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Preface

In this Report, I (Michiel Smit) present the findings of my literature study into the derivation of a new
definition for the capillary number to describe the mobilization of residual trapped oil inside microflu-
idic devices. This research was done as part of my Bachelor’s End Project for the Bachelor program
Applied Earth Sciences at the Delft University of Technology between September and November 2017.
Supervising the progress of my research were Prof. W. R. Rossen, Dr. S. Vincent-Bonnieu and MSc. J.
Tang.

Enhanced oil recovery will play an important role in the future, as oil reserves will reduce over time.
It then becomes important to mobilize the trapped residual oil inside reservoirs, which can sometimes
make up 30 percent of the total reserves in a reservoir. Microfluidic devices play an important role in
the research into enhanced oil recovery as they allow visualization of two phase transport inside porous
media. The capillary number is an useful tool to analyze the mobilization as it allows to estimate the
residual oil saturation. However, until now, there was no equation to visualize the capillary desaturation
of a micromodel by a single curve.

This report will present background information on the theory of capillary transport, trapping and mobi-
lization. The new capillary number will be derived based on a force balance on a trapped ganglion inside
a pore body of a microfluidic device. Once the equation for the capillary number has been derived,
the equation will be tested on a number of microfluidic geometries obtained from published papers.
No experiments have been conducted by me; all desaturation data was obtained from literature. The
data will be analyzed and conclusions will be made on the functionality of the newly derived capillary
number. Also, necessary future experiments will be discussed that need to be performed in order to
test the functionality and improve the capillary number.

Early preparations for the project started back in June 2017, when I came into contact with Dr. Vincent-
Bonnieu via D. Boersma. I was very interested in finding a subject for my Bachelor’s Thesis that would
cover real world problems. Enhanced oil recovery fitted the picture perfectly since future oil shortages
are inevitable. Dr. Vincent-Bonnieu then introduced me to Prof W. R. Rossen to discuss a fitting subject
for my thesis. The subject became the Capillary Numbers For microfluidic devices. Work on the re-
search began in the beginning of September, when Mr. Rossen introduced me to MSc. Jinyu Tang, PhD
student at the faculty of Civil Engineering and Geosciences, who helped me in the process of my thesis.

The first two weeks of the eight week period were used by to get myself acquainted with the subjects
of capillary transport and trapping as well as the capillary numbers and desaturation. The next step
was to derive an equation for the capillary number for microfluidic slits that would allow for a better
visualization of the desaturation of nonwetting phases. Answers for this problem were found in the
work on model fractures presented by Al Quaimi and Rossen (2017) who used a similar approach. The
main difficulty was to test the functionality of the equation. Due to time shortages, it was not possible
for me to conduct my own experiments. Instead, existing micromodel data was analyzed. In the end,
9 different models were analyzed, and positive results were obtained, suggesting that the new capillary
number actually is better for approximating the desaturation of nonwetting fluids inside microfluidic
models. The last week of the eight week period was used to finalize the analysis of the obtained results
and finish the report. The final report was submitted to my supervisors and the second corrector of
my thesis on October 30th, 2017. A public presentation and defense was held on Friday the 3rd of
November, 2017.

M. W. Smit
Delft, October 2017
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Abstract

The mobilization of the trapped residual oil is an important part of Enhanced Oil Recovery. The desat-
uration of nonwetting fluids from porous media is often described using capillary numbers which are a
ratio of viscous forces over the capillary forces between the wetting and the nonwetting fluids. Two-
dimensional microfluidic devices (micromodels) play an important role as they allow for the visualization
of the two phase flow in porous media. Even though the existing definitions for capillary numbers work
fine for describing the mobilization of the trapped nonwetting phase in geological rock, problems arise
when applying these definitions for capillary numbers on micromodels. The conventional definition
of the capillary numbers do not allow to visualize the desaturation of nonwetting phases in different
micromodels on a single trend.

This research presents the derivation of a new definition of a capillary number that can be used to
better analyze the mobilization of trapped nonwetting ganglions inside micromodels. The new capillary
number is based on a force balance on a trapped ganglion and the corresponding mobilization criteria
of the trapped nonwetting phase. The new definition of the capillary number consists of the conven-
tional definition of the capillary number and a geometric term that accounts for the geometry of the
micromodel, including the sizes of the pore bodies and throats as well as the ganglion length. The
functionality of similar definitions of the capillary number for roughened fractures has previously been
published by Al Quaimi and Rossen (2017).

The functionally of the new capillary number has been tested by analyzing published desaturation data
for various micromodels, each using different wetting and nonwetting phase combinations using both
the conventional and the new definition of the capillary number. It is found that the new definition
allows for better analysis of the mobilization of the trapped nonwetting fluid inside micromodels, as
the desaturation curves for different models can now be visualized by a single trend. Also, it is sug-
gested that the geometrical parameters of the new equation are more significant for describing the
mobilization of the trapped nonwetting phase than the permeability of the medium and the interfacial
properties of the wetting and nonwetting phases.

M. W. Smit
Delft, October 2017
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1
Introduction

The oil recovery process is usually subdivided into three categories. Primary oil recovery is when an oil
field is first used in production processes and the recovery is the result of a pressure difference between
the high pressure of the fluids present in the reservoir and the low pressure inside the wellbore. Primary
oil recovery is responsible for the recovery of about 10 to 25 percent of the total reservoir potential
(Lake, 1989). Secondary recovery is the process where external fluids are injected into the reservoir in
order to ”push” the oil towards the extraction well. This is often referred to as water-flooding (Ibrahim
et al., 2008). Secondary oil recovery can produce an additional 10 to 20 percent of the reservoir po-
tential (Lake, 1989). However, the majority of the oil remains trapped in the reservoir. Tertiary oil
recovery (often referred to as enhanced oil recovery (EOR)) is the process in which this substantial
amount of oil is recovered (Yeganeh et al., 2016). Different methods of Enhanced Oil Recovery include
the addition of chemicals such as surfactants, polymers and Alkaline.

Because of reducing oil availability in the future, the process of enhanced oil recovery will in the future
become increasingly relevant as more oil companies will revisit older oil fields to mobilize and extract
the residual oil (Ibrahim et al., 2008). One of the main problems that arises during enhanced oil re-
covery is that after the water-flooding processes, the residual oil is often left trapped inside the pores
of the reservoir. This process is often referred to as capillary trapping (Peters, 2012). The amount of
trapped oil in a reservoir strongly depends on the geometry of the porous medium, the chemistry of the
medium as well as the characteristics of the displacing fluid (Yeganeh et al., 2016). One of the ways
to analyze the mobilization of the trapped oil is by making use of capillary numbers, which is a ratio
of the viscous forces of the displacing fluid over the capillary forces of the trapped oil (Sheng, 2011).
In the past, numerous equations for the capillary number have been developed in order to describe
the process of mobilization of the trapped oil. Moore and Slobod (1954) developed a capillary number
where the displacing fluid is characterized by its viscosity and the Darcy velocity inside the porous
medium. Reed and Healy (1977) developed a capillary number where the displacing fluid is described
by the pressure gradient and the permeability of the medium. Hughes and Blunt (2001) developed a
capillary number to describe the mobilization of trapped fluid inside fractures.

Over the last 30 to 40 years, microfluidic devices have proven to be a useful tool in analyzing fluid
transport inside porous media. Micromodels are artificial 2D networks consisting of pore bodies and
interconnecting pore throats. They are usually transparent so that flow behaviour can be analyzed
(Jeong and Corapcioglu, 2003). Reservoir flooding at high capillary numbers can help to recover the
residual oil (Ibrahim et al., 2008). For a long time capillary numbers were calculated using only the vis-
cous and capillary forces, ignoring the geometry of the porous medium. This works well for describing
the mobilization of trapped residual oil in geological rock. However, these equations do not translate
very well when they are applied to microfluidic models. The main problem is that it is not possible to
describe capillary desaturation in different micromodels by a single curve. Over the past two years, a
number of papers have been presented where an equation for the capillary number is developed that
accounts for the geometry of the medium. Al Quaimi and Rossen (2017) developed a capillary number
based on a force balance on a trapped ganglion of nonwetting fluid inside a fracture. Yeganeh et al.
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(2016) used a similar method to derive a new capillary number for fluid flow inside rock matrix. No
new capillary number has been derived yet for fluid transport inside 2D microfluidic devices. It would
therefore be beneficial to have an equation for the capillary number that can be used for analyzing
microfluidic devices.

The research presented in this report will focus on the derivation of a new capillary number that can
be used to better analyze the mobilization of trapped nonwetting fluids inside microfluidic devices. The
equation for the capillary number will be based on a force balance across a trapped ganglion in a pore
body. The derivation will be analogous to the derivation performed by Al Quaimi and Rossen (2017)
for mobilization inside fractures. The most important objective of the report is that the new equation
for the capillary number can be used to describe the desaturation of microfluidic devices by a single
curve.

1.1. Scope of Report
The research performed for this project will focus on deriving a new equation for the capillary number
for microfluidic devices. Desaturation data of micromodels will be analyzed using both the conven-
tional and the newly defined capillary number in order to test the validity of the newly derived capillary
number. However, the research was limited by a number of factors. First of all, there is the limited
time available for the research. This meant that there was no time to test desaturation on self-made
micromodels. This means that the desaturation data used for testing the new capillary number had to
be obtained elsewhere. It was decided to analyze desaturation data obtained from literature available
on the matter. This posed another problem. As mentioned before, the conventional capillary numbers
that are used to analyze desaturation of micromodels did not take the geometry of the medium into
account. Due to the complex nature of the newly defined capillary number, often critical parameters
such as pore body and throat width were not reported. This means that useful data is difficult to come
by. In order to obtain enough useful data, the decision was made to not only analyze oil desaturation,
but also take other Non-Aqueous Phase Liquids (NAPL) as well as gas (air) into account. The benefit of
this is that analyzing for different types of wetting and nonwetting combinations makes it possible to
analyze the effects that different fluid characteristics have on the new definition of the capillary number.

1.2. Outline of Report
The report will begin with a part on the background information that is needed to understand the
problem of capillary trapping inside porous medium. Chapter 2 will explain the principals of wettability
of porous media, capillarity, capillary trapping and mobilization. This will be used further in the report
in the derivation of the new capillary number. Next, chapter 3 will explain the methods of research into
capillary desaturation done in the past. The nature and background of conventional capillary numbers
is described. Also, the use of capillary desaturation curves (CDC) is described. The next part (Chap-
ter 4) will talk about the new capillary number derived for fractures as performed by Al Quaimi and
Rossen (2017). This is done in order to gain an understanding in how a capillary number based on a
force balance on a trapped ganglion can be derived. Also, the background of the relationship between
permeability (𝐾) and the aperture of the fracture is given. This relationship is important because it
will again be used in the derivation of the capillary number for microfluidic slits. The derivation of the
new definition of the capillary number for microfluidic slits is given in chapter 5. In this chapter, the
concept of tortuosity is also introduced to get a better relationship between permeability and the depth
of the system. A number of micromodels and their data was used from published papers. The model
parameters and their desaturation data are described in chapter 6. The obtained results of the data are
analyzed in chapter 7 in order to find the functionality of the new capillary number. The conclusions
of the report are given in chapter 8. Discussions regarding the obtained results and any points that
should be noted for further study are given in chapters 9 and 10.



2
Capillarity, Trapping and

Mobilization

The displacement of a non-wetting fluid through porous media with the use of an immiscible wetting
fluid is a crucial aspect of enhanced oil recovery (EOR). The pore space within the medium is highly
disordered, meaning that the transport of through the reservoir is highly complicated. One of the main
obstacles that has to be overcome is the trapping of discrete ganglia of the non-wetting fluid within
the porous medium (Datta et al., 2014).

In enhanced oil recovery, injection wells are often used to inject displacement fluids (such as wa-
ter), gasses or foams (foams are a dispersion of gas in water, stabilized by surfactants (Lake, 1989))
in order to mobilize the oil droplets and migrate them through the pore spaces in the porous medium.
However, the migration of oil within a porous medium is limited by capillarity and relative permeability
(Lake, 1989). Especially capillarity plays an important role in the residual oil saturation. As a result of
capillarity, oil ganglions may snap off and get trapped within the pore bodies. In order to mobilize the
trapped ganglions, the pressure needs to be increased until the pressure gradient across the trapped
ganglion is greater than the capillary pressure difference within the ganglion (Peters, 2012; Lake, 1989;
Datta et al., 2014).

This chapter will describe the trapping and the mobilization of non-wetting fluids within porous media.
In the first part of the chapter, wettability will be analyzed. I will then explain how capillarity work.
Next, the theory behind the trapping will be analyzed. In the last part of the chapter, mobilization will
be analyzed.

2.1. Wettability and Two Phase Flow
In this report, the mobilization of a residual nonwetting fluid (oil) driven by a wetting fluid will be de-
scribed. Wettability describes the “preference” of a solid (in our case the microfluidic model) to be in
contact with one fluid rather than another (Abdallah et al., 2007). The solid can either be water-wet
or oil-wet. Strongly water-wet means that the solid prefers contact with water. Strongly oil-wet on
the other hand means that the solid prefers contact with oil. If the preference is uncertain, the solid is
either referred to as intermediate-wetting or neutral wetting (Abdallah et al., 2007).

A drop of wetting fluid coming into contact with a water-wet solid that is covered by another wet-
ting fluid will do one of the following. Most likely it will displace the nonwetting fluid. At the extreme,
it will spread out over the entire surface of the solid. Conversely, if a nonwetting fluid is dropped on
the same surface, the fluid will contract, minimizing the contact area between both the solid as well as
the wetting fluid (Abdallah et al., 2007).

3
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Figure 2.1: Interfacial tensions in a water-oil-solid system (Peters, 2012).

Consider a simple water-oil-solid system as shown in figure 2.1. It can be seen that three interfacial
tensions occur in a multiphase system (Peters, 2012). These tensions are given by the symbol 𝜎:

• 𝜎 is the oil-solid interfacial tension;

• 𝜎 is the oil-water interfacial tension;

• 𝜎 is the water-solid interdacial tension.

One of the main characteristics of wetting and nonwetting fluids is the contact angle between the
oil-water interface and the rock surface. The contact angle is given by 𝜃 and is measured through the
water. See figure 2.2. A perfectly wetting fluid on a perfectly water-wet rock will have a theoretical
contact angle of 0 degrees. Conversely, a perfectly nonwetting fluid will have a contact angle of 180
degrees (Abdallah et al., 2007; Peters, 2012). At equilibrium, the interfacial tensions are related by
the Young-Dupre equation (equation 2.1) obtained by considering horizontal equilibrium of the point
of contact of the interfacial tensions (Peters, 2012).

𝜎 − 𝜎 = 𝜎 cos(𝜃) (2.1)

It is important to know that the interfacial tensions between the oil-solid and water-solid surfaces
cannot be directly measured. However, by using the Young-Dupre equation, the difference between
the two can be calculated if the oil-water interfacial tension and the contact angle are measured (Peters,
2012). Knowing the contact angle and the difference between the oil-solid and water-solid interfacial
tensions is important because it tells a lot about the wettability of the rock. Peters (2012) describes
four possible scenarios:

1. 𝜎 and 𝜎 are equal. This means that the left side of equation 2.1 is zero. Since the oil-water
interfacial tension (𝜎 ) is non-zero, only the cos(𝜃) term can be zero. 𝜃 therefore is 90 degrees.
This means that the rock surface has no preference for oil-wetting or water-wetting and therefore
either is neutral-wetting or intermediate-wetting. See figure 2.2b.

2. If 𝜎 < 𝜎 , it means that the left side of equation 2.1 is positive. This means that the contact
angle is less than 90 degrees, resulting in a preferably water-wet rock. See figure 2.2c.

3. Conversely, if 𝜎 > 𝜎 , it means that the contact angle is larger than 90 degrees, resulting in a
preferably oil-wet rock. See figure 2.2a.

