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A perfect standard specimen for X-ray diffraction line-profile analysis does not exist

(see Chapter 1 of this thesis).

An interpretation of line broadening in terms of both size and dislocations is meaningful
only if it is made sure that the size effect is truly due to the average crystal or grain size

(see Chapters 3 and 8 of this thesis).

Size broadening due to a subdivision of grains into incoherently diffracting "domains” is

unlikely to occur in plastically deformed specimens (see Chapters 7 and 8 of this thesis).

For the microstructure of a specimen, order-dependence is the most discriminating line-

broadening feature.
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Volgens de "hiérarchie der wetenschappen” van Auguste Comte (1798-1857) neemt in de
volgorde wiskunde, astronomie, fysica, chemie, biologie en sociologie de beheersing van
het studie-object af, maar het maatschappelijk belang toe. Anderhalve eeuw

wetenschappelijke arbeid heeft aan deze hiérarchie nauwelijks iets veranderd.

Als studenten die zitting hebben in het bestuur van een studentenvereniging tegelijkertijd
een redelijke productiviteit in hun studie moeten halen, kunnen zij hun bestuursjaar bij een

latere sollicitatie met recht als een "pre” opvoeren.

De belangrijkste zwakte van het onderwijs in de Nederlandse taal betreft niet de

spelvaardigheid, maar de stelvaardigheid van de afgeleverde leerlingen.

Het almaar stijgen van de normen voor hygiéne en lichaamsverzorging is slecht voor het

milieu.

De criminalisering van drugs en doping heeft veel problemen veroorzaakt en nauwelijks

problemen opgelost.

De benaming beeldende kunsten miskent het beeldende karakter van andere kunstvormen,

zoals literatuur, muziek en ballet.

In alle experimentele wetenschappen wordt steeds meer gemeten om het meten. Dit is een

vorm van decadentie die het einde van een eeuw niet misstaat.
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PREFACE
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Pers, dhr. van Lent, Ed Sonneveld, Anne Buis, Frans van Qostrum, Dick de Haan, dhr. Jansma,
dhr. Colijn, dhr. Bakker, Anke Kerklaan-Koene, Liesbeth Secker-Versteegh, and all other
present and former colleagues in the section FCM-2. Dr. Langford induced me to do the
important measurements on deformed tungsten. Without Tamds Ungdr, I would have missed an
essential branch of line-profile analysis and thanks to Endre Borbély and Pista Groma I have
had a fruitful and pleasant stay in Budapest. Last but not least: thanks to Ina, family and friends,

who have given me the necessary diversion in the past time.

April, 1994 Jurgen van Berkum



GENERAL INTRODUCTION

I. BACKGROUND

The mechanical properties of crystalline materials are often largely determined by the presence
of crystal imperfections. All crystal imperfections, including the finite sizes of the grains or
crystallites of the material, give rise to broadening of (X-ray) diffraction lines. In this thesis, the
attention is concentrated on imperfections that are accompanied by microstrains, i.e. local
distortions of the crystalline lattice. Examples of such crystal imperfections are dislocations,
precipitates and inclusions. It is easily understood qualitatively that microstrains induce
diffraction-line broadening. The angular position of a diffraction line is related to the average
distance between the lattice planes corresponding to the reflection considered (Bragg's law).
Microstrains involve local deviations of such distances from the average. The corresponding
parts of the specimen diffract at angular positions somewhat deviating from the average,
resulting in broadening of the total line. The aim of this thesis is to develop methods for the
analysis of microstrains from (X-ray) diffraction-line broadening.

The first application of line-broadening analysis concerned a determination of the
crystallite size of colloidal particles by Scherrer (1918). The relation between microstrains and
line broadening was firstly investigated by Dehlinger (1927) for cold rolled metals. Important
theoretical progress is due to Stokes & Wilson (1942; 1944) and Bertaut (1949). Using the
kinematical theory of diffraction, a complete and undisputed description of the Fourier
coefficients of diffraction-line profiles broadened by finite crystallite sizes and microstrains was
developed by Warren and Averbach (1950; see also Warren, 1969). Using this theoretical
description, the line broadening of a given atomic arrangement can be calculated exactly.

Unfortunately, this does not imply that analysis of measured line broadening is
straightforward. Methods of analysis have been proposed by Warren & Averbach (1952) and
Williamson & Hall (1953) and, in spite of objections raised against these methods (see Sec. II),
they are probably still the methods most frequently applied for the analysis of microstrains. In
the meantime, experimental possibilities have been improved enormously. Nowadays, X-ray
diffraction-line broadening can be measured precisely and reproducibly by means of
commercially available instruments. Further, possibilities for (numerical) data manipulation have

become almost unlimited. This, in combination with the accepted theoretical description of line
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broadening, makes line-broadening analysis to a potentially very powerful tool in
microstructural research. It is complementary to transmission electron microscopy, because of
the relatively large sampling volume, the quantitative character and the relatively small
preparation effects of line-broadening analysis. At present, the main obstacle for the application
of line-broadening analysis is the lack of straightforward methods for the translation of
measured data to physically meaningful parameters. The methods discussed and developed in
this thesis have been divided into two categories, which are called "analytical methods" and
"model-based methods”. The reasons for this division are explained in the following two

sections.

il. ANALYTICAL METHODS

Based on the diffraction-line broadening theory, a number of methods for line-profile analysis
have been developed. The development as well as the application of these methods always

proceeds as indicated in the following diagram:

assumptions

diffraction theory ——+——> ?or}?mﬁ:'

diffraction-linked
parameter estimates

experimental data .

Firstly, the general theoretical description of line broadening, too complex to be used in a
method of analysis itself, is translated into practicable formulae by applying simplifying
assumptions. The derived formulae contain parameters that are necessarily linked closely to the
diffraction theory. Secondly, using these formulae, the experimental data are translated directly
to parameter values.

For some specimens, it is reasonable to assume that all broadening is due to the finite
crystallite size and to discard the part describing the effect of microstrains from the theory.
Then, relatively simple relations between observable quantities and parameters in the diffraction
theory can be derived, that allow a detailed investigation of crystallite sizes and shapes (e.g.
Louér et al., 1983).

If microstrains are present in the material, the general description of line broadening is
much more complex. The frequently applied Warren-Averbach method (1952) involves the least

assumptions of the analytical methods available to analyse strain broadening or simultaneous
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size and strain broadening. Unfortunately, the Warren-Averbach method translates measured
line broadening to parameters that still refer to the diffraction process and that are incompatible
with generally adopted theories to describe the deformed solid state. The physical meaning of
the size parameter in the Warren-Averbach method (and ail other analytical methods), for
example, has always been unclear (see e.g. Warren, 1959). In the Chapters 7 and 8, the concept
of "size" and the meaning of the size parameter in the Warren-Averbach method are
investigated. On the other hand, the Warren-Averbach parameters have the advantage that they
are sufficiently general for the description of specimens with any type of crystal imperfection,
whereas the use of more specific parameters is necessarily more restricted.

Another objection raised against the Warren-Averbach method is that the approximation
used for the description of strain broadening is incompatible with the nature of the microstrains
in a plastically deformed material and that the Warren-Averbach method therefore produces
unreliable results (Wilkens, 1979; 1984). In the Chapters 2, 3, and 8 of this thesis, this second
objection is investigated. Further, in the Chapters 2 and 3, a method is developed similar to the
Warren-Averbach method, but based on different approximate descriptions of size and strain
broadening. With the two methods together, more types of size and strain broadening can be
analysed than with a single one. The selection of the appropriate method, however, requires

appreciable advance knowledge about the size and strain characteristics of the specimen.

lli. MODEL-BASED METHODS

A completely different approach of line-profile analysis is used in model-based methods, which

are executed as indicated in the following diagram:

model

diffraction theory :1

experimental data ~ «a—— calculated data

»  Mmodel-parameter
estimates

The starting point is a model that describes the essential characteristics of the microstructure of
the specimen. The model contains a limited number of adjustable model parameters. Using the
diffraction theory, data can be calculated (usually necessarily numerically, but without applying
any approximations) that would have been obtained if the model were a real specimen. By
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adapting and refining the model parameters until the fit between calculated and experimental
data is as good as possible, the best parameter estimates are obtained. ‘

The main advantage of model-based methods over analytical methods is that the
parameters used characterize the microstructure of the specimen directly in a physically
meaningful way. A second advantage is that (virtually) no assumptions are involved in the data
calculation and parameter evaluation. Obviously, substituting the true microstructure by a model
is a serious assumption and, therefore, the adequacy of the model has to be judged carefully.
Fortunately, in model-based methods it is relatively easy to extend or change the model in order
to investigate the effects ignored in a first step. A related advantage is the flexibility in the choice
of experimental data to be fitted: they may be line widths or Fourier coefficients and they may
be corrected for background intensity and instrumental broadening or not (if not, these effects
are included in the calculated data, if necessary by means of adjustable parameters).

A problem inherent to model-based methods is the judgment of the fit. Statistical
measures for goodness-of-fit are only meaningful if the differences between the calculated and
the experimental data are accidental (random), not systematic. If systematic errors dominate,
which is often the case, and one cannot or does not want to extend the model, effects of the
probably most important deficiencies of the model should be taken into account in the judgment
of the fit. If this is impossible, parameter values should be presented with care and, preferably,
with an indication of their variability.

The microstructural models used for the analysis of line broadening have been divided
into two categories: models for specific types of crystal imperfections and models providing a
more general description of the microstrains in a distorted specimen. In this thesis, two specific

models are discussed (see Sec. III.A) and one general model is developed (see Sec. [II.B).

A. Specific models for strain broadening

The first specific model concerns dislocation configurations. An accurate determination of the
dislocation density and arrangement is one of the most important potential possibilities of line-
broadening analysis. A first attempt of modelling the line broadening originating from the strain
fields around dislocations is due to Wilson (1952); important progress is due to Krivoglaz &
Ryaboshapka (1963), Wilkens (1970), Ungdr et al. (1984) and Groma, Ungir & Wilkens
(1988). The existing methods do not comply fully with the definition of model-based methods,
since they make use of approximate analytical formulae for a direct translation of experimental
data to parameter values. They are classified here as model-based, because their starting points
are microstructural models and their parameters refer directly to these models. The existing
methods are not yet widely applied because of both practical difficulties in their application and
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theoretical difficulties in the interpretation of their results. In Chapter 4, these methods are
reviewed and compared theoretically. Further, procedures for their application in practice are
developed and tested by means of widely different sets of experimental data.

The second example of a method based on a specific microstructural model concerns
specimens containing misfitting inclusions. The strains in such specimens have been
investigated extensively by Eshelby (1956). The misfit between the matrix and the inclusions is
important for the mechanical behaviour of the material, but, to determine the value of the misfit
in practice, there are only very few methods, of which X-ray diffraction-line broadening analysis
is one. In Chapter 5, a model-based method is developed for the analysis of the line broadening
from different AlSi alloys with very fine Si precipitates in an Al matrix. All known
microstructural characteristics (e.g. the average precipitate size) are incorporated in the model,
leaving only the misfit as an adjustable parameter. As a further illustration of the application of
the method, the effect of ageing at room temperature on the misfit in AlSi alloys is investigated

in Chapter 6.

B. General model for strain broadening

In addition to models for specific crystal imperfections, an attempt is made to develop a realistic
and flexible model that contains the most important characteristics of microstrains in a distorted
specimen in general. It is thought that the total strain field in a specimen can be considered as
the superposition of many "component strain fields", induced by individual crystal
imperfections, and that the distances between the imperfections and the amplitudes and widths
of the component strain fields are most important for the strain broadening. The spatial
distribution of the imperfections and the characteristics of their strain fields are described
statistically in this model to simulate the unpredictability of the total strain field in a real
specimen. Using this model, the relation between a number of line-broadening characteristics
and the general strain-field characteristics is investigated (Chapter 7). The possibility of using
the strain-field model in a model-based method of analysis is investigated by analysing

experimental line profiles recorded from a ball-milled tungsten powder (Chapter 8).

iV. PRACTICAL CONSIDERATIONS

Although the physical interpretation of measured data is the most severe problem in line-profile
analysis, the execution of the measurements and correction for unwanted experimental effects

also require attention.
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An important experimental problem is the correction for the line broadening inherent to
the instrument. Diffractometers have been built that minimize the instrumental broadening
(Wilkens & Eckert, 1964), but these are not commercially available and not (routinely)
applicable to fine-grained materials (crystallite size S 1um). Moreover, they lack an important
advantage of powder diffraction techniques: they do not probe many grains at once. Using
conventional powder diffractometers the instrumental broadening can be measured from a
standard specimen, i.e. a specimen that contains no lattice defects that contribute to the
measured broadening. The requirements, preparation and characterization of a general purpose
standard specimen are presented in Chapter 1. Once a standard specimen is available, the
correction for instrumental broadening of measured line profiles is straightforward by means of
well-established deconvolution procedures (Stokes, 1948; Langford, 1978).

Two other experimental complications are the unavoidable profile truncation due to a
finite measurement range and overlapping of neighbouring profiles. Both topics are subject of

current research of the present group (see Vermeulen et al., 1992 and Sonneveld et al., 1992,

respectively).

V. OUTLINE

The body of this thesis starts with a practical subject: the determination of instrumental line
broadening (Part I). Subsequently, a classical and a new analytical method of line-broadening
analysis are discussed (Part II). The rest of this thesis is devoted to model-based methods: two
specific models for strain broadening (Part III) and one general model for strain broadening
(Part IV).
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CHAPTER 1

THE OPTIMUM STANDARD SPECIMEN FOR
X-RAY DIFFRACTION LINE-PROFILE ANALYSIS

J.G.M. VAN BERKUM, G.J.M. SPRONG, TH.H. DE KEISER, R. DELHEZ, AND E.J. SONNEVELD
Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands.

ABSTRACT

A perfect general purpose standard specimen for high accuracy line-profile analysis
is shown to be an illusion. Balancing the partly contradictory requirements, an
optimum standard specimen for a parafocussing diffractometer is developed. To
obtain the optimum standard specimen, a 5-10 pm particle size fraction is taken
from the NIST certified Si powder SRM640a, about 1.5 mg/cm? of this powder is
uniformly deposited on a (510) oriented Si single-crystal wafer and the assembly is
heat treated for 2 h at 1273 K to remove lattice imperfections. All procedures
necessary are precisely given, easily applicable, and reproducing. For the present
standard specimens, the random errors due to crystal statistics are quantified and
shown to be acceptable for spinning specimens; the systematic errors due to
residual size and transparency broadening are determined semi-empirically and can
be eliminated, if desired. Thus, the proposed optimum standard specimen allows the
determination of instrumental line profiles free from systematic errors and with
random errors in the line width of the order of 0.001 °28, allowing a full use of the

capacities of modern diffractometers and data evaluation procedures.

. INTRODUCTION

In X-ray powder-diffraction analysis, there is a need for knowledge about the shape of the line
profile due to the non-ideal optics of the diffraction equipment and the wavelength distribution

of the radiation used. This instrumental line profile (g profile) depends, among other things, on
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the diffraction angle 26. A line profile measured from a structurally imperfect specimen
(h profile) can be considered as the convolution of the line profile due to the imperfections
(f profile) and the g profile. In line-profile analysis, either g is deconvoluted from a measured
line profile 4 to obtain a structural line profile £, or g is convoluted with a calculated f profile to
obtain a line profile that is to be compared with a measured line profile 4. In principle, computer
simulation of g is possible (see e.g. Kogan and Kupriyanov, 1992; Timmers et al., 1992a).
However, not all the characterizing parameters of the diffraction equipment to be used in the
simulation (e.g. of the tube focus, Soller slits, monochromator performance, efc.) can be
determined directly with sufficient accuracy. Therefore, a measurement of g is more precise and
reliable, provided a standard specimen is available. A perfect standard specimen gives no
structural broadening and no errors due to counting statistics, crystal statistics (too few
diffracting crystallites), and differences in properties (e.g. transparency) with the specimen to be
investigated. It would be ideal to have a standard specimen from the same material as the
specimen to be investigated. In practice, this is seldomly achievable because of the difficulties
and time involved in the preparation of such a specimen!. Therefore, the development of a
general purpose standard is desirable. The problem of non-matching 26 can be overcome by
interpolation of the parameters describing the g profile.

Candidate materials for a standard specimen have been reviewed and LaB¢ has been
determined to be an excellent one (Fawcett et al., 1988). The National Institute of Standards &
Technology (NIST), Gaithersburg (MD), U.S.A., has made available LaBg¢ as a standard
material: SRM 660. As already stated in the NIST certificate, small strains are still present in the
material (see Sec. IILE). For an analysis of the highest demands, a material with less structural
imperfection is wanted. Apart from the structural perfection of the material, also a warranted
procedure for the preparation of an appropriate standard specimen from a powder is essential.

In view of modern developments in Rietveld analysis, profile fitting, truncation correction,
analysis of marginal structural broadening, etc., the error in instrumental line profiles should
meet the precision of modern equipment (e.g. errors in the profile width of the order of
0.001 °28). Then problems arise. Specimens consisting of crystallites with dimensions of the
order of 10 pm produce size broadening already of the order of (the desired) 0.001 °20. For the
same specimens, the error due to crystal statistics in the integrated intensity of the measured
g profile may easily exceed | % (Klug and Alexander, 1974). The corresponding error in the
integral breadth f is about the same and thus (see Fig. 5) may easily exceed 0.001 °26. Larger

crystallites give a smaller size broadening but a larger crystal-statistical error; for smailer

b A roughly prepared "standard” of the same material and of the same constitution as the specimen to be

investigated may be useful in establishing backgrounds.
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crystallites, the reverse holds. The errors due to crystal statistics may be minimized by using a
thick standard specimen made from a (very) low-absorption material, but then one is confronted
with extra line broadening due to specimen transparency.

Therefore, it seems impossible to produce perfect standard specimens for X-ray
diffraction line-profile analysis. The best way out is to develop optimum standard specimens
which allow line-profile measurements with minimum random errors due to counting and
crystal statistics, and with small systematic errors due to finite crystallite size and transparency.
The systematic errors of optimum standard specimens should be removable so that perfect
g profiles can be obtained.

Strains are always present in the starting material. These have to be removed by heat
treatment. In massive specimens, this will usually produce much grain growth, which causes bad
crystal statistics. The heat treatment itself will produce strains in case of materials with
anisotropic thermal expansion. Further, massive specimens may deform due to temperature
gradients during cooling. For these reasons, there is a strong preference for a standard material
in powdered form, although surface roughness and lateral density fluctuations may pose
problems. A powder has the additional advantage that it can be used as an "internal” standard or,
by mixing with a filler material, for producing standard specimens with variable transparency.

In this paper, an easily applicable, reproducing procedure is described for producing
optimum standard specimens. The specimens give rise to very small broadenings, caused by
crystallite size, surface roughness, and transparency that can all be corrected for. The crystal-
statistical errors are small and the counting times required for small counting-statistical errors

are moderate.

Il. FABRICATION OF THE OPTIMUM STANDARD SPECIMEN

In this section, the reasonings are given for the choices of materials and techniques used in the
production of the optimum standard specimen (for definition of optimum, see Sec. I). It was
demanded that the resulting recipe should guarantee reproducibility. The conclusion was
reached, and experimentally confirmed (see Secs. III and IV), that the optimum standard
specimen should consist of Si particles of 5 to 10 pum diameter evenly and practically unstacked
distributed over a (510) Si single-crystal wafer; to avoid lattice-imperfection broadening, this

assembly had to be heat treated.
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A. Starting material

With the X-ray wavelengths CuKa, CoKea:, CrKa, currently used in X-ray diffraction analysis,
low-absorption-coefficient materials are favourable for good crystal statistics and small effects
due to extinction and surface roughness. The imminent transparency broadening with such
materials can be reduced to an almost immaterial level by using a thin layer of powder (see
Sec. IV.A), although part of the advantages are then lost. A general purpose standard specimen
should be stable with respect to the ambient atmosphere and should give sufficient, but not too
many, diffraction lines evenly distributed over the diffraction angle 26. Further, in view of the
techniques most suitable for producing the desired particle size distribution (see Sec. II.B) and
the unstacked, even distribution of the standard powder over a support (see Sec. I1.C), the
starting material should not be dissolvable in the fluids used. Overviewing these demands, it is
almost self-evident to use Si or Ge.

Si is favoured because there are already Si powders available certified for use as a
diffraction standard in the determination of lattice spacings, namely SRM 640a and 640b issued
by NIST (formerly NBS), Gaithersburg (MD), U.S.A. (Hubbard, 1983). The two standard
materials are practically the same; we have used SRM 640a. The powder as received is not
immediately suited, because it contains a fraction of very small particles (Fawcett ez al., 1988)
and the particles contain lattice imperfections (see Sec. I1.D).

A further argument for the use of Si is the easy availability of Si single-crystal wafers as a
support for the thin Si powder layer (see Sec. II.C). By using a support of the same material as
the standard powder, problems are avoided evoked by interdiffusion, chemical reactions, and the
difference in thermal expansion during the heat treatment for the removal of lattice

imperfections.

B. Obtaining the desired particle size distribution

The particle size distribution of SRM 640a is relatively broad (see Figs. | and 2). There is a
considerable fraction of too small particles that produce too much size broadening (see Fig. 3).
Further, a number of very large particles are present that are very detrimental with respect to
crystal statistics. The obvious method to obtain a narrower particle-size distribution is
sedimentation in a fluid (Allen, 1990). The fluid to be used should give acceptable
sedimentation times, very good wetting of the Si particles to obtain isolated particles in the fluid
during sedimentation. It should also be easily removable, for example by evaporation, without
leaving a residue. Taking also into account toxicity, inflammability, and availability, we ended up
(rather arbitrarily) with 2-propanol. Details about the sedimentation procedure applied (which
takes ~ 1 day) are given in App. A. The effects of the procedure are presented in Figs. 1 and 2.
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@ (b)

Fig. 1 Scanning-electron-microscope observations (JEOL JSM-840A) of Si powder from
SRM 640a, (a) before and (b) after application of the sedimentation procedure of App. 1.
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Fig. 2 Particle-size distribution of Si powder from SRM 640a, measured by a Couilter Muitisizer,

before (as received) and after (fractionated) application of the sedimentation procedure of
App. A. The average sizes before and after the sedimentation are 5.8 and 7.2 um,
respectively. The areas under the curves are equal. The experimental data points (124
classes between 1 and 33 um) have been fitted with analytical functions. Fractions at large
sizes (>13 um) are uncertain.
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C. Mounting the powder on a support

With increasing layer thickness, i.e. increasing mass of Si per unit area of the support, the
counting and crystal-statistical errors decrease but the broadening due to transparency
increases. On the basis of experimental information (see Secs. III and IV), one may conclude
that about 1.5 mg/cm? of Si powder, produced according to App. A, is the optimum amount for
a standard specimen. Then, the "extra" transparency and size broadenings are very small and
can be neglected or corrected for (see Sec. IV) and the crystal statistics and required counting
times are acceptable (see Table II). For all reflections except one, errors in the integral breadth
of the order of 0.001 °20 are achieved. Of course, one can, on the basis of the same
experimental information, choose for a thicker layer, i.e. for shorter counting times and better
crystal statistics, but at the expense of a larger transparency broadening.

The particle layer should be laterally homogeneous. Sedimentation from a homogeneous
suspension, followed by a complete evaporation of the fluid, is a favourable technique with
again 2-propanol as a suitable fluid. As a support for the layer of Si particles, a Si single-crystal
wafer, cut parallel to e.g. (510), is unexcelled: it gives no peaks or humps with the usual X-ray
wavelengths (in the normal, Bragg-Brentano geometry) and its contribution to the background
is very low (Parrish, 1980).

Surprisingly, there is no need for any additive to the suspension fluid or "glue" on the
support to promote the adhesion of the Si particles to the Si wafer. The assembly remains
perfectly intact during normal laboratory handling as long as the layer is not touched. The

recipe for the sedimentation is given in App. A.

D. Heat treatment of the specimen

One can establish when a standard material is sufficiently free from crystal imperfections by
investigating line broadening as a function of heat-treatment time: line broadening should
decrease and reach a constant (= minimum) level. To confirm that the minimum has been
reached, a second, higher temperature can be used.

For the present Si particles on a Si (510) wafer, a heat treatment of 2 h at 1273 K proved
to be sufficient to produce the optimum standard (see Table I; the decrease for the {220}
reflection after 2 h at 1273 K is not significant). In Fig. 3, the effect of this heat treatment on the
integral breadth of the {220} line profile is shown.

The same heat treatment as above can be applied if one wishes to obtain loose standard
powder. The powder with the desired particle-size distribution can be enclosed in a quartz glass
capsule filled with Ar (0.21x105 Pa, purity 99.998 %). With the time and temperature indicated
above and a moving capsule, sintering of the silicon particles is practically avoided.
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Fig. 3

Table .

T I ! i ! !

-------- as received (8 = 0.097 °260)
- - - fractionated (8 = 0.089 °28)
— standard (8 =10.073 °26)

26(°)

The {220} line profile of Si from SRM 640a, before (as received) and after (fractionated)
application of the sedimentation procedure of App. A and after 2 h at 1273 K additionally
(standard). For the X-ray diffraction measurement conditions and the data evaluation, see
Table Il. The maximum intensities are scaled equal. The difference in line broadening
between "as received" and "fractionated” is larger than what follows from the difference in
size broadening calculated from the size distributions (Fig. 2). Apparently, the removed
particles are structurally less perfect than the remaining ones.

The effect of heat treatment on the integral breadth 8 of the {220} and {531} reflections of
the Si powder (1.36 mg/cm?2) on a (510) Si wafer. The heat treatments were performed in a
horizontal tube furnace (internal diameter 75 mmy) through which passed 20 mi/min Ar at
atmospheric pressure. Before entering the furnace the Ar (99.998 %) passed
subsequently a moisture filter, a charcoal filter, an oxygen filter, and a BTS column at

368 K. For the X-ray measurement conditions, the data evaluation and GCI;LSL, see Table Il

Sequent heat treatments B(°26)
{220} {531}
none 0.0901 0.192
2 hat 1273K 0.0737 0.135
185 h at 1273K 0.0731 0.135
4 h at 1348K 0.0727 0.135

og"™: 00005 0.002
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Table ll. X-Ray Diffraction Measurement Conditions, Data Evaluation and Resuits

Measurement conditions: Siemens D500 diffractometer, distance focus-axis and axis-receiving slit
200.6 mm, Philips Cu tube, line focus 0.4 x 8 mm, take-off angle 6.0°, 45 kV, 30 mA, divérgence slit
12.0 x 1.038 mm (= 1°), divergence and receiving scatter slits, diffracted-beam Soller slits with
divergence 0.01765 (= distance between foils divided by length of foils), receiving slit 12.0 x 0.064
mm (= 0.018 °20), effective height of irradiated area 13 mm, diffracted-beam Johann graphite
monochromator, Siemens Nal (TI) scintillation counter, pulse height discrimination. Slits and
monochromator were handled in accordance with Timmers et al. (1992b). Inlet temperature of the
cooling water for the X-ray tube was 19.3 = 0.3 °C. Temperature of diffractometer, specimen and
ambient atmosphere was 22.5 + 0.3 °C. The specimen was spinning (30 rpm) around an axis
perpendicular to its surface. Fixed-time counting was applied.

Data evaluation: The background for a measurement range was estimated as a least-squares straight
line through the first and last 20 data points and removed. The CuKay component was removed
according to Delhez and Mittemeijer (1975) with an ap/o¢ intensity ratio of 0.475 (this value gave least
rippling of high-angle tail of ay component). The peak position and intensity were estimated by least
squares fitting of a parabola through the data points above 70 % of the maximum intensity. No
corrections to  were applied for residual transparency and size broadening (see Sec. IV).

Results: Peak position (26,), integrated (/int), peak (/p) and background (fg) intensities, integral
breadth (8), and standard deviations of 8 due to counting statistics (acé'"s", see App. B) and crystal

statistics (0°g stst see Sec. II.C) of all CuKo reflections of a spinning Si standard specimen (with
1.36 mg/cm?).

. - t.st. t.st.
{hich measurement step meas. ggp /p) hat ) / p/’bg B o_cg st Gcl;ys st

range size time from
JCPDS
(°28) ©20) () (°20) %111} %111} %111} (°26) (°28) (°28)

111 267 302 0006 05 28423 1000 1000 1000 662 00823 00005 0.0002
20 456 491 0006 14 47292 290 256 386 296 00727 00005 0.0003
311 546 581 0006 34 56120 113 101 185 111 00734 0.0006 0.0003
400 675 710 0006 168 69124 16 16 32 18 00813 00040 0.0008
3B 745 785 0006 68 76373 50 49 54 63 00806 00009 00004
42 85 95 0006 61 88029 47 52 53 67 00922 00010 0.0006
511/333 930 075 0008 58 94952 21 26 25 30 01026 00024 0.0006
40 1045 1095 0008 286 106707 12 17 12 16 01195 00023 0.0013
531 1120 1170 0010 173 114087 17 29 26 19 01359 00020 0.0008
620 1250 1305 0012 455 127528 08 18 28 7 01800 00033 0.0016
533 1345 1400 0014 358 136878 09 23 10 7 02140 00036 0.0020
444 1560 1630 0030 201 158633 07 35 - 5 04119 00067 0.0073

") For the {111} reflection, /, = 5103 cps.

") Relative intensities for finite specimen thickness (i.e. finite mass of Si per unit area 7), calculated
from intensities for infinite specimen thickness I,‘;;’d from JCPDS file 27-1402, according to /= lh’}d/ I 1"1,
where l,?k, = ;7(/ [1-exp{—2(#/,)n/sinBx] with (4/,) = 68.7 ¢m?g and 1 = 0.00136 g/cmZ.
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. CHARACTERIZATION OF THE OPTIMUM STANDARD SPECIMEN

As explained in the introduction, it is impossible to produce a perfect standard specimen; only
an optimum standard specimen is possible. Line profiles from an optimum standard specimen
are unavoidably affected by systematic errors due to size broadening and transparency
broadening and by random errors due to crystal statistics. Also errors due to counting statistics
may pose problems if the small amount of standard material requires excessive counting times.
In Sec. IV, it is shown that the residual size and transparency broadenings are very small and
can be corrected for properly. In this section, emphasis will be on the effects of crystal statistics,
required counting times, and the performance of the present standard with respect to LaBg

(SRM 660). For an overview of measured standard line-profile parameters, see Table I1.

A. X-ray diffraction and data evaluation

Full details about the equipment, measurement conditions, and data evaluation are given in
Table II. To counteract effects of changes in barometric pressure and in performance of the
equipment, long measurements were performed by scanning a range repeatedly and adding up
data files. It is noted that the alignment procedure and the specimen mounting in the
diffractometer (with Bragg-Brentano geometry) were such that the surface of the Si (510) wafer
corresponds to zero specimen displacement. Since the Si powder is on top of this surface, there
is always a small specimen displacement (of the order of the "average" layer thickness ~ 7 pm).

As a characterizing parameter for the broadening of the line profiles, the integral breadth
(= profile area/height) is chosen, rather than the full width at half maximum, because the latter is

less sensitive to the tails of a profile.

B. Homogeneity and reproducibility

The standard specimen has a homogeneous, smooth appearance. However, at close inspection,
one can distinguish concentric "rings". These probably originate from the 2-propanol
evaporation process (see App. A). An attempt was made to quantify possible fluctuations in the
local mass of Si per unit area by wiping away from the support the Si powder in 12 concentric
rings (successively from the outside to the centre) with an area of 50 mm? each. From the
differences in weight of the specimen before and after each wiping of a ring, it was found for
three standard specimens (& 27 mm with about 1.6 mg/cm? of Si) that the relative standard
deviations in the Si mass for the 12 rings were 23 %, 28 % and 32 %. The uncertainties in the
measurement technique (e.g. = 0.1 mg in weighing) account for about half of the observed

variance, so the fluctuations are about 20 %.
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To investigate the reproducibility? of the standard specimens with respect to the X-ray
diffraction, the {220} reflections were recorded of three standard specimens with 1.26 , 1.36
and 1.36 mg/cm? of Si (measurement conditions and data evaluation as in Table II). The
integrated intensities were 94 , 104 and 92 cpsx°26, the peak positions were 47.297, 47.294 and
47.295 °20, and the integral breadths were 0.0726 , 0.0731 and 0.0721 °20, respectively. The
fluctuations in the mass of Si per unit area observed in the wiping procedure probably account
for the relatively large variations in the integrated intensities. The variation in the peak positions
is very small. The variation in the integral breadths is well within the experimental error (see
Table II), which shows that the heat treatment of the specimens reproduces well.

A comparison with JCPDS data (see Table II) does not indicate significant texture in the

present standard specimens.

C. Crystal-statistical errors

The term "crystal statistics" indicates a sampling problem in powder diffraction: the number of
diffracting crystallites is subjected to statistical variations and so are line-profile characteristics
like position, integrated intensity, and integral breadth. At the moment, no straightforward
method exists to determine the standard deviation of"*"*" in the integral breadth due to crystal
statistics. To arrive at an estimate for o%rys““' for all reflections (with CuKc), a large number of
standard specimens (a few dozens for significant results) could have been prepared and
measured. This is very impracticable and another route was followed, which is described in
App. C.

The method followed involves measurements of a low-angle reflection {Agkolp} at a
number of different @ settings (¢ is the angle of rotation around an axis perpendicular to the
specimen surface). From such a set of measurements, the relative standard deviation for a
stationary specimen (o'5**/B) hz;::lo is obtained. For two standard specimens, with 1.36 and
1.26 mg/cm? of Si, measurements (for conditions, see Table II) of the {220} reflection at 36

different ¢ settings (see Fig. 4) yielded on average:

Opryst.sl. stat
(4‘375*) = 0.041 . 0
220

2 1t was experienced that at the desired level of precision (of the order of 0.001 °28) the long-term stability of
the diffraction equipment may play a role. Especially the X-ray tube and its stand need attention: the tube ages,
the focus becomes damaged and curved, and small variations in the cooling water temperature (< 1 °C) already
have measurable effects. Therefore, in line-profile analysis of the highest demands, h and g should be measured

shortly after each other.
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The same measurements together with a set of 36 measurements for both specimens after
removal of the Soller slits from the diffractometer yielded a Soller slit factor y= 0.33 (see
App. C). Using Egs. (C.2) through (C.5) and Eq. (1) with the focus and slit dimensions as

st.st.

given in Table II, the values for O'C,/}y for a spinning specimen as given in Table II were

calculated.
120 T T Y T T T 1 [ ! | T
= 100
N
X -
8 spinning
< a0
60 1 I 1 I 1 I | B l 1 L H
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0.07
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Fig. 4 The effects of crystal statistics: (a) the integrated intensity fint and (b) the integral breadth
of the {220} reflection of a Si standard specimen (with 1.36 mg/cm? of Si) versus ¢, i.e. the
angle of rotation around an axis perpendicular to the specimen surface. The results for the
spinning specimen are included. For the X-ray diffraction measurement conditions and the
data evaluation, see Table 1. The ranges were shorter than those of Table II. This evoked
truncation of profiles and thus /. and 8 being a bit too low. This is insignificant for studying
crystal statistics (i.e. looking for differences). The standard deviations due to counting
statistics (see App. B) are much smaller than the size of the dots used in the figure.
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From o° B St5L in Table 11, it follows that the crystal-statistical errors in the integral
breadths of the g profiles are acceptable (i.e. of the order of 0.001 °20) for all reflections except
{444}. With stationary specimens, the errors are 5 to 20 times larger [see Eq. (C.3)], so
spinning is essential for accurate g profiles. It also follows from Table II that the crystal-
statistical errors are of the same order of magnitude as the counting-statistical errors, which
means that longer measurement times do not improve the accuracy of the measured g profiles
very much.

Concerning crystal statistics, an additional remark has to be made. Crystal-statistical
errors in ;ne can be reduced by increasing the number of diffracting crystallites, e.g. by
increasing the divergence slit or removing the Soller slits. However, by such measures, the
errors in 8 are not reduced by the same factor as the errors in fjnt, because the covariance of fin
and I, is reduced if defocussing is increased and, therefore, the factor fin Eq. (C.1) is increased.
For example, it was found experimentally that the removal of the Soller slits decreased the
standard deviation of i of the {220} reflection for a stationary specimen by a factor of 1.7,
whereas the standard deviation of 8 was increased by a factor of 1.8! In general, for accurate
line width and shape determinations, defocussing has to be minimized also from the point of

view of crystal statistics.

D. Counting times required

For the proposed standard specimen (i.e. ~ 1.5 mg/cm? of Si), the counting times needed to
meet the precision demands set in Sec. I are relatively long, especially for the high angle
reflections (see Table II). It is noted, however, that the measurement times given in Table II
apply to diffractometer settings intended for giving very narrow instrumental line profiles. In
many practical situations, even when a high precision is wanted, much shorter measurement
times can be attained: one may choose for (i) a larger divergence slit, (ii) a larger receiving slit,
and (iii) for a (limited) increase of the mass of Si per unit area. The first and last measure also
improve crystal statistics. The last measure, however, leads to more transparency broadening
(see Sec. IV.A).

E. Comparison with LaBg (SRM 660)

For a genuine comparison, line profiles from a Si standard and from LaBg (SRM 660) have
been measured with the same diffractometer, thereby taking measurement conditions as equal as
possible. The LaBg specimen was prepared analogously to the standard specimen, but without a
heat treatment. The integral breadths are plotted versus the peak position 26, in Fig. 5. The
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standard deviation due to both counting statistics and crystal statistics is on average about the
same for both specimens at comparable 26 and about equal to the values given in Table IL

It is clear that the integral breadths of the standard specimen are smaller than those of
LaBg. The irregular behaviour of the LaBg data points originates probably from anisotropic

structural broadening.
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Fig. 5 The integral breadth B versus peak position 26, for a Si standard specimen (with
1.0 mg/cm?2) and an LaBg specimen prepared (analogously) from SRM 660 (with
0.7 mg/cm?). The X-ray diffraction measurement conditions and the data evaluation are the
same (or equivalent) for both specimens and are found in Tabie . The present 8 for Si
are slightly different from those of Table !l, because it here concerns an other X-ray tube
(of the same type) and, as a consequence, an other alignment.
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IV. CORRECTIONS FOR RESIDUAL BROADENINGS

The line profiles from the proposed standard specimen are unavoidably slightly broadened by
the transparency and the finite size of the silicon particles. The extents of these broadenings are
discussed below and corrections are shown to be possible to such an amount that the remaining

errors are completely negligible.

A. Residual transparency broadening

For a homogeneous layer, transparency broadening increases with layer thickness. For the
present specimens, consisting of stacked irregularly shaped particles, the residual transparency
broadening is very hard to describe mathematically (see Fig. 1). Therefore, an experimental
approach seems more appropriate: measure line profiles from specimens with a different mass
of Si per unit area i and deduce from that corrections. The experiments are not a serious
problem, considering the easy and quick way in which defined specimens can be produced and
that a heat treatment can be omitted in such experiments because the residual transparency
broadening will be the same for annealed and not-annealed specimens.

The integral breadth § of the {220} profile as a function of 7 is shown in Fig. 6. Note
that, for small 1, the errors are relatively large due to the effects of crystal and counting
statistics. Clearly, a straight line describes sufficiently accurately the behaviour of the
experimentally obtained integral breadths.

It is not completely self-evident to find the extra integral breadth due to transparency from
a linear extrapolation to 1 = 0 of the straight line fitted to the data points. As long as the Si
particles are unstacked, no matter how much of the specimen support is covered, the extra
integral breadth takes (apart from shielding effects) a certain value that is determined by the
particle size, regardless of 7). The integral breadth starts to rise when stacking of particles starts
(the straight line should only be fitted to the data points from that point on). For a guess about
the mass of Si per unit area corresponding to that point, we consider a layer of two-
dimensionally close-packed Si spheres with a diameter D equal to the average size of the Si
particles after sedimentation (D = 7.2 um, see Fig. 2). Such a layer corresponds with 1 =
1.01 mg/cm?. For that layer, an upper bound for the integral breadth S of the transparency
profile is the integral breadth Bi=° for a fully transparent massive layer of a thickness equal to
D. If the integral breadth is set equal to the square root of the variance, then BH=O reads
(Wilson, 1963):

—o Dcosf
= 2
ﬂ‘tlr R _\}’3 k4 ( )
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where R is the radius of the diffractometer and §{5° is in radians 26.

The actual increase in the integral breadth due to transparency will be smaller than S{°,
because (i) Si is not fully transparent, (ii) a transparent layer of particles of size D gives a
smaller breadth than a massive transparent layer of thickness D, and (iii) convolution of the
transparency profile with the true instrumental profile, in general, causes the breadth of the
resulting profile to be larger by an amount smaller than §,,. For the {220} profile of a specimen
with 1 mg/cm? of Si, the extra breadth AB due to transparency is at most #55° = 0.0011 °26.
On the basis of the extrapolated straight line in Fig. 6 for 17 = 1 mg/cm?, one arrives at Af} =
0.0007 °28. Therefore, the conclusion is reached that the linear extrapolation to 7 = 0, even if it
is not completely justified, anyhow gives an empirical correction that is accurate to a few times
0.0001 °26, which is sufficient for the present instrumental profiles.

