
 
 

Delft University of Technology

Document Version
Final published version

Citation (APA)
Tsfasman, M. (2026). Towards predicting memory in multimodal group interactions. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:7d780bf3-a932-4077-bd8e-2cb4805ffa0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.4233/uuid:7d780bf3-a932-4077-bd8e-2cb4805ffa0


Towards 






in multimodal group interactions

predicting

memory 





Towards predicting memory in multimodal
group interactions

Maria TSFASMAN





Towards predicting memory in multimodal
group interactions

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. H. Bijl,
chair of the Board for Doctorates,

to be defended publicly on
Monday, 23 February 2026, at 10:00 o’clock

by

Maria TSFASMAN

Master of Science in Artificial Intelligence,
Radboud University, the Netherlands,

born in Moscow, Russia.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, chairperson
Prof. dr. C.M. Jonker Delft University of Technology, promotor
Dr. B.J.W. Dudzik Delft University of Technology, copromotor
Dr. C.R.M.M. Oertel Delft University of Technology, copromotor

Independent members:

Prof. dr. D. J. K. Heylen University of Twente
Prof. dr. M. A. Neerincx Delft University of Technology
Prof. dr. A. A. Salah Utrecht University
Prof. dr. O. E. Scharenborg Delft University of Technology
Prof. dr. A. Hanjalic Delft University of Technology, reserve member

SIKS Dissertation Series No. 2026-17.

The research reported in this thesis has been carried out under the aus-
pices of SIKS, the Dutch Research School for Information and Knowledge
Systems.

Keywords: Conversational memory; Social signal processing; Mem-
ory encoding; Memory retention; Group interaction;
First-party memory annotation; Multimodal interaction;
Affect; Affective computing; Emotional saliency; Personal
relevance; Automatic meeting support systems; Non-
verbal signals; Multimodal corpora; Multi-party
interaction

Printed by: www.proefschriftmaken.nl

Cover by: Jay Patel

Copyright © 2026 by M. Tsfasman

ISBN 978-94-6518-249-0

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/


If you talk all the time you will never hear what anybody else has to say
and therefore, all you will have to talk about is your own conversation.
The same is true for people who think all the time that means, when I
use the word, "Think", talking to yourself, sub-vocal conversation, the
constant chit-chat of symbols and images and words inside your skull.

Now, if you do that all the time you’ll find that you have nothing to think
about except thinking and just as you have to stop talking to hear what

I have to say - you have to stop thinking to find out what life is about.
And the moment you stop thinking you’d come into immediate contact

with what Korzybski called, so delightfully, "The unspeakable world".

Alan Watts
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SCIENTIFIC ABSTRACT
Conversational memory (the process by which individuals encode, re-
tain, and retrieve information from social interactions) plays a critical
role in shaping long-term social connections, guiding decision-making,
and determining the impact of interpersonal communication over time.
While computational systems have been developed to track short-term
engagement and affective states in group interactions, no prior research
has investigated how specific conversational moments are encoded into
memory in real-time, nor how such memory might be modelled com-
putationally. This dissertation addresses this gap by exploring whether
group-level multimodal behaviour can predict conversational memorabil-
ity in free-flowing, multi-party discussions.

To enable such modelling, this dissertation presents the MeMo cor-
pus, the first multimodal conversational dataset annotated with first-
party memory reports. The data collection approach prioritises ecologi-
cal validity, participant diversity, and construct reliability, using repeated
group video calls and first-party time-aligned memory annotations.

Drawing on this dataset, the dissertation then investigates whether
third-party affective annotations, often used in intelligent systems, can
act as a proxy for conversational memory. The analysis demonstrates
that while affect and memory are conceptually related, observed affect
labels do not reliably predict what participants encode in memory, un-
derscoring the need for conversational memory-specific computational
research.

The dissertation proceeds to identify behavioural indicators of mem-
orability by conducting both empirical and computational analyses of
non-verbal signals. It shows that group eye-gaze and speaker activity
patterns are dependent on how likely conversational segments are to be
encoded in participants’ memory. A set of standard classifiers trained on
these signals has shown to predict memorability at the group level with
above-chance likelihood, creating a baseline for future research. In addi-
tion, a qualitative analysis of self-reported reasons for remembering re-
veals that people retain conversational moments that support self-image
and foster interpersonal connections.

Overall, this dissertation establishes the viability and value of mod-
elling conversational memory in multiparty settings. It lays a foundation
for the development of intelligent systems capable of recognising and
responding to the long-term relevance of interactions, with implications
for user modelling, meeting facilitation, and memory augmentation.
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SUMMARY
People often remember parts of conversations that are important to them,
such as something personal, useful, or emotionally engaging. These
memories help shape relationships, guide decisions, and influence how
we communicate in the future. While many computer systems can al-
ready track emotions or attention in group settings, no previous research
has looked at how specific moments in conversations are stored in mem-
ory or how this process could be predicted using technology.

On the path towards training computer systems to predict such memo-
rable moments, this dissertation first introduces a new dataset called the
MeMo corpus (Chapter 2). It includes group video conversations along
with direct reports from participants about which moments they remem-
bered. The data was collected in a way that reflects real-life conversa-
tions, using repeated video calls and memory reports that are linked to
specific moments in time.

The study in chapter 3 then asks whether affective signals, such as
emotional tone or energy in a conversation, could help predict what peo-
ple will remember. These kinds of emotional signals are often used in
artificial intelligence systems. However, the results show that emotional
signals alone are not enough to explain what people remember from a
conversation.

Next, in chapter 4, the dissertation looks at other behavioural signs,
such as where people were looking and who was speaking. These signals
were found to be significantly linked with memory: for example, people
tend to remember parts of a conversation where there was shared atten-
tion or dynamic speaking patterns. Using these signals, simple computer
models were able to predict which parts of the conversation were more
likely to be remembered. The study also looked at why people remem-
bered certain moments and found that many of them were related to
personal relevance or social connection.

This work shows that it is possible to build systems that recognise
which parts of a conversation are more memorable. This can be use-
ful for improving automatic meeting tools, personal assistants, and other
technologies that support communication and augment memory.
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SAMENVATTING
Mensen onthouden vaak delen van gesprekken die voor hen belangrijk
zijn, zoals iets persoonlijks, nuttigs of emotioneel boeiends. Deze herin-
neringen helpen bij het vormgeven van relaties, het nemen van beslissin-
gen en het beïnvloeden van hoe we in de toekomst communiceren. Hoe-
wel veel computersystemen al emoties of aandacht in groepsverband
kunnen volgen, is er nog geen onderzoek gedaan naar hoe specifieke
momenten in gesprekken in het geheugen worden opgeslagen of hoe dit
proces met behulp van technologie kan worden voorspeld.

Op weg naar het trainen van computersystemen om dergelijke memo-
rabele momenten te voorspellen, introduceert dit proefschrift eerst een
nieuwe dataset, het MeMo-corpus (hoofdstuk 2). Deze bevat groeps-
videogesprekken en directe verslagen van deelnemers over welke mo-
menten zij zich herinnerden. De gegevens zijn verzameld op een manier
die echte gesprekken weerspiegelt, met behulp van herhaalde videoge-
sprekken en geheugenverslagen die aan specifieke momenten in de tijd
zijn gekoppeld.

In hoofdstuk 3 wordt vervolgens onderzocht of affectieve signalen, zo-
als de emotionele toon of energie in een gesprek, kunnen helpen voor-
spellen wat mensen zich zullen herinneren. Dit soort emotionele signalen
wordt vaak gebruikt in kunstmatige-intelligentiesystemen. De resultaten
laten echter zien dat emotionele signalen alleen niet voldoende zijn om
te verklaren wat mensen zich van een gesprek herinneren.

Vervolgens wordt in hoofdstuk 4 gekeken naar andere gedragssigna-
len, zoals waar mensen naar keken en wie er aan het woord was. Deze
signalen bleken significant verband te houden met het geheugen: men-
sen onthouden bijvoorbeeld vaker delen van een gesprek waarin er ge-
deelde aandacht was of dynamische spreekpatronen. Met behulp van
deze signalen konden eenvoudige computermodellen voorspellen welke
delen van het gesprek waarschijnlijk beter zouden worden onthouden.
Het onderzoek keek ook naar waarom mensen bepaalde momenten ont-
hielden en ontdekte dat veel daarvan verband hielden met persoonlijke
relevantie of sociale verbondenheid.

Dit werk laat zien dat het mogelijk is om systemen te bouwen die her-
kennen welke delen van een gesprek beter te onthouden zijn. Dit kan
nuttig zijn voor het verbeteren van automatische vergadertools, persoon-
lijke assistenten en andere technologieën die communicatie ondersteu-
nen en het geheugen versterken.

xvii
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2 1. Introduction

Group video calls have become a prominent part of our work and
personal lives, propelled by recent technological advances and Covid-19
pandemic. The fact that they happen online and have more than two
participants can lead to challenges, with some group members leaving
the conversation feeling unheard, misunderstood and disconnected from
others [1, 2]. A promising way to address these challenges lies in
computational systems that can support online meetings and enhance
interactions by fostering inclusivity, resolving conflicts, and encouraging
deeper connections [3,4]. These systems track and interpret verbal and
non-verbal signals to provide real-time feedback. This way, they have
already shown to promote balanced participation and improve social
interaction outcomes [5, 6]. These systems monitor the attentional
patterns within the interaction to determine how engaged participants
are at each time stamp, aiming to show participants for real-time
meeting statistics, to improve meeting summarisation, or to support the
understanding of how relevant the meeting is at each time stamp for
the participants [7–9]. However, while pointing towards the immediate
relevance of an event, these signals of relevance might not hold in
the long term. In other words, they do not necessarily indicate which
moments will be remembered or become socially meaningful in the
upcoming interactions (in such contexts as repeated meetings within
a professional team). Internal states can shift in retrospect to the
event, for example, an emotion felt in the moment may be reinterpreted
later [10]. It is, therefore, the remembered experience, not just the
real-time signal (e.g. speaker activity or speech dynamics), that shapes
relational dynamics and longer-term social outcomes [11].

Memory for conversations plays a crucial role in social bonding
and behavioural prediction: while real-time attentional patterns reflect
immediate relevance, it is memory (i.e., what participants encode
and retain from the interaction) that shapes long-term relationships,
guides future decisions, and determines the lasting impact of con-
versations [11]. Despite its importance, little is known about how
conversational moments are remembered over time, especially from
a computational perspective, where modelling which moments are
likely to be remembered could support socially aware systems and
memory-sensitive interaction design.



1.1. Research scope
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3

1.1. RESEARCH SCOPE
While research has identified various factors influencing conversational
memory (e.g., relationships, linguistic features, participant characteris-
tics [12–17]), it remains unclear how these factors interact to determine
which moments are remembered or forgotten. Computational modelling
has proven effective in inferring internal states such as emotion or
engagement from non-linear patterns in multimodal behavioural data
(e.g., combining facial expressions, gestures, and speech to model
affect [18]). In this thesis, ‘modelling’ refers to internal state modelling,
as commonly used in affective computing [18] and social signal process-
ing [19], where continuous behavioural and perceptual data streams
are analysed to infer underlying cognitive or affective states. Rather
than relying solely on participants’ reports, this approach captures the
dynamic and often subtle variations in internal states in question. While
previously applied to memorability of media segments [20,21], there
have been no previous attempts to computationally model memory for
conversations. Some findings from media memorability may provide
relevant insights for conversational context: for instance, the role of
multimodal alignment in supporting encoding, or the importance of
attentional allocation during naturalistic tasks in predicting incidental
memory performance [20,21]. However, live conversations represent
a setting different from media consumption in several ways: they
are co-constructed, interactive, temporally contingent, and variable in
structure and content. These characteristics suggest that memory for
conversation may rely on different cognitive and affective mechanisms
and thus requires tailored modelling approaches.

Human memory is understood through three sub-processes: memory
encoding (processing an experience), memory retention (preserving
the experience), and memory retrieval (accessing the preserved
experience) [22]. These processes are inherently linked. For instance,
any study of memory involves measuring participants’ retrieval (so far,
this is the only known way of measuring which events were encoded
and retained in participants’ memory). While the three memory
subprocesses cannot be entirely separated, research typically focuses
on one as the primary subject of study, with methodologies tailored
to the specific process under investigation. For example, studies
investigating memory retrieval focus on moments when memories are
accessed, often triggered by contextual relevance, such as during a
collaborative task [23]. While studies of retrieval focus on the moment
a memory is being accessed, studies of memory encoding examine the
initial processing of a stimulus (e.g., a person’s cognitive, emotional,
or behavioural response at the time the experience is occurring) to
understand what makes certain moments more likely to be remembered
later. This means that while the memory task itself might involve
retention and retrieval (e.g. free-recall or recognition [24]), the focus of
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memory encoding studies is the specific stimulus viewed or behaviour
displayed during the event mentioned in the reported memory.