4. Complete spreading of oil over the rock surface will occur if the contact angle is 180 degrees and
complete spreading of water will occur if the contact angle is zero. However, this has never been
observed within reservoir fluids (Peters, 2012). see figure 2.2d.
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Figure 2.2: Equilibrium contact angles for four different wettabilities (Peters, 2012).

Wettability has a significant effect on multiphase rock-fluid interactions and therefore is important for
this study. The wettability of a porous medium affects

• The microscopic fluid distribution at the pore scale in the porous medium;

• The magnitude of irreducible water saturation;

• Efficiency of multiphase displacement with the medium;

• Residual oil saturation;

• Capillary pressure and the Capillary-Pressure Curve (CPC) (Peters, 2012).

Wettability determines the microscopic fluid distribution at the pore scale. The wetting fluid will occupy
the small pores, form a coating around the grains and occupying corners of the grain contacts. The
wetting phase will occupy the small pores in order to minimize the effective free surface energy of the
system. The nonwetting fluids occupy the larger pores and are located as “bubbles” in the centre of
the pores (Peters, 2012). This is illustrated in figure 2.3.

Irreducible water saturation (IWS) is the maximum water saturation that a reservoir can have without
allowing water to flow. That is the fraction of the pore volume that is occupied by water at maximum
hydrocarbon saturation (El Gendy, 2016). This water has not been displaced by hydrocarbons, and
it adheres to rock surfaces and occupies small pores (El Gendy, 2016). The IWS for oil-wet reservoir
tends to be lower than for water-wet reservoirs, namely 20-25 percent for water-wet reservoirs and
lower than 15 percent for oil-wet reservoirs, respectively (Peters, 2012).
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Figure 2.3: Fluid distribution as a function of wettability (Peters, 2012).

Wettability has a major effect on the efficiency of immiscible displacement. See figure 2.4. In a
water-wet reservoir, the water tends to adhere to the grains, thereby increasing the efficiency of the
oil displacement. Residual oil is trapped in the centre of the larger pores. In an oil-wet reservoir on
the other hand, injected water tends to channel through the pores, leaving a considerable amount of
residual oil. The oil adheres to the grains and occupies the small pore spaces between the grains. The
efficiency of oil recovery is considerably less than for water-wet reservoirs (Peters, 2012).

2.2. Capillary Pressure and Transport
2.2.1. Definition of Capillary Pressure
Analogous to single phase flow, where porosity and permeability are the most basic properties of
describing the flow, capillary pressure is the most basic rock-fluid characteristic in multiphase flow.
This is because interfacial forces, such as capillary pressures, are easily the strongest forces within
multiphase flow at typical velocities (Lake, 1989). Capillary pressure arises when two immiscible fluids
are in contact with each other and share the same pore space. When two fluids are in contact with
each other, a pressure discontinuity arises that depends on the curvature of the interfacial boundary
(Peters, 2012). The pressure on the concave side (usually the non-wetting phase) of the interface is
higher than on the convex side. The capillary pressure is given by the Laplace equation:

𝑃 = 𝑃 − 𝑃 = 𝜎( 1𝑟 + 1
𝑟 ) =

2𝜎 cos(𝜃)
𝑅 (2.2)

In this formula, 𝑃 is the pressure from the concave side of the interface, 𝑃 is the pressure exerted
by the convex side. 𝜎 is the interfacial tension between the wetting and the nonwetting fluid. The
curvature is given by 𝑟 and 𝑟 , which are referred to as the principal radii of the curvature of the
interface. They are mutually perpendicular. The right hand side of equation 2.2 is the equation for
capillary pressure in a tube. 𝑅 is the radius of the tube, which is inversely related to the curvature
(Lake, 1989; Peters, 2012).

Equation 2.2 suggests that a capillary pressure is zero when there is a flat interface between the
two fluids. This means that the the principal radii become infinite (Peters, 2012). Also, the contact
angle would become 90 degrees, resulting in the fact that cos(𝜃) will be zero on a flat surface. In more
complicated geometries, the curvature is made up of different and multiple curvatures. If this is the
case, the 1/𝑅 term in equation 2.2 is replaced by the mean curvature (Lake, 1989).
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Figure 2.4: Immiscible displacement of fluids as a function of wettability on the pore scale, for a strongly water wet medium
(above) and a strongly oil wet medium (below) (Peters, 2012).

From equation 2.2, it becomes apparent that the capillary pressure is inversely proportional to the
radius. Consider a basic test involving a number of test tubes, each having a different radius. See
figure 2.5. It can be seen that the water rises higher as the radius of the test tube decreases. This
corresponds to a higher capillary pressure (Lake, 1989; Peters, 2012).

2.2.2. Capillary Pressure Curves
It is impossible to use the Laplace equation to calculate the capillary pressure within actual porous
media. This is mainly due to the complex structure of the pores (Peters, 2012). Instead, the relation-
ship between the capillary pressure and the wetting saturation is measured experimentally. During the
experiments, the porous media are either subjected to drainage (a wetting fluid is displaced by a non-
wetting fluid) or imbibition (a nonwetting fluid is displaced by a wetting fluid). A drainage experiment
is carried out as follows: A porous medium is initially completely filled with a wetting fluid (saturation
of 100 percent). The medium is then subjected to a nonwetting fluid. The pressure of the nonwetting
fluid is then increased causing it to displace the wetting fluid. The volume of the drained wetting fluid
is measured in order to calculate the total saturation. The pressure required to drain the medium and
the saturation can then be plotted on a capillary pressure curve (CPC). See figure 2.6 (Peters, 2012).

A capillary pressure curve has a number of characteristic features. First of all, there is the threshold
pressure, or drainage pressure (𝑃 ). This is the minimum pressure that must be applied in order to
initiate the drainage. It is determined by the size of the largest pores connected to the surface of
the medium. If the pores are larger, the threshold pressure will be lower, because of lower capillary
pressure due to a larger pore radius. Wettability also plays an effect. If the medium has no strong
preference for the initially present wetting fluid, 𝑃 is zero, and the drainage initiates automatically.
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Figure 2.5: A capillary tube experiment shows us that if the radius decreases, the capillary pressure increases, causing the
interface to raise higher.

As the pressure of the nonwetting fluid is further increased, the smaller pores are also invaded by
the displacing fluid and the saturation of the wetting fluid decreases further. Eventually, the wetting
phase becomes discontinuous and the saturation cannot be further reduced. This point is known as the
irreducible wetting phase saturation (𝑆 ) (Peters, 2012). The threshold pressure and the irreducible
wetting phase saturation is dependent on grain size. A smaller grain size means a smaller pore size and
therefore a higher threshold pressure and irreducible phase saturation. This is because in a water-wet
environment, the water tends to adhere to the grains. A smaller pore size means that a relatively
larger fraction of the pore space will remain filled with wetting fluid that adheres to the grains. Also,
smaller grains means smaller pore radii. This results in larger capillary pressures, and therefore a larger
threshold pressure. See figure 2.7 (Peters, 2012).
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Figure 2.6: Schematic overview of a capillary pressure curve.

Figure 2.7: Schematic overview for capillary pressure curves for drainage processes in rocks with different pore sizes. curve 1
represents a rock with the largest pore size, and 4 with the smallest.
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2.2.3. Hysteresis
Capillary pressure curves show a marked hysteresis depending on whether the curve is determined
under a drainage or an imbibition process. See figure 2.8. The capillary pressure for drainage will
always be higher for a drainage process than it is for an imbibition process given the same wetting
phase saturation (Lake, 1989). If during spontaneous imbibition, the capillary pressure is reduced to
zero, the wetting phase saturation will not fully restore to 1.00. This is due to residual nonwetting
saturation. The point where the spontaneous imbibition curve ends depends on the wettability of the
rock. The stronger the preference for the wetting phase is, the closer the end of the imbibition curve
will be be to the residual nonwetting phase saturation, which is given by 𝑆 , (Peters, 2012). The end
point of the spontaneous imbibition curve is given by 𝑆 = 1 − 𝑆 , This has to do with the nature of
immiscible displacement. As the wetting phase imbibes into the rock, some nonwetting phase will be
trapped inside pore bodies. This means that less wetting phase can enter the pores, and therefore
the wetting phase saturation on the imbibition curve will be less than on the drainage curve given the
same capillary pressure (Peters, 2012).

Figure 2.8: Sketch of a basic hysteresis curve.

The contact angle between the wetting and the nonwetting phase has a major effect on capillary hys-
teresis. In capillary hysterisis, as drainage occurs, and the nonwetting fluid forces the wetting fluid
out, the contact angle 𝜃 is reduced. Conversely during imbibition, the contact angle is increased. From
Laplace’s equation (Equation 2.2, it becomes apparent that for a smaller contact angle, the capillary
pressure is higher. This means that the capillary pressure for drainage is higher than it is for imbibition
given the same wetting phase saturation (Peters, 2012).

Pore structure has a major effect on hysteresis. Consider a permeable medium idealized by an ar-
rangement of decreasing pore sizes and pore throats. See figure 2.9. For initial drainage, a capillary
pressure is required depending on pore throat radius 𝑅 .

𝑃 , , = 2𝜎 cos(𝜃)
𝑅 (2.3)

From Laplace’s equation, it becomes apparent that in order to pass the next, narrower pore throat
(𝑅 ), the capillary pressure must be increased. The same holds for 𝑅 and 𝑅 . If then the imbibition
process is started, the capillary pressure is reduced. In order to re-saturate pore 4 with wetting fluid,
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Figure 2.9: Capillary pressure hysteresis in an idealized pore structure with (a) the structure of the idealized pores and (b) the
corresponding capillary pressure curve. Blue is the direction of drainage and red is the direction of imbibition.

the capillary pressure must be reduced to

𝑃 , , = 2𝜎 cos(𝜃)
𝑅 (2.4)

where 𝑅 is the radius of the pore body. In order to fully saturate the remaining three pores, the
capillary pressure must be further reduced to (Peters, 2012):

𝑃 , , = 2𝜎 cos(𝜃)
𝑅 (2.5)

2.3. Capillary Trapping
As can be seen in figure 2.6, it is generally not observed that during immiscible displacement one
phase is completely removed from the medium. There is always a residual phase that is trapped. This
situation is referred to as capillary trapping. Experimentally, there are two ways capillary trapping can
be explained. Lake (1989) and Peters (2012) describe the pore-doublet model and the snap-off model.
The trapping of nonwetting phases in water-wet systems is described here

2.3.1. Pore-Doublet Model
A Pore doublet model consists of two tubes that represent two pores. The tubes are parallely connected
to each other at both ends and one tube has a larger radius than the other. See figure 2.10. Initially,
the doublet is completely filled with nonwetting phase. A wetting phase is then injected in the doublet
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Figure 2.10: Illustration of a pore-doublet model on the left (Lake, 1989), and a schematic overview on how it works in geological
rock Peters (2012).

at a rate 𝑞 and displaces the nonwetting fluid. The problem that arises is that the interface in one
pore moves faster than in the other. It is important to determine which interface reaches the endpoint
faster. The nonwetting phase in the other pore gets trapped (Lake, 1989; Peters, 2012). To determine
which interface reaches the endpoint quicker and which nonwetting phase gets trapped, expressions
that describe the velocities of the two interfaces need to be derived. Peters (2012); Lake (1989) give
a well described derivation for the pore-doublet model. Without going into too much detail, the most
important factors determining in which pore the nonwetting fluid will be trapped will be given. Peters
(2012) states that for an incompressible fluid, the flow rate across the model can be given by

𝑞 = 𝑞 + 𝑞 (2.6)

where 𝑞 and 𝑞 are the flow rates in either pore, respectively. The next step is to define the interface
velocities within the two capillary tubes in terms of the flow rate through them. This is easily done
using equation 2.7. In Equation 2.7, the subscript 𝑖 represents either one of the two capillary tubes.

𝑣 = 𝑞
𝜋𝑅 (2.7)

The next step is to introduce two terms, namely 𝛽 and 𝑁 , . 𝛽 is the heterogeneity factor and is
given by 𝛽 = 𝑅 /𝑅 . It is a ratio between the dimensions of both capillary tubes. The closer 𝛽 is to 1,
the more both tubes are alike. 𝑁 is a capillary number and it gives the ratio of the viscous force to
capillary forces at the pore scale. For this case, 𝑁 is defined as

𝑁 = 𝑞𝜇𝐿
𝜋𝑅 𝜎 cos 𝜃 (2.8)

The next step is to calculate the ratio of velocities. Chatzis and Dullien (1983) define this ratio as 𝜆.
See (Equation 2.9).

𝜆 = 𝑣
𝑣 =

4𝑁 + ( − 1)

− 𝛽 ( − 1)
(2.9)

The ratio between velocities can be used to determine the trapping conditions within the pore doublet
model. If 𝜆 > 1, it means that the velocity in the larger pore is greater than in the smaller pore. Thus,
the nonwetting phase will be trapped in the smaller pore. Coversely, if 𝜆 < 1, the nonwetting fluid will
be trapped in the larger pore. The critical value of 𝑁 that determines the trapping in either pore is
given by:

𝑁 = 𝛽(𝛽 + 1
4(𝛽 + 1) (2.10)

If 𝑁 , is smaller than its critical value, the nonwetting phase will be trapped in the larger pores. And
conversely, if 𝑁 , is larger than its critical value, the nonwetting phase will be trapped in the smaller
pore (Peters, 2012). The conditions for trapping can also be determined using the flow rate 𝑞. If the
flow rate of the wetting phase is low, it means that capillary forces play a more dominant role than the
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Figure 2.11: Snap-off model for capillary trapping showing 3 different aspect ratios (Chatzis and Dullien, 1983).

viscous forces in the displacement of the interface. see chapter 3.1. This means that velocity in the
smaller pore is higher, and therefore the nonwetting phase in the larger pore will be trapped (Lake,
1989; Moore and Slobod, 1954).

2.3.2. Snap-Off Model
When a nonwetting phase is forced through a pore constriction, it can suffer from capillary instability
and snap off at the end of the constriction (Peters, 2012). The simplest snap-off model assumes a
single flow path and consists of a tube of variable radius. There is a nonwetting phase flowing through
the tube whilst the sides of the tube are coated with a wetting phase in order to have a unique capillary
pressure everywhere (Lake, 1989). Also, this creates more natural situations, where the wetting fluids
tends to adhere to the water-wet medium, between the nonwetting fluid and the wall. The capillary
pressure varies across the flow path. By Laplace’s law it holds that the capillary pressure is high where
the path is narrow, and low where the path gets wider. Trapping by snap-off is controlled by the ratio
between the pore body and the pore throat. This is called the aspect ratio and is given by equation
2.11 The higher the aspect ratio is, the more the nonwetting phase will suffer from capillary instability
and snap off (Peters, 2012). See figure 2.11.

𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜 = 𝜂 = 𝐷
𝐷 =

𝐷
𝐷 (2.11)

The snap off model can also be applied to an experimental porous medium. Capillary instability and
snap-off will occur if the capillary pressure at the pore throat exceed the capillary pressure at the
leading edge of the nonwetting phase (Peters, 2012). See equation 2.12:

𝑃 = 𝜎( 1𝑟 − 1
𝑟 ) >

2𝜎
𝑟 (2.12)

In equation 2.12, 𝑟 in the radius of the pore neck, 𝑟 is the radius of the grains and 𝑟 is the mean radius
of the pore body (Peters, 2012). Of course, in any real porous medium, local conditions will determine
whether the doublet system will apply or snap-off. Chatzis et al. (1983) found out that approximately
80 percent of the trapped nonwetting phase occurs as a result of snap-off. The other 20 percent is
caused by pore doublet or combinations of both categories. See figure 2.13.
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2.4. Mobilization of the Trapped Nonwetting Phase
Once the residual nonwetting phase has been trapped, it needs to be mobilized. In order to do so, the
pressure gradient needs to be increased. The required pressure gradient can often be much higher
than can be obtained under normal flooding conditions (Peters, 2012). Peters (2012) calculates the
required pressure gradient in order to mobilize a trapped oil blob as described below . See figure 2.12.
In order for the blob to pass through the throat, the pressure drop across the leading edge must be
greater than the entry pressure or the displacement pressure of the pore throat.