Since the effect of transparency is very small, a correction procedure like the one above
will also work for other line-shape parameters as Fourier coefficients, profile fit-function

parameters, efc.
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Fig. 6 The integral breadth f of the Si {220} reflection versus n, the mass of Si per unit area. The
specimens were prepared according to Sec. ll, but not heat treated. For the X-ray
diffraction measurement conditions and the data evaluation, see Table Il. The straight line
is fitted to the data points of the specimens with > 1 mg/cm?. The error bars indicate the
estimated uncertainty (o) due to counting statistics (see App. B} and crystal statistics (see
Sec. lIL.C; for the effect of 1, see end of App. C).
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For the chosen standard specimen (i.e. ~ 1.5 mg/cm? of Si), the extra broadening of its
{220} reflection due to transparency as determined from Fig. 6 is 0.0011 °26. For reflections at
higher 26, the extra broadening is even less {see Eq. (2)]. Such small broadenings are
comparable to or smaller than the errors due to crystal statistics and counting statistics (see
Table II).

B. Residual size broadening

The residual broadening due to the finite size of the Si particles (ignoring extinction effects) is
determined by the distribution p(M) of column lengths M within all particles of the specimen
(Warren, 1969). This distribution depends on the distributions of particle shapes and particle
sizes. In the present case, only a small correction is necessary and therefore the particles are
simply taken spherical with a diameter distribution p(D). For spheres, p(M) is obtained from
p(D) by (cf. Adler and Houska, 1979):

M | p(D) dD , F
pM) = =2 -2 um [poyap, 3)
(D% "y
J MA_! p(D) dD dM

where (...) denotes the average. The denominator is calculated by changing the order of
integration with proper adaptation of the limits of integration. The particle-size measurements
performed (see Fig. 2) concern a distribution by weight p.(D), where D and particle size are
equated. The distributions p,,(D) and p(D) are related by:

pu(D) = (D%m pD). @)

Using Egs. (3) and (4), the average column length (M), which is used below, can be expressed

in terms of particle size averages:

)

where (D1, is the average of D! for the distribution py,(D).

The measured particle-size distribution (see Fig. 2) of the powder used for the standard
specimen yields (D1),, = 0.17 um~, so that (M) = 4.0 um.

An exact correction for the residual size broadening is possible by means of
deconvolution (Stokes, 1948): divide the Fourier coefficients of the measured g profile by those

of the size profile and synthesize from the obtained Fourier coefficients the correct g profile. In
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such a procedure, the large average column length (M) = 4.0 um (see above) allows the Fourier

coefficients AS(L) of the size profile to be approximated by:
L
AS(L) = 1- 775,
(@) oD (6)

By way of illustration, the effects of size broadening have been calculated for a low and a
high angle reflection (see Table III). It follows that the correction of the measured integral
breadths is only ~ 1.5 %.

Table 1Il. Integral breadth S of the Si size profile, calculated from BS = A/{M), cos@with A =
0.1540562 nm (CuKa1) and the volume-averaged column length (M), = (MPY 1 {M) = 5.4 um,
and the decrease Af in the integral breadth of the measured g profile when it is corrected
for the Si size profile by means of Stokes deconvolution using Eq. (6) with (M) = 4.0 um.

{hic} ix AB

(°26) (°26) %)
220 0.0018 0.0014 19
533 0.0044 0.0029 1.3

V. IN CONCLUSION

It is possible to design an optimum standard specimen for line-profile analysis that meets the
precision of modern diffractometers and data-evaluation procedures. Such an optimum standard
specimen can be fabricated reproducibly by means of easily applicable procedures. The
optimum standard proposed comprises about 1.5 mg/cm? of Si powder deposited by
sedimentation onto a (510) oriented Si single-crystal wafer, followed by a 2 h heat treatment at
1273 K; the Si powder used is a 5 - 10 um fraction of the NIST (formerly NBS) Si powder
SRM 640a. The precision of the integral breadth, with respect to crystal statistics (for a
spinning specimen) and counting statistics (with moderate counting times), is of the order of
0.001 °20 (for low 26, about 1 %; for high 26, about 2 %). In the as-measured profiles,
systematic errors of the same magnitude are present due to "residual” size and transparency
broadening. These errors, however, can be eliminated to a completely negligible level, which

means that instrumental profiles can be obtained free of systematic errors.



% Part |. Determination of Instrumental Line Broadening

ACKNOWLEDGEMENTS

The authors wish to thank Ir. A.C. Vermeulen and Ing. N.M. van der Pers for their support in
the project and comments on the manuscript, Ir. A. Buis for scanning-electron-microscope
facilities and H.L. Jansma, L.A. Peffer, and R.G. Veldpape of the Analytical Education &
Research Group of Delft University of Technology for the particle-size measurements.

APPENDIX A: PREPARATION OF THE STANDARD POWDER AND A
STANDARD SPECIMEN

1. Obtaining the desired particle size distribution

An overview of the procedure is given in Fig. Al. The sedimentation was carried out in
graduated cylinders with a height of 235 mm (@ 36 mm, 250 ml). The fluid used was
2-propanol (analyzed quality). Suspensions were transferred using a transfer pipet. Vibration
was performed in an ultrasonic cleaning bath for 15 minutes in order to separate the silicon
particles. Just before each sedimentation, the suspension was well homogenized by shaking.
Evaporation of the 2-propanol from the last "sediment" was performed on a polyethene foil,
because the powder is easily removed from such a foil. About 54 mass% of the basic material
was retained as standard powder. Of course, if one accepts a lower overall yield, the left branch,
starting after the first sedimentation, can be omitted.

The sedimentation process was found to be well described by assuming that the Si
particles settle with a stationary speed v given by (cf. Allen, 1990):

D2 -
v = —(Llsg—nﬂ%, (A1)

where D is the particle diameter, ps (= 2.33x103 kg-m=3 for Si) and pf (= 0.785x10% kg-m—3
for 2-propanol) are the densities of the particles and the fluid, respectively, g (= 9.83 kg:m-s2)
is the gravitation constant, 17 (= 2.43x10-3 kg-m~!.s~1 for 2-propanol at 293 K) is the viscosity
of the fluid and ¢ is a factor that accounts for, among other things, the shape of the particles.
Using Eq. (A.1), a given liquid column height and sedimentation time, the fraction of the
particles of a certain diameter that has reached the bottom of the cylinder can be calculated.
From that and an initial particle-diameter distribution, the particle-diameter distributions in the
sediments and in the suspensions can be deduced for subsequent sedimentation steps. A
homogeneous suspension at the beginning of each sedimentation is assumed. The effect of the
procedure described in Fig. Al has been calculated, using the measured particle-diameter
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( 30 51 SAM 6403 )

powder in graduated cylinder
fill up to 80 ml and vibrate

fill up to 250 ml and vibrate
sedimentation time: 30 min

240 ml suspension

10 ml sediment
12 % 88 %
fill up to 250 ml and vibrate sedimentation time: 300 min

sedimentation time: 30 min
20 ml sediment

10 ml sediment I 240 ml suspension
53 %
3% [9 %

sedimentation time: 1080 min

20 ml sediment
19 %

fill up to 250 ml and vibrate
sedimentation time: 30 min

| 240 ml suspension
2%
sedimentation time: 1080 min

20 ml sediment
12 %

fill up to 250 ml and vibrate
sedimentation time: 420 min

20 ml sediment
54 %

( evaporate 2-propanol )
IC Standard powder )

Procedure for the removal of too small and too large particles. The yields (calculated, see
text) after each step are given as percentages of the starting mass of Si.

Fig. Al:
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distribution as given in Fig. 2. With ¢ = 1.3, the calculated yield equals the measured one
(54 %), the calculated weight-averaged diameter (7.8 wm) is a little bit larger than the measured
one (7.2 um), but the calculated overall distribution p(D) after the procedure of Fig. Al
corresponds very well with the measured one.

2. Preparing a uniform thin layer on a flat support by sedimentation

A Si (510) wafer (@ 48 mm) was used as a support. A brass ring (@ 48 x @ 27 x 9 mm) was
put on the support. The side of the ring facing the support was polished to prevent leakage of
the suspension. The support-ring assembly was placed on an electric hot plate (~ 318 K). A
homogeneous suspension (vibrate, see above) of the desired amount of Si powder in 5 ml
2-propanol was poured into the ring. For the optimum standard, 9 mg of the Si powder
prepared according to the procedure described in Fig. A.1 was used. During evaporation,
vibrations and air turbulences are to be avoided. After removal of the ring, the formerly covered
part of the support was freed from possible particles in order to avoid specimen displacement in

the diffractometer.

APPENDIX B: VARIANCE IN INTEGRAL BREADTH DUE TO COUNTING
STATISTICS3

The variances of many line-profile characteristics due to the counting-statistical errors in the
observed intensities have been derived by Wilson (1967). Concerning the integral breadth 3, an
uncommon method of peak height determination was adopted in the derivation of the variance
0%(f). Here, 02(f) is derived for the frequently applied parabola fit for the peak determination.
The uncertainty in the parabola fit is obtained in a way analogous to that used by Kurita (1981).
The following derivation holds for the integral breadth in real (=26) space as well as in
reciprocal space.

Consider a line profile measured with a step size § in a range 7, which is taken
symmetrical with respect to the position X}, of maximum net (i.e. after background subtraction)
intensity. It is supposed that the background is linear in the range 7. Then:

Slint 51im'—T1b
= = . (B.1)
B Ip Ip' -1y

where Iin and Jj,¢ are the integrated intensities (in counts) with and without background

correction, respectively, I and I are the intensities (in counts) at X with and without

3 In this appendix, 65! is shortened to o(x), i.e. the indication of counting statistics is omitted.
ppe x g
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background correction, respectively, and Iy is the (interpolated) height of the background
intensity (in counts) at Xp. If the measurements are sufficiently precise, 02(f) can be calculated
using Eq. (1) of Wilson (1967):

PP _ Alint) , Aliniy) Py  (T=P? )

= , B.2
/32 Iint2 Tint Ip Ipz & Iint2 (B.2)

where ¢2(x) denotes the variance of x and 02(x,y) the covariance of x and y. The covariances
62(Iint Ip) and 0'2(1p',1b) have been left out, since they are nil or very small. Intensity
measurements follow Poisson statistics, i.e. the variance 62(I) of an observed intensity of [

counts is best estimated as /. Thus:

i) = T, (B3)
o) = ;—b B4

where p is the number of data points used to estimate a linear background (c¢f. Wilson, 1967).
The quantities 02(,) and 6?(lint'.J) depend on the method of peak height determination. In his
calculation of 62(), Wilson (1967) used the average of ¢ measurements at Xp as an estimate of
Ip'. A nowadays common method for the determination of X}, and /;, is a least squares parabola
fit on ¢ intensities /; around the maximum after background correction, where i = 1, 2, ... q.
Here, the fit of the corresponding parabola I;' = cg + ¢ x; + ¢2 X;2 to the as-measured intensities
I;' is considered (x; is the distance to Xp). To make the error calculations not unnecessarily
complicated, the fit range is taken symmetrical with respect to Xp, i.e. x; = 8 [i — (g+1)/2] and
Ip' = cp. Using unweighted least squares fitting, 1" is calculated as (e.g. readily derived from
Eq. (8.51) of Sterling & Pollack (1968), recognizing that Zx; = Zx;3 = 0):

y = Haaa _Zzzx’—z)[i (B.5)

.

where I represents summation over i from [ to g, ay = Lx;2 = 82¢(g2-1)/12, ag = Tx4 =
&q(g2-1)(3g2-7)1240 and by = gag—ar? = §*q2(¢2—1)q>—4)/180. The variance o%(Iy) due to

counting-statistical errors in the data points can be calculated from Eq. (B.5):
21y = % 2 201 = 1 2y 272 2 47
oA(lp) = Z(BI,-') oXI}) = @[M Il -2 az ag TxP2l + ap? Txtly). (B.6)
If the background slope is not too large, this expression can be simplified significantly by

taking 1/ = Iy’ + 2 x;2. If further the expressions below Eq. (B.5) are used and, in addition, the
relation ag = 2x,0 = Pg(q?-1)(3¢*-18¢2+31)/1344, it follows:
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, ‘a ca I, a 91,
Alp) = Tt + TR (@as-ad) = T H = 4T (B.7)

The result is accurate within 8 % for g = 5. The covariance 0'2(11m',1p') is calculated using
Eg. (105) of Wilson (1967) and simplified using Eq. (B.5):

olint 9l oly’
D7 VTN — int DTN — A '
Ulini lp) = TG GBI = TGP 1 = Iy (B.5)

Substituting the expressions (B.3) for 62(fin), (B.4) for 0%(Ip), (B.7) for o‘Z(Ip‘) and (B.8) for
%Iy I;p)) into Eq. (B.2) yields:

AP _ Il L, Ly 9 (T-B?h
o = —2-P P4 . B.
B? ling? Lint Ip * 4q Ip2 p & Iin? ®.9)

As a test for the newly derived expression (B.9) for 0%(f)/f2, the {211} reflection of an
o-quartz specimen has been measured 40 times without touching the specimen or
diffractometer. The reflection is chosen because of the symmetry of its peak, so that no
systematic errors are introduced by the parabola fit. It was measured from 58.8 to 61.2 °20 with
& = 0.006 °26 using a receiving-slit width of 0.05 °28. Further conditions of measurement are
like in Table IL. The relevant profile characteristics are: int = 75x103 counts, I’ = 3.9x103
counts, Iy = 39.9 counts, and § = 0.116 °20. The number of data points used for the
background estimation p = 40, for the parabola fit g = 8. The experimentally obtained relative
standard deviation o(f)/8 = 0.0094 with standard error 0.0010.

Expression (B.9) predicts o(f)/f = 0.0095, which is in very good agreement with the
experiment. In principle, Eq. (63) of Wilson (1967) for o(f3) does not apply to this experiment,
because it does not account for the parabola fit. If it used nevertheless, one predicts o(B)/f =
0.0069, which is 27 % smaller than the experimental value.

APPENDIX C: VARIANCE IN INTEGRAL BREADTH DUE TO CRYSTAL
STATISTICS?

Expressions for the standard deviation o(Jiy) of the integrated intensity iy due to crystal
statistics have been derived by Alexander, Klug & Kummer (1948) for stationary specimens
and by Wolff (1958) for spinning specimens. The standard deviation o(f) in the integral
breadth 8 depends on the standard deviations o(fipy) in Iine and o(lp) in the peak intensity Ip
and on the covariance oz(Iim,Ip) of Jint and I;,. If the relation between o(Ziny) and o) is written

as:

4 In this appendix, o°YStSt is shortened to 6(x), i.e. the indication of crystal statistics is omitted.
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o)

oUiny)
B e

C.1
Iing ° ( )

then f depends on o({}) and, in particular, on 6(/int,fp). With increasing 26, wavelength
dispersion becomes the dominant factor in instrumental line broadening. As a consequence, the
width of the line profiles originating from individual crystallites, which together constitute the
measured line profile, approaches, with increasing 26, the width of the total instrumental line
profile. Therefore, o(Jint.lp) increases and, consequently, f decreases with increasing 26.

By substituting Eq. (C.1) in Eq. (9) of Wolff (1958)° and assuming that f is independent
of 26, the following relation between o (f) of different reflections {hkl} of a stationary

specimen can be obtained:

(O'Z(ﬁ)J stat sin? By Mhokoly [0‘2([3)) stat

ﬁQ Wl SiI12ehokolo Mhkl B hokolo,

(C2)

where mp; is the multiplicity factor of reflection {Aki}. If {hokolp} is a low-angle reflection,
assuming a constant f produces "safe" (= high) estimates for o(f) of high-angle reflections. If
Eq. (C.1) is substituted into Eqs. (9) and (17) of Wolff (1958), o(f) for the {hkl} reflection of
a spinning specimen can be related to o( ) for the {hki} reflection of a stationary specimen:

(oz(ﬁ)j spin 2.6 w sinGy [oz(ﬁ))stat
B Jwm h B )l

where w and h are the width and height, respectively, of an area specifying the crystallite

(C.3)

orientations that can contribute to the measured intensity. Here, the width w is calculated as:

w = %(wF +wg), (C4)

where wy is the apparent width of the focal line and wy is the width of the receiving slit. In
general, w contains an ddditional contribution proportional to the rocking angle of the
diffracting crystallites (see Wolff, 1958). For the present (nearly perfect) Si crystallites, this
contribution is relatively small and it is ignored in the estimate of o(f8). The height 4 for a

diffractometer with Soller slits can be written as:

(he + hy), (C.5)

where A and kg are the lengths of the focal line and the receiving slit, respectively, and y
accounts for the (almost 26 independent) effect of Soller slits. Wolff (1958) did not account for

5 Equations (9) and (17) of Wolff (1958) are identical to Eqs. (1) and (2) of Wolff, Taylor & Parrish (1959).
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Soller slits and used Eq. (C.5) with y= 1. Since oZ(Iim)/Iin% is inversely proportional to h [see
Eq. (9) of Wolff (1958)], the factor y can be determined experimentally as the ratio of the
variances oz(lim)/']in:f of a certain reflection for a stationary specimen without and with Soller
slits in the diffractometer, all other things being equal.

Using Egs. (C.2) and (C.3), o(B) can be calculated for all reflections of spinning as well
as stationary specimens if, for one reflection {hokolo} of a stationary specimen, o(f) is
available. The latter can be obtained by measuring the integral breadth of the {Aokolo} reflection
of a single specimen at a number of different ¢ settings (¢ is the angle of rotation around an
axis perpendicular to the specimen surface). According to Wolff, Taylor & Parrish (1959),
measurements on stationary specimens with sufficiently different (say > 1°) ¢ settings can be
considered as independent with respect to crystal statistics. Of course, the error due to counting
statistics in measurements thus performed has to be negligible with respect to the observed error
due to crystal statistics.

From Eqgs. (9) and (17) of Wolff (1958), it follows that crystal-statistical errors are
proportional to Ne_fl/ 2, where Nef is the effective number of irradiated crystallites. As long as
absorption in the Si layer is small, Negr is proportional to 7, the mass of Si per unit area (see
Alexander, Klug & Kummer, 1948) and, therefore, o(f)/f is proportional to 1712, Using this,
o(f) of specimens with different 7) can be related.
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CHAPTER 2

FOURIER METHODS FOR SEPARATION
OF SIZE AND STRAIN BROADENING
Validity of the Warren-Averbach Analysis and Alternative Analyses
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ABSTRACT

The validity regions of the Warren-Averbach method and an alternative size-strain
separation method have been mapped. To this end, Fourier coefficients of line
profiles have been simulated on the basis of physically realistic size and strain
distributions. Due to the different approximations used in the methods, different
classes of specimens can be analysed with sufficient accuracy. Consequently, the

range of applicability of Fourier size-strain separation has been extended.

. INTRODUCTION

Broadening of (X-ray) diffraction-line profiles is caused by non-ideal optics of the instrument,
wavelength dispersion and structural imperfection of the specimen. The structural line
broadening is often subdivided in size broadening and strain broadening. Size broadening is
caused by finite size of "domains diffracting essentially incoherently with respect to one
another" (Warren, 1959). Strain broadening is due to varying displacements of the atoms with
respect to their reference lattice positions.

The classical Fourier method to separate size and strain broadening using multiple orders
of reflection was developed by Warren and Averbach (WA) (1950; 1952). For the case of cold-
worked metals, the WA-method yields average size values that are considerably smaller than the

grain sizes of the materials under study. Such observations have been interpreted as due to
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some sort of a domain structure within the grains caused by the cold deformation (Warren,
1959). However, it has also been argued that the data may reflect the incompatibility of the
assumptions underlying the WA-method with the nature of the strains in cold-worked metals
(Williamson & Smallman, 1954; Wilkens, 1984).

Other approaches, in general equally valid, are possible. In the alternative presented here,
assumptions are made that differ from those of the WA-method.

The WA-method and the alternative method are applied to simulated Fourier coefficients
of structurally broadened profiles in order to compare extracted parameters with the true ones.
On this basis, the validity of both methods will be discussed. In practice, a priori knowledge of
the microstructure of the specimen can help in choosing the suitable method.

Il. METHODS FOR SIZE-STRAIN SEPARATION

According to the kinematical diffraction theory, the complex Fourier coefficients F(n,[) [= A(n,0)
+ 1B(n,[); n = harmonic number, [ = order of reflection] of a structurally broadened line profile
in reciprocal space can be written as the product of real, order-independent, size coefficients
AS(n) and complex, order-dependent, strain coefficients FP(n,l) [= AP(n,l) + iBP(n,])]. In the
present paper, only the real (or cosine) part A(n,f) [= AS(n)AP(n,])] is considered.

If the specimen is considered to consist of columns parallel to the diffraction vector, AS(n)
is determined by the column-length (size) distribution p(j), where j is the column length in
number of unit cells. The average column length (size), measured in unit cells, is denoted (V).
Further, AP(n,]) is determined by the strain distributions p(e,) (one for each n), where e, is the
average strain over a length of r unit cells in a column. All distributions are normalized to unit

area. Summarizing (Warren, 1959):
o1 f . .
As(n) = ™ (—inb) p() dj, (D

oo

AD(n) = J pley) cos(2mnle,) dey,. )

To obtain information on AS(n) and AP(n,l) separately, at least two orders of reflection

have to be measured and the [ dependence of AP(n,[) has to be specified by making assumptions

on p(e,).
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A. The Warren-Averbach analysis

By assuming that the tails of each p(e,) decrease rapidly enough, it can be shown for
nl << (e,%)‘” 2 that:

IN[AD(n,)] =~ —2m2n22%(e2) = 12 In[AP(n,1)], 3)

where (e,zl} is the mean squared strain. Equation (3) is exact for all values of n and  if all p(ep,)
are Gaussian. The original separation method of Warren and Averbach uses the form with (e,"i)
(Warren & Averbach, 1950, 1952). Here, for the sake of comparison [see Eq. (7)] and in view
of the testing procedure [see Eq. (16)], the following form of the basic equation for the WA-

method is preferred:

In[A(,D)] = In[AS(m)] + 12 In[AP(n,1)]. )

From plots of In[A(n,1)] vs. I2, the size Fourier coefficients are obtained from the

intercepts and the first-order reflection strain Fourier coefficients are acquired from the slopes.

B. An alternative analysis

An alternative assumption on the strain distributions p(e,) may be that they are independent of
n, implying that strain gradients within the columns are neglected [Stokes-Wilson
approximation (Stokes & Wilson, 1944; Wilson, 1955)]. For AP(n,l), this results in [cf.

Eq. (2)]:

AD(%J) = AD(n,1), (5)

where% is a whole number. If for the strain profiles all orders of reflection have the same shape
and a breadth proportional to the order, Eq. (5) holds (Eastabrook & Wilson, 1952). For atomic
displacements due to certain arrangements of dislocations, it can be derived that Eq. (5) holds
for small » (Krivoglaz, Martynenko & Ryaboshapka, 1983; Wilkens, 1970).

By restricting the Taylor series of In[AS(n)] to the first term, it can be shown for n << (N)
that:

1n[AS(?>] ~ %ln[AS(n)]. ©6)

Equation (6) is exact for all » if the column length distribution obeys p(j) = (NY'exp{—j/{(N)].
Although for any distribution p(j) the initial behaviour of AS(n) is described by Eq. (6), the

range over which this equation is applicable depends on the shape of the distribution p(j). Even
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in the extreme case of the delta-type distribution, representing a monodisperse system, it holds
within 10% for n S%(N).
Using Egs. (5) and (6), the basic equation for the alternative method becomes:

InACHD] = 7 In[ASG0)] + In[A(, L] ™
From plots of ln[A(’TI, )] vs. % the size Fourier coefficients are obtained from the slopes

and the first-order reflection strain coefficients are acquired from the intercepts.

lll. TEST PROFILES

Simulated Fourier coefficients of line profiles have been used to determine the range of
applicability of the WA-method and the alternative method. As compared to experiments,
simulations have the advantage that they allow comparison of the extracted size-strain data with
the true data. However, one has to take care that the simulations adequately represent physical
reality.

Size Fourier coefficients AS(n) are simulated by adopting a column-length distribution
p(j) (see Sec. IIT A). Strain Fourier coefficients AP(n,]) are simulated by adopting a series of
strain distributions p(e,) (see Sec. IIl B). There are very many physically realistic shapes of
size and strain distributions. Here, a class of analytical descriptions has been chosen that allow a
wide variation of the shape of the distributions by varying only a few parameters. Total Fourier
coefficients A(n,[) [= AS(n)AP(n,I)] are calculated such that the relative contributions of size and
strain broadening vary (see Sec. Il C).

To approach common practice, the orders of reflection /=1 and /=2 have been

simulated.

A. Size broadening

Since for small lnl the shape of AS(n) is rather insensitive to the shape of p(j) and only small ixl
values are involved in the tests (see Sec. IV.A), the shape of p(j) is not varied. Here, the
following distribution function p(j) with p(0) = p'(0) = 0 and p(e<) = 0 has been chosen (with
only the average column length (N) as a parameter):

p() = o(NY) 2 exp((%], where af(N) = 573 - ®

The corresponding size Fourier coefficients for the testing, as calculated using Eq. (1), read:
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®

AS(ny = M2+ ;é%m +3n? exp(—al;)ﬂ}

B. Strain broadening

Since the WA-method makes assumptions involving the shapes of the strain distributions
(Williamson & Smallman, 1954; Warren, 1963, 1969; Wilkens, 1984) and the same holds for
the alternative, in the simulations the shapes of all p(e,) are widely varied. The distributions
ple,) are described by physically plausible bell-shaped analytical functions. (Pseudo-)Voigt and
the Pearson-VII functions are examples of tuneable shape functions with the Lorentzian and
Gaussian shapes as limiting cases. Here, an important feature of such functions is the relative
weight of the tails. Lorentzian distributions have long-range tails, whereas Gaussians have not.
All (pseudo-)Voigtian strain distributions except for the Gaussian have an infinite second
moment (mean squared strain) (3,2,), implying an infinite amount of stored elastic energy, which

is physically impossible. Here, the Pearson-VII function has been adopted for p(e):

pley) = OO ) ., where o(0,,m,) = Fmn)

— 1. (10)
1+ ._1. (_e_’L)z n Tmy, Gp r(mn_%)
m, “On

and o, is the width parameter of p(e,), m, is the shape parameter (m, =1 for Lorentzian,
m,, = o for Gaussian), and T'(x) is the Gamma-function. The mean squared strain (ei)
[= oﬁmn/(Zm,L%)] is only finite for m, >% (see further Sec. V). The corresponding strain

Fourier coefficients can be calculated using Eq. (2) and expressed in terms of the modified
Bessel function K(x) (Abramowitz & Stegun, 1965):

AP(n,l) = T«%ZV K\(2z), where z=mnoylnliNm, and v =mn—%. (11)

In general, both the width and the shape parameters of the distributions p(e,) will depend
on 7. In the present simulations the shape parameter m, is taken independent of n, i.e. m, = m.
Usually, for fluctuating strains within the columns, the width parameter o, decreases with
increasing Inl due to the corresponding increase of the averaging distance. This is accounted for
by taking (see also Adler & Houska, 1979):

o, = olnl4, with n#0 and ¢2>0. (12)

The value of ql is a measure for the "wavelength” of the fluctuations of the local strain along a
column. For uniformly strained columns, no strain fluctuations occur within a column, the

"wavelength" is infinite and g = 0. For g = % the local strain changes randomly from cell to cell.
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This is the case in the ideal-paracrystal model (Hosemann & Bagchi, 1962; Kulshreshtha,
Dweltz & Radhakrishnan, 1971). A crystalline solid containing localized defects like
dislocations, precipitates, efc. will exhibit strains with definitely larger wavelengths than in the
ideal-paracrystal model, and therefore ¢ <<% in those cases.

C. Relative amounts of size and strain broadening
The amounts of size and strain broadening (in reciprocal space) are characterized by the

corresponding integral breadths ﬂs and /3121- The integral breadth (area divided by top height)
of the size-broadened test profile depends on (N) (see Sec. IIT A):

B = [zAS(m }_] E {%av) }_1. (13)

The integral breadth of the first-order strain-broadened profile ﬂlg | depends on the distribution
parameters O, m and g (see Sec. [lI B):

o

1 (noNm)'T(m—y) !
b _ D - 2 S
B, [ZA (n,l):' o ey Ty whete 7= (14)

A parameter r is used to characterize the relative amount of strain broadening:

B,
= 5. 15)
F+ 87, (

r

Thus, r = 0 indicates a purely size-broadened and r = 1 a purely strain-broadened profile.

For given values of m and ¢, one value of the parameter » corresponds with an infinite
number of combinations of values of (N) and . It can be shown that the error parameter used
in the testing procedure (see Sec. IV A) attains the same value for all these combinations,
because the evaluation is performed on a relative scale. Therefore, with the size and strain
distributions chosen, it suffices to study the quality of the separation methods as a function of

only r, m and q.
IV. TEST RESULTS
A. Error parameter

In this paper, the aim of the size-strain separation methods is to obtain values for the separated

size and strain Fourier coefficients from experimental coefficients A(n,l). Using simulations,
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determination of the accuracy of the separation achieved implies comparison of obtained
(separated) and simulated (true) values for the size and strain coefficients: Afep(n) and Atsme(n),
and A?ep(n,l) and Ague(n,l). In practice, only coefficients up to a certain harmonic number can
be determined accurately. Moreover, most physical information is deduced from AS(n) and
AD(n,1) for small Inl. For the present simulations, the upper harmonic number rny, is chosen
equal to %(ﬁsﬂiﬁ‘)_l, implying A(nyp.l=1) < 15 This choice means that the comparison is
performed on a relative scale. The error parameter, £, used here for characterizing the accuracy

of the size-strain separation is defined as:

Myp
N S D
o L A () ~Ane) | |Amp@.D)~Agye(n,1) i
hup Arruen) A1)

n=0

(16)

Perfect separation implies E = 0. For small deviations, E equals the mean squared relative
deviation of Afep Is)ep
Afep(n)AsDep(n,l) = Afm(n)Ague(n,l) = A(n,1). For instance, E = 0.01 means an average relative

deviation of 10%.

(n) from Afme(n) and necessarily also of A, (n,1) from Ague(n,l), because

B. Size-strain separations

The three parameters r, m and g (see Sec. III) have been assigned 21, 18 and 21 values
respectively (7938 different combinations). For all (r,m,g)-combinations, the WA-separation
and the alternative separation have been executed and E is evaluated numerically [cf. Eq. (16)],
yielding Ewa and Eay respectively. The error parameter E can be conceived as a function in a
three-dimensional space, E(r,m,q). In this space, the loci of points with equal E are called iso-E-
surfaces. An iso-E-surface can serve as the boundary between acceptable and unacceptable
separations. Here, the iso-E-surface for E = 0.01 is chosen as such and drawn for the WA and
the alternative method in Fig. 1, where instead of m, ranging from 1 to oo, the quantity % has
been used because then the bounding values for the parameters along the axes are all finite.
Since the iso-E-surfaces of the WA-method and the alternative one intersect, there are four
regions: (i) acceptable separations by both the WA- and the alternative method, (ii) acceptable
separation only by WA, (iii) acceptable separation only by the alternative and (iv) unacceptable

separation by both methods.
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Warren-Averbach method: Alternative method:
r »f t . .
uniform strain
1L per column =~ uncsot:;?:lited
pure
strain
15 Gaussian
q strains
1 pure /
1 7 size Lorentzian
m strains
Fig. 1: Iso-E-surfaces for £ = 0.01 for the WA-method and the alternative method in (r,% , q)-

space. Accepted separations (E < 0.01, i.e. average relative deviation < 10 %) are found
below the iso-E-surfaces.

V. DISCUSSION

As follows from Fig. 1, both the WA-method and the alternative method give acceptable results
for dominant size broadening (r — 0). As regards dominant strain broadening (» — 1), the
WA-method is insensitive to the strain-fluctuation parameter ¢ and sensitive to the strain-
distribution shape parameter m, while the reverse holds for the alternative method. This is not
surprising in the light of the assumptions made in both methods. In the WA-method, it is
assumed that the terms containing (ef,) and higher moments are negligible in the Taylor-series
expansion of In[AP(n,})]. The correctness of this assumption is determined by the shape of the
strain distributions: the more they approach a Gaussian, the more it is justified. In the alternative
method, it is assumed that p(e,) does not depend on n. This assumption is the more justified,
the larger the "wavelength" of the local strain fluctuations (i.e. the smaller the parameter g).

In practice, advance knowledge about the specimen to be investigated is required to
choose the appropriate size-strain separation method. To demonstrate this, three examples will
be discussed now.

(i)  Pure size broadening corresponds with the basal plane (r = 0) in Fig. 1. The WA-method
yields perfect results for this case, while the alternative method yields an average relative

deviation of 5 % (which was acceptable with respect to the chosen criterion). This deviation is
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caused by the non-zero values of the neglected terms in the Taylor-series expansion of
In[AS(n)] in the alternative method (see Sec. I B).

{ii) Specimens containing a single dislocation per crystallite have strain distributions with
tails proportional to le,l=3 (Wilson, 1955), which for the present Pearson-VII strain
distributions corresponds to m = % [¢f. Eq. (10)]. Thus, within the context of the present
simulations, if strain broadening is dominant in such specimens (r — 1), the alternative method
can yield acceptable results, depending on the g value, but the WA-method can well be
inapplicable (see Fig. 1).

(iii) Specimens with uncorrelated local strains (paracrystalline disorder), for which p(e,)
always tends to a Gaussian shape for increasing n (Adler & Houska, 1979), are only accessible
for the alternative method if the average size is relatively small (» — 0), whereas the WA-
method can be correct for all sizes.

In the simulations, the Pearson-VII strain distributions p(e,) have infinitely long tails,
resulting in infinite mean squared strains (e,%) forl<m< % (see Sec. III B). In practice, the tails
of p(e,) are finite and thus the values of (e,f) are also finite. However, the maximum values of
le,,) that occur in practice are so large compared to the average values, that the contributions to
AD(n,l) of the surplus tails (i.e. beyond these maximum values) of the adopted p(e,) are
generally of minor importance. Hence, the results for m S% in Fig. 1 may be of practical interest
too.

Cases of size-strain broadening have been investigated on the basis of characterization by
three parameters: r (relative amount of strain broadening), m (shape of strain distributions) and
g (strain fluctuations). In general, the microstructure of a real specimen cannot be described
completely by only three parameters. Therefore, Fig. 1 can only be regarded as indicative for the
applicability of the separation methods considered. This leaves unimpeded the recognition that
the alternative method provides size-strain separation generally equivalent to the classical WA-
method. The applicability regions of both methods are different and thus the alternative method
and the WA-method complement each other.

VI. CONCLUSIONS

The classical Warren-Averbach method for size-strain separation on the basis of Fourier
coefficients of broadened line profiles is only applicable to a finite class of specimens. This
class consists of specimens with approximately Gaussian strain distributions. For other classes
of specimens, alternative separation formalisms can be developed. The one elaborated here is

applicable to specimens with limited strain variations inside the columns, but with no restrictions
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to the shapes of the distributions of the strains over the columns. Both methods are applicable
to specimens with relatively little strain. ‘

Thus, both the Warren-Averbach and the alternative method are applicable to different,
partly overlapping, classes of specimens, the union of which implies an extension of the field of

application of Fourier size-strain separation.

ACKNOWLEDGEMENT

Financial support by the Foundation for Fundamental Research on Matter (Stichting FOM),
The Netherlands, is gratefully acknowledged (ACV).

REFERENCES

Abramowitz, M. & Stegun, 1.A. (1965). Handbook of Mathematical Functions (New York:
Dover), Chap. 9.

Adler, T. & Houska, C.R. (1979). J. Appl. Phys. 50, 3282-3287.

Eastabrook, J.N. & Wilson, A.J.C. (1952). Proc. Phys. Soc. London B6S, 67-75.

Hosemann, R. & Bagchi, S.N. (1962). Direct Analysis of Diffraction by Matter (Amsterdam,
The Netherlands: North-Holland), Chap. IX.

Krivoglaz, M. A, Martynenko, O.V. & Ryaboshapka, K.P. (1983). Phys. Met. Metall. 55, 1-12.

Kulshreshtha, A K., Dweltz, N.E., & Radhakrishnan, T. (1971). J. Appl. Cryst. 4, 116-124.

Stokes, A.R. & Wilson, A.J.C. (1944). Proc. Phys. Soc. London 56, 174-181.

Warren, B.E. (1959). Prog. in Metal Phys. VIII, 147-202.

Warren, B.E. (1963). Acta Metall. 11, 995-996.

Warren, B.E. & Averbach, B.L. (1950). J. Appl. Phys. 21, 595-599.

Warren, B.E. & Averbach, B.L. (1952). J. Appl. Phys. 23, 497.

Wilkens, M. (1970). Phys. stat. sol. (a) 2, 359-370.

Wilkens, M. (1984). In: Microstructural Characterization of Materials by Non-Microscopical
Techniques, eds. Hessel Andersen, N., Eldrup, M., Hansen, N., Juul Jensen, D., Leffers,
T., Lilholt, H., Pedersen, O.B., Singh, B.N. (Roskilde, Denmark: Risg National Lab.),
pp- 153-168.

Williamson, G.K. & Smallman, R.E. (1954). Acta Cryst. 7, 574-581.

Wilson, A.J.C. (1955). Nuovo Cimento 1, 277-283.



Chapter 3. Applicabilities of the Warren-Averbach and an Alternative Analysis 47

P(AS) = K Z A(L,S;) cos(QrLAS) + B(L,S;) sin(2nLAS), (!
L= —oo

where K is (approximately) a constant, A and B are the cosine and sine Fourier coefficients and
L is a distance perpendicular to the diffracting planes. In practice, L takes specific discrete
values nAL, where n is an integer and AL is inversely proportional to the length of the
measurement range in reciprocal space. The line profile according to Eq. (1) is defined with
respect to a distance S; to the origin in reciprocal space, related to a diffraction angle 26; by
S; =2 sin6; / A, where A is the wavelength. The deviation from §; is denoted by AS, where
AS = 2 (sin6 — sin6;) / A. Usually, for 26; the location of the centroid of the line profile is
chosen. Any pair of line profiles P| and P, with S5 = 25 will be called a first and second order
of reflection. In the present paper only the cosine Fourier coefficients A(L,S;) are considered,
because usually the sine coefficients are not physically interpreted [exceptions are the work of
Mittemeijer & Delhez (1978) and Ungér, Groma & Wilkens (1989)].

The profile measured from a structurally imperfect specimen can be considered as the
convolution of a structurally broadened line profile with an instrumental line profile. Fourier
coefficients of a measured profile are therefore the products of Fourier coefficients of the
structural and the instrumental line profile, The instrumental line profile can be measured using
a "standard” specimen that is (essentially) free of lattice defects. By division of Fourier
coefficients of the line profiles of the imperfect and the "standard" specimen, Fourier
coefficients of the structurally broadened line profile are obtained (Stokes, 1948). If no standard
specimen is available, two broadened line profiles can be treated analogously by assigning the
role of the instrumental profile to the profile with the smaller broadening. The resulting Fourier
coefficients then represent the differences in lattice imperfection (size and strain) (Keijser &
Mittemeijer, 1980). This procedure is used in Sec. IV.A.

The Fourier cosine coefficients of a structurally broadened line profile can be written as
the products of order-ir;dependent size coefficients AS(L) and order-dependent strain
coefficients AD(L,S;) (superscript S for size and D for distortion). If the specimen is considered
to consist of columns parallel to the diffraction vector, AS(L) is determined by the column-
length (size) distribution p(D), where D is the column length. The average column length (size)
is denoted (D). Further, AP(L,S;) is determined by the strain distributions p(er) (one for each
L), where ¢; is the average of the true (local) strain ¢, over a length L. All distributions are

normalized to unit area. In summary (Warren, 1959):

I In textbooks (e.g. Warren, 1969) the notations P(h3) and A(n,l) are often used. For that notation, it is
necessary to choose a unit-cell dimension a3 in the direction of the diffraction vector. Then, n = L/a3, I = S;a3

and h3 = (Si+AS)a3. We prefer the present notation for practical purposes.
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A(LS) = ASL) AP(L.S), @)
ASW) = s J -1 p() D, 3)
AD(LS) = | pler) cosnLSer) de. (4)

To obtain information on AS(L) and AD(L,S;) separately, at least two orders of reflection
have to be measured and the L and/or §; dependence of AS(L) and/or AP(L,S;) has to be
specified by making assumptions on p(D) and/or p(e;). The latter can be done in different
ways, leading to different separation methods, and in practice one must try to choose the one

most suited to the specimen to be investigated.

