POST-WAR REFURBISHMENT How to make your post-war house sustainable

L.L. Franx - 4131878 Mentors - Regina Bokel & Thaleia Konstantinou

Content

Introduction Methodology Analysis row house Refurbishment strategies Other building types Technical application Conclusions

Content

Introduction Problem **Research question** Methodology Analysis row house **Refurbishment strategies** Other building types **Technical application** Conclusions

Problem

Climate change

Earthquakes in Groningen

Problem

Gasproduction

- Coming 4 years: 21 billion $m^3 \rightarrow 12$ billion m^3
- Complete stop: 2030

Major changes

Problem

±20% built 1960-1974

Research question

Which **strategies** are possible to **improve energy consumption** in **different** levels for **multiple** building types built between **1960-1974**?

Research question

Which **strategies** are possible to **improve energy consumption** in **different** levels for **multiple** building types built between **1960-1974**?

- Dutch houses
- Owner-occupied
- Late post-war

Research question

Which **strategies** are possible to **improve energy consumption** in **different** levels for **multiple** building types built between **1960-1974**?

- Dutch houses
- Owner-occupied
- Late post-war
- Three strategies
- Improvement
- Budget
- Versatile

Content

Introduction

Methodology

Research-based design Simulations Analysis row house Refurbishment strategies Other building types Technical application Conclusions

Simulations

Design Builder

Uniec 2.2

Simulations

Annual fuel consumption

Energy Performance Coefficient: EPC

- New houses: EPC $\leq 0,4$

Content

Introduction Methodology Analysis row house Situation Simulations Refurbishment strategies Other building types

Technical application

Conclusions

Orientation

Floorplan

Facades

South face

North face

Construction

Installation

HR combi boiler 2012

Electric boiler 10L 2008

Natural ventilation

Simulation

Programs

gebouw

	constructie		begrenzing	L [m]
	Vloer beton	A	vloer op/boven mv; boven kn 🔻	
	Vloer hout		vloer op/boven mv; boven kn 🔻	
31	Muur zw		buitenlucht, ZW	
	Muur no		buitenlucht, NO 🔻	
	Muur nw		buitenlucht, NW 🔻	
	Muur zo		buitenlucht, ZO 🔻	
	Schuin dak zw		buitenlucht, ZW	
	Schuin dak no		buitenlucht, NO 🔻	
	Plat dak uitbouw		buitenlucht, HOR, dak	
	Dakkapel muur zw		buitenlucht, ZW 🔻	
	Dakkapel muur nw		buitenlucht, NW	
	Dakkapel muur no		buitenlucht, NO 🔻	
	Dakkapel muur zo		buitenlucht, ZO 🔻	
	Dakkapel plat dak		buitenlucht, HOR, dak	

Simulation

Results

EPC = 1,13

Content

Introduction Methodology Analysis row house **Refurbishment strategies** Basic insulation strategy (A) $EPC \leq 0,4$ strategy (B) Net Zero Energy Building strategy (C) Comparison Other building types **Technical application** Conclusions

Boundary conditions

- Simple techniques
- Improve ventilation
- Minimal disturbance
- Payback time: 10 years

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR++ glazing
- Frames with thermal break

Indoor climate

Thermal transmittance

U-value [W/(m²*K)]

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR++ glazing
- Frames with thermal break

Indoor climate

- Installations < 15 years
- New and extra ventilation grills
- LED lighting

Results row house

EPC = 0,77

Visualisation

Invest: €9.500,-Payback time: 12 years

Current

$EPC \le 0,4$ strategy (B)

Boundary conditions

- EPC ≤ 0,4
- Renewable energy
- Improve ventilation
- Medium disturbance
- Payback time: 10 25 years

$EPC \le 0,4$ strategy (B)

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

$EPC \leq 0,4$ strategy (B)

Thermal transmittance

U-value [W/($m^{2*}K$)]

$EPC \le 0,4$ strategy

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

- HR combi boiler & solar collectors
- PV-panels
- New and extra ventilation grills
- LED lighting

$EPC \le 0,4$ strategy (B)

Results row house

EPC = 0,37
$EPC \le 0,4$ strategy (B)

Visualisation

Invest: €23.000,-Payback time: 15 years

Current

Net Zero Energy Building strategy (C)