𝑃 − 𝑃 ⩾ 2𝜎 cos 𝜃
𝑟 (2.13)

In this model, the throat is assumed to have a circular cross-section. From the Laplace equation, we
can calculate the capillary pressure across the trailing interface.

𝑃 − 𝑃 = 2𝜎 cos 𝜃
𝑟 (2.14)

The next step is to subtract equations 2.13 and 2.14. Rearranging the terms gives an equation for the
required pressure difference in order to mobilize the oil blob. See equation 2.15 (Peters, 2012).

𝑃 − 𝑃 ⩾ 2𝜎 cos 𝜃( 1𝑟 −
1
𝑟 ) (2.15)

Figure 2.12: Illustration showing the mobilization of a trapped ganglion of nonwetting fluid in an idealized pore model. The red
arrow shows the direction of flow.
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Figure 2.13: Sketches of low number trapping mechanisms and configuration of residual oil in doublets (Chatzis and Dullien,
1983). E is a pore with out trapping, T stands for trapping by Snap-off. S is for a stable interface downstream (no trapping). F
means that a downstream node fills. subscript O means that a certain node traps first.





3
Capillary numbers and capillary

desaturation curves

Now that the theory behind capillary transport, trapping of the residual phases and mobilizations is
known, it is now time to introduce capillary numbers. This chapter consists of two parts. In the first
part, a number of the most common conventional definitions of the capillary numbers that are used
for calculating the mobilization of the trapped nonwetting phase inside porous media are described.
In the second part of this chapter, I will explain how capillary numbers are used in combination with
capillary desaturation curves for the analysis of the mobilization of the trapped nonwetting phase.

3.1. Capillary Numbers
When analyzing oil displacement by water in porous media, we must take into consideration the viscous
forces, capillary forces and the geometry of the porous medium (Moore and Slobod, 1954). During
two-phase flow in porous media, there is a strong competition between viscous and capillary forces
in the rock matrix, which can be expressed by the capillary number (Al Quaimi and Rossen, 2017;
Moore and Slobod, 1954). The capillary number is a dimensionless number that is characterized by
the ratio of viscous forces to the capillary forces, as shown in equation 3.1 (Sheng, 2011; Jeong and
Corapcioglu, 2003). In equation 3.1 the capillary number is denoted by 𝑁 , whilst the viscous forces
and the capillary forces are given by 𝐹 and 𝐹 , respectively.

𝑁 = 𝐹
𝐹 (3.1)

The capillary number can be used to predict and determine the phase distribution and mobilization of
the trapped nonwetting phase (Jeong and Corapcioglu, 2003). Over the years, a variety of different
capillary numbers have been derived. In this chapter, I will introduce two of the most common ones
and describe their defects with respect to this research. Moore and Slobod (1954) defined the capillary
number as follows.

𝑁 = 𝑢𝜇
𝜎 cos 𝜃 (3.2)

In equation 3.2, 𝑢 is the Darcy velocity and 𝜇 is the viscosity of the displacing fluid (wetting phase). 𝜎 is
the interfacial tension between the wetting and nonwetting fluid, and 𝜃 is the contact angle measured
through the wetting phase (Moore and Slobod, 1954). Another definition of the capillary number is
given by Reed and Healy (1977). Their definition uses the pressure gradient and permeability of the
porous medium. See equation 3.3.

𝑁 = 𝐾∇𝑃
𝜎 cos 𝜃 (3.3)

The permeability of the medium is given by 𝐾, and the pressure gradient is given by ∇𝑃. These param-
eters can easily be obtained from Darcy’s law for fluid flow through a porous medium. This definition
follows from the fact that in order to mobilize a trapped ganglion of nonwetting fluid, the pressure
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18 3. Capillary numbers and capillary desaturation curves

Figure 3.1: Typical capillary desaturation curve for both wetting and nonwetting residual phase saturations (Lake, 1989).

gradient across the trapped ganglion must be greater than the capillary pressure difference within the
ganglion (Peters, 2012; Reed and Healy, 1977). In order to make the capillary number dimensionless,
the permeability is included in the numerator of equation of the capillary number. The viscous term
then becomes 𝐾∇𝑃.

The fact that this theory holds, can be derived from Darcy’s law. Darcy’s law is given by equation 3.4.
This equation can be rewritten in such a way that 𝑢𝜇 = 𝐾∇𝑃. In this report, the effect of the relative
permeability in two phase flow is ignored, see chapter 9. This means that the viscous forces in both
Moore and Slobod (1954) and Reed and Healy (1977) should in theory have the same value.

𝑢 ≅ 𝐾
𝜇 ∇𝑃 (3.4)

𝑢𝜇 ≅ 𝐾∇𝑃 (3.5)

Therefore, it holds that (Jeong and Corapcioglu, 2003)

𝑁 = 𝐹
𝐹 = 𝑣𝜇

𝜎 cos 𝜃 ≅
𝐾∇𝑃
𝜎 cos 𝜃 (3.6)

3.2. Residual Saturations and Capillary Desaturation Curves
Now that the principles behind capillary trapping and mobilization of nonwetting phases are known,
we can discuss the experimental observations of trapping in actual porous media. The most common
observation is a relationship between the capillary number and the residual phase saturation. (see
chapter 3.1) This relationship can then be presented in a so-called capillary desaturation curve (CDC),
which plots the capillary number on a logarithmic x-axis and the residual phase saturation (𝑆 𝑟 or
𝑆 𝑤𝑟) on the y-axis (Lake, 1989; Yeganeh et al., 2016). Capillary desaturation curves are one of the
most fundamental curves used for oil recovery, as it reveals the conditions for good oil displacement
(Yeganeh et al., 2016).

In figure 3.1, a schematic capillary desaturation curve can be seen. For low capillary numbers, the
residual phase saturation remains at a constant level. Then, for a certain capillary number, the resid-
ual phase saturation starts decreasing. This point is called the critical capillary number, and is denoted
by 𝑁 , (Lake, 1989). As can be seen in figure 3.1, the critical capillary number for nonwetting fluids
is lower than that for wetting fluids in a water-wet system. This is due to the fact that in a water
wet system, the wetting fluids tends to adhere to the grains that form the porous medium, thereby
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Figure 3.2: Capillary pressure curves for different geological rock types. Notice how the range between , and , increases
as the pore sizes increase (Lake, 1989).

reducing the ability to be removed from the medium. Total capillary desaturation is not possible for
the wetting fluid (see chapter 2.1 and figure 3.1). Complete desaturation for nonwetting fluid occurs
at the total desaturation capillary number, denoted by 𝑁 , .

Lake (1989) shows that there is considerable variation between parameters for different porous media.
It is shown that for water-wet geological rock, the critical and total capillary number for nonwetting
phases are lower (between 10 and 10 for 𝑁 , , and 10 - 10 for 𝑁 , ) than the respective
capillary numbers for the wetting phase, where the 𝑁 , lies roughly between 10 and 10 for the
conventional capillary numbers presented by Moore and Slobod (1954) (See chapter 3.1). Based on
the these findings, (Lake, 1989) mentions three important factors that need to be taken into account
when constructing a capillary desaturation curve:

1. Wettability is important. For a water-wet rock, the CDC curves for the nonwetting phase tends
to be an order of 10 to the left with respect to the CDC curve of the wetting phase.

2. Pore size distribution is important. The range between 𝑁 , and 𝑁 , should increase with an
increasing pore-size distribution for both the wetting and the nonwetting phases. See figure3.2.

3. The range between the 𝑁 , and the 𝑁 , for the nonwetting phase should be greater than that
for the wetting phase.

In our research, a number of capillary desaturation curves will be constructed by the use of published
papers on capillary desaturation in micromodels. The way this is done is by imbibition of a wetting
phase in order to mobilize and displace trapped non-wetting phase ganglions. Wetting fluids will be
injected at a certain flowrate for which the capillary number can be calculated (See chapter 3.1). The
wetting fluid will injected at that particular flow rate until no further change in residual saturation can
be observed. The residual saturation is determined and plotted. The next step is to increase the flow
rate, thereby causing the capillary number to increase. The process is then repeated until a point close
to irreducible nonwetting phase saturation has been reached.





4
New Capillary Number for Fractures

As described in chapter 1, the problem with the conventional capillary numbers is that they do not
translate very well when they are applied to two-dimensional geometries. It is therefore not possible
to describe the desaturation of trapped nonwetting phase by a single curve. In order to counter this
problem, Al Quaimi and Rossen (2017) proposed a new definition of the capillary numbers in naturally
fractured reservoirs based on a force balance across a trapped ganglion on a fracture. This project
aims to a find a similar capillary number describing the mobilization of trapped oil ganglions in 2D
micromodels. In this chapter, the conventional capillary number for fractures is quickly described as
well as the new definition of the capillary number as proposed by Al Quaimi and Rossen (2017). In
the end, I show how the newly defined capillary numbers can be used to represent the desaturation
of the nonwetting phase along a single curve. This is not the case for the conventional capillary number.

4.1. Conventional Capillary Number in Fractures
Hughes and Blunt (2001) analyzed multiphase flow in a single fracture using a pore network model.
Based on this, they managed to generate a fracture model based on published aperture data, and they
found an equation for capillary numbers for mobilization inside fractures. Their capillary number is
defined as follows:

𝑁 = 𝑄𝜇
�̂�𝑏𝑁 𝜎

= 𝑢𝜇
𝜎 (4.1)

In this equation, 𝑄 is the volumetric flowrate, 𝜇 is the viscosity of the displacing fluid (the wetting
fluid in this case.). �̂� represents the mean aperture of the fracture, 𝑏 is the resolution (width of the
pixels), 𝑁 is the number of pixels and 𝜎 stands for the interfacial tension between the two phases
(Hughes and Blunt, 2001). This definition is obtained from equation 3.2. The superficial (Darcy)
velocity is replaced by the volumetric flowrate divided by the cross-sectional area (Al Quaimi, 2017).
As explained in chapter 3, the main problem with the conventional equations for conventional capillary
numbers is that the geometry of the porous medium is not taken into account. This means that the
relationship between the capillary number and the residual nonwetting saturation cannot be expressed
by a single trend (Al Quaimi and Rossen, 2017).

4.2. Derivation of New Capillary Number
In order to enable expressing the relation between capillary number and residual nonwetting saturation
as a single trend, Al Quaimi and Rossen (2017) proposed to define a new capillary number based on
a force balance across a trapped nonwetting ganglion. The Laplace equation for capillary pressure is
given by

𝑃 = 𝜎( 1𝑟 + 1
𝑟 ) (4.2)

Al Quaimi and Rossen (2017) assumed that the length scale along which the aperture of the fracture
varies in the fracture plane (see figure 4.1) is much greater than the variation in aperture itself. Also,
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22 4. New Capillary Number for Fractures

Figure 4.1: illustration of a fracture and a trapped nonwetting ganglion, greatly exaggerated in the vertical direction. is the
throat aperture and is the body aperture (Al Quaimi and Rossen, 2017).

a fracture can be represented by a slit (Zimmermann and Bodvarsson, 1996). This means that the
width in the plane of the fracture is much greater than the aperture of the fracture. This means that
the interface is cylindrical rather than spherical. Therefore the principal radii of the interface within the
fracture can be expressed as 𝑟 = 𝑑/ cos 𝜃 and 𝑟 = ∞ (Al Quaimi and Rossen, 2017). The Laplace
equation for capillary pressure within a fracture can be now be expressed as

𝑃 = 𝜎( 1𝑟 + 1
𝑟 ) = 𝜎(

1 + 1
∞) = 𝜎

1 = 2𝜎 cos 𝜃
𝑑 (4.3)

where 𝑑 is the aperture of the fracture. This is due to the fact that that one of the principal radii
becomes infinite as the interface between the two phases within a fracture can be represented by a
cylindrical geometry rather than spherical geometry. The maximum capillary pressure within a pore
throat can therefore be expressed by

𝑃 , =
2𝜎 cos 𝜃
𝑑 (4.4)

and similarly for the pore body, the maximum capillary pressure within a pore body can be expressed
by

𝑃 , =
2𝜎 cos 𝜃
𝑑 (4.5)

In Equations 4.4 and 4.5, 𝑑 represents the aperture of the pore throat, and 𝑑 the aperture of the pore
body. The capillary pressure difference across a trapped ganglion can be represented by the difference
between capillary pressure in the pore throat and pore body (see figure 4.1).

Δ𝑃 = 2𝜎 cos 𝜃
𝑑 − 2𝜎 cos 𝜃𝑑 = (2𝜎𝑑 − 2𝜎𝑑 ) cos 𝜃 (4.6)

From chapter 2.4, it is known that in order to mobilize a trapped ganglion, the pressure gradient across
the ganglion must be greater than the difference in capillary pressure within the ganglion. It therefore
holds that

∇𝑃𝐿 > (2𝜎𝑑 − 2𝜎𝑑 ) cos 𝜃 (4.7)

where 𝐿 is the length of the trapped ganglion. It is possible to regroup equation 4.7 as follows, to
form a first expression for a capillary number that must be greater than one in order for mobilization
to occur (Al Quaimi and Rossen, 2017).

∇𝑃𝐿 𝑑
2𝜎(1 − ) cos 𝜃

≡ 𝑁 > 1 (4.8)

The next step is to include permeability into the equation. Al Quaimi and Rossen (2017) assumed that
their fracture model can be approximated by a smooth slit geometry. In that case, the permeability
of a fracture can be assumed by a function of the hydraulic aperture 𝑑 (Tsang, 1992; Zimmermann
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and Bodvarsson, 1996). More information on the relationship between permeability and the hydraulic
aperture can be found in chapter 4.4.

𝐾 = 𝑑
12 (4.9)

Introducing equation 4.9 into the equation for the capillary number can be done via expanding the
equation as follows:

𝐿 𝑑
1 −

= 𝑑 ( 𝑑𝑑 ) (
𝐿
𝑑 ) 1

1 −
(4.10)

And the equation for the capillary number therefore becomes

𝑁 ≡ 𝐾∇𝑃
𝜎 cos 𝜃 ∗ ((

12
2 )(

𝑑
𝑑 ) (

𝐿
𝑑 ) 1

1 −
) (4.11)

It can be see that the first part of equation 4.11 is the conventional equation for the capillary number
as expressed by Reed and Healy (1977). The second part of the equation accounts for the geometry
of the fracture, pore bodies and pore throats. The value for the hydraulic aperture 𝑑 can be derived
from the permeability of the fracture using single phase flow experiments and Darcy’s Law.

4.3. Experiments and Results
Al Quaimi and Rossen (2017) tested their capillary number by constructing five model fractures made of
glass consisting of one flat smooth plate at the top and a rough plate on the bottom. First the hydraulic
aperture is measured by single phase flow (Al Quaimi and Rossen, 2017). The pressure gradient was
measured when steady-state had been reached, and the hydraulic aperture could be calculated using
Darcy’s Law.

The models were cleaned and fully saturated with air. Demineralized water (in order to prevent pre-
cipitation) is injected at a steady horizontal flow rate until a steady state situation has been reached.
There should be no change in residual air saturation and the pressure gradient across the model should
be stable for at least 15 minutes (Al Quaimi and Rossen, 2017). The residual air saturation is observed
and measured using ImageJ software. A number of methods can be used in order to determine residual
air saturation. Traditionally, area fractions were used, but Al Quaimi and Rossen (2017) developed two
new methods: Image thresholding in order to determine the boundary of the ganglion, and the built
in finding edges function in ImageJ. The difference between the two procedures is used as an error
estimate. Furthermore, also the error in the pressure gradient was plotted, see figure A.1 in appendix
A (Al Quaimi and Rossen, 2017).

