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The Quest for Speed: An Optimal Control
Framework for optimizing Speed Skating

Technique for Efficiency and Speed across Diverse
Conditions

Abstract—The optimal technique for individual speed skaters
remains poorly understood, due to the complex interplay of
technique variables (like stroke frequency, skate trajectory and
push-off mechanics). Optimization with a biomechanical model
can help to identify the most efficient techniques for individual
skaters. This research aimed to use a validated model of a speed
skater [1] within an optimization framework to investigate
how the optimal speed skating techniques on the straightaways
are influenced by individual characteristics and environmental
conditions.

Finding the optimal technique that either minimizes effort at
a target velocity or maximizes velocity, was formulated as an
optimal control problem and solved using direct collocation.
Across different optimizations, stroke frequency, mass, leg
length, air and ice friction and limits on average and maximal
power were incrementally varied.

Variations in velocity and stroke frequency most clearly
influenced the optimal technique. Conditions requiring less
energy (optimizations for low velocity, low ice or air friction),
optimized towards energy-efficient strokes with longer gliding
phases and minimal lateral forces. Conditions with higher
speeds and frequencies converged to longer, forceful push-
offs. These push-offs maximized leg extension by descending
into a deep crouched position to emphasize a sideways push-
off. Generally, optimized techniques adapted a small steer
angle during the gliding phase to prioritize forward gain, and
larger steering angles during the push-off to direct push-off
forces forward. Optimizations for higher frequencies adopted
more narrow strokes, and reached higher maximized speeds.
Regarding personal characteristics, increasing the model’s
average and maximal power limits most significantly increased
maximal velocity.

Index terms—Biomechanics, sports, optimization, predictive
simulation, technique, speed skating

I. INTRODUCTION

In speed skating, the technique is an important factor
in reaching peak performance. Elite athletes often attribute
underperformance to their technique, describing moments
of “missing the stroke” or “failing to translate power into
speed” [2], [3]. Previous research has related variations
in performance levels to specific differences in push-off
mechanics [4]–[6] and has identified factors contributing to
differences in speed skating performance [7]–[13]. However,
no specific technique could be related to elite speed skaters
performing at similar speeds [4], [5]. This suggests that the
optimal technique is not universal, but depends on individual
characteristics - such as body build and strength - and

environmental factors like ice and air friction. [14]. The
complex interaction between these factors, combined with
the diversity in skaters’ body builds, makes it challenging
to define the ideal technique in practice. As a result, the
optimal technique remains poorly understood. This research
aimed to address this gap by exploring how individual
and environmental variables influence the optimal speed
skating technique by model-based optimizations. In these
optimizations, both speed and effort were considered as key
performance measures in defining the optimal technique.
By focusing on a technique that minimizes effort at a
given speed, skaters can maintain higher speeds over longer
distances, resulting in improved overall performance.

The speed skating technique is characterized by several
components, which could serve as focus areas for coaches
and skaters when analyzing and refining the technique. These
include:

A. Push-off mechanics

A speed skating stroke involves a gliding and a push-off
phase, followed by a repositioning phase [1], [14]. During
the gliding phase, the skater balances on one leg, maintaining
nearly constant hip and knee angles [7]. During the push-
off, the skater is explosively extending the leg to create
a push-off force [7], [14], [15]. Longer gliding phase and
more explosive push-offs have been associated with higher
speeds [7]. The ratio between the horizontal and vertical
force components of the push-off force is mainly determined
by the lean angle of the skate [10], [16]. Only the horizontal
component of the push-off force can effectively contribute
to the forward velocity, and therefore an effective push-off
places a lot of force in the horizontal direction by a large
lean angle [12], [13]. Push-off forces cannot be directed
backwards, opposite to the heading direction, due to the
low friction of the ice. Consequently, the horizontal push-
off forces are primarily directed lateral, perpendicular to the
blade [8], [17] to prevent slipping. To be able to convert the
lateral forces into forward velocity, skaters steer their skates
partly sideways in an angle, so the horizontal force has a
forward directed component.



B. Body and skate trajectory

The trajectory of the body plays a role in balance and
stroke efficiency. During the gliding phase, the body follows
the skate’s path to provide balance. The skate is constrained
to only glide in the blade’s direction.

A crouched position with flexed hip and knee angles
minimizes air resistance [4], [10]. Throughout the stroke, the
upper body is making a sinusoidal up- and down trajectory.
With this pattern, potential energy can be built during the
gliding phase and released just before the initiation of the
push-off through a passive inwards falling movement of the
body towards the opposite lateral direction [4], [10].

As the steer angle of the skate dictates the direction of the
lateral push-off force in the horizontal plane [10], [16], the
skate’s trajectory has a critical role in the force direction. An
efficient stroke strikes a balance between gaining maximal
forward distance and incorporating enough sideways steering
to generate a forward directed force component in the lateral
push-off.

C. Stroke frequency

Research showed that speed regulation in speed skating
mainly depends on the stroke frequency [4]. However,
when looking at speed skaters of the same performance
level, speed skating performance could not be related to
differences in stroke frequency [4], [8].

Mastering the speed skating technique requires a precise
interplay of these technique variables, as even small ad-
justments in skate trajectory, push-off mechanics, or stroke
frequency can significantly affect the skater’s overall effi-
ciency and velocity. Experimentally, it is difficult to identify
the ideal technique due to the infinite number of possible
combinations of these factors, along with individual and
environmental variations. Model-based optimization presents
a promising alternative [18], due to the potential to tailor
the optimization to specific conditions and the possibility
to explore extreme cases. In other endurance sports, like
swimming, cycling and running, optimizations have pro-
vided valuable insights in the optimal techniques [19]–[25].
Although previous studies have explored optimizations for
speed skating [14], [26], none have successfully determined
the optimal speed skating technique yet. This research used
a conceptual, validated model that predicts speed skating
behavior on the straights (van der Kruk et al., 2017) [1] for
optimizations. This simple model accommodated variations
in conditions across optimizations, providing a step toward
uncovering broader trends in the optimal skating technique.

The primary aim of this research was to create an op-
timization framework for speed skating on the straights,
to perform model-based optimizations to investigate how
individual characteristics (mass, leg length, strength) and
environmental factors (air friction, ice friction) influence the
optimal speed skating technique in terms of skate trajectory,
push-off mechanics, stroke frequency and velocity.

II. METHODS

A. Simple Skater Model

The optimization used the three-dimensional (3D) simple
skater model (SSM) (van der Kruk et al., 2017) [1]. This
model simplifies a skater by two point masses: the center of
mass (COM) of the body and the COM of the active skate on
the ice, alternating between the left and right skate. Model
inputs include the leg extensions (LE), which describe the
distance from the COM of the skate to the COM of the body,
expressed in the reference frame of the skate (us, vs, ws),
as illustrated in Figure 1. Additional model inputs are the
skater’s initial position and velocity (ub, vb, wb, u̇b, v̇b, ẇb),
as well as the skate’s steer angle (θs,). The model is
further parametrized by the mass (mskater) and ice and air
friction coefficients (µ, k). The model distribution coefficient
distributes mskater over the point masses of the skate and
body. The model outputs, calculated using the TMT method
[1], [27], include the updated body positions, velocities
and accelerations, and the push-off forces. Leg forces are
explicitly modeled (Figure 1). The forces acting on the two
point masses are:

F =



Fbsin(θb) + Fleg,x

−Fbcos(θb) + Fleg,y

−mbg + Fleg,z

Fssin(θs)− Fleg,x

−Fscos(θs)− Fleg,y

−msg + FN − Fleg,z

Ms


(1)

In Eq.1, Fleg,x, Fleg,y, Fleg,z are the push-off forces by the
leg in x, y and z direction of the global reference frame
(N) (Figure 1). FN is the normal force, Fb = kv2 the air
friction working on the body and Fs = µFN the ice friction
working on the skate. Ms is a torque to steer the skate,
rotating the skate around the N.y axis. θb is the body angle
relative to the forward direction (n̂y) and θs is the steer
angle of the skate.

In the SSM, positions and orientations of the
masses can be described in global coordinates
(x =

[
xb yb zb xs ys zs ϕs

]
) or generalized

coordinates q =
[
ub vb wb us vs ws θs

]
. The

transformation matrix (T ) maps generalized coordinates (q)
to global coordinates (x):

x = T (q) (2)

This can be used to rewrite the accelerations as:

ẍ = hcon +
∂T

∂q
q̈ (3)

Where hcon = ∂2T
∂q2 q̇q̇ is the convective acceleration. The

TMT method describes the reduced force matrix (Freduced)
and reduced mass matrix (Mreduced) as:

Mreduced = (
∂T

∂q
)TM

∂T

∂q
(4)
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Fig. 1: Free body diagram of the speed skater from a top view (A) and frontal view (B). Indicated are the reference frame
of the skater (S) and the body (B) and the global reference frame (N). S and B are rotated counterclockwise by angles
θs and θb around the global z-axis. The leg extension is represented in generalized coordinates us, vs, ws , indicating the
distance from the skate’s COM to the body’s COM in the S-frame. Acting forces are the push-off forces (in green), friction
forces (Fs), normal force (FN ) and gravitational force (Fg). There is a constraint force that prevents lateral slip orthogonal
to blade. Adapted from [1]

.