A. The Warren-Averbach analysis

In the WA analysis, an approximation is used for the S; dependence of AD(L,S)). It can be
shown by a Taylor-series expansion that for small L and §; (Warren & Averbach, 1950; see
App. A):

In[AD(L,S)] = -2n2L2SXe}) = (S%")2 In[AP(L,S))], (5)

where (ez) is the mean squared strain. If all p(e;) are Gaussian, Eq. (5) is exact for all values of
L and §; (Warren & Averbach, 1950). The more the p(e;) deviate from being Gaussian, the
smaller the range in L for which Eq. (5) is valid [see below Eq. (A.2)].

From Eq. (5) and the order-independence of AS(L), the WA analysis is derived by taking
the logarithm on both sides of Eq. (2) (Warren & Averbach, 1952):

In[A(L,S)] = In[AS(L)]—anLzSiz(ef). (6)

Here, for the sake of comparison with the other separation method [¢f. Eq. (10)], the following
form of the basic equation for the WA analysis is preferred:

In[A(L.S)] = In[AS(L)] + (g—f)z In[AD(L.S))]. (N

From plots of In[A(L,S;)] versus (Si/S))?2, the size Fourier coefficients are obtained from the
intercepts and the strain Fourier coefficients of the profile Py are acquired from the slopes. If
application of the WA analysis is justified, mean squared strains (ez) can be calculated from
AD(L,S)) using Eq. (5) and they can be physically interpreted in terms of (€3, (e, etc. using
Eq. (A.3) (Turunen, Keijser, Delhez & Pers, 1983).
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B. An alternative analysis

As indicated above, the WA analysis breaks down at a certain value of L if the strain
distributions are not Gaussian. The breakdown may occur so early that in practice size and
strain parameters become very unreliable. For this reason, an alternative analysis has been
developed. This alternative analysis also breaks down at a certain L value, which can be smaller
or larger than for the WA analysis due to the different approximations used. Hence, specimens
for which the WA analysis is problematic may be analysed reliably by the alternative analysis
and vice versa (Berkum, Vermeulen, Delhez, Keijser & Mittemeijer, 1993).

The first approximation used in the alternative analysis concerns the L and §;
dependences of AP(L,S;). By expressing AP(L,S;) in terms of the local strain e, and its
derivatives, it can be shown that for small L the strain gradients within the columns can be
neglected [this is sometimes called the Stokes-Wilson approximation, see Stokes & Wilson
(1944) and Wilson (1955)]. Then, the following relation can be derived for small L and §; (see
App. A):

AD(L,S) = AP(Ly.Sy), where L; = % Li. (®)
1

The smaller the average strain gradients in the columns, the larger the range in L for which
Eq. (8) holds [see Eq. (A.6)]. For specimens for which the lattice spacing is constant within
each grain, but varies from grain to grain (e.g. due to differences in composition), the strain
gradients are zero, the p(ey) are independent of L and Eq. (8) is exact at least for L; up to the
smallest grain size [¢f. Eq. (4)]. In that case, the strain profiles of all orders of reflection have
the same shape and a breadth proportional to the order (Eastabrook & Wilson, 1952).

A size-strain separation method based on Eq. (8) requires an additional equation
specifying the L dependence of AS(L). For L << (D}, the Taylor series of In[AS(L)] can be
restricted to the first term and it can be shown that (see App. B):

In[AS(Ly] = %ln[AS(LI)], where L; =%L1. 9
14 13

The range over which this equation is applicable depends on the shape of the distribution p(D).
Tt is exact for all L if the column-length distribution obeys p(D) = <;)—>exp[ - (LD)—> ). Using
Egs. (2), (8) and (9), the basic equation for the alternative analysis becomes:

In[A(L.S)] = In[AD(L,,S)] + % In[AS(L)], where L; = %Ll. (10)

From plots of InfA(L;,S;)] versus S1/S;, the strain Fourier coefficients of the profile Py are

obtained from the intercepts and the size Fourier coefficients are acquired from the slopes.
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Calculation of (ef) from AP(L,S;) obtained by this alternative analysis is not useful, because the
method is designed for specimens that do not permit neglection of the influence on AP(L,S;) of
(ez Y (eg ). etc. (see App. A). In case of appropriate applications of the alternative method,
AD(L,S) can be interpreted in terms of (e2), (e}, etc. by fitting the first column of terms of
Eq. (A.5) to AD(L,S,).

C. Remarks

(i) Linear versions of the analyses
It has been argued that, instead of a truncated Taylor series of In[A(L,S;)], simply that of A(L,S;)
can be used in the WA analysis (Delhez & Mittemeijer, 1976) (see App. A):

AD(LS) = 1-2m2L2S2(el) = 1—(?—:)2 [1-AP(L,S)], (11)

leading to the following equivalent of Eq. (7):

A(LS) = AS(L) - (§—j)2AS(L) [1 - AP(L,S))]. (12)

From plots of A(L,S;) versus (S/S1)?, the size Fourier coefficients are obtained from the
intercepts and the strain Fourier coefficients of the profile P can be deduced from the slopes.

Just like Eq. (5), Eq. (11) is correct for small L and S;. Unlike Eq. (5), no distributions
plep) exist for which Eq. (11) holds exactly. It can be shown that the first term neglected in the
derivation of Eq. (11) is always larger than the one in Eq. (5) (see App. A). This disadvantage
of the WA analysis executed according to Eq. (12) is countered by an important advantage:
Eq. (12) is less sensitive to the inevitable random errors in A(L,S;) due to the counting statistics
in the measured profiles. Variances in Fourier coefficients A(L,S1) and A(L,S>) propagate into
variances in AS(L) and AD(L,S) smaller by using Eq. (12) than by using Eq. (7) (see App. C).

For the alternative analysis, introduced in Sec. II.B, a comparable equivalent exists.
Instead of the Taylor series of In[AS(L)], that of AS(L) can be used (see App. B):

L;

ALy ~ 1~ = 1—%[1—A5(L1)], where L; =311, (13)

Si
leading to the following equivalent of Eq. (10):

ALiS) = ADLLS) -3 APLLS) [ - AS(LD), where Li=51L,. (14)

1

From plots of A(L,,S;) versus S)/S; the strain Fourier coefficients of the profile P, are obtained

from the intercepts and the size Fourier coefficients can be deduced from the slopes.
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In general, Eq. (13) is not inferior to Eq. (9). Which of the two is best depends on the
width of the size distribution in the specimen under study. For the infinitely narrow &-type
distribution, Eq. (13) is best; for the very broad exponential distribution [see below Eq. (9)],
Eq. (9) is best. For any distribution, both Eq. (13) and Eq. (9) describe at least the initial
behaviour of AS(L). Again, the linear version of the separation method has the advantage of
being less sensitive to propagation of random errors (see App. C).

The choice between the logarithmic separation methods and the linear versions should
depend on the priorities of the study: for minimal random error choose linear methods; for
minimal systematic error choose the logarithmic WA analysis and the logarithmic or linear
alternative analysis, depending on the expected width of the size distribution. In this paper, only

the logarithmic versions of the separation methods are used.

(ii) Recursive analysis

In principle, using Eg. (8), no additional series expansion of AS(L) is necessary to separate size
and strain coefficients. By guessing only one value of either AS(L) or AP(L,S)) for L # 0, many
others can be successively obtained. For example, suppose two sets A(L,S1) and A(L,S7) with
S, = 28, are available and the value of AS(AL) is guessed. Then, from the product relation
A(L,S;) = AS(L)AP(L,S;), one can calculate AP(AL,S) and AP(AL,2S;). From Eg. (8), it follows
that AD(2AL,S,) = AP(AL,2S)), so that AS(2AL) [from A(2AL,S1) = AS(2AL)AP(2AL,S))] and
subsequently AP(2AL,2S}) [from A(2AL,S;) = AS(QAL)AP(2AL,S;)] can be calculated. In the
same way, size and strain coefficients for L = 4AL, 8AL, etc. are obtained. This procedure was
first proposed by Eastabrook and Wilson (1952).

The method can be applied several times with different initial guesses for AS(AL). The
possible values of AS(AL) lie between A(AL,S;) and 1. In general, the sets of Fourier coefficients
obtained with all possible guesses AS(AL) are not very different and converge with increasing L.
An important disadvantage of this method of size-strain separation, compared with the WA
analysis and the alternative analysis, is the lack of exactness for L 1 0. A determination of (D)
from the initial slope of AS(L) or of the stored elastic energy from (e2) (see Sec. IL.B) may
therefore be problematic. Another disadvantage is that only Fourier coefficients at L = 2"AL are
obtained if §; = 251, or, in general, at L = (So/S})"AL, wherene Z.

From L equal to a few times AL onwards, the results obtained by this recursive analysis
must resemble those obtained by the alternative analysis. For small L, the alternative analysis is
independent of an arbitrary initial guess and therefore more accurate. For larger L, the results
using the alternative analysis may become less accurate if the assumption regarding AS(L) [see
Eq. (9)] becomes invalid. In this range, the recursive analysis, which does not use an
assumption regarding AS(L) apart from the value of AS(AL), can be used to specify a band of



52 Part Il. Separation of Size and Strain Broadening

possible results [by variation of the initial guess of AS(AL)] for the alternative analysis or any
other separation method relying on the neglect of strain gradients. Thus, if strain gradients are
known to be small and the detailed results of the alternative analysis lie within the band of the
recursive analysis, the application of the alternative analysis is justified.

(iii) Interpolation of Fourier coefficients

A remarkable difference between the WA analysis and the alternative analysis is that the former
uses Fourier coefficients of different profiles at the same L value, whereas the latter uses
Fourier coefficients of different profiles at different L values. Specifically, for a first and second
order of reflection, the alternative analysis uses A(L1,S|) and A(L/2,2S,). In practice, Fourier
coefficients of a line profile are obtained only at specific L values, where the step size AL is
inversely proportional to the length of the measurement range in reciprocal space. The WA
analysis is performed most easily with identical measurement ranges for first and second orders
of reflection, so that AL, = AL,. For the alternative analysis, it would be easiest to measure the
second order over a range twice as long, so that AL; = AL,/2. In practice, however, the length of
the measurement range is usually adapted to the width of the line profiles and limited by
neighbouring reflections. Then, both methods require interpolation of Fourier coefficients for

the analysis to be performed.

lll. APPLICATION TO SIMULATED PROFILES

In the first presentation of the alternative analysis, simulated Fourier coefficients of line profiles
were used to determine the ranges of applicability of the WA analysis and the alternative
analysis (Berkum, Vermeulen, Delhez, Keijser & Mittemeijer, 1993). The relative amounts of
size and strain broadening, the shape of the strain distributions p(e;) and the degree of strain
variation within the columns were the three parameters varied in that investigation. The WA and
the alternative analyses were applied to the simulated Fourier coefficients and the quality of the
separation was evaluated on the basis of the deviations of the extracted size and strain Fourier
coefficients from the true values. The combinations of parameter values for which the results of
the WA and the alternative analyses were acceptable are indicated schematically in Fig. 1.

In the investigation mentioned above, the size and strain distributions used were
considered as realistic, without correspondence to an actual specimen. In this paper, the merits
of both methods are again discussed using simulated Fourier coefficients, but this time the
simulations represent a specific specimen in a detailed way. Complete expressions for the
elastic strain fields associated with certain microstructural defects are taken as a starting point.
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region of applicability: - WA and ALT
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Fig. 1: Regions of applicability of the WA and the alternative (ALT) analyses. The regions are

bounded by surfaces where the values of AS(L) and AP(L,S;) obtained by the separation
methods deviate 10 % on average from the true (simulated) values for a specified range in
L (Berkum, Vermeulen, Delhez, Keijser & Mittemeijer, 1993). The locations in this cube
comparable with the broadening caused by misfitting inclusions (see Sec. IIl.A) and small-
angle boundaries ("SABs", see Sec. Il1.B) have been indicated.

A. Misfitting inclusions

Suppose a specimen consists of misfitting inclusions in a matrix: the inclusions and the
surrounding matrix are in a state of stress. The volume misfit may result, for example, from
cooling from fabrication to room temperature if a difference exists between the thermal-

expansion coefficients of the inclusions and the matrix. Assuming spherical inclusions and



4 Part Il. Separation of Size and Strain Broadening

matrix crystallites of uniform size, purely elastic accommodation of the misfit and elastic
isotropy and ignoring neighbouring distortion fields, the Fourier coefficients of line profiles of
the distorted matrix can be calculated. An additional calculation with zero misfit and all other
parameters unchanged yields the size coefficients for the system and then the strain coefficients
can be inferred. Using this model, the Fourier coefficients of experimental aluminium line
profiles of two-phase AlSi alloys have been described to a good level of accuracy (Berkum,
Delhez, Keijser & Mittemeijer, 1992).

As a realistic and representative example, Fourier coefficients of broadened Al{200} and
Al{400} reflections were calculated for a composite of 12.5 vol.% Si inclusions in an Al matrix.
The radii of the inclusions and the matrix crystallites were 76 and 152 nm, respectively. The
linear misfit was 2.3x10-3. The Fourier coefficients were defined with respect to the centroid of
the profiles as the origin. The results obtained with the WA and the alternative analyses are
shown in Fig. 2a.

From Fig. 2a it is clear that both the WA and the alternative analysis provide a good
separation up to a high value of the correlation length L (about 75 nm). For the WA analysis,
this is probably due to the small strains ((ef)” 2 = 5x104) and the moderate deviation from a
Gaussian distribution for p(e;) (e.g. k2 = 3 to 6, ¢f. App. A). Then, the higher-order terms in the
series expansion of In[AP(L,S)] [see Eq. (A.2)] are small. The two assumptions applied in the
alternative analysis are apparently justified for correlation lengths up to about 75 nm. Indeed,
the weak dependence of the true (ez) on L (see Fig. 2b) indicates, amongst other things (see
Berkum, Delhez, Keijser & Mittemeijer, 1992), that strain gradients in the columns are small.
Further, the true AS(L) (see Fig. 2a) satisfies Eq. (9) within 10% for L, < 75 nm.

In Fig. 2b, values of (e,z) calculated from the AP(L,S)) as obtained by the WA analysis
using the approximation Eq. (5) are shown. These are compared with (i) true values of (elz),
directly calculated from the strains in the crystallites, and (ii) values of (ei) calculated from the
true AD(L,S)) using Eq. (5). In general, the distributions p(er) are non-Gaussian, Eq. (5) is not
exact and the values (ii) deviate from the values (i). Then, the values 'experimentally obtained'
obviously deviate from the values (i): even a perfect separation of AS(L) and AP(L,S|) would
yield the values (ii), not (i). The differences between (ii) and (i) are small in the present case.

By fitting Eq. (A.3) to the (eZ) as obtained by the WA analysis, the strain broadening is
physically interpreted (see Sec. I.A). Depending on the length of the fitting range (3 to 30 nm)
and the number of terms fitted (2 to 5), one obtains (e2) = 2.6 to 2.8x10-7 (true value is
2.8x10-7) and (%) = 0.7 to 4x10-9 nm-2 (true value is 0.49x10-9 nm-2). Higher derivatives
become rapidly more inaccurate due to the deviations of the obtained (eZ) from the true (ef).
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Fig. 2: Results of the WA and the alternative (ALT) analyses applied to simulated {200} and {400}
reflections of an Al matrix containing 12.5 vol.% misfitting Si inclusions: (&) AS and AD(Sy),
compared with the true values, (b) WA resuits for <62L), compared with two sets of ‘true’
values (i) and (i), which are explained in the text of Sec. lll.A. Results of both analyses in

terms of the local strain are evaluated in Sec. IILA.
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The AP(L,S)) as obtained by the alternative analysis can be interpreted by relating the
coefficients of a polynomial fit to moments of p(e,) [first column of Eq. (A.5); see Sec. ILB].
Depending on the length of the fitting range (6 to 60 nm) and the number of terms fitted (1 to
4), the results are (¢2) = 2.3 to 2.6x10-7 (true value is 2.8x1077) and {ef) = 2 to 7x10-13 (true
value is 5.2x10-13). Because of the errors introduced by the neglect of strain gradients, the
inaccuracy of higher moments increases rapidly.

The results obtained using these simulations can also be compared with the applicability
regions indicated in Fig. 1. In this example, comparable amounts of size and strain broadening
are present, strains are slowly varying with distance and the shapes of p(e; ) are not too far from
Gaussian. Therefore, this case should be compared with a location indicated by 'inclusions' in
Fig. 1. According to the validity regions indicated both size-strain separation methods should
yield reliable results for not too large L, in agreement with the above.

B. Small-angle grain boundaries

As a second example, Wilkens' diffraction model for an array of small-angle grain boundaries
is used (Wilkens, 1979). The symmetrical pure tili boundary, discussed here, is an array of
parallel edge dislocations with their Burgers' vectors b perpendicular to the boundary. The
model consists of a periodic repetition of such small-angle boundaries with alternating 'sign’
(extra half-planes upward/downward). The crystal containing the small-angle boundaries is
taken to be infinitely large and hence the line broadening can be considered as pure strain
broadening [AS(L) = 1 for all L]. The diffraction vector is taken parallel to b. For the calculation
of the Fourier coefficients of the line profiles the procedure described by Wilkens is followed.

The results of the WA and the alternative analyses depend significantly on the
configuration of the small-angle boundaries, characterized by the ratio A/S, where A is the
spacing between the small-angle boundaries and & the spacing between dislocations within a
boundary (see Wilkens, 1979). Here, the results for A/ = 2 are discussed. Poisson's ratio was
set to % and first and second order of reflection were calculated using S1b = 1 and S»2b = 2,
where b = |bl. The results of both separation methods in terms of AS(L), AP(L,S;) and, for the
WA analysis, (812) are shown in Fig. 3.

Both the WA and the alternative analyses yield results that deviate significantly from the
true values. Only in the limit L | 0 do both methods function properly. Both methods yield an
extensive concave part in AS(L), corresponding to physically impossible negative values of
p(D). In practice, where true values are unknown, this concave part is one of the rare indicators
that assumptions in the method applied are incompatible with the specimen analysed. Neither an
extrapolation of (ez) to L = 0 for the WA analysis, nor a polynomial fit to AP(L,S,) for the
alternative analysis (see Sec. I1.B) yields physically meaningful information.
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Fig. 3: Results of the WA analysis and the alternative (ALT) analyses applied to first- and second-
order line profiles, simulated for a periodic repetition of smali-angle boundaries of
alternating 'sign’ with 4/6 = 2: (a) AS and AP(S;), compared with the true values, (b) WA
results for(ei), compared with 'true’ values (i) and (i), which are explained in the text of
Sec. liLA. Interpretation of the results of both analyses in terms of the local strain is not
meaningful (see Sec. lIL.B).
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The reason for the failure of both methods, already at relatively small L, is violation of the
(different) assumptions underlying the methods. The range of L for which the WA analysis is
valid depends on the deviation of the actual strain distributions p(e;) from a Gaussian [see
below Eq. (A.2)]. In the present case the distributions are much more 'peaked' than a Gaussian
(e.g. k2 > 100 for small L, cf. App. A). Therefore, the neglect of the term containing <ez) in the
expansion of In[AD(L,S))] [see Eq. (A.2)] is already problematic for small L [¢f. deviation of
curve (ii) from (i) in the (612) plot in Fig. 3b]. The range of L for which the alternative analysis is
valid depends on the shape of the size distribution and on the magnitude of the strain gradients
(see Sec. I1.B). Since there is no size broadening simulated in this example (the crystal is taken
infinitely large), the failure of the alternative analysis is due to large strain gradients. Indeed,
with respect to isolated dislocations, ordering of dislocations in small-angle boundaries
decreases the average strains in the specimen, but increases the strain gradients close to the
boundary (see Fig. 2b in Wilkens, 1979). The very strong increase in the true (ei) with
decreasing L in Fig. 3b confirms this.

In terms of the three broadening dimensions indicated in Fig. 1, the example discussed
must be compared with the location marked 'SABs' in this figure: pure strain, strongly non-
Gaussian p(ez) and significant strain gradients. This location pertains to the region where
neither of the two size-strain separation methods is applicable, in agreement with the above.

One may question if the example discussed has to be considered as one of pure strain
broadening. It might be argued that the small-angle boundaries break up the crystal into
domains that diffract incoherently with respect to each other. However, it can be shown that this
phenomenon only occurs when lattice defects produce very large local strains concentrated in
very small, isolated parts of a specimen (Berkum, Delhez, Keijser & Mittemeijer, 1994). If this
would occur in the present case, the AS(L) values to be obtained using the size-strain separation
methods would satisfy AS(L) = 1 — ILI/A for ILI € A. Clearly, for A/8 = 2, this result is not
obtained either. However, for much larger values of A/, the small-angle boundaries do tend to
act as coherence boundaries. In this case, the WA analysis yields approximately A for the
average crystallite size, a result that can again be interpreted in a physically meaningful way. The
results obtained by the alternative analysis remain ambiguous for large A4/6.

IV. APPLICATIONS TO EXPERIMENTAL PROFILES

To test newly developed methods of analysis, it is always desirable to use experimental data in
addition to simulated data. Unexpected complications may arise due to the experimental
circumstances. Experimental line profiles allow investigation of the (combined) effects of

counting statistics, background removal, peak overlap, imperfect standards and deconvolution
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procedure, which do not occur using simulated data. However, for experimental data no true
values are known to check the separation results. A general test on the results is to probe their
physical plausibility: values of AS(L) or AD(L,S)) larger than 1 are impossible, a downward
curvature of AS(L) is unrealistic, AP(L,S)) rising with increasing L is unlikely, efc.

For the present purpose, especially suitable data are those from specimens of which some
information on the size or strain is known, either obtained from experiments other than
diffraction-line broadening or derived from characteristics of the preparation, deformation or
other treatment the specimen has been subjected to. Then, the size and strain parameters

obtained using the separation methods can be compared with this information.

A. Microstructural change in thin aluminium layers

Thin aluminiuvm layers were prepared by physical vapour deposition in high vacuum onto Si
<100> single-crystal wafers and subsequently annealed at 723 K (for details see Vermeulen,
Delhez, Keijser & Mittemeijer, 1994). During cooling to room temperature the Al layers are
plastically deformed due to the development of high thermal stresses. At room temperature,
considerable relaxation of the residual stresses occurs within a few days. The relaxation process
is accompanied by a measurable change in line breadth related to changes in the dislocation
density and arrangement (Vermeulen, Delhez & Mittemeijer, 1992). After 12 and 110 h of
relaxation at room temperature the Al {111} and {222} reflections were recorded on a Siemens
D500 diffractometer, equipped with a scanning position sensitive detector and an incident beam
monochromator set to CoKey. For all four line profiles the background was subtracted?, the
remainder of the oy component of the Ka doublet (about 2% of o) was removed and a
Fourier transformation was performed. No ideal 'standard’ specimen was available for the thin
Al layers. Therefore, a direct comparison of the line profiles after 12 and 110 hours of
relaxation was made (see Sec. II): the profiles with the larger line breadths (12 h) were
deconvoluted with the ones with the smaller line breadths (110 h). Finally, the WA and the
alternative analyses were applied. The results, representing the decrease in lattice imperfection
evoked by relaxation from 12 to 110 h, are shown in Fig. 4. Due to the relatively small decrease
in line broadening during the relaxation, the Fourier coefficients after deconvolution A(L,S)
[the product of AS(L) and AP(L,S) in Fig. 4] drop only from 1 to about 0.85 with L increasing

from O to 100 nm.

2 An additional correction for truncation effects according to Vermeulen, Delhez, Keijser & Mittemeijer (1991,

1992) is possible. It is not incorporated in this paper, because it does not change the conclusions reached.
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Results of (a) the WA and (b) the alternative (ALT) analyses applied to the {111} and {222}
reflections of an Al layer after 12 h of relaxation at room temperature using measurements
after 110 h as ‘standard’ profiles. The Fourier coefficients represent only the change in the
microstructure due to the relaxation between 12 and 110 h. Dashed lines indicate the
expected values for AS(L). Note the vertical scale values.
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It is unlikely that the relaxation at room temperature could cause a change in the crystallite
sizes. Hence, the values of AS(L) after 12 and 110 h should be equal. Then, in the above
described comparison (12 h data deconvoluted with 110 h data) the size coefficients drop out
completely. After size-strain separation the 'size' coefficients, in this case representing the
difference in size broadening, should be equal to unity.

The WA analysis yields the expected results [AS(L) = 1] up to L = 10 nm. For larger
values of L, before the results start to scatter due to the effects of counting statistics (at
L =60 nm), a significant deviation of AS(L) from unity is observed. These values are considered
to be incorrect, because they indicate an unlikely change in the size distribution during the
relaxation. In conclusion, only a small portion of the statistically reliable data can be interpreted
by the WA analysis.

The alternative analysis yields the expected results [AS(L) = 1] over a longer range than
the WA analysis: up to L = 35 nm. Again, for larger L values AS(L) starts to deviate from unity,
indicating that the results become incorrect. In conclusion, a substantial portion of the
statistically reliable data can be interpreted by the alternative analysis.

Finally, note that the tangents at L = 0 to the AS(L) curves obtained by both methods are
clearly horizontal. Since both methods yield correct AS(L) for L 1 0, this observation supports
the assumption, made in advance, of negligible changes in the average crystallite size during
relaxation.

A discussion of the line broadening in terms of dislocation density and arrangement will

be given in Vermeulen, Delhez, Keijser & Mittemeijer (1994).

B. Ball-milled molybdenum powder

A very different set of experimental line profiles was taken from molybdenum powder
plastically deformed by ball milling. The powder was milled for 45 minutes in a horizontally
moving cylinder with two balls. From scanning-electron-microscopy the average particle
diameter before milling was estimated between 0.5 and 1 |um; after milling it was approximately
halved. Lattice-parameter measurements did not indicate any contamination of the Mo powder.
A very thin and flat X-ray diffraction specimen was prepared from the milled powder. The
procedure employed was analogous to that used for the standard specimen, which was prepared
from annealed Si powder (see Berkum, Sprong, Keijser, Delhez, Sonneveld & Vermeulen,
1994). The Mo {110} and {220} and the Si {220} and {422} reflections were recorded on a

Siemens D500 diffractometer using CuKo radiation.



Part Il. Separation of Size and Strain Broadening

&2
s
Q
<
o
<
[€) L (nm)
s
Q
<
o
<
(b) L (nm)
Fig. 5: Results of (a) the WA and (b) the alternative (ALT) analyses applied to the {110} and {220}

reflections of ball-milled Mo in terms of AS(L) and AP(L,S;). Dashed lines are straight line
fits to the (approximately) linear parts of AS(L). The results obtained by the alternative
analysis near L = 0 are unreliable due to the inaccuracy of interpolation of Fourier
coefficients in this range and an unfortunate combination of step sizes ALy and AL, [cf.

Sec. 11.C(iii)].
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For all line profiles the background was subtracteds, the o component of the Ko-doublet
was removed and a Fourier transformation was performed. The reflection Si {220} was used as
standard profile for Mo {110}, Si {422} was used for Mo {220}. The Si {220} and Mo
{110} reflections do not correspond very well in 26 position but their combination is possible
because the breadth of the o-stripped instrumental line profile for the experimental set-up used
here has a flat minimum in this range. Finally, the WA and the alternative analyses were applied.
The results are shown in Fig. 5.

The two methods yield opposing results: the WA analysis attributes most of the
broadening to size [extrapolation of the linear part of AS(L) to the abscissa yields (D) = 34 nm],
whereas the alternative analysis detects dominant strain broadening with only a small size
contribution ({D) = 83 nm). For the following reasons the results obtained using the alternative
analysis seem to have larger credibility.

Firstly, the value of {D) obtained by the WA analysis (34 nm) is very small. The particles
of the milled powder are probably still single-crystalline, so that the crystallite diameter is not
much smaller than the particle diameter (between 0.25 and 0.5 um, see above). The area-
averaged column length (D) for a polyhedral crystallite is about§1 to % times its 'diameter’ (cf. Ky
in Langford & Wilson, 1978). Therefore, an average column length of about 100 to 400 nm is
to be expected. Hence, the value of (D) according to the alternative analysis (83 nm) is closer to
the expected value than the value according to the WA analysis.

A second reason for considering the results of the alternative analysis to be more realistic
is the behaviour of the obtained AP(L,S;). It has been shown for a random distribution of
dislocations (Krivoglaz, 1969) and for other distributions (Wilkens, 1970; Krivoglaz,
Martynenko & Ryaboshapka, 1983; Groma, Ungar & Wilkens, 1988) that the elastic strains
around dislocations give rise to the following behaviour of AP(L,S) for small to moderate L

values:

~In[AP(LS)] = 5 C p 12212 ln[;%%], (15)

where p is the dislocation density, C and C' are dimensionless constants depending on the
angles between the diffraction vector and the Burgers' and line vectors of the dislocations and R,
is a length parameter depending on the configuration of the dislocations. From Eq. (15), it
follows that —L-2 In[AD(L,S)] plotted versus In L should yield a straight line. In Fig. 6, it can
be seen that this behaviour might be present in the AD(L,S) according to the WA analysis for
9 < L < 25 nm. For the alternative analysis, such behaviour of AP(L,S}) is definitely present over

3 See footnote on p. 59.
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Fig. 6: As Fig. 5, but in terms of —L~2 In[AD(L,S4)] versus In L. The two straight lines indicate
hypothetical behaviours according to Eq. (15) for comparison with the experimental
results.

a much larger range: 9 < L < 50 nm [a physical interpretation according to Eq. (15) yields Cp =
6.6x1014 m2 and C'R. = 0.11x103 nm].

A third indication that the results of the present WA analysis may be less reliable is
provided by checking the assumptions underlying the methods. The WA analysis is possible if
either (2nLSi)2(ez) << 1 or if the p(ey) are close to Gaussian [see below Eq. (A.2)]. For, say,
L = 10 nm (approximately the third data point) and S; = 9.0 nm~! (Mo{220}), it follows (ez) =
5x10-% and, therefore, (27tLS,~)2(eE) = 1.6, so that the first condition is not met. The second
condition is also not met, because for strains around dislocations the p(e;) deviate significantly
from being Gaussian: they have tails proportional to le; -3 (Wilkens, 1984). The alternative
analysis is applicable if both L << (D) (see App. B) and (¢2)L2 << 12 {¢?) [i.e. Eq. (A.6)]. For
the same L value as above (10 nm), the first condition is met by a factor of 8. A check on the
second condition is impossible here, because values of (¢Z ) and (e{2) are not available.

A 'hook effect’ (physically impossible concave part close to L = 0) is obtained in AXL) if
the WA analysis is applied. Extrapolation to L = 0 of the linear part of the corresponding AS(L)
curve gives an ordinate value of 1.08 (see Fig. 5a). The AS(L) curve obtained by the alternative
analysis does not show a systematic "hook effect”. The inevitable truncation of the measured
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line profiles may cause the "hook effect” in the WA analysis; the effects of such truncation on
the results of the alternative analysis have not yet been investigated. On the other hand, the
"hook effect”" in the WA analysis may indicate systematic errors due to violation of the
underlying assumption.

WA analyses yielding hook effects and surprisingly small crystallite sizes have been
found often in the past for comparable severely deformed metallic specimens (Warren, 1959,
Klug & Alexander, 1974 and references therein). Such results may be erroneous because the
assumptions inherent to the WA analysis are violated; the alternative analysis may provide more
reliable data for such cases.

Also the recursive analysis, described in Sec. IL.C(ii), was applied to the line profiles of
the ball-milled Mo powder. The results are compared with those obtained using the alternative
analysis in Fig. 7. Using the two extreme values for the initial guess of AS(AL), a range of
possible results for the alternative analysis is calculated [¢f. Sec. 1L.C(ii)]. The results obtained

here by using the alternative analysis fall approximately within this range for L values up to

%)
o
<
o
<
L (nm)
Fig. 7: Results of the recursive (markers and dashed lines) and the alternative (full lines) analyses

applied to the {110} and {220} reflections of ball-milled Mo. For the recursive analysis, the
two extreme initial guesses AS(AL) = 1 and AS(AL) = A(AL,Sy), where AL = 3.1 nm, were
used. Note the increasing step size in L for the recursive analysis.
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50 nm. This means that, if the neglect of strain gradients was justified for this specimen (this
assumption is inherent in both the recursive and the alternative analyses), the assumption

applied to AS(L) did not introduce significant errors in the size-strain separation.

V. CONCLUSIONS

Using different assumptions on the distributions of crystallite sizes and elastic strains, different
methods to interpret diffraction line broadening are possible. The frequently applied Warren-
Averbach analysis relies on either small strains or approximately Gaussian strain distributions.
The alternative analysis discussed in this paper relies on small strain gradients and large
crystallite sizes or a broad size distribution.

For both the Warren-Averbach and the alternative analyses, a logarithmic and a linear
version can be derived. The linear versions are less sensitive to propagation of random errors
(e.g. due to counting statistics); in many cases the logarithmic ones introduce less systematic
errors.

Specimens exist for which both methods yield comparable and correct results up to large
correlation lengths L, e.g. a matrix containing misfitting inclusions. The reverse is also possible:
both methods give erroneous results already at small L, e.g. crystals containing small-angle
grain boundaries. Erroneous results for size and strain are always paired: overestimation of the
size broadening goes with underestimation of the strain broadening and vice versa. Certainty
about the reliability of results obtained in practice is impossible. At least, the results should be
in accordance with the assumptions used in the method. In addition, external information
available on the specimen concerned can be used to assess the plausibility of the results.

Specimens subjected to severe plastic deformation appear to be analysed more reliably by
the alternative analysis. Due to increasing violation of the underlying assumption, with
increasing L the Warren-Averbach analysis attributes ever more broadening incorrectly to size,
yielding a too small average crystallite size and a too rapid decrease in the mean squared strains
(e,z). The assumptions used in the alternative analysis appear applicable up to relatively large L

for such specimens.
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APPENDIX A: SERIES EXPANSION OF AD(L,S)

Expansion of the cosine in the general expression Eq. (4) for AP(L,S;) in a Taylor series yields:

1l

—g—f<e§>+§<e2>—f<e2>+
2| y <eL> + [yz(eL)] - 6v [y2<eL>] (A.1)

AD(L,S)

where y = 2rLS; and k; = (ef’)/(ez)i (i 2 2). Substitution of Eq. (A.1) in a Taylor series for
In[AD(L,S,)] in AP(L,S;) = 1 yields:

2 _ 3
In[AD(L,S)] = 2,y2< L)+(k2 3)[ 2ep)] —("3156%[%(&)] +. (A2)

Restriction of the right-hand side of Eq. (A.2) to the first term leads to Eq. (5). This
approximation is reasonable if yz(ez) << 1 or if the values of k; are not too far from those for a
Gaussian distribution: kp = 3, k3 = 15, ... (assuming that {e;) = 0, which is always the case if S;
corresponds to the centroid of the structural profile). The two conditions are related: the values
of k; determine the range of y for which the approximation is valid. Fourth, sixth and higher
moments of p(ey) are increasingly influenced by the tails of the distribution. Many distributions
have more pronounced tails than a Gaussian and therefore (much) higher values of %;.

Restriction of the right-hand side of Eq. (A.1) to the first two terms leads to Eq. (11). The
conditions for this approximation are yz(ez) << 1 or k;j small (as small as possible). The smallest
possible value of k; for a unimodal distribution is (53 (see App. D). The term containing y4
(usually the term that limits the applicability of the approximation) is therefore always smaller in
Eq. (A.2) than in Eq. (A.1).

To derive the explicit L dependence of AD(L,S;), the moments of p(e;) are expressed in
terms of the local strain ¢, and its derivatives. With the assumption that averages of e, and its
derivatives at the column ends vanish, the following expression has been derived (Turunen,
Keijser, Delhez & Pers, 1983):

(ep) = (D) = 5 (@D + 55 (@D + . (A3)
A comparable expression for the fourth moment of p(ez) can be analogously derived:

(ef) = (et — 3 (e D2+ [ do b — pig (e |24+ . (A4)

Substitution of such expressions into Eq. (A.1) yields:
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AP(Ls) = 1 - byt [ (D]~ e+ sk e+ . ]

+qy [ (ed)| -5 (e} eI+ (61—0 @3- 555 (e;,“))L4+ ]
L[ es]-.. ]

+ .. (A5)

If ¢, is slowly varying in space, the derivatives are small on the average and, for small L, the
series between square brackets in Eq. (A.5) are dominated by their first terms. In this case,
AD(L,S;) can be written as a function of y only, which means that Eq. (8) is valid.

With increasing L, the term limiting the applicability of Eq. (8) is in general the second
term in the first series in Eq. (A.5). Thus, the range of L for which Eq. (8) is valid is determined
by the condition:

(eP? << 12(ed) (A.6)

This means that Eq. (8) holds for L up to the order of magnitude of the spatial width of the
peaks or humps in e,.

The difference between the assumptions used in the WA and the alternative analyses
[Eqgs. (5) and (8), respectively] can be discussed as follows. The terms between square brackets
in Eq. (A.5) can be considered to form an infinitely large matrix of terms. The rows of this
matrix represent (ef), (e;f), etc. [cf. Eq. (A.3), Eq. (A.4)]. A similar matrix results on expansion
of In[AP(L,S,)]. For either the logarithmic or linear version, in the WA analysis only the first
row of the matrix is taken into account, in the alternative analysis only the first column is taken
into account. The additional rows are determined by the shape of the frequency distribution
plep), the additional columns are determined by the spatial distribution of ¢,. For L decreasing
to zero, AP(L,S;) approaches 1— % y%(e?) and both approximations used are valid regardless of
the nature of the spatial distribution or the frequency distribution of the strain.

APPENDIX B: SERIES EXPANSION OF AS(L)

In the general expression (3) for AS(L), the distribution p(D) can be expanded in a Taylor

series. Integration of the individual terms yields:
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ILI ILIZp(O) ILI3 p'(0)

ASL) = L=py*+ 21Dy * 31(D) (B.1)
Substitution of Eq. (B.1) in a Taylor series for In[AS(L)] in AS(L) = 1 yields:
1L 0 0 0
In[AS(L)] = (D{ ~IL) (”( ) m) ILI2 (p( ) 5(0))) 3 <D>2) } (B.2)

If the term between square brackets in the right-hand side of Eq. (B.2) is approximated by 1,
Eq. (9) is easily derived from Eq. (B.2). This approximation is valid if ILI/{D) << 1 or if the size
distribution p(D) is not too far from the exponential distribution p(D) = (%) exp[ — <%> ]. As for
AD(L,S;), the two conditions are related: the more p(D) deviates from the exponential
distribution, the shorter the range of L for which the approximation is valid. However, for AS(L),
very large values of the coefficients in the expansion, determined by the derivatives p(")(0), seem
physically unrealistic, whereas in the case of AP(L,S;) large values of k; may occur in practice.
Restriction of Eq. (B.1) to two terms on the right-hand side is the basis for Eq. (13). This
approximation is justified if ILI/{D) << 1 or if p(0) and all derivatives p("(0) are small. Here, the
ideal distribution is p(D) = &D ~ (D)), i.e. the J-type distribution, representing a monodisperse

system, for which the approximation is exact up to D = (D).