Al Quaimi and Rossen (2017) used the experimental test results to calculate the capillary number using
both the conventional definition (equation 3.3) and their new definition (equation 4.11). See figure A.2
and A.3 in appendix A. When comparing the results of the conventional capillary number (figure ref A.2)
with the residual air saturation against the pressure gradient (figure ref A.1), it can be seen that the
variation between the different models used is less in figure A.2 than that is for figure 4.2. However,
the variation between the models still is an order of magnitude. If the newly defined capillary number
is used, the relationship between capillary number and residual air saturation can be represented by
a single curve (see figure A.3) (Al Quaimi and Rossen, 2017). These findings conclude that the new
definition for capillary number based on a force balance across a trapped ganglion is better for rep-
resenting the mobilization of the residual nonwetting saturation in a fracture, by using the geometric
parameters of that fracture (Al Quaimi and Rossen, 2017). This report analyzes how a similar approach
holds for the 2D micromodels.
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Figure 4.2: Illustration of a parallel plate model. On the left side, the dimensions and parameters of the model are shown. On
the right, the parabolic velocity profile is shown (Zimmermann and Bodvarsson, 1996).

4.4. Relationship Between Permeability and Hydraulic Aperture
Al Quaimi and Rossen (2017) make the analogy that a fracture can be seen to be a smooth slit and
that the relationship between permeability 𝐾 and hydraulic aperture 𝑑 is 𝑘 = 𝑑 /12. This relation-
ship between permeability and hydraulic aperture can be found by analyzing the cubic law. The cubic
law presents an analysis of flow through rock fracture by using the parallel plate model. This is the
only model for which an exact calculation of the hydraulic conductivity is possible (Zimmermann and
Bodvarsson, 1996). This section presents the derivation of the relationship between permeability and
hydraulic aperture as presented by Zimmermann and Bodvarsson (1996)) and Tsang (1992). This rela-
tionship is important because it will later be used in the derivaton of the new definition of the capillary
number for microfluidic devices.

Before we start we start analyzing the derivation of the cubic law, the Navier-Stokes equation is intro-
duced. The Navier-Stokes equations are a set of equations used for describing the motion of viscous
fluid substances. They arise when Newton’s second law is applied to fluid flow. The flow of an incom-
pressible Newtonian fluid is given by (Batchelor, 1967):

𝜕U
𝜕𝑡 + (U ⋅ ∇)U = F− 1𝜌∇𝑝 +

𝜇
𝜌∇ U (4.12)

F is the body force vector acting on the fluid mass. U is the velocity vector and 𝑝 is the pressure
component. On the left hand side of the equation, the first term represents the fluid acceleration.
The second term is the advective acceleration term, which accounts for the fact that even in steady
state flow, a particle may change its velocity. Together, these two terms represent the acceleration of
a particle by following its trajectory. A complete derivation of the Navier-Stokes equation is given by
Zimmermann and Bodvarsson (1996). They state that the equation for a fracture can be simplified to
equation 4.13.

𝜇∇ U− 𝜌(U ⋅ ∇)U = ∇𝑃 (4.13)

The derivation of the cubic law starts with the assumption that the walls of a fracture can be repre-
sented by two smooth parallel plates. The plates are assumed to be infinitely large in the horizontal (𝑥)
and (𝑦) directions. The spacing between these two plates is denoted by Zimmermann and Bodvarsson
(1996) as 𝐻. The firs step is to set up a Cartesian flow system, with the 𝑥 direction parallel to the
direction of flow, the 𝑦 direction in the horizontal direction perpendicular flow and the 𝑧 direction in the
vertical direction. See figure 4.2. The coordinates of the top and bottom walls of the model correspond
to 𝑧 = ±𝐻/2.

In the derivation it is assumed that there is a uniform pressure gradient along the 𝑥 direction of
magnitude (𝑃 − 𝑃 )/𝐿, where 𝐿 is the length of the model and 𝑃 − 𝑃 is the difference in pressure
across the model. This pressure gradient is also denoted by ∇𝑃. Since the plates extend infinitely
in the 𝑥 and 𝑦 direction, the geometry of the of the space between the plates does not vary with
𝑥 or 𝑦. The flow velocity therefore only varies in the 𝑧 direction (see figure 4.2) and we assume
no-slip boundaries at the surfaces of the plates. Therefore, the flow velocity should be zero at the
plate surfaces (Zimmermann and Bodvarsson, 1996). This means that the velocity vector of the Navier
Stokes equation should necessarily vary in the 𝑧 direction. The components of the vector (U ⋅ ∇)U can
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be written explicitly as

(U ∙ ∇)U = (U⋅)(𝑢 , 𝑢 , 𝑢 ) = [U ⋅ (∇𝑢 ),U ⋅ (∇𝑢 ),U ⋅ (∇𝑢 )] (4.14)

The velocity components is constant for 𝑥 and 𝑦. This means that any of the three velocity gradients
that are not identically zero must be parallel to the 𝑧 direction. The velocity vector however, is parallel
to the 𝑥 direction and perpendicular to the 𝑧 direction. This means that all the components of the
dot products in equation 4.14 become zero (Zimmermann and Bodvarsson, 1996). Hence the final
Navier-stokes equation (equation 4.13) becomes:

𝜇∇ U(𝑧) = ∇𝑃 (4.15)

As said before, ∇𝑃 lies parallel to the 𝑥 axis. It can therefore be rewritten as

∇𝑃 = (𝜕𝑃𝜕𝑥 ,
𝜕𝑃
𝜕𝑦 ,

𝜕𝑃
𝜕𝑧 ) = (∇𝑃, 0, 0) (4.16)

Looking at equation 4.16, it becomes evident that there are three velocity components, that must
satisfy the following three equations:

∇ 𝑢 (𝑧) = ∇𝑃
𝜇 (4.17)

∇ 𝑢 (𝑧) = 0 (4.18)

∇ 𝑢 (𝑧) = 0 (4.19)

Remember that the boundary conditions for this model are that the velocity must equal zero at the
plate boundaries, thus 𝑢 = 0 at 𝑧 = ±𝐻/2. We can integrate equation 4.17 twice with respect to
𝑧. Keeping the boundary equations in mind, the following equation is obtained (Zimmermann and
Bodvarsson, 1996):

𝑢 (𝑧) = ∇𝑃
2𝜇 (𝑧 − (ℎ2) ) (4.20)

The next step is to determine the volumetric flux. For a fracture with width 𝑊 in the 𝑦-direction, the
volumetric flux is found by integrating equation 4.20 across the width of the fracture between 𝑧 = ±𝐻/2
(Zimmermann and Bodvarsson, 1996).

𝑄 = 𝑊∫𝑧 = −𝐻/2 / 𝑢 (𝑧)𝑑𝑧 (4.21)

𝑄 = 𝑊∫𝑧 = −𝐻/2 / ∇𝑃
2𝜇 (𝑧 − (ℎ2) )𝑑𝑧 = −

∇𝑃𝑊𝐻
12𝜇 (4.22)

The volumetric flow is equal to the velocity multiplied by the cross-sectional area perpendicular to the
flow direction (equation 2.7). Recall that the equation for Darcy flow velocity can be written as follows
(de Marsily, 1986).

𝑄 = 𝑢 𝐴 = 𝑢 ∗𝑊𝐻 = −∇𝑃𝐻12𝜇 ∗ 𝑊𝐻 (4.23)

𝑄 = 𝑢 ∗ 𝐴 = −𝐾𝜇 ∇𝑃 ∗ 𝐴 (4.24)

Combining equations 4.23 and 4.24, we can see that the permeability 𝐾 of the fracture can be identified
as 𝐾 = 𝐻 /12 (Zimmermann and Bodvarsson, 1996; Tsang, 1992). This approximation of the cubic law
is derived for a parallel plate model. In order to use the cubic law to approximate real rock fractrues,
the aperture 𝐻 can be replaced by the mean aperture or hydraulic aperture 𝑑 (Zimmermann and
Bodvarsson, 1996).
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Derivation of New Capillary Number

in Micromodels

From Chapter 4.3 it is known that a capillary number based on a force balance across a trapped gan-
glion is better for describing the mobilization of the trapped nonwetting phase in a fracture. The goal
of this report is to find out whether a similar equation for the capillary number can be found that holds
for 2D microfluidic devices. See chapter 6 for the description of the micromodels. In this Chapter, an
equation for a capillary number in a 2D microfluidic device is derived. Similar to the equation for the
capillary number derived by Al Quaimi and Rossen (2017), the equation will be based on a pressure
difference across a trapped nonwetting ganglion. Also, the concept of tortuosity will be introduced,
which helps to give the relationship between permeability and the depth of the model for the definition
of the capillary number.

5.1. Force Balance on a Trapped Ganglion
The main difference between this new equation for microfluidic models compared to that of Al Quaimi
and Rossen (2017) is the direction of variation in spacing. In their fracture model, the variation in
spacing was in the 𝑧 (vertical) direction, see figure 4.1. In this project, the variation in spacing will be
in the 𝑦 direction, and the widths of the throats and bodies will be denoted by 𝑤.

It is important to realize that when one looks at a cross-section of a microfluidic model, the pore throats
and bodies can be seen as short rectangular ducts of in the plane of the micromodel having widths 𝑤
and 𝑤 respectively. The depth of the micromodel 𝑍 would be the depth of the duct. See figure 5.1.
Lenormand et al. (1983) states that the capillary pressure in a duct of width 𝑤 and depth 𝑧 can be
expressed by

𝑃 = 𝐹(𝜉) ∗ 2𝜎( 1𝑤 +
1
𝑧) cos 𝜃 (5.1)

In this equation 𝐹(𝜉) is a correctional factor and is a function of 𝜉, which is the ratio between the width
and the depth of the duct. Lenormand et al. (1983) states that 𝐹(𝜉) is always close to 1, regardless of
the cross-sectional geometry of the duct. It is therefore assumed in this derivation that this term is 1.
This means that 𝐹(𝜉) drops out of the equation.

Now Consider a trapped ganglion in a microfluidic model as shown in figure 5.2. The capillary pressures
at both ends of a trapped ganglion, with its leading interface penetrating a pore throat of width 𝑤 and
the trailing in the pore body (width 𝑤 ) can therefore be expressed as:

𝑃 , = 2𝜎(
1
𝑤 + 1

𝑍) cos 𝜃 (5.2)

𝑃 , = 2𝜎(
1
𝑤 + 1

𝑍) cos 𝜃 (5.3)
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Figure 5.1: Model of a Microfluidic Device. On the left, the overview and the coordinate system. On the right, the parameters
needed for the equation.

The difference in capillary pressure across the trapped nonwetting ganglion in figure 5.2 can be ex-
pressed by the difference in capillary pressure between the pore throat and the pore body.

Δ𝑃 = 2𝜎( 1𝑤 + 1
𝑍) cos 𝜃 − 2𝜎(

1
𝑤 + 1

𝑍) cos 𝜃 = 2𝜎 cos 𝜃(
1
𝑤 − 1

𝑤 ) (5.4)

Modern micromodels have a nearly constant depth across the entire length of the model. The assump-
tion is made that for all the studied models (chapter 6) the depth within the model is constant. As can
be seen in equation 5.4, the term 𝑍, representing the depth of the microfluidic model, drops out. This
is to be expected, since it is assumed that 𝑍 is constant across the model. From chapter 2.4, we know
that in order to mobilize a trapped ganglion, the pressure gradient across the length of the ganglion
𝐿 must be greater than the capillary pressure difference within the ganglion.

∇𝑃𝐿 > 2𝜎 cos 𝜃( 1𝑤 − 1
𝑤 ) = 2𝜎

𝑤 cos 𝜃(1 − 𝑤
𝑤 ) (5.5)

The terms in equation 5.5 can be re-arranged in such a way that the criterion for mobilization can be
stated as a capillary number.

∇𝑃𝐿 𝑤

2𝜎 cos 𝜃(1 − )
≡ 𝑁 > 1 (5.6)

The next step is to include the permeability into the equation. In order to do this, a relationship between
the permeability and the depth of the micromodel needs to be found. In order to do so, a microfluidic
device can be related to a smooth rectangular slit. Within a rectangular slit, the relationship between
the permeability and the hydraulic aperture can be estimated by equation 4.9 (Al Quaimi and Rossen,
2017; Tsang, 1992; Zimmermann and Bodvarsson, 1996). However, in the case of microfluidic devices,
the pillars within the model reduce the flow through the model. In order to describe this reduction in
flow, a correction factor needs to be applied in the form of tortuosity (𝜏) (see chapter 5.2 below). The
new relation between the permeability 𝐾 and the aperture 𝑍 can now be expressed as

𝐾 = 𝑍
12𝜏 (5.7)

where 𝜏 is the tortuosity caused by the pillars in a micromodel. The equation for permeability can now
be implemented into the equation of the capillary number.

𝐿 𝑤
1 −

= 𝑍 (𝑤𝑍 ) (
𝐿
𝑤 ) 1

1 −
(5.8)
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Figure 5.2: Illustration of a trapped ganglion in a simple geometry consisting of four circular, aligned pillars.

𝑁 ≡ ∇𝑃𝐾
𝜎 cos 𝜃 ∗ ((

12
2𝜏 )(

𝑤
𝑍 ) (

𝐿
𝑤 ) 1

1 −
) (5.9)

The first part of equation 5.9 is the conventional capillary number as proposed by Reed and Healy
(1977). The second part is the geometric term that accounts for the obstructions in the form of the
pillars inside the microfluidic device, the width of the pore throats and bodies, distance between the
two throats, and the ratio between the widths of the pore throats and bodies. The permeability of the
microfluidic models is determined from single phase flow experiments and the Darcy equation. The
fact that the permeability is approximated by relating the micromodel to an infinite slit with the same
cross-sectional geometry (total width and depth) poses a contradiction. If the capillary number would
be calculated for such a smooth slit, the following would happen to the capillary number. For an infinite,
smooth slit, the value for 𝑤 would become infinite and the value for 𝜏 would be 1. This means that for
any pressure gradient applied to the system, the value for the capillary number would blow up to infinity.

Important is how the three geometrical parameters, 𝑤 , 𝑤 and 𝐿 , are defined. The throat width is
defined to be the narrowest constriction within the throat. Here, the capillary forces will have maximum
effect. The pore body width is defined to be the diameter of the largest possible circle fitting within
the pore body. Finally, the ganglion length is determined to be the distance between the pore throat
(narrowest constriction) and the trailing edge of the pore body boundary. See figure 5.2.

5.2. Definition of Tortuosity
In the new derivation of the capillary number, we introduce the term of tortuosity (𝜏), in order to
obtain a relationship between permeability and the aperture of the microfluidic devices. Peters (2012)
describes tortuosity as a geometric property of the porous medium that reflects the length of pore flow
at the pore level as fluid is forced around obstacles (grains/pillars) relative to the length of the flow
path. This means that as the porosity of a porous medium decreases, the tortuosity must increase
(Peters, 2012). Generally, tortuosity is a ratio that is used to characterize the convoluted pathways
of fluid diffusion through porous media. Peters (2012) calculates tortuosity by taking two points on
either side of a grain in a porous medium. Tortuosity is then the ratio of the tortuos path (𝐿 ) over the
shortest path (𝐿 ) between the two points (Peters, 2012).

Tortuosity is often described by imagining the porous medium to be a bundle of capillary tubes that
can give insight on the relationship between permeability and porosity (Bird et al., 2014).Bird et al.
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(2014) developed a theory where the capillary tubes are tangled. The idea is that the methods used
to describe flow through straight capillary tubes can be used to describe flow behaviour in the crooked
tubes as well. Bird et al. (2014) then state that in order to better describe the fluid diffusion inside the
packed bed, and take the tortuosity of the capillary tubes into account, the equation for the friction
factor (given by 𝑓 = 16/𝑅𝑒 ) needs adjustments. They replace the term 16 in the equation for the
friction factor by 100/3 as this value helps to better describe the fluid behaviour inside the porous
medium (Bird et al., 2014).