Freduced = (
∂T

∂q
)T (F −Mhcon) (5)

Where M is the mass matrix that contains the masses and
inertia of each body, and F is the force matrix with the
forces acting on each body (Eq.1), both following the order
of x. From equations 3, 4, 5 follows:

Mreducedq̈ = Freduced (6)

A non-holonomic constraint is applied to prevent any lateral
movement of the skate orthogonal to the blade (the ŝx
direction, Fig.1.A), to prevent sidewards slip of the skate:

vskate · ŝx = −sin(θs)ẏs − cos(θs)ẋs = 0 (7)

This non-holonomic constraint will be reorganized as Eq.8
so it can be combined with Eq.6.

Cktotq̈ + Cki = 0, (8)

where Cktot is the Jacobian of the constraints and Cki
are the convective acceleration terms of the constraints.
Combining Eq.8 and Eq.6 the equations of motion become:[

M̄red CkTtot
Cktot 0

] [
q̈
λ

]
=

[
F̄red

−Cki

]
, (9)

where λ is the force that is constraining the lateral motion of
the skate. In order to solve this system, Eq. 9 is reorganized
in terms of known (q̈o) and unknown accelerations (q̈d).[

q̈d
λ

]
=

[
M̄dd CkTd
Ckd 0

]−1 [
F̄d − M̄doq̈o

−Cki− Ckoq̈o

]
(10)

In Eq.10, the unknown accelerations are the accelerations
of the body in the horizontal plane: q̈d =

[
üb v̈b

]
. q̈o =[

üs v̈s ẅs θ̈s ẅb

]
, when assuming the leg extensions

and steer angle accelerations are known, and that the vertical
acceleration of the skater COM (ẅb) is equal to the accelera-
tion of the leg extension (ẅs). Mdd,Mdo, Fd, Ckd, Cko are
the reorganized terms of M,F,Cktot. The solutions from
Eq.10 can be used to calculate the reduced forces on the
skate (F̄o).

F̄o =
[
M̄od M̄oo CkTo

] q̈dq̈o
λ

 (11)

Detailed derivation and explanation of the system
dynamics are provided in Appendix A. The SSM dynamics
were implemented in Python and validated by comparison
to measured data (Appendix B). Key model variables and
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Reference Frames Explanation
N Global frame (x, y, z)
S Skate frame
B Body frame
Coordinates Explanation
xb, yb, zb COM body global position
ub, vb, wb COM body generalized coordi-

nates
us Leg extension in S.y direction
vs Leg extension in S.x direction
ws Height of the COM body mass

compared to the COM of the skate
θs Steer angle
θb Body angle
Parameter Explanation
mskater Skater’s body mass
α Mass distribution coefficient
ms Mass distributed in skate COM

(αmskater)
mb Mass distributed in body COM

((1− α)mskater)
µ Ice friction coefficient
k Air friction coefficient
g Gravitational acceleration
LE Leg extension: distance

between body and skate
(
√

(u2
s + v2s + w2

s))
LL Leg length, maximal Euclidean

distance COM body to COM
skate

Parameter Explanation
Fb, Fs Air and ice friction force
FL Lateral force in skate frame
FV Vertical force in skate frame
Fus Longitudinal force in skate frame
Fleg,x, Fleg,y , Fleg,z Leg forces in global x, y, z direc-

tion

TABLE I: Explanation of the (generalized) coordinates,
constant parameters and outcome measures in the simple
speed skater model [1].

parameters are summarized in Table I.

B. Data

The data used for the simulations, optimizations and val-
idations was reused from a previous research (van der Kruk
et al., 2017) [1], [26]. The data set included the position,
velocity and acceleration data from 23 markers on both the
skate and body, captured by a motion capture system, as
well as force measurements obtained by a specialized in-
strumented skates [1], [28]. Each dataset consisted of several
strokes on the straights, corresponding to low, medium and
high intensity speed skating. From this data, trials from 4
different elite speed skaters were extracted, 2 female and
2 male participants, with masses of 65, 70, 76 and 81 kg.
For the optimization of a stroke, data corresponding to one
stroke on the left skate was selected. A stroke was defined
by the period the measured normal force on the left skate
exceeded the normal force on the right skate. The average
stroke velocities in the selected strokes ranged between 9
and 13 m/s.

C. Simulated results

For each trial, leg extension over time was calculated
from based on positions of the trochanter and foot from the
dataset [1], [26]. These leg extensions were used as inputs
for forward simulations with the Simple Skater Model in
Python to predict forces and body trajectories (Appendix B).
The resulting predictions, hereafter referred to as simulated
results, were used as a reference for comparing the outcomes
of the optimization.

D. Optimization framework

Several optimization scenarios were explored. First, a
tracking optimization was performed to validate the opti-
mization framework by matching the simulated results with
the optimized data. The aim of the actual optimizations was
to identify the optimal skating technique as the technique
that requires the least effort to cover a distance, with two
distinct types of goals:

• Type I: Target velocity
• Type II: Maximize velocity

The average forward velocity (v) of the COM of the body
over one stroke was used to define velocity. In different
optimizations, stroke frequency (f ), mass (m), leg length
(LL), air and ice friction coefficients(k, µ) and maximum
and average power limits (Pmax, Pavg) were varied in
incremental steps (Figure 2).

The problem was formulated as an optimal control prob-
lem (OCP) in Python using the open-source optimization
tool CASADI [29], [30]. The OCP was expressed as:

Minimize J(X,u) (12)
with respect to X,u

subject to Ẋ = f(X,u) (13)

Xk+1 = Xk + Ẋk+1dt (14)
xmin ≤ X ≤ xmax, (15)
umin ≤ u ≤ umax. (16)

Where the goal was to minimize an objective function
J(X,u), with the states (X , representing the body positions)
and control inputs (u, representing the leg extensions and
steer angle accelerations), subject to the SSM system dy-
namics f(X,u). The solution space of the state and control
variables was bounded by limits, reflecting factors such as
kinematic and strength limits, as detailed in section II-G)
[31].

The OCP was transformed into a non-linear program
(NLP) trough direct collocation with a backward Euler
integration scheme, discretizing the states over N = 150
collocation points [30]. A preliminary analysis showed that
150 collocation points gave a good trade-off between accu-
rate optimization results and simulation time (Appendix E).
The non-linear problem (Eq.12) was solved by an Interior-
Point Method (IPOPT) [32] with maximal 500 iterations
and a convergence tolerance of 1e-6. To aid convergence
to realistic solutions, averaged simulation results were used
as initial guesses for the optimization variables.
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(a)

(b)

Fig. 2: This figure illustrates the optimization framework used in this research. (a) shows the relationship between the
optimization conditions and the outcome measures. Each optimization is characterized by its individual characteristics
(m,LL,Pmax, Pavg, Fmax) and environmental characteristics (k, µ). Outcomes of the simulations are described in measures
for push-off mechanics, trajectory, stroke frequency and velocity. Stroke frequency (f ) and velocity (v) are outcomes, but
also serve as optimization conditions in case the optimization has to reach a target frequency or velocity. Each optimization
(I+II A-G (see (b)) adjusts a parameter in a step-wise way to vary the optimization conditions, while keeping all other
parameters constant at their reference values (see (a)). In type I optimizations, target velocities are varied from 8-14 m/s,
while in type II optimizations velocity is maximized. With this framework it can be analyze how changes in one parameter
affect the optimized results.

E. Optimization scenarios

1) Tracking optimization: Tracking optimizations were
performed to validate that the dynamics of the Simple Skater
Model [1] were accurately implemented in the CasADi
framework. The primary goal was to minimize differences
between optimized variables using the optimization frame-
work, and simulated results from the forward simulation with
the SSM (section II-C). Instead of directly comparing the
optimized variables to measured data, simulated results were
used for validation. This ensured that any observed differ-
ences were due to differences between the implementation

of the optimization framework and the SSM model, and not
due to the inability of the model to match measured data,
as this has been validated in previous research [1].

The tracking objective function J(X,u) was formulated
as the sum of squared differences between both the lateral
and vertical skate forces predicted by the optimization
(FV,opt, FV,SSM), and those generated by the SSM model
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(FL, FV ), to align them closely:

J =

N∑
k=1

[
(FL,opt[k]−FL,SSM[k])2+(FV,opt[k]−FV,SSM[k])2

]
(17)

To quantify if the alignment of the skate forces resulted in an
alignment between the inputs and outputs of the optimization
framework and SSM model, the Root Mean Square Error
(RMSE) was calculated for both the inputs (leg extensions
and steer angles) and the outputs (body positions) of the
SSM.