APPENDIX C: PROPAGATION OF RANDOM ERRORS

I. Warren-Averbach analysis

Suppose Fourier coefficients of a first and a second order of reflection A(L,S) and A(L,S,) with
S, = 25 are used to separate size and strain broadening. For the logarithmic version of the WA

analysis Eq. (7), the size Fourier coefficients are calculated from:

3TALS)*
A(L2S)

AS(L)Iog = (C.1)
(subscripts log and lin are used to distinguish between values obtained by the logarithmic and
the linear versions, respectively). If the random errors in the Fourier coefficients are not too
large, the variance of AS(L), 62[AS(L)], can be expressed in the variances of both original
coefficients 62[A(L,S1)] and 02[A(L,25))] in the following way (Arley & Buch, 1950):

S 2 Y 2
AL = [ﬁé’g%] oZ[A(L,Sl)H{ai?—LfZLS)I—J FIAL2SL. (€2)

Substitution of the partial derivatives as calculated from Eq. (C.1) into Eq. (C.2) yields:
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o2 [AS(D)liog = 19§ oA AL.S)] +$Gr2[A(L,251)}, (C3)

where 6;2[x] denotes the 'relative variance' o2[x}/x2.
Using the linear version of the WA analysis Eq. (12), AS(L) is calculated from:

1

AS(Lyin = 3 [4AL.S) ~AL2S) ] (C4)

Substitution of the partial derivatives as calculated from Eq. (C.4) into Eq. (C.2) yields:

2 2
GRIASL) i = ?[ﬂfgfn] OALA(L.S)] +é{ﬁ§ﬁfﬁ?] GRAL2S)L  (CS)

The differences between Eqgs. (C.3) and (C.5) are the fractions between large square brackets in
Eq. (C.5). Since A(L,S|) < AS(L) and A(L,2S,) < AS(L) (otherwise the strain Fourier
coefficients exceed unity and the WA analysis is nonsensical), it follows that 6;2[AS(L)]jin <
o‘rZ[AS(L)]log. For not too large errors in the experimental Fourier coefficients, the relative
variance 02[AP(L,S|)] approximately equals the relative variance o,2[AS(L)] [since
AS(L)AD(L,S)) = A(L,S))] and the conclusion 6.2[AP(L,S))]iin € 6, 2{AP(L,S1)]1og is reached.
Thus, the linear version of the WA analysis is less sensitive to propagation of random errors in

the experimental Fourier coefficients than the logarithmic one.

li. Alternative analysis

In the logarithmic version of the alternative analysis Eq. (10), AS2L) is calculated from:

2
AS2Lyog = [ﬁgi@g;;} . C6)

Using Eq. (C.2), the relative variance of AS(2L)|Og equals:
0 2AS(2L)]og = 4 { GA[AQLS)] + 62[A(L2S1)] }. (C7

Using the linear version of the alternative analysis Eq. (14), AS(2L) is calculated from:

_ AQCLS))
ASQL)jin = 2A(L,2S)) - AQ2L,S)) 0

and using Eq. (C.2), the relative variance of AS(2L)y;, equals:

2
G2AASRL) i = 4[27(;2’%%} {oPAQLSY] + 0PAL2S)]}. (C9)
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The difference between Eqgs. (C.7) and (C.9) is the term between large square brackets in
Eq. (C.9). Since A(L,2S1) = A(2L,S;) [otherwise AS(2L) > 1 and the alternative analysis is
nonsensical], it follows that 6;2[AS(2L)]j, < 0;2[A5(2L)]j0g. The relative variance of AP(2L,S)
approximately equals that of AS(2L) (c¢f. Sec. C.I), so that o,2[AP(2L,S)}iin <
o,z[AD(ZL,Sl)]]Og. Thus, as for the WA analysis, the linear version is less sensitive to
propagation of random errors in the experimental Fourier coefficients into the size and strain

Fourier coefficients.

APPENDIX D: KURTOSIS OF A UNIMODAL DISTRIBUTION

The central moments (/) of a (normalized) probability density function f{x), further denoted as

"distribution", are defined as:
w = [ o upr o ax (0.1)

where the mean u(f) is given by:

uh = _fo(x) dx. (D.2)
Moments are always restricted by the inequality [1,()1'" = [u,,(P1V™ if n > m (Cramér, 1946).
For the kurtosis k(f), here defined as p1,(f)/[u,(H1?, this implies k(f) > 1. For specific classes of
distributions, such inequalities can sometimes be improved, as will be shown below for the
kurtosis of a unimodal distribution. For moments with respect to any x other than the mean,
[, (N1 always increases more progressively with increasing n than the central moments.
Therefore, an inequality that holds for central moments holds for moments with respect to any
reference.

Consider a distribution f(x) that has only one maximum ("unimodal”), that is located
exactly at x = u(f). For every f{x), there exists exactly one distribution ¢(&) = fA&-u(f)) with
mean 4(¢@) = 0 that has the same central moments as f{x) and, consequently, the same kurtosis.

The moments (@) are written as the sum of two terms 1, *(¢) and 4, ~(¢):

1,H(@) = O[ £ (&) de (D.3a)

0
1y (@) _L & (&) d&. (D.3b)
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Further, a "split-uniform" distribution v(£) is introduced: for both £ > 0 and £ < 0, v(&) has a
constant value up to a certain I£] and equals zero for larger Il. There is exactly one split-
uniform distribution ¥(&) that has the same 1y*, ", Uy~ and g, as @(&). Firstly, the attention
is concentrated on one side only, say £> 0.

By equating py* and u,* of v(§) and ¢(&), the height / and the width b of v(£) (see
Fig. D1) are readily obtained in terms of uy*(¢) and u,*(¢). Then, p14*(v) can be calculated as:

b
pir) = JEnag =3 %f;((—‘g))]z- (D.4)

For & > 0, the distributions v(&) and (&) intersect exactly twice: at £=a and £ = (see
Fig. D1). This can be proven by negative demonstration. With zero points of intersection, the
areas fiy* can never be equal. If v(§) and (&) have equal areas pi,* and they intersect only
once, then i,* cannot be equal. To prove that, firstly consider the case ¢(0) < h, in which the
intersection takes place at £ = b and the difference in p,* is given by:

oo b
w0 - = [ £ et - [ 2o - 991 (D.5)

Since the areas considered in the two terms on the right-hand side of Eq. (D.5) are equal, ie.

oo b
Jogas = [wo-wo10s 06)

and every £ value considered in the first term is larger than in the second term, it follows that
Uyt (@) > io*(V), in contradiction with the definition of v(&). The second possibility to
accomplish one point of intersection requires ¢(0) > A, intersection at & = a with a < b and
(&) = 0 for £ 2 b. A reasoning analogous to that for the case ¢(0) < A yields (@) < tr*(v),
again in contradiction with the definition of v(§). Three or more points of intersection are
impossible because ¢(£) would have to be increasing at some interval to accomplish that.

A calculation of the difference in py* of ¥(&) and ¢(&) involves three terms corresponding

to the regions indicated P, Q and R in Fig. D1:

a b oo
14 (P) ~ 14+ (V) = j E 0 - dE - & - g1 dc + Jeanae ©

From the identity of yy* and uy* of v(§) and (&), it immediately follows that the areas and

second moments of the three regions are related by:
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\.

0 a b

Fig. D1:  Arbitrary distribution function (curved line} and the corresponding "split-uniform”
distribution (straight lines), with on the right side a height h and width b. The meaning of
the regions P, Q and R is explained in the text.

a oo b

Jtoo-nag+ oo et = Jin-onaz (D.8)
a oo b

Jewo-ni s Jeua - [on-wmna (D.9)

In the following, the region Q is divided in infinitesimal areas Q;, located at g; with a < g; < b.
Because of Egs. (D.8) and (D.9), it is possible to find for every Q; an area P; at p; and an area
R; at r; in region R, such that:
Pi+R; = O, (D.10)
pPi+r? R = g Qi (D.11)

Using the division of the regions P, Q and R, Eq. (D.7) can be written as:

et () - (V) = 2 T, (D.12)
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with
T; = p#Pi—q# Qi+ r# R (D.13)

Using Eqgs. (D.10) and (D.11), two parameters, say P; and Q;, can be eliminated from
Eq. (D.13). After some algebraic manipulations, it follows:

Ti = (r?-pP (r?—q% Qs (D.14)

Obviously, T; is always positive, which, using Eq. (D.12), implies t,*(¢) > 4t (V).

A completely analogous reasoning for £ < 0 leads to the conclusion py~(@) > i~ (v).
Realizing that @, = y,* + 1, and that 1,(0) = (@), it follows immediately that k(¢) > k(v).
To calculate k(v), t4*(v) is expressed as in Eq. (D.4) and p4~(v) analogously. Then, it follows
for k(v):

9 [ H(@)]? [uf«p)]?}
MO = ST | ut@ * d@) | (D.13)

This expression can be written exclusively in terms of the ratios fy = " (@) Uy~ (¢) and
fa = X (@) (@)
9 (o+ DR +1)
k(v) = AT (D.16)

From Eq. (D.16) it is readily verified that k(v) Zg and, consequently, k(¢) >§ and k(f) > ?.

REFERENCES

Arley, N. & Buch, K.R. (1950). Introduction to the Theory of Probability and Statistics (New
York: John Wiley), pp. 79-80.

Berkum, J.G.M. van, Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1992). Phys. stat. sol.
(a) 134, 335-350. See Chapter 5 of this thesis.

Berkum, J.G.M. van, Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1994). To be published.
See Chapter 7 of this thesis.

Berkum, J.G.M. van, Sprong, G.J.M., Keijser, Th.H. de, Delhez, R., Sonneveld, E.J. &
Vermeulen, A.C. (1994). To be published. See Chapter 1 of this thesis.

Berkum, J.G.M. van, Vermeulen, A.C., Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1993).
Mater. Sci. Forum 133-136, 77-82. See Chapter 2 of this thesis.

Cramér, H. (1946). Mathematical methods of statistics (Princeton: Princeton University Press),
p. 176.



Chapter 3. Applicabilities of the Warren-Averbach and an Alternative Analysis 16

Delhez, R. & Mittemeijer, E.J. (1976). J. Appl. Cryst. 9,233-234.

Eastabrook, J.N. & Wilson, A.J.C. (1952). Proc. Phys. Soc. London B6S, 67-75.

Groma, I, Ungdr, T. & Wilkens, M. (1988). J. Appl. Cryst. 21, 47-53.

Hall, W.H. (1949). Proc. Phys. Soc. London 62, 741-743.

Keijser, Th.H. de, Langford, J.I., Mittemeijer, E.J. & Vogels, A.B.P. (1982). J. Appl. Cryst. 15,
308-314.

Keijser, Th.H. de & Mittemeijer, E.J. (1980). J. Appl. Cryst. 13, 74-77.

Klug, H.P. & Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and
Amorphous Materials (New York: John Wiley), pp. 671-708.

Krivoglaz, M.A. (1969). Theory of X-ray and Thermal Neutron Scattering by Real Crystals
(New York: Plenum), p. 261.

Krivoglaz, M.A., Martynenko, O.V. & Ryaboshapka, K.P. (1983). Phys. Met. Metall. 55, 1-12.

Langford, J.1. (1992). Accuracy in Powder Diffraction II, NIST Special Publication 846, eds.
Prince, E. & Stalick, J.K. (Washington: US Dpt. of Commerce), pp. [10-126.

Langford, L.I. & Wilson, AJ.C. (1978). J. Appl. Cryst. 11, 102-113.

Mittemeijer, E.J. & Delhez, R. (1978). J. Appl. Phys. 49, 3875-3878.

Stokes, A.R. (1948). Proc. Phys. Soc. London 61, 382-391.

Stokes, A.R. & Wilson, A.J.C. (1944). Proc. Phys. Soc. London 56, 174-181.

Turunen, M.J., Keijser, Th.H. de, Delhez, R., & Pers, N.M. van der (1983). J. Appl. Cryst. 16,
176-182.

Ungér, T., Groma, 1. & Wilkens, M. (1989). J. Appl. Cryst. 22, 26-34.

Vermeulen, A.C., Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1991). Mater. Sci. Forum
79-82, 119-124.

Vermeulen, A.C., Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1992). J. Appl. Phys. 71,
5303-5309.

Vermeulen, A.C., Delhez, R., Keijser, Th.H. de & Mittemeijer, E.J. (1994). To be published.

Vermeulen, A.C., Delhez, R. & Mittemeijer, E.J. (1992). Mater. Res. Soc. Proc. 230, 103-108

Warren, B.E. (1959). Prog. in Metal Phys. VIII, 147-202.

Warren, B.E. & Averbach, B.L. (1950). J. Appl. Phys. 21, 595-599.

Warren, B.E. & Averbach, B.L. (1952). J. Appl. Phys. 23, 497.

Wilkens, M. (1969). Acta Metall. 17, 1155-1159 (in German).

Wilkens, M. (1970). In: Fundamental Aspects of Dislocation Theory, NBS Spec. Publ. 317,
vol. 11, eds. Simmons, J.A., Wit, R. de & Bullough, R. (Washington: US Dpt. of
Commerce), pp. 1195-1221.

Wilkens, M. (1979). J. Appl. Cryst. 12, 119-125.



76 Part Il. Separation of Size and Strain Broadening

Wilkens, M. (1984). In: Microstructural Characterization of Materials by Non-Microscopical
Techniques, eds. Hessel Andersen, N., Eldrup, M., Hansen, N., Juul Jensen, D., Leffers,
T., Lilholt, H., Pedersen, O.B., Singh, B.N. (Roskilde, Denmark: Risg National Lab.),
pp- 153-168.

Williamson, G.K. & Smallman, R.E. (1954). Acta Cryst. 7, 574-581.

Wilson, A.J.C. (1955). Nuovo Cimento 1, 277-283.



CHAPTER 4

DISLOCATION DENSITY AND ARRANGEMENT
FROM X-RAY DIFFRACTION-LINE BROADENING

Application of Present Fourier Methods

J.G.M. VAN BERKUM", A. BORBELY™*, I. GROMA**, AND T. UNGAR™*
*Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands;
**Institute for General Physics, Eotvés University Budapest,

P.O. Box 323, H-1445, Budapest, Hungary.

ABSTRACT

The descriptions currently available of the X-ray diffraction-line broadening
induced by plastically deformed specimens have been summarized and compared
and the meaning of their parameters has been investigated. Procedures have been
given for their application in practice, which include preparatory corrections of the
measured line profiles and fitting to determine parameter estimates. The procedures
have been illustrated by very different sets of experimental data, taken from a
tensile-deformed copper single crystal, from a creep-deformed polycrystalline
copper specimen and from a ball-milled tungsten powder. Each time, the dislocation
density, one or more parameters characterizing the dislocation arrangement and
their uncertainties have been determined. The parameters obtained are interpreted in

terms of the dislocation structure of the specimen.

I. INTRODUCTION

The dislocation structure of severely plastically deformed materials can be analysed by means
of X-ray diffraction-line broadening. Methods have been developed that interpret measured line

broadening in terms of "size" and "strain" parameters (e.g. Warren & Averbach, 1952). As
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concerns plastically deformed materials, the assumptions underlying these methods have been
criticized (e.g. Wilkens, 1979, 1984; Berkum, Vermeulen, Delhez, Keijser & Mittemeijer, 1994)
and the meaning of the parameters obtained is ambiguous (Warren, 1959; Berkum, Delhez,
Keijser & Mittemeijer, 1994). Other methods, that are directly based on the presence of
dislocations as the origin of line broadening, can be more suitable for this class of materials.
These methods use the displacement field of a single dislocation in an infinite medium and
superimpose these for specific theoretical dislocation arrangements: random (Krivoglaz &
Ryaboshapka, 1963), "restrictedly random" (Wilkens, 1970a) and more or less arbitrarily
distributed (Krivoglaz, Martynenko & Ryaboshapka, 1983; Groma, Ungér & Wilkens, 1988).
Plastically deformed specimens have been analysed using these "dislocation-based” methods in
terms of the dislocation density and one or more parameters characterizing the dislocation
arrangement (e.g. Wilkens, Herz & Mughrabi, 1980; Ungdr, Mughrabi, Ronnpagel & Wilkens,
1984; Ungdr, Groma & Wilkens, 1989).

Practical questions in the application of the dislocation-based methods concern the
number of dislocation-arrangement parameters to be used in fitting line broadening data, the
number of data points to be fitted, their weights, and so on. Further, the interpretation of the
parameters determined has been insufficiently solved. Finally, usual practical complications are
encountered, like corrections for background intensity or instrumental imperfections. The aim
of the present paper is to provide unbiased procedures for the problems mentioned and to

illustrate their use by means of a variety of experimental data.

Il. THEORY

A. Dislocation arrangement

Dislocation-arrangement model currently used for the analysis of line broadening usually
assume straight parallel screw dislocations. Sometimes the results are generalized to straight
dislocations of edge or mixed character. The dislocation arrangement is characterized by means
of one- and more-particle distribution functions, describing the chances of finding one or more
intersection points of the dislocation lines somewhere in a plane perpendicular to the dislocation
lines. If w(r) is the one-particle distribution function at position r in the plane (i.e. r has only
two co-ordinates), then w(r)dr is the chance of finding a dislocation intersection within surface
element dr at r. If w,(rr’) is the two-particle distribution function, w,(rr")drdr’ is the chance of

finding one dislocation in dr at r and at the same time a second one in dr’ at r'. Higher-order
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functions ws, wy, and so on can be defined analogously. The dislocation density p equals
{w,(r)), where (...) means averaged over all r.

In a real specimen, all dislocation positions are determined, i.e. not variable, and the
distribution functions merely consist of (sums and products) of 8-functions. It is impossible
and undesirable to derive these distribution functions from the measured line broadening. It is
more useful to think of (relatively simple) average distribution functions, that, if applied to
simulate dislocations positions, could have resulted in the actual set of dislocation positions, but
also in an infinite number of other, equivalent sets (¢f. Wilkens, 1969). Such average
distribution functions can be taken as smoothly varying in space.

There are two possible Burgers' vectors for straight parallel screw dislocations, which will
be denoted as b and —b, respectively. Initially, "positive” and "negative" dislocations are not
distinguished, which means the distribution of both types are characterized by the same
distribution functions. Thus, these functions represent the chance of finding a dislocation,
irrespective of its sign.

For a completely random distribution of dislocations wy(r) = {w(r)) = p, independent of
the position r. If, in addition to the random nature of the dislocation distribution, the specimen
and, consequently, the number of dislocations are unlimited, the #-particle distribution function
W, rm) equals wy(F)xw(r)X..xw, (r®) = pr, since knowledge on the position of one
dislocation does not increase the predictability of the positions of others.

In the restrictedly random dislocation distribution (Wilkens, 1969), w,(r) is again a
constant, as in the completely random distribution, but w,(r,r’) differs from the random

situation in a specific way:
wo(rr) = p? [I - L) forlr —r'I<R,,
2 Np
wy(rrh) = p? fortr—r'l > Ry, )

where N, = 11:pR,,2 and R, is a length constant. This expression recognizes the occurrence of
repulsive forces between dislocations: the chance of finding a neighbouring dislocation within a
distance R, is smaller than beyond R),. If attractive forces are dominant, the dislocation
distribution cannot be described by Eq. (1). In the restrictedly random distribution, the degree
and the range of interaction are correlated: the smaller the "interaction distance” R, the larger
the decrease in the probability of two dislocations within a distance R,,. The two limiting cases
are: (i) N, —» oo and R, — o, which means no interaction and a completely random dislocation
distribution and (ii) N, = 1 and R, ~ \p, which means a rather regular distribution (most
nearest-neighbour distances between the dislocations are close to yp and very few distances are

much larger or smaller), that may be due to strong interactions between the dislocations. The
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functions w, for n > 2 can be derived for this model without additional assumptions (see App. 2
of Wilkens, 1970a), but they are not used in the analysis of line broadening.

A slightly more general dislocation arrangement than the restrictedly random distribution
again involves a position-independent w(r) = p, but now the function w,(r,r') depends
arbitrarily on Ir — r'l (Krivoglaz, Martynenko & Ryaboshapka, 1983). The calculated effects on
line broadening are very similar to those of the restrictedly random distribution.

The most general dislocation model applied until now for the analysis of line broadening
involves arbitrary one- and two-particle distribution functions for (combinations of) "positive"
and "negative” straight parallel screw dislocations (Groma, Ungéar & Wilkens, 1988): w,(r) and
w_(r) represent the chances of finding a dislocation of the indicated sign at r; w,, (rr",
w__(rnr")and w,_(r,r") = w__ (r';r) represent the chances of finding two dislocations with the
indicated signs at r and r’, respectively. These new functions are related to w;(r) and w,(rr")
by: wi(r) =w, (r) + w_(r) and wy(rry = w,  (rr) + w__{ror) + w,_(ror") + w_, (r'r). In this
model, the densities of "positive” and "negative" dislocations are taken equal: (w,(r)) = (w_(r))
= %p. Since "positive” and "negative" dislocations are distinguished now, the functions define a
certain dislocation-dipole polarization. Polarization means that dipole vectors, i.e. vectors from a
"negative" dislocation to a (neighbouring) "positive" dislocation, have a preferred orientation. It
has been shown that dislocation-dipole polarization may account for the asymmetry of
broadened line profiles (Gaal, 1984; Groma, Ungar & Wilkens, 1988).

B. Line broadening

The line broadening effects of the elastic distortions around dislocations are most easily
expressed in terms of the (complex) Fourier transform £}, of a diffraction-line profile expressed
in reciprocal space. The Fourier variable L is a distance in real space, parallel to the diffraction
vector. Fourier transforms are normalized to F = 1 and the centre of gravity of the line profile
in reciprocal space is chosen as the origin of Fourier transformation. In the derivations
discussed here elastic isotropy, linear elasticity and kinematical diffraction are assumed.

In the restrictedly random distribution dislocations with b and —b are not distinguished.
Therefore, the Fourier transform Fy, is real (i.e. the broadened line profile is symmetric) and for
sufficiently small L it reads (Wilkens, 1970a):

exp { -p*L? [f*( ;;?pw)— KV:“, 2

Fy

with

K, = % —2In2+Inlgbl, (3)
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where p* = Cp with C= % 1 C g2b2, g is the length of the diffraction vector g, & is the length of

the'Burgers' vector b, and i is the angle between g and the dislocation line vector I (or —{). The
constant C, which depends on the angles between g, b and I, has been calculated for dislocations
of screw, edge and mixed character (Wilkens, 1970b; see also Wilkens, 1987). The function
f*(x) 1s given in App. 1 of Wilkens (1970a) for the ranges x < 1 and x > 1 separately. The
complicated expression for x < 1 can be replaced (with very good accuracy) by a truncated
Taylor series and a logarithmic function. Thus, f*(x) reads:

2 3
£ = -+l -ln2+% 2L forx<1, (42)
ffx = 950‘,fx - (é}” }Tln ZxJ)% forx> 1. (4b)

Instead of R, also the "effective outer cut-off radius" R, is used. For screw dislocations, it
follows that R, = e~1/4 R, (Wilkens, 1970a). Instead of N, as a dimensionless quantity
characterizing the dislocation arrangement, also M = R, \/p = e~/ \/m is used (Wilkens,
1970b).

The Fourier transform Fy according to Eq. (2) diverges for large L. The following
modification of Eq. (2) has been suggested as more realistic for large L (Wilkens, 1970a; also
used in Wilkens, 1970b):

ool r ()

where R,/ =2 R,/ eKv siny. For small L, Egs. (5) and (2) are identical, whereas for large L,
Eq. (5) is strictly decreasing according to In[F}] e< —L, which is the most likely behaviour of
any Fy for large L (Eastabrook & Wilson, 1952). In the present paper, the modified expression
[Eq. (5)] is used for the restrictedly random distribution, because it appeared to fit experimental
Fy values very well.

In case of arbitrary one- and two-particle distribution functions, the Fourier transform is
complex (i.e. the broadened line profile is asymmetric). Expressions for the modulus |F;| and
argument @, [tang; = Im(F)/Re(FL)] of F; have been derived for small L (Groma, Ungdr &
Wilkens, 1988; Ungdr, Groma & Wilkens, 1989):

IFl = expi—p*L2 mgz—ff +3Tp2 L4 1n% In %} (6a)
0, =-PolPmN _1p s, (6b)
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where R and R 5 are length parameters, T is a relative measure for the spatial fluctuation of
the dislocation density! and Py and P; characterize the dipole polarization and its fluctuation,
respectively. Comparing Eqs. (6a) and (5) for small L, it follows that Refr =% e”4 R, if both
expressions are accurate. In App. A, it is shown that an expression very similar to Eq. (6a) (but,
obviously, with only two instead of five parameters) is also obtained for the restrictedly random
distribution if terms of higher order in L are taken into account. Therefore, the principal
advantage of the arbitrary distribution functions over the restrictedly random distribution is the
ability to describe the asymmetry of the line broadening.

All parameters in Eq. (6) can be expressed in terms of the distribution functions w,(r)
and w4 (rr") (Groma, Ungér & Wilkens, 1988; Groma, Ungdr & Wilkens, 1989). Except for
p*, which equals Cp= Cl(w L) + {w_(r))], these relations are complex and difficult to
interpret. By making assumptions on the nature of the distribution functions, the interpretability
of the parameters is greatly enhanced. For example, it can be assumed that the specimen has a
dislocation-cell structure and that w.(r) and the internal stress have two different values: one in
the case r is in the cell walls and another in the case r is in the cell interiors. Then, the
parameters p, T, Py and P; can be interpreted in terms of the two dislocation densities and the
two internal stresses (Ungdr, Groma & Wilkens, 1989). As a second example of an
interpretation of the parameters in Eq. (6), the meaning of the dislocation-density fluctuation
parameter T is investigated if it is assumed that all distribution functions are position-
independent, i.e. that the fluctuation in the dislocation density is completely accounted for by the
two-particle distribution functions. The general expression for Tp? = Tp*¥ C? reads (cf. Groma,
Ungar & Wilkens, 1989):

Tp2 = (wyy (RO) + W (P)) + (Wa () + (w_s (r)) = [ (D)) + (P2 (D)

Note that —p2 < Tp? < oo and that Tp2 = 0 for a completely random dislocation distribution. In
the case of position-independent distribution functions, w,(r) and w_(r) are equal to a constant
wt (= %p). The functions w,, (r,r), w__(rr), w,._(r,r) and w__ (r,r) are also constants, further
denoted as w,.,, w__ and w,_ = w_,, respectively, and they represent the chances of finding
two dislocations of the indicated signs very close together. Now, T can be expressed as:

Wey +W__ + 2w
4 Wiz

T = -1 (8)

! Instead of the product TXp*z, a quantity Ap*2 was formerly used (Ungdr, Groma & Wilkens, 1989), but since
its value can be either positive or negative [cf. Eqs. (7) and (8)] the present notation is preferred.
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Thus, in this view T indicates if two (positive or negative) dislocations are relatively more often
(T > 0) or less often (T < 0) near to each other than in case of a completely random distribution
(T =0). The restrictedly random distribution is a special case of a distribution in which the
dislocations are less often near to each other than in a random distribution; substituting Eq. (1)

for 7’ =r into Eq. (8) indeed yields a negative value T = —1/N,,.

lll. ANALYSIS IN PRACTICE

A. Preparatory corrections

Experimentally determined line profiles always consist of diffracted intensity superimposed on
background intensity, that is usually taken linear in 28. For single crystals the background is
very low and it is often neglected; for polycrystalline specimens a correct subtraction of the
background intensity is crucial for line-broadening analysis. A related problem is the selection
of the range in 28 to be measured and the range to be transformed into F;. The range is too
short if the tails of the diffraction-line profile are truncated significantly; as a result F; is
distorted systematically. On the other hand, if the range is very long, the relatively large
counting statistical errors in the tails of the profile may produce spurious oscillations in Fy,
especially visible at large L, and merely add "empty" F, values.

A practical procedure for the selection of the 28 range and background correction is the
following2. A 26 range is measured which is surely long enough or too long. Both tails of the
profile are truncated at those 26 positions beyond which no significant decrease in the measured
intensity occurs (a logarithmic scale is useful). A straight line is fitted to, say, 20 to 40 data
points on both ends of the range selected and this line is subtracted as background. In case of
doubt, the line profile analysis may be performed using two or more different truncations and
corresponding backgrounds. The thus corrected intensities are then interpolated to obtain
intensities equidistant in reciprocal space, in a number appropriate for Fourier transformation
and with the centre of gravity exactly in the middle.

Conventional powder diffractometers give rise to significant instrumental line broadening
due to an imperfect diffraction geometry and the wavelength dispersion. The so-called double-
crystal diffractometer eliminates this effect almost completely (Wilkens & Eckert, 1964).
However, a double-crystal diffractometer is not always available and it is not (routinely)

employable for specimens with grains < 1 pm and for reflections at large 26. Line profiles

2 A more rigorous solution to the problem of truncation has been given by Vermeulen, Delhez, Keijser &
Mittemeijer (1992).
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recorded using a powder diffractometer should always be corrected for instrumental
broadening, e.g. by means of Stokes deconvolution (Stokes, 1949). This correction requires the
preparation of a standard specimen (Fawcett et al., 1988; Berkum, Sprong, Keijser, Delhez &
Sonneveld, 1994).

B. Parameter estimation

The most likely values of the parameters used in the dislocation models discussed in Sec. II are
obtained by fitting the corresponding expressions to the experimentaily obtained data. Least-

squares fitting of N statistically independent data points involves minimization of

e= 3 ek (10)
where y; are the experimental data points, 1); the corresponding values of the fitting function and
o2 the variances of y;. If the fitting function has m adjustable parameters, the fit is good if y2 =
(N-m) (e.g. Press, Flannery, Teukolsky & Vetterling, 1986). In the present case, the Fourier
transform Fy is fitted, although the F;, values do not meet the requirement of being statistically
independent. In principle, fitting intensities instead of F, or incorporating covariances of the F,
values in y2 are more correct procedures, but both are extremely laborious. Due to the neglect
of the covariances, ¥2 according to Eq. (10) may differ significantly from N-m for statistically
good fits. Nevertheless, it is assumed that 2 still has relative meaning, so that it can be used for
parameter estimation and for comparing different fits to the same data.

The variances of the real and imaginary parts of ; due to the counting statistical errors in
the measured intensities and the estimated background have been derived by Wilson (1967) for
the case that the errors are relatively small. The variances of IF;| and ¢, have been derived in the
same way. If the (usually small) contributions of the uncertainties in the background slope (in
case of IF;|) and background level and slope (in case of ¢,) to 0?(IF;l) and o ¢, ) are omitted,

the variances read:

S+2[5-28,+qg(S-S)] IF12+ S, 1Fy! -2
GAF) = [ q( )]2 SL a1t cos(g,; ¢L) (11a)
n

1

S— Sn |F2L| COS((pZL_z(pL)
2 8,21F2 ’

(11b)

o))

where S and S, are the number of counts in the peak before and after background subtraction,
respectively, and g is the quotient of the number of intensities used to calculate F; and the

number used to estimate the background.
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The expressions given for Fj are all valid only for small L, but the exact range of validity
is not known in advance. Therefore, the following (rather laborious) procedure is proposed.
Suppose F; values are obtained with a step size AL in L. Then, the function is fitted to F,
repeatedly over different ranges [AL,Ly,), where Ly, = mAL, (m+1)AL, ... until Ly, reaches the
point where IF;| has decreased to about o{IFyl). The parameter values and y2/(N-m) are saved
as a function of Lp. From a plot of y2/(N-m) versus Ly, the range of Ly in which relatively
good fits are obtained is selected. Finally, the specimen is characterized by the average
parameter values obtained in the "good" fits. Unfortunately, due to the bias of 2 (covariances
of the data points ignored) reliable error estimates of the parameters are impossible.

Experimental data can be analysed using different dislocation models and corresponding
fitting functions. The selection of the most suitable model depends on the accuracy of the
experimental data and the nature of the specimen. Equation (6) require more accurate data than
Eqgs. (2) or (5), because of the larger number of adjustable parameters. On the other hand,
specimens with uncommon dislocation arrangements may need the larger flexibility of Eq. (6)
for a sufficient description of the measured data. For almost symmetrical line profiles, Eq. (6b)
yields relatively large uncertainties of the parameters; restricting Eq. (6b) to the first term may
provide more accurate estimates of Py and R;. On fitting Egs. (6a) and (6b) to the experimental
data discussed in Sec. IV, it was experienced that R; and R3 took similar values and that taking
R; equal to R, did not give significantly worse fits. The same held for R4 and Rs. Therefore,
Eq. (6a) is used only with R3 =R; and Eq. (6b) only with Rs = Ry.

Additional remarks:

(i) The variance of |F;| is often fairly constant for all L, so that unweighted fitting yields about
the same results.

(ii) If the measured line profile with Fourier transform F LH is deconvoluted with an instrumental
profile with Fourier transform F LG to a profile with Fourier transform F LF, then c2(F LF) =
RFHYIFL)? (¢f Delhez, Keijser & Mittemeijer, 1980).

(iii) Fitting InlF; | instead of IFy| accelerates the procedure, because the exponential is avoided.
In that case it is essential to use the correct standard deviations: o(InlF}) = o(IF )/IF ]

(iv) All expressions for F; in Sec. II.B are non-linear in L and can only be fitted using iterative
fitting routines. For the smallest L values, Egs. (2) and (5) can be linearized, since f*(x) = - In x
+ % —In 2 and, consequently, IniF;|/L? is linear in In L. In that case, (weighted) linear least-
squares routines are applicable. The standard deviations can be calculated from Eq. (11a) using
oUnlF /L2 = o(IF)/(IFIL2).
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IV. EXPERIMENTAL EXAMPLES

The procedures outlined in the previous section will be illustrated using three widely different
sets of experimental data. The specimens considered are a tensile-deformed copper single
crystal, a fatigued polycrystalline copper specimen and a ball-milled tungsten powder. The first
two specimens were measured using a double-crystal diffractometer, the third one using a
conventional powder diffractometer. The examples are in order of increasing structural
ambiguity, i.e. the dislocation structures become less well-defined. Also, the accuracies of the
measurements (counting statistics, peak-to-background ratios and instrumental broadening)

decrease for the specimens in the order given.

A. Tensile-deformed copper single crystal

A copper single crystal was tensile deformed in the [001] direction up to the resolved shear
stress T=75.6 MPa. From the bulk of the deformed crystal, a specimen was prepared with a
plane surface perpendicular to the tensile axis ("axial case"). From this specimen, the (002)
reflection was recorded using a double-crystal diffractometer with CuKa, radiation. The same
specimen (not the same measurement) was used as an illustration previously (Ungér, Groma &
Wilkens, 1989) and, together with other related specimens, discussed extensively in earlier
papers (Ungdr, Mughrabi, Ronnpagel & Wilkens, 1984; Ungar, Mughrabi & Wilkens, 1984).

The background intensity was removed according to the procedure described in
Sec. III.A. Within the range of measurement, the tails of the line profile do not become
completely horizontal. However, the measured intensity in the tails is more than 1000 times less
than the top intensity, so the truncation error is very small. Due to the large asymmetry of the
line profile, Fy in a plot of Im(F}) versus Re(F;) spins round the origin a number of times
before it becomes indetermined. Therefore, @, calculated as arctan[Im(F7)/Re(F7)]) is incorrect
by a multiple of w above certain L values. Before fitting Eq. (6b), this effect has been eliminated.

The results of fitting Eq. (6a) to |F;| obtained for this measurement are shown in Fig. 1.
The best fits are obtained for 80 < Lyp < 150 nm. For L > 150 nm, IF! becomes noisy (see
Fig. 1a) and no better fits can be expected. The average parameter values obtained in the best
fits are: p* = 0.51x10'5 m2, Rege = 0.22 um, 7' = 0.43 and R, = 0.12 pm. The parameters
change approximately 10 to 20% over the selected range of Ly,. For a translation of p* to p, see
Ungdr, Groma & Wilkens (1989). The positive value of T indicates that dislocations are
relatively often near to each other, i.e. some clustering of the dislocations [see Eq. (8)]. This
agrees with the dislocation-cell structure observed by transmission-electron-microscopy (TEM)
for this specimen (Ungdr, Mughrabi, Rénnpagel & Wilkens, 1984).
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Fig. 1: Fitting Eq. (6a) to |F,I of the (002) reflection of a tensile-deformed [001] copper single
crystal over different ranges [AL,L,p] in L (AL = 6.2 nm is the step size of the F; values):
(@) one of the fits (Lyp = 117 nm) and (b) goodness-of-fit 22/(N-m), (c) dislocation density
p’, (a) first length parameter Rqg, () relative dislocation-density fluctuation T and (f second
length parameter R, (A3 = Ap) as a function of L.
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Fig. 2: Fitting Eq. (6b) to ¢, of the (002) reflection of a tensile-deformed [001] copper single

crystal over different ranges [AL,Lyp] in L (AL = 6.2 nm is the step size of the £ values):
(@) one of the fits (L,p = 136 nm) and (b) goodness-of-fit x2/(N-m), (c) dipole polarization
Py, (a) first length parameter Ry, {€) dipole-polarization fluctuation Py and (f) second length
parameter R, (Rs = A4) as a function of L.
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The dislocation structure of the specimen cannot be a perfect restrictedly random
distribution, because the line broadening is asymmetric. Nevertheless, ¥2/(N-m) values obtained
from fitting Eq. (5) to IF] are not much larger than those in Fig. 1b. The corresponding
parameters are p* = 0.61x1015 m~2 and R,' = 0.045 um [the value % e’ R, =0.13 um can be
compared with R, see below Eq. (6)]. The difference between these results and those obtained
from fitting Eq. (6a) is probably larger than the experimental error. Since y2/(N-m) is
somewhat worse and the asymmetrical line broadening indicates a complex dislocation
arrangement, the results obtained from fitting Eq. (5) are judged less reliable.

The argument ¢, has been fitted using Eq. (6b), see Fig. 2. The fits up to Lyp = 150 nm
are selected as good fits (the fits for Ly, = 60 nm are judged as accidentally, not significantly
better). The parameters obtained in these fits are Py = —4.3 to —5.6x1021 m=3, Ry = 0.13 to
0.20 um, Py = 0.9 to 2.6x1036 m=3 and R4 = 0.07 to 0.15 pm. A positive value for Py is in
accordance with the sign of the internal stresses expected in the axial direction in a tensile-
deformed specimen (see Ungdr, Groma & Wilkens, 1989). The ratio IPgl/p™3/2 = 0.43 is
relatively high (¢f. Sec. IV.B), indicating a significant dislocation-dipole polarization. This is not
surprising for a uni-axially deformed single crystal. _

In principle, the parameters p, T, Pg and P| used here to characterize the dislocation
structure can be translated to the parameters used in the composite model for dislocation-cell
structures (see Ungar, Groma & Wilkens, 1989). Since dislocation cells have been observed in
this specimen, this translation would be useful here. However, due to the uncertainties in the
parameter estimates and the sensitivity of the translation to the relatively uncertain coefficients T
and Py, such a procedure is unreliable in the present case. The method of subdividing the
measured profile into two symmetrical subprofiles (Ungdr, Mughrabi, Ronnpagel & Wilkens,
1984), in spite of its additional assumption (cell walls and cell interiors diffracting incoherently),
is probably more suitable to determine dislocation densities and internal stresses in cell walls
and cell interiors. Of course, a characterization by means of p, T, Py and P; is more generally
applicable.

B. Creep-deformed polycrystalline copper

The measurements discussed below are part of a series of measurements undertaken for the
investigation of the internal stresses in subgrain structures formed after plastic deformation. The
specimens concerned were short cylindrical rods of pure copper with average grain sizes of
68 um, deformed by a constant uni-axial compressive stress without lubrication. Two

specimens are considered here: (i) a specimen deformed at room temperature (298 K) and (ii) a
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specimen deformed in three steps at 298, 473 and 573 K. For more details on the specimen and
its deformation procedure, see Borbély, Maier, Renner, Straub, Ungdr & Blum (1993).

Copper {220} diffraction-line profiles were recorded using a double-crystal
diffractometer. By means of movable slits placed in front of the specimen, reflections of
individual grains were selected and measured. Here, reflections from lattice planes perpendicular
to the direction of compression ("axial case") are considered. The selection of the 28 range to
be transformed and the background correction were performed according to the procedure
described in Sec. II.A. The range of measurement was sufficient to avoid (perceptible)
truncation errors. Due to the smaller grain sizes of these specimens, smaller peak intensities and
larger background intensities ("peak-to-background ratio” = 500) were obtained than in the case
of the copper single crystal in Sec. IV.A. Consequently, |F;| becomes noisy at somewhat
smaller values of L (i.e. larger values of IFyl).

Fitting Eq. (6a) to IF,| yields p* = 0.53x1015 m~2, Rege = 0.15 pm, 7 = 0.9 and R; =
0.07 um after deformation at room temperature and p* = 0.56x1015 m=2, Rogr=0.18 pm, T =
1.1 and R, = 0.08 pum after deformation at 573 K (30 < Lyp < 80 nm). The uncertainties in the
parameter values are again 10 to 20 %. The positive T value, implying significant clustering of
dislocations, is consistent with the distinct dislocation-cell structures observed by means of
TEM (see Borbély, Maier, Renner, Straub, Ungér & Blum, 1993). The TEM observations
indicate dislocation cells with narrower cell walls than in the case of the copper single crystal
(Ungdr, Mughrabi, Rénnpagel & Wilkens, 1984), which agrees with the larger T value found
here. The slight increase of T after deformation at 573 K with respect to deformation at room
temperature is of the order of the experimental error. If it is a true increase, it indicates an
increased clustering of the dislocations, which agrees with the sharpening of the dislocation-cell
walls observed by TEM (Borbély, Maier, Renner, Straub, Ungédr & Blum, 1993).

As expected, the asymmetry of line profiles of specimens deformed in compression is
reversed with respect to the tensile-deformed specimen in Sec. IV.A: a reflection with a
diffraction vector parallel to the deformation axis ("axial case") now yields a positive P,
whereas reflections with diffraction vectors perpendicular to the deformation axis ("side case")
yield negative P. For two "axial" measurements of two different grains in the specimen
deformed at room temperature, an analysis of ¢, using only the first term of Eq. (6b) yields Py
=3.7x1021 m-3 and Ry = 130 nm, and Py = 1.7x1021 m~3 and R = 210 nm, respectively. The
uncertainties of the parameter values are about 10 %, so that it can be concluded that the
dislocation-dipole polarizations in different grains in the same specimen are significantly
different. Including the second term of Eq. (6b) in the fitting does not improve the fits
significantly. The asymmetries of the measurements after deformation at 573 K are too small to

do a meaningful analysis using Eq. (6b). Apparently, the sharpening of the dislocation-cell
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walls after deformation at elevated temperatures is accompanied by a decrease in the dipole
polarization.