While modelling all three subprocesses could be useful for intelligent
systems applications, this thesis primarily focuses on modelling memory
encoding. This means focusing on the moments of conversation when
the remembered event occurred. This gives us the opportunity to
investigate if there are properties of a specific event that make a
conversational segment memorable. This is useful for intelligent
systems applications, since the system would be able to monitor the
potential memorability of events online as they occur, enabling the
system to use this information to support the users in real-time.

Most internal state modelling, such as affect recognition, focuses
on individuals, despite many intelligent system applications operating
in group contexts (e.g., online meetings, public deliberations, and
collaborative educational settings). However, group settings differ
fundamentally from individual ones, as group-level states emerge from
collective interactions and do not correspond to a mere combination
of individual participants’ states [25–27]. Research on conversational
memory encoding has primarily focused on dyadic interactions [12–17],
leaving a gap in understanding memory processes in larger group
settings. This said, a recent study has explored conversational
recall in a group setting, showing differences between recall quality
depending on participants’ roles in the conversation [28]. Although
exploring conversational encoding in group settings, Brown et al. 2024,
similar to other conversational memory researchers, operate on the
level of one recall measure per conversation session (such as recall
quality metrics). Yet, for real-time computational prediction for such
applications as meeting facilitation, continuous operationalisation is
needed - for example, time-aligned ground truth labels of whether or
not each conversational segment was remembered. In addition, current
conversational memory studies investigate speech features correlating
with conversational recall, widely ignoring other modalities, such as
non-verbal signals, that have shown promise in predicting related
cognitive states (e.g. affect [18] or attention [9]). To summarise, this
thesis aims to study the following gaps:

• Conversational memory modelling: While memorability of
media has been modelled before, memory of conversations has not
been computationally modelled before.

• Group-level modelling: Most existing work focuses on individuals
(media context) or dyads (conversational contexts), while group-
level states in conversations remain underexplored (although
recently approached from a cognitive science perspective by
Brown-Schmidt et al. [28]).

• Continuous operationalisation: Current conversational memory
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studies often use one recall metric per session, but real-time
applications require time-aligned, segment-level memory labels.

• From unimodal to multimodal analysis: Conversational memory
research primarily uses speech features, neglecting non-verbal
modalities.

This thesis aims to address these gaps by investigating the possibility
of group-level, continuous, multimodal prediction of conversational
memory encoding.
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Figure 1.1.: The research questions and main outcomes of the content
chapters of the thesis

This thesis aims to pave the way towards predicting the likelihood
of a conversational moment being encoded in participants’ memory
in the context of free-flowing multi-party conversations. On the path
towards this aim, we conduct three studies, visualised in Figure 1.1. The
first contribution of this thesis (Chapter 2, green frame in Figure 1.1)
lays down the foundation for the other two studies. It presents a
corpus aimed at conversational memorability modelling. The second
study (Chapter 3, purple arrow in Figure 1.1) investigates the utility of
memorability modelling by analysing whether memorability annotations
can be uniquely derived from emotion annotations. The final study
(Chapter 4, orange arrow in Figure 1.1) dives into the memorability
prediction, investigating what behaviours can signal memorability and
the distributions underlying reasons for remembering a moment. We
describe each chapter’s research gaps and research questions in more
detail in the next subsections.

1.2.1. CONSTRUCTING A DATASET FOR CONVERSATIONAL MEMORY
PREDICTION

The first step on the path towards conversational memory modelling
is creating a dataset that is specifically crafted for this purpose.
Computational modelling of socio-cognitive states usually involves
training a predictive model on data annotated with ground truth labels
of an investigated state, so that, given new data, the model is able
to identify the labels based on the observed behavioural patterns [29].
Such computational modelling relies on high-quality, ecologically valid
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datasets with reliable ground-truth labels [30–32]. Data collection is
time- and resource-consuming, and sometimes it is possible to adopt
an existing dataset by adding a required annotation to it. However, in
the case of memory, that is not possible for two reasons. First, the
annotations need to be done by the participants themselves since the
third-party observers’ memory of conversations is quantitatively and
qualitatively different from that of the participants [13, 33]. Second,
it’s important that all annotators use a consistent time frame for their
annotations, because the longer it has been since the event, the more
likely it is that participants will be at different stages of remembering
or forgetting the information [34]. While there are some datasets
annotated with memory in the context of media perception [21,35], no
such dataset exists in a conversational context. This is why our first
research question is as follows:

RQ1: Conversational memory dataset

How can a multimodal conversational dataset be designed to validly
capture first-party memory reports to support computational modelling
of memory processes in multi-party meetings?

To answer this research question, we have collected the MeMo corpus:
the first conversational corpus continuously annotated with participants’
memory reports, aimed at multimodal modelling of encoding and
retention in multi-party conversations [36]. The MeMo corpus is
designed to facilitate research with two primary goals: identifying
verbal and non-verbal signals associated with conversational memory
and developing models that aid in meeting support by predicting
memory outcomes in the context of repeated interactions. In Chapter 2
(published as Tsfasman et al. [36]), we present this dataset, describe
the principles for its design, discuss its validity, present proof of its
usefulness, and introduce the problems that can be addressed using this
corpus.

1.2.2. IDENTIFYING THE RELATIONSHIP BETWEEN GROUP AFFECT
AND MEMORY ANNOTATIONS

Affective Computing has advanced techniques for recognising human
emotions, often through multimodal signals such as facial expressions
and speech, to improve user interaction with intelligent systems [18].
Emotions are known to influence cognitive processes, especially
memory, with emotional arousal and valence shown to enhance memory
encoding and recall [37–40]. It is logical to hypothesise, based on
these previous findings, that perceived affect could potentially act as
a proxy for memory, a premise that has motivated the integration
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of emotional components into computational memory models across
various intelligent systems [41–43].

Despite these promising conceptual links, there remain key gaps
that limit our understanding of how affective annotations relate
to memory within practical Multimodal Emotion Recognition (MER)
settings. First, while behavioural science studies typically rely on
first-person self-reports and physiological measures of experienced
emotion, MER often uses third-party observers’ annotations of visible
behaviour, which may not accurately reflect internal emotional states or
memory relevance [44,45]. Second, research on the emotion-memory
relationship generally treats affect and memory as static states, whereas
MER systems increasingly adopt time-continuous annotations to capture
dynamic emotional changes [46,47], yet how these continuous measures
relate to memory remains unclear. Third, most empirical work has
focused on individuals, despite many MER applications operating in social
groups where collective emotions and group-level memory dynamics
play crucial roles [25,48]. Addressing these gaps, Chapter 3 empirically
investigates the association between time-continuous perceived group
emotions (arousal and valence) and group memorability in naturalistic
conversational settings. This leads to our second research question
approached in Chapter 3:

RQ2: Group affect as a proxy to memory

To what extent do third-party, time-continuous annotations of perceived
group emotions (arousal and valence) predict group-level memorability
in unstructured, naturalistic conversational interactions?

This paper investigates whether group affect annotations can predict
conversational memory, using data from the MeMo corpus (described
in Chapter 2). We investigate the relationship between perceived
group affect (measured continuously through third-party annotations
of arousal, valence, and intensity) and group memorability. To assess
this relationship, we employ metrics sensitive to temporal dynamics,
including the Proximity-Aware Time series Evaluation (PATE), PATE F1,
Euclidean distance, and Dynamic Time Warping (DTW). These metrics
allow us to capture both categorical and continuous similarities while
accounting for temporal shifts typical in human behavioural data.
We further validate our findings by comparing real affect-memory
alignments against multiple null hypotheses generated via synthetic
data, testing whether observed associations exceed what could be
expected by chance or temporal misalignment.
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1.2.3. IDENTIFYING MULTIMODAL PREDICTORS OF CONVERSATIONAL
MEMORABILITY

Chapter 3 concluded that observed affect annotations do not convey
the same information as memorability labels, further justifying the
importance of memorability modelling. In Chapter 4 we, therefore, dive
into conversational memorability modelling.

Humans are social creatures that continuously express their internal
states not only through speech, but also with their body language. These
non-verbal signals serve to communicate one’s needs, intentions, and
state of mind [49]. Therefore, computational models are developed to
predict a user’s internal state from their face expressions, hand gestures,
body pose, and eye gaze [29]. While some computational models are
trained to predict emotions, dominance, and involvement [44,50,51],
only a few are developed to predict how likely a human is to encode
and retain an event in their memory. For example, there have been
a few models trained to predict how likely a person is to encode
and later retain an event from their brain signals [20,52]. There are
also some models that have been trained to predict the memorability
of videos and images based on the stimulus characteristics [35, 53].
However, brain signals are rarely accessible to intelligent systems (due
to difficulties in collecting those as well as privacy concerns) and there
is no clear stimulus/perceiver boundary in the context of free-flowing
conversations. For example, when one person is talking, their speech
is an auditory stimulus for another, but it is unclear whether one’s
own speech is also a part of a stimulus. Therefore, for intelligent
system applications (see Section 5.2) that have access to the videos
of the participants, it would be useful to employ a computational
model that predicts the likelihood of an event being encoded in the
user’s memory based on participants’ verbal and non-verbal behaviour.
Although such multimodal models have been previously developed to
predict autobiographical recall in media contexts [54], social signals
have never been used to predict conversational encoding and retention
in conversation. This leads to our third research question approached in
Chapter 4:

RQ3: Non-verbal signals and memory

Can non-verbal behaviours, such as group eye gaze and speaker
activity, serve as indicators of which conversational moments are more
likely to be encoded in participants’ memory? If so, what specific
patterns in these signals predict conversational memory?

Group eye-gaze behaviours have been previously shown to be
predictive of affect [55], involvement [56] and attention [57] in social
interactions. Since affect, attention and involvement are closely related
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to memory [58,59], it is logical to hypothesise that similar non-verbal
signals would be predictive of conversational memory. Therefore, the
hypothesis was that group eye-gaze behaviour can be used to predict
how memorable the moment is for a group. In Chapter 4, published
as Tsfasman et al. [60], we investigated this question via two types of
analysis: machine learning-based modelling and traditional statistical
analysis. From a modelling perspective, we trained a computational
model on group eye-gaze signals and speaker activity features. From
a traditional statistical perspective, we analysed what kind of eye-gaze
and speaker activity patterns are more common within moments of
different memorability levels. We also investigated what kind of
non-verbal signals are more likely to occur right before or after a
memorable segment.

Human memory is selective, and only personally relevant events get
encoded and retained [61]. Conversational memory can, therefore, be
seen as an indication of conversational event relevance per participant
or the group as a whole. As personal relevance depends on personal
motivation, memorable moments can be categorised by the type of
motivation of the moment’s relevance. The second research question of
this chapter is, therefore, the following:

RQ4: Reasons for remembering

What are the common types of self-reported reasons for remembering
a conversational moment?

Previous research hypothesises that humans tend to retain experiences
that (1) enrich or confirm their self-image [15], (2) connect them to
other individuals [16,62,63], or (3) guide their future actions, thoughts
and responses [11]. If that is true, the most common motivations behind
remembering a moment would be connected to these functions.
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1.3. SOCIETAL RELEVANCE
Conversational memory modelling potential benefits society in various
applications. In this section, we briefly introduce those.

User modelling for long-term interaction. The success of
intelligent systems for long-term interaction depends heavily on their
ability to adapt to individual users by building rich and dynamic
user profiles [64]. While commonly modelled internal states such as
affect, engagement, and mood can personalise short-term interactions,
effective long-term personalisation requires systems to account for the
selective nature of human memory, i.e. the ability to recall only
personally relevant experiences from past interactions [61,65]. Memory
modelling addresses the gap between what users retain versus what
systems assume they remember, enabling intelligent systems to align
more closely with human cognitive processes. This alignment is critical,
as systems designed for sustained engagement must adapt not only
to individual user preferences but also to group-level behaviour when
functioning in multi-user settings [27].