RMSElegext =

√√√√ 1

N

N∑
i=1

[
(us,opt − us)2 + (vs,opt − vs)2

+(ws,opt − ws)
2
]

(18)

RMSEangle =

√√√√ 1

N

N∑
i=1

[
(θs,opt − θs)2

]
(19)

RMSEoutput =

√√√√ 1

N

N∑
i=1

[
(xb,opt − xb)2 + (yb,opt − yb)2

+(zb,opt − zb)
2
]

(20)

Where xb,opt, xb,opt, us,opt, et cetera are the results from
minimizing the cost function in the optimal control frame-
work, and xb, yb, ub, et cetera are the simulated results
(section II-C). For each tracking optimization, initial guesses
for body positions, leg extensions, and forces used simulated
values. No additional constraints or bounds were applied to
the tracking optimization beyond the requirement for the
outputs to satisfy system dynamics.

2) Type I: Optimizations to reach a target velocity: As the
optimal speed skating technique relies on a balance between
speed and effort, understanding the technique that minimizes
effort at different velocities (v = 8, 10, 12, and 14 m/s) can
offer insights into how skaters can optimize their technique
for sprinting or long distance events. The target velocity was
defined as the average forward velocity of the body over one
stroke (v = mean ẏb). Effort is estimated by the total push-
off force over time required to skate a distance. The cost for
the effort (Jforce) is therefore defined as:

Jforce =

N∑
k=0

Ftot[k]dt ∗Nstrokes (21)

Where Ftot[k] is the total push-off force at time [k], includ-
ing both the lateral and vertical components of the push-off
force (FL[k], FV [k]) and dt the time between collocation
points.

∑N
k=0 Ftot[k]dt integrates the total force over time,

to compute the total force per stroke [Ns]. Nstrokes is the
number of strokes necessary to complete a distance of 500

m. The final objective for reaching a target velocity with the
goal to minimize the effort is (type I):

JI(X,u) = w1Jforce + P (22)

w1 weights to what extent larger total leg forces per unit dis-
tance are penalized. P includes smoothing terms to prevent
sudden peaks in accelerations and tracking terms on the leg
extensions to guide the optimization toward realistic speed
skating behavior.

3) Type II: Optimizations to maximize skating velocity:
In optimizations of type II, the objective promoted higher
skating velocities to maximize velocity, by summing the
forward velocity (ẏb) over the stroke:

Jvel =

N∑
k=0

ẏb[k] (23)

Which gives the total objective function:

JII = w1Jforce − w2Jvel + P (24)

w1 and w2 are weight factors that defined the relative im-
portance of the force and velocity costs respectively (Jforce,
Jvel).

F. Optimization variations

Initially, optimizations Type I and Type II were performed
for different fixed target stroke frequencies (in the range of
0.62-1.67 strokes/s) while keeping individual and environ-
mental parameters constant at their ’reference value’. In this
way, solely the impact of stroke frequency on the optimal
technique could be explored (optimizations IA and IB, see
Figure 2b).

Then, to investigate how the optimal technique changed
under different environmental and individual conditions,
optimizations were consecutively performed with step-wise
changes in the parameters (LL, m, Pavg , Pmax, µ, k),
while allowing the stroke frequency to vary between bounds.
Each optimization (I+II A-G (see Figure 2b)) incrementally
adjusted a parameter, while keeping all other parameters
constant at their reference values (Figure 2). LL and m
reflect individual characteristics, as do Pavg, Pmax) as a
measure of strength. Pavg , represents the skater’s sustained
power output over time while Pmax reflects the peak power
capacity.

G. Constraints

To ensure the optimized skating motion is realistic and
repeatable over multiple strokes, several constraints were
implemented. An overview of these constraints is provided in
Table II. Realistic bounds on the steer angles, leg extensions
and body positions, velocities and accelerations were based
on the averages and the extremes observed in simulated
results from different elite participants (Appendix D). To en-
sure the leg could not extend beyond the maximal leg length
(LE < LL), the Euclidean distance between the COM of
the body and the COM of the skate (

√
us

2 + vs2 + ws
2) was

constrained to the leg length.
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To make the optimized speed skating motion repeatable
across consecutive strokes, final velocities had to match
initial velocities in both forward and upward directions to
ensure each stroke started with the same velocity. For the
lateral movement, initial and final lateral velocities had to
be equal in magnitude, but opposite in direction, to reflect
the change in direction between strokes on the left and right
skate. Additionally, to prevent upward or downward drift
after multiple strokes, the final upward body position had to
match the initial position.

Furthermore, constraints on the force direction were pre-
venting pulling forces on the ice, either in the lateral or the
longitudinal direction.

Limits on Fmax, Pmax, Pavg , should reflect the skater’s
strength. The power was defined as a gross estimation of
the mechanical power, which cannot be compared to other
definitions of power [33]. However, it is a good measure to
compare power requirements between different techniques.
The mechanical power was estimated from the leg extension
velocities and forces in the skate plane [14], [15].

P = FV ẇs + Fusu̇s + kkFLv̇s (25)

Description Condition/Bounds
Initial Conditions
Initial skate position close to
COM

−0.25 < vs[0] < 0.25

−0.4 < us[0] < 0.1
Minimal initial leg velocity −0.5 < v̇s[0] < 0.5

−0.5 < u̇s[0] < 0.5
Initial stroke direction ẋb[0] ≥ 0 (RS), ẋb[0] ≤ 0 (LS)
Bounds
Body position within track −3.5 < xb < 1 m (if LS)

−1 < xb < 3.5 m (if RS)
Body height within limits 0.7(LL+ ZS) < zb < LL+ ZS
Body velocities −5 < ẋb < 5

8 < ẏb < 18
−1 < żb < 1

Body accelerations −8 < ẍb < 8
−8 < ÿb < 8
−5 < z̈b < 5

Leg velocities −2 < u̇s, v̇s, ẇs, θ̇s < 2
Leg accelerations −10 < üs, ẅs < 10

−15 < v̈s < 5

−9 < θ̈s < 9
Stroke duration 0.6 < Tstroke < 2.0
Leg extension 0.5LL < LE =√

u2
s + v2s + w2

s < LL
Body jerk ẍb[k + 1]− ẍb[k] < 100

ÿb[k + 1]− ÿb[k] < 100
z̈b[k + 1]− z̈b[k] < 100

Constraints
Periodic motion zb[t = 0] = zb[t = end]

ẋb[t = 0] = −ẋb[t = end]
ẏb[t = 0] = ẏb[t = end]
żb[t = 0] = żb[t = end]
ẍb[t = 0] = −ẍb[t = end]
ÿb[t = 0] = ÿb[t = end]
z̈b[t = 0] = z̈b[t = end]

Force limit Ftot < Flim
Average Power Limit Pavg < Pavg,lim
Power limit Pmax < Pmax,lim
Prevent pulling force FLvs ≥ 0 (LS)

−FLvs ≥ 0 (RS)

TABLE II: Optimization Problem Constraints and Bounds

III. RESULTS

A. Tracking Optimization

The tracking optimization, aimed at matching simulated
forces, demonstrated a high degree of alignment between
the optimized variables and the simulated model inputs
and outputs (Appendix C). The average root mean square
error (RSME) for body positions over an entire stroke
was 0.0204 ± 0.0025m, indicating an accurate tracking of
the skater’s trajectory. The RSME for leg extensions was
0.0233±0.0024m, and for steer angles 0.160±0.021◦. These
small errors highlight the capability of the optimization
to reproduce the simulated input and outputs values and
confirm accurate implementation of the Simple Skater Model
(SSM) into the optimization framework.

Therefore, the framework was used to optimize the speed
skating technique for various variables at different speeds
and stroke frequencies. The technique will be described in
terms of stroke frequency, push-off mechanics and the skate
and body trajectory.

B. Type I: Optimizations for reaching a target velocity

1) Stroke frequency: When optimizing the technique for
different stroke frequencies (OPT IA), a frequency/energy
sweet-spot is observed (Figure 3.A). Around a stroke fre-
quency of 1.0 strokes/s, the required energy per meter
reaches a minimum, suggesting that each velocity has a
stroke frequency that minimizes energy consumption. In-
creasing or decreasing the stroke frequency beyond this point
leads to higher energy requirements. Optimized strokes for
lower frequencies are wider and require higher lateral push-
off forces/m than more narrow strokes that the optimizer
finds for higher frequencies (Figure 3.B+C).

Additionally, optimizations under various conditions
(OPT I+II B-G) show that the optimized stroke frequency
increases when the model incorporates higher air and ice
friction (k, µ), higher velocity (v), and higher average power
(Pavg). The optimized frequency decreases when mass (m)
or leg length (LL) of the model are increased (Appendix
F). In optimizations for velocities of 12 m/s and higher, the
stroke frequency often converges to the maximum value for
all conditions (OPT I+II B-G, Appendix F).