The ratio |1Pgl/p*3/2 (0.30 and 0.14 for the two measurements after deformation at room
temperature and even smaller after deformation at 573 K) indicates a smaller dislocation-dipole
polarization than that obtained in the case of the tensile-deformed single crystal (0.43, see
Sec. IV.A), although the macroscopic stress applied was uni-axial in both cases. A possible
explanation is the fact that the local stresses in the present polycrystalline specimens are not
completely uni-axial due to the forces the (elastically anisotropic) grains exert onto each other.
This may also explain the observed differences in dipole polarization between grains in a single
specimen.

In spite of the strong clustering of the dislocations, the restrictedly random distribution
has also been used to interpret the measured line broadening. The results of fitting Eq. (5) are
p*=0.62x105 m2 and R, = 0.032 pm (% e”4 R, = 0.092 um) after deformation at room
temperature, and p* = 0.62x10!5 m~2 and R,' = 0.044 um (% e”4 R, = 0.13 pm) after
deformation at 573 K. Comparing results obtained by fitting Eq. (6a) and Eq. (5), here and in
Sec. IV A, it can be concluded that systematic differences exist, but that they decrease as the

asymmetries of the line profiles decrease.

C. Ball-milled tungsten powder

A pure tungsten powder (> 99.5 mass%, Fluka Chemika) was severely plastically deformed by
means of ball milling for 1 h using two balls in a horizontally moving vessel. The milling
produced some smaller particle fragments. To reduce additional line broadening due to the finite
sizes of these fragments, the milled powder was "washed" three times (washing was performed
by suspending the powder in 2-propanol and removing the suspension from the sediment after
30 minutes). From scanning-electron-microscope observations, it was concluded that after this
treatment nearly all particles are larger than 1 um. Since the line broadening from the
dislocations is large, the line broadening contribution of the finite size of the particles of the
"washed" powder is very small. A diffractometer specimen was prepared by suspending a small
amount of the "washed” powder once more in 2-propanol and now sedimenting it onto a flat
single crystal substrate. A standard specimen of exactly the same geometry was prepared from
an annealed Si powder to measure the instrumental broadening (Berkum, Sprong, Keijser,
Delhez & Sonneveld, 1994). Both the silicon and the tungsten layer are almost fully transparent
due to their open "coral-like" structure and their thinness (< 20 pm).

X-ray diffraction-line profiles were recorded on a Siemens D500 powder diffractometer

using CuKq radiation. In addition to the procedures described in Sec. ITILA., the o; component
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of the CuKa spectrum was removed from the line profiles according to Delhez & Mittemeijer
(1975). To obtain Fourier coefficients of the instrumental line profile at the reciprocal space
positions of the tungsten reflections, Fourier coefficients of the two nearest silicon reflections
were interpolated. The measured tungsten profiles are broader than the measured instrumental
profiles by a factor of 5 to 10 (widths at half height), so the applied correction for instrumental
broadening is not very critical.

The elastic isotropy of tungsten, in combination with the all-sided deformations during
ball milling, permits a direct comparison of the broadening of all reflections of tungsten. Thus,
the derived dependence of the fitting functions on the length g of the diffraction vector can be
checked: the same results should be obtained for all reflections if the fitting parameters are
corrected for their g dependence. On fitting Eq. (5), a constant value of p*/g? is to be expected,
since C o< g2 [see below Eq. (3)]. Secondly, since R,' o eKv [see below Eq. (5)] and ekv o< g [cf.
Eq. (3)], a constant R,'g is to be expected.

Using CuKo radiation, eight reflections are available in principle, but the last three
reflections are unsuitable for this check, because of their very low intensities ({222} and
{4001}), peak overlap ({321} and {400}) and truncation ({400}). This leaves five reflections to
be used in the comparison. Unweighted fitting of Eq. (5) to |[Fy| was performed. This is
justified as long as F(L; =~ 1 [see (i) and (ii) at the end of Sec. IIL.B], which holds reasonably for
the L ranges considered. The parameter estimates converge properly for increasing Ly, (see
Fig. 3). The average results for the five reflections (see Table I) are p*lg* = 0.46x10-3 and
R, g =25 and the standard deviations are 16 and 20 %, respectively. The results agree
sufficiently well to conclude that the g dependence of the fitting function is acceptable.
Nevertheless, there is a small decreasing trend in p*/g* and an increasing trend in R,'g. The
trend in p*/g2 may be due to truncation and background overestimation, since these effects

Table ||  Dislocation density p” and length parameter R, both corrected for their g dependence,
for five different reflections {hkl} of a ball-milled tungsten powder, obtained by repeatedly
fitting Eq. (5) to IF;| according to the procedure described in Sec. |II.B.

{kh g (nm-) plgPx103 Re' g
110 447 0.58 21
200 6.32 047 23
211 7.74 0.52 21
220 8.94 0.36 29
310 9.99 0.38 28
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usually increase with increasing g and they cause an underestimation of the broadening and,
consequently, of p*. The trend may also be due to a little finite-grain-size broadening to the
measured line broadening (in spite of the precautions taken, see above), since then the
broadening and therefore p* is overestimated by an amount that decreases with increasing g.
Thus, the small trends observed do not necessarily indicate a deficiency of the g dependence of
the fitting function.

The ball milling has produced a very high dislocation density (p = 106 m2). Further, the
value of M'=R,’ \/p_*is an indication of the true value of the dislocation-arrangement parameter
M (Wilkens, 1970b). The present value M' = 0.5 is very small, indicating strong interactions
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Fig. 3: Fitting Eq. (5) to I1F.! of the {110} reflection of a ball-mifled tungsten powder over different
ranges [AL,Lyp] in L (AL = 0.47 nm is the step size of the F values): (a) fit for Ly, = 60 nm
and (b) goodness-of-fit ¥2/(N-m), (c) dislocation density p”and (d) length parameter R,' as
a function of Ly, (not all possible Ly have been included).
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between the dislocations [see below Eq. (1)]. This is not surprising with such a high dislocation
density: on distances of the order of 10 nm (= 1/+/p) the forces between dislocations are very
strong. The combination of a high dislocation density (p = 10'5 m—2) and a strong interaction
(M = 0.5 to 1) has also been observed for dislocation-cell walls (Ungar, Mughrabi, Ronnpagel
& Wilkens, 1984). Therefore, the disiocation structure of the ball-milled tungsten powder may
resemble the dislocation structure of dislocation-cell walls.

The asymmetries of the line profiles of the ball-milled tungsten powder after correction
for instrumental broadening were negligible. Therefore, no attempt was made to interpret ¢;. No
dislocation-dipole polarization is to be expected for these specimens, since in the deformation
process all particles have been hit from several sides. Besides, each line profile originates from a
large number of particles, so any polarization within the particles would probably be cancelled
in the measurement. The small asymmetry is consistent with the restrictedly random distribution

assumed in the interpretation.

V. CONCLUSIONS

A detailed interpretation of X-ray diffraction-line broadening induced by plastic deformation is
possible using several methods currently available. A careful preparation of the experimental
data and weighted fitting with special attention to the fitting range are essential for their
application in practice. For high-resolution measurements with good counting statistics and
peak-to-background ratios (e.g. taken from single crystals), the dislocation density, the
dislocation-dipole polarization, and parameters characterizing their spatial fluctuations can be
determined with uncertainties of the order of 10 to 20%. If the measurements do not meet these
requirements or if the dislocation structure of the specimen can be described with fewer
parameters (e.g. if the line broadening is symmetrical, i.e. the dipole polarization is negligible),
the restrictedly random distribution can provide an adequate description of the experimental
data. It includes the dislocation density and one parameter to characterize the dislocation
arrangement. If the dipole polarization is small, analysis by means of the restrictedly random
distribution or by means of a more general model yields comparable resuits.

The dislocation arrangements of a tensile-deformed copper single crystal and of a creep-
deformed polycrystalline copper specimen are both characterized by clustering of dislocations
and a more or less pronounced dipole polarization. They cannot be described by means of a
restrictedly random distribution. The dislocation arrangement in a ball-milled tungsten powder
is characterized by an extremely high dislocation density, strong repulsive dislocation
interactions and no dipole polarization and can be described by a restrictedly random

distribution.
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APPENDIX A: HIGHER-ORDER TERMS IN THE RESTRICTEDLY RANDOM
DISTRIBUTION

In the derivation of F; for the restrictedly random distribution [see Eq. (2)], terms of a higher
order than L2 have been neglected (Wilkens, 1970a). Below, it is shown that a small extension
of the derivation adds a higher-order term that is very similar to the one obtained for arbitrary
one- and two-particle distribution functions [see Eq. (6a)].

In Eq. (2.12) of Wilkens (1970a), In F, has been expressed as:

nF, = 2, Tk (A.1)
k=1

The first term 7T} is given by Eq. (4.9) of Wilkens (1970a)3. From each term T} for k > 2, the
leading term Tk*(l) proves to be proportional to L2, The sum ZTk*(l) for k 2 2 is given by
Eq. (5.9) of Wilkens (1970a). The derivation of Eq. (2) is based exclusively on the terms T
and ZTk*(l) for k > 2 in Eq. (A.1). The remainders T — Tk*(l) for k > 2 are proportional to L* or
higher powers of L and they have been neglected in Eq. (2).

According to p. 1205 and Eq. (2.13b) of Wilkens (1970a), the remainder for k = 2 can be

written as:
# 2ngl 4
-1 n = £_48'_) [(e?,)(z) + (e2>(3) - 3(62)2], (A2)

where (¢} ) is given by Eq. (4.7) of Wilkens (1970a). It is argued that for sufficiently small L,
(e} )2 and (e} )3, can be written as:

b eorn 15
o =3 (ﬁ]“ n? p2 C? [f”m —fr L)+ ﬁ}, (A3)
1) 3 (b . 2
i) = LNPQH m(—ﬁj 72 p2 2 [f (L’)—2ln2—%+ 12], (A4)

3 Eq. (4.9) of Wilkens (1970a) contains an error: the right-hand side is the expression for 77 instead of T7.
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where L' = % L siny/ R,. Substitution of Egs. (A.3) and (A.4) into Eq. (A.2) yields:

2
(3 ‘5;0*2L“[f"(L)+16 NP -3 W)+ g T3 lnzj] (A3)

where p* = Cp with C= % 1t C g2b2. Using Eq. (4a) for f*(x) in Egs. (2) and (A.5), adding the
two results for In F; [cf. Eq. (A.1)] and neglecting terms of higher order than L?, yields the
following expression for small L:

R" 1 R3

InFy = -p"L2In +5 N, p? A R R (A.6)
where
. T4 R
R' = kT siny’ a7
R N,+3+N'
v 2p p < T
Ry = siny exp( 2 (A-8)
. Ry Ny, +3-N'
Ry = Siny exp( 2 )’ (A9)
with
2 n2
N = (N,-D2-] 47 +5+40n 2+“2‘C”’. (A.10)

In the last term in the right-hand side of Eq. (A.10), that originates from 77 and the term
proportional to x2 in £~ (x), Ny = npRp2 [see below Eq. (1)] has been substituted.

The remainders T — Tk*(l) for k 2 3 are still neglected in Eq. (A.6). If they also contribute
to the L4 term of In Fy, they will alter the proportionality constant of this term and the constants
R;' and R3', but the structure of this term (L and p* dependences) is expected to remain
unchanged.

Comparison of Egs. (A.6) and (6a) shows that the structures of the terms up to the order
of L* remains unchanged if a general dislocation arrangement is restricted to the restrictedly
random distribution: only the constants R, T, R, and R are replaced by R,", Np'l, Ry and R4/,
respectively. All parameters in Eq. (A.6) can be related to two adjustable parameters p* and R,
(note that N, = npsz). In Sec. IL.B it was argued that T = —Np_l in case of a restrictedly
random distribution, so that the coefficient of the L* term in Eq. (A.6) cannot be correct. This
deviation is probably due to the approximations inherent in the Egs. (A.3) and (A.4) and the
neglect of the remainders Ty - T, k*(l) for k = 3. Nevertheless, the correspondence between the
Egs. (A.6) and (6a) (e.g. the two logarithmic factors, the p* dependence) proves that a relatively
simple dislocation-arrangement model already provides a reasonably detailed description of line

broadening.
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CHAPTER 5

CHARACTERIZATION OF DEFORMATION FIELDS
AROUND MISFITTING INCLUSIONS IN SOLIDS
BY MEANS OF DIFFRACTION-LINE BROADENING

J.G.M. VAN BERKUM, R. DELHEZ, TH.H. DE KEUUSER, AND E.J. MITTEMEIER
Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands

ABSTRACT

Variations in the local elastic distortions in crystalline solids, induced by finely
dispersed misfitting inclusions, cause (X-ray) diffraction-line broadening. They can
be analysed by modelling the specimen under study and matching the accordingly
simulated diffraction profiles to measured ones. The non-uniform strains in the
matrix are described by a theory due to Eshelby. As an example, specimens
composed of silicon precipitates in an aluminium matrix are used. The simulations
using the model offer the possibility for a quantitative analysis of the misfit and the
stored elastic energy and predict characteristics of line profiles which are also
observed experimentally: asymmetry of the profile increasing with the volume
fraction of inclusions and an unusual behaviour of the mean squared strain <eL2 ) as

a function of the correlation distance L.

I. INTRODUCTION

Two-phase materials consisting of a dispersion of fine particles in a matrix are commonly
applied in practice. Examples of practical and scientific interest are precipitation-hardened
aluminium alloys and particle-reinforced metal-matrix composites. The difference in the
thermal-expansion coefficients of the matrix and the particles results in a difference in

shrinkage on cooling to room temperature. The associated volume misfit and the accompanying
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elastic distortion of (at least) the matrix may play a crucial role in the properties of the two-
phase material.

The equivalent inclusion method, developed by Eshelby, provides a detailed description of
the deformation field in a two-phase assembly (Eshelby, 1956; Withers, Stobbs & Pedersen,
1989). The average stress or strain predicted by this method can be tested experimentally.
Measurement of the average lattice parameter by X-ray or neutron diffraction suits this purpose
and has been applied to precipitating alloys (e.g. Mittemeijer, Mourik & Keijser, 1981) as well
as to metal-matrix composites (e.g. Withers, Juul Jensen, Lilholt & Stobbs, 1987; Ledbetter &
Austin, 1987). Alternative techniques include measurement of yield stress (Arsenault & Taya,
1987), Young's modulus, thermal expansion coefficient or Bauschinger effect (Withers, Stobbs
& Pedersen, 1989),

Diffraction-line broadening is a phenomenon that is sensitive to variations in the local
elastic strain within the matrix and the inclusion and therefore it is of great value as an
additional, independent source of information. It has already been used for a comparative
investigation of the integral breadths of aluminium-silicon alloys of different compositions
(Mourik, Keijser, Pers & Mittemeijer, 1988; Berkum, Delhez, Keijser, Mittemeijer & Mourik,
1991). In the present paper, experimentally observed line broadening is interpreted on an
absolute scale. In this first attempt, a necessarily simple model of the specimens is used for line-
profile simulations: spherical inclusions in spherical crystallites, elastic isotropy, no plastic

accommodation of the misfit and no interaction of stress fields of neighbouring inclusions.

Il. DIFFRACTION-LINE BROADENING

Broadening of (X-ray) diffraction-line profiles is caused by non-ideal optics of the instrument,
wavelength dispersion and structural imperfections of the specimen. The non-instrumental,
structural line broadening from polycrystalline samples is often divided in size broadening and
strain broadening. Size broadening is caused by a finite size of the crystallites (or coherently
scattering domains). Strain broadening is due to varying displacements of the atoms with
respect to their reference lattice positions.

Structurally broadened line profiles can be characterized by breadth measures, which can
be interpreted in terms of size and strain (Keijser, Langford, Mittemeijer & Vogels, 1982). In
the more rigorous methods of analysis, the intensity distribution is expressed as a Fourier

series:

+ oo
P(hy) = K 2, Anl) cos 2minhy + B(n,l) sin 2ntnhs, (1)

B = —oco
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where K is (approximately) constant over k4, n is the harmonic number, / is the order of
reflection, A and B are the cosine and sine Fourier coefficients, and #5 is the length of the
diffraction vector in reciprocal space in units 1/lasl, where las| is the length of a unit cell in the

direction of the diffraction vector. The relation between A5 and the diffraction angle 20 s:

2 la;| sin@
By = SIS @)

where 4 is the wavelength.

According to a well-known concept in the kinematical diffraction theory, crystallites can
be taken to consist of independently diffracting columns of unit cells, perpendicular to the
diffracting lattice planes (Bertaut, 1949). In practice, the influence of the position of the columns
with respect to each other on the intensity distribution is not significant and is ignored. Then, if
both size and strain broadening occur, the Fourier coefficients A and B are given by (Warren,
1969):

An) = % (cos 27iZ,), (3)

B(n,) = - % (sin 2miZ,}, )

where N, is the number of r-pairs in the sample (an n-pair denotes two unit cells in the same
column, # cells apart), N is the total number of unit cells in the sample, and Z,, is the difference
of the displacements in the direction of the diffraction vector of the two unit cells of the n-pair
considered: Z, = nxe,, where ¢, is the average value of the strain between the two cells of the
n-pair (in what follows, beside e, also ¢, is used for the strain over the distance L, where L =
nxlasl). The brackets { ) mean averaging over all n-pairs in the sample.

For the interpretation of measured line broadening, Eqs. (3) and (4) cannot be used
directly. Many suggestions for approximations exist (for a review see Delhez, Keijser &
Mittemeijer, 1982). In the Warren-Averbach analysis (Warren & Averbach, 1950, 1952), the
logarithm of the cosine term in Eq. (3) is approximated (truncation of Taylor expansion) and
the structure parameters obtained by this analysis are the average column length (¥3) and mean
squared strains (enz). These parameters are not compatible with parameters used in the common
models of the imperfect solid state, like dislocation density, misfit, concentration gradients, efc.

Criticism on the Warren-Averbach analysis (e.g. Wilkens & Hartmann, 1963; Wilkens,
1979; Ryaboshapka, 1981) has concerned the justification of the truncation of the series
expansion of the logarithm of the cosine term and the physical significance of the parameter
{N5). As an alternative, if it is assumed that size broadening is negligible, N,/N can be replaced
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by 1 in Egs. (3) and (4). The then resulting averaged cosine and sine terms can be further
elaborated for the case of broadening by specific configurations of dislocations in cold-worked
single crystals (for a brief survey see Wilkens, 1988). In the cases where it applies, this
approach provides directly interpretable structure parameters.

In this paper, a method is suggested that avoids approximate elaborations of Egs. (3) and
(4). Here, complete line profiles are simulated, using Egs. (1) to (4), for comparison with
measured ones. To calculate N, and Z, in Eqs. (3) and (4), a model is designed that represents
the microstructure of the specimen under investigation as closely as possible. In this way, the
relation between characteristics of the line profiles and the physical input parameters can be
studied in a straightforward manner. Examples of such characteristics are integral breadth and
asymmetry of the profile. Moreover, the behaviour of the frequently published (eL2 ) curve can

now be analysed on the basis of the model calculations.

. MODEL

The method of simulating line profiles is applied to matrix reflections of specimens containing
finely dispersed misfitting particles in elastically distorted matrix crystallites. In this paper, it is

~
k-t
T
Fig. 1: Column-length distribution p(T) for a sphere of radius R divided in infinitesimally narrow

columns (fult line, see App. A); one particular division in real columns of specific lateral
dimensions (x) and the average of all possible divisions in real columns of the same lateral
dimensions (@).
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assumed that all crystallites are spherical and of the same size. According to the kinematical
diffraction theory, size broadening is solely determined by the column-length distribution p(N3),
giving the fraction of columns with length T = Nsla;l. The column-length distribution of a
sphere divided into columns of infinitesimally small cross section is shown by the full line in
Fig. 1 (see App. A). A collection of columns of finite cross section can only approximate a
spherical crystallite (as long as each column is composed of a whole number of unit cells).
There is an infinite number of distributions of columns of identical cross section all
approximating the same smooth sphere. One example of such a (necessarily discrete)
distribution is shown by the crosses in Fig. 1. The average shape obtained from all nearly
spherical crystallites corresponding to these column-length distributions is a smooth sphere and
the average column-length distribution is represented by the collection of data points on the full
line given in Fig. 1 (dots). In the simulations, the last distribution will be used. The values of N,
[see below Eq. (4)] are obtained from the column-length distribution by using:

N, = NZI (N5 = ) p(Vy). 5)

Now, a misfitting particle is introduced in the centre of a crystallite in two steps (see
Fig. 2). Firstly, a cavity of radius pOA is created by removing some material from the centre of
the crystallite. Thus, the central and therefore longest columns of the crystallite miss one or
more unit cells. The influence of these missing cells on the size broadening can be accounted
for by omitting those n-pairs from N, of which the upper or lower cell is located in the cavity.

In the second step, the particle of radius pg is inserted into the cavity and glued to the
matrix. The linear-misfit parameter is defined as & = (p§—p})/p. The assembly thus formed is

2R
Fig. 2: Matrix and inclusion are assembled and aliowed to relax. The cylindrical and the polar co-
ordinate systems are defined with respect to the direction of the diffraction vector H.
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allowed to relax in order to minimize its mechanical strain energy and an equilibrium state of
stress is developed. Interaction of stress fields of neighbouring crystallites is neglected. It is
assumed that deformations and the interaction of the particle and the matrix are purely elastic.
Then, application of elasticity theory shows that in an infinite, continuous and isotropic matrix
the radial and tangential elastic strain components fall off with respect to the centre of the
crystallite as p=3, p being the distance to the centre (see Fig. 2). Eshelby (1956) has developed a
theory to describe the elastic distortions brought about by point defects in a finite matrix. For
the case considered here, the finiteness of the matrix induces a uniform dilatation of the
spherical matrix, superimposed on the non-uniform strains corresponding to the infinitely large
specimen. Eshelby's theory for a point defect is adopted here for the case of a misfitting
inclusion, composed of a number of atoms. The theory is probably even more suited to the latter
case, since then ignoring electronic interaction is justified.

In App. B, it is derived that atoms in a unit cell at a height z above the equatorial plane
(z =0, see Fig. B1) in a column of length T are subjected to an average displacement { f)r.-
with respect to the equatorial plane in the direction of the diffraction vector. The average strain

e, between two unit cells, a distance of » unit-cell dimensions apart, in a column of length T is

given by:

{1 = fironlasl}. 6)

1
e = 5
Using Egs. (5), (6), (A.4) and (B.8), N, and e, can be calculated and substituted into Egs. (3)
and (4).

IV. EXPERIMENTS AND SIMULATION

A. Experiments

The model described in the previous section has been applied to the case of two-phase
aluminium-silicon alloys. In the past, ribbons of AlSi alloys with five different compositions
(2.0,3.6,5.1, 10.4 and 16.1 wt.% of Si, corresponding to 2.3,4.2, 5.9, 11.9 and 18.2 vol.% of
Si after precipitation) were prepared by the melt-spinning technique (Delhez, Keijser,
Mittemeijer, Mourik, Pers, Katgerman & Zalm, 1982). The specimens were then annealed at
447 K for 1841 h to obtain complete precipitation of silicon. Subsequent cooling to room
temperature induces strains due to the large difference between the thermal-expansion
coefficients of the aluminium matrix and the silicon precipitates. The specimens were stored

(i.e. aged) for 0.5 to 12 days at room temperature between annealing and measurement. Melt-
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spun ribbons of pure aluminium, that were subjected to an identical heat treatment as the
specimens under investigation, were used for a standard specimen. The aluminium matrix
{400} reflections were recorded on a Siemens D500 diffractometer using CuKa-radiation. The
{400} reflection was selected, because it does not suffer from serious overlap with silicon
precipitate reflections.

The diffractometer specimens are composed of ribbons having varying thicknesses,
causing small, unpredictable specimen displacements in the diffractometer. Due to these
specimen displacements, the positions of the centroids of the experimental profiles do not yield
accurate values for the average matrix lattice parameter a. Therefore, the dilatation of the matrix
predicted by Eq. (B.4) [causing a lattice-parameter change Aa/a = ey, see Eq. (B4)] cannot be

investigated accurately using these specimens!.

B. Simulations

The values of the input parameters for the aluminium {400} line-profile simulations, pertaining
to the specimens discussed above, were taken as follows.

Unfortunately, the dimension of the unit cell in the direction of the diffraction vector
cannot be equal to the interplanar spacing, since then the computation time is too large due to
the enormous number of unit cells. Hence, a larger unit-cell dimension is adopted. It is realized
that the inaccuracy caused by approximating the "true” displacement field by its average value
over the unit-cell volume (see App. B) increases as the cell is enlarged (especially in the
neighbourhood of the inclusion). Here, a suitable value for the unit-cell dimension appears to be
15 times the interplanar spacing: la;l = 15x0.1012 = 1.518 nm.

The average radius of the silicon precipitates (p®) was determined from X-ray diffraction
line-breadth measurements. The sizes determined from different reflections and from specimens
of different compositions, simply using the Scherrer equation, are remarkably constant
(Mittemeijer, Mourik & Keijser, 1981). This suggests that the precipitates are approximately
spheres of the same average size for all compositions? (the size mentioned is an
underestimation of the true size, because a possible broadening by non-uniform strains in the
precipitate was ignored). In a subsequent series of measurements, size and strain broadening
were separated according to the single-line Voigt analysis (Keijser, Langford, Mittemeijer &
Vogels, 1982) and the precipitate size was obtained as a function of annealing time at 445 K
(Fig. 8 in Mourik, Mittemeijer & Keijser, 1983). Extrapolation to the annealing time of 1841 h

! For this reason, in order to determine precise lattice-parameter values for such specimens, a Debye-Scherrer
camera technique was used and a Nelson-Riley extrapolation applied (Mittemeijer, Mourik & Keijser, 1981).
2 TEM investigations support this (Rooyen & Mittemeijer, 1989; Agarwal, Koczak & Herman, 1973).
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yields an average size parameter of 60 to 70 nm for the specimens under study. Since this is a
volume-averaged column length (Delhez, Keijser & Mittemeijer, 1982) and the precipitate is
taken spherical (see above), the radius is % times the estimated size parameter. Thus, in all
simulations the silicon precipitate radius is kept at 45.5 nm (which equals 30 unit cells).

The radius R of the aluminium matrix crystallites in the model follows directly from the
precipitate radius and the volume fraction of silicon precipitates yg, since yg = (pB)3/R‘3 . Hence,
the average matrix radius in the simulations ranges from 80 nm for specimens containing
18.2 vol.% of Si to 160 nm for specimens containing 2.3 vol.% of Si. From X-ray diffraction
experiments on these alloys, it followed that the matrix-crystallite size parameter (= % R for
spheres) is of the order of 200 nm or more (Delhez, Keijser, Mittemeijer, Mourik, Pers,
Katgerman & Zalm, 1982), which complies with the above values.

The values of the elastic constants of aluminium and silicon are obtained from the
literature (Smithells, 1976) using the relations for isotropic crystals u = s44~ ' and
K=(3s + 6s1,)7! with s;j as the elastic compliance, yielding C =0.73 and C" = 0.34 [see
Egs. (B.2) and (B.4)). In principle, anisotropy of the matrix or the inclusion modifies the
displacement field and has to be taken into account. For aluminium, however, the value of g in
any particular direction does not deviate more than 5 % from the average value, corresponding
with a deviation of only 2 % in C at the most. Therefore, it is assumed that the effect of
anisotropy can be ignored.

All model parameters are available now, except for the misfit parameter €. For the misfit,
an arbitrary starting value is chosen, which is adjusted until satisfactory agreement is obtained
between measured and simulated line profiles. Using Egs. (5), (6), (A.4), and (B.8), with the
values for C, C', R and p® [taking pB for pé in Eq. (B.8)] indicated above and the starting value
for g, the parameters N, and e, can be calculated. Then, by substitution into Egs. (3) and (4), the
Fourier coefficients of the structural profile can be obtained and by an inverse Fourier
transformation the structural profile itself.

A measured profile (h profile) can be conceived as the convolution of a structural profile
(f profile) with an instrumental profile (g profile, depending on diffractometer setting,
wavelength distribution and specimen characteristics like absorption, flatness, displacement,
etc.). A measured profile of the standard specimen is taken as the instrumental profile. A
simulated & profile is obtained by convolution of the simulated f profile with the measured
g profile. This convolution is carried out by multiplication of the Fourier coefficients. In
general, the 26 position of the centroid of a simulated profile does not correspond exactly with
that of a measured profile due to specimen displacement (see Sec. IV.A). For easier
comparison, the simulated profiles have been shifted such that their centroids coincide with

those of the measured profiles.
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V. RESULTS AND DISCUSSION

A. Misfit Parameter

Since the thermal history of the specimens studied is (very closely) the same, a single value of
the misfit parameter £ is expected to hold for all specimens, notwithstanding their different
amounts of inclusions (see Sec. IV.A). This proved to be the case: a satisfactory agreement
between measured and simulated A profiles for all alloys was obtained with £ = 2.3x107%. As an
illustration, in Fig. 3 the experimental and, using € = 2.3x1073, simulated Al {400} & profiles
for the Al 4.2 vol.% Si and the Al 11.9 vol.% Si alloys are shown, together with the measured
instrumental g profile.

It follows from Fig. 3b that the simulation for the Al 4.2 vol.% Si alloy is nearly perfect:
only at the high-angle side the sloping is somewhat too gentle. The small ripples in the tails are
due to the ripples in the tails of the experimentally determined g profile (this was convoluted
with the simulated f profile to obtain the /4 profile). The simulation for the Al 11.9 vol.% Si alloy
(Fig. 3c) deviates somewhat more from the experiment: although the centroids are forced to
coincide (see end of Sec. IV.B), the peak positions of the simulated o; and &, components do
not correspond exactly with the experimental ones. The overall impression is that the simulated
profile, as compared to the experimental one, is pushed to the low-angle side near the top and to
the high-angle side near the bottom. The simulated profile is more asymmetric than the
experimental one (for discussion, see Sec. V.B).

For the present experimental 4 profiles, the instrumental broadening is of the order of the
structural broadening. Hence, a more critical test for the validity of the strain model proposed
involves comparison of simulated and experimental structural broadening. Then, deconvolution
of the measured A profile with the g profile is required. Deconvolution is established by
dividing the (complex) Fourier coefficients of the measured % profile by the corresponding ones
of the g profile. The Fourier coefficients of the experimental f profile, obtained by division, are
only accurate up to a certain harmonic number (Delhez, Keijser & Mittemeijer, 1980).
Unfortunately, a sufficiently accurate reconstruction of the (deconvoluted) experimental f profile
by subsequent inverse transformation is not possible due to the noise in the signals and the
relatively limited amount of structural broadening (see above). Therefore, in Fig. 4, Fourier
coefficients of the simulated and measured f profiles are compared. As indicated, the higher
harmonics exhibit pronounced scatter due to the noise in the measured signals and, moreover,
humps and jumps occur that do not represent structural broadening but are very probably due to
differences in ribbon thickness, transparency, flatness, efc. between the specimens to be
investigated (containing Si) and the standard specimen (without Si). Also, in correspondence
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with the above discussion of Fig. 3¢, the simulated sine coefficients, representing the line-profile
asymmetry, show a systematic difference with the experimental ones for the Al 11.9 vol.% Si
alloy (Fig. 4b; see further Sec. V.B). Despite these effects, it is concluded that on the whole

there is agreement between simulation and experiment.
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Fig. 4: Fourier coefficients A and B of experimental and simulated (e = 2.3><10'3) structural

fprofiles for (a) the Al 4.2 vol.% Si and (b) the Al 11.9 vol.% Si alloys as a function of the
correlation distance L.
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The fact that a single value of € can be used to obtain a reasonable fit of simulated profiles
to experimental profiles for all alloys indicates that the model used is in principle correct. The
value obtained for the misfit, £ = 2.3x107, is smaller than the value of the thermally-induced
misfit &, = 3.1x10> (Mourik, Keijser, Pers & Mittemeijer, 1988), i.e. the misfit introduced
during the cooling from the annealing temperature (447 K) to room temperature as a
consequence of the difference in thermal expansion between the silicon particles and the
aluminium matrix. Consequently, appreciable stress relaxation has taken place during the
storage (i.e. ageing) at room temperature (see Sec. IV.A). This relaxation and a further
relaxation over a period of 4 years at room temperature is discussed in a separate paper
(Berkum, Delhez, Keijser, Mittemeijer & Mourik, 1991).

B. Line-Profile Asymmetry

In a real specimen, the shape and size of the inclusions or precipitates, the shape and size of the
matrix crystallites and the misfit parameter all vary. Simulations show that this leads to an
asymmetry of the total profile which is smaller than that of the profile of an individual matrix
crystallite/inclusion combination. The asymmetry of the simulated profiles can be larger than
the asymmetry of the experimental profiles (see Figs. 3c and 4b and their discussion), because
in the simulations all matrix crystallites as well as all inclusions are taken identical.

In spite of the above, the asymmetries of the simulated and the experimental {400}
h profiles show an important qualitative correspondence. For the low silicon-content alloys, the
h profiles are broader on the low-angle side of the peak maximum (as the instrumental
g profile). The asymmetry for the aluminium-silicon alloys decreases with increasing silicon
content and for the highest silicon contents the asymmetry is even reversed. The asymmetry of
the simulated profiles shows the same trend, although the total change in asymmetry from O to
18.2 vol.% is significantly larger. In the light of the present simple model this is a promising
result: the shape of the distribution of the local elastic strains is in qualitative agreement with the

theoretically predicted one.

C. Dependence on Second-Phase Content

In the past (Mourik, Keijser, Pers & Mittemeijer, 1988; Berkum, Delhez, Keijser, Mittemeijer &
Mourik, 1991), the dependence of line broadening on silicon content was studied by comparing
integral breadths instead of complete line profiles or Fourier coefficients. The integral breadth
B, i.e. the integrated intensity divided by the maximum intensity, is often interpreted in terms of

the microstructure of the specimen. For an exclusively strain-broadened profile, B (= BP) can be
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related, in an approximate way, to the mean squared strain (e,f) for n =0 (Stokes & Wilson,
1944):

BP = k{eH” tang, N

where k is a constant depending on the strain distribution in the specimen and ﬂD is in radians
20. In practice, rather arbitrarily, often k =4 is taken. In principle, for the present strain
distribution k can be evaluated from simulations if the contribution of size broadening is
negligible or corrected for.

For an exclusively size-broadened profile (8= ﬂs), it holds (e.g. Bertaut, 1962):

A
= {T) cos6’ (®)

where (T) is the volume-averaged column length and B is in radians 26.

For the aluminium-silicon alloys considered here, it follows from experiment (Mourik,
Keijser, Pers & Mittemeijer, 1988) and also from the present simulations that the total integral
breadth of the fprofile is proportional to ySim. It is tempting to explain this by assuming
predominant strain broadening? and combining Eq. (7) and the expression derived for (eoz) in

specimens containing misfitting particles (Mourik, Keijser, Pers & Mittemeijer, 1988):

(egy = 5¢C* )

(e ®

where C is a constant (see App. B). This explanation is incorrect since the simulations indicate

that the contribution of size broadening cannot be ignored. However, for the present model (see

1/2

Sec. III) it was found that also the size broadening is practically proportional to yg; '* [size

broadening is inversely proportional to the average column length (7), which not only depends

—113)
b

on the radius of the aluminium matrix crystallite (proportional to yg; but also on the

missing cells in the matrix due to the presence of the inclusion (of constant size)]. Thus, the ys;

3 In practice, this approach can be used in a phenomenological way to estimate (eo2 ) from experimental data if
one is able to calibrate the (effective) value of k, which depends on the relative contributions of size and strain
broadening to the total B. These relative contributions change with the reflection, the size of the matrix-
precipitate assembly, and the misfit, but they were found to be almost independent of yg;. To give an example:
k=4.5 for the Al {400} f profile when simulated with misfit € = 2.3%10™ and precipitate radius 45.5 nm and
k=5.5 for the same reflection if the k profile is simulated and Voigt profiles are assumed to eliminate
instrumental broadening (Langford, 1978). This kind of elimination is often applied in practice; here it leads to

a small overestimation of Bf .
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dependence of the total § (combined effect of size and strain broadening) is also very close to

vsi’? (as observed).

D. Elastic Strains and Stored Energy

From a materials-science perspective the mean squared strain for n =0, (e02>, is an important
quantity, since it is directly proportional to £, the stored elastic energy per unit volume of the

aluminium matrix. According to Faulkner (1960), their relationship is given by:

Fe B 0

Combining Eqgs. (9) and (10) and substituting €= 2.3x107 (see Sec. V.A), results in a stored-
energy density of 450yp kJ/m> [for comparison: a dislocation density of 10" m2 in
aluminium corresponds to approximately 100 kJ/m> (Hirth & Lothe, 1982)].

Application of the Warren-Averbach method yields values of the mean squared strain (eL2 )
as a function of the correlation distance L (= nxlasl) (Warren, 1969). For the present strain

model, values of <eL2 ) have been calculated directly from the model and are shown in Fig. 5. The

T T ' |
0.3x10° [~ —
11.9 vol.% Si
0.2 —
)
2
01 =
4.2 v0l.% Si \
L | 1 |
0.0
0 100 200
L (nm)
Fig. 5: Mean squared strain (ef) versus the correlation distance L (0 < L < 2R) as obtained from

the model! calculations for the Al 4.2 vol.% Si and Al 11.9 vol.% Si alloys (e = 2.3><10_3).
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appearance of these (eLz ) curves is unusual: for the Al 4.2 vol.% Si alloy, <€L2 ) is approximately
constant for 50 < L < 100 nm; for the Al 11.9 vol.% Si alloy, <eL2> shows a minimum at L =
50 nm and a maximum at L = 100 nm.

The typical shape of an (eL2 ) curve shows a continuous decrease for increasing L. Such a
behaviour can be understood qualitatively. In the neighbourhood of a lattice imperfection (i.e. a
dislocation, a misfitting solute atom or precipitate, efc.), atoms exhibit relatively large
displacements. Values of le; | for small correlation distances increase steeply on approaching
the imperfection and reach a high maximum value at the imperfection. For a larger correlation
distance, the influence of the imperfection is earlier felt, but the value of le;| rises more
smoothly and reaches a lower maximum value, all due to the larger averaging distance L [or n,
cf. Eq. (6)]. Since the mean squared strain (eL2 ) is dependent on the variance in the individual ¢;
values, it is largest for small L and decreases as L increases.

The unusual behaviour in Fig. 5 can be explained as a consequence of the missing
contribution of the volume occupied by the inclusion to the diffraction by the matrix. In the
present case the diameter 2pB of the silicon particles is almost 100 nm (note that for L >
100 nm the usual (eL?‘ » behaviour results; see Fig. 5). The unit cells nearest to the inclusion
experience relatively large radial displacements. However, in Fig. 2 only unit cells above or
under the inclusion, not aside of it, have an appreciable portion of their displacement in the
direction of the diffraction vector H. A pair of two unit cells in the same column, composed of
one above and one under the inclusion (having displacements in opposite directions), gives a
relatively large contribution to the specific average (eL2 ), where L is the distance between the two
cells. For the smallest L values (L << 2pB), there are not many contributions to (e,jZ ) of pairs
encompassing the inclusion. As L increases, (eL2 ) contains more and more (large) contributions
of such pairs until L reaches the diameter of the inclusion. The usual behaviour of <eL2 ) involves
a decrease for all L (see above). Together with the effect discussed here, the net resulting curves
will show a decrease followed by a plateau or even an increase for <eL2 ) up to an L value equal to
the diameter of the inclusion and the usual decrease for L values larger than that (see Fig. 5).

For the specimens considered here an experimental determination of (eL2 Y was not
possible, because in the experimental line profiles some additional size broadening occurs and
no two orders of reflection could be measured well enough to separate size and strain
broadening. Recently Scardi, Lutterotti & Di Maggio (1991) reported experimental (eL2 ) values
that show a behaviour similar to that shown in Fig. 5. Their specimens consisted of large
tetragonal zirconia crystallites in which small monoclinic zirconia crystallites were formed,
accompanied by a partly elastic accommodation of the specific volume difference. Hence, the

present strain model may provide an explanation for these results.
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VI. CONCLUSIONS

Variations in the local elastic strain in the crystalline solid state can be studied in detail by
diffraction-line profile analysis. A first evaluation of the distortion field in a matrix around
misfitting particles from diffraction-line profiles has been presented. The relatively simple
model proposed has been tested for two-phase aluminium-silicon alloys in which non-uniform
strains are generated by the difference in thermal shrinkage between the silicon precipitates and
the aluminium matrix. Comparison of simulated and experimental diffraction profiles gave the
following results:

- A single value for the linear-misfit parameter provided satisfactory agreement between
simulated and experimental line profiles for five AlSi alloys differing in Si content.