Facilitation of social interaction. Loneliness and poor relationship
quality are pressing societal issues that affect mental and physical
health [66–68]. The field of affective computing [69] and the
development of conversational facilitation tools [70] have made
efforts to enhance the quality of human connections by fostering
understanding and reducing misunderstandings in group interactions.
By integrating memory modelling, such systems can identify shared
conversational moments and reinforce these as common ground,
ultimately strengthening social bonds [63, 71]. The research in this
thesis is motivated by the idea that meeting facilitation systems
with memory-aware capabilities could hold the potential to deepen
conversations and foster lasting relationships, addressing societal needs
for meaningful connections and improved collaboration in personal and
professional settings.

Conversational agents and memory. Memory plays a central
role in human conversations, enabling individuals to maintain social
bonds and demonstrate social intelligence [16,62]. For conversational
agents to succeed in long-term interactions, they must replicate this
ability, remembering and appropriately referencing past exchanges to
build rapport and sustain user engagement [72,73]. However, existing
agents often misinterpret the concept of shared memory, assuming full
recall of past interactions rather than the selective memory processes
of users [74]. Memory models informed by datasets like the MeMo
corpus [36] can help agents align with users’ true shared memories,
improving their social presence and ability to adapt over time.

Summarisation and personalisation. Conversational memory
models have potential in aiding meeting summarisation by emphasising
the information most likely to be retained by participants, rather than
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relying solely on generic measures of importance (e.g. such widely
used measures as involvement [50,75]). This approach allows for the
creation of personalised and concise summaries, tailored to the specific
recall patterns of individuals or groups. By predicting memory likelihood,
systems can also intervene during conversations, reinforcing key
points to ensure they are remembered. Such advancements enhance
the relevance and effectiveness of meeting support tools, improving
communication and decision-making efficiency in team settings.

Memory augmentation. Finally, our research on conversational
memory modelling could have potential for memory augmentation
applications. With the ever-growing volume of digital content (from
photos and videos to messages and meeting recordings), memory
augmentation tools are being developed to extract and highlight
relevant moments when needed [76]. Current approaches for extracting
key moments from meeting footage typically rely on generic measures,
such as text characteristics or frequency of topic repetition [77], which
may not capture what is personally significant for each individual.
By predicting which conversational moments individuals are likely to
remember, our approach not only identifies content with high personal
relevance for later review but also offers the potential to supplement
human memory with details that may otherwise be overlooked.
Moreover, as memory augmentation is crucial for supporting individuals
with memory disorders (particularly given the increasing prevalence of
conditions like Alzheimer’s, dementia, and Parkinson’s disease [78]),
integrating data from healthy populations (e.g. the MeMo corpus)
may enhance the performance of life-logging systems by prioritising
particularly memorable events.

1.4. DISSERTATION OUTLINE
This thesis is written based on 3 academic papers [36, 60, 79].
Chapter 2, Chapter 3 and Chapter 4 present these papers with minor
modifications. Chapter 2 aims to answer RQ1 (based on Tsfasman et
al. [36]). It presents MeMo, the first dataset with conversational memory
annotations, and defines the problems that can be investigated using the
dataset. Chapter 3 investigates the relevance of memory investigation,
by researching to what extent group affect, a much more explored
internal state, can be used to uniquely derive memory labels (RQ2,
based on [79]). Chapter 4 presents a conversational memory prediction
model based on eye-gaze patterns and speaker activity and an empirical
investigation into the relationship between those signals and group
memorability (answering RQ3 and RQ4). The titles of the chapters are
modified, and the references are unified for better readability. Chapter 5
concludes the thesis, discussing the main results and the potential future
directions for conversational memorability modelling and research.
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ABSTRACT
Conversational memory is the process by which humans encode, retain
and retrieve verbal, non-verbal and contextual information from a
conversation. Since human memory is selective, differing recollections
of the same events can lead to misunderstandings and misalignments
within a group. Yet, conversational facilitation systems, aimed at
advancing the quality of group interactions, usually focus on tracking
users’ states within an individual session, ignoring what remains
in each participant’s memory after the interaction. Understanding
conversational memory can be used as a source of information on the
long-term development of social connections within a group. This paper
introduces the MeMo corpus, the first conversational dataset annotated
with participants’ memory retention reports, aimed at facilitating
computational modelling of human conversational memory. The MeMo
corpus includes 31 hours of small-group discussions on Covid-19,
repeated 3 times over the course of 2 weeks. It integrates validated
behavioural and perceptual measures, audio, video, and multimodal
annotations, offering a valuable resource for studying and modelling
conversational memory and group dynamics. By introducing the MeMo
corpus, analysing its validity, and demonstrating its usefulness for
future research, this paper aims to pave the way for future research in
conversational memory modelling for intelligent system development.
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2.1. INTRODUCTION
Human memory for conversations plays a crucial role in shaping social
bonds and fostering relationship building, as well as decision-making in
future interactions [11]. Understanding human conversational memory
is, thus, essential for explaining and predicting human behaviour in
conversations. Conversational memory can be defined as a subtype of
autobiographical memory, which manages the encoding, storage, and
retrieval of personally experienced events [80–82], particularly within
conversational settings (as operated in e.g. [33, 83, 84]). Previous
research on conversational memory shows that numerous factors
can affect what is encoded and retained from a conversation:
the relationship between participants, their characteristics, linguistic
features of produced speech and many more [12–17]. However, due to
the multitude of variables involved, it remains unclear how these factors
interact to determine which memories are more likely to be retained
and which are more likely to be forgotten over time.

One way of investigating the intricate, potentially non-linear relation-
ship between contributing factors to a socio-cognitive process, such as
memory, is by creating a computational model. Although never applied
to conversational memory, to our knowledge, other socio-cognitive
phenomena, such as affect, engagement or cohesion, have been previ-
ously investigated using computational models [18,29,85]. Researchers
model these socio-cognitive processes by training machine learning
algorithms to predict users’ internal states from verbal and non-verbal
data. A major issue to take into account when building such a model is
the data used for its creation, since the model can only be as accurate
as the data it is trained on [31]. Similar to the reproducibility crisis in the
field of social sciences [86], there is more and more understanding of
how a biased or misconstrued dataset can be detrimental to the repro-
ducibility, generalisability and validity of the resulting models [32,87].
Many scholars are calling for more careful creation of datasets aimed
at computational modelling [31, 32, 87]. Therefore, constructing a
computational model of conversational memory requires a dataset that
is representative of the modelled constructs and is collected in an
ecologically valid setting.

Since there is no such data available for conversational memory
research, in this paper, we introduce the MeMo (Memory Modelling)
corpus - the first conversational corpus with annotations for conversa-
tional memory. The MeMo corpus is aimed to be used for computational
modelling of conversational memory developed with multidisciplinary
research in mind. It, therefore, combines validated behavioural and
perceptual measures as well as video, audio, and multimodal annota-
tions, individual and group eye gaze behaviour, head pose, low-level
hand gestures, and text. The variety of measures, multimodality
and ecological validity of the corpus make it a useful resource for



2

16 2. MeMo corpus

computational as well as behavioural studies on conversational memory
and group dynamics. Because of the data complexity, the dataset will
be released in batches with the process described in Section 2.12 once
the pseudo-anonymisation process is complete. In this paper, we aim to
achieve the following goals:

• Introducing the MeMo corpus. We describe the MeMo corpus,
the data collection, and its challenges. The MeMo corpus pioneers
a way of collecting first-party memory annotations directly usable
in computational research - by combining a moment free-recall
task with a subsequent first-party annotation of the recorded
memorable moments to a video time frame (see Section 2.5).

• Demonstrating its usefulness. We demonstrate how the corpus
can be used to build conversational memory models and summarise
empirical results on the corpus (see Section 2.8.2).

• Suggesting potential topics of future research using the
corpus. We describe potential modelling tasks that can be
explored with the use of the MeMo corpus (see Section 2.9).

2.2. MOTIVATION FOR CREATING MEMO
Humans are inherently social creatures, and the quality of one’s social
connections significantly impacts their psychological and physiological
well-being [88]. Feeling listened to, understood, and appreciated
within a social relationship is essential for fostering these quality
connections [70]. In group settings, such as family gatherings
or work meetings, it could be challenging to achieve this quality
because of differences in personality, dominance and other factors.
Conversation facilitation has emerged as a promising approach to
enhancing the quality of these group interactions [89, 90]. Over
repeated sessions with a trained facilitator, groups of people can resolve
conflicts, deepen conversations, and foster mutual understanding
across various social settings [3,91,92]. Conversation facilitation can
be challenging, requiring undivided attention towards multiple team
members, conversation structure and content [93]. Computational
systems can support human facilitators in this task, as well as serve as
an alternative solution in the absence of a human facilitator [94].

Existing conversation support systems have been shown to improve
social interaction satisfaction, encourage equal participation and
decrease social inhibitions [4, 6,95]. A common method of achieving
these results involves continuous tracking of users’ non-verbal and
verbal signals [96]. These low-level signals are then used to infer a
real-time measure of users’ participation (e.g. [6]) or more complex
internal states, such as attention (e.g. [97]), dominance (e.g. [98]) or
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social presence (e.g. [99]). Based on these predicted measures, a
system then produces suggestions on how to enforce meeting structure
and promote equal participation (e.g. [96], [6]). These predicted
measures are real-time indicators of a participant’s immediate reactions
or internal states, captured at specific timestamps or as cumulative
measures from the start of the session. Although these measures can
be used to represent users’ current state or trends within a session, they
do not always represent the way the user will feel about the subject
in subsequent interactions, since feelings triggered by an event within
an interaction could be forgotten or completely changed over time, in
retrospect to the event [100]. To sum up, user experience itself may not
matter as much as the user’s memory of that experience in the context
of long-term interaction and future decisions [101]. Consequently, for
long-term interaction, a facilitation system needs to not only track the
current state of the user but also understand the user’s memory of
conversational experiences.

Decades of cognitive research show that, due to the selective
nature of human memory, only a fraction of perceived experiences are
encoded and retained [22]. The retention or forgetting of experiences
and the subsequent accessibility of memories are affected by an
intricate combination of inter- and intra-personal factors, such as
conversational context, linguistic parameters of speech, one’s role in
the conversation, and conversational skills [15–17, 102]. Apart from
these over-arching factors, according to previous research, humans tend
to retain experiences that (1) enrich or confirm their self-image [15],
(2) connect them to other individuals [16, 62, 63] or (3) guide their
future actions, thoughts and responses [11]. While previous research
has identified these factors and functions of human memory, how they
operate together in spontaneous settings, determining whether an event
will be retained or forgotten remains unclear. Corresponding to the
mentioned memory functions, understanding what remains in a user’s
memory after an interaction could help a computational system in (1)
understanding a user’s personal preferences and identity, (2) keeping
track of relational development between conversational partners and
(3) understanding the origin of perspectives and decisions in future
interactions.

While some studies have explored ways of supporting memory in
conversational settings, these have primarily focused on memory
augmentation rather than memory modelling. For instance, Niforatos
et al. [103] presented a system that improves recall of previous
meetings using auto-generated visual memory aids, based on semantic
summaries of previous meetings. Bahrainian and Crestani [104]
proposed creating models of topics that were most likely to be brought
up again throughout the conversation for memory augmentation
systems. Though valuable, such studies focus on enhancing memory
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retrieval without directly modelling how memories are encoded and
retained during the interaction itself by the conversation participants.

Unlocking the potential of memory encoding modelling for memory
augmentation, user-modelling and personalisation purposes in con-
versational settings requires predictive models based on real-world
conversational data. In a context of media consumption, researchers
have built such models to predict which images or videos are more
likely to be encoded and retained by a human viewer based on media
features and user characteristics [21, 35, 53, 105]. However, the con-
versational context is different from media consumption: unlike media
consumption, conversational context involves continuous production
and comprehension of verbal and non-verbal signals, involving different
cognitive mechanisms [33] and producing qualitatively and quantita-
tively different memories [13]. Moreover, conversational memory has
various context-specific factors at play that do not apply to media
consumption tasks: conversation-specific verbal and non-verbal signals,
the relational dynamics between conversational partners, and many
more [12,14–17].

In the field of ubiquitous computing, memory has also emerged
as a target for augmentation, scaffolding, and understanding human
cognition in-situ. Research on memory aids and digital prosthetics,
such as first-person reconstruction tools [106], wearable reminder
systems [107,108], and memory training interventions [109], showcases
a growing interest in building systems that understand and extend
human memory. Recent datasets, such as LAUREATE [110], have further
contributed to this space by enabling predictive models of memory
formation from affective and physiological signals. However, this prior
work has largely focused on daily tasks or individual experiences, not
on the specificity of memory for social interactions. Therefore, the task
of computational modelling of how humans encode, retain and retrieve
conversations remains unsolved.