2) Push-off mechanics: When optimizing the skating
technique for different stroke frequencies (OPT IA), the
model generates distinct lateral push-off force patterns, that
align with the energy requirements at different frequencies
(Figure 4, Appendix H):
Powerful push-off : For high frequencies (f ) the optimization
produces a pattern that is characterized by a relatively short
gliding phase and longer push-off phase (Figure 4.C). The
stroke width is small, and the required lateral forces per
meter are relatively low compared to optimized results
for lower frequencies (Figure 3.B). However, because the
leg extension velocity (v̇s) is high at higher frequencies
(Appendix L), energy costs (energy/m) are also relatively
high (Figure 3.A, Figure 4).
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Fig. 3: Effect of varying the stroke frequency (x-axis) on energy per meter, lateral forces, and stroke width across speeds
(optimized to reach target velocities (Opt.IA, plots A-C) or to maximize velocity (Opt.IIA, plots D-E)). A frequency of
approximately 1.0 strokes/s leads to minimal energy for velocities of 8-12 m/s, the ’frequency/energy sweet spot’. Decreasing
stroke frequency leads to wider strokes and higher lateral forces at all velocities. Maximal velocities (red markers) increase
with higher stroke frequencies.”

Fig. 4: These plots show the skate and body trajectories in the horizontal plane at a velocity of 12 m/s. The lateral push-
off forces are given in blue. At a low frequency (A) the push-off is characterized by a two distinct pushes and a wide
stroke. At medium frequency (B) the technique is characterized by a long gliding period. This frequency aligns with the
frequency/energy sweet-spot. The push-off at high frequency (C) is characterized by a shorter gliding phase and powerful
push.

Extended gliding phase: For optimizations at lower
frequencies (f ) and lower velocities (v), the model
produces a longer gliding phase (Figure 4.B). The energy
that is associated with this frequency is around minimal,
suggesting a prolonged gliding phase is associated with
lower energy expenditure (Figure 3.A).
Second push: At low stroke frequencies, two distinct
push-off phases are observed: an initial push at the start
of the stroke, which pushes the skate inwards, and a final
push-off at the end of the stroke, which pushes the skate
sideways (Figure 4.A). As the first push creates a negative
directed forward force-component, this push-off is less
energy efficient. In the first push, the leg is adducting (vs
is becoming smaller and negative) and then following a

’normal’ push-off pattern towards the end of the stroke.
The model converges to a starting position that is more
parallel to the heading (small θs). At low velocities (v =
8, 10 m/s), the optimized push-off pattern include only a
minimal initial push-off phase (Appendix H). However, at
higher speeds, the model increasingly adopts the second
push-off method, even at higher stroke frequencies. As
frequency decreases and velocity increases, both the initial
and final push-offs become relatively longer with higher
push-off forces.

When looking at the push-off mechanics for different con-
ditions (OPT IA-G), the push-off mechanics are primarily
influenced by the target velocity (v) of the optimization, as
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Fig. 5: This graph illustrates how skating speed influences the optimal lateral push-off patterns. At higher velocities, skaters
exhibit relatively shorter gliding phases and earlier push-off onset with larger lateral forces. Plot (A) shows the lateral push-
off forces relative to the skate’s trajectories for different velocities, while plot (B) depicts these forces across the stroke
cycle

Fig. 6: The influence of individual variables on the optimizations for maximal velocity. Especially power limits and friction
influence the maximal velocity. Optimizations with higher friction µ, k reach lower maximal speeds, while optimizations
with higher power Pavg, Pmax reach higher maximized speeds.

higher velocities require greater forces due to increased air
friction. In conditions with higher target velocities (v), the
model compensates with push-off phases that are relatively
longer and stronger than for lower velocities (Figure 5.B).
When target speeds are increased, the model compensates
with a more sideways leg extension pattern (vs[t = 100%]
is larger) and less backwards (us[t = 100%] is larger) than
at lower velocities (Figure 7a.B).

When individual and environmental conditions vary, the
optimization adjusts the magnitude for the push-off forces
(higher for increasing k, µ, Pavg, Pmax and decreasing m),
while the overall push-off pattern remains primarily influ-
enced by velocity (v) (Appendix I).

The optimized push-off mechanics mainly differ from
simulated force patterns by a prolonged initial gliding phase
with near-zero lateral forces that is not observed in the
simulated forces (Figure 5.b)

3) Skate and Body Trajectory: The analysis of the upper
body vertical movement at different velocities (v) reveals

distinct trends in vertical leg extension ws (Figure 7a.C).
At lower velocities (v = 8-10 m/s), optimized upper body
movements (ws) exhibit larger amplitudes (∆ws≈ 20 cm)
of up-and-down movement throughout the stroke cycle. The
body falls at an earlier stage and deeper than simulated body
movements, resulting in a more pronounced up-and-down
motion and higher peaks in the vertical forces. Towards
higher velocities (v = 12-14 m/s and maximal velocity), the
amplitudes of ws decreases (Figure 7a.C).

Increasing LL does not change the optimized pattern
of ws, but ws starts higher at the start of the stroke. A
model with higher m, converges to larger up-and down
motion at the cost of higher vertical forces FV . In conditions
that increase the required energy (at higher v, µ, k) the
optimizations lead to techniques with smaller amplitude of
ws (Appendix I).

The optimized steering angles (θs) during the gliding
phase are consistently smaller compared to the reference
simulated steering angle in all optimization conditions (OPT
IA-G, Figure 7a.E), suggesting a focus on gaining forward
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(a) The different push-off mechanics for different velocities. Higher velocities are associated with a more sidewards push off (B, larger
vs) and smaller amplitudes of horizontal body movements (C).

(b) The influence of average power limits on the push-off mechanics. Higher power allows for a larger range of leg extension, by
extending the leg further sideways (B, larger vs), less backways (A, smaller us), and starting in a more crouched position (C, smaller
ws). At lower powers the skate is more efficiently gliding forward and less lateral (E, smaller θs.

Fig. 7: Push-off mechanics for different situations

distance. In contrast, during the push-off phase, optimized
θs is larger than simulated θs. Optimization conditions with
lower Pavg, Pmax, µ, k and v, are associated with a smaller
θs, particularly during the gliding phase (see also Appendix
J). When the model is adapting a low frequency, optimized
strokes are wide, and θs during the gliding phase is larger.

C. Type II: Optimizations for maximal velocity

The maximal velocities (vmax) reached in the optimiza-
tions for maximal speed are significantly influenced by
changes in the constraint on average power (Pavg , OPT IIE,
Figure 6.E). Increasing the limit on Pavg from 150 W to 200
W steeply raises vmax from 14.6 m/s to 15.0 m/s. However,
increasing Pavg from 500 to 700 W only results in a small
increase of vmax from 17.0 to 17.1 m/s.

Similarly, when constraints on maximal power (Pmax)
are adjusted in optimizations for maximal speed (OPT IID),
increasing Pmax from 500 W to 700 W raises vmax from
16.6 to 17.1 m/s, but further increases have no additional
effect on vmax (Figure 6.F).

Additionally, optimizations with higher air friction (k)
and ice friction (µ) coefficients (OPT IIF+G), converge
to a lower vmax (Figure 6.C+D). Adapting m and LL
in de model (OPT B+C) does not significantly change vmax.

1) Stroke frequency at maximal velocity: Optimizations
with higher target stroke frequencies (OPT IIA) significantly
increase vmax. For instance, at f=1.67 strokes per sec-
ond, a velocity of vmax=17.5 m/s is achieved, compared
to vmax=13.3 m/s at a low frequency of f=0.62 strokes
per second (Figure 3.D). For all conditions (OPT IIB-G),
optimizing for maximizing velocity results in a maximized
frequency (Appendix F).

2) Push-off mechanics at maximal velocity: The tech-
niques optimized for maximal velocity (IIA-G) do not show
the long gliding phase that was observed in optimized
techniques at lower velocities. Instead, lateral forces (FL)
are higher and persist throughout almost the entire stroke
(Figure 5.B). The optimizations for maximal velocity lead to
a solution with both vs and us starting near zero, indicating
the skate starts close to the body in a more compact
position, compared to optimizations for target velocity (v)
or simulated results (Figure 7b.A+B).

As previously noted, among individual and environmental
conditions, changes in Pavg influence vmax and push-off
mechanics the most. With a lower Pavg , the final value
of vs is reduced (0.24 m at 150W vs. 0.54 m at 700W),
indicating less sideways lateral leg extension (Figure 7b.B).
Consequently, the range of leg extension (LE) during the
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stroke is smaller, although full leg extension (LE = LL)
is still reached at the end of the stroke (Figure 7b.D). This
occurs because ws starts at a higher value, reflecting a less
crouched position (Figure 7b.C).