Boundary conditions

- NZEB
- Gas-free
- Renewable energy
- Improve ventilation
- Extreme electricity reduction
- Electric cooking
- Payback time: 25+ years

Insulation techniques

- Cavity wall + external insulation
- Crawl space insulation
- External insulation pitched roof
- External insulation flat roof
- New dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

Appliances

Thermal transmittance

U-value [W/($m^{2*}K$)]

Insulation techniques

- Cavity wall + external insulation
- Crawl space insulation
- External insulation pitched roof
- External insulation flat roof
- New dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

- Air heat pump & solar collectors
- Electric combi boiler
- PV-panels
- New and extra ventilation grills
- LED lighting

Appliances

Insulation techniques

- Cavity wall + external insulation
- Crawl space insulation
- External insulation pitched roof
- External insulation flat roof
- New dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

- Air heat pump & solar collectors
- Electric combi boiler
- PV-panels
- New and extra ventilation grills
- LED lighting

Appliances

- Induction cooking
- New appliances A++/+++

Results row house

EPC = 0,15

Visualisation

Invest: €40.000,-Payback time: 24 years

Current

Comparison

Basic insulation (A)

Invest: €9.500,-12 years

$EPC \leq 0,4$ (B)

NZEB (C)

Invest: €23.000,-15 years

Invest: €40.000,-24 years

Content

Introduction Methodology Analysis row house **Refurbishment strategies** Other building types Free-standing house Semi-detached house **Technical application** Conclusions

Situation

Floorplans

Level 1

Level 2

Facades

Free-standing house: strategy A

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- HR++ glazing
- Frames with thermal break

Indoor climate

- HR combi boiler
- New and extra ventilation grills
- LED lighting

Free-standing house: strategy B

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- HR+++ glazing
- Frames with thermal break

Indoor climate

- HR combi boiler & solar collectors
- PV-panels
- New and extra ventilation grills
- LED lighting

Free-standing house: strategy C

Insulation techniques

- Cavity wall + external insulation
- Crawl space insulation
- External insulation pitched roof
- HR+++ glazing
- Frames with thermal break

Indoor climate

- Air heat pump & solar collectors
- Electric combi boiler
- PV-panels
- New and extra ventilation grills
- LED lighting

Appliances

- Induction cooking
- New appliances A++/+++

Results

Basic insulation (A)

EPC ≤ 0,4 (B)

NZEB (C)

Invest: €25.000,-15 years Invest: €38.000,-13 years Invest: €69.000,-17 years

Situation

Floorplans

Facades

2월 24일 : 2011년 - 2011년 - 2011년 20

Installations

- Hot air heating
- Stand-alone boiler

Natural ventilation

Semi-detached house: strategy A

Insulation techniques

- Cavity wall insulation
- Crawl space insulation-
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR++ glazing
- Frames with thermal break

Indoor climate

- Installations < 15 years
- New ventilation grills
- LED lighting

Semi-detached house: strategy B

Insulation techniques

- Cavity wall insulation
- Crawl space insulation
- Internal insulation pitched roof
- External insulation flat roof
- Insulating dormers
- HR+++ glazing
- Frames with thermal break

Indoor climate

- HR combi boiler & solar collectors
- PV panels
- New and extra ventilation grills

- LED lighting

Semi-detached house: strategy C

Insulation techniques

- Complete internal insulation
- HR+++ glazing
- New frames with thermal break

Indoor climate

- LT floor heating
- Air heat pump
- Electric combi boiler
- Mechanical ventilation
- LED lighting

Appliances

- Induction cooking
- New appliances A++/+++

Content

Introduction Methodology Analysis row house Refurbishment strategies Other building types Technical application Conclusions

Section current situation

Detail 1: current situation

Detail 1: strategy A

Detail 1: strategy B

Detail 1: strategy C

Detail 4: current situation

Detail 4: strategy A

Detail 4: strategy B

Detail 4: strategy C

Technical application

Facades: strategy C

South face

North face

Content

Introduction Methodology Analysis row house Refurbishment strategies Other building types Technical application Conclusions

Conclusions

Which **strategies** are possible to **improve energy consumption** in **different** levels for **multiple** building types built between **1960-1974**?

- Basic insulation strategy (A)
- EPC \leq 0,4 strategy (B)
- NZEB strategy (C)

Unique situations

Conclusions

Advise

- Society
- Home-owner