Analogous to the theory described by Bird et al. (2014), we can use this concept of tortuosity to
our own research. We can assume that the flow through the microfluidic devices can be related to
a smooth slit. We know from chapter 4 that the relationship between permeability and hydraulic
aperture is 𝑘 = 𝑑 /12. However, in microfluidic devices, the pillars will make the flow path more
tortuos. Therefore, we introduce the term tortuosity (𝜏). We define tortuosity for a micromodel to be
the ratio of a cross-sectional area of a micromodel that is available for flow and the entire area of the
cross-sectional area. This can be simplified into the following equation:

𝐾 = 𝑍
12𝜏 (5.10)

In this equation, 𝐾 is the measured permeability of the microfluidic device, as can be measured using
Darcy’s equation. 𝑍 is the aperture of the model. If the first two parameters in the equations are
known, so that the tortuosity (𝜏) can then be calculated.
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Description of Various Micromodels

Now that we have defined our capillary number, its functionality must be tested. Due to time shortage,
it was not possible to construct own micromodels and test them. Therefore it was decided that two-
phase flow data from various sources would be analyzed. This way, the functionality of the capillary
number based on a force balance across a trapped ganglion could be tested in a theoretical way. In
total, nine different micro-models will be used, giving ten different experiments. They are obtained
from various papers, which used them to analyze two phase flow in the micro-structures. It was pre-
ferred to analyze oil-water imbibition. In the end however, different wetting and nonwetting fluids
were analyzed, because papers containing all the needed parameters were hard to come by. The used
wetting fluids include water, brine and surfactant foams, and nonwetting fluids include oil and other
non-aqueous phase liquids (NAPL). This chapter will start by elaborating on the background and the
advantages of using micromodels in order to analyze two phase flow. Next, the obtained microfluidic
models will be described including their geometry and permeability. The models used include both
simple, regular geometries as well as more complicated geometries.

Over the last 30 years, micromodels have been extensively used to study the behaviour of fluid flow
in microstructures. They have proven to be a valuable tool as they enable the observation the flow
and transport of fluids inside the pore spaces. In this chapter, the background and advantages of
micromodels are explained. Micromodels are idealized two-dimensional representations of porous me-
dia. They consist of a network of connected pores, including throats and bodies (Karadimitriou and
Hassanizadeh, 2012; Jeong and Corapcioglu, 2003). They are typically made of transparent material
that enables visual observation. These materials usually include quartz or glass (Karadimitriou and
Hassanizadeh, 2012). The pores are usually several tens to hundreds of microns wide through which
the fluid is allowed to flow. For two-phase flow studies, such in this case, it is important that the pore
throats are smaller than a millimetre wide. Otherwise, the capillary effect will be irrelevant (Karadim-

Figure 6.1: Typical set up of a micromodel (Kawale, 2017), the direction of depth is in the vertical direction.
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itriou and Hassanizadeh, 2012).

See figure 6.1 for a typical micromodel setup. On either side of the micromodel, the model should be
open, in order to allow the inlet and outlet of fluids. These inlets and outlets are usually combined with
pressure sensors, so that the pressure drop across the model can be measured. Other models include
syringes that allow for a precise flow rate through the model. Micromodels can consist of regular or
irregular patterns, and anything in between. An excellent overview of the different geometric types
and patterns in a micromodel is given by Karadimitriou and Hassanizadeh (2012).

The choice for a visualization method is essential to the outcome of the experiment. In a two-phase flow
experiment, areas of interest include the average saturation of both the wetting and the nonwetting
fluids and the specific interfacial area (Karadimitriou and Hassanizadeh, 2012). Since the micromodels
are transparent, the easiest observation method is by photo or video analysis. Computer software can
then be used to analyze the images and measure the saturation of wetting and nonwetting phases
within the model. It is therefore important that the two fluids are distinguishable from each other. If
necessary, dye needs to be applied to preferably the nonwetting fluid in order to increase the contrast
(Karadimitriou and Hassanizadeh, 2012).

6.1. Simple Geometries by Kawale (2017)
Before analyzing more complicated micromodels, we will first take a look at simple geometries provided
by Kawale (2017). These models all consist of regular patterns made up of either square or circular pil-
lars. See figure 6.2. Table 6.1 summarizes the most important properties of the micromodels obtained
by Kawale (2017). The length of the four devices is 8.5 millimetres and the width of the devices is 2.5
millimetres. The depth of the devices is a constant 120 microns with a variation of +/- 2 microns. The
size of the pillars are constant in each of the devices, namely 262 microns with a variation of +/- 5
microns. That is the diameter of the circular pillars and the length of the square pillars. For the four
models, the following four parameters are provided by Kawale (2017):

• Pore throat width (𝑤 );

• Number of pillars parallel (𝑁 ) and perpendicular (𝑁 ) to the flow direction;

• porosity (𝜙);

• Permeability given in Darcy (𝐾).

Besides these properties, other properties that must be calculated include the pore body width (𝑤 )
and the ganglion length (𝐿 ). Below, each of the four micromodels is analyzed and the procedure
of obtaining the geometrical parameters (𝑤 and 𝐿 ) is quickly summarized. Enlarged figures of the
different models are available in Appendix B.1. They also include the dimensions used for calculating
the model parameters that are not given by Kawale (2017).

The permeability of the devices was measured by injecting a total of three different Newtonian fluids.
These three fluids were chosen such a way that the pressure drop was more than 5 percent than the
operating range of the pressure sensor. If the pressure drop across the model was then determined,
the permeability could then be calculated using Darcy’s Law (Kawale, 2017).

𝐾 = 𝜇𝑄𝐿
𝐴𝛿𝑃 (6.1)

In this formula, 𝜇 is the viscosity of the fluid. 𝑄 is the flowrate, 𝐿 is the length of the periodic array
within the micro geometry. 𝐴 is the cross-sectional area perpendicular to the flow path and Δ𝑃 is the
pressure difference across the periodic array, measured by the two pressure sensors on either side of
the micromodel (see figure 6.1).
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Figure 6.2: Geometries of the four models used by Kawale (2017), including a) aligned squares, b) staggered squares, c) aligned
circles and d) staggered circles.

6.1.1. Squares, Aligned
The first model that will be analyzed is the aligned square model. See figure 6.2a and Table 6.1. The
pore throat width (𝑤 ) is 217.0 microns. This model contains 18 pillars in the 𝑥 direction (parallel to the
flow direction) and 6 in the 𝑦 direction (perpendicular to flow). Furthermore, the permeability is stated
to be 203.8 Darcy. See figure B.1 in Appendix B.1. The pore body width is taken by constructing the
largest theoretically possible circle fitting within the pore body. The width of the pore body is simply
the diameter of the imaginary circle and is equal to 307 microns. The ganglion length (𝐿 ) defined
to be from the point where the throat width is measured (narrowest point in a passage between two
pores) to the trailing edge at the pore body boundary. Because the throat has a constant width in this
model, the midpoint is taken for simplicity. For this model, that is 438 microns. See table 6.2.

6.1.2. Squares, Staggered
As can be seen in figure 6.2b, the staggered squares are placed at an angle of 45 degrees. The throat
width is roughly half the size of the aligned squares, namely 108.5 microns. There are 17 pillars in
the 𝑥 direction and 10 in the 𝑦 direction. The permeability is 180.0 Darcy. Due to the slightly more
complicated geometry, the width of the pore body is a bit more complicated. Again, the pore body
width is said to be the largest possible circle that would fit inside the pore body. After some geometrical
calculations (see appendix B.2), we can find that the pore body width is 415 microns. The ganglion
length for the model is defined as the distance between the pore throat and the trailing edge of the
pore body boundary. For simplicity the largest possible 𝐿 is taken by going diagonally across the pore
body. See appendix B.1. The vale for 𝐿 is 447 microns.

6.1.3. Circles, Aligned
As can be seen in table 6.1, the pore throat width is 162 microns. There are 20 pillars in the flow di-
rection and 6 in the parallel to flow direction. The permeability of the device is 214.1 Darcy. The pore
body width is again the diameter of the largest possible circle that would fit inside the pore body. The
pore body width is 338 microns. The length of the ganglion is determined to be the distance between
the narrowest point in one pore and the trailing edge of the pore body boundary. For this model, that
is 381 microns.

Table 6.1: Parameters of the microfluidic devices given by Kawale (2017).

Geometry 𝑤 𝑁 and 𝑁 𝜙 𝐾 (D)

Squares, Aligned 217.0 18 & 6 0.69 203.8
Squares, Staggered 108.5 17 & 10 0.71 180.0
Circles, Aligned 162.0 20 & 6 0.71 214.1
Circles, Staggered 162.0 14 & 9 0.71 179.2
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Table 6.2: The most important geometrical parameters used for the models of Kawale (2017).

Geometry 𝑤
(𝜇𝑚)

𝑤
(𝜇𝑚)

𝐿
(𝜇𝑚)

𝐾
(𝐷)

𝜙(-) 𝜏 (-)

Squares, Aligned 217.0 307 438 203.8 0.69 0.170
Squares, Staggered 108.5 415 447 180.0 0.71 0.150
Circles, Aligned 162.0 338 381 214.1 0.71 0.178
Circles, Staggered 162.0 338 381 179.2 0.71 0.149

6.1.4. Circles, Staggered
At last, there is the geometry of the staggered circles. For this geometry, the pore throat width is 162
microns. There are 14 pillars in the 𝑥 direction and 9 in the 𝑦 direction. The permeability is 179.2
Darcy. One can easily see that the geometry of the staggered circles is the same as the aligned circles,
but at an angle of 45 degrees to the flow direction. This means that the pore body width is the same as
for the aligned circles. The pore length is the largest distance between the pore throat and the trailing
edge of the pore body, which is 381 microns.

The disadvantage of these models is that Kawale (2017) did not use them for two phase flow. There-
fore, no desaturation data is available. However, the models can still be used to analyze theoretical
flow rates and pressure drops across the model. The theoretical capillary numbers corresponding to
each of the pressure drops can then be calculated and plotted. In order to do this, two fluids need
to be selected for which the capillary number can be approximated. In this case, water is the wetting
phase and kerosene is the nonwetting phase. The interfacial tensions between the two phases is 26
𝑚𝑁/𝑚 (Ibrahim et al., 2008). For simplicity, perfect water-wet wettability is assumed for the models,
so the contact angle is 0 degrees. The conventional and new capillary numbers will be plotted against
an artificial pressure gradient that will be increased in a stepwize manner from 10,000 𝑃𝑎/𝑚 to 270,000
𝑃𝑎/𝑚, to see how the variation between the magnitudes of the capillary numbers would differ for both
the conventional and the new capillary number.

6.2. Hexagonal Geometry by Jones (2016)
A more complicated geometry was provided by Jones et al. (2016), see figure 6.3. The model was used
for research into gas trapping in foam (Jones et al., 2016). Surfactant foams (C14-16 Olefin Sulfonate,
similar to the research conducted by Jeong and Corapcioglu (2003)) are used in this paper as the
wetting phase and gas (air) represented the nonwetting phase. This model is also used by Getrouw
(2016). The micromodel is a borosilicate glass model consisting of a hexagonal pattern of pore bodies.
The model is made up by two glass plates. The upper plate has a thickness of 1100 microns whilst
the bottom plate has a thickness of 700 microns. The hexagonal pattern of pores is etched into the
lower plate using wet-etching. The inlet and outlet channels on either side of the model where created
using power blasting. The plates where then sintered to each other by being heated to 600 °C Getrouw
(2016).

The length of the pore channel is 60 millimetres. The width of the pore channel is 0.8 millimetres. The
depth of the micromodel is only 5 microns (table 6.3). The total number of pores is estimated to be
849, with a Gaussian distribution in pore sizes. Five different pore sizes where distinguished throughout
the model (Getrouw, 2016), ranging from 35 to 76 microns in diameter, with a mean diameter that
is 60 microns. The mean diameter of the pore throats is 13 microns (Getrouw, 2016). The ganglion
length for the model is determined using Image Analysis. The ganglion length was determined to be
from halfway one pore throat across the pore body until the trailing edge of the pore body bound-
ary directly across, see figure 6.3. From the image, a total of fifteen ganglion lengths was measured,
and the average was determined to be the representative ganglion length, which is roughly 80 microns.

The porosity of the medium was determined by Getrouw (2016) by taking ten photos over the length
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Figure 6.3: Micromodel used By Jones et al. (2016); Getrouw (2016). On the left, it shows the model as seen under a microscope.
The figure on the right is the altered model for porosity characterization.

of the micromodel with 5 millimetre intervals. The photos were then converted to black and white
images, so that the porosity could be determined using image analysis. The porosity is the fraction
of black parts in figure 6.3. This was done for each of the ten images, and the average was then
calculated. The porosity of the model is 0.71. The permeability was calculated by Getrouw (2016)
by using single phase flow and the Darcy equation. The flowrate of water through the micromodel
was increased in a step wise manner from 0.5 𝜇𝐿/𝑚𝑖𝑛 to 1.4 𝜇𝐿/𝑚𝑖𝑛. After a steady state had been
reached, the pressure drop was then measured using pressure sensors on either side of the medium.
The pressure drop was plotted against the flow rate, so that a trend line could be developed. Once the
relationship between flowrate and pressure drop was determined, the permeability could be calculated
by

𝐾 = 𝑄𝜇
∇𝑃𝐴 (6.2)

Now that the depth of the model, permeability and porosity are known, the tortuosity of the model can
be calculated by equation 6.3. All parameters of the model can be found in table 6.3.

𝜏 = 12𝐾
𝑍 (6.3)

Jones et al. (2016)presents the desaturation of gas inside the model by plotting the trapped gas fraction
against the superficial velocity. This plot can be found in appendix B.3 The superficial velocity has to
be converted to a capillary number first. During this process, a problem is encountered because the
viscosity of the surfactant is not constant. This is caused by the fact that the experiment performed
by Jones et al. (2016) is somewhat different from the other experiments in the way the fluids work.
Rather than using ”conventional” wetting fluids for two phase flow, the wetting fluid is a ”chain of bub-
bles” that show shear thinning behaviour, where the viscosity of the foam decreases for an increase in
superficial velocity.

Table 6.3: Most important parameters for the model provided by Jones et al. (2016).

Micromodel Jones et al. (2016)

Length (mm) 60
Width (mm) 0.8
Depth (𝜇𝑚) 5
Pore Body Width (𝜇𝑚) 60
Pore Throat Width (𝜇𝑚) 13
Ganglion Length (𝜇𝑚) 80
Porosity (-) 0.71
Permeability (m2) 7.2*10-13

Tortuosity (-) 0.346
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This means that the desaturation data presented by Jones et al. (2016) is not entirely fit to be used
in this research. In order to still incorporate the micromodel and its geometry into this research, the
micromodel is subjected to the same method as used for the methods by Kawale (2017). An artificial
pressure gradient is applied to the model, to see the effect of both the conventional and the new defi-
nition of the capillary number. The fluids used are described in section 6.1

6.3. Geometries by Jeong et al. (2003)
Jeong and Corapcioglu (2003) used a micromodel in order to study the removal of groundwater con-
taminants from a porous medium with the use of surfactant foam (SF). In this study, the contaminants
are the nonwetting phase and the surfactant foams are the wetting phase. Jeong and Corapcioglu
(2003) used 2 models, with a similar, but not identical geometry. They will now be referred to as
model A and B. A part of model A can be seen in figure 6.4. The most important physical properties of
the two micromodels are listed in table 6.4.

The values for the pore throat width, pore body width and ganglion length were not directly given by
(Jeong and Corapcioglu, 2003). The dimensions of the pore bodies and throats were measured by
Jeong and Corapcioglu (2003) using image analysis. The pore distributions can be seen in Appendix
B.3. The value for the throat radii and pore body radii were calculated as follows. First the frequencies
for each pore or throat size were summed up, and then for simplicity, the mean values were calculated.
The mean values are listed in table 6.4. The ganglion lengths for the models were determined using
image analysis. Similar to the models of Kawale (2017), the ganglion length is defined as the length
between the narrowest point in the pore throat up to the trailing edge of the pore body boundary. For
this model, the throats between the pores have a near constant width. The midpoints of the throats
is therefore taken. By image analysis, it was assumed that this is roughly 1.4 times the value of 𝑤 .
Since the models are very similar, the same ratio is assumed for model B.