3) Skate and Body Trajectory: When maximizing veloc-
ity (OPT IIA-G), the model adapts to minimal vertical body
movements (∆ws). The body starts from a low, crouched
position (small ws (Appendix K).

The optimized steer angle (θs) during the gliding phase
is higher when maximizing speed compared to optimizing
for lower target speeds (v) (Figure 7a.E). At vmax, the
model adapts to a higher θs during the gliding phase when
optimizing with higher , Pavg, Pmax and smaller θs with
higher m (Appendix K).

IV. DISCUSSION

This research aimed to create an optimization framework
for speed skating to optimize the technique for various
individual characteristics, environmental factors, velocity
and stroke frequencies to identify trends in the optimized
technique.

A key strength was the the wide scope of optimiza-
tions performed to explore a range conditions. The results
highlighted key factors for making a more efficient and
faster stroke by highlighting the impact of stroke frequency,
the emergence of different push-off patterns and trends in
vertical body movements and steer angle. These findings will
be discussed in detail below.

A. Stroke frequency

The results highlighted the central role of stroke frequency
in speed skating performance. The optimal stroke frequency
that minimizes effort increases with speed, likely due to the
increased power required to overcome higher resistances at
higher velocities. That explanation aligns with the increased
optimal stroke frequency for increased air friction and ice
friction coefficients. At high frequencies, the skater can
push-off efficiently during the, with many push-offs over
time allowing for a high power output over time. In con-
trast, at lower frequencies, the gliding phase of the stroke
dominates and the delayed onset of the lateral push-off
forces limits the ability to maintain high velocities. Why
the skater cannot give high lateral push-off forces during
the whole stroke at low stroke frequencies can be explained
as followed. In order to generate forward motion, the leg
must extend laterally, propelling the skater forward through
the lateral push-off force. However, the length of the leg
constrains the range of lateral extension, restricting duration
and amount of lateral force that can be applied throughout
one stroke. Therefore, it explains why maximized velocities
are higher for higher stroke frequencies and why at low
frequencies, velocities cannot be maintained as effectively.
At lower frequencies, to direct more lateral force in a
forward direction, the steering angle must be larger, which
leads to a wider stroke and higher lateral forces per meter
of distance.

However, skating techniques at higher stroke frequencies
at the same velocity demand higher energy, and energy
is minimal for lower stroke frequencies (see Figure 3).
This trade-off between energy efficiency and performance
explains the observed differences in techniques of sprinters
and long-distance skaters. Sprinters adopt high stroke fre-
quencies to maximize velocity, while long-distance skater
favor lower frequencies to conserve more energy. These find-
ings also align with previous research showing that stroke
frequency is a major regulator of speed across different skat-
ing distances. [4] These findings imply that sprinters could
potentially benefit from a really high frequency to increase
their skating speed. However, there is a limit on the maximal
stroke frequency. Not only because it requires high power,
but also because of physiological constraints. Insights from
cycling optimizations demonstrate that in cyclic movements,
muscle force decreases at higher frequencies, because of the
time-dependent nature of muscle activation and deactivation
dynamics. [34]. Furthermore, at high frequencies it can be
harder to coordinate the movements and not lose stability.

The optimal stroke frequency tends to decrease with a
higher body mass and longer leg length (Appendix F). A
higher body mass leads to higher inertia, making it harder to
accelerate/decelerate limbs during strokes, therefore favoring
a lower frequency compared to a leaner body mass. Longer
legs would allow for a longer push-off, so even at a higher
speed the slightly lower frequencies can generate enough
push-off power to maintain the high speeds. These results
align with trends observed in biomechanical studies for other
sports, where the optimal cycling cadence decreased with a
higher body mass [35]. Another research showed that the
optimal cadence decreased with an increasing size of the
cyclist [36])

B. Push-off mechanics

Different push-off techniques were observed. The most
energy efficient technique was associated with a long gliding
phase. It is hypothesized that with this extended gliding
phase, forces are reduced to minimize the effort cost in
the objective function. This hypothesis is supported by the
results of a secondary analysis that showed higher forces
when the gliding phase was penalized (Appendix N. The
longer gliding phase is in line with a research that showed
that elite speed skaters with the same stroke time but
better performance, have a longer gliding and shorter push
off phase [37]. However, the question is if this optimized
technique with a near-zero lateral force during the gliding
phase is feasible. It requires the speed skater to be balanced
on one leg on the center of the blade. For the speed skater,
it is likely hard to balance this way without lateral pressure.
It will probably require a lot of corrective muscle forces
to keep balance, which are not included in the cost, as the
model does not include any muscles. In previous research,
longer gliding phases resulted in a reduced blood flow to the
muscles, which lead to faster fatigue [10]. Also, the skate
cannot be steered as long as there is no lateral force and
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thus no lean angle, which is now not rightly incorporated in
the model (refer to section IV-D).

At high speeds,resistance increases, so the skater has
to generate more force during the push off. The strokes
are characterized by a longer push-off phase with larger
forces and only a short gliding phase. The lateral push off
force is showing a similar pattern to the measured forces,
with a gradual movement of the leg. A difference in the
optimized technique is that the leg is extending further
sideways compared to typical observations. In practice, that
should correspond to a larger lean angle, which has been
associated with faster skating speeds before [7], [13], [37],
because more force is applied in horizontal direction.

At low frequencies, the push-off technique starts with
a relatively long push on the outside edge of the skate
where the skate is abducted with respect to the body COM.
This technique is not energy efficient, as the horizontal
forces during this push are directed in opposite direction
of the movement. A secondary optimization prevented this
double push by constraining the lateral forces to be positive
(Appendix M). The results showed almost similar total
forces and energy over the stroke, and therefore the effort
cost is almost equal. However, the technique with the second
push is closer to the simulated technique. Therefore, the
penalty in the cost function is larger, which might explain
why the optimizer is converging to this technique.

C. Body and skate trajectory

Clear differences were observed between the measured
and the optimized techniques in terms of steering angle: a
smaller angle during the gliding phase and larger angle dur-
ing the push-off phase in the optimized technique compared
to measured angles. During the gliding phase, where the
lateral push-off forces are relatively small, the focus is on
gaining forward distance and minimizing unnecessary lateral
motion to reduce energy losses. During the push-off phase,
where the skaters apply the strongest lateral push-off forces,
the optimal steering angle is larger then for the measured
values. A larger steering angle allows the skater to project
the forces more in a forward direction, which can contribute
more to forward motion. In situations where less push-off
forces are needed or available, with lower velocities, friction,
or power limits, the optimal steer angle in the gliding phase
is even smaller. When more force is needed, for example for
maximizing speed, the steering angle increases.

In the traditional upper body movement, the body is
rising during the gliding phase until it starts passively
falling just before the push off phase. In the optimized
movement patterns at low velocities (8-10 m/s), the body
rises during the gliding phase, but descents deeper. This
deep descent observed allows for a greater range of leg
extension during the push-off phase, as the deeper body
position enables the leg to extend more effectively both
sideways and backwards. This aligns with findings from
prior research, which concluded that smaller pre-extension
knee angles are associated with better performance levels
[4], [38], as the generated push-off forces mainly come

from the extension of the knee [10]. However, this approach
requires significantly higher power at the end of the stroke,
leading to higher peak power demands. Additionally,
maintaining such a crouched position, which is deeper
than the height observed in real-world measurements, may
increase muscle deoxygenation and lead to fatigue [10],
although these effects are not included in the model.

The optimization framework effectively increased speed
by identifying techniques that maximized performance,
reaching speeds comparable to those of world-class speed
skaters. The most decisive factors for achieving maximal
speed were increasing average power and, subsequently,
maximal power. To optimize for high speeds at elevated
power levels, the technique required a deep crouched po-
sition, minimal upper body movement, and an explosive
leg extension that stretched far sideways and then pushed
forcefully backwards.

D. Limitations

1) Model simplification: The model in this study was
based on a simplified representation of speed skating trough
two connected point masses. The simplicity of the model
facilitated computational efficiency, and therefore allowed
for the exploration of the technique under a wide range of
individual and environmental variables at different veloci-
ties.Although the simplified model can recognize trends, the
simplicity comes with some limitations:
Lack of a musculoskeletal model: The model did not include
any muscles or joints, meaning that the muscle effort re-
quired to maintain specific body positions or stability could
not be assessed. Without joints, the model cannot capture the
specific orientation of the knee, hip and ankle, which makes
it difficult to assess whether the specific leg configurations
are physically feasible within joint range of motion, or if the
position might lead to unstable positions. Additionally, the
model cannot account for force-length properties, making
it challenging to evaluate whether the leg is positioned to
generate force effectively. To partially address this limitation,
tracking terms for leg extensions, velocities and accelerations
of the leg were incorporated in the cost function, to guide
the optimized to realistic solution.
Air friction and body height dependency: In speed skating,
COM height typically affects the frontal area and thus the
air friction coefficient. However, in the SSM, air friction is
estimated based on a fixed frontal area, making it indepen-
dent of COM height.
Lean angle: The lean angle between the skate and ice
skate determines the distribution between the horizontal and
vertical push-off force components of the push-off force.
Because of the absence of ankle and knee joints in the model,
the model lacks the information to calculate the lean angle,
possibly leading to unrealistic force predictions. For exam-
ple, zero lateral force should correspond to zero lean angle.
When the leg is not exactly centered under the body, this
would be biomechanically infeasible, without awkward leg,
knee and ankle angles. This limitation highlights the absence
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of crucial joint dynamics and lean angle considerations in
the model.

