan
a3,ks
ac3,k

(A10)

where the constant amplitude Ak represents the contribution to the constant intertidal variations and Bk is the time‐
varying amplitude resulting from by storm surges introduced intertidal variations. The constant phases are given
by αk and βk, respectively. As shown by Matte et al. (2013), for each tidal constituent, the resulting time‐varying
amplitude and phases can be derived from A4–A7, and they are given by

|Dk(t)| = |dk(t)| + |d− k(t)| (A11)

ψ(t) = arctan
Im(d− k)
Re(d− k)

(A12)

with d− k and its complex conjugate d∗
− k obtained from

d− k = d∗
− k =

1
2
(Ak cos(αk) + Bk cos (βk)) + i

1
2
(Ak sin(αk) + Bk sin (βk)). (A13)

The resulting amplitudes and phases in Equation 11 are equivalent to the amplitudes Ak and phases αk.

A5. Constituent Selection and Error Estimates

An adjusted version of the twofold strategy (Matte et al., 2013) is used for the constituent selection and error
estimates. The importance of the constituents is obtained from an initial harmonic analysis performed on salinity
time series at the target station. The lower bound frequency that can be resolved under the assumption of a
regularly sampled signal is set by the Rayleigh criterion, which states two frequencies can be distinguished when
∣ω1 − ω2∣
LOR <R, with R set to one and LOR is the length of record. In addition, the degree in which constituents can

properly be distinguished is also affected by nonstationary influences (Matte et al., 2013). In the case of salinity,
time series broadening of spectral lines can either be introduced by nonstationarity of the salinity distribution
itself or indirectly via a nonstationary tidal signal. For the frequency selection, only the influence of non-
stationarity in the salinity distribution is considered (additional to the traditional Rayleigh criterion). The minimal
allowable frequency separation is evaluated using an adjusted Rayleigh criterion (Matte et al., 2013), for which
the normalized spectrum ofQ1 − P is evaluated. If the time series contain gaps, the two frequencies cannot properly
be identified and R should be adjusted accordingly. There is, however, no accepted practice to adjust the Rayleigh
criterion for irregularly sampled data (Codiga, 2011). For irregularly sampled data, the degree in which tidal
constituents can properly be resolved is monitored through the correlation between the model coefficients,
following Foreman et al. (2009).

The significance of added constituents and error estimates of the amplitudes or phases of the harmonic model are
based on the uncorrelated noise model of NS‐TIDE (Matte et al., 2013). The uncorrelated noise is used to
calculate a distribution realization for each model coefficient. Subsequently, for each replicate, the resulting
amplitude and phase are calculated based on Equations A11 and A12, and used to compute the time‐varying
confidence bounds for each tidal constituent. In NS‐TIDE, the significance of each constituent is estimated us-
ing the squared ratio of the resulting amplitude and amplitude error. The drawback of this approach is that only the
contribution of the overall resulting amplitude is evaluated, while the contribution of the amplitudes related to
individual mechanisms, based on Equations A7 and A8, may be insignificant. Therefore, first, the significance of
each tidal constituent based on the overall resulting amplitude is tested, adopting a signal‐to‐noise ratio (SNR)
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bound of 4. Hereafter, it is tested whether the amplitudes related to the individual mechanisms are actually
significant, adopting the same SNR bound. If not, the terms related to the individual mechanisms are removed
from the model structure for that specific tidal constituent.

Appendix B: Alternative Base Function for the Harmonic Regression Model
In this paper, we have chosen to use the analytical model for steady‐state salinity distribution derived by
Savenije (1986). However, an analogous set of equations, Equations 9–12, can also be derived using the more
theoretically substantiated model proposed by Gay and O’Donnell (2007). Equation 18 can be extended to ac-
count for tidal and storm surge variations in a similar manner as described in Section 3.1. The harmonic regression
including tidal variations is expressed as

(
Ss − Sr
S0 − Sr

)

( γ D0Qr)

= 1 − c0 +∑
n

k=1
[cc2,k cos(ωkt) + cs2,k sin(ωkt)], (B1)

and the extension with storm surge variations is given by

(
Ss − Sr
S0 − Sr

)

( γ D0Qr)

= 1 − c0⏟⏞⏞⏟
TA

+ c1δw⏟⏞⏞⏟
SURGE

+∑
n

k=1
[(cc2,k + cc3,k δw)cos(ωkt) + (cs2,k + as3,k δw)sin(ωkt)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
TIDAL

.

(B2)

Equations B1 and B2 include two power coefficients that need to be optimized: P associated withD0 and γ, which

scales the power (γ D0
Qr
) . To obtain the best‐fit values for these parameters, the same optimization procedure

Table B1
Overview of the Model Experiments Performed for the Ems Estuary and Results Discussed in Sections 4.3

Regression model Boundary Calibration Prediction Station (–)
Missing
(%)

Parsb

(–) P/γ (–)

Calibration Predictions

rmse
(psu)

Un.
var. (%)

rmse
(psu)

Un.
var. (%)

Tides (Equation B1) Obsa 17 months 7 months Emspier 13 31 0.37/
8.7⋅10− 5

1.9 7.8 2.2 8.9

Pogum 4 31 0.35/
7.4⋅10− 5

1.9 7.2 2.0 7.6

Gandersum 8 31 0.39/
1.2⋅10− 4

1.7 7.7 2.1 9.2

Terborg 37 31 0.44/
2.1⋅10− 4

1.2 11.7 1.6 16.3

Tides + surges
(Equation B2)

Obsa 17 months 7 months Emspier 13 44 0.39/
9.4⋅10− 5

1.8 7.2 2.1 7.6

Pogum 4 48 0.36/
8.5⋅10− 5

1.8 6.6 1.9 6.3

Gandersum 8 48 0.41/
1.4⋅10− 4

1.6 7.1 1.9 7.5

Terborg 37 48 0.42/
2.1⋅10− 4

1.1 11.4 1.5 14.8

Note. The missing percentage refers to the total percentage of missing and rejected data points. aFortnightly averaged salinity at the Knock station for the seaward
boundary condition. bTotal of the fitted proportionality coefficients.
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described in Appendix A is applied. The results for the experiments performed in Section 4.3 using Equations B1
and B2 are tabulated in Tables B1 and B2 and provide comparable results.

Data Availability Statement
The salinity records used in this study for the Ems estuary were provided by Niedersächsischer Landesbetrieb für
Wasserwirtschaft, Küsten‐ und Naturschutz (NLWKN). Data from the Dutch part of the Ems and Scheldt es-
tuaries are publicly available at https://waterinfo.rws.nl, while salinity records for the Belgian part of the Scheldt
can be downloaded from https://waterinfo.vlaanderen.be/Meetreeksen. In the data analysis, T‐TIDE is used
(Pawlowicz et al., 2002), a MATLAB toolbox for harmonic analysis, which can be downloaded from https://
www‐old.eoas.ubc.ca/~rich/. The data, code for the regression model, model setup for the experiments, and code
to generate the figures are available from https://doi.org/10.5281/zenodo.14905063 (Van Keulen, 2025).
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