The fluids used to represent the groundwater contaminants were trichloroethylene (TCE), a DNAPL and
dodecane, a LNAPL. Proper desaturation data was only given by Jeong and Corapcioglu (2003) for the
TCE. Therefore, we will focus on that fluid in this analysis. The displacement fluids used were water
and surfactant foams. The used surfactant was an anionic surfactant, sodium C14-16 olefin sulfonate,
and was diluted before use. The surfactant used in the end contained 2 percent sodium C14-16 olefin
sulfonate on weight basis. The most important parameters of the used fluids are listed in Table 6.5.

The experiment conducted by Jeong and Corapcioglu (2003) began by fully saturating the micromodel
with de-ionized water (in order to prevent precipitation). Then, dyed NAPL was injected using a syringe.
The NAPL would saturate the micromodel until only residual water was left. This recreates actual
porous media, since there will always be residual water left due to the wettability of the system. The

Table 6.4: Parameters of the microfluidic devices used by (Jeong and Corapcioglu, 2003).

Micromodel Model A Model B

length (mm) 64 59
width (mm) 40 42
Depth (𝜇𝑚) 130 130
Pore body width (𝜇𝑚) 330 270
Pore throat width (𝜇𝑚) 150 130
Ganglion length (𝜇𝑚) 456 380
Porosity (-) 0.27 0.28
Permeability (m2) 1.70*10-11 2.25*10-11

Tortuosity (-) 0.0120 0.0159
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Figure 6.4: Enlarged image of Model A used by Jeong and Corapcioglu (2003). Note the example dimension of the ganglion
length ( ).

medium was then flushed with water again until only residual NAPL remained (Jeong and Corapcioglu,
2003). The residual saturations were 0.32 for TCE in model A, 0.53 for TCE in model B and 0.40
for dodecane in model A. Alternating slugs of surfactant solution and gas (air) were generated and
inserted in the model in order to mobilize the residual NAPL. Jeong and Corapcioglu (2003) evaluated
three different gas fractions (GF). The gas fraction is defined as the ratio of gas volume to surfactant
volume. Increasing amounts of surfactant were injected and for each increment, the residual NAPL
saturation was determined.

Jeong and Corapcioglu (2003) plotted the residual NAPL saturation against the conventional capillary
number (see equation 3.3). We will analyze the desaturation of the TCE only, as it is the only fluid
that gives results for both models. The residual gas saturation was presented as NAPL saturation
ratio (𝑆 𝑅𝑎𝑡𝑖𝑜). That is the ratio between TCE saturation after flooding and TCE saturation before
flooding. In order to obtain the residual TCE saturation for each capillary number, the 𝑆 Ratio must
be converted by

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆 = 𝑆 𝑅𝑎𝑡𝑖𝑜 ∗ 𝑅𝑒𝑠 𝑆 , (6.4)

Where 𝑅𝑒𝑠 𝑆 is the residual TCE saturation and 𝑅𝑒𝑠 𝑆 , is the residual TCE saturation after the
initial water flooding, which is 0.32 for TCE desaturation in model A, and 0.53 for model B. Jeong and
Corapcioglu (2003) started by analyzing the desaturation behaviour for different gas fractions, and
found that the desaturation of TCE was more effective for a gas fraction of 66 percent than it was for
85 percent (Jeong and Corapcioglu, 2003). Therefore, the desaturation of the 66 percent surfactant
was used in analyzing the desaturation between the two different micromodels. As said before, the

Table 6.5: Properties of chemicals used by Jeong and Corapcioglu (2003). IFT is interfacial tension. The contact angle is only
measured for the TCE and is measured through the wetting phase. If the box is empty, the value is not given by Jeong and
Corapcioglu (2003).

Chemical IFT TCE
(dyne/cm)

IFT dodecane
(dyne/cm)

Density
(g/cm3)

viscosity
(cpi)

Contact
angle

TCE 1.47 0.59
Dodecane 0.75
Water 27.3 52.8 0.998 0.949 33
2% surfactant 4.9 2.6 1.004 1.029 50
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Figure 6.5: Capillary Desaturation Curves for the data obtained from Jeong and Corapcioglu (2003).

TCE saturation ratio must be converted to absolute residual saturation. The original desaturation data
from the paper can be found in Appendix B.3. The corrected desaturation curves for the conventional
capillary number for both models can be seen in figure 6.5. From the figures it is immediately clear
that the residual TCE saturation’s obtained from the experiments carried out by Jeong and Corapcioglu
(2003) are very low. This means that this data is ideal for analyzing the functionality of the new capil-
lary number for low residual saturations.

6.4. Ibrahim et al. (2008)
Ibrahim et al. (2008) present a paper in which they investigated the mobilization of residual oil inside
microfluidic devices. The micromodel has a water-wet wettability and has varying pore throat and pore
body size distribution. In the study, the attention is mainly focused on oil recovery by water flooding.
De-ionized water is therefore used as a wetting fluid and dyed kerosene (red) was used to resemble
the crude oil in the experiment.

Two different micromodels were studied by Ibrahim et al. (2008). One model will now be referred to
as SRC-1, and the other model SX-4. The most important properties of the micromodels are listed in
table 6.6. Proper throat sizes and pore body sizes were only given for SRC-1. Therefore, the analysis of
this paper will focus on that model only. A portion of the SRC-1 model can be seen in figure 6.6. Exact
values for the pore body and throat sizes were not directly given, as well as the values for the depth of
the etching, ganglion length and porosity. Instead, these values were determined using image analysis
of figure 6.6. We assumed that this portion of micromodel SRC-1 to be a representative sample for the
entire model.

Chatzis (2011) used the same model, and stated that the pore throat size varied between 30 and 100
microns. This means that the largest pore throat should be 3.33 times wider than the narrowest in
this model. Figure 6.6 was enlarged and the throat sizes were measured manually. The results of the
measurements can be found in appendix B.4. It was found after measuring, that the smallest pore
throat was 0.5 centimetres wide, and the widest was 1.7 centimetres wide. This is gives a ratio of 3.4
which lies close enough to state that the widest pore throat in the figure resembles a throat of 100
microns, whilst the smallest throat in the figure resembles 30 microns. A linear scale was set up using
the following equation:

𝑅𝑒𝑎𝑙𝑠𝑖𝑧𝑒 = 58.333𝑥 + 0.8333 (6.5)

Here, 𝑥 is the width measured in the enlarged version of figure 6.6 in centimetres, and the actual width
of the corresponding measurement is given in microns. All the throats in figure 6.6 were measured,
and the average value was taken to be the pore throat width, which is 64 microns. The same scale
could then be applied to the pore body sizes, since the scale holds for the entire figure. The pore bodies
were measured both in the width and height direction in the figure. The average was taken to be the
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Figure 6.6: Sample from the SRC-1 model used by Ibrahim et al. (2008).

diameter of the pore body. The diameter of 10 pore bodies was measured, and the smallest diameter
was taken to be the representing pore body width, which is 210 microns. The smallest diameter was
taken since the definition of the pore body width is the diameter of the largest possible circle within the
pore body. From figure 6.6, the ganglion length can also be measured and calculated using the same
scale. The ganglion length for this model is determined similarly to the aligned circle model my Kawale
(2017). From the narrowest point in one pore throat to the trailing edge of the pore body boundary.
The measurements for all ganglion lengths can be found in Appendix B.4.

The next step is to measure the porosity of the model. We did this by calculating the surface area of
each pillar in figure 6.6, and then take the sum of all the pillar areas. Also the entire surface area of
figure 6.6 was calculated. The area available for flow is then the difference between the total surface
area of figure 6.6 and the surface area of the pillars. The porosity is then simply calculated by:

𝜙 =
𝐴 − 𝐴

𝐴 (6.6)

In this equation, 𝐴 is the total surface area of the sample and 𝐴 is the surface area taken
up by the pillars. The last step in analyzing the geometry of the model is the depth. The depth is not
directly given by Ibrahim et al. (2008). But we can approximate the depth of the model using equa-
tion 6.7. This equation is based on the relationship between permeability and depth given in equation
5.10. For this model, the depth and permeability from Jeong and Corapcioglu (2003) were taken, since
the permeabilities for both models are similar. Now that the depth and permeability for the model by
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Table 6.6: Most important parameters for the model provided by Ibrahim et al. (2008).

Micromodel Model SRC-1 SX-4

Length (mm) 102 80
Width (mm) 44 46
Depth (𝜇𝑚) 140
Number of pores 3567
Total volume of medium (𝜇𝐿) 350 250
Pore Throat (𝜇𝑚) 64
Pore body Width (𝜇𝑚) 210
Ganglion Length (𝜇𝑚) 263
Porosity (-) 0.495
Permeability (m2) 2.0*10-11 2.3*10-11

Tortuosity (-) 14.2*10-5

Ibrahim et al. (2008) are known, the tortuosity is easily calculated. See table 6.6.

√𝐾𝐾 = 𝑍
𝑍 (6.7)

The fluids used by Ibrahim et al. (2008) are de-ionized water as the wetting phase and red-dyed
kerosene as the nonwetting phase. The interfacial tension between the water and the kerosene is 26
mN/m, whilst in the case of using soap (surfactant) the interfacial tension is reduced to 3 mN/m. The
porous medium is assumed to be perfectly water-wet, therefore the contact angle is 0 degrees, and
cos 𝜃 = 1.

The first step in the experiment was to completely flush the model with water. The model was then
oil-flooded to obtain a high initial oil saturation. Normal water flood residual oil saturation was then
established by water injection at low flow rates. When equilibrium was reached, an image was taken
of the model to determine the residual oil saturation. The water injection was then subsequently in-
creased in a step wise manner, until at each flow rate, the equilibrium had been reached and the
residual oil saturation had been determined.

The injected flow rates were converted to Darcy velocity by Ibrahim et al. (2008). The capillary num-
bers were calculated using the Moore and Slobod (1954) equation (see equation 3.2). The desaturation
values were plotted against the capillary numbers. The pressures gradient across the model can be
calculated by using equation 3.3. Also, the newly defined capillary number was calculated. The capil-
lary desaturation curves for Ibrahim et al. (2008) can be seen in figure 6.7. The capillary desaturation
curve has a large range and starts near complete nonwetting saturation and has its end at a residual
saturation of 0.12. This means that the desaturation data by Ibrahim et al. (2008) is ideal for analyzing
the functionality of the new capillary number for the complete desaturation progress.

6.5. Yeganeh et al. (2016)
As explained in chapter 1, Yeganeh et al. (2016) analyzed the desaturation of nonwetting phases in
rock matrix using a similar approach by redefining the capillary number based on a force balance on
a trapped ganglion. In order to test the functionality of this capillary number, Yeganeh et al. (2016)
performed two experiments on a single micromodel using two different fluid combinations. The first
being a de-mineralized water and hexadecane combination, the other a brine and crude oil combination.

The micromodel (figure 6.8) has total dimensions of 60 millimetres in length and 10 millimetres in
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Figure 6.7: Capillary Desaturation Curves for Ibrahim et al. (2008) for both the conventional and the new capillary number.

width. The model consists of a total of 150 sub-cells, each having a dimension of 2x2 squares having
8x8 pillars per square (Yeganeh et al., 2016). The pillars have a square shape, and have a width of
196 microns each (determined by image analysis of figure 6.8). The distance between the pillars is
110 microns. The spaces between the pillars have three different shapes (either straight, or with a
constriction) resulting in a varying throat width of 63, 85 or a 110 microns. Yeganeh et al. (2016) state
that the throat widths are randomly distributed across the model. By image analysis of figure 6.8, it
was determined that the average throat width is 86 microns. Since the distances between the pillars
is known, the pore body size can be calculated using the Pythagorean theorem (similar to the aligned
squares model by Kawale (2017)). This way, the value for the pore body size was determined to be
156 microns. The ganglion length was determined to be the distance between the point of tightest
constriction and the trailing edge of the pore body. This turned out to be 230 microns. See table 6.7.
The depth of the model was not directly given by Yeganeh et al. (2016), however the cross-sectional
area (𝐴) was given, and the width of the model is known. The depth of the model is then equal to
𝑍 = 𝐴/𝑊, where 𝑊 is the width of the model.

The permeability of the model was not directly given by Yeganeh et al. (2016). It was possible to
approximate the permeability of the model by using the relationship between the permeability and the
depth of the model described in equation 5.10. The value for tortuosity is changed to be the ratio
between the width available for flow in a throat and the total width of a pillar and a throat, so that it

Table 6.7: Properties of the micromodel used by Yeganeh et al. (2016).

Micromodel Yeganeh
et al. (2016)

Length (𝑚𝑚) 60
Width (𝑚𝑚) 10
Depth (𝜇𝑚) 110
Pore body width (𝜇𝑚) 156
Pore throat width (𝜇𝑚) 86
Ganglion length (𝜇𝑚) 230
Porosity (-) 0.585
Permeability 3.662*10-10

Tortuosity (-) 0.359
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Figure 6.8: Micromodel used by Yeganeh et al. (2016). Dimensions of the three different throat widths are given. The dimensions
of the pore bodies and ganglion lengths are given in red.

in a sense gives the fraction available for flow in the model. This gives the following equation:

𝐾 = 𝑍
12 ∗

𝑤
𝑤 + 𝑤 (6.8)

This approximation does not account for the fact that there is less drag by the walls in the pore bodies,
and that there is more drag in the constrictions. In the end, this approximation gives an overestimation
of the permeability of the model. In reality, the permeability will be lower.

As stated before, there are two combinations of fluids used in the experiment by Yeganeh et al. (2016).
For the first experiment (referred to as experiment 1 in the figures), they used a demineralized water
and hexadecane combination, with an interfacial tension of 1.7 𝑚𝑁/𝑚. For the second experiment
(referred to as experiment 2 in the figures), they used a brine and crude oil combination with a inter-
facial tension of 7.1 𝑚𝑁/𝑚. In the appendix of the report, the contact angle between hexadecane and
demineralized water is given to be 47 degrees (Yeganeh et al., 2016). The contact angle between the
crude oil and the brine is not directly given. The contact angle can vary greatly depending on the types
of crude oil and brine (for example the different types of and concentration of the minerals present in
the brine (Xie et al., N D)). In this research, the contact angle for experiment 2 is assumed to be at
least equal to that of experiment 1. See chapter 7 for more explanation on this subject.

The experiments begin by cleaning the model by flushing the model with water. The nonwetting phases
are then injected until the model is fully saturated and only irreducible water remains, creating situ-
ations that are as natural as possible. The model is then flushed with the respective wetting phase

Figure 6.9: Desaturation curves for the data provided by Yeganeh et al. (2016).



6.5. Yeganeh et al. (2016) 43

at a certain flow rate until residual nonwetting phase saturations remain. The residual saturation is
determined by image analysis. The flow rate is then increased in a stepwise manner, until irreducible
nonwetting saturations are reached. The capillary desaturation plots are made for both experiments
(see appendix B.5).

Yeganeh et al. (2016) use a different definition for the capillary number than the previously analyzed
papers do. There definition is given in equation 6.9.

𝑁 = 𝜇 𝑄
𝜎𝐴𝜙 (6.9)

It is possible to determine the flow rate since the values for the capillary number can be read from the
capillary desaturation curves. Using Darcy’s law, the flow rate can be converted to the corresponding
pressure gradient across the model. It is then possible to calculate both the conventional capillary
number as defined by equation 3.3 as well as the new capillary number. The capillary desaturation
curves for the converted calculated capillary numbers for both experiments can be seen in figure 6.9.
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7
Analysis of Microfluidic Flow Data

Now that the selected micromodels are described (chapter 6), their desaturation data can be analyzed
in order to test the functionality of the new definition of the capillary number. This chapter consists
of four sections. In the first section, the models by Kawale (2017) and Jones et al. (2016) is tested
for an artificial pressure gradient. Then, the presented desaturaton data will be analyzed for both the
conventional and the new definition of the capillary number. At last, the role of permeability in the
new definition of the capillary number will be analyzed.