Unlike computational research, cognitive scientists have previously
explored memory for free-flowing conversations. These studies, often
conducted in dyadic settings, have demonstrated that conversational
memory is shaped by expectations of recall, egocentric biases, and the
collaborative development of common ground [12, 15, 84]. Linguistic
features, such as lexical repetition, discourse markers, and syntactic
structure, have been found to influence recall probability [17], while
recent work also explores memory in group settings, highlighting the
distributed and co-constructed nature of recall across participants [28].
To the best of our knowledge, existing studies have not investigated
multimodal predictors of memory in free-flowing conversations, such
as eye gaze, hand gestures, or body posture, despite the recognised
importance of these cues in social interaction [111]. While many of
these investigations recorded audio during conversational tasks, these
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recordings are, to our understanding, not publicly available for broader
research use. Moreover, although the conversations were naturalistic
in nature, they typically took place in controlled, face-to-face laboratory
settings. Collectively, these studies offer valuable insights into the
cognitive mechanisms underpinning conversational memory. However,
the data collected were not explicitly intended to support computational
modelling or the development of intelligent systems. For example, most
works relied on transcripts of the conversations (e.g. [112]), only several
works recorded audio of the conversations (e.g. [17,28]), and no works,
to our knowledge, recorded videos of the interactions. This means that
the number of features that can be used for real-time prediction of
memorability would be limited to speech, with no possibility of using
such prominent non-verbal features as facial expressions, eye-gaze
or hand-gestures [111]. As such, there remains a clear need for a
publicly available, multimodal dataset with recording, aligned memory
annotations, designed specifically to advance research in memory
augmentation and technologies for meeting facilitation.

Since there has not been any computational research on the topic and
cannot be directly used for computational modelling, an essential step
towards conversational memory prediction is constructing a dataset of
spontaneous conversations annotated with memory reports. Therefore,
we constructed the MeMo corpus to provide a resource for the
two primary goals: (G1) for research and computational prediction
of participants’ memory in spontaneous conversations via verbal and
non-verbal signals and (G2) for the creation of conversational memory
models supporting meeting facilitation in the context of repeated
interactions.

2.3. GUIDING PRINCIPLES FOR COLLECTING MEMO
When constructing a dataset suitable for studying and modelling human
conversational memory, we argue that several major principles need to
be considered.

2.3.1. P1: MAXIMISING ECOLOGICAL VALIDITY
While scraping the internet for datasets has become very common
in computer science, researchers increasingly advocate for carefully
curated datasets to better predict human behaviour in natural settings
[31, 32, 113]. This is particularly important when the computational
models are aimed to predict and explain human behaviour in a
setting with minimal structural constraints, such as free-flowing
conversations [113]. In the context of conversational memory
modelling, this is particularly important since an unnatural, scripted
setting can change the structure and the content of memories [114,115].
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Therefore, we strove to ensure that the MeMo corpus accurately reflects
the conditions and variables present in real-life conversations.

P1.1 Preserving Natural Interaction Environment. First, the
dataset would need to be recorded in a natural environment rather
than in a laboratory setting. The laboratory environment can
introduce artificial constraints and biases that may not exist in real-
life conversational settings, including intrusive sensors and unnatural
conversation settings (e.g. a lab with visible sensors and no natural
light). It has been shown that people perform differently in memory
tasks in a laboratory setting in comparison to a real-world setting [116].
The dataset, therefore, needs to preserve a natural conversational
setting typical of real-world environments.

P1.2 Preserving Spontaneity of Conversation Interactions.
Second, for conversational memory reports to represent the processes
engaged in an in-the-wild conversation or meeting, the conversation
must be as spontaneous as possible. The main reason is that the
processes involved in comprehension and production of spontaneous
speech are different from reading out text or following a script (as in
scripted corpora, e.g. [117]). For example, memory for self-produced
statements can differ from reading or hearing a statement [15,33,118].
Letting the conversation flow emerge by itself rather than imposing
lab-created tasks or structure as much as feasible is important for the
ecological validity of such conversational data.

P1.3 Ensuring Representativeness of Participants. Lastly, it is
important for a dataset to recruit a representative sample of participants
from diverse demographics and backgrounds. It is, unfortunately, a
common practice in datasets and experimental studies to mainly recruit
university students and staff, biasing the data towards a demographic
of highly educated English-speaking white young women [119, 120].
An alternative to university students is a more diverse demographic
of participants recruited through specialised websites, such as Amazon
Mechanical Turk. While this method provides a more diverse
demographic, participants recruited this way might be ’professional
participants’ who go through a multitude of studies daily and are
therefore biased in how they respond to the experiment questions [121].
In either case, study results can greatly depend on the demographics
of its participants [122], and it is, therefore, important to report the
demographics along with the dataset to understand the limitations of
the data. So far, unfortunately, it is not a common practice and
many datasets do not report the demographics of their participants (see
section Section 2.4.5 for examples).

The MeMo corpus aims to support ecological validity through three
key design choices. First, conversations were recorded in participants’
own homes within the context of online meetings, reflecting a format
increasingly common in contemporary professional settings. Recordings
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were conducted using Zoom, a widely adopted video-conferencing
platform which, at the time of data collection, was estimated to
have around 300 million daily active users worldwide [123]. Each
conversation had an assigned leader, a moderator, which is also typical
in work settings. Second, conversational spontaneity was encouraged
by maintaining minimal structural constraints. Although discussions
were guided by a moderator and focused on the topic of Covid-19,
participants were invited to speak freely, engage with one another,
and ask questions, while moderators intervened primarily to maintain
the flow and depth of the discussion. Third, efforts were made to
include a diverse sample of participants across different age groups
and demographic backgrounds (see Section 2.5.1). Third, we strive
to maximise the diversity of the recruited participants by recruiting
participants of different ages and demographics (see Section 2.5.1).

2.3.2. P2: MAXIMISING THE CONSTRUCT VALIDITY OF
CONVERSATIONAL MEMORY MEASURE

A principal goal of developing MeMo is to collect a corpus that facilitates
the identification of moments in a conversation likely to be retained
by its participants (→G2). Collecting such data is challenging due
to the fundamentally different organisation of human experience as
context-delineated episodes and the typically timestamp-delineated
segments used to annotate moments in multimodal data (see Dudzik
et al. [124] for a discussion). Aiming for construct validity involves
ensuring that our chosen measures accurately reflect conversational
memory while also recognising the limitations of the selected metric.

The existing approach to estimating which events are encoded from
a conversation is a free-recall task - asking participants to report what
they remember from the conversation in their own words, usually in
writing [24]. To then access the events that these reports refer to for
analysis, external annotators review the reports and identify the events
mentioned within the conversation [17,112]. Outsourcing this task to
external observers may impact the construct validity of the resulting
memory measure, as multiple moments might match a description,
making it difficult to determine the specific event without asking the
participant directly.

Given that the MeMo corpus is designed to model conversational
memory, we propose an alternative method. After a conversation,
participants complete a moment free-recall task, describing what they
remember. They then watch a recording and pinpoint the exact
moments that match their memories (see Section 2.5.2 for details).
This approach ensures that the identified moments accurately reflect
the participants’ memories, preserving the validity of the memory
annotations. These annotations provide a reliable temporal link between
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memory reports and conversation segments, serving as ground-truth
labels for computational modelling.

2.3.3. P3: CONSIDERING CONTEXT-SENSITIVITY OF MEMORY
PROCESSES

Maximising ecological validity (P1) might imply that fewer variables are
controlled (e.g. more diverse demographic, an in-the-wild experimental
setting, etc.). Therefore, while maximising the internal validity of the
data, it might reduce the external validity [125]. To avoid this, it is
particularly important to track as many potential confounding variables
as possible using validated questionnaires accepted by the scientific
community.

Specifically, conversational memory can be affected by communication
skills [16], mood [126, 127], personality [128], values [129] and the
relationship dynamics between participants [14, 130]. In addition,
factors concerning group perception should be measured, such as
group entitativity, cohesion and rapport. While they have not been
investigated in relation to conversational memory, the research shows
that they can influence learning [131,132], which is inherently related
to memory.

2.4. RELATED WORK
While there are some cognitive studies of memory for free-flowing
(mainly dyadic) conversations (including the work by Diachek et al.
(2024) that examines linguistic features predicting recall [17]), to our
knowledge, there are no multimodal datasets aimed for computational
modelling of memory in multiparty conversations. To contextualise
MeMo, in this section, we describe existing datasets that are aimed to
support computational modelling research on memory in one way or
another. In addition, we describe most related behavioural studies on
the topic of conversational memory. We compare the data designs using
the criteria most relevant for the context of the MeMo corpus as shown
in Table 2.1. We describe each criterion in the following subsections.

2.4.1. FACILITATED MODELLING PERSPECTIVE
When it comes to datasets for modelling memory processes, we
distinguish between two different modelling perspectives that they
facilitate: Situation-centred and Individual-centred (defined below).

Corpora supporting Situation-centred perspectives facilitate modelling
how specific properties of a defined situation (e.g., exposure to a video)
are expected to give rise to memory responses in members of some
population (e.g., how specific video content is likely to be remembered
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Table 2.1.: The comparison between MEMO and related corpora [21,
23,54,133] and the most related study [17] (Part. count -
number of participants))

Dataset/
Study id

Memory
sub-process

Memory
task

Recorded
behaviour

Perceptual
measures

Task
context

Part.
count

Time
(h)

Longi-
tudinal

Video
Mem

encoding
& retention

recognition
(short &

long-term)
- -

media
consumption 3246 19.4 51

EEGMem encoding
recognition
(long-term)

EEG
recording -

media
consumption 12 8.3 -

Mementos retrieval
auto-

biographic
retrieval

video
personality,

mood, affect
media

consumption 300 33 -

WoNoWa

retrieval
& use in
collabora-

tion

transactive
memory

perception

video, audio,
transcripts

perceived
leadership
& group

performance

collaboration
task (group) 45 17 -

Home Birth
helpline retrieval

spontaneous
retrieval

in dialogue
transcripts -

spontaneous
conversation

(dyad)
56

NA
(80

calls)
51

Diachek
et al. 2024

encoding
& retention

free recall
reports

disfluencies
from

transcripts
-

spontaneous
conversation

(dyad)
118 14.8 -

MEMO
encoding

& retention

free recall
reports +

timing
annotation

video, audio,
transcripts

individual,
task, group
& others’
perception

spontaneous
conversation

(group)
53 31 51

by people in general). Datasets focusing on a situation-centred
modelling perspective often attempt to capture a large range of distinct
situations but typically have a small number of distinct individuals
responding to them (e.g. [21]).

In contrast, datasets with an Individual-centred perspective typically
focus on more fine-grained modelling of variation in memory processes
across specific individuals, possibly considering interactions with the
situation (e.g., ways in which individuals behaviourally express when
specific video content triggers a memory in them [54]). Datasets
focusing on supporting an Individual-centred modelling perspective
often contain only a relatively small number of distinct situations but a
relatively large number of individuals responding to them. Note that
datasets facilitating an Individual-centred perspective can often also
support a Situation-centred one, but not the other way around (because
responses are typically aggregated from individual responses to the
situation level).

In MeMo, we aim to combine the two perspectives as much as the
conversational context permits. From an individual-centred perspective,
MeMo includes various perceptual and audio-visual measures from
individual participants, providing resources to study how humans behave
during memorable moments. From a situation-centred perspective, the
data design allows for the investigation of the entire situation using
audio-visual data from all group members, along with memory data
aggregated across the group. This approach helps identify what makes
a moment more memorable for a set of participants, abstracting from
individual differences (for an example, see Section 2.9).
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2.4.2. MEMORY PROCESS
Memory-related datasets vary in their primary goal, specifically the
memory sub-process they aim to investigate. Human memory can
be divided into three sub-processes: memory encoding (processing
the experience), memory retention (preserving the experience), and
memory retrieval (extracting the retained experience) [22].