2) Power estimation: Another limitation is the definition
of power in this optimization. While the forces and power
calculated within the SSM are useful for comparing tech-
niques within the context of this framework, they cannot be
applied outside it. The model simplifies power estimation,
ignoring joint dynamics and relying on forces that do not
accurately match measured values.

3) Cost function: The use of tracking terms on leg
extensions within the cost function, based on the average
behavior of speed skaters, guided the optimizer toward real-
istic solutions and improves convergence, given the model’s
simplicity and freedom within the constraints. Although this
approach pushes the optimization in a specific direction,
the model remains capable of identifying meaningful trends
into potential technique improvements. A technique that
resembles the current technique, rather than an revolutionary
one, offers practical benefits [39]. It enables faster adoption
by skaters. Instead of dictating an entirely new movement
pattern, the model highlights trends that can inform re-
finements to existing techniques, making it a valuable tool
for incremental improvements rather than a prescription for
exact movements.

The weights applied to forces (Jforce), tracking terms
(P ), and velocity (Jvel) in the cost function influenced
the solution and impacted convergence time. The weights
were selected after initial optimizations to favor convergence
while minimizing the impact on the simulation outcome.

These weights were subjective, a characteristic common to
more optimization problems. Additionally, the cost function
used total force over a distance as a measure of efficiency.
Although power would provide a better estimation of energy
efficiency, attempts to incorporate it into the cost function
led to poor convergence.

E. Recommendations for future research

To address these limitations, future research should incor-
porate a detailed (musculo)skeletal model to better estimate
movement feasibility and energy costs. Including lean angle
dynamics would improve the distribution between lateral
and horizontal push-off forces, enhancing the realism of the
simulations. More accurate force and power representations
would increase the reliability of the optimized techniques.
On-ice measurements with different skating techniques could
help to validate whether the observed trends in power, forces,
and movement patterns are accurate and truly improve
performance. Feedback from coaches and skaters would help
to assess the practicality and effectiveness of the optimized
movements.

V. CONCLUSION

This research provided an optimization framework that
optimized for different conditions at different velocities and
different stroke frequencies to detect trends in the optimized
technique. In conclusion, the optimal techniques that mini-
mized the effort at a certain velocity (type I) or maximized

velocity (type II) showed the following trends in terms of
stroke frequency, push-off mechanics and skate trajectory:

• Skating speed and frequency influence the optimal
technique the most.

• Higher frequencies lead to higher maximal velocities, at
the cost of increased energy. Energy can be minimized
by adapting a lower frequency. To maximize veloc-
ity, sprinters should therefore adapt high frequencies,
whereas long distance skaters should aim for the best
trade-off between an energy-efficient stroke frequency
and veloctiy.

• To overcome more friction (at higher velocities or in
situations with more air/ice friction), a higher stroke
frequency is ideal. Longer leg length and higher skater
mass decrease optimal stroke frequency.

• Energy efficient strokes are characterized by a long
gliding phase. When maximizing velocity the skater
should start with the push off straight away with a
powerful push-off.

• Optimized techniques emphasize forward gain during
gliding phases by small steer angle, and use larger
steering angles during push-off phases to direct lateral
forces effectively forward.

• Optimized techniques maximize the leg extension range
by adapting a crouched position or descending deeply
after the gliding phase, to emphasize the sideways
extension of the leg during the push-off.

• The maximal velocity can be mainly increased by
higher power and thus strength, of the speed skater.
Then the skater can adopt a technique where the leg
is explosively extended sideways. Increasing average
power is more effective in increasing the velocity than
increasing peak power.

A. Implications for the speed skaters

As concluded, optimal skating techniques highly depends
on available power and athletes’ power demands. Skaters
should focus on increasing stroke frequency, as this can
can increase their velocity. Skaters could focus building the
power and endurance needed to sustain higher frequencies
efficiently. Given the greater influence of average power
over peak power on maximal velocity, endurance training
is particularly important. At high speeds, skaters should
focus on executing a powerful lateral push-off from a
crouched position. Long-distance skaters can improve energy
efficiency by adopting a longer gliding phase with a smaller
steer angle.
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[12] Nina Nässén, Hans-Åke Nässén, and Ann-Marie Pendrill. Arcs on
speedskating straightaways: forces, energy and angular momentum.
Physics Education, 58(1):015013, 2022.

[13] D. A. Noordhof, Marco J. M. Foster C Fau Hoozemans, Jos J.
Hoozemans Mj Fau de Koning, and J. J. de Koning. Changes in
speed skating velocity in relation to push-off effectiveness. (1555-
0265 (Print)), 2013.

[14] T. L. Allinger and A. J. Van Den Bogert. Skating technique for the
straights, based on the optimization of a simulation model. Medicine
and Science in Sports and Exercise, 29(2):279–286, 1997.

[15] D. Fintelman, O. Braver, and Arend Schwab. A simple 2-dimensional
model of speed skating which mimics observed forces and motions.
pages 4–7, 2011.

[16] E. van der Kruk, A. L. Schwab, F. C. T. van der Helm, and H. E. J.
Veeger. Getting the angles straight in speed skating: A validation
study on an imu filter design to measure the lean angle of the skate
on the straights. Procedia Engineering, 147:590–595, 2016.

[17] R. W. de Boer, G. J. C. Ettema, H. van Gorkum, G. de Groot, and
G. J. van Ingen Schenau. A geometrical model of speed skating the
curves. Journal of Biomechanics, 21(6):445–450, 1988.

[18] S. A. McErlain-Naylor, M. A. King, and P. J. Felton. A review of
forward-dynamics simulation models for predicting optimal technique
in maximal effort sporting movements. Applied Sciences (Switzer-
land), 11(4):1–20, 2021.

[19] R. H. Miller and J. Hamill. Optimal footfall patterns for cost
minimization in running. Journal of Biomechanics, 48(11):2858–
2864, 2015.

[20] R. H. Miller, Joseph Umberger Br Fau Hamill, Graham E. Hamill J
Fau Caldwell, and G. E. Caldwell. Evaluation of the minimum energy
hypothesis and other potential optimality criteria for human running.
(1471-2954 (Electronic)), 2011.

[21] M. Nakashima. Simulation analysis of the effect of trunk undulation
on swimming performance in underwater dolphin kick of human.
Journal of Biomechanical Science and Engineering, 4(1):94–104,
2009.

[22] M. Nakashima, S. Maeda, T. Miwa, and H. Ichikawa. Optimizing
simulation of the arm stroke in crawl swimming considering muscle

strength characteristics of athlete swimmers. Journal of Biomechani-
cal Science and Engineering, 7(2):102–117, 2012.

[23] M. Nakashima and A. Ono. Maximum joint torque dependency of the
crawl swimming with optimized arm stroke. Journal of Biomechanical
Science and Engineering, 9(1), 2014.

[24] G. Schultz and K. Mombaur. Modeling and optimal control of human-
like running. IEEE/ASME Transactions on Mechatronics, 15(5):783–
792, 2010.

[25] A. Zignoli, F. Biral, B. Pellegrini, A. Jinha, W. Herzog, and F. Schena.
An optimal control solution to the predictive dynamics of cycling.
Sport Sciences for Health, 13(2):381–393, 2017.

[26] Eline van der Kruk. Parameter analysis for speed skating performance.
2018.

[27] J. K. Moore. Learn multibody dynamics, 2022. Accessed: 2025-01-
03.

[28] E. van der Kruk, O. den Braver, A. L. Schwab, F. C. T. van der Helm,
and H. E. J. Veeger. Wireless instrumented klapskates for long-track
speed skating. Sports Engineering, 19(4):273–281, 2016.

[29] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and
Moritz Diehl. Casadi: a software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation,
11(1):1–36, 2019.

[30] Matthew Kelly. An introduction to trajectory optimization: How to
do your own direct collocation. SIAM Review, 59(4):849–904, 2017.

[31] F. De Groote and A. Falisse. Perspective on musculoskeletal mod-
elling and predictive simulations of human movement to assess the
neuromechanics of gait. (1471-2954 (Electronic)), 2021.

[32] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106:25–57, 2006.