7.1. Artificial Pressure Gradient for models by Kawale and Jones
In the first part of this chapter, the effect of the geometric term in the new definition of the capillary
number will be tested for the models provided by Kawale (2017) and Jones et al. (2016). As explained
in chapter 6, there is no (useful) desaturation data available for these models. However, it is possi-
ble to analyze how the variation between the different values for the capillary number changes if the
conventional and the new capillary number are used. The assumed fluid properties are described in
chapter 6.1. The different plots can be seen in figure 7.1. For the plot of the conventional capillary
number, the plots of the staggered squares model and the staggered circle model are on one line, as
they have nearly equal permeability (table 6.1). For the plot of the new capillary number, the aligned
circle model and the staggered circle model share the same plot, as they have the same geometrical
parameters (table 6.2).

As can be seen in figure 7.1, the variation between the capillary numbers for the four of Kawale (2017)
models increases significantly if we change between the conventional and new capillary number. This
is because the conventional capillary number does not take the geometry of the porous media into
account. Therefore, the only varying parameter between the four models is the permeability. Re-
garding the model by Jones et al. (2016), the effect is the other way round. For the same artificial
pressure gradient applied to the model, the conventional capillary number is a factor 250-280 smaller
than for the models by Kawale (2017). This corresponds to the fact that the permeability for Jones

Table 7.1: Aspect ratios of the different micromodels.

Micromodel Aspect Ratio (𝜂)
Squares, Aligned 1.41
Squares, Staggered 3.82
Circles, Aligned 2.08
Circles, Staggered 2.08
Jones et al. (2016) 4.62

45
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Figure 7.1: Pressure gradient against both the conventional and the new capillary number for each of the four models by Kawale
(2017).

et al. (2016) is 250-280 times smaller than for the models of Kawale (2017). The new capillary number
does account for the geometry of the porous media, meaning that it better describes the mobilization
of trapped nonwetting fluids in more detail. This causes the variation for the models by Kawale (2017)
to increase. The effect is the opposite for Jones et al. (2016). The variation between that model and
those of Kawale (2017) decreases as the capillary number accounts for the geometry of the pores.

There seems to be a relationship between the aspect ratio (𝜂) and the new capillary number. The
aspect ratios of the five models are listed in table 7.1. When comparing the aspect ratios and the
capillary number plot of the respective model, it becomes evident that the models with a lower aspect
ratio have a higher capillary number, and the other way round. This suggests that the ratio between 𝑤
and 𝑤 has a significant effect on the mobilization efficiency. Mobilization efficiency would be greater
for porous media with a low aspect ratio, as their capillary number is greater than it is for media with a
high aspect ratio. However, desaturation data should be obtained in order to confirm this statement.

7.2. Desaturation Data for Conventional Capillary Number
From analyzing the data obtained using an artificial pressure gradient for the models provided by Kawale
(2017) and Jones et al. (2016), there are indications that the new capillary number can actually better
describe the desaturation process in microfluidic devices. To back this theory, some actual desaturation
data has been analyzed. The data is obtained from papers written by Jeong and Corapcioglu (2003)
(models A and B), Ibrahim et al. (2008) and Yeganeh et al. (2016) (experiments 1 and 2). First the
desaturation data will be analyzed using the conventional definition of the capillary number, so that
later the difference between the two definitions can be properly described. The desaturation curves
for the conventional capillary number can be seen in figure 7.2.

If we compare the capillary desaturation curves using the conventional capillary number with the de-
saturation curve using the pressure gradient (appendix C.1), it can be seen that the variation between
the curves becomes significantly less. Especially the curve for Ibrahim et al. (2008) shifts towards the
other curves. If we compare the points of lowest saturation measured in each of the five models, we
find that for figure C.1, the difference in pressure gradient between the outer most desaturation curves
(Ibrahim et al. (2008) and Yeganeh et al. (2016) experiment 1) is almost two orders of magnitude. For
figure 7.2, this is reduced to one order of magnitude (Yeganeh et al. (2016) experiment 1 and Jeong
and Corapcioglu (2003) model B). Still the variation between the different trends is quite significant and
it can be seen that five distinct desaturation curves develop for using the conventional definition of the
capillary number. This is caused by the fact that the conventional capillary number takes differences in
permeability into account, as well as differences in fluid types. Since these are all significantly different
for each of the five analyzed experiments, one would expect five different curves to develop.
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Figure 7.2: Capillary desaturation curves using the conventional capillary number for the five analyzed desaturation experiments
by (Jeong and Corapcioglu, 2003; Ibrahim et al., 2008; Yeganeh et al., 2016).

From figure 7.2, it can be seen that desaturation processes for micromodels are significantly different
than they are for geological rock. In chapter 3 it is explained that for most geological rock, the critical
capillary number (𝑁 , lies between 10-5 and 10-4. In figure 7.2, it can be seen that the critical values
lies near 10-3. Continuing the lines for Jeong and Corapcioglu (2003) models A and B, suggests that
their value for the critical capillary number lies around or even below 10-5. Hence a larger variation for
micromodels than for rock. This suggests that mobilization for micromodels differs from that for rock.

There seems to be a relationship between the permeability of the model and the magnitude of the
capillary number. Models with a relatively higher permeability, generally also show a higher capil-
lary number. This is easily explained by looking at equation 3.3, because 𝑁 is linearly dependent
on 𝐾. This suggests that the conventional capillary number is dependent on the permeability. But
also between the curves for the experiments conducted by Yeganeh et al. (2016), there is quite some
variation, even though both experiments shared the same permeability. This suggests that the fluid
properties also have a big influence on the magnitude of the conventional capillary number. Because
the contact angle for the brine/crude oil combination is not directly given byYeganeh et al. (2016), the
contact angle was assumed to be at least the value of that for the hexadecane/water combination.

7.3. Desaturation for New Definition of Capillary Number
As explained in the previous section, even though the capillary reduces the scatter between the five
desaturation curves quite significantly, the difference between the lowest and highest capillary number
at lowest saturation is still an order of magnitude. This is because the geometry of the micromodels is
not taken into account. The capillary desaturation curves for the new definition are shown in figure 7.3.
As can be seen, there is still some variation, for example the curve of Yeganeh et al. (2016) experiment
2 does not line up perfectly with the rest of the model. But overall, the plot is much cleaner than
it is for the conventional capillary number. The capillary desaturation plot for Yeganeh et al. (2016)
differs from the rest of the trend by much less than an order of magnitude. This further supports
the claim that a capillary number that account for the geometry of porous media describes the mo-
bilization of trapped residual nonwetting phases better than the conventional capillary number does.
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Figure 7.3: Capillary Desaturation curves for the newly defined capillary number for the models by (Jeong and Corapcioglu,
2003; Ibrahim et al., 2008; Yeganeh et al., 2016).

The desaturation of any micromodel can now be approximated by a single trend. The critical Capillary
Number for the new capillary desaturation curve lies somewhere between 0.03 and 0.06, as can be
seen in figure 7.3. The total capillary number lays somewhere between 5 and 6, where it can be seen
that the curve of Jeong and Corapcioglu (2003) model A approaches zero nonwetting phase saturation.

7.3.1. Fluid Properties and the New Capillary Number
The interfacial properties of the wetting and nonwetting fluids play a significant role in the conventional
capillary number. However, for the new capillary number, it does not appear to be so significant. As
can be seen in figure 7.3, the desaturation curves of the four of the five analyzed experiment form a
single trend regardless of the types of fluids or the wettability of the system. For example, Jeong and
Corapcioglu (2003) analyzed two phase flow using a TCE/surfactant combination, which has an interfa-
cial tension of 0.0049 𝑚𝑁/𝑚, whilst the water/kerosene combination used by Ibrahim et al. (2008) has
a interfacial tension 0.026 mN/m. That is a factor of 5.3 difference. The only curve that deviates from
the rest of the main trend is experiment 2 by Yeganeh et al. (2016). As stated in chapter 6, the contact
angle is not given for the brine/crude oil combination used in this experiment. It was assumed that the
contact angle between the brine and crude oil was at least that of the hexadecane/water combination.
In reality, the contact angle for crude oil/brine combinations can be as high as 60-70 degrees (Xie
et al., N D; Dos Santos et al., 2006). See figure C.2 in Appendix C. The contact angle for experiment
2 is increased artificially from 47 to 70 degrees. This causes the magnitude for the capillary factor
to decrease, resulting in a higher capillary number for a given pressure gradient. The desaturation
curve shifts towards the right, where eventually it will align with the other desaturation curves. We
now get five curves each having a different fluid combinations and interfacial properties that align to
form one trend. This suggests that for describing the desaturation of micromodels, the geometry of
the micromodel is more important than the interfacial properties of the wetting and nonwetting flu-
ids for describing the recovery of trapped nonwetting phases. However, further experiments must be
conducted to verify this statement. These experiments would include multiple two phase experiments
performed on uniform micromodels using different fluid combinations.
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7.4. Relationship Between Permeability and the Geometric Term
One of the key aspects of the new capillary number is the relevance of the permeability in the equation.
Figure C.3 in Appendix C shows the permeability of the models plotted against the geometric terms
(𝐺). Also see table 7.2. One can see that there is a trend that shows that the higher the permeability
of a model gets, the lower the geometric term becomes. The way this trend develops is explained
as follows. During the derivation of the capillary number in chapter 5, equation 5.6 was expanded
mathematically in order to introduce the permeability into the equation for the new capillary number.
This way, the new capillary number could be expressed as a combination of the conventional capillary
number (equation 3.3) and a geometric term (𝐺) that accounts for the geometry of the micromodel.
Since the permeability is introduced mathematically by expanding equation 5.6, it holds that

𝑁 = ∇𝑃𝐿 𝑤

2𝜎 cos 𝜃(1 − )
= 𝐾∇𝑃
𝜎 cos 𝜃 ∗ ((

12
2𝜏𝜙)(

𝑤
𝑍 ) (

𝐿
𝑤 ) 1

1 −
) (7.1)

This suggests that for describing the mobilization of the nonwetting fluid, the parameters describing
the geometry of the pores are more important than the permeability of the system. Also, it suggests
that a simplified version of the new definition of the capillary number exists in the form of

𝑁 ≡ ∇𝑃𝐿 𝑤

2𝜎 cos 𝜃(1 − )
(7.2)

Also, a relationship between the permeability and the depth of the micromodel was given by equation
5.10, where we introduced the concept of tortuosity. The tortuosity was defined as the ratio of the
permeability of a micromodel and a smooth slit having the same horizontal cross-section. The tortu-
osity term was then included in the equation for the new capillary number. However, the tortuosity
is introduced to account for the obstruction caused by the pillars inside the micromodels, and thereby
correct the relationship between the permeability and the depth of the micromodel. The values for the
tortuosity are listed in table 7.2. As can be seen, the values for the tortuosity vary greatly between the
models, because the permeability is different by a order of 10 between the models by Kawale (2017)
and Jeong and Corapcioglu (2003); Ibrahim et al. (2008).

Ideally, a better relationship between the permeability and the dimensions of the micromodel is de-
rived. As explained in chapter 4, the relationship between permeability of a slit and its depth is based
on the derivation of the Navier-Stokes equation. In this derivation, no-slip boundaries are assumed
for the top and bottom plate for the slit, making depth the most important factor to determine the
permeability. This works for well for infinitely wide slits, where there is no drag from walls in the 𝑦
direction. For micromodels, the permeability is not only dependent on the spacing in the 𝑧 direction.

Table 7.2: Tortuosity and the geometric ( ) term for each micromodel.

Micromodel G (-) 𝜏 (-) K (m2) Z (𝜇𝑚)

Squares, Aligned 795.4 0.170 2.038*10-10 120
Squares, Staggered 182.4 0.150 1.800*10-10 120
Circles, Aligned 276.8 0.169 2.141*10-10 120
Circles, Staggered 330.7 0.149 1.792*10-10 120
Jeong and Corapcioglu (2003) A 3837.0 0.012 1.7*10-11 130
Jeong and Corapcioglu (2003) B 2107 0.016 2.25*10-11 130
Jones et al. (2016) 898.9 0.345 7.2*10-13 5
Ibrahim et al. (2008) 585.1 0.011 2.0*10-11 150
Yeganeh et al. (2016) 61.3 0.359 3.622*10-10 110



50 7. Analysis of Microfluidic Flow Data

The spacing in the bodies and between the pillars (throats) have a large impact as well. Therefore the
vertical sides of the pillars also need to be assumed to be no-slip boundaries. This needs to be taken
into account for whilst solving the Navier-Stokes equation. A better relationship for the permeability
and the dimensions of the micromodels is obtained this way. This relation can then be taken up into
the equation for the capillary number, such that the geometric term only accounts for the dimensions
of the widths of the pore throats and bodies, and the lengths of the trapped ganglions.



8
Conclusion

A new definition for a capillary number for micromodels was derived based on a force balance on a
trapped ganglion of nonwetting inside a micromodel. The new definition of the capillary number is
a combination of the conventional capillary number as presented by Reed and Healy (1977) and a
geometric term accounting for the geometry of the micromodel (𝐺):

𝑁 ≡ 𝐾∇𝑃
𝜎 cos 𝜃 ∗ 𝐺 =

𝐾∇𝑃
𝜎 cos 𝜃 ∗ ((

12
2𝜏𝜙)(

𝑤
𝑍 ) (

𝐿
𝑤 ) 1

1 −
)

The geometric term is made up of six geometrical parameter of the model. Three terms are introduced
via the force balance on the ganglion and describe the geometry of a single pore:

• 𝑤 is the pore body with, and is defined as the diameter of the largest ”circle” that would fit in
the body of a pore.

• 𝑤 is the pore throat width, and is defined as the narrowest part of the throat between two pore
bodies.

• 𝐿 is the length of the trapped ganglion, and is defined as the distance between the pore throat
(narrowest part of the passage) and the trailing edge of the pore body boundary.

For simplicity, the average value for each of the above described parameters was taken over a number
of measurements. Two other parameters are introduced using a relationship between the permeability
and the depth of the model. This relationship was derived so that the permeability could be included
into the new definition of the capillary number as part of the conventional capillary number. The
geometric parameters introduced here are the depth of the model (𝑍) and the tortuosity (𝜏). The
tortuosity is defined as the ratio between the permeability of a micromodel and the permeability of a
smooth slit with the same cross-sectional area.

𝐾 = 𝑍 𝜏
12

The new definition of the capillary number was then tested on a number of microfluidic desaturation
data presented in different papers. The analyzed data were presented by Kawale (2017), Jeong and
Corapcioglu (2003), Ibrahim et al. (2008) and Marchand et al. (2017). Since no proper desaturation
data was available for the models of Kawale (2017) and Jones et al. (2016), the change in capillary
number was projected using an artificial pressure gradient across the models. It was found that the
difference in behaviour between the trends of the different models increased under the new capillary
number. This is because the geometry of the model was taken into account. This already suggested
that the new definition of the capillary number better describes the desaturation of nonwetting fluids
inside micromodels. Also, it is suggested that there exists a relationship between the aspect ratio
of the pores and the new definition of the capillary number. Models that have a higher aspect ratio
(pores much wider than the respective throats) to have a lower capillary number for the same artificial
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pressure gradient. It is expected that these models show less mobilization of the nonwetting phase.
However, this will have to be verified by experimentation in the future.