These processes are closely intertwined with each other. For example,
any study of memory involves some measure of memory retention -
whether or not a memory was preserved and for how long. Whether
a moment has been retained cannot be completely measured, since
some memories might have been retained but are not accessible at
the moment of the measure [134]. Therefore, when it comes to
retention, researchers usually focus on investigating memories available
for retrieval at the moment of a memory test. Forgetting then refers
to the moments that are not available at the moment of collecting
the memory measure. Studies that focus on the retention process
usually investigate the forgetting curve - collecting memory reports at
several points in time and seeing how much information will be retained
across the time [34]. Two datasets have collected such data in the
context of media retention and forgetting [20,21]. In a conversational
context, Diachek et al. (2024) [17] have investigated recall rates in
dyadic interactions. Brown-Schmidt et al. (2024) analysed how different
conversational roles impact memory retention in group settings, finding
that active participants recall more content and source information
than passive overhearers [28]. Other behavioural researchers, such as
Stafford et al. (1987), have conducted studies on conversational memory
retention [84]. While some of these studies recorded audio of the
interactions ( [17,28]), to our knowledge, no studies on conversational
memory have recorded video of the conversations. Therefore, the
number of features that could be usable for memorability modelling
would be limited to speech-related features.

Most measures of memory involve memory retrieval - for example,
free-recall tasks, which ask participants to freely report what they recall
from the given stimulus [24]. This said, most of these studies use
retrieval as a memory-measuring tool to study encoding and retention.
In contrast, memory retrieval dataset papers investigate the moments
when memories are (spontaneously) triggered and extracted - whether it
is a memory from childhood prompted by music videos [54] or memories
relevant to a collaboration task at hand [23]. Several studies have
explored how individuals retrieve shared conversational experiences in
subsequent interactions. Horton and Gerrig (2005) investigated memory
retrieval in conversations by examining how speakers access partner-
specific information during language production tasks [135]. Similarly,
Clark and Wilkes-Gibbs (1986) examined collaborative processes in
establishing mutual understanding during conversations [136]. Shaw et
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al. (2007) [133] investigated how callers and call takers indicate prior
interactions.

While studies of retrieval focus on the moment a memory is being
extracted, memory encoding investigation focuses on the specific
stimulus or human response to the stimulus at the very moment the
memory is being encoded. This means that, while the memory task itself
might involve retention and retrieval (e.g. free-recall or recognition [24]),
the focus of the study is the specific stimulus viewed or behaviour
displayed during the event mentioned in the reported memory. For
example, [21,35,137] that investigate the features of memorable media
or [20] investigating the brain signals at the moment of viewing the
media that is to be retained. In the educational context, [110] have
collected a dataset for memory augmentation with regular performance
tests on study-related recall and understanding. In conversational
context, Diachek et al. (2024) [17] have previously investigated how
linguistic features predict whether or not a conversational event will be
encoded.

The MeMo dataset has been designed to study and model two
sub-processes of human episodic memory. First, the corpus allows for
studying when information has been encoded through the investigation
of first-party temporal labels of events registered in participants’
moment free-recall reports (see Section 2.5.2). Second, the corpus
is designed to study conversational retention, with memory reports
collected immediately after interactions for short-term memory and after
3-4 days for longer-term memory (see more details in Section 2.5.2; also
notice the limitations for this task in Section 2.11). In principle, MeMo
could also be used for modelling memory retrieval processing during
conversations (e.g., in terms of how people use memories for social
bonding purposes during interactions [11]). However, the annotations
provided with the current release do explicitly support this task (see
Section 2.11 for a discussion). This said, the three subprocesses
cannot be completely separated from each other and focusing on one
subprocess (e.g. encoding) does not mean that there are no elements
of other subprocesses involved in the study. For example, while focusing
on memory encoding, we still use annotations based on the memory
recall self-reports, which have been retained in participants’ memory
and retrieved during the recall task.

2.4.3. RECORDED BEHAVIOUR & MEASURES
Some datasets for memory research involve recording participants’
behaviour and/or perceptual measures (i.e. self-reported individual
traits or questionnaires on participants’ perception of the task and
other participants). These measures can vary from EEG brain signal
recordings during the task [20] or wearable physiological monitoring
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data [110] to video of participants’ non-verbal signals throughout the
task (in [54]). In datasets involving conversation or interaction between
participants, typically, there is also a recording of the speech, in
the form of audio or transcripts [23, 133]. In addition to recorded
behaviour, some datasets measure various self-reported perceptual
measures [23,54,110]. Since the MeMo dataset is focused on human
behaviour and perception in the conversational context, it includes video
and audio recordings for behavioural measures and various self-reported
measures of participants’ individual characteristics, their perception of
the interaction, group, and other participants.

2.4.4. TASK CONTEXT & MEMORY TASK

An important parameter informing corpus design is the context of
the task participants perform, such as solitary media consumption
or human-human interaction. This context is closely linked with the
memory reporting measure. For media consumption, memory is often
measured with recognition tasks where participants identify previously
seen videos, indicating memory retention or forgetting [20, 21, 35].
Alternatively, some studies use free recall for autobiographical memory
triggered by media [54] or study-related performance tests [110].

In spontaneous conversation contexts, recognition tasks are impracti-
cal due to the variable content of free-flowing conversations. Instead,
memory encoding and retention studies find free-recall self-reports to
be more suitable as they allow participants to report memories without
additional constraints [13,17]. For example, these have been used in
a recent behavioural study predicting memory encoding using linguistic
features [17]. For conversational memory retrieval datasets, other
measures have been employed: a task-related memories survey in [23]
and a third-party observer annotation of memory retrieval moments
in [133]).

2.4.5. SAMPLE REPRESENTATION

Lastly, participant samples vary in size and diversity. The sample size
depends on the task context and length, ranging from 12 to 3246
subjects (Table 2.1). Considering demographics and representativeness
of datasets’ samples, three datasets do not report participants’
demographics [20,21,35], one dataset had students and university staff
as participants [23] and one had female-only participants [133]. Only
two out of seven memory-related datasets had a more balanced sample
(except for the bias towards US residents) [17,54].
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2.4.6. DATA QUANTITY
The dataset comprises over 30 hours of annotated multiparty dialogue,
which is comparable in scale to other multimodal corpora used for
affective computing and cognitive state modelling. For example,
WoNoWa [23] includes around 17 hours of recordings of collaborative
interactions. For memory modelling outside social context (i.e. life-
logging), the “Naturalistic Free Recall” dataset includes approximately
38 hours of data [138]. As summarised in Table 2.1, MeMo falls within
the typical range for datasets designed for multimodal behavioural
analysis and modelling.

2.5. METHOD: DATA COLLECTION PROCEDURE
We describe the MeMo experimental procedure shown in Figure 2.1 in
this section. We highlight how these relate to our stated primary goals
(G1 and G2 described in Section 2.2) and guiding principles (P1 to P3
described in Section 2.3).

Pre-​screening Session 1 Session 2 Session 3 Exit interview
3-4 days 3-4 days 2-4 days1-4 weeks

~15 mins ~45 mins ~30 mins

Figure 2.1.: Experimental set-up. Upper flowchart - overall set-up. In
the lower part - illustration of the procedure for every group
session. On the second screen, there is a screenshot of
a discussion from the MeMo corpus, except for the 4th
participant, shown with a person icon. The phrase the icon
person produces is made-up but matches the conversations
included in MeMo.

2.5.1. OVERALL PROCEDURE
The overall procedure of acquiring the MeMo corpus is shown in Figure
2.1. In this subsection, we will guide the reader through the procedure
step-by-step.
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ETHICAL APPROVAL.

The Human Research Ethics Committee of TU Delft approved the MeMo
corpus data collection. Before the experiment, participants filled out
an informed consent form permitting us to collect their personally
identifiable data, such as audio and video recordings, to be later
accessible to the research community under CC-by-NC license. Before
the recordings, participants were asked to come up with a pseudonym
for themselves for the entirety of the recording. Participants were
allowed to avoid answering questions if they did not want to and invent
information about themselves throughout the recording.

CONVERSATION SUBJECTS.

Participants. Participants were recruited using Prolific Academic
recruiting service [139]. All participants were required to reside in
the UK, fluently speak English and be ready for a video-call study
(i.e. possessing a laptop with a working camera and a headset with a
microphone). The UK residency requirement served two purposes: first,
the Prolific platform provided a large number of UK participants; second,
research shows memory can be influenced by shared experiences [12].
With Covid-19 selected as a discussion topic, focusing on UK residents
helped control for differences in pandemic experiences, thus enhancing
the validity of memory comparisons between groups (→ G1).

To simulate a situation where facilitation is needed, such as in the
case of differing opinions and perspectives in the group, we tried
to maximise the diversity in opinions on our target topic - Covid-19
pandemic (G2). We, thus, targeted specific demographics differently
affected by the pandemic. For example, parents of young children
had to suddenly homeschool their children or business owners faced
work-related challenges, having to adjust their business to changing
regulations. The targeted groups were the following: parents with
young children, older adults (50+), students, business owners. Five
prescreening surveys were conducted on Prolific, each tailored to one
of these groups (see Appendix A.3). Participants could only select
one prescreening survey to avoid duplicate inclusion. Additionally, we
ensured gender balance in our sample (→ P1.3).

Group composition. The MeMo corpus is designed around small-
group discussions, typical of both work and informal settings, to ensure
ecological validity (→P1.1) and simulate potential facilitation scenarios
(→G2). "Small groups" here refers to 3 to 8 participants, an optimal
size for allowing everyone to share their thoughts [140]. Participants
completed a prescreening survey specifying their availability, and 5
to 8 participants were recruited per group, ensuring representation
from each demographic. The minimum of 5 was set to maintain at
least 3 participants per group, accounting for no-shows and dropouts.
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All participants were zero acquaintance, meaning they had never
met before, allowing us to study the development of within-group
relationships with no prior interactions [14]. The group composition
stayed the same throughout the experiment (except for having fewer
members in later sessions if a participant dropped out after the first or
the second sessions). Each participant took part in only one group, to
avoid participants confusing memories from interactions with different
groups.

Moderators. For facilitation purposes (→G2), discussions were
guided by professional moderators who ensured a safe and inclusive
environment, encouraging free-flowing conversation with spontaneous
turn-taking (→P1.2). Moderators were confederates aware of data
collection goals and were allowed to use any methods of their liking
for the facilitation of a free-flowing conversation. Moderators were not
familiar with any participants before the experiment. Each group was
assigned one moderator for the entirety of the experiment (3 sessions
and an exit interview). Along with guiding the sessions, moderators
had to fill out the same surveys as participants before and after each
session, including memory reports and all other measures.

PRE-SCREENING SURVEY.

The prescreening questionnaire included the consent form, participants’
demographics (participants’ age, gender, employment status, English
fluency, country of residence), personality [141], values [142], technical
requirements and online meeting experience (see Appendix A.1).
Personality was included as it influences recall, with extroverts recalling
more positive memories than those higher in neuroticism [128]. Values
were also included, as they can enhance recall accuracy for items
related to personal values [129].

PRE-SESSION SURVEY.

Questionnaire data was collected using Qualtrics X platform [143] (for
the full content of the questionnaires see Appendix A.1). Participants
started each session by completing a pre-session questionnaire that
took ∼15 minutes to complete. The pre-session survey included the
participant’s mood assessment [144] before all sessions, as mood can
affect memory encoding [126,127]. It also included long-term memory
retention task (see Section 2.5.2) before all the sessions except for the
first one. Before the exit interview, there were some extra questions
added to the pre-session survey - participants had to report a moment
they found most important in all the past interactions and provide
feedback on the moderator facilitation skills (see Section 2.5.1 for more
details). At the end of the survey, participants joined a scheduled Zoom
link for the discussion session. They completed this survey by uploading
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a screenshot of their Zoom layout when all the participants were present
in the Zoom session to facilitate eye-gaze target extraction (see Section
2.6.4).

CONVERSATION SESSION.

All discussion sessions happened online, through a Zoom video-call
platform, a typical software used for video-calls. This ensured that
participants are in the comfort of their own homes, rather than in the
lab (→P1.1). They used their own computer and headsets, having their
natural lighting, which also added to how comfortable they felt, as well
as the naturalistic setting of video-call discussions. To ensure that we
can track participants’ eye-gaze, the moderator asked participants to
keep Zoom in ’gallery’ mode so that all the participants are on the
screen at the same time and their location on the screen stays the same
throughout each session. In addition, for a secure recording, there was
a technical assistant involved in the call (with no camera or microphone
on and no interaction with participants), who recorded the session and
resolved any arising technical issues.

After making sure that all participants had completed the pre-session
survey, the moderator (or the technical assistant) would start the
recording. The session began with head pose and gaze calibration
for automatic post-experiment gaze direction annotation (see Section
2.6.4). Participants, guided by the moderator, first rotated their heads
and then looked at each named participant on their screen.