- The value of the misfit (2.3x10‘3) confirmed the earlier deduction of stress relaxation on
ageing at room temperature.

- The simulations confirmed the experimentally observed linear dependence of integral breadth
on the square root of the volume fraction of precipitates.

- The asymmetry of the simulated and the experimental profiles indicated the necessity for a
more complex model, but nevertheless proved that the theoretical strain distribution is
qualitatively correct.

- The stored energy per m? of the aluminium matrix was found to be 4.5 kI per vol.% Si.

- The unusual behaviour of the mean squared strain as a function of the correlation distance
found by the model calculations was explained and evidence exists that such a behaviour

occurs in practice.
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APPENDIX A: COLUMN-LENGTH DISTRIBUTION OF A SPHERE

When a sphere of radius R is cut into parallel columns of equal but infinitesimally small cross
section, the length T of these columns can be represented by a column-length distribution p(7).
The function p(T) is defined such that p(T)dT is the fraction of columns having a length
between T and T+dT. Columns of length T are located at a ring of radius r around the central

axis, parallel to the cutting direction, where:
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r=AJR2-L72 for 0 < T<2R. (A.1)

From Eq. (A.1), it follows:

d T
dv; = - for0ST<2R. (A2)
The total number of columns is determined by the largest cross section of the sphere: TR%. The
fraction of the total number occupied by the columns of length T to 7—dT is equal to 2nrdr/mR.

Thus, using Eq. (A.2), it follows:

2nrdr 7aT
— = = _== <
p(NdT " R for0<T<2R, (A.3)
and the column-length distribution equals:
(T) = I forO0<T<2R
PR =02 - ’
p(M) =0 for T>2R. (A4)

Equation (A.4) is presented by the full line drawn in Fig. 1.

APPENDIX B: AVERAGE DISPLACEMENT IN A UNIT CELL AROUND A
MISFITTING INCLUSION

The elastic strain caused by a misfitting particle B in the centre of a continuous, isotropic and

infinite matrix A at a distance p from the centre of the inclusion is given by Christian (1965):

()’
epp = ~2CEe p% for p > pp, (B.1)
Ay3
€op = €pp = Ce (p03) for p Zpé‘, (B.2)
where e, €,,, and egg are the normal components of the local strain, C = 3Kp/(3Kp+4i,), with

K and 1 being the bulk and shear moduli and the linear misfit £ equals (pg—pé‘)/pé where p’g
and pg are the radii of the undeformed cavity and particle, respectively.

When considering displacements in a particular direction, e.g. the z direction, Egs. (B.1)
and (B.2) are rewritten into cylindrical co-ordinates (r,z,9) (see also Fig. 2) and the strain

component in the z direction is obtained as:
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r?-27°

(rTzz)f,,j. (B.3)

e (r2) = €, 008’0+ egqsin’d = C £ (pp)’
Note that e, is independent of ¢, i.e. it shows cylindrical symmetry.
The additional effect of the finiteness of the matrix was first solved by Eshelby (1956)
and is here a uniform dilatation ey; of the matrix, which reads (Christian, 1965):
avh o)’
T U

(B.4)

where R is the radius and V* the volume of the spherical matrix and C'= 4CUA3K .

According to the linear theory of elasticity, the displacement component fin the z direction
is obtained by integration of the strain over the distance concerned in the column. The lower
limit of integration is set to zero so that displacements are defined with respect to the plane z=0
(see Fig. B1):

Z r
firz) = G[eu(r,z’)dz’ = S(pg)3 ,: (rz-liﬁ + %:] (B.5)

Fig. B1: lllustration of the various parameters used in the derivation of the average displacement
(D12
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In principle f{r,z) is a continuous function. In the description of diffraction used here, a
certain displacement has to be assigned to each unit cell of the crystallite. In fact, this
discreteness and the assumption of continuity in the elasticity theory are incompatible. Here this
incompatibility is relieved by assigning to a unit cell at height z’ in a column of length 7 an
average displacement { f )7, Averaging in the vertical direction extends from z’—%la 3l to
7'+ %Ia3| and in the horizontal (radial) direction from u to v, where u and v are given by:

u=0 for T=2R
u = AR =57+ hay)? for T<2R, (B.6)
v = A\[R=3(T - lay)y? for T<2R. (B.7)

The volume over which f(7,7) is averaged equals nla3l(v2—u2). Thus the average value of the
displacement for the unit cell (7,z’) is found by integration as follows:

"+ da,l
(e = Troma Ja [ firo)rardz = CE@R’2, 2Ceph)’
Tz = Ttla3|(V2—M2) z'—_laal : r,z)r r. - R3 la3| (vz_uZ)
2

( \/u2+(z' + Hal)? - \/u2+(z’ — Haql)* - \jv2+(z' + Hasl)® + \fv2+(z’ - Llayl? )
(B.8)
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CHAPTER 6

NOTE ON RELAXATION OF COOLING-INDUCED STRAINS IN
TWO-PHASE AISi ALLOYS AT ROOM TEMPERATURE

J.G.M. VAN BERKUM, R. DELHEZ, TH.H. DE KEISER, E.J. MITTEMEUER, AND
P. VAN MOURIK
Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands

I. INTRODUCTION

Supersaturated aluminium-silicon alloys, made by rapid quenching from the melt, have been
aged at elevated temperatures. After precipitation of all silicon, cooling to room temperature
leads to an average lattice parameter of the aluminium matrix larger than the equilibrium value
(Mittemeijer, Mourik & Keijser, 1981) and to lattice-parameter variations around the average
value (Mourik, Keijser, Pers & Mittemeijer, 1988). These findings have been based on
observations of shift and broadening of X-ray diffraction lines and have been explained
successfully from the large difference in the thermal expansion coefficient, and thus in
shrinkage on cooling, of the aluminium matrix and the silicon precipitates. It has been shown
that Eshelby’s theory, originally developed for point imperfections, provides reasonable
estimates of the magnitudes of the deviation of the average lattice parameter as well as of the
lattice-parameter variation, both as a function of silicon content. In view of the relatively small
values of thermal misfit in the specimens concerned, fully elastic accommodation of the misfit
has been assumed. In particular if large misfit values occur, plastic accommodation of (part of)
the thermal misfit can be realized during cooling already (Taya, Lulay & Lloyd, 1991).

Stress relaxation in aluminium films is a well-known phenomenon in integrated circuits
technology (e.g. Hershkovitz, Blech & Komem, 1985; Korhonen, Paszkiet, Black & Li, 1990;
Cohen, 1990) as well as in metal-matrix composites (e.g. Withers, Juul Jensen, Lilholt &
Sobbs, 1987). It has been shown that stresses induced by thermal expansion mismatch can

relax considerably within a few hours at room temperature.

119
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In view of these observations, the measurements have been repeated on the specimens
used in the original line-shift and line-broadening analyses, after twelve and four years of
ageing at room temperature respectively, to assess a possible relaxation of the residual stress.
Moreover, the original line broadening data have been reanalysed with the time interval between
cooling and measurement as an extra variable.

Stress relaxation at room temperature is also of technical importance, since AlSi alloys are

extensively used as commercial casting alloys.

il. THEORY

The following equation has been derived for the deviation of the average lattice parameter of a
matrix A with respect to its equilibrium (strain-free) value, caused by spherical misfitting

particles B in this matrix (Mittemeijer, Mourik & Keijser, 1981):

- Ha &
AﬂA—4GA3KAC(1+£)3yB, (1)

where ay is the lattice parameter of the matrix, C = 3Kp/(3Kp+4pa) with £ and K denoting the
shear and bulk moduli, yg is the volume fraction of the particles and € is the linear misfit
parameter. For the case considered, € = AaAT, the product of the differences in thermal
expansion coefficient and in temperature. Using Bragg's law, Aax can be straightforwardly
related to a shift of diffraction-line position.

Using the same model, an equation can be obtained for the mean square of the relative
lattice-parameter variation (mean squared strain (e2)) (Mourik, Keijser, Pers & Mittemeijer,
1988):

<e2)1/2 = %‘/3 C (1-58)3 \[;l; . (2)

The root mean squared strain (€2)!'? is related to the integral line breadth f as (Delhez, Keijser
& Mittemeijer, 1982):

B = k()" tang, (3)

where k is a constant, depending on the strain distribution in the specimen. In practice, rather
arbitrarily, often k = 4 is taken. Also Mourik, Keijser, Pers & Mittemeijer (1988) adopted this
value. From line-profile simulations based on the model of misfitting particles in a matrix (see
Berkum, Delhez, Keijser & Mittemeijer, 1992), it followed that the integral breadth and the root
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mean squared strain are related by Eq. (3) with & = 5.5. In the following, this improved k value
is used.

Stress relaxation will manifest itself by a decrease in line shift and line broadening.
Probably the stored elastic energy, which is proportional to {¢2), has to be considered as the
driving force for stress relaxation. This means that the relative decrease of l4al and f will
increase with the misfit parameter as well as with the volume fraction of B particles [see
Eq. (2)]. In the literature, various behaviours of stress or strain in time are proposed (e.g.
Hershkovitz, Blech & Komem, 1985; Korhonen, Paszkiet, Black & Li, 1990; Solberg, 1985).
Here, the time dependence will not be investigated in detail, since per specimen only two

(incidentally three) measurements in time were available.

lll. EXPERIMENTAL

Ribbons of aluminium-silicon alloys of different compositions have been prepared by the melt-
spinning technique and annealed at elevated temperatures (397 to 448 K) until all silicon was
expected to be precipitated. Part of the specimens, utilized by Mittemeijer, Mourik & Keijser
(1981), were in a sufficiently good shape to determine their lattice parameter again in the same
way as 12 years ago: from Debye-Scherrer photographs using the Nelson-Riley extrapolation
(see Mittemeijer, Mourik & Keijser, 1981). Concerning the line broadening, all specimens
(annealed at 447 K) and data files used by Mourik, Keijser, Pers & Mittemeijer (1988) were
still available (including the reference for removal of instrumental broadening). X-ray diffraction
measurements have been performed in the same way as 4 years ago (see Mourik, Keijser, Pers
& Mittemeijer, 1988). The correction for instrumental broadening was also identical, i.e. by
using Voigt functions (Delhez, Keijser & Mittemeijer, 1982). Only the problem of the Al {331}
and Al {420} reflections being overlapped by the tails of the Si {531} reflection, in the past
solved by an educated guess (Mourik, Keijser, Pers & Mittemeijer, 1988), has been handled in
an improved way for the old as well as for the new data files. Now, three split-pseudo-Voigt
profiles have been fitted to the corresponding intensity data using the program PROFIT
(Langford, Louér, Sonneveld & Visser, 1986). The actually recorded number of counts at a
certain 28 position have been distributed over the three profiles according to the ratio of their
relative intensities at that 26 position as established by the pseudo-Voigt fits. In this way, no
assumption on the peak shape has been applied directly to the actual profiles. Line breadths

have been determined of the separate profiles thus obtained.
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IV. RESULTS

The results of the present and of the former lattice-parameter measurements are shown in
Table I. For the specimens with 12.5 vol.% Si ("AlSi 12.5"), it is clear that Aay;, the difference
between the actual value of the lattice parameter and the equilibrium value, has been reduced
significantly on ageing at room temperature for 12 years. The increase for AlSi 2.8 cannot be
considered as statistically significant. Since the specimens containing 25.1 and 38.2 vol.% Si
are not in our possession anymore, the dependence of Aay, versus ys; cannot be investigated.

The results of the old line-broadening measurements have been plotted in Fig. la [note
that values for Al {331} and {420} differ slightly from those in Mourik, Keijser, Pers &
Mittemeijer (1988) due to the present improved data evaluation]; Fig. 1b shows the results of
the new measurements after four years of ageing at room temperature.

The theoretical, "unrelaxed” misfit value AxAT for the specimens concerned in Fig. 1
equals 3.1x10-3. All data points in Fig. 1a indicate a smaller misfit value than the theoretical
one, implying that in the first few days after cooling to room temperature appreciable stress
relaxation by some form of plastic accommodation has already occurred. In the time period
covered by Fig. 1a, the specimen AlSi 18.2 has been measured twice: after 3 and after 12 days
of ageing at room temperature. The clear decrease in line breadth between the two sets of
measurements confirms that a rapid stress relaxation was taking place. Such a decrease, for a
single specimen, is meaningful, since only the small random errors due to counting statistics (1
to 3 %) have to be considered. Comparisons between data points from different specimens,

however, are more difficult, since then the inaccuracies due to silicon-content determination,

Table I:  Lattice-parameter deviation” Aay for the aluminium matrix of fully precipitated aluminium-
silicon alloys after two different ageing times at room temperature

. precipitation 5
Si content (vol.%) Aap (107 nm) at 293 K after

temperature (K)

a few days 12 years
28 397 03 1.1
125 397 6
125 425 7
125 448 7 2

" Equilibrium value of the lattice parameter of pure aluminium at 293 K: 0.40496 nm (see
Mittemeijer, Mourik & Keijser, 1981). Accuracy of lattice-parameter values is approximately
1x1075 nm; for the specimen with 2.8 vol.% Si somewhat better because of sharper lines.
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sample inhomogeneity, insufficient flatness of the sample, efc. have to be taken into account.
For this reason, fitting of relaxation models to the deviations from the theoretical line in Fig. 1a
did not give reliable results. Nevertheless, the "scatter” of the data points in Fig. 1a seems to
give a clear indication of stress relaxation. The specimen yielding the relatively largest breadth
(AlSi 5.9) was the first to be measured (after 10 hours), whereas specimens yielding relatively
narrow lines were measured later (e.g. AlSi 11.9 after 51/, days).

The data for the three specimens richest in Si, shown in Fig. 1b, confirm that continued
stress relaxation can take place on ageing at room temperature again. The specimen AlSi 18.2,
for example, showing on average 80 % of its theoretically predicted breadth after 3 days and
70 % after 12 days (see Fig. 1a), has decreased to about 55 % after 4 years (see Fig. 1b).

The clear downward curvature of 8 versus ys; after 4 years of ageing at room
temperature may be understood if the total stored elastic energy in the specimen is the driving
force for stress relaxation [see below Eq. (3)]. The relative decrease in f§ is largest for the
specimens richest in silicon.

Surprisingly, the specimens containing 2.3 and 4.2 vol.% Si show a somewhat larger line
breadth after 4 years of ageing at room temperature (see Fig. 1b), as compared to a few days
(see Fig. 1a). It has to be realized that errors due to correction for instrumental broadening are
relatively large for these data points (the net, structural, broadening is smaller than the
instrumental broadening). If the increase is a real structural effect, it may be caused by a
continuation of precipitation at room temperature. From Fig. S in Mourik, Keijser &
Mittemeijer (1985), one would expect no increase in lattice parameter (and, thus, in line breadth)
after 1841 h at 448 K for a liquid-quenched specimen containing 2.3 at.% Si (= 2.8 vol.% Si).
The precipitation in Mourik, Keijser & Mittemeijer (1985), however, may have been accelerated
by the manifold cooling and heating, necessary for the lattice-parameter measurements: every
cooling is followed by stress relaxation at room temperature, causing less resistance against
further precipitation at the annealing temperature. This is especially important in the low silicon-
content specimens, where the diffusion distances in the final stage of precipitation are largest,
realizing that the precipitate sizes are approximately independent of the overall silicon content
(Mittemeijer, Mourik & Keijser, 1981). Then, the small increase of the aluminium matrix lattice
parameter of the specimen containing 2.8 vol.% Si on ageing at room temperature (see Table I),
after the precipitation treatment of 512 h at 397 K, can also be understood as the result of

continued precipitation.
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Fig. 1: Normalized integral breadth, B/tang, corrected for instrumental broadening, of three

aluminium matrix reflections versus the square root of the volume fraction of silicon
precipitates, \[y_Si, after ageing at room temperature (RT) for (a) 0.5 to 12 days (number
of days indicated in brackets) and (b) 4 years. Dashed lines are theoretical behaviours on
the basis of Eqs. (2) and (3) using k = 5.5 and the indicated value of the misfit &.
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The {400} reflection is clearly more broadened than the {420}, which in turn is more
broadened than the {331} (see Fig. 1)!. This order of the normalized breadths [[/tan6, see
Eq. (3)] of the three reflections is not equal to their order in 26 position. Therefore, it is not
likely that the differences are due to instrumental effects. It is suggested that the elastic
anisotropy of the aluminium matrix explains the observations. As for most cubic materials, the
Young's modulus in a given crystallographic direction increases with the sum A2k2 + k212 +
h212, where h, k and / are the indices of the unit vector in that direction (Nye, 1972). This sum
takes the values 0, 0.16 and 0.27 for the unit vectors perpendicular to the {400}, {420} and
{331} lattice planes, respectively. As Young's modulus increases, the elastic compliance of the

lattice, and thus the strain, will decrease, as observed in Figs. 1a and 1b.

V. CONCLUSION

The difference in thermal expansion coefficients of precipitate and matrix in two-phase
aluminium-silicon alloys causes non-uniform strains, which result in an increase of the average
lattice parameter and of the lattice-parameter variation around the mean value. An appreciable
relaxation of these strains on ageing at room temperature is observed. This results in decreased
X-ray diffraction-line shift and line broadening after 12 and 4 years respectively. A large
fraction of the misfit strains is already accommodated in the first few days after cooling to room
temperature. Stress relaxation is more pronounced as the overall silicon content increases, which

is to be expected if the stored elastic energy is considered as the driving force for relaxation.
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CHAPTER 7

DIFFRACTION-LINE BROADENING
DUE TO LATTICE DISTORTIONS

l. Order-Dependence of Line Shape and Line Width
and Coherency of Diffraction

J.G.M. VAN BERKUM
Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands.

ABSTRACT

Broadening of (X-ray) diffraction lines is often due to the distortion fields
associated with lattice defects as dislocations. A general, flexible model for
distributions of lattice defects and their distortion fields is presented. Parameters of
the model are the mean and variance of the distances between the defects, and the
extent and the variance of the amplitudes of the distortion fields. The order-
dependence of the shape and width of line profiles is studied as a function of these
model parameters. In contrast with the generally adopted point of view that line
broadening can be subdivided into order-independent ("size") and order-dependent
("strain") broadenings, it is shown that the order-dependence is complex in general.
Only if the strain fields around the defects are confined to regions small compared
to the distances between the defects and the strains are sufficiently large, the line
broadening (in reciprocal space) becomes order-independent. In that extreme case,
it is allowed to subdivide the specimen into domains scattering incoherently with

respect to each other and, thus, to speak of "size" broadening.
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I. INTRODUCTION

A structurally imperfect specimen gives rise to broadening of (X-ray) diffraction-line profiles.
In the generally adopted theories (e.g. Warren, 1969; Wilson, 1970), two kinds of structural line
broadening are distinguished, that can occur simultaneously: (i) size broadening, caused by a
finite size of "domains" in the specimen diffracting incoherently with respect to each other and
(ii) strain broadening, due to varying displacements of the atoms with respect to their reference
positions. Size broadening is independent of the order of reflection and strain broadening is
order-dependent. In this paper, instrumental line broadening is not dealt with.

An important class of specimens studied using diffraction-line broadening concern
deformed crystalline solids, as cold worked metals. The structural line broadening is due to the
produced lattice defects (usually predominantly dislocations) with their associated distortion
fields. The grains in such specimens are usually so large that the broadening due to their finite
sizes is negligible. Although strains are the main source of line broadening, it has been
suggested that (arrangements of) lattice defects can act as "coherency boundaries" and thereby
break up the grains into incoherently diffracting domains which are small enough to produce
significant "size" broadening (Warren, 1959).

Incoherency of diffraction, as it is discussed here!, is a statistical phenomenon: domains
can be considered to scatter incoherently if the phase difference (reduced modulo 2m) between a
wave scattered in one domain and a wave scattered in another domain takes any value between 0
and 27 with equal probability. The intensity scattered by the assembly of domains then equals
the sum of the intensities scattered by the domains separately (e.g. Sommerfeld, 1964; Fowles,
1968). Phase differences are proportional to the scalar product of the diffraction vector and the
position (difference) vector from one scatterer to the other. Therefore, incoherency of diffraction
depends on the length of the diffraction vector, i.e. the order of reflection, and on the
predictability of the distances between the scatterers, i.e. the correlation in the positions of the
scatterers.

In this paper, line profiles are calculated on the basis of a general flexible model for the
strain field in a deformed specimen. The model consists of a spatial distribution of lattice
defects, which distort the surrounding material (Sec. II). The occurrence of size broadening is
not presupposed, i.e. the interference (phase differences) of all scattered waves is taken into
account. From the order-dependence of the calculated line-profile characteristics, the

incoherency of the diffraction process and the concept of "size" broadening is investigated

1 The limited coherency of the incident radiation in the directions parallel and perpendicular to the direction of
wave propagation [usually ~1 pm and a few tens of nm's respectively for X-rays (Cowley, 1981)] is ignored in

this paper.
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(Sec. IV). The results have severe implications for those methods of analysis that use the order-
dependence of measured line broadening for an interpretation in terms of size and strain. This is
demonstrated in the following paper (Berkum, Delhez, Keijser & Mittemeijer, 1994) using both
calculated and experimental line profiles. The following paper also shows that the
microstructural model developed here provides an alternative, applicable in practice, for the

interpretation of measured line broadening of deformed solids.

Il. MODEL

A line profile /(26), measured as a function of the diffraction angle 28, corresponds to a profile
I'(s,d™) in reciprocal space with s = [2 sinf/ A] — d*, where A is the wavelength of the radiation
used and, here, for d* the average length of the diffraction vector H is taken, i.e. the value of

2 sinf/ A at the centroid of I'(s,d*). The profile I'(s,d*) can be expressed as a Fourier series:
+ oo
I'sd™ = K z {A(L.d") cos(2rLs) + B(L,d*) sin(2nLs)}, (1?2
L=-co

where K is (approximately) a constant, A and B are the cosine and sine Fourier coefficients and
L is called the "correlation length”, a distance in real space parallel to H (i.e. perpendicular to the
diffracting planes). Theoretically, L takes only discrete values, but in practice L can be
considered as a continuous variable. Within the kinematical diffraction theory, the Fourier
coefficients of a line profile broadened by lattice distortions can be written as (Warren, 1959,
1969):

ALdY) = (cos@nd'Zp) = | p (Z)) cos2nd*Zy) 4z, )
B(Ld) = (sin@nd'Zy)) = | p, (7)) sin(2nd'Zy) dz,, ?3)

where Z; is the elongation which a length L parallel to H experiences due to the presence of
lattice distortions and PZL(ZL) is the probability density function of Z; in the diffacting volume
of the specimen (in the rest of this paper, probability density functions are called distributions
and they have unit area). In the following, only L > 0 is considered [Fourier coefficients for
L <0 follow from A(-L.d*) = A(L,d*) and B(-L,d*) = -B(L,d™)]. Size broadening is not

accounted for explicitly in Eqgs. (2) and (3), since the occurrence of incoherently diffracting

2 In textbooks (e.g. Warren, 1969), often a (fictitious) unit-cell dimension a3 in the direction of the diffraction

vector is chosen and the dimensionless quantities n = L/a3, [ = d*a3 and h3 = (d*+s)a3 are used.
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domains within the grains is not presupposed. In what follows, Fourier coefficients of
broadened line profiles are calculated for an infinitely large specimen containing (point, line or
planar) lattice defects (see Fig. 1). The spatial distribution of these defects is varied (Sec. IL.C),
as well as the amplitude (Sec. I1.B) and spatial extent (Sec. ILD) of the distortion fields
associated with the defects. The method of calculating the distribution PZL(ZL) for (overlapping)
distortion fields is outlined in Sec. IL.A. By substitution of pZL(ZL) in Egs. (2) and (3), the

Fourier coefficients and thereby the line profile itself are obtained.

A. Defects and distortions

A specimen usually contains many diffracting crystals, each containing many lattice defects with
associated distortion fields. Therefore, the strain field in such a specimen can only be described
meaningfully in a statistical way. Here, statistical formulations that are considered reasonable
for specimens in practice are used to describe the strain along an infinitely long axis x parallel
to H (see Fig. 1) and to calculate the corresponding distribution pZL(ZL). A single column along
x is considered representative for all columns making up a complete, three-dimensional
specimen. The co-ordinate x along x is considered as a continuous variable. The elongation
Z,(x) of the correlation length L can be calculated from the strain component e,, parallel to x (in

the following, e,, is denoted as e):
x+%L

z@= | emar )
x--L

On the axis x, a number of positions x; (i is an integer) are selected at which significant
contributions to the strain field e(x) along x are centred. These positions can be considered as
the projections of crystal defects close to the axis x (see Fig. 1). The distances between two
successive projected defects D; = x;—x;_; are considered independent stochastic variables. For
all variables D,, the probability density of D; = D is given by the function p,,(D) with mean (D).

The meaning of the average projected-defect distance (D) for a given three-dimensional
spatial distribution of lattice defects depends on the character of the defect. In case of planar
defects, the axis x intersects the defects and the meaning of (D) is straightforward. In case of
linear defects (p defects per unit area) or point defects (¢ defects per unit volume), the defects
that are relatively far from x (say, at distances larger than p~V/2 or ¢-1/3) do not affect e(x)
significantly, because their strain fields are shielded off by others closer to x. In a section
containing x bounded by lines parallel to x at distances p~'/2 from x, there are about 2p'/2 linear

defects per unit length along x, so that (D) ~ 15172 for linear defects. In a cylinder round x with
p g g 2P y
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Xj Xi+1 Xiy2 Xi+3 Xjr4

Fig. 1: Crystal defects with associated distortion fields projected onto an axis x paralle! to the
diffraction vector H. The projected-defect distances D; = x;—x;_{ have been indicated.

a radius ¢-1/3, there are about mc!/3 point defects per unit length along x, so that (D) ~ %0—1/3 for
point defects. Thus, the average projected-defect distance (D) is, according to these examples,
two to three times smaller than the average defect distance in space (here, p~12 or ¢-1/3). If the
spatial distribution of the defects is not isotropic, i.e. different in the directions parallel and
perpendicular to H, this interpretation should be adapted accordingly.

The total strain field e(x) is written as the sum of "component" strain fields e;(x), i.e. the
strain along x induced in the column by the individual lattice defects:

oo

e = 3 ). )

!l = —oo
Each component e,(x) is written as the product of a dimensionless amplitude a;, different for
each projected defect, and a dimensionless normalized "spreading” function fix—x;), which is,

apart from the location x;, taken equal for all projected defects:

ex) = a; fla—x,). (6)

In reality, the shape and width of the component strain field may be different for each projected
defect (e.g. depending on the distance from the defect to the axis x and/or on the orientation
with respect to x), but, in practice, Eq. (6) already provides a satisfactory description of line
broadening (see Berkum, Delhez, Keijser & Mittemeijer, 1994). Here, f(x) represents the
"average" shape and width of the component strain fields. The amplitudes a; are considered
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independent stochastic variables. For all a,, the probability density of a; = a is given by the
function p (a). Since the centroid of the line profile is taken as its origin, the average strain {e)
is nil (Wagner, 1966), which implies {a) = 0.

According to Egs. (4), (5) and (6), the elongation Z; at the position x depends on the two

sets of variables {x;} and {q;}:

Zixtxhlah = 3 aFyex), @
where
X+ %L
Fi(x—=x;) = J: flx'=x) dx' (8)
x—-L
2

(the order of summation and integration has been reversed). To find the distribution pZL(ZL) for
specific distributions p,,(D) and p,(a) and for a specific f(x), two equivalent procedures are
possible. In the first procedure, the projected defect positions x; and amplitudes a; are given for
a single infinitely long axis x. Then, Z; is considered as a function of x along x, and the
corresponding PZL(ZL) is calculated from this Z; (x). In the second procedure, Z; at a single
arbitrary position x along x is considered for variable values of x; and a; for defects in the
neighbourhood (see below) of x. From this Z; ({x;}.{a;}) at the position x, which in fact is
independent of x, PZL(ZL) is calculated. In the following, the second procedure is used in a
slightly modified way.

A general expression for the distribution of stochastic variables which are themselves
functions of stochastic variables is given in textbooks on statistics (e.g. Arley & Buch, 1950;
Martin, 1971). As a special case, the distribution pz(z) of one stochastic variable z, which is a
function of the stochastic variables y|, y5, ¥3, ..., which have a joint probability distribution

P01 Y2 ¥3 -~ ), can be derived:
9y
po =14 |3

where y, is any of the variables y; and the integrations over y,, y3, ... include all their possible
values. The partial derivative dy,/dz should be either positive for all z or negative for all z.

The distribution of Z;({x;},{a;}) at the arbitrary position x is now written in accordance
with Eq. (9) by substituting Z; = z and p{x,_]‘{ai}({xi},{a,-}) =p,(¥1, ¥2, ¥3» - ), where
p{xi},{a,-}({xi}’{“i}) is the joint probability distribution of {x;} and {a;}. Arbitrarily, g; is
assigned the role of y,. According to Eq. (7), a; and its partial derivative to Z; equal:

py(y](ZS y2’ y31 "-), )’2, Y3, -") d)’2 d}’3 LRI (9)
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where [A(L’d*)]x,{xi}\{xo} and [B(L’d*)]x,[xi}\{xo
{x;N\{xo}. These can be expressed in terms of the moments (Z;"), (,.11xo} Of [pZL(ZL)]x, {x:\xo)

} are Fourier coefficients for fixed x and fixed

by a series expansion of the cosine and sine, respectively:

[A(L’d*)]x,{xi}\{xo] = J [pZL(ZL)]X,{Ii]\{XD] cos(2nd’Z;) dz,

12 gy

(2nd
Nood F g1 Qnd'y’ AT (22)

[BIL.A)], (ipio) = J [PZL(ZL)]X,{X,-}\{,CO] sin(2nd*Z;) dZ;,
(ZTEd )

I

“ 3>X {xil\Mx} T (23)

A term proportional to {Z;), | .1\ (x,} has been omitted in Eq. (23), because it is nil if (@) = 0 [see
below Egq. (6)]. Using Eg. (7) and the independence of a; and a; for i # j, so that (a,-'"aj’l) =
{a¥Xa}"), the moments (Z,"), | .n(x} can be expressed in terms of the moments {(a™) of p (a).

Some examples are:

@) = @ T Fiex) 24)

(Z >x {xilMxo) — <a3> _2 FL (x~x;) (25)

Z, >x[x,}\[x0} = (a* > Z FL(X—X)+3<a2>2 Z é‘, FL(x X)FL(X—X) (26)
= i=—co j#i

Now, A(L,d") and B(L,d") can be calculated by numerical integration of [A(L,d")] (x;)\(xo}
and [B(L.d")], (x\(x) Over x and {x;}\{xp} (only small il are important), according to Eq. (17),
where for each set of x and {x;}\{x,} values, [A(L.d")]; (u)\(xo) a0 [BL.AM)], (11\1x) 2r€ given
by Egs. (22) and (23). The moments occurring in Eqs. (22) and (23) are given by expressions
like Eqs. (24)-(26) (again, only small lil are important). Note that, by using the moments
(Z;") (xiMxo)» the multiple convolution for [pZL(ZL)]x.l xl\xo) [6f EQ. (19)] is avoided.

Next, specific functions p (a), pp(D) and f{x) will be considered.

B. Distribution of strain amplitudes

The behaviour of the Fourier coefficients A(L,d*) and B(L,d™) at large L values proves to be
influenced appreciably by the shape of p (a). For moderate L, the effect of the shape of p (a) is
less and, for the investigation of the order-dependence of line broadening, the shape of p (a) is

of minor importance and the attention can be restricted to some relatively simple shapes.
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If p (a) is taken symmetrical with respect to a = 0, then (@2m+1) = 0, (Z;2"*1), (01 = 0,
[B(L.d")], (x\xo) = O [see Eq. (23)] and consequently B(L,d*) = 0, so that the structurally
broadened line profile is symmetrical. It has been shown that some lattice defects produce
asymmetrical line profiles [e.g. misfitting inclusions (Berkum, Delhez, Keijser & Mittemeijer,
1992) or polarized dislocation dipoles (Gaél, 1984; Groma, Ungir & Wilkens, 1988)].
However, many line profiles recorded in practice are approximately symmetrical after correction
for instrumental broadening, so a symmetrical p (a) provides a realistic simulation.

If p (a) is taken Gaussian, also the expression for [A(L,dM)], (xip(xo) IS Simplified
significantly. In that case, [pz (Z1)]; {x;\(x) i @ convolution of Gaussians [see Eq. (19)] and
thus it is a Gaussian itself with a variance given by Eq. (24). Then, Eq. (22) reduces to (cf.

Warren, 1959, p.152):

(AL, paninet = eXP(-20%8 X2, (oo @7

Note that, although a Gaussian p (a) implies a Gaussian [pZL(ZL)] % {xN\xo) (€ the distribution
of Z; for fixed x and {x;}\{x;}), PZL(ZL) or the strain distribution need not be Gaussian. The
operator = ,which includes the integrations over x and {x;}\{x,}, can make the shape of PZL(ZL)
drastically different from that of [PZL(ZL)]X. {xi)\xo}- L e shape of the full pz,(Zp) depends on L
and the functions f(x), p,,(D) and, of course, p (a).

C. Distribution of defect distances

According to Eq. (17), the operator Z depends on the distribution p (D), which gives the
probability density of a projected defect distance D; = D. A flexible and comprehensive type of
distribution is the (continuous) Poisson distribution (see Fig. 2), which has "many practical
applications” (Arley & Buch, 1950):

Dy |
Po(D) = Ty (%T exp(— Q‘:%;j PESI) (28)
where (1 is a constant that, for a given (D), governs the variance 6%(D) of p,(D):
(D)?

oXD) = (D) ~(D)* = (29)

u
The distribution for g = 1 is obtained if for each small interval Ax on the axis x there is a chance
Ax/(D) of finding a defect, independent of the positions of other defects ("randomly” distributed
defects). For p = oo, the distribution is infinitely narrow [0%(D) = 0] and the defects are
distributed perfectly regular: x; = i{D) ("periodically" distributed defects). In that case, the

operator Z reduces to:



Chapter 7. Order-Dependence of Line Shape and Line Width and Coherency of Diffraction 137
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Fig. 2: Examples of the (normalized) distribution functions pp(D) according to Eg. (28), giving the
probability density of a projected-defect distance D; = D.

o

EFw ) = gy ] Feiop a (30)
(D)

In the following, predominantly periodically distributed lattice defects are considered.
This may not be the most realistic case, but for the line broadening phenomena discussed the
type of projected-defect distance distribution proves to be relatively unimportant.

Note that with periodically distributed defects the strain field e(x) is never periodic,
because the amplitudes a; are independent variables (cf. Fig. 3). Therefore, the range of
meaningful Fourier coefficients in the present model is not necessarily limited to small L, as is

the case with models employing periodic boundary conditions (e.g. Wilkens, 1979).

D. Shape of the component strain fields

The shape and width of the strain fields of the individual lattice defects is represented by the
function f{x). The following normalization of f(x) is used here:
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I rowx=c €20

where C is a length constant [since f{x) is dimensionless]. With such a normalization the "strain
content” | €2(x)dx and, consequently, the stored elastic energy associated with a single defect in
an infinitely long column is independent of the shape or width of f(x). Next, it will be shown
that, for the present model, a similar statement holds for a distribution of defects.

The mean squared strain {e?) for a distribution of defects in a column is calculated as
follows. Using Egs. (5) and (6) and the additivity of variances of independent variables, it

follows for arbitrary p (a):

(D) = (@ 2 [0, (32)
i = —o0
where {€?), () is the variance of e for fixed x and {x;} resulting from varying all ;. To obtain
(€2, {x;} is kept fixed to an arbitrary set of values and x is varied from —e to o [cf. the "first”
procedure below Eq. (8)]:
1
A

1
(%) = lm Z J (€2, (i) dxs (33)
—A
2

where A is the averaging range in x. After substitution of Eq. (32) into Eq. (33) and reversal of
the order of integration and summation, the terms f2 (x—x;) can be integrated separately. For
A = o, these integrations yield C [see Eq. (31)] for all defects. The number of such terms (=
the number of defects in A) approaches A/D) if A — oo (law of large numbers). Thus, (e2) is
obtained as:

2
() = C(‘%Q .

(34)

Hence, in the present model, the mean squared strain and, consequently, the stored energy in the
columns with arbitrary defect distributions are independent of the shape or width of the
component strain fields. This is a consequence of the independence of the amplitudes of the
component strain fields of adjacent projected defects and the chosen normalization of fix).

If the lattice defects are screw dislocations, f(x) is a Lorentzian (see App. A):

2C 1

f® = Nrw T+ w2 35

where w is the half width at half height of f(x). For edge dislocations, f(x) shows a similar

behaviour in a certain direction (see App. A). From a comparison of A(L.d*) behaviours
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calculated using Eq. (35) and using other shapes for f(x) [e.g. {x) e ¢!, which occurs on
crossing a pure tilt boundary at right angles (Hirth & Lothe, 1982)], it was concluded that the
shape of f{x) is not critical. An example of the behaviour of the strain e(x) using Eq. (35), =
(i.e. periodically distributed defects) and a Gaussian p (@) is given in Fig. 3.

With fix) according to Eq. (35), the integration according to Eq. (8) can be performed
analytically and Eq. (24) can be written as:

| Y
2u(DYe2) o x—x;+5L X—Xx;—>5L
Y% (i) = —<—n>Q 5 { arctan[—;v—z—J - arctan[——vlvl—ﬂ . (36)

i= —oo

Considerations for calculations:

Only in the limits w J 0 and w — o, the Fourier coefficients A(L,d*) can be calculated
analytically (see Apps. B and C). Otherwise, numerical calculations are required. For Gaussian
p,(a) and arbitrary 41, Eq. (36) is substituted into Eq. (27), Eq. (27) into Eq. (20), and Eq. (17)
is used for the operator Z with Eq. (28) for p,(D). Laguerre integration can be used for the
integrations over x; in Eq. (17) (Abramowitz & Stegun, 1965). The integrations over x; for i 22

and i < -2 can be programmed as recursive functions. If w/(D) is not too large, the series in

4 T L) T T L] 1 T T T T
R A4
B \ \/

w/{D)=1
5 -—w/{Dy=01 4
4 1 1 1 L 1 1 1 1 1 i
x/{D)

Fig. 3: Examples of the behaviour of the strain field e(x) for two different values of the relative

width w/{D) of the component strain fields, using periodically distributed defects (1 = =), a
Gaussian p,(a) and a Lorentzian fix).
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Eq. (36) converge rapidly for increasing lil. Evidently, calculations for u = o, using Eq. (36)
with x; = (D) substituted into Eq. (27) and using Eq. (30) for the operator =, are less laborious.

lll. SCALING OF LINE BROADENING

In this section, it will be shown that line broadening can usefully be investigated on a relative
scale using the concept of "isomorphous strain fields". Two infinitely large distorted crystals,
numbered 1 and 2, have isomorphous strain fields if their strain fields e(x,y;,z;) and

e5(xy,¥5,2,) are related by:

e1(x1,y1.21) _ €2(x2:¥.25) :
D7 = (ehin if xp = gx), ¥, =gy, and 2 = g2y, 37

where ¢ is a constant (in fact, g is a factor that scales the extent of the strain field in crystal 2 to
that of the strain field in crystal 1). Using Eqgs. (4) and (37) it follows that:

Zy (x1y1.21) Zp,(x2:¥2:22)
%e12>1/2 =q %822>1/2 if Xy =qx;, y2=qy1, 22 =gz and Ly =gL;.  (38)

Using Eq. (38) and Egs. (2) and (3) it follows for two such crystals:

AL d) = Ay(Lyd)) if L, = gL, and dy{e,)1/2 = g-1dj{e, 212 39)
B/(LydY) = ByLyd) lideml, (40)

and, subsequently, using Eq. (1):
I’l(sl’d)lk) = I’z(&d,dﬁk) if 8§y = q‘lsl and d;<822)1/2 = q—ldik(el2)]/2. (41)

Thus, for crystals with isomorphous strain fields, the line profile widths are proportional to
d*(e2)1/2 and the line profiles do not change if plotted on an s/(d*(e2)!/2) scale. In addition, if
the two crystals are finite, it can be shown that this remains valid if the external surfaces are also
"scaled", i.e. if the surface of one crystal is given by F(x;,y;,z;) = 0 and that of the other one by
F(g'%.q71y5,q7125) = 0.