[33] E. van der Kruk, F. C. T. van der Helm, H. E. J. Veeger, and A. L.
Schwab. Power in sports: A literature review on the application,
assumptions, and terminology of mechanical power in sport research.
Journal of Biomechanics, 79:1–14, 2018.

[34] M. F. Bobbert, Arthur J. Casius Lj Fau Van Soest, and A. J. Van Soest.
The relationship between pedal force and crank angular velocity in
sprint cycling. (1530-0315 (Electronic)), 2016.

[35] G. Palmieri, M. Tiboni, and G. Legnani. Analysis of the upper
limitation of the most convenient cadence range in cycling using an
equivalent moment based cost function. MATHEMATICS, 8(11), 2020.

[36] H. Gonzalez and M. L. Hull. Multivariable optimization of cycling
biomechanics. Journal of Biomechanics, 22(11-12):1151–1161, 1989.

[37] Dionne A Noordhof, Carl Foster, Marco JM Hoozemans, and Jos J
de Koning. The association between changes in speed skating
technique and changes in skating velocity. International journal of
sports physiology and performance, 9(1):68–76, 2014.

[38] C. Foster, A. C. Rundell Kw Fau Snyder, J. Snyder Ac Fau Stray-
Gundersen, G. Stray-Gundersen J Fau Kemkers, N. Kemkers G
Fau Thometz, J. Thometz N Fau Broker, E. Broker J Fau Knapp, and
E. Knapp. Evidence for restricted muscle blood flow during speed
skating. (0195-9131 (Print)), 1999.

[39] P. S. Glazier and S. Mehdizadeh. Challenging conventional paradigms
in applied sports biomechanics research. SPORTS MEDICINE,
49(2):171–176, 2019.

16



APPENDIX A
DYNAMICS OF THE SIMPLE SPEED SKATER MODEL

A. Global and generalized coordinates

This section describes and derives the equations of motion that characterize the speed skater’s dynamics. These equations
are largely based on the Simple Speed Skater model [4] that has been validated before. In the model, the skater is described
by two point masses: the center of mass (COM) of the body and the COM of the active skate. This active skate is constantly
on the ice during the stroke. The double stance phase is neglected. Instead, during the skating motion, the skater is actively
changing between the left skate (kk=1) and right skate (kk = -1). The body is rotated by and angle ϕb around the z-axis
of the global reference frame, while the heading of the skate is described by a rotation ϕb around the z-axis of the global
reference frame.

The positions and orientation of these masses in the global reference frame (N) are defined by the global coordinates
(x) and their velocities (ẋ), as illustrated in Figure 8):

x =
[
xb yb zb xs ys zs ϕs

]
(26)

ẋ =
[
ẋb ẏb żb ẋs ẏs żs ϕ̇s

]
(27)

The generalized coordinates (q) and generalized speeds (q̇) describe the positions and velocities of the body relative to
the skate in terms of leg extension, defined as:

q =
[
ub vb wb us vs ws θs

]
(28)

q̇ =
[
u̇b v̇b ẇb u̇s v̇s ẇs θ̇s

]
(29)

The leg extension is a measure for the distance between the point mass position of the body and the skate (see Figure 8).
Here, us represents the distance from the skate to the body in the heading direction of the skate (ŝy), vs is the distance in
the lateral direction of the skate (ŝx, perpendicular to the heading direction), and ws specifies the distance

The transformation matrix maps generalized coordinates (q) to global coordinates (x). This relation is described by the
following equations if coordinates (x) are expressed in terms of (q)

x =



xb

yb
zb
xs

ys
zs
ϕs


= T (q) =



ub

vb
wb

−kkvscos(θs) + ub + ussin(θs)
−kkvssin(θs) + vb − uscos(θs)

wb − ws

θs


(30)

Fig. 8: Description of the model coordinates in global and generalized coordinates (left and right respectively, adapted
from: (cite van der kruk 2017)
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Expressing the global velocities in terms of generalized coordinates results in the following relation:

ẋ =



ẋb

ẏb
żb
ẋs

ẏs
żs
ϕ̇s


=

dT (q)
dt

=



u̇b

v̇b
ẇb

kkvssin(θs)θ̇s − kkcos(θs)v̇s + uscos(θs)θ̇s + sin(θs)u̇s + u̇b

−kkvscos(θs)θ̇s − kksin(θs)v̇s + ussin(θs)θ̇s − cos(θs)u̇s + v̇b
ẇb − ẇs

θ̇s


(31)

As

ẋ =
dT (q)

dt
=

∂T (q)

∂q

dq

dt
=

∂T

∂q
q̇ (32)

Following equation 31 and 32, the expression transformation matrix can be found by using the Jacobian.

∂T

∂q
=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 sin(θs) −kkcos(θs) 0 kkvssin(θs) + uscos(θs)
0 1 0 −cos(θs) −kksin(θs) 0 −kkvscos(θs) + ussin(θs)
0 0 1 0 0 −1 0
0 0 0 0 0 0 1


(33)

Looking at the accelerations of global coordinates, these can be reorganized in terms of T as well, using the equation
32 and the chain rule:

ẍ =
d

dt
ẋ =

d

dt

∂T

∂q
q̇ =

d

dt
(
∂T

∂q
)q̇ +

∂T

∂q
q̈ =

∂2T

∂q2
q̇q̇ +

∂T

∂q
q̈ (34)

To simplify the calculations, and isolate the terms for q̈, ∂2T
∂q2 q̇q̇ will be called the convective acceleration (hcon), so that:

ẍ = hcon +
∂T

∂q
q̈ (35)

This convective acceleration term can be calculated by using the Hessian.

B. Forces

The set contributing external forces to the system are the gravitational force (Fg = gmskater) that is working on the
body of the skater, and a small gravitational force on the skates, the ice friction force (Fs) that is working on the skate
and the air friction force Fb that is working on the body of the skater. The normal force (FN ) is acting on the skate. The
internal leg force can be writtenin an x, y, and z component (Flegx, Flegy, Flegz

Fig. 9: Internal and external forces working on the COMs of the skate and skater
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F =



Fbsin(θb) + Fleg,x

−Fbcos(θb) + Fleg,y

−mbg + Fleg,z

kkFssin(θs)− Fleg,x

−Fscos(θs)− Fleg,y

−msg + Fn − Fleg,z

Mskk


=



Fbsin(θb) + FLcos(θs)
−Fbcos(θb) + FLsin(θs)

−mbg + FV

kkFssin(θs)− FLcos(θs)
−Fscos(θs)− FLsin(θs)

−msg + Fn − FV

Mskk


(36)

C. TMT Equations of Motion

The masses and inertias from each body can be assembled in a mass matrix (M ), that follows the order of the coordinates
in x. Generally F = Mẍ, so that using equation 31,

F = M(hcon +
∂T

∂q
q̈) → M

∂T

∂q
q̈ = F −Mhcon → (

∂T

∂q
)TM

∂T

∂q
q̈ = (

∂T

∂q
)T (F −Mhcon) (37)

If we now use from the TMT method that,

Mreduced = (
∂T

∂q
)TM

∂T

∂q
(38)

and we call that:

Freduced = (
∂T

∂q
)T (F −Mhcon) (39)

Than from equations 37, 38, 39 it follows that :

Mreducedq̈ = Freduced (40)

1) Non-holonomic constraint: The skate can only glide in the heading direction of the skate. Therefore, the lateral
velocity of the skate (in the direction of ŝx is constrained to be zero. Therefore, the non-holonomic constraint of the
system becomes:

vskate · ŝx = −sin(θs)ẏs − cos(θs)ẋs = 0 (41)

When replacing the global velocities by their expression in generalized speeds (using Eq. 31), the non-holonomic
constraint can be expressed as:

− (kkvssin(θs)θ̇s − kkcos(θs)v̇s + uscos(θs)θ̇s + sin(θs)u̇s + u̇b)cos(θs)−
(−kkvscos(θs)θ̇s − kksin(θs)v̇s + ussin(θs)θ̇s − cos(θs)u̇s + v̇b)sin(θs) = 0

(42)

Reorganizing this non-holonomic constraint in terms that are dependent on the accelerations of the global coordinates:

Cktotq̈ + Cki = 0 (43)

Therefore, firstly the derivative of the non-holonomic constraint is calculated. Setting all the double derivatives q̈ in this
derivative of the non-holonomic constraint to zero, will give you the constraint bias (Cki).

Cki = (sin(θs)u̇b − cos(θs)v̇b − u̇s)θ̇s (44)

The Jacobian of the constraints with respect to q̇ can be used to find Cktot.