After that, guided by their moderator, participants started the
discussion. To ensure a natural yet directed conversation (→P1.2),
the Covid-19 pandemic was chosen as a relatable topic, relevant to
participants worldwide at the time of data collection (the year 2021),
with diverse experiences and opinions. At the start of the first session,
participants were informed that they would discuss the past, present,
and future of the pandemic over three sessions, aiming to design a
better future in case of a recurrence (the memory study focus was
disclosed only at the experiment’s end to prevent priming participants’
memory). Each session lasted 45 minutes, providing sufficient time for
conversation to emerge. This duration aligns with typical meeting and
facilitation session lengths (→G2, →P1.1) [93].

To reflect real-world conversations that repeat over time (e.g. work
meetings), the corpus included 3 sessions spread out over 3-4 days,
reflecting the frequency of real-world facilitation sessions, occurring
once or twice a week [93]. This longitudinal approach aimed to capture
the evolution of participant relationships and conversational memory
trends over time. (→G1,→G2). This setup also provided repeated
measures of memory at different points, capturing both short-term and
long-term memory reports (→G2).
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POST-SESSION SURVEY.
At the end of the Zoom session, the moderator reminded participants
to open up the post-session survey link and start the questionnaire.
After that, the recording stopped and the Zoom session was closed.
See the summary of all measures used in the post-session survey
Appendix A.1. The post-session survey started with moment free-recall
self-reports (described in Section 2.5.2) and a qualitative question for
facilitation application (Section 2.5.2). Since interpersonal skills can be of
effect [16], participants’ communication skills were evaluated by having
participants rate each other’s listening and conversational abilities with
2 one-item questions (see Appendix A.2 for question formulations).
Several scales were collected to measure relational growth and mutual
understanding for the ultimate facilitation application of the MeMo corpus
(→G2). Relational development was measured using the IOS scale [145]
to assess perceived closeness and a single-item scale was used to
assess personal attitude (see Appendix A.2). Mutual understanding
was assessed by comparing participants’ pre-reported values with
others’ post-session evaluations using the Short Schwartz’s Value
Survey [142]. In addition, group perception was tracked with measures
of cohesion [146], entitativity [147], perceived interdependence [148],
situational characteristics [149], syncness, and rapport, as these factors
can influence learning and group performance [131, 132].The post-
session survey finished with encoded event annotation (Section 2.5.2),
and reasons for remembering (Section 2.5.2). After submitting the
post-questionnaire, the participants had to wait 3-4 days for the next
scheduled session (or exit interview in case of the 3rd session), and
then repeat the procedure (pre-session survey → conversation session
→ post-session survey).

EXIT INTERVIEW.
3-4 days after the final conversation session, there was a ∼15-minute
exit interview with each participant. Similar to the conversation
sessions, there was a pre-session survey before this Zoom session. The
only difference was that participants were asked what was the most
important moment for them in all the previous discussion sessions.
They then discussed that moment with the moderator one-on-one and
answered a list of questions on the topic of the required capabilities of a
social robot supporting public discussions, especially about what such a
robot should remember.

2.5.2. MEMORY MEASURES
A common practice in user internal state modelling is to rely on
third-party annotations of the investigated internal state. This can
oversimplify these states and skew model accuracy, neglecting the
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first-party perspective and potentially introducing bias. This challenge
applies to memory encoding studies, in which, traditionally, the free-
recall reports are traced back to the encoded event by third-party
annotators [17,112]. Here, we describe our method that mitigates these
issues by leveraging participants’ self-reports and the first-party task
of aligning the reports with specific segments of recorded interactions.
This method is aimed to preserve validity and minimise bias, particularly
crucial for datasets like MeMo corpus aiming to accurately represent the
memory content as well as the event that that memory might be based
on within the recorded data (→P2).

MOMENT FREE-RECALL SELF-REPORTS.

To minimise the bias towards external stimuli and the type of memory
events, we have used a task inspired by the traditional free-recall
task for memory self-reports [24]. The traditional free-recall paradigm
asks participants to remember and recount as much as they can from
what was said or occurred during the conversation. In contrast, we
have asked participants to recall as many conversational segments as
possible, so that each part of the free-recall self-report can be related
to a specific event that occurred within the conversation, we call those
events ’moments’. This modification was done to ensure that we can
then ask participants to complete a first-party annotation of the encoded
events (described in Section 2.5.2).

The moment free-recall task was the first task in the post-session
questionnaire, completed immediately after the end of the session, to
avoid interventions of any additional bias that could modify the memory.
The task formulation was open-ended to account for any conversational
events recalled (spoken information, participants’ feelings, context
details etc., see the exact question formulation in Appendix A.2).
Participants were meant to report a memorised ’moment’ in each field
in their own words without a word limit. They could report from 3 to 10
moments. Participants could move to the next survey questions only if
they did not remember more moments or if they had already reported
10 moments. The maximum of 10 moments was set to avoid fatigue
and leave time for answering the next survey questions. This way, we
tried to capture all the retained and currently accessible [134] memories
(unless there were more than 10 moments to report). The idea of
having participants report memory ’moments’ aimed to capture the
content of the memories as well as the way participants conceptualise
the continuous stream of perceived and self-produced social signals into
specific memorable events [150].
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ENCODED EVENT ANNOTATION.

Unlike in previous research [17,112], the participants themselves did the
assignment of their self-reports to specific events that happened within
the conversation. This way, we wanted to ensure that the self-reported
memories were correctly assigned to the encoded event they referred
to, ensuring the validity and the accuracy of the resulting memory
measure (→P2). Within this encoded event annotation task, participants
were given a link to the interaction recording and had to write down the
start and end time (minute and second) of each moment they reported
in the survey before (the memory self-reports were quoted back to
them). Participants had the freedom of scrolling through the video and
did not have to re-watch the entire recording to avoid additional fatigue.
They also had an option of leaving the timing blank in case they could
not find it, the moment was related to an overall feeling of discussion
or other kind of memorable moments that cannot be connected to a
particular interval in the interaction. We ensured that the free recall
reports cannot be modified at this stage (→P2). The encoded event
annotation task was presented to participants at the very end of the
post-session questionnaire so that the other survey questions would not
be affected by seeing the video of the interaction either.

REASONS FOR REMEMBERING.

In addition to moment free-recall reports, we asked participants about
the perceived reason or motivation behind their memory of each
reported moment (see question formulation in Appendix A.2). The
perceived reasons for memory were aimed to capture information that
might not have been described in the moment free-recall reports -
about the underlying personal significance of the specific moment and
the underlying thought process as opposed to details of the event itself
from the moment free-recall reports (e.g. if the memory report is "I
remember participant 3 said that they suffered from the lockdown", the
reason could be "I remembered this moment because I also found it
very difficult"). This information helps uncover intrinsic motivations for
memory, useful for qualitative analysis and understanding in meeting
facilitation (→G2). Participants could provide as much detail as they
wanted, and the question was placed at the end of the questionnaire to
avoid biasing their recall.

LONG-TERM MEMORY RETENTION.

Apart from the moment free-recall task immediately after the interaction
(see above), the MeMo corpus also included the measure of long-term
retention. This measure was collected to investigate what kind of
memories stay after the interaction and which memories are more
likely to be forgotten (or less accessible for retrieval) (→G1). To
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assess long-term memory retention, participants returned 3-4 days after
the interaction, just before the next session, to answer the moment
free-recall questions about the previous session. This interval was
chosen because most forgetting occurs within this timeframe, after
which memory stabilises, as shown by Ebbinghaus (1880) and later
confirmed by Murre et al. (2015) [34]. Therefore, the task meant to
capture a stable representation of what participants would remember
in the long-term. The long-term memory question was exactly the
same as the post-session moment free-recall task (see above). Similar
to the main moment free-recall task, participants could report from 3
to 10 moments in text description fields with no word limit. Unlike
the short-term annotations, this time the participants did not have to
re-watch the video and map the timing to each moment, to avoid
excessive fatigue before the conversation session.

QUALITATIVE DATA FOR FACILITATION APPLICATION.

Since the models trained on the MeMo corpus are aimed to be applied to
automatic meeting facilitation (→G2), there was one qualitative question
about what participants would want such a system to recall in the next
sessions (for the task formulation see Appendix A.2).

2.6. METHOD: DATASET PROCESSING AND CURATION
In the following, we describe distinct processing and filtering steps that
we have applied to the raw dataset, resulting eventually in a curated
version for the purpose of analysis and eventual sharing with the
research community (see Section 2.12 for more details).
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Figure 2.2.: MeMo corpus processing and curation steps

2.6.1. PSEUDO-ANONYMISATION
To maintain the privacy of participants and compliance with ethical
guidelines, the dataset is being reviewed and processed to remove
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potentially problematic segments, resulting in a pseudo-anonymised
intermediate version, see Figure 2.2.

Multi-modal data pseudo-anonymisation. The raw multi-modal
data recorded throughout the data collection consisted of group audio-
visual recording, a group audio-only file in better quality, and separated
audio channels per participant, automatically recorded through the
Zoom software [151]. Because of a bug in the Zoom software, the
separated audio tracks were not aligned with the video recording. They,
therefore, were first synchronised to align with the group audio-visual
and audio-only recordings using the procedure described in Appendix
A.4.

Two types of data needed to be removed from the multi-modal
recordings for privacy concerns. First, since the corpus contained
discussions on the topic of Covid-19, the participants sometimes
mentioned medical information about themselves or people close to
them. Second, because the recording was in a natural environment of
participants’ homes, sometimes there were bystanders passing by or
talking in the background. Since they did not consent to be recorded,
visible bystander faces and audible decipherable bystander speech
needed to be removed. While we removed these types of data, the
pseudo-anonymisation process is yet to go another stage of sensitive
data removal before it will be shared (see the data release statement in
Section 2.12).

Questionnaire data pseudo-anonymisation. In regard to ques-
tionnaire data, the unfinished and non-identified entries were removed
to only contain entries from identified paid participants. Identifiable data
associated with the data collected through the Qualtrics survey platform
was then removed. This included such data as IP address, location and
signatures. The Prolific IDs were replaced with a non-identifiable hash
number, since they otherwise could be tracked to a specific account on
the Prolific recruitment platform. After extracting participants’ on-screen
location via screenshots for further eye-tracking, the screenshots were
also removed from the data since they were taken before the recording
and, therefore, sometimes contained sensitive information, such as
participants’ real names.

Memory data pseudo-anonymisation. Memory data extracted
from the questionnaire data was pseudo-anonymised in accordance with
the segments removed in multi-modal recording pseudo-anonymisation.
For these sensitive segments, the textual reports of the corresponding
memorable events were manually edited to avoid direct references and
descriptions of the sensitive information. No free recall reports were
removed, but the references to the sensitive information were replaced
with "[anonymised]".
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2.6.2. DATA PROCESSING
As shown in Figure 2.2, we have performed additional processing steps
to improve the usability of the data.

Multi-modal data processing. We processed the multi-modal
data to keep only the conversation content, removing any technical
or organisational parts from the recordings. Specifically, calibration
segments for eye-gaze and head-pose, included at the beginning of
each recording, were removed. We also trimmed the start and end of
each recording to ensure they captured only the actual conversation
time, excluding moments where moderators discussed technical or
scheduling issues with participants or waited for participants to
complete questionnaires.

Questionnaire data processing. The questionnaire data underwent
the verification of the integrity process. This constituted manually
verifying the correspondence of session, group and alias information to
the questionnaire data, since sometimes participants made mistakes
in those fields. These were manually verified using the available
information, such as the date and time of questionnaire completion, the
missing participants and the fields that were filled in correctly. In this
processing step, only data for conversation participants was maintained,
excluding participants who did not show up to any conversation sessions.
The duplicate entries were also removed at this stage. Since sometimes
participants forgot to fill in the surveys, there are some gaps in the
data. To identify the consistency of the available data across groups,
we computed a ratio of participants that completed all surveys (both
pre- and post- in all sessions). We called that measure "questionnaire
completeness" (see full table for all the groups in Appendix A.5). Overall,
13 out of 15 groups had questionnaire completeness at 50% and above.
We leave the decision of whether to discard some of the groups using
this measure up to the future users of the corpus, since this might not
be important for researchers not focusing on the longitudinal component
of the corpus.

Memory data processing. We excluded the memory moments with
invalid timestamps: if the reported start was further than the reported
end of a memory event and if the reported timestamps were outside
the duration of the recording. Since the multi-modal data processing
included shifting the start and the end of the recordings, the encoded
event annotations needed to be adjusted to the new start and end of the
recordings, to maintain the references to the originally tagged events.