Two crystals with dislocations as the only type of lattice imperfection have isomorphous
strain fields if they have "morphologically identical" dislocation configurations, i.e. for every
dislocation with Burgers' vector b at (x,y;,z;) in crystal 1, there is a dislocation with the same b
at (x; = gx .y = gy1,2, = g21)- To compare the mean squared strains of crystal 1 and crystal 2,
equivalent averagings should be performed, i.e. the averaging in crystal 2 should occur over a g

times larger (linearly) region than in crystal 1. Then, since all stress and strain components
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around a dislocation in an infinite medium are proportional to r~1, where r is the distance to the
dislocation core (Hirth & Lothe, 1982), it immediately follows that {e,2)!/2 = g1(e,2)!/Z and the
conditions for Eq. (41) become s, = g~!s; and d5 = d]. Hence, for crystals with morpho-
logically identical dislocation configurations, the occurrence of isomorphous line profiles
according to Eq. (41) is only guaranteed if the same order of reflection is considered. Then, the
widths of these line profiles are proportional to {(e2)!/2. Comparing crystals with various values
of g, the dislocation density p in the crystal, i.e. the total line length divided by the volume, is
proportional to g/g3 = g-2. Therefore, for a given dislocation configuration the width of a line
profile is proportional to p.

For the strain model in Sec. II (for given sets {x;} and {a;}), strain fields are
isomorphous if u [cf. Eq. (28)] and w/(D) are constant. Then, the scaling factor g is (D) (cf.
Fig. 3). The following 'relative' quantities are introduced: L, = L/(D), w, = wAD), df = d*D), s,
= &{(D) and the relative integral breadth B.(d}) = fI'(sr,d’r‘)dsr/[’(O,df) instead of B(d*) =
jI'(s,d*)ds /1 I'(0,d*). Then, from Egs. (39) to (41) it follows that for constant u, w, and
d’(€2)12, the Fourier coefficients A(L,.d;) and B(L,.d}), the line profile I'(s,.d;) and its integral
breadth fB,(d;) can be calculated independent of (D). It is readily verified that all expressions for

A(L,d% and B(L,d*) in Sec. II can be written exclusively in terms of relative quantities.

IV. ORDER-DEPENDENCE OF LINE BROADENING

Diffraction-line broadening on the basis of the microstrain model of Sec. II will be discussed
on a relative scale, i.e. independent of the average defect distance (D) (see Sec. III). Periodically
distributed defects (u = o), a Gaussian amplitude distribution p (a) and f(x) as given by
Eq. (35) are used, unless stated otherwise. The discussion concentrates on the behaviour of the
cosine Fourier coefficients A(L.d?) and the relative integral breadth f; as a function of the
relative length of the diffraction vector d; (i.e. order of reflection). If the profile / (5,.d7)) s
symmetrical, its integral breadth S(d}) (in the same units as s;) can be calculated from the

cosine Fourier coefficients:
o 1
By = | [ac.ayaL, | . “2)

The behaviour of B(d) as a function of d{e?)!/2 and w, is shown in Fig. 4a. As expected,
B.(d?) increases with increasing d;(e2)!/2. The magnitude and rate of increase strongly depend
on the relative width w, of the strain fields of the individual defects. In the following, firstly two
extreme cases (infinitely broad and infinitely narrow component strain fields; see Secs. IV.A

and IV B, respectively) are discussed; then, intermediate cases are considered (see Sec. IV.C).
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Fig. 4: Relative integral breadth B, of line profiles in reciprocal space (&) as a function of d{e?"2

for different relative widths w, of the component strain fields and (b) as a function d{m2'2
for infinitely narrow component strain fields (w, {0).

A. Infinitely broad component strain fields

For w, — oo, the breadth increases linearly with d;(e2)!/2 (see App. B and Fig. 4a):

Bud}) = V2m di(e2)!2. (43)

This behaviour is well-known for the strain broadening from specimens with a uniform lattice
spacing d within each grain and a Gaussian spacing distribution over the grains, where (¢2)1/2 =
({(d?) — {(d)2)/{d)? (Stokes & Wilson, 1944). This is understandable, since for increasing w, the
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strain gradients along x decrease and the strain becomes uniform over a small length scale while
remaining Gaussian on a very large scale (¢f Fig. 3). In the past, Eq. (43) or its equivalent on a
20 scale (8 = 221 {¢2)12tan ) has often been used for strain broadening in general.

The Fourier coefficients for w, — oo are given by Eq. (B.1). They are perfectly Gaussian
and strongly order-dependent: In[A(Ld})] d;*. The line shape of I'(s,) is also Gaussian. The
shape, width and order-dependence of I(s;) are independent of the shape of p;(D), p(a) and

fix) (see App. B).

B. Infinitely narrow component strain fields
In the limit w, | 0, the relative integral breadth B(d}) reads [see Eq. (C.5) and Fig. 4b]:

1- exp(—2n2d;‘2(n2))
1+ exp(-2m2d;(12)’

Bdp) = (44)
where the dimensionless parameter {12} = Tw/{e2) is used to characterize the strain content of
"infinitely narrow component strain fields” (see App. C). For small w,, the mean squared strain
(€2 is an inconvenient parameter, because it has to take very large values to produce non-zero
line broadening (cf. Fig. 4a).

For small d}{n)\/2, Eq. (44) reduces to S(d}) = n’d }“2(772). For this case, the Fourier
coefficients show an approximately exponential behaviour: A(L.d}) = exp(—2r2d* (DL, [cf.
Eq. (C.4)], so that the corresponding line profile is approximately Lorentzian. This case leads to
appreciable line broadening only if (D) is relatively small, as for example pertains to
paracrystalline materials (see App. C).

For larger d{n?)1/2, B.(d}) approaches asymptotically to 1 [see Eq. (44) and Fig. 4b].
For dj{(n?)12 2 % an increase of (1]2) (strain content) or dy (order of reflection) does not lead to
an increase of the line breadth. The Fourier coefficients and the corresponding line profile for
large d;{n?)1/2 approach [¢f. Eq. (C.4) with E = 0]:

AL d) = 1-L, for L, < 1; zero otherwise (45)
sin?(ms,
I's) o< sfz 2 (46)

Thus, the line broadening becomes completely independent of (n?)!/2 and d;. Apparently, the
line broadening from defects with large strains confined to distances very much smaller than the
average defect distance is order-independent. This type of strain broadening can be conceived as
pure "size broadening": small but perfect crystals induce exactly the same I(s,), A(L..d;) and
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Bi(d}) as the strained, infinitely large crystal considered (e.g. Delhez, Keijser & Mittemeijer,
1982).

The structure producing this type of broadening consists of blocks of undistorted material
("domains") shifted with respect to each other over distances (D)7, [see Eq. (C.1)]. The phase
differences corresponding with these shifts are 2nd; 1), (modulo 2x). For d¥{n?)1/2 2 15 these
phase differences are almost uniformly distributed between —xt and 7, or O and 2n. Thus,
incoherency of diffraction can be understood for such d7(n2)1/2 values (see Sec. I). A practical
example of such a structure is a specimen with small-angle boundaries with relatively high
dislocation densities in the boundaries, in which the lattice distortion due to the dislocations in
the boundaries is large but limited to narrow regions adjacent to the boundaries [see results for
large D/d of Wilkens (1979)].

Order-independent line broadening ("size broadening") for w, { 0 also occurs if the
defects are not periodically distributed. For an arbitrary p, (D), B,(d}) approaches
asymptotically to w/(u+1) for di{n?)12 2 % [cf. Eq. (C.25); for u, see Eq. (28)]. The theory of
"true" size broadening states that in the case of a distribution of crystal sizes 7, the size
broadening S equals 7,1, where T, = (T2)KT) is a volume-weighted average (e.g. Delhez,
Keijser & Mittemeijer, 1982). Using Eq. (28) for the distribution of T, it follows T, =
(TY(u+1)/u and indeed, BT) = u/(u+1) is obtained. Also the size Fourier coefficients
calculated using Eq. (28) for the size distribution are exactly equal to the Fourier coefficients
obtained for the strained, infinitely large crystal with large d}{n?)!/2 [i.e. Eq. (C.23) with £ =0].

C. Component strain fields with intermediate widths

For intermediate w,, the dependence of B,(d}) on d{e?)!/? is complex (see Fig. 4a). For small
d¥(e2)172, the relation is always quadratic: B,(d}) « d**(e2). For large d(e?)!/2, B(d?) can be
described by a straight line with, if extrapolated, a positive intercept of the ordinate. With
increasing w,, the slope increases from 0 to V21, whereas the intercept decreases from 1 to 0.
For w, 2 1, the behaviour is almost as for w; — . For w, < 0.01, B(d;) behaves almost as in
the limit w, 1 0.

The behaviour of the Fourier coefficients for three intermediate w, values is shown in
Fig. 5. The shapes of the curves change from more or less straight lines for small w to a
Gaussian for large w,. The tails of the corresponding line profiles become less pronounced with
increasing w,. It has been shown theoretically that the tangent to A(L,d*) in L = 0 is always
inversely proportional to the crystal size and that the curvature d24/dL2 in L = 0 is proportional
to d*%(e2) (Eastabrook & Wilson, 1952). Since here the Fourier coefficients are calculated for

an infinitely long column, always a horizontal tangent in L. = O is observed (see Fig. 5d).
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Fig. 5: Fourier coefficients of broadened line profiles calculated for three intermediate values

(indicated) of the relative width w, of the component strain fields: (a)-(c) using d(e?)1/2 = 1
(first order; upper line) and dj{e2)1/2 = 2 (second order; lower line), (d) using di(e?)!/2 = 1,
behaviour at small L,.

Further, since d**(e2) is the same for all sets of Fourier coefficients shown in Fig. 5d, the initial
curvature is independent of w,. The next term in the expansion of A(L.dy) is proportional to L4,
{(e%) and the mean squared strain derivative {¢'2) (Berkum, Vermeulen, Delhez, Keijser &
Mittemeijer, 1994). Since e(x) has more extreme values and steeper peaks for smaller w, (see
Fig. 3), both (e4) and {e'2) increase with decreasing w,. Consequently, the smaller w, the
smaller the L, value at which the downward parabolic behaviour of A(L,.d 7 disappears and
upward curvature starts.

The shape of a first and a second order of reflection are markedly different: in general, the
tails of A(L,.d¥) for the higher order of reflection are more pronounced in a relative sense [e.g.
relative to the width at A(L.d}) = 0.5] (see Figs. 5a-c). The tails of the corresponding line

profiles are also more pronounced for the higher order of reflection. The differences in line
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width between a first and a second order of reflection are influenced strongly by w,. In general,
the difference diminishes with decreasing w; (see Fig. 5a-c). Since order-dependence of line
broadening can be related to incoherency of diffraction, this observation can be interpreted as a
gradual loss of coherency of the diffraction with decreasing w,. In the limit w, 1 0, incoherent
diffraction by the blocks of undistorted material between the defects ("domains") is obtained, as
discussed in Sec. IV.B.

The influence of the distribution of the projected-defect positions on A(L.d}) for
intermediate w, is shown in Fig. 6. The Fourier coefficients are most sensitive to u {for y, see
Eq. (28)1 at larger L, values: the larger u, the faster A(L,,d}) decreases to zero (4 = o
corresponds to periodically distributed defects). At small L, the Fourier coefficients are usually
slightly larger for larger p. For large w, the Fourier coefficients become less dependent of i (cf.
Sec. IV.A).

Experimental observations suggest that the distortion fields in plastically deformed
specimens are best described by w, values of the order of 0.1 (Berkum, Delhez, Keijser &
Mittemeijer, 1994). Therefore, the conclusions reached for intermediate w, values are most

relevant for practice.

1 T T
<

1= oo 5 2 1
\Q
0 1 1
0.0 0.5 1.0 15
L

Fig. 6: Fourier coefficients of broadened line profiles calculated for different defect-distance

distributions characterized by u [see Eq. (28)], using w, = 0.1 and d,'2<ez> = 1. The step
size in L, used was relatively large, which produced the kinks in the curves.
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V. CONCLUSIONS

The diffraction-line broadening due to lattice distortions associated with crystal defects can be
described by means of a general statistical model for the strain field in a column parallel to the
diffraction vector. The strain-field model consists of a superposition of component strain fields,
each of which associated with a crystal defect close to the column, with statistically determined
amplitudes and distances between the projections of the defects onto a line parallel to the
diffraction vector. For constant widths of the component strain fields relative to the average
projected-defect distance (constant wy), the line breadth is proportional to the average projected-
defect distance and the line shape is independent of this distance.

The order-dependence of the line shape and the line width (integral breadth) is influenced
strongly by the width of the component strain fields relative to the average projected-defect
distance, which determines the "peakedness" of the overall strain field. For a large relative width
of the component strain fields, i.e. a smooth overall strain ficld, the line shape is close to
Gaussian and the line width is proportional to the order of reflection. For a very small relative
width of the component strain fields, i.e. a sharply peaked overall strain field, the line has much
more pronounced tails than a Gaussian and the line width is increasing with the squared order
of reflection for small diffraction vectors (i.e. small 26) and small mean squared strains and
becomes constant for larger diffraction vectors (i.e. larger 26) and larger mean squared strains.
In the latter case, the regions between the projected defects can be considered as independently
diffracting domains, i.e. the line broadening might as well be described as size broadening with
the regions between the projected defects acting as separate crystals.

If the relative width of the component strain fields is intermediate, which pertains to
practical specimens, the order-dependence of the line width cannot be seized in a simple
relationship. The line shape changes with the order of reflection: the tails become more
pronounced with increasing order. The consequences for methods that use the order-
dependence to interpret measured line broadening in terms of size and strain are treated in the
next paper (Berkum, Delhez, Keijser & Mittemeijer, 1994).
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APPENDIX A: STRAIN FIELDS ROUND DISLOCATIONS

Consider a straight screw dislocation in the z direction and through the origin of a rectangular
co-ordinate system (x,y,z) in an infinite, elastically isotropic medium. The only non-vanishing
displacement component is u, in the z direction (Hirth & Lothe, 1982):

U, (x,y,2) = QE_;E arctanG) (A.1)

where b is the length of the Burgers' vector. Consider an arbitrary line making an angle ¢ with
the z direction and having its closest distance A to the z axis at the position (xg,y0,20), Where A=
vV xo2+yo2. Introduce a second rectangular co-ordinate system (x',y',z) with its origin at (x,y,z) =
(0,0,z0), the z" direction parallel to the line and the x' axis through (x,y,z) = (x0,y0.20) (see Fig.
Al). Then, the position (x,y,z) = (x0,¥0,20) becomes (x,y",z") = (4,0,0). The line is defined by
(xy',2") = (A4,0,p), where p is a variable. The co-ordinates (x,y,z) are related to (x',y'z') by:

x = x'cos@ -y'sinfcos¢ —z'sinfsing

x'sin@ +y’'cosfcos@ + z' cosf sing

y

=20 —y'sing + 2’ cosQ, (A.2)

where 6 = arctan(xp/yo). In the z' direction the displacement u,- equals u, cos@. The strain in the

z' direction e, is identical to du,/dz". Expressing u, according to Eq. (A.1) in terms of x', y’

and 7' using Eq. (A.2), ¢, can now be calculated along the line (use x'= A and y'= 0):

b cosQ sing

€ = 304 Zsmo. (A.3)
mA (z sAm(p)2

Thus, the strain along any line passing a screw dislocation behaves as a Lorentzian, with an
amplitude and a width depending on the distance and the orientation of the line with respect to
the dislocation line. For edge dislocations, the same procedure leads to the conclusion that only

the tails of the strain profile along a line parallel to the Burgers' vector behaves Lorentzian.

APPENDIX B: INFINITELY BROAD COMPONENT STRAIN FIELDS

If the strain fields of the individual defects are much broader than the average defect distance
(w >> (D)), the strain e(x) consists of very many statistically independent contributions e;(x)
[see Egs. (5) and (6)]. Therefore, the distribution [p ()], (x)\(x} ©f € for fixed x and {x;}\{xo}

is Gaussian (central limit theorem), independent of the shape of p_(a). The variance (€2), (. j\(x))
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-y

Fig. A1: The relation between two rectangular co-ordinate systems (x,y,2) and {(x'y’z") and an
arbitrary line (thick line) with its closest distance to the z axis at (x,y,2) = (xo,¥0,20)-

is independent of x or {x;}\{xg}, since the large and small strains are not confined to regions
round and between the positions x;, respectively, if w >> (D). Therefore, (€2), (xn(xo) = (€2
independent of p,(D). Further, e(x) is approximately constant over distances much smaller than
w (cf. Fig. 3), so that Z; (x) = Le(x) [see Eq. (4)] for L << w. In that case, [pZL(ZL)] v (xi\xo) DS
the same shape as [p ()], (xM\{xo)> Which is Gaussian, and Eq. (27) is applicable, even if p (a) is
not Gaussian. The variance (Z,%), o) = L€y (apnixo) = LXe?) is independent of x or {x;}.
Thus, in the limit w/{D) — o, Eq. (27) reduces to:

ALY = exp(-2nd*2L¥e?)) for L <<w. (B.1)

If w/(D) = oo and (D) is non-zero, w = o, so that the condition L << w can be neglected. Then,
the Fourier transform and, consequently, the corresponding line profile are Gaussian and the
integral breadth can be calculated from Eq. (B.1) using Eq. (42):
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B = V2m d*en)l2. (B.2)

The above expressions hold for any shape f{x) of the strain fields of the individual defects.

If w/{D) is large but finite, Eq. (B.1) holds approximately. If d*(e2)!/2 2 1/w, A(L,d")
decreases virtually to zero for L << w and the restriction L >> w can again be neglected. For
smaller d*(e2)1/2, Eq. (B.1) is not an acceptable approximation for large L and J deviates from
Eq. (B.2) (¢f. Fig. 4 for w/(D) = 1).

APPENDIX C: INFINITELY NARROW COMPONENT STRAIN FIELDS?

In the limit w/{(D) 1 0, the strain field of an individual defect is a delta function. Therefore, it is
enclosed by the correlation length L completely or not at all. If L encloses defect i, then L is
elongated by an amount (D)1}, where 7); = Fa/(D) with F being the full area under f{x) [using
Eq. (35) for f{x), F = VnwC ]. In general, if m projected defects, numbered 1 to m, are enclosed
in the interval [x —ZlL , X+ %L], then Z;(x) can be written as:

m

Zw = D) X, (e8)
In the following, only the case of a Gaussian p_(a) with a variance (a?) is considered. Sine
coefficients are nil in this case. Since all g; are statistically independent, the distribution of Z;
for fixed x and fixed {x;} is also Gaussian and it has a variance m{(D)%(n?), where (n2) =
F2a2y/{D)? [= nw{e2)/{D) if Eq. (35) is used for f{x)]. For fixed {x;}, the interval [x — %L ,
X+ %L] encloses different numbers m of defects for different positions x. If the chance that L
encloses m defects is denoted as p,,(m), then PZL(ZL) can be written as the sum of partial
distributions [PZL(ZL)]m (one for each m):

P2 Z) = 3 pum) lpg, ) C2)

where [pZL(ZL)]m is Gaussian with a variance m(D)Xn?). Substituting Eq. (C.2) in Eq. (2) and
solving the integral [cf. Eq. (27)] for each m separately yields:

A(LdY) = i;o () exp(=212dm(DY(n?) = i;o po(m) E™, (C.3)

3 For very narrow distortion fields, i.e. w of the order of the lattice spacing d, the use of a continuum model
becomes questionable. However, is was found that Fourier coefficients calculated from discrete lattice planes
displaced according to the present strain-field model and from the continuum model itself are identical for

L values equal to a multiple of d.
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where E = exp(-21?d*XDYXn%)). In the following, Eq. (C.3) is elaborated by calculating, for
given L, p,(m) from p,(D) according to Eq. (28).

l. Periodically distributed defects

If projected defects are always separated by a distance (D), then p,,(m) is easily calculated. A
correlation length L < (D) encloses no projected defects with a probability ((D)-L)XD) or one
defect with a probability LKD), i.e. p,,(0) = (D}-L)AD} = 1-L¢ (L, = LKD)), p,,(1) = LKD) =
L, and p,,(m) = 0 for m > 1. Correspondingly, an arbitrary length L encloses M defects with a
probability M+1-L, or M+1 defects with a probability L,~M, where M is the integer part of L.
Thus: p,,(M) = M+1-L,, p,.(M+1) = L—M and all other p,,(m) are nil. Calculating A(L.d*)
using Eq. (C.3) and these p,,(m) values yields:

A(LdY = M+ 1-L)EM + (L - M) EM*L. (C.4)

The relative integral breadth B(d*) = }(d*)(D} of a line profile can be calculated from Eq. (C.4)
using Eq. (42) by collecting the terms containing equal powers of E, yielding:

. | _1-E
Bld) = 303 E+E+.)-1 - 1+E

(C.5)

Il. Non-periodically distributed defects: integer u

Using the projected-defect distance distribution pj,(D) according to Eq. (28), the distribution
P,n(m) has been calculated for integer u. Firstly, consider p,,(0), i.e. the chance that L encloses
no defects. The chance that an arbitrary position in the column is within an undistorted region
with a length between D and D + dD is proportional to D p,(D) dD. Since Ip ppD)dD =
(D), this chance, if normalized correctly, equals D p(D) dD /{D). The chance that a length L
round this arbitrary position fits in the undistorted region is nil if D <L and (D-
L) pp(D)dD/ (DY if D > L. To calculate p,,(0), all D > L have to be taken into account:

Pnl®) = 755 | (D=1 pp(D) dD. €6

Substituting Eq. (28) in Eq. (C.6), dividing the integrand in Eq. (C.6) in two terms and using
Eq. (3.351.2) of Gradshteyn & Ryzhik (1980) for both terms yields:
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Pm(0)

H H-1
- (UL (ML)*
¢ qu ': kgo k! N Lr kZ’O k!

[ k i
e*ﬂLrli(l—Lr)kZO (",f;) - (“5!‘) } (C.7)

To calculate p,,(1), suppose the defect enclosed by L is situated at a distance D, from one
end of the correlation length L and, consequently, at a distance L-D, from the other end. To
accomplish that, the lengths of the two undistorted regions bounding the defect have to be larger
than D| and L-D,, respectively. The joint probability P, of such an event equals:

P = L{ PpD) dDJ L _ID » (D) dDJ. (C.8)

The probability p, (1) follows from P, by accounting for the fact that D, can take all values
between O and L and for the chance dD/(D) that there is a defect between D, and D;+dD,

from one end of L:
. L
PuD) =y | P D (€9

Analogously, the more general expression for p,,(m) for m > 1 can be derived. Form > 1,
the correlation length L encompasses m—1 undistorted regions completely and two parts of
undistorted regions at both ends (cf. Fig. C1). The distance from one end of L to the first defect
enclosed by L is denoted as Dy, from the first defect to the second one as D,, and so on, leaving
L, = L-D-D,—...D,, for the distance from the last defect enclosed by L to the other end of L.
The joint probability density P, of exactly the distances D, D,, ... D, and L,, equals:

P, = { D.[ pp(D) dD} pp(D2) pp(D3) .. pp(Dpy) Lf ppD) dD:I (C.10)

Substituting Eq. (28) in Eq. (C.10) and solving the two integrals using Eq. (3.351.2) of
Gradshteyn & Ryzhik (1980), P,, can be written as:

ﬂ# m-1 pu-1 p-1 | m k+k' X e
sze—#Lr[W(ﬂ_l)! <D>!J kgogom(@] D\ (DyDy...D, Y L.

(C.11)
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Fig. C1: Example of a correlation length L enclosing three defects (solid vertical bars).
Consequently, L consists of two complete undistorted regions (D, and Dj) and two parts
(Dy and Ly = L— Dy — D, — Dj) of undistorted regions at both ends.

The calculation of p, (m) from P,, involves m integrations: D,, can take all values between 0 and
Lm—] = L—DI—DZ—...D
values between 0 and L, = L — Dy, and, finally, D, can take all values between O and L. The
probability of a defect between Dy and D+dD, equals dD/D). Thus, p,,(m) reads:

n_1» Dm_; can take all values between 0 and L, 5, ... D, can take all

L L,

L
1 .
= v P_ dD,  ..dD,dD,. C.12
pm(m) <D> Dl._[() Dzj;() Dmfo m m 2 1 ( )

For the integration that is performed firstly, that over D,,, only the last two factors on the right-
hand side of Eq. (C.11) (i.e. the powers of D, and LZ) have to be considered. Using the

binomial theorem, L’;; can be expressed as:
k' k' &k k=j j
=@, -y = ]ZO (5) L2 en,y (C.13)

and the integration over D, yields:

L

-1
I Dt Ly aD,, = fo Ly (C.14)
with
k' .
_ kN (1Y
fo = ,Z‘o (; il (C.15)

One by one, the integrations over D,,_; to D, can be performed analogously, with the
integration over D, yielding a power of L;_| and a factor f,,_; [¢f. Eq. (C.14)]:

k'+ip . ;
_ k+ip\(=1Y C1
f"j;o(j )ﬂﬂ" (€10
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In the case of the last integration (over D), a power of L remains and the factor is denoted as F:

k'+(m-1)u ;
k' —1 -1
F= ,;) ( +(n; )H)L_J;‘ (C.17)
Thus, p,,(m) for m > 1 reduces to [¢f. Egs. (C.11) and (C.12)]:
1 ~ ll»” m-1
pnlm) = Dy “L[mn—w]
# H H e k+k'+(m-1)u+1
2 kT k'l ((D)] Fofi o fopg F DEEHODRAL (C.18)

By using the relation, obtained by conjecture and verified for many # and p values:

> () LY a1
Z ()p—+] = (nep)! (C.19)

where 7 is a non-negative integer and p is a positive integer, it can be shown that:

m- kU k"
Jofi whma B = (=D s D 17 (C.20)

Substituting Eq. (C.20) in Eq. (C.18) yields:

p-1p-1 (#Lr)k+k'+(m—l)u+l

L
Pulm) = et 20 2 Ak + m D+ D (C.21)

The double sum can be written as a single sum by introducing x = k + &£’ and counting how
often x occurs in Eq. (C.21):
2u— 2#—' Kt 1 (#Lr) K+(m-1)u+1

Pm(m) = ety EO L (x+(m-Dp+ D" (C.22)

Finally, substituting Egs. (C.22) and (C.7) in Eq. (C.3), the Fourier coefficients of the
structurally broadened line profile are obtained:

L) i
A(L d*)y = et [(1_ L) 2 (# r) (uﬁ',)

#—I K'—[i+1| (#Lr)’ﬁ(m—l)ml :‘
2 2 (x+(m-D)p+1)! E" | (C.23)

m=1

For u = 1, Eq. (C.23) reduces to a simple exponential behaviour:
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m

ALdY) = el 3 ) % E™ = LB, (C.24)
os !

Note that Fourier coefficients A(L,d”) for infinitely narrow component strain fields [see
Egs. (C.4), (C.23) and (C.24)] have a negative slope in L = 0, which is usually interpreted as an
indication of size broadening. The initial slope equals —(1-E)/D), conventionally interpreted as
a "domain size" equal to {D)/(1-E) (e.g. Warren, 1969), and it is independent of y. For all
component strain fields with a finite width, A(L,d*) is horizontal and curved downward in L=0
(see Fig. 5 and its discussion in Sec. IV.C)

The relative integral breadth B(d*) has been calculated from A(L,d*y according to
Eq. (C.23) using Eq. (42), Eq. (3.351.2) of Gradshteyn & Ryzhik (1980) and the well-known
expressions for the sums of arithmetic and geometric series, yielding:

B = HULJF(EI;% . (C.25)
For very small d*(DYn2)!/2, it follows from Eq. (C.25) [for E, see below Eq. (C.3)] that Bd®
~ 2d*2(DY(n2). The proportionality f o< d*? has been derived theoretically and observed
experimentally for the class of "paracrystalline” materials (Kulshreshtha, Dweltz &
Radhakrishnan, 1971). The ideal paracrystal can indeed be considered as a special case of the
model presented in this paper: infinitely narrow component strain fields (wi(D) 1 0) with the
average defect distance (D) equal to the average lattice spacing d. Since the root mean squared
spacing deviation d(n2)!/2 in such a structure is much smaller than the spacing d itself and d*!
is usually a small multiple of d, the quantity d*(D)n?)!/2 is small (as required for the discussed
quadratic behaviour of ). The other limiting case occurs for d{DYNH2 — oo (ie. E L 0):
B.(d*) = p/(u+1), which is discussed in Sec. IIL.B.
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CHAPTER 8

DIFFRACTION-LINE BROADENING
DUE TO LATTICE DISTORTIONS

Il. Methods of Analysis:
Line-Profile Decomposition Using Size and Strain Parameters versus
Line-Profile Simulation Using a Generally Applicable Strain-Field Model

J.G.M. VAN BERKUM, R. DELHEZ, TH.H. DE KEUSER, AND E.J. MITTEMEIJER
Laboratory of Materials Science, Delft University of Technology,
Rotterdamseweg 137, 2628 AL Delft, The Netherlands.

ABSTRACT

The adequacy of two methods frequently applied to analyse X-ray diffraction-line
broadening (the Warren-Averbach analysis and the Williamson-Hall analysis) is
investigated by applying them to simulated line profiles. These line profiles are
calculated using a realistic and flexible model for the spatial distribution of lattice
defects and their associated strain fields. The "size" and "strain" parameters
deduced by the methods mentioned are discussed with reference to the strain-field
model. It is concluded that only in limiting cases the results can be related directly
to the microstructure. Experimental line profiles taken from a ball-milled tungsten
powder are used to show that the line-profile simulations on the basis of the present
model pertain to realistic situations. It is shown that, in principle, an interpretation of

measured line broadening is possible directly in terms of strain-field parameters.

. INTRODUCTION

Broadening of (X-ray) diffraction-line profiles is caused by non-ideal optics of the instrument,
wavelength dispersion and structural imperfectness of the specimen. Usually, the structurally

broadened line profile is considered as a convolution of (i) a size-broadened profile, due to a

157



158 Part IV. General Model for Strain Broadening

finite size of domains in the specimen diffracting incoherently with respect to each other, and
(i1) a strain-broadened profile, due to varying displacements of the atoms with respect to their
reference positions (e.g. Warren, 1969). Size broadening is independent of the order of
reflection; strain broadening is order-dependent. A number of methods of analysis use
measured line profiles of two or more orders of reflection and try to separate "size" and "strain"
contributions on the basis of the order-dependence of the measured line broadening.

An important class of materials studied using diffraction-line broadening are cold-worked
metals. The grains or crystals in such specimens are usually too large to cause appreciable size
broadening effects. Therefore, the line broadening observed must be entirely due to the
distortion fields associated with the large number of lattice defects present after deformation
(predominantly dislocations in this case). Nevertheless, size-strain separation methods like the
Warren-Averbach analysis (Warren & Averbach, 1950, 1952) and the Williamson-Hall analysis
(Hall, 1949; Williamson & Hall, 1953) usually attribute a significant part of the broadening to
"size". As an explanation, it has been suggested that the lattice defects or combinations of them
act as "coherence boundaries”, that break up the crystals into domains diffracting essentially
incoherently with respect to each other (Warren, 1959). However, it has been shown that parts
of a crystal can be considered to diffract incoherently only in case of exceptional strain fields:
large distortions concentrated in small isolated regions of a crystal (Berkum, 1994; hereafter
called paper I).

The size-strain separation methods mentioned, based on decomposition of measured line
profiles, involve specifications of the order-dependences of the size and the strain broadenings,
that affect the results obtained to an unknown extent. A completely different approach of line-
broadening analysis is matching line profiles simulated on the basis of a microstrain model to
measured line profiles (see e.g. Berkum, Delhez, Keijser & Mittemeijer, 1992). The line-profile
calculation itself involves no assumptions, apart from those inherent to the kinematical
diffraction theory. Therefore, if adequate strain models can be developed, this approach can be
more valuable than the existing size-strain separation methods.

The aim of this paper is twofold: (i) assessing the meaning of the "size" and "strain”"
obtained by line-profile decomposition according to the Williamson-Hall analysis and the
Warren-Averbach analysis and (ii) investigating the possibility of an interpretation of line
broadening directly in terms of strain-field parameters by line-profile simulation. For the first
part, line profiles that are calculated on the basis of a realistic and flexible model for the strain
field in a distorted specimen (see paper I) and line profiles measured from a cold-worked

specimen are used; for the second part, the experimental line profiles are used again.
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Il. MODEL

To describe a line profile, the crystal is divided in columns parallel to the (average) diffraction
vector H. Then, the broadening is exclusively determined by the behaviour of the strain
component e parallel to H as a function of the position x in each column (the axis x is parallel to
H). The behaviours of e(x) occurring in practice are so complicated that they can be described
meaningfully only in a statistical way. In paper I, a realistic statistical description of e(x) for an
infinitely long column is proposed, where the column is considered representative for all
columns together in a three-dimensional specimen. (Effects due to the finite size of the crystals
are neglected, since these effects are often very small in practice. If this is not the case, they can
easily be included.) It is assumed that the column passes a number of lattice defects (e.g.
dislocations) close enough to "feel" their strain fields. The average distance between the
projections onto the column of these defects is denoted (D). Usually, the average projected-
defect distance (D) is two to three times smaller than the average distance between the defects in
three dimensions (see paper I). The total strain field e(x) is the sum of "component strain fields"
induced in the column by the individual defects i (i is an integer). The component strain fields in
the column are characterized by a certain shape function with a width w, taken equal for all
projected defects, and with a maximum value g;, that varies from one projected defect to the
other, e.g. because of varying orientations and distances of the defects with respect to x. For
each projected defect, the probability density of a value a; = a is given by the distribution
function p (a) with a mean {a) = 0 and a variance {a?). The variance of the total local strain, the
mean squared strain {e2), is proportional to (a?)/(D) and independent of w [see Eq. (34) of
paper I].

The nature of the total strain field is strongly influenced by the ratio w/D), the relative
width of the component strain fields. For large w/(D) (2 1), the component strain fields of the
individual defects overlap strongly and the strain is smoothly varying with position in the
column. Strain gradients in the column are small. For small w/(D) (< 0.01), the component
strain fields produce isolated sharp peaks in the total strain field, leaving relatively little distorted
regions in between the projected defects.

For the purpose of evaluating the Williamson-Hall analysis and the Warren-Averbach
analysis, the average projected-defect distance (D), the individual strain field width w and the
mean squared strain {e2) are expected to be the most relevant parameters (see Conclusions of
paper I). Other model parameters are kept constant: the projected defects are taken periodically
distributed (i.e. all projected defects have a distance (D) to their nearest neighbours), the
distribution p_(a) is taken Gaussian and the shape of the individual strain fields is taken

Lorentzian, with w as its half width at half maximum. These choices are based on relevance for
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practice and reasons of convenience (see paper I). To avoid misunderstandings, the following
remarks are made. Firstly, although the distribution of projected defects is periodic, the total
strain field is never periodic (see e.g. Fig. 3 of paper I), because the maximum strain values a;
are independent variables. Secondly, the shape of the distribution p, () depends on the shape of
p (@) and the shape of the individual strain fields, but, in spite of the shapes adopted, it is neither
Gaussian, nor Lorentzian, because it also depends strongly on the ratio w/(D) (see App. A).

On the basis of the strain field e(x) diffraction-line profiles I'(s,d*) can be calculated as a
function of s =2 sinf/ A — d* in reciprocal space, where 4 is the wavelength of the radiation
used, 26 1is the diffraction angle and d* is the average length of the diffraction vector H, which is
taken here as the value of 2 sinf/ A at the centroid of I'. The profile I'(s,d™) can be expressed as

a Fourier series (e.g. Warren, 1969):
+ oo
I'(s,d®) = K 2 {A(L,d*) cos(2rLs) + B(L,d*) sin(2nLs)}, (1)
L= —oo

where K is (approximately) a constant, A and B are the cosine and sine Fourier coefficients and
the harmonic parameter L is a distance in real space perpendicular to the reflecting planes,
sometimes called the "correlation length", which in practice can be considered as a continuous
variable. For the present strain-field model, Fourier coefficients can be expressed in terms of
quantities relative to the average projected-defect distance (D): L, = LXD), w; = w/{D) and d; =
d*{D) (see Sec. III of paper I). For a Gaussian p ,(@), the cosine Fourier coefficients for a
certain L; and df are completely determined by {e2) and w; [substitute x. = x/(D), L,, w, and d?
into Egs. (20), (30) and (36) of paper 1]:

AlLedh) = | exp(-2n%d%Z}0),) dx;. @)

o —— e

where, in case of periodically distributed projected defects and Lorentzian component strain
fields:

. . : 2
(ZL?'r )y = 2W'T<e2> 3 [arctan(%@) - arctan(]%[@)] . (3)

The sine coefficients B(L..d;) are nil in case of symmetrical p(a;). In general, A(L,dY) has to be
evaluated numerically. Note that df and {e2) occur only in the combination d; {e2)!/2 [see Egs.
(2) and (3)]; therefore, using df (e2)!/2 as a variable, the influence of both parameters is

investigated at the same time.
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lll. LINE-PROFILE DECOMPOSITION OF SIMULATED LINE PROFILES

Methods of analysis based on line-profile decomposition conceive the line profile I'(s,d") as the
convolution of an order-independent size-broadened profile I'5(s) and an order-dependent
strain-broadened profile 1'P(s,d*). Usually, the characteristics of two or more line profiles
I'(s,d*) with different values for the length d* of the diffraction vector are used to estimate
characteristics of I'5(s) and I'0(s,d*). The size and strain broadenings are then translated to size
and strain parameters that are intended to characterize the microstructure of the specimen.

In the following, broadened line profiles are calculated on the basis of the strain-field
model presented in the previous section. Subsequently, these line profiles, as if they were real
measurements, are analysed by means of the Williamson-Hall analysis and the Warren-

Averbach analysis in terms of size and strain parameters.
A. Williamson-Hall analysis

Procedure _

A number of methods use the integral breadths B(d”) (i.e. areas divided by heights) of line
profiles I'(s,d*) to estimate the integral breadths 5 of 1'5(s) and BP(d*) of I'P(s,d”) (for an
overview, see Klug & Alexander, 1974). All these methods assume that S2(d™) = d* [e.g.
BPd*) = \jﬁ e d*, where e is a strain parameter] and that /'(s) and I'P(s,d*) have specific
shapes. These assumptions make them liable to systematic errors. Nevertheless, the methods are
applied frequently and therefore one of them, the classical, linear version of the Williamson-Hall
plot, is investigated here.

In the linear version of the Williamson-Hall analysis (Williamson & Hall, 1953)!, it is
assumed that 85 and BP(d*) are linearly additive. Further, 5 is identified with (DWH)" and
BP(d*) is identified with \21 ewy d* (for discussion of the numerical factor, see Stokes &
Wilson, 1944), where Dy and ewp are a size and a strain parameter, respectively. Therefore, a
straight line is drawn through the data points in a plot of $(d”) versus d* and the intercept of the
ordinate is interpreted as (DWH)‘l and the slope is interpreted as M ewy. If more than two
orders of reflection are available and they do not lie on a straight line, the analysis should not be

applied.

1 On 28 scale, instead of on s scale, the Williamson-Hall analyis involves a plot of B cosé versus sin. Then,

the intercept of the ordinate is interpreted as A/Dyy, and the slope is interpreted as 2V 2% eyp.
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For the general strain-field model, A(L,,dr) is given by Egs. (2) and (3). Since the line
profiles are symmetrical [L.e. all B(L.dy) are nil; see below Eq. (3)], the relative integral breadth
Bi(dy) = B(d{XD) can be calculated according to:

00 -1
pud?) = [l A(Led) dLr} . @

The behaviour of B(d;) as a function of df (¢2)!/2 is always more or less S-shaped (see Fig. 4a
of paper I). Consequently, the Williamson-Hall analysis should in fact not be applied. If the
Williamson-Hall analysis is applied nevertheless, the slope and the intercept can take many
different values (even negative intercepts are possible).

Only for relatively large d}f (e2)12, say df (e2)1/2 > 1"[10 w, , B(d}) follows a straight
line (see Fig. 4a of paper I) and a Williamson-Hall analysis may be meaningful. To investigate
the meaning of the parameters Dy and ey, in this case, B(dy) of a first and a second order of
reflection have been calculated using df (¢2))/2 = 1/J10 w, for the first order (e.g. d* =
5 nm~!, {D) = 40 nm, w = 4 nm and {e?) = 25x10-5, which are reasonable values for cold-
worked metals). From these B(d;) values, the size and strain parameters Dy, and ey have
been deduced by means of the Williamson-Hall analysis. Since Dyy and ey refer to the size
of and the strain within independently diffracting "domains" in the specimen and the line
broadening is calculated from the strain field in an infinitely long coherently diffracting column,
it is not self-evident what values of Dy, and ey should be expected. Rather arbitrarily, Dyy
is compared with the average projected-defect distance (D) and ey with the root mean squared

strain {e?)!/2,

Results and discussion

The results obtained by means of the Williamson-Hall analysis as a function of w, are shown in
Fig. la. For very large w,, all broadening is attributed to strain (i.e. 5 =0 and Dy = =),
because B.(d}) < d; [see Eq. (43) of paper I]. The strain parameter ey, equals (¢2)!/2. Thus,
according to the Williamson-Hall analysis, a smoothly varying strain field induces pure strain
broadening.