Cktot =
[
−cos(θs) −sin(θs) 0 0 kk 0 −us

]
(45)

Adding the non-holonomic constraint, the total equations of motion become:[
M̄red CkTtot
Cktot 0

] [
q̈i
λ

]
=

[
F̄red

−Cki

]
(46)
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2) Solving the equations of motion: The equations defined above, will be used to find a solution of the optimization
problem. When we assume that the leg extensions, leg extension velocities and accelerations are optimization variables,
will serve as the control inputs of the model, so these accelerations will be ’known’. Assuming that during the stroke
the skate is staying on the ice, and that therefore the acceleration of the skate is zero, we can assume that the vertical
acceleration of the COM of the skater is equal to the acceleration of the leg (ẅs). The only accelerations that are then
unknown are the accelerations of the body in x and y direction (üb, v̈b). Therefore, we assume that ub and vb are the
unknown coordinates (qd = [ub, vb]). The generalized coordinates can be reorganized in terms of known coordinates
(qo) and unknown (qd) coordinates. The generalized speeds and generalized accelerations are the derivatives and double
derivatives of these coordinates respectively q̇d and q̇o. These reorganized coordinates can be used to reorganized the
equations of motion, as: M̄dd M̄do CkTd

M̄od M̄oo CkTo
Ckd Cko 0

q̈dq̈o
λ

 =

 F̄d

F̄o

−Cki

 (47)

This equation can be solved to find the unknown expressions for q̈d and λ:[
q̈d
λ

]
=

[
M̄dd CkTd
Ckd 0

]−1 [
F̄d − M̄doq̈o

−Cki− Ckoq̈o

]
(48)

The solutions from Eq.48 can be used to calculate the reduced unknown forces on the skate (F̄o).

F̄o =
[
M̄od M̄oo CkTo

] q̈dq̈o
λ

 (49)

These forces are the unknown entries from the reduced force Matrix, which is defined as:

F̄o =



FN − gmb − gms

Fskk sin
2(θs)− Fs sin

2(θs) + Fs − 2msθ̇sv̇s +msusθ̇s
2

kk
[
FL − 1

2 (Fskk sin(2θs) + Fs sin(2θs)) +msvsθ̇s
2
+ 2msθ̇su̇s

]
−FN + FV + gms

−FLus +
1

2
Fskkvs[(−kk + 1) cos 2θs + kk + 1] +

1

2
Fsus sin 2θs[kk − 1] +Mskk

+(kk − 1)msusvs(θ̇s)
2 − 2kkmsvsθ̇sv̇s − 2msusθ̇su̇s


(50)

Solving this system, the values for FL and FV can be found, which are the push-off forces exerted on the skate in the
reference frame of the skate. Fleg,x, Fleg,y, Fleg,z are the forces in the global frame.

Ftot =
√
F 2
L + F 2

V (51)
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APPENDIX B
SIMULATION RESULTS UPDATED PYTHON SKATER MODEL

Fig. 10: Simulation results of the body positions (A) and velocities (B) compared to the measured body positions and
velocities. The positions and velocities can be predicted quite accurately.

APPENDIX C
RESULTS TRACKING OPTIMIZATION

Fig. 11: Example of the results of a tracking simulation, in this case for person P7, Lap Fast 3. The leg extensions can be
accurately tracked.
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Fig. 12: Tracking results output data from SSM (body positions, velocities and accelerations and forces) over one stroke
on the left skate from different trials and the average. When matching the forces, the body positions can be tracked quite
accurately.

APPENDIX D
TRACKED DATA

Fig. 13: Tracked input data from SSM (leg extensions) of one stroke on the left skate, from different trials. The average
of the trials is given as well.
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Fig. 14: Tracked output data from SSM (body kinematics and skate forces) over one stroke on the left skate from different
trials and the average

Fig. 15: Tracked output data from SSM (Total force and estimation of the power) over one stroke on the left skate from
different trials

APPENDIX E
NUMBER OF COLLOCATION POINTS

Increasing the number of collocation points will improve the accuracy of the optimization results. However, increasing
the number of derivatives that needs to be calculated, and therefore the calculation time is increased. Therefore, the goal
is to find a minimal number of collocation points that can give an accurate result.

A. Methods

Tracking optimizations were performed using different number of collocation points (50, 100, 150, 200, 250 and 300).
The accuracy of the output (the body positions) of the tracking simulation is calculated based on the root mean square error
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Fig. 16: The relation between the number of collocation points in the optimization and the root mean squared error (RSME)
of the body positions

Fig. 17: The relation between the number of collocation points and the optimized body positions (xb, yb, zb)

(RMSE (Eq.52). This RMSE gives a measure of the differences between the optimized body positions and the simulated
body positions.

RMSE =

√√√√ 1

N

N∑
i=1

[(xb,opt − xb)2 + (yb,opt − yb)2 + (zb,opt − zb)2)] (52)

B. Results

The relation between the number of collocation points and the RMSE is given in Figure 16. The resulting impact on
the estimation of the body positions is given in Figure 17.

C. Conclusion

Using 150 collocation points will give a good trade-off between the cost of calculation and the accuracy of the optimization
results.
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APPENDIX F
OPTIMIZED FREQUENCIES FOR DIFFERENT VARIABLES

Fig. 18: Optimized frequencies when optimizing the technique to reach target speeds (type I). Increasing speed leads to
higher optimal stroke frequencies. Stroke frequency is maximal for higher speeds (12- 14 m/s across variables). Higher air
and ice friction increase the optimal stroke frequency, whereas mass and leg length decrease the optimal stroke frequency.

APPENDIX G
STROKE TRAJECTORIES FOR DIFFERENT STROKE FREQUENCIES AT MAXIMAL SPEED

Fig. 19: Stroke trajectories and lateral push off forces for different target stroke frequencies at maximal speed
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APPENDIX H
STROKE TRAJECTORIES FOR DIFFERENT TARGET FREQUENCIES

Fig. 20: Stroke trajectories for different target stroke frequencies, where each row represents a different target speed: 8
m/s, 10 m/s, 12 m/s and 14 m/s
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APPENDIX I
TRAJECTORIES AT DIFFERENT TARGETS SPEEDS

Fig. 21: Results of the optimized trajectories and lateral force for different variables at a speed of 8 m/s
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Fig. 22: Results of the optimized trajectories and lateral force for different variables at a speed of 10 m/s
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Fig. 23: Results of the optimized trajectories and lateral force for different variables at a speed of 12 m/s

29



Fig. 24: Results of the optimized trajectories and lateral force for different variables at a speed of 14 m/s
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Fig. 25: Results of the optimized trajectories and lateral force for different variables optimized for maximal speed
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APPENDIX J
PUSH-OFF MECHANICS FOR DIFFERENT TARGET SPEED UNDER VARYING CONDITIONS

Fig. 26: Push-off mechanics for different variables at a speed of 8 m/s
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Fig. 27: Push-off mechanics for different variables at a speed of 10 m/s

33



Fig. 28: Push-off mechanics for different variables at a speed of 12 m/s
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Fig. 29: Push-off mechanics for different variables at a speed of 14 m/s
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APPENDIX K
PUSH-OFF MECHANICS WHEN MAXIMIZING SPEED FOR DIFFERENT VARIABLES

Fig. 30: Push-off mechanics for different variables when maximizing speed
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APPENDIX L
LEG EXTENSION VELOCITIES FOR DIFFERENT FREQUENCIES

Fig. 31: Leg extension velocities for different frequencies, showing higher velocities for higher frequencies, especially in
the sideways direction dvs

APPENDIX M
ADDITIONAL ANALYSIS SECOND PUSH

The aim of this additional analysis was to check the resulting skate trajectory and push-off forces, when the lateral force
in the optimization was constrained to be larger or equal to zero (FL > 0). This constraint prevents a double push-off
technique. The total push-off forces are almost equal, but are slightly higher for the case with a second push. Power is
slightly higher for the second push as well. The reason the optimizer converges to this solution is probably because this
will reduce the penalty for deviating from the measured forces.

(a)

(b)

Fig. 32: This figure shows the difference in push-off mechanics when a secondary push at the beginning is not constrained
(a), versus when it is constrained (b). Total forces were almost equal, just as the power, but slightly higher for the case
where the double push was not constrained.
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APPENDIX N
ADDITIONAL ANALYSIS GLIDING PHASE

As in the measured data, there constantly is a lateral force, concerns about the potential impact on stability and technique
of a zero lateral push-off force during the gliding phase were raised. To address this, a secondary optimization was conducted
to penalize extended periods of minimal lateral force. In this analysis, a penalty was added for low lateral forces. A large
lateral force will cause an almost zero penalty, whereas the penalty will be large for really small lateral forces. This will
encourage the model to find a solution that doesn’t have the zero force gliding phase.

Jpenalty =
1

F 2
L + e−6

(53)

These results show higher forces when the gliding phase is penalized, explaining why the optimization is converging to
a solution with a long gliding phase.

(a)

(b)

Fig. 33: (a) No Penalty. (b) Penalized gliding phase

Fig. 34: The trajectory for penalizing no lateral force (left) vs without this penalty (right)
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