2.6.3. DATA CURATION
In addition to the necessary data processing, we have curated the
processed data to provide the cleanest version of the dataset, which we
recommend for further use (see Section 2.12 on how this data will be
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released).
Audiovisual data curation. Within the curation, we have removed

a video that was recorded in ’speaker view’, with one active speaker in
the camera view at a time. All other videos were recorded in ’gallery
mode’, meaning that all participants were visible at all times. Given
these criteria, 1 full session was removed.

Questionnaire data curation. The questionnaire data remained
unchanged except for removing the data associated with the removed
session within audiovisual curation.

Memory data curation. Apart from removing memory data
associated with the removed videos, within the curation, we have
removed some memory event outliers. Specifically, we have removed
memory moments outliers by duration: remembered events that lasted
more than 1 standard deviation away from the mean duration over all
the data (longer than 690 seconds). These moments were removed
since they did not have enough detail or contained an overall feeling
over the discussion rather than a specific event, in case of duration
outliers (e.g. a moment with memory report "The agreement on the
uncertainty of following rules and what rules were correct to follow etc."
lasting 34 minutes). We also considered removing events shorter than
5 words in the moment free-recall memory description, but removing
the length outliers also removed reports shorter than 5 words, since the
duration of the associated event was always above the outlier threshold.

2.6.4. EXTRACTING MULTIMODAL FEATURES
In addition to dataset processing and curation, we have extracted
various features from the multi-modal data that can be useful for
machine learning tasks. Where feasible, we have attempted to quantify
the quality of the extracted features through the analysis of their
temporal stability. In particular, we focus on the features in which one
would expect to see smooth and moderately paced motions, such as the
hand and body motion and facial action unit activations.

Transcription. We diarised and transcribed the recorded audio of
the discussions using the Kaldi Speech Recognition Toolkit [152]. We
subsequently conducted manual reviews and corrections to the resulting
transcripts where necessary. The timestamps for these transcripts
are available at both the utterance and word levels, and we provide
word-level transcriptions for each recording.

Eye gaze. In our first corpus-based study, we used GazeSense
software [153] to estimate participants’ gaze direction throughout the
session. We created a customised grid for each participant, matching
their Zoom gallery layout based on a screenshot they provided at the
session’s start. Each session began with a calibration where participants
focused on specific screen segments. We used the coordinates of these
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segments as calibration points and then obtained gaze estimates for all
frames beyond the final calibration. Due to recording imperfections and
challenges with some participants’ uploaded screenshots, gaze tracking
for 13 participants was not possible. Therefore, our dataset includes
eye gaze data from 40 participants from 14 groups, which collectively
spanned approximately 23 hours of video recordings. This annotation
includes gaze targets derived from screenshots capturing participants’
screen views.

Prosody. We extracted the eGeMAPS feature set from the
default eGeMAPS configuration in the OpenSmile software for prosody
analysis [154].

Body Pose. Body and hand keypoints were extracted using
MediaPipe [155]. Keypoint prediction was evaluated on cropped
segments of the original video to ensure only a single person was
visible to eliminate the need for keypoint tracking. The largest
available model was used and the confidence threshold for retaining
the predicted keypoints was set to 0.5. For each keypoint set, we
calculated the frame-by-frame motion measuring the Euclidean distance
between corresponding keypoints in consecutive frames. Using these,
we compute the average displacement. For the hand keypoints, this was
0.04 and 0.05 for the body keypoints. This suggests that large-scale
noise in the prediction is not present in the extracted keypoints.

Facial Action Units. Facial action units and face keypoints for
participants were estimated using the OpenFace Software [156]. As
with the body pose estimation, these features were extracted using
the cropped segments to ensure only a single face was present in the
video. To evaluate the action unit (AU) detection quality, we analysed
the temporal consistency of the AU presence by calculating the change
rate for each detected action unit (see Table 2.2). Overall, we find
that the average change rate across all AUs is 0.0098, indicating
that the presence prediction persists on average for approximately 100
frames. Additionally, we observe that AU9 was the most stable (0.0014)
AU15 exhibited the largest change rate (0.17). AUs related to eye
movements and more subtle mouth movements typically demonstrated
higher change rates. AU45 (blink) had one of the larger change
rates (0.015), although we note that this may not be an issue with
the software detection, but rather a natural consequence of blinking
behaviour. However, the larger change rates observed for AU15 (lip
corner depressor), AU25 (lips part) (0.013) and AU28 (lip suck) (0.012)
are likely due to challenges in detecting more subtle or rapid movements
in the mouth region.
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Table 2.2.: Corpus wide average change rates for action unit presence
extracted using OpenFace

Action Unit Description Change Rate

AU09 Nose Wrinkler 0.00145
AU06 Cheek Raiser 0.00302
AU01 Inner Brow Raiser 0.00422
AU12 Lip Corner Puller 0.00467
AU02 Outer Brow Raiser 0.00571
AU20 Lip Stretcher 0.00762
AU10 Upper Lip Raiser 0.00680
AU14 Dimpler 0.00865
AU26 Jaw Drop 0.01063
AU04 Brow Lowerer 0.01080
AU23 Lip Tightener 0.01181
AU28 Lip Suck 0.01254
AU07 Lid Tightener 0.01270
AU17 Chin Raiser 0.01234
AU25 Lips Part 0.01320
AU45 Blink 0.01542
AU05 Upper Lid Raiser 0.01685
AU15 Lip Corner Depressor 0.01729

2.7. DATASET CONTENTS
2.7.1. DATASET SUBJECTS
Conversation participants. There were 53 participants in the
experiment. The demographics of the resulting sample are shown in
Table 2.3. The sample was balanced across genders (28 F, 25 M),
included participants of various age groups (from 18 to 76 y.o, see
Figure 2.3), and employment statuses (see Table 2.3). The participants
all spoke fluent English and were UK residents. Maximising the diversity
of opinions, we have recruited demographic groups that were differently
affected by the pandemic (see specific criteria and the resulting selection
in Appendix A.3).

Conversation groups. The curated dataset sample contained 15
groups. The groups contained 4 participants on average, with a
minimum of 2 (in two sessions where the third participant dropped out)
and a maximum of 5 (see Table 2.4). Overall, 49 participants took part
in all three sessions, and 4 participated in two sessions, skipping one
session for unforeseen circumstances.

Conversation moderators Four moderators (3 M, 1 F; 24-45 y.o.)
were recruited to facilitate the conversation sessions. All moderators
had 2 or more years of professional facilitation experience. Three
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Table 2.3.: Participants’ demographics
Mean +- SD Min Max

Age (y.o) 38.8 +- 15.1 18 76

Male Female

Demographics Full-time employed 11 11
Unemployed 10 3
Part-time employed 7 5
Business owners 2 8
Students 6 7
Parents of young children 3 6

First Language English 23 23
Other 2 5

Total 25 28

Figure 2.3.: Participants’ age distribution

moderators facilitated 3 groups each, and one facilitated 6 groups.

Technical support. It is important to note that apart from group
participants and the moderator, within each Zoom session, there was
a technical assistant who kept the camera and the microphone off
throughout the entire experiment, they were recording the session, and
the moderator could communicate with them in case of any technical
issues in a private chat. There was no communication between the
technical assistant and the participants.
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2.7.2. MULTI-MODAL RECORDINGS
The curated dataset contains 31 hours (111674 seconds) of group
audio-visual recordings. Table 2.4 summarises the curated distribution
of conversation sessions (the calibration timing is excluded from all
the shown durations). Since there were 15 groups with 3 sessions
each, a total of 45 sessions were recorded. The average duration of
a conversational session was 42 minutes (2538 sec). This said, the
duration of the conversation differed across sessions, with the first
session being the shortest (35 minutes or on average) and the third
being the longest (46 minutes on average, see Table 2.4 for details). This
difference is connected to the fact that, by the 3rd session, participants
needed less explanation and had fewer technical issues than in the first
and the second sessions.

Video. The videos were recorded with Zoom local recording. The
video files have a sample rate of 32000 Hz with 32 bits per sample. The
resolution is 1280x720, with a frame rate of 25. The duration of the
video recording corresponds to the overall duration of the conversation
session: 31. There are 45 videos in total - a video per session.
43 recordings were recorded in the ’gallery view’ of Zoom with all
participants on the screen, 2 recordings had some technical issues and
were recorded in the ’speaker view’ and therefore might need to be
excluded from video analysis.

Audio: Full and separated. Each video is accompanied by a
separated full audio in .m4a format. This audio includes the full audio
from the above video automatically recorded through Zoom. This audio
is available for all 45 sessions. In addition to the full audio, the dataset
includes automatically recorded audio channels per participant available
for 42 out of 45 recorded sessions.

Qualitative variations in multi-modal recordings. Since the
dataset was recorded in the natural environment of Zoom conversations,
the video data has some qualitative variation. This applies to the
position the participants were in throughout the recording: while most
participants were seated behind their desks, some participants were
seated with a laptop on their lap and, in rare cases, a participant
was lying down throughout the recording. Another variation was the
participants’ location of taking the video call - while most participants
were in the comfort of a home, one participant was seated outside, and
two were taking a call from their car. In addition, although we asked
the participants to keep their background as it is, some participants
had a blurred background setting and, in rare cases, they had a virtual
background. Another variation was the device used for the call -
although a laptop was required, some participants joined from their
tablet or a phone because of technical issues with their laptops (to our
knowledge, this happened in 3 sessions). The final variation to possibly
consider is the fact that participants used their own technical setup, with
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Table 2.4.: Descriptive statistics of participants’ age, group size, conver-
sation duration and memory reports

M SD Min Max
Group size 3.7 0.8 2 5

Conversation Session 1 2156 377 1290 2775
duration Session 2 2671 314 2160 3315
(sec) Session 3 2761 349 1950 3260

All sessions 2538 431 1290 3315

Memory Moment
duration (sec) 141 183 1 1260
Moment count
per person 3.9 1.4 1 10
Word count
per moment 32 21 5 117

different quality microphones, cameras and internet connection. For the
same reason, the lighting conditions might vary across participants.

2.7.3. QUESTIONNAIRE-BASED DATA
LONGITUDINAL COMPLETENESS OF QUESTIONNAIRE DATA
Although participants were asked to complete a questionnaire before
and after each conversation session, there are some gaps in the data
where participants could not complete questionnaires due to unforeseen
circumstances. To facilitate the selection of the data for longitudinal
analysis, we have computed the continuity of the questionnaire data
in each group. Apart from the two groups, every group had 50% or
more participants with complete pre- and post-questionnaires in all the
sessions. We share the questionnaire completeness scores for each
session for an easier subset selection process in future research (see
table in Appendix A.5 for the full table and measure description).

MEMORY DATA
The descriptive statistics of the curated memory annotation are shown
in Table 2.4. Overall, the curated memory data included 602 moments
reported in participants’ free-recall tasks. In the context of the
MeMo corpus, a moment refers to a subjectively meaningful episode
that a participant recalls from a conversation. These moments
are not predefined or uniformly segmented, but are self-identified
by participants during the moment free-recall task, reflecting their
personal memory of the interaction (see Sections 2.5.2 and 2.5.2
for details on how these labels were collected). As such, they
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are grounded in participants’ subjective interpretations of what stood
out to them, rather than objective information conveyed during the
interaction. This means that moments may vary in descriptive detail
and perceived duration, and may overlap, either because different
participants remembered similar content in different ways, or because
a single participant described multiple, partially overlapping segments
as distinct memorable experiences. As such, 44 instances out of 602
instances involved multiple participants recalling the same event (start
and end times aligned with at least 1 other moment start and end times
± standard deviation over the length of all the moments).

The free recall description varied in length, with an average of 32
words per reported moment. The mean duration of the self-reported
memorable moments was 141 seconds (2.35 min), with a minimum of 1
second and a maximum of 1260 seconds. Participants remembered ∼4
moments on average (SD=1.4), with 1 as a minimum (in cases where
participants didn’t remember more or reported non-temporally attached
moments) and 10 as a maximum.

Figure 2.4 shows examples of memorable moments variable in report
length and moment duration. For instance, a participant recalled the
moment in which participant 2 shared their opinions on the ideal future:
"P2 wanted a more equal world in the future, more gender equality,
racial equality and less of a financial divide between the rich and the
poor". There was a variability in memory description word count as well
as the reported moment duration. The memory description word count
does not correlate with the duration of the moment annotated in the
video (Spearman R=0.04 and p>0.05). This can be illustrated with the
moment associated with the green point (top report) in Figure 2.4, with
a long description of a memory associated with a moment that lasted
for 4 seconds in the video recording.