For w; 4 0, the Williamson-Hall analysis attributes all broadening to size (i.e. 82 = 0 and
ewy = 0) and Dy equals (D). This is understandable too, since di (¢2)!/2 = 1A 10w,
becomes very large for w; | 0, in which case f; approaches 1 and becomes independent of the
order of reflection (see Fig. 4b of paper I for large {12)!/2). Therefore, the line through the two
calculated data points has zero slope and an intercept of the ordinate B; = 1. Thus, in the
Williamson-Hall analysis the broadening due to a sharply peaked strain field is interpreted as

pure size broadening, with a size parameter Dy equal to the average projected-defect distance.
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Results of (a) the Williamson-Hall analysis and (b) the Warren-Averbach analysis applied to
a first and second order line profile, calculated using dj (€2)"2 = 17/10 w, for the first
order, as a function of the relative width w, of the component strain fields. The size
parameters Dy, and Dy, are compared with the average projected-defect distance (D).
The strain parameters ey, and eya are compared with the root mean squared strain
{(e2)12 and, in the case of ey, also with the true (efr)“?' at a relative correlation length

L= % (for the definitions of the size and strain parameters, see text).
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For intermediate wy, the Williamson-Hall analysis attributes the calculated line broadening
partly to size and partly to strain (see Fig. 1a). The size parameter Dyy is always larger than
(DY; the strain parameter ey is always smaller than (e2)1/2. The deviations appear to be
correlated: with increasing w; the decrease of (D)/Dyyy approximately equals the increase of
eyp/(e2)V/2. However, the relation between the resulting values for Dy and ey and the
simulated strain field is unclear. In practice, without additional information on the nature of the
strain field in the specimen, Dy can be anywhere between (D) and e and ey, between 0 and
(€212, The cause of this is that the Williamson-Hall analysis is based on assumptions
regarding the integral breadths and shapes of the size- and strain-broadened profiles that do not
hold.

B. Warren-Averbach analysis

Procedure

Several methods for line-profile decomposition use the Fourier coefficients A(L,d*) of two or
more line profiles I'(s,d*) to estimate the Fourier coefficients AS(L) of I'S(s) and AP(L,d"¥) of
I'D(s,d™) [note that AS(L)AP(L,d*) = A(L,d™)]. Since a set of Fourier coefficients represents a
line profile in all its details, such Fourier methods can yield more detailed information on the
microstructure than methods based on breadth parameters. A frequently applied Fourier method
is the so-called Warren-Averbach analysis (Warren & Averbach, 1950, 1952).

In the Warren-Averbach analysis, it is assumed that In[AP(L,d™)] = —2r212d *z(ei) and,
consequently, that In[A(L,d")] = In[AS(L)] - 2n2L2d*2(e1%), where (ez) is the variance of e, the
strain e averaged over a length L (see also App. A)Z. Therefore, a straight line is drawn through
the data points in a plot of In[A(L,d")] versus d** and the intercept of the ordinate is interpreted
as In[AS(L)] and the slope is interpreted as —2n2L2(ez)WA (the subscript WA is added to (ez) to
distinguish the values obtained by means of the Warren-Averbach analysis from the true
values). When AS(L) and (ei)w 4 are obtained for many L values, a size parameter Dy, =
lLiE')I [dAS/dL]_1 and a strain parameter ey, = 12{(()1 (ei)vlv/j can be calculated in principle. In
practice, both limits for L | 0 cannot be determined reliably and one proceeds otherwise. To
obtain Dy, usually a straight line is fitted to AS(L) in the L region where it has a reasonably
straight portion and Dy, is taken as the L value at the intersection of the fitted line and the

L axis. For ey,, the value of (e,%)vl‘fj atL= 21 Dy, can be chosen (Klug & Alexander, 1974).

2 The Warren-Averbach analysis can also be performed without taking the logarithm (Delhez & Mittemeijer,
1976). Advantages and drawbacks of both versions have been discussed by Berkum, Vermeulen, Delhez, Keijser
& Mittemeijer (1994).
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If L, d* and the strains e(x) are sufficiently small, the assumption used in the Warren-
Averbach analysis is correct and the relation In[A(L,d%)] versus d*? is linear. To determine if
practical L, d* and e(x) values are small enough, the linearity of the relation is investigated for
Fourier coefficients A(L;,dy) calculated from the general strain-field model. Regardless of the
linearity, the Warren-Averbach analysis is applied to Fourier coefficients of a first and a second
order line profile, calculated using the same w; and dy (¢2)!/2 as in Sec. IILA, to investigate the
meaning of the parameters Dy, and eyy. The results of different practical procedures to
calculate Dy, and ey, (see above) deviate, in particular for Dy, but it was found that the trend
and limiting cases discussed below are always the same. Here, for Dy, a straight line is fitted
to AS(L,) for % <L, <% [this is the straightest part of AS(L;) for all wy]; for ey, the value of
(eir );ﬁ at L, = % is taken (note that L, = L/{D)). For the same reason as for Dy and ey (see
Sec. II1LA), it is not self-evident what values of Dy, and ey, should be expected. As in
Sec. TILA, Dy, is compared with (D). For ey4, both the true (¢2)!/Z and (eir 2

used as references.

1
at Ly =5 are

Results and discussion

For practical values of Ly, df, and <€2>”2, the linearity of the relation In[A(L;,d})] versus d}*
strongly depends on the relative width w, of the component strain fields (see Fig. 2).
Nevertheless, the true lines always start in A(L,df) = 1 for d**e2) = 0. Hence, for all values of
L., a Warren-Averbach analysis for infinitely small d;*(e2) yields AS(L;) = 1 and Dy, = oo,
corresponding with the infinite column length considered. For all L, the initial slope also yields
exactly the true (eir ). However, due to the curvature of the true lines (explained briefly in
App. A), straight lines through data points for practical d;*(e2) can yield intercepts deviating
from zero and slopes deviating from (elzT ) (see Figs. 2b and ¢).

For very large w, (2 1), the true line remains straight up to large dfz(ez) and the straight
line fitted in the Warren-Averbach analysis coincides with the true line (see Fig. 2a). Therefore,
the "true" values are obtained (see Fig. 1b): Dy, = oo and ey, = (eir )1/2 at L. = % which is
almost equal to {¢2)!/2 in this case (cf. Fig. Ala). Apparently, a smoothly varying strain e(x)
does not break up the column in "domains”. The line broadening is interpreted as pure strain
broadening.

For very small w; (< 0.01), the true line is strongly curved at very small di*(e?) and
almost straight in the range where experimental data points are usually situated (see Fig. 2c).
Since a straight line through the two data points coincides with a large portion of the true line, it
appears a meaningful description of the behaviour of the Fourier coefficients, in spite of the

deviation at very small d/*(e2). In paper I, it was found that, for the case wy 1 0, the relatively
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Fig. 2: Behaviour of In[A(L,,d"})] as a function of d;z(ez) for a relative correlation length L; = 0.5

and three relative widths w, of the component strain fields: (a) w; = 1, (b) w; = 0.1, and
(c) w; = 0.01. The dots represent Fourier coefficients of a first and second order of
reflection with o (€2)12 = 1410 w; for the first order. In the Warren-Averbach analysis, the
intercept of the ordinate and the slope of the dashed line are used to calculate size and
strain parameters (for w; = 1, the dashed line coincides with the full line).
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little distorted regions between the "walls of distortion" near the projected defects can be
considered to scatter incoherently with respect to each other. This complies with the almost
horizontal true line (see Fig. 2¢): nearly pure size and little strain broadening. For w; 10, the
size parameter Dy, tends to (D) and the strain parameter vanishes (see Fig. 1b).

For intermediate w; values (~0.1), the true line does not have straight parts (see Fig. 2b).
The straight line through the data points deviates from the true line in an arbitrary way.
Different results would be obtained from different pairs of reflections (cf. also Wilkens, 1979).
Knowing the true line, one would not apply the Warren-Averbach analysis in such a case. If,
however, as usual in practice, only two data points are available and the curvature of the true line
is unknown, the results of the Warren-Averbach analysis deviate from the "true" values in an
unknown way.

An example of the results of the Warren-Averbach analysis for intermediate w; in terms
of AS(L;) and (ezr)WA is shown in Fig. 3. The mean squared strains (ei)WA are much smaller
than the true (ezr), except in the impracticable limit Z; 4 0. The resulting behaviour of AS(L,) is
a problem on itself. It is curved downward for small L., which is in contradiction with the
theoretical basis of the Warren-Averbach analysis. Truncation of the line profiles can cause
such a "hook effect” (Young, Gerdes & Wilson, 1967), but this effect is absent in the present
calculations. Here, the hook effect is exclusively due to the violation of the assumption
underlying the Warren-Averbach analysis. Calculating a size parameter Dy, the theoretically
correct method (using lim [dAS/dL)) yields Dy, = oo, which complies with the infinitely long
column used in the calculations. In practice, however, a straight line fit to some part of AS(L,) is
used, which yields Dy,/(D) values ranging from 0.6 to 1.2. Further, it follows from Fig. 1b that
Dy, and ey, depend strongly on w;. As in the case of the Williamson-Hall analysis, it is
concluded that, for intermediate w, the relation between the Warren-Averbach parameters (Dy,
and ey,) and the strain-field parameters is unclear. The cause of this is that the Warren-
Averbach analysis is based on assumptions regarding the Fourier coefficients of the strain-
broadened line profile that do not hold for practical values of L, d*, and (e2)/2.
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Fig. 3: Results of the Warren-Averbach analysis applied to Fourier coefficients A(L;,d}) and

A(L,,2d}) of a first and second order line profile, respectively, calculated using w; = 0.1
and d; (e2)V2 = 1 (= 110 w,) for the first order, in terms of (&) size coefiicients AS(L,)
[A(L,,d7) and A(L,,2d}) have been included for comparison] and (b) relative mean squared
strains (efr)WA X e2) [the true (e,:_zr Y(62) have been included for comparison].

IV. LINE-PROFILE SIMULATION USING THE STRAIN-FIELD MODEL

The observed deficiencies of classical size-strain separation methods urge for an alternative
method for the analysis of line broadening from distorted specimens. Simulation (and
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matching) of line profiles on the basis of a strain-field model constitutes such a method. The
model parameters can be adapted and refined until certain characteristics of the simulated line
profile fit certain characteristics of the measured one. The effect of instrumental line broadening,
always present in measured line profiles, should either be removed from the measured line
profile, or added to the simulated line profile (see e.g. Berkum, Delhez, Keijser & Mittemeijer,
1992). If the fit succeeds, the model and the model parameters can provide a reasonable
description of the strain field in the specimen and a physically meaningful characterization of
the specimen is thus obtained.

The strain-field model presented in Sec. II, can be used in a line-profile simulation
method. For this model, a single line-profile parameter, like the integral breadth (d*), is usually
not sufficient to determine the three model parameters. Fitting the full experimental line profile
I'(s) on the basis of Egs. (1) to (3) is laborious, because each step in an iterative procedure
involves a Fourier transformation. Therefore, fitting the Fourier coefficients A(L,d") is
advantageous. Equations (2) and (3) assume, among other things, periodically distributed
projected defects. For small and moderate L,, the Fourier coefficients are not much affected by
the distribution of projected defects along the column, but for large L, they are (see Fig. 6 of
paper I). Therefore, the fitting should be restricted to, say, L; < 1, or a more general strain-field
model (see paper I) should be used.

The reliability of the results is very much enhanced if more than one line profile can be
fitted simultaneously. In general, only orders of the same reflection can be used, because the
strain field may be systematically different in different crystallographic directions in the
diffracting crystals. In the case of isotropic lattice distortion, all reflections of a deformed
specimen can be used to determine a single set of model parameters (see e.g. Sec. V).

In the next section, the merits of line-profile simulation as a method of analysis (fitting
Fourier coefficients calculated from a strain-field model to experimental ones) are investigated
by applying the method to experimental line profiles.

V. LINE-PROFILE DECOMPOSITION AND LINE-PROFILE SIMULATION
OF EXPERIMENTAL LINE PROFILES

A. Experimental

To obtain a sample representative of a cold-worked metal, a tungsten powder (>99.5 weight %,
Fluka Chemika) was ball milled for 1 h using two balls in a horizontally moving vessel.
Tungsten was chosen because of its elastic isotropy. Ball milling was used, because it is a
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many-sided ("isotropic") deformation procedure, that is expected to produce dislocations with
all possible combinations of Burgers' and line vectors. For these two reasons, the strain field in
the specimen can be considered equivalent in all crystallographic directions and a simultaneous
analysis of all measurable reflections is possible. Thus, the dependence of the integral breadth
and the Fourier coefficients on the length of the diffraction vector can be studied with much
more detail than in the case of an anisotropic material or an "anisotropic” deformation
procedure (using CuKe radiation, eight reflections can be analysed for tungsten).

If the broadening effect of dislocations is to be investigated separately, other origins of
line broadening should preferably be absent. The ball milling of tungsten produced some small
particle fragments (see Fig. 4a), which would give rise to additional line broadening due to their
finite sizes. These fragments were removed by suspending the milled powder in 2-propanol and
removing the suspension from the sediment after 30 minutes and repeating this procedure two
times using the sediment. The average particle size after this treatment is definitely larger than

1 um (see Fig. 4b). The line broadening due to such an average particle size is a negligible

fraction of the total broadening.

(a (b

Fig. 4: Scanning-electron-microscope observations of a ball-milled tungsten powder (a) before
and (b) after removal of the smallest particles by means of sedimentation.
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A diffractometer specimen was prepared by suspending a small amount of the
fractionated powder once more in 2-propanol and now sedimenting it onto a flat Si (510)
single-crystal substrate. From a silicon powder a standard specimen of exactly the same
geometry was prepared to measure the instrumental broadening (Berkum, Sprong, Keijser,
Delhez & Sonneveld, 1994). The difference in the absorption coefficients of tungsten and
silicon is of no importance, because both the silicon and the tungsten layer are almost fully
transparent due to their open "coral-like" structure and their thinness (~ 10 to 20 pm).

The X-ray diffraction-line profiles were recorded on a Siemens D500 diffractometer
using CuKa radiation and a graphite diffracted-beam monochromator. The divergence of the
incident beam was 1° and the receiving-slit width was 0.05 °28. The specimens were rotated
around the normal to their surfaces during the measurements. For the tungsten specimen, the
complete 260 range (27° to 167°) was measured; for the silicon standard specimen, a sufficiently
long range around each peak. For all profiles linear backgrounds were subtracted and the
CuKo, components were removed according to Delhez & Mittemeijer (1975). The profiles
were then translated to intensity distributions I'(s,d*) in reciprocal space (with d* corresponding
to the centroid of /') and Fourier transformed. To obtain Fourier coefficients of the instrumental
line profile for the d* of the tungsten reflections, Fourier coefficients of the two nearest silicon
reflections were interpolated linearly. Finally, the Fourier coefficients of the tungsten profiles
were divided by those of the instrumental profiles to obtain the Fourier coefficients of the
structurally-broadened line profiles (Stokes, 1948).

The resulting sine coefficients were small for all reflections [~ 0.07xA(L=0,d *) at most],
indicating almost symmetrical line profiles. Therefore, the integral breadths 3 can be calculated
from the Fourier coefficients using Eq. (4), but with a finite range of integration in L. Here, the
range of integration (summation) was gradually increased and 8 was taken as the plateau
reached in a plot of the integral versus the range of integration. In this way, 8 of the
structurally-broadened line profiles was obtained without imposing any assumptions on the

shape of the measured profiles.

B. Line-profile decomposition using size and strain parameters

The integral breadths of the eight reflections of the ball-milled tungsten powder lie reasonably
on a straight line having a positive intercept with the ordinate (see Fig. 5a). The last two
reflections show minor deviations from this line, which may be due to truncation effects (the
{321} and {400} reflections probably have a little overlap and the {400} reflection is cut at
26 = 167°). Exclusion of the last or last two reflections from the analysis does not alter the

conclusions reached. Earlier measurements of integral breadths from tungsten filings yielded
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Fig. 5: (a) Integral breadth B and (b) Fourier coefficients A(L) as a function of the length d” of the

diffraction vector for the structurally broadened line profiles ({hk/} indicated at the bottom)
of a ball-milled and fractionated tungsten powder. Dashed lines (straight-line fits to all
eight data points) have been used in the Williamson-Hall analysis (&) and the Warren-
Averbach analysis (b). Full lines have been calculated from the present strain-field model
using (D) = 21 nm, w; = 0.115 and (e2)12 = 6.8x1073.
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results very similar to Fig. 5a (Williamson & Hall, 1953; Langford, 1992). The size and strain
parameters determined from Fig. 5a by means of the linear version of the Williamson-Hall
analysis (see Sec. [ILLA) are Dyy = 62 nm and eyy = 2.5%x10-3, i.e. the broadening is
interpreted as partly due to size, partly due to strain, corresponding to an intermediate wy value.
Hence, according to Sec. III.A, the Williamson-Hall size and strain parameters cannot be linked
easily with the microstructure of the ball-milled powder.

The cosine Fourier coefficients of the experimental structurally-broadened line profiles
plotted logarithmically as a function of d*? do not lie on a straight line (see Fig. 5b). A similar
curvature can be observed in other, recently published data obtained from ball-milled tungsten
(Wagner, Yang & Boldrick, 1992). On the other hand, such curvature was not found by
McKeehan & Warren (1953) and Aqua & Wagner (1964). The absence of such a curvature
may be due to insufficient annealing of the standard specimen they used (see Williamson &
Smallman, 1956). According to Sec. III.B, the Warren-Averbach analysis in this case (curved
lines in Fig. 5b) yields parameters that cannot be linked easily with the microstructure of the
ball-milled powder. If it is performed nevertheless, the results depend on the reflections
incorporated in the analysis. Using straight line fits to all eight reflections (see Fig. 5b) and the
practical procedures described in Sec. IILB to calculate Dy, and ey, the results are Dy,4 = 17
nm and ey, = 1.3%10-3; using e.g. only {110} and {220}, the results are Dy, = 23 nm and
ewa = 2.2x10-3. A (precarious) extrapolation of the (ei)”z to L = 0 yields ~ 3x10-3 for all 8
reflections and ~ 5x10-3 for {110} and {220}. The AS(L) results always show a small "hook
effect"”.

C. Line-profile simulation using the strain-field model

Fourier coefficients calculated according to Egs. (2) and (3) have been fitted to the experimental
Fourier coefficients of all eight reflections simultaneously (¢f. Sec. IV). It was found that the
parameter values (D) = 21 nm, w; = 0.115 and (e2)!/2 = 6.8x10-3 yield the best fit (see the
curved lines in Fig. 5b). The curved lines and the data points agree fairly well (the data points
for L = 2 nm are probably the least accurate due to the unavoidable truncation of the measured
profiles). This is remarkable, considering the simplicity of the strain-field model used at
present. With the strain field defined by the parameter values determined, the results of the
Williamson-Hall analysis and the Warren-Averbach analysis can be predicted: for w, = 0.115,
Fig. la yields Dy = 1.6 (D) and ey = 0.33 (€2)1/2 and Fig. 1b yields Dy, =~ 0.85 (D) and
ewa = 0.24 (¢2)1/2. Thus, the results obtained in Sec. V.B are close to these predicted values.
The behaviour of the integral breadth corresponding to the strain-field parameters

estimated from the behaviour of the Fourier coefficients is indicated by the full line in Fig. 5a.
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The discrepancy between the lines calculated using the model and the experimental data points
is ascribed to the periodic distribution of projected defects adopted in the model: it can be
shown that non-periodic distributions yield Fourier coefficients that are comparable to the ones
calculated here at small L, but that vanish more gradually at larger L (see Fig. 6 in paper I).
Consequently, such distributions yield smaller f values [¢f. Eq. (4)], with a better
correspondence to the present experimental data.

Since, in the present analysis based on line-profile simulations, the mean squared strain is
included as a parameter, the stored-elastic-energy density E is readily calculated using E =
12—5 1t {e?) (Faulkner, 1960), where u = 160.6 GPa (Smithells, 1976) is the shear modulus. For
the ball-milled tungsten powder, one obtains E = 1.1x106 J/m3. This value is close to the results
of Fecht et al. (1990), who obtained E 2 1.3x106 J/m3 from calorimetric measurements on also
severely ball-milled tungsten. The strain values obtained by means of line-profile decomposition
(1 to 5x10-3) are significantly smaller than the root mean squared strain value obtained by
means of line-profile simulation (6.8x10-3). In the past, it has been observed that stored
energies calculated from Warren-Averbach strains are smaller than those calculated from
calorimetric measurements (Michell & Haig, 1957). The present results suggest that such
discrepancies can be due to underestimation of the mean squared strain by the Warren-
Averbach analysis and that line-profile simulation using the present model provides more

accurate root mean squared strain and stored-energy values.

V. CONCLUSIONS

In general, the results obtained in practice by application of the classical Williamson-Hall
analysis and the Warren-Averbach analysis to broadened line profiles from coarse-grained
distorted specimens cannot be related directly to the microstructure of the specimen. The cause
is that the assumptions underlying the methods, on which the division into a "size" and a
"strain” broadening is based, are not justified for most practical cases. Only in two limiting
cases, the Williamson-Hall and the Warren-Averbach results can be interpreted in a physically
meaningful way: (i) if the methods indicate dominant strain broadening, it can be concluded that
the strain gradients in the specimen, in the direction of the diffraction vector, are small and that
the values obtained for the usual strain parameters equal the true root mean squared strain, and
(ii) if the methods indicate dominant size broadening, it can be concluded that the strain in the
specimen, in the direction of the diffraction vector, is confined to very narrow bands with
relatively little-distorted regions in between and that the values obtained for the usual size

parameters equal the average distance between these bands.



Chapter 8. Line-Profile Decomposition versus Line-Profile Simulation 175

On the other hand, by simulation and matching of line profiles on the basis of a strain-
field model, line broadening from distorted specimens can be analysed without additional
assumptions imposed upon the kinematical diffraction theory, in contrast with the classical
methods. The present strain-field model (see Berkum, 1994), involving only three adjustable
parameters, is able to describe the broadening of all eight reflections of a ball-milled tungsten
powder with reasonable accuracy. The strain-field parameters obtained are readily physicaily

interpretable, e.g. in terms of stored elastic energy.
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APPENDIX A: STRAIN DISTRIBUTIONS

The results of the Warren-Averbach analysis, as discussed in Sec. IILB, can also largely be
understood from an investigation of the frequency distributions p, (e, ) of €, (x), the average of
e(x) in the interval [x —% L x+ % L). The function e, (x) can be considered as e(x) smoothed by
a rectangular window of width L. Thus, the variance (ei) decreases continuously3 with
increasing "smoothing", i.e. increasing L. Because in the shape function of the strain fields of
the individual defects, x and w occur only in the combination x/w [see Eq. (35) of paper I] and
the contributions of the individual defects to ¢, are uncorrelated, the behaviours of (eZ‘} versus L
for different w coincide if they are displayed as a function of L/w. In relative quantities, this
statement holds for ("Zr> versus LJw (see Fig. Ala). Thus, (ezr) versus L, decreases faster for
small w, than for large w;. This can be understood from the sharply peaked behaviour of e(x;)
for small w,, which is flattened by the smoothing much faster than the smooth e(x;) for large wy.

The shape of p; (e; ) can be characterized by the kurtosis k, , here defined as (ezr )/(e%r )2
(see Fig. Alb). For L, >> 1, the strain e Lr(x) consists of many contributions of different defects
of comparable magnitude. The contributions are statistically independent, because the values g;
are drawn independently. Then, according to the central limit theorem (the distribution of the
sum of many independent variables becomes Gaussian), the shape of p Lr(e L) has to become
Gaussian for large L;. For a Gaussian distribution kLr = 3. Indeed, kLr decreases with increasing

L, to approximately 3 for L, > 1 (see Fig. Alb). Further, kLr increases with decreasing wy, in

3 This does not necessarily hold if the grains are small and enclose misfitting second-phase particles (cf.

Berkum, Delhez, Keijser & Mittemeijer, 1992).
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Fig. A1:  Characteristics of the frequency distributions ple.) of e (a) relative variance (efr (e2)
versus L/w; and (b) kurtosis k; = (efr )/(efr )2 versus L, for different values of the relative
width w; of the individual strain fields [if p, (e, ) is Gaussian, then k, = 3].
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particular for small L, because the maximum values of e Lr(x) become increasingly extreme with
decreasing wy, which affects (ezr) more than (ezr)z. The oscillations in Fig. Alb (k; =3 for
integer values of L; and slightly larger in between) originate from the adopted periodicity for
the distribution of the projected-defect distances. For non-periodic defect-distance distributions,
kL, decreases more smoothly to 3.

If, for a specific L, the distribution p, (e, ) is Gaussian, the assumption used in the
Warren-Averbach analysis (see Sec. IIL.B) is correct for this L value (Warren, 1959) and the
line in the Warren- Averbach plot is straight. For large wr, p,(e;) is always nearly Gaussian and
straight lines should be obtained, which agrees with Fig. 2a. If p; (e, ) is non-Gaussian, the
assumption in the Warren-Averbach analysis can still be justified if L and (e?) are sufficiently
small (Warren, 1959). Apparently, for w, = 0.1 and w; = 0.01, the values of L and {e?)
pertaining to Figs. 2b and 2c are not small enough in this sense, which results in curved lines.

Since the behaviour of (ei) has been discussed extensively in the past, the (ez) calculated
here are confronted with some expressions in the literature. The horizontal tangent to (eZ) in
L =0 and the parabolic decay for small L, derived for infinitely large grains by Turunen,
Keijser, Delhez & Pers (1983), are both present in Fig. Ala. For 2.5 < L/iw < 15, the (ez) values
in Fig. Ala (note that L/w = L/w,) are approximately proportional to In{(C/L), the behaviour
derived for strains around dislocations for small but not too small L (Wilkens, 1970). For larger
L, the behaviour of (ei) depends strongly on the details of the spatial ordering of the defects.
Since only one projected-defect distance distribution is considered here (the periodic one), the
present (e,;':) behaviour for larger L is quite unique. Finally, for very large L, (ez) is proportional
to L1 [the <e[2) according to Eq. (4.7) and the equation below Eq. (A.8) of Wilkens (1970) also
show this behaviour]. This relation always holds for very large L, because then the local strain
e, (x) consists of many statistically independent contributions; a direct consequence is that
In[A(L,d*)] o< —L for very large L (Eastabrook & Wilson, 1952).
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SUMMARY

The analysis of line broadening in X-ray powder diffraction is in principle a powerful tool in
microstructural research. It requires accurate line-broadening measurements and a physically
meaningful interpretation of the experimental data.

One of the experimental requirements, discussed in detail in this thesis, is the preparation
of a standard specimen, i.e. a specimen that contains no structural defects that contribute to the
measured line broadening. A standard specimen allows an experimental determination of the
instrumental line broadening. In Chapter 1, the requirements for a standard specimen (there are
a lot of requirements besides the absence of structural defects) have been discussed and it has
been concluded that they are partly contradictory. Two of these contradictions are: (i} counting
and crystal statistics urge for a thicker specimen, but thick specimens yield additional line
broadening and (ii) to avoid structural broadening larger particles are wanted, but that
deteriorates the crystal statistics. Because of these contradictions, a perfect standard specimen is
impossible and an optimum standard specimen has been developed. The resulting recipe for its
preparation is easily applicable and it yields reproducible results. The optimum standard
specimen allows very accurate measurements of instrumental line profiles with random and
systematic errors of the order of 0.001 °26.

The interpretation of structural line broadening is considered the most difficult part of
line-broadening analysis. In the General Introduction, most of the existing methods of
interpretation have been qualified as analytical methods, because they are based on approximate
analytical formulae, derived from the general diffraction theory. These methods translate
experimental data directly to parameter values. They do not assume the presence of specific
types of crystal imperfections and therefore they have been considered generally applicable.
However, because the parameters used are not specified in terms of imperfections, their meaning
is often unclear. In Chapter 8, it has been found that, in general, the "size" and "strain” obtained
by application of the Warren-Averbach and the Williamson-Hall analysis to coarse-grained
distorted specimens cannot be related directly to the microstructure of the specimens. There are
two exceptions: (i) if the methods attribute all measured broadening to "size", the strain in the
grains is completely concentrated in relatively narrow regions and the size parameter equals the
average distance between these regions and (i) if the methods attribute all measured broadening
to "strain”, the specimen is distorted by a rather smooth strain field and the strain parameter

equals the root mean squared strain.
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The Warren-Averbach analysis fails to yield a meaningful interpretation if the
approximate description of strain broadening used is invalid for the microstructure of the
specimen (see Chapters 2 and 3). Using other approximate descriptions of size and strain
broadening, alternative methods can be developed that are applicable to part of the specimens for
which the Warren-Averbach analysis is inapplicable. One such alternative has been applied to
line-broadening measured from two plastically deformed specimens and it yielded results that
were more believable than those of the Warren-Averbach analysis (Chapter 3).

A completely different approach to line-broadening analysis is used in model-based
methods. In these methods, line broadening calculated from a microstructural model is fitted to
the measured line broadening and thus the optimum model-parameter values are obtained. The
main advantage of model-based methods is that the meaning of the parameters is clear and
undisputed; the disadvantage is that they are only applicable to specimens with a microstructure
that can be described by the model.

A number of existing methods based on models for dislocation configurations have been
discussed in Chapter 4. It has been concluded that the models and the formulae used are related
closely. A recipe has been developed for the selection of the most suitable method and for its
execution in practice. If the measurements performed have a very high precision and accuracy,
which may be the case e.g. with single crystals measured in a double-crystal diffractometer,
significant information on the dislocation arrangement can be obtained in addition to the
dislocation density.

Based on a model for misfitting inclusions in a matrix, a new method for the interpretation
of line broadening has been developed (Chapter 5). Its application has been illustrated by means
of line-broadening measurements of five different aluminium-silicon alloys, consisting of very
fine silicon precipitates in a pure aluminium matrix. The integral breadths as well as the Fourier
coefficients of the broadened line profiles have been described by the model with sufficient
accuracy. The misfit value determined (2.3x10-3) is smaller than expected on the basis of the
difference in shrinkage on cooling from the precipitation to room temperature (3.1x10-3).
Apparently, a considerable plastic accommodation of the misfit takes place during cooling or
immediately afterwards. Surprisingly, between a few days and four years of ageing at room
temperature, the misfit value decreases further in the case of aluminium-silicon alloys with a
high silicon content, i.e. a relatively large stored-energy density (Chapter 6).

In Chapter 7, the strain field that is produced in a column of a specimen distorted by
lattice defects has been modelled statistically. In the strain-field model, the total strain field in
the column is described as the superposition of "component strain fields" of projected defects.
The projected-defect distances and the amplitudes of the component strain fields are considered
stochastic variables. In a relatively simple version, the average projected-defect distance and the



Summary 181

root mean squared amplitude and the width of the component strain fields are adjustable
parameters. Using this model, frequently observed behaviours of the integral breadths of
Fourier coefficients of broadened line profiles have been simulated and are thereby better
understood (Chapter 7). In particular, it has been found that if two relatively little distorted
regions are separated by a very small region with a high strain, the two regions can be
considered to diffract incoherently. The strain-field model has also been used to interpret the
line-broadening measured from a ball-milled tungsten powder (Chapter 8). A reasonable fit
between calculated and experimental Fourier coefficients of all eight reflections has been
obtained with three model parameters: an average projected-defect distance of 21 nm, a
halfwidth of the component strain fields of 2.4 nm, and a total root mean squared strain of
6.8x10-3. The experimentally obtained Fourier coefficients deviated systematically from the
description of strain broadening assumed in the Warren-Averbach method.

The dislocation-configuration models and the strain-field model assume that the grains
are so large that their sizes do not contribute to the line broadening. This assumption is certainly
justified if the average grain size is larger than 1 pum, i.e. for most technologically relevant
materials. If the grains size is smaller, the size broadening is readily included in the models, if
desired with the average grains size as an adjustable parélmeter. If a significant influence of the
grain boundaries on the strains within the grains is expected, a more rigorous adaptation of the
model is necessary.

In this thesis, a considerable number of methods for line-broadening analysis have been
presented. In practice, the method most suitable for the specimen under study has to be selected.
In general, model-based methods should be preferred over analytical methods if it is reasonable
to assume that the model used contains the essential characteristics of the microstructure of the
specimen and is sufficiently flexible. Advance knowledge on the specimen, e.g. from its
mechanical or thermal history of from transmission-electron-microscopy, is indispensable in
this decision. The choice between the specific models and the more general model should
depend on the information desired (e.g. dislocation density or stored energy) and the availability
of a suitable model.

An aspect that has largely been ignored is that the strain field in a specimen may be
systematically different in different crystallographic directions. In this thesis, only the behaviour
of the strain in a single direction has been considered or the strain in all directions has been
considered equivalent. However, if the same (or equivalent) grains contribute to reflections with
different orientations of the diffraction vector, the experimental information is available to
reconstruct the (possibly anisotropic) strain field around the lattice defects in three dimensions.
In principle, the approach of line-broadening analysis used in the model-based methods

discussed in this thesis can be extended to make possible such a reconstruction.






SAMENVATTING

De meeste materialen zijn kristallijn, dat wil zeggen dat ze bestaan uit een regelmatige
rangschikking van atomen. Die rangschikking is echter nooit perfect: de richting van de
stapeling kan veranderen (kristalgrenzen), er kunnen stapelfouten (dislocaties) optreden of er
zitten vreemde atomen of clusters van vreemde atomen (precipitaten of insluitsels) in het
materiaal die niet precies in de rangschikking passen. De mechanische eigenschappen van een
materiaal zijn vaak sterk afhankelijk van zulke kristalfouten (meestal vervormt het materiaal
minder gemakkelijk door kristalfouten en wordt het daardoor sterker) en daarom is het
belangrijk te weten welke en hoeveel kristalfouten het materiaal bevat. In dit proefschrift is
vooral naar dislocaties en precipitaten gekeken.

Bij rontgendiffractie wordt rontgenstraling op een preparaat van een bepaald materiaal
gericht en vervolgens gemeten onder welke hoeken het preparaat die straling verstrooit. Als er
kristalfouten in het materiaal zitten, dan blijkt de verstrooide straling niet meer geconcentreerd te
zijn op precies te berekenen hoeken, maar min of meer verspreid rond deze hoeken. Dat
verschijnsel wordt rontgendiffractie-lijnverbreding genoemd. Als de posities en de aard van alle
kristalfouten in een preparaat bekend zijn, dan is de lijnverbreding in principe exact uit te
rekenen. In de praktijk moet echter de omgekeerde weg gevolgd worden: lijnverbreding gemeten
aan een preparaat moet vertaald worden naar informatie over kristalfouten in het materiaal. Er
zijn daarvoor in het verleden vele methodes ontwikkeld, waarvan een aantal in dit proefschrift
besproken en geé€valueerd zijn. Daarnaast zijn er een aantal nieuwe methodes ontwikkeld die
voor bepaalde soorten preparaten betere informatie over de kristalfouten opleveren dan de
bestaande methodes.

Voordat er over analysemethodes gepraat wordt, moet de lijnverbreding wel goed gemeten
worden. Een van de problemen die zich daarbij voordoen, is dat het instrument, een
diffractometer, zelf ook wat lijnverbreding veroorzaakt. Deze "instrumentele lijnverbreding” kan
gemeten worden aan een zogenaamd “standaardpreparaat”, een preparaat dat vrijwel geen
kristalfouten bevat. In hoofdstuk 1 zijn de eisen ten aanzien van zo'n standaardpreparaat
geformuleerd en is gebleken dat die eisen deels tegenstrijdig zijn. Er is daardoor geen perfecte
standaard mogelijk; een optimale standaard is het hoogst haalbare. Met behulp van de optimale
standaard, ontwikkeld in hoofdstuk 1, kan de instrumentele lijnverbreding tot op 0.001°

nauwkeurig gemeten worden.
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In de hoofdstukken 2 en 3 is een veel toegepaste methode voor de interpretatie van
lijnverbreding, de Warren-Averbach-analyse, geévalueerd. Er is daarbij gebruik gemaakt van
gemeten lijnverbreding, maar ook van computersimulaties. Bij computersimulaties wordt een
(realistisch) preparaat met kristalfouten bedacht en met behulp van een computer de
lijnverbreding uitgerekend die gemeten zou worden als het preparaat echt was. Vervolgens
wordt de berekende lijnverbreding geinterpreteerd met behulp van een analysemethode alsof het
echte metingen betreft. Uiteindelijk worden de interpretatie en de oorspronkelijke kristalfouten
vergeleken: als ze goed overeenkomen dan is de methode geschikt voor de analyse van het
gesimuleerde preparaat. Ten aanzien van de Warren-Averbach-analyse is gebleken dat de
lijnverbreding van bijvoorbeeld preparaten met veel dislocaties waarschijnlijk niet goed
geinterpreteerd wordt. Daarom is er een methode ontwikkeld die veel lijkt op de Warren-
Averbach-analyse en die de lijnverbreding van een deel van de preparaten waarvoor de Warren-
Averbach analyse niet geschikt is wel goed interpreteert. De beide methodes vullen elkaar dus
gedeeltelijk aan.

Een nadeel van beide voorgaande methodes is dat het niet direct duidelijk is wat hun
interpretatie betekent; eigenlijk moeten hun interpretaties nog een keer geinterpreteerd worden in
termen van kristalfouten. In alle andere methodes die besproken zijn in dit proefschrift is de
interpretatie veel duidelijker, doordat ze direct gebaseerd zijn op de aanwezigheid van een of
meer typen kristalfouten. Dat betekent natuurlijk wel dat deze methodes alleen preparaten met
uitsluitend "hun" type(n) kristalfouten kunnen analyseren. In de praktijk is er overigens vaak
één type kristalfout dominant aanwezig en is het bekend welk type dat is. De vraag is dan alleen
nog hoeveel ervan zijn en soms hoe ze verdeeld zijn over het materiaal.

In hoofdstuk 4 zijn een aantal bestaande methodes voor de analyse van preparaten met
dislocaties besproken. Het is gebleken dat de verschillende methodes zeer nauw verwant zijn en
dat hun interpretaties, als ze op de juiste manier bekeken worden, goed overeenstemmen. De
besproken methodes verschillen in de hoeveelheid informatie die ze uit de gemeten
lijnverbreding proberen te halen: alleen het aantal dislocaties of ook hun verdeling over het
materiaal in meer of minder detail. De conclusie over hun toepasbaarheid is niet verrassend: hoe
nauwkeuriger de meting, hoe meer betrouwbare informatie over de dislocaties verkregen kan
worden.

Precipitaten of insluitsels passen meestal niet precies in het omliggende materiaal. Voor
de aluminium-silicium legeringen besproken in de hoofdstukken 5 en 6 is de oorsprong van
deze mispassing een verschil in uitzettingscoéfficient: bij afkoeling van 170 °C naar
kamertemperatuur krimpen de silicium-precipitaten veel minder dan het aluminium eromheen.
Door middel van analyse van de lijnverbreding van deze preparaten is gebleken dat de

mispassing na afkoelen kleiner is dan op grond van het verschil in uitzettingscoéfficient
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verwacht wordt. Dat betekent dat tijdens of direct na het afkoelen het materiaal blijvend moet
zijn vervormd. Een opvallend resultaat is dat gedurende lange tijd (jaren!) de mispassing bij
kamertemperatuur blijft afnemen en het aluminium dus blijft bewegen.

Voor alle kristalfouten behalve kristalgrenzen wordt de lijnverbreding niet door de fouten
zelf veroorzaakt, maar door de atomen eromheen die door zo'n fout een klein beetje verplaatst
zijn. Zulke verplaatsingen zijn groot dichtbij de fout en worden kleiner naarmate de afstand tot
de fout toeneemt. In de hoofdstukken 7 en 8 is een methode voor de interpretatie van
lijnverbreding ontwikkeld die niet gebaseerd is op specifieke kristalfouten, maar op het karakter
van de atoomverplaatsingen eromheen. Daardoor is deze methode algemener toepasbaar dan
bijvoorbeeld de methodes voor dislocaties of precipitaten. De methode is gebruikt om de
lijnverbreding van kogelgemalen wolfraampoeder te interpreteren. Daarnaast is met behulp van
deze interpretatiemethode een aantal belangrijke algemene relaties tussen eigenschappen van

lijnverbreding en eigenschappen van atoomverplaatsingen rond kristalfouten gevonden.
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