Next, the desaturation data was analyzed and the pressure gradient was plotted against the capillary
number and the capillary number was plotted against the residual saturation for both the conventional
capillary numbers. It became apparent that the mobilization works differently for micromodels than
it works for geological rock. The variation for the critical capillary numbers (𝑁 , ) was much greater
for the analyzed micromodels than it is for most geological rock (see chapter 3). The new definition
of the capillary number does a better job describing the desaturation of the micromodels than the
conventional definition. Where the conventional capillary number showed five different trends for each
experiment, the new capillary number caused the different plots to form a near single trend, thereby
proving its suitability to describe the mobilization of the trapped nonwetting phase, regardless of the
geometry of the micromodel.

Also, the obtained plots suggested that the new definition of the capillary number works regardless of
which fluids are used as the wetting and non-wetting phases. The analyzed data used various types
of both wetting and nonwetting fluid. Nevertheless, the different desaturation plots still lined up. This
suggests that the geometry of the porous media has a more significance in describing the mobilization
of nonwetting fluids than the interfacial properties of the fluid have. However, further experiments will
need to be conducted in order to support this statement.

The relationship between permeability and depth was introduced into the new definition by mathe-
matical expansion. This way, The permeability can be included, and the new definition of the capillary
number consists of a combination of the conventional capillary number and the geometry of the micro-
model. Effectively, the value for the permeability is cancelled out in the geometric term. This suggests
that the geometry of a single pore plays a bigger role in describing the mobilization than the permeabil-
ity of the whole medium does. Despite the permeability being cancelled out in the geometric term, it is
desired to have a better relationship between the permeability and the dimensions of the microfluidic
model. This is because the permeability of a slit is dependent on spacing in the 𝑧 direction, whilst in
micromodels, the geometry of the pillars have an important effect on the permeability. Using a better
relationship, the geometric term of the new capillary number can be better described and determine
which parameters influence the mobilization progress. This includes deriving the Navier-Stokes equa-
tion for no-slip boundaries in both the 𝑦 and the 𝑧 direction.



9
Discussion

For the calculations of the capillary number in this report, several assumptions needed to be made.
Especially during the process of analyzing the published desaturation data, several assumption needed
to be made in order to properly use the data. In this chapter, the most significant assumptions made
during the analysis and their effect on the capillary number will be discussed. Also, how these factors
can be improved in order to improve the result of the report will be explained.

The biggest assumption made in this report in the definition of the geometrical parameters. The defi-
nition of the pore throat is uncomplicated by being the tightest constriction between two pore bodies.
The body width is a bit more complicated by being the diameter of the largest possible circle that fits
within the model. For most analyzed models, this does not pose a problem, as the sizes of the body
are nearly equal in all directions. It will become more complicated however if the span of a pore body
perpendicular to the flow direction is much greater than in the parallel direction. The ganglion length
was determined to be the distance between the pore throat and the trailing edge of the pore body
boundary. The value of this parameter can be determined much better by obtaining own desaturation
data and measuring the ganglion length by image analysis.

For the models where the magnitudes of the pore bodies, throats and ganglion length were not directly
stated (Ibrahim et al., 2008), they were determined using image analysis of the enlarged figures of
the models presented in the papers. It was assumed that the figures of the model were representative
for the whole model. The average values were taken for the calculation of the capillary numbers. Per-
forming own experiments would enable the possibility measure the geometrical parameters accurately
and thereby increase the validity of the results.

Another assumption that was often made was the wettability of the models. Often, the capillary number
was defined as 𝑣𝜇/𝜎, and the contact angle was either not specified, or assumed to be zero 0 degrees
by the authors. If the contact angle was not specified, two options were considered. The first option
is to take a contact angle from other literature (for example the brine/crude oil combination in chapter
7). Or the contact angle was assumed to be zero, in order to obtain a maximum possible capillary
factor in the equation for the capillary number. If the contact angle is increased, the magnitude of the
capillary factor decreases, and therefore the capillary number would increase. This would cause the
desaturation curves to shift to the right on the desaturation figures. Performing own experiments allow
for precise measurement of the interfacial properties, thereby increasing the validity of the results.
This can also help to verify the suggestions that the new capillary number gives a single trend regard-
less of the fluids used, as the geometrical parameters are more important than the interfacial properties.

Also, the depth of the model by Ibrahim et al. (2008) was not directly given. There were two ways
that the depth could be approximated for the model. The first way was by using image analysis and
the total pore volume. By image analysis, the fraction of pore body volume per total volume could
be estimated (subtracting the pore throat volumes). Using the total number of pore bodies, the pore
volume per pore body could be calculated. By image analysis, the pore body width was known, so the
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average pore body surface area can be calculated. Using the volume per body and the body area, the
depth of the body was calculated. However, this gave depth of well over a millimetre, which seemed
very unlikely given the magnitudes of the pore-bodies and throats. A different approach was taken by
comparing the model to another model. It was found that the parameters for permeability and porosity
were very similar to model A by (Jeong and Corapcioglu, 2003). The relationship established between
permeability and model depth was used to approximate the depth of the model (see equation 5.10)
assuming the same tortuosity.

For the model by Yeganeh et al. (2016), the permeability was not given by the authors. Therefore, it
was approximated using the relationship between depth and permeability, and using the tortuosity, the
permeability could be estimated. The estimated permeability was an overestimate, meaning that the
actual permeability of the medium is lower. Also, the viscosity of the displacement brine is not given.
Therefore, the viscosity was assumed to be a low grade brine at room temperature was assumed giving
a viscosity of 1.9 𝑐𝑝𝑖. However, knowing the viscosity of the brine would not have made a significant
difference as the pressure gradient will not change, and thus the magnitude of the capillary number
will not change.

In the process of this research, also the effect of relative permeability was neglected, for simplicity pur-
poses. Relative permeability is the ratio of effective permeability of one the two fluids at a particular
saturation to absolute permeability if the model is fully saturated. Calculating the relative permeability
of the wetting and nonwetting phases in the micromodels allows for better calculations of the capillary
number, as the presence of more than one fluid inhibits the ability to flow. Higher pressure gradients
may therefore be needed to reach similar desaturation levels, which results in higher magnitudes of
the capillary number.



10
Recommendations for Future Study

Despite having obtained positive results regarding the suitability of the new definition of the capillary
number for describing the mobilization progress, there are still a number of points where this research
can be improved upon. They will be described here.

First of all, no new experiments where performed during this research. This meant that there was no
control over the gathering of the desaturation data. Preferably, a number of micromodels with various
geometries would have been produced and desaturation of a nonwetting fluid would have been done
experimentally. This way, the properties of the new capillary number, such as the influence of the
aspect ratio, could have been verified. Also, the experiments could have included multiple applications
of the same model using various wetting and nonwetting fluid combinations in order to verify the earlier
statements that the new definition of the capillary number is more dependent on the geometry of the
porous media than it is on the types of fluids used in the experiment.

It was already mentioned in chapter 7, a better relationship between the permeability and the dimen-
sions of the porous medium needs to be derived in order to improve the equation for the new definition
of the new capillary number. In this report, a relationship between the permeability and the depth of a
model is based on the relationship for a smooth slit. The term of tortuosity was introduced in order to
account for the obstruction caused by the pillars in the model. The tortuosity was then also included
in the definition for the new capillary number as part of the geometric term. In order to obtain a
geometric term that is only determined by the dimensions of the pore structure, a new relationship
for permeability and the dimensions of the model must be derived. This can be done by deriving the
Navier-Stokes Equation (Chapter 4). During the derivation of the smooth slit, no-slip boundaries were
assumed for the top and bottom plate of the slit (𝑧 direction). In the case of a microfluidic model,
there are also no-slip direction in the 𝑦 direction of the model. These must be taken into account
when deriving the Navier-Stokes equation, and the equation can be derived by partial integration. If
the obtained parameters are then included in the geometric term, it becomes possible to better ana-
lyze which parameters have a significant influence in the mobilization of the trapped nonwetting phase.

A similar condition for mobilization based on a trapped ganglion is derived by Ibrahim et al. (2008).
They mention the concept that the contact angle at the front of the ganglion (advancing contact angle)
is different from the contact angle at the rear of the ganglion (receding contact angle). In order to
perfection the equation, this difference could be taken into account whilst deriving the equation of the
capillary number. However, the equation for the capillary number could become unnecessarily compli-
cated.

Two theories that are not included in this research are the percolation threshold and relative permeabil-
ity. In this research, the average pore-body, throat and ganglion sizes were taken to be the geometrical
parameters for simplicity reasons. Also, the intrinsic permeability of the medium was used. Including
the percolation threshold and relative permeability, could allow for a better description of the mobiliza-
tion of the nonwetting fluid. The percolation threshold is a measurement for describing the distribution
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of pore sizes for complicated geometries. In abstract form, the percolation theory describes the mor-
phology and conductivity of random structures (Larson et al., 1980). Applying the percolation threshold
could help to better describe more complicated geometries, as there is a useful measure for the geo-
metrical factors of the micromodels. Also, Larson et al. (1980) found that the percolation theory was
applicable to describe the saturation of nonwetting fluid inside porous structures. Larson et al. (1980)
describe that there exists a critical value (percolation threshold) for which there exists a continuous
conductive path across a porous medium, and that the residual saturation of nonwetting phases de-
pends on this threshold. Relative permeability can be included in the Darcy equation to better describe
the behaviour of two phase flow. Relative permeability is the ratio of effective permeability of one the
two fluids at a particular saturation to absolute permeability if the model is fully saturated. Calculating
the relative permeability of the wetting and nonwetting phases in the micromodels, allows for better
calculations of the capillary number, as the presence of more than one fluid inhibits the ability to flow.
Higher pressure gradients may therefore be needed to reach similar desaturation levels.
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A
Results for Alquaimi and Rossen

(2017)

This appendix contains the figures corresponding to the results obtained during the testing of the
functionality of the new definition of the capillary number by Al Quaimi and Rossen (2017).

Figure A.1: Graph showing the relationship between pressure gradient and residual air saturation for the five models used in the
research by Al Quaimi and Rossen (2017).
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60 A. Results for Alquaimi and Rossen (2017)

Figure A.2: capillary desaturation curves using the conventional capillary number (equation 3.3) for the five fracture models
used by Al Quaimi and Rossen (2017). Notice how the curves do not follow a single trend (Al Quaimi and Rossen, 2017).

Figure A.3: Capillary desaturation curves for the newly defined capillary number based on a force balance across a trapped
ganglion. Notice how the curves now follow a single trend (Al Quaimi and Rossen, 2017).



B
Additional Figures for Micromodels

This appendix contains the additional figures for chapter 6

B.1. Simple Geometries by Kawale
This appendix contains extra information on how the parameters for 𝑤 , 𝑤 and 𝐿 were calculated for
each of the four models provided by Kawale (2017). The figures are not to scale.

Figure B.1: Parameters of the Aligned Squares model.
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Figure B.2: Parameters of the Staggered Squares model.

Figure B.3: Parameters of the Aligned Squares Model.
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Figure B.4: Parameters of the Staggered Circles Model.
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B.2. Hexagonal Geometry by Jones (2016)

Figure B.5: Desaturation data by Jones et al. (2016). Above shows the measured desaturation, and below shows the viscosity
as a function of the superficial velocity.
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B.3. Micromodels of Jeong and Corapcioglu (2003)
The two figures below show the two figures used for analyzing the pore and throat widths of both
models.

Figure B.6: Distribution graphs showing the pore throat and pore body sizes for the models provided by Jeong and Corapcioglu
(2003)

The Desaturation curves presented by Jeong and Corapcioglu (2003). Note that the residual saturation
is given as the ratio of the initial residual saturation after initial waterflooding.

Figure B.7: Desaturation curves presented by Jeong and Corapcioglu (2003)
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Table B.1: Desaturation data for the data of model A from Jeong and Corapcioglu (2003), both original and converted data for
proper use.

∇𝑃 (Pa/m) 𝑁 , 𝑁 , 𝑆 𝑟𝑎𝑡𝑖𝑜 𝑆
44466 0.00024 1.183 0.4 0.128
94490 0.00051 2.515 0.17 0.0544
166747 0.0009 4.439 0.1 0.032
222329 0.0012 5.919 0.03 0.0096
259384 0.0014 6.906 0.01 0.0032

Table B.2: Desaturation data for the data of model B from Jeong and Corapcioglu (2003), both original and converted data for
proper use.

∇𝑃 (Pa/m) 𝑁 , 𝑁 , 𝑆 𝑟𝑎𝑡𝑖𝑜 𝑆
13998 0.0001 0.270902193 0.57 0.3021
27997 0.0002 0.541804387 0.42 0.2226
82591 0.00059 1.59832294 0.24 0.1272
95190 0.00068 1.842134914 0.1 0.053
118987 0.00085 2.302668643 0.05 0.0265

B.4. Ibrahim et al. (2008)
These are the table and figures used to determine the parameters 𝑤 and 𝑤 for the mdodel SRC-1
provided by Ibrahim et al. (2008). The measurements were done on a print out. The scale to convert
the measured body and throat widths to real widths can be found in equation ??.

Table B.3: Measurements for the pore body sizes of the model SRC-1 by Ibrahim et al. (2008)

# width (cm) height (cm) min (cm) true (𝜇𝑚)

1 4.2 4.5 4.2 245.8
2 3.2 3.3 3.2 187.5
3 - 4.5 4.5 263.3
4 3.2 3.3 3.2 187.5
5 4.1 4.0 4.0 234.2
6 3.3 3.0 3.0 175.8
7 3.3 3.1 3.1 181.7
8 2.8 3.1 2.80 164.2
9 - 3.5 3.5 205.0
10 4.4 - 4.4 257.5
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Table B.4: Measurements for the pore throat sizes of the model SRC-1 by Ibrahim et al. (2008)

# measurement (cm) true (𝜇𝑚)

1 0.8 47.5
2 1.4 82.5
3 1.4 82.5
4 0.9 53.3
5 0.7 41.7
6 1.7 100
7 1.1 65.0
8 1.0 59.2
9 0.9 53.3
10 0.9 53.3
11 1.2 70.8
12 0.5 30.0
13 1.3 76.7
14 1.2 70.8
15 1.2 70.8
16 1.0 59.2

Table B.5: Ganglion length measurements for the model by Ibrahim et al. (2008).

# measurement (cm) true (𝜇𝑚)

1 5.0 290.2
2 4.7 276.2
3 4.2 243.5
4 4.9 285.5
5 4.1 238.8
6 4.9 285.5
7 3.6 210.8
8 5.2 304.2
9 5.0 290.2
10 3.6 210.8
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Figure B.8: Model of the measurements of the sizes of the throats and bodies.
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Figure B.9: Image used for determining the porosity of the model.
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B.5. Yeganeh et al. (2016)
This appendix contains the additional figures used for analyzing the micromodel provided by Yeganeh
et al. (2016). The capillary number given is the capillary number as defined in Yeganeh et al. (2016).
See equation 6.9. Also, the table presents the desaturation data for each of the three definitions of
the capillary number.

Figure B.10: Capillary Desaturation Curves for the two experiments carried out by Yeganeh et al. (2016). The top model is for
experiment 1 (hexadecane/water). The bottom figure is for experiment 2 (crude oil/water).



C
Additional Figures for the Analysis of

the Microfluidic Data

C.1. Pressure gradient and Residual Saturation

Figure C.1: Pressure gradient and residual saturation data for the models by (Jeong and Corapcioglu, 2003; Ibrahim et al., 2008).
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C.2. Changing Contact Angle Between Crude Oil and Brine
The following figures show how the capillary desaturation curves change, and come closer together if
the contact angle between the crude oil and the brine increases.

Figure C.2: Capillary Desaturation curves for Yeganeh Experiment 2 if the contact angle between the Brine and the Crude oil is
increased from 47 to 70 degrees.
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C.3. Permeability and Geometric Terms
The following plot shows the geometric term of each of the models against the pressure gradient. As
can be seen, there is a trend that shows that higher permeabilities tend to have lower geometric terms.

Figure C.3: The geometric terms plotted against the permeability for the 9 analyzed models.
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