During the data processing and curation 235 moments were removed
(from the initial 853 total reported moments in the raw dataset), these
mainly include invalid entries, but probably also fake memories that
participants reported but could not find in the recording during the
encoded event annotation task (see Section 2.5.2 for task description
and Section 2.6). This said, we did not collect any measures to track
which memories were fake, which ones were real but not found by the
participants in the recording and which ones were simply invalid entries.
The memorable moments data was not meant to be used for calculating
recall rates (e.g. as computed in psychological research, such as [17,84])
or forgotten memories, but rather the encoded memories accessible at
the time of the free-recall task. This is due to the primary goals of the
corpus (see G2) being for memorability prediction for meeting support
applications. In these technologies, continuous memory prediction is
most beneficial, since it can help participants or moderator of the
meeting while it is still happening. In contrast to memory encoding
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P1 
discussing 

social 
media 
impact

P3 discussed that her mother was very strict about 
following the covid restriction rules but attended the 

protest anyway because it was an important issue

When our lovely moderator stated that perhaps I was an idealist. I was 
talking about the current trends of shortening the working week, 
precedented by Finland, and what it meant for the people whose 

working hours shortened. I felt quite positively surprised, I would think 
that I am a realist with pessimistic tendencies. So that made me chuckle 

inside.

P2 wanted a more equal world in the future, more 
gender equality, racial equality and less of a financial 

divide between the rich and the poor

Figure 2.4.: Duration and word-count distribution of memorable moments
with examples of memorable moments shown with points
and full reports on the right.

annotation, as used in this corpus, recall rates usually provide one
measure of recall quality for the entire session and therefore have not
been previously operationalised as continuous.

OTHER QUESTIONNAIRE MEASURES

Regarding other questionnaire measures, the collected self-assessment
measures show high variability. For instance, participants’ mood
was measured before each session with AffectButton [144], assessing
participants’ pleasure, arousal and dominance from -1 to 1. The mood
dimensions had a mean of 0.35 ± 0.38 for Pleasure, -0.14 ± 0.77 for
Arousal and 0.21 ± 0.57 for Dominance across all participants and
sessions. In other words, participants’ moods were generally mildly
positive, less aroused than average and slightly more dominant than
average. The low arousal might be connected to the general setting of
at-home video calls, illustrating the informal in-the-wild setting of the
dataset (in accordance with P1.1, Section 2.3). This said, the variation in
participants’ mood was quite high, as shown by high standard deviations
across all scales. This might indicate that the dataset might be usable
for analysis of conversational memory in connection to the mood at the
start of the conversation.

Other self-reported measures, such as situation, group and relationship
perception, also show high variability. See Section 2.8.1 for more details
on these measures.
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2.8. VALIDATION: USING MEMO CORPUS FOR
COMPUTATIONAL MODELLING

2.8.1. DEPENDENCY ANALYSES
TEMPORAL DEPENDENCY

Conversational data intrinsically contains temporal dependencies. These
and time-related biases related to human cognition have to be accounted
for in the design of the computational models.

In relation to memory labels, there might be evidence for a particular
time-dependent bias. Specifically, humans tend to recall the first and
the last events from a sequence, a phenomenon referred to as recency/
primacy bias [157]. This, however, has not been investigated in the
context of long interactions (rather than word lists and media-watching
recall). If this hypothesis applies to the long discussions, most reported
moments would occur in the beginning or the end of the session, and
fewer in the middle of the session.

To test the hypothesis, we compared the memorability index
(percentage of participants that included the segment in their memory
reports, see labels used in [60]) of moments that occurred in the first 1/3
of the session, in the middle and in the end 1/3 of the session. Judging
by an ANOVA followed by a paired t-test, the memorability index of the
moments at the start and the end of the conversations is significantly
higher than the ones in the middle (p<0.005). This therefore seems
to confirm the recency and primacy bias in relation to the occurrence
of memorable moments. Therefore, the memory labels should not be
treated as independent of the temporal context within a session.

SESSION DEPENDENCY

Another factor to consider in the MeMo dataset relates to its’ longitudinal
quality. Since each group participated in 3 consecutive sessions, starting
as strangers and gradually getting to know each other, there might
have been some evolution in their relationships and group perception.
This matters for two reasons. First, a session-dependent variation would
indicate the success of moderated sessions in creating a connection
within the group (→ G2) and show whether the MeMo corpus is
representative of general societal trends. Second, this variability
is important for computational modelling to determine whether the
sessions can be treated as independent of each other. To investigate
whether there is a consistent change in participants’ perceptions of each
other and the group, we analysed self-reported ratings collected from
participants after each session during the experiment.

On the group level, to investigate the development of interaction
and group perception, we compared the questionnaire ratings task
across sessions. In case the facilitation sessions were successful, the
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hypothesis is that there would be higher ratings of group cohesion [146],
entitativity [147], rapport and syncness in the consequent sessions in
comparison to the first one. The significance of the differences was
evaluated with the Friedman chi-square as a non-parametric analogy
of repeated measures ANOVA (since the assumption of normality was
not met by the data). The comparison of group perception scores
between different sessions showed that the hypothesis is confirmed in
relation to syncness (Friedman χ2=13.7, p<0.005), rapport (Friedman
χ2=10.1, p<0.005) and entitativity (Friedman χ2=31.7, p<0.005). In
other words, participants considered that the group was significantly
more harmonious, in sync and united in the 3rd session in comparison
to the 1st session. This, however, did not hold for the group cohesion
measure, with insignificant differences between the 1st and the 3rd
sessions (Friedman χ2=5.4, p>0.05).

On the level of individual relational development, to show whether
there was a similar development in how close participants felt to each
other throughout the three sessions, we investigated the change in
IOS scores [145]. IOS (Inclusion of Other in Self) scale is a validated
and comprehensible measure used to evaluate perceived relationship
closeness between two participants [158]. Using this scale, each
participant in MeMo evaluated how close they felt to every participant
in their group after every session. The scale implies that the more
familiar the participants felt with each other, the higher they would rate
their subjective proximity on IOS scale. The hypothesis was that, with
every next group session, participants would feel closer to each other,
indicating growing closeness between participants. After comparing
participants’ IOS scores between sessions, the Friedman chi-square test
showed that, indeed, participants felt closer to each other with every
subsequent session (Friedman chi-square = 331.3, p<0.005). Figure 2.5
illustrates how the distribution of IOS assessment gradually moves from
the mode of 2 (little overlap) in the 1st session to 4 (equal overlap) in
the 3rd session. This is consistent with previous findings showing that
less acquainted participants score an average of 2 on the IOS scale,
with friends scoring about 4 [158], therefore showing that the majority
of participants developed a friendly relationship after the 3 discussion
sessions facilitated by professional moderators in the MeMo dataset.

These results confirm that the MeMo corpus setup oversees the
development of interpersonal relationships throughout the 3 interactions
and therefore can serve as a useful tool for the evaluation of research
questions related to longitudinal change in group dynamics and
interpersonal relationships throughout repeated deliberation sessions
guided by a professional moderator. This also shows that the sessions
cannot be treated as independent from each other, with systematic
relational and group perception differences between consecutive
sessions.
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Figure 2.5.: The change in perceived social distance between participants
throughout the 3 sessions of the interactions, reported
through IOS scale, with 1 = no overlap, 3 = some overlap
and 7 = most overlap [145].

2.8.2. EXAMPLE: GROUP-LEVEL CONVERSATIONAL MEMORY
PREDICTION

The first baseline for memorability prediction based on the MeMo corpus
has been explored and shown to be promising in [60]. Tsfasman
et al. [60] used group gaze features to automatically predict group
memorability levels.

Group memorability levels were computed from the first-party
memory annotations described in Section 2.5.2, which provided the
opportunity to calculate the percentage of participants who remembered
each 5-second time-window of recorded discussions. Tsfasman et al. [60]
used these proportions to create four labels of memorability level: ’zero’
if no one from the group included a time window in their reports, ’low’
if less than 30% remembered that time slice, ’middle’ - 30 to 70% of
participants considered a moment memorable, ’high’ - if more than 70%
reported an interval in their annotations.

Eye gaze features. To analyse group eye gaze behaviour and
train the classifier, Tsfasman et al. [60] engineered multiple features
computed from raw eye gaze direction and speaker activity annotation
(see Section 2.5.2). Specifically, such group features as eye gaze
presence, MaxGaze and Entropy. They also introduced two additional
measures based on speech - the proportion of participants looking at
the speaker at each given time slice and the proportion of participants
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speaking in the given time slice.
Modelling. Tsfasman et al. (2022) [60] trained a Random Forest

classifier and a Multi-layer Perceptron on the MeMo data with input
being eye gaze features and output being four group memorability
levels (zero, low, middle and high group memorability). Both models
have been shown to predict the memorability labels above chance
(chance being 0.25) with balanced accuracy scores of 0.42 and 0.43
respectively. These first results show how the MeMo corpus can be
used for both computational (prediction of group memorability levels)
and qualitative (analysis of different categories of memorable moments)
studies. Training a rudimentary classifier on non-verbal features to
predict the memorability level of a conversational interval resulted in
above-chance performance. For future work, there is a need to create
more complex models that take into account the temporal and session
dependencies of the data points.

2.9. DISCUSSION: POTENTIAL FUTURE TASKS
This section introduces a series of potential multimodal modelling tasks
for which MeMo might be a useful research resource. For each of these
tasks, we provide a brief motivation and task description, and discuss
the specific MeMo resources useful for the task.

We believe that MeMo provides a foundation of sufficient scope and
size to facilitate preliminary investigations into these tasks. On the
one hand, MeMo is comparable in size to existing datasets covering
related phenomena (see Section 2.4.6 and our comparison in Table
2.1). On the other hand, substantial progress in technical research
on (multimodal) foundation models and related procedures, such as
fine-tuning pre-trained models ( [159]), meta-learning ( [160]), and
few-shot learning ( [161]) has led to an increase in data efficiency across
diverse task settings. Together, these conditions make exploring these
novel task settings using our corpus at least a plausible target for future
research. We believe that MeMo provides a foundation of sufficient
scope and size to facilitate preliminary investigations into these tasks.
On the one hand, MeMo is comparable in size to existing datasets
covering related phenomena (see Section 2.4.6 and our comparison in
Table 2.1). On the other hand, substantial progress in technical research
on (multimodal) foundation models and related procedures, such as
fine-tuning pre-trained models (e.g. [159]), meta-learning (e.g. [160]),
and few-shot learning (e.g. [161]) has led to an increase in data
efficiency across diverse task settings. Together, these conditions make
exploring these novel task settings using our corpus at least a plausible
target for future research.

As mentioned before, memory can be broken down into three
interdependent subprocesses - encoding, retention and retrieval. Since
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memory representations are not directly observable, modelling all three
processes relies on memory retrieval tasks (e.g. moment free-recall
reports in our case) and the three subprocesses are never completely
separable from each other. However, the main focus can be on one of
the three. As such, we divide the possible memory modelling tasks by
the primarily modelled memory subprocess (see Section 2.1).

2.9.1. CONVERSATIONAL MEMORY ENCODING MODELLING
Task Description. Modelling conversational memory encoding is the
primary task of theMeMo corpus. Investigating the moment encoding,
or preserving an event in memory, means focusing on the features of
the timeframe of the actual event that a person’s memory refers to.
The task involves predicting the likelihood of a conversational segment
being encoded by the conversation participants. In other words, a
computational model would be trained on (non-)verbal behaviour of the
participants at the moment of either encoding or not encoding a specific
segment.

A predictive model could infer the likelihood of encoding an event
either by individual participants (human-centred approach) or by the
group as a whole (situation-centred approach). In a human-centred
approach, the model could focus on individual behaviours, such as eye
gaze, gestures, and speech, in relation to their own memory rating,
investigating what behaviours indicate that a moment is important
enough for a person to encode. Other participants’ behaviours can
also be used to understand what conversational context makes a
moment memorable for an individual. In contrast, a situation-centred
approach could focus on what qualities make a moment "universally"
memorable for the group as a whole. Here, the model could use the
behaviours of all participants, with the output being a cumulative metric
of the percentage of participants who successfully encoded that specific
moment (see Section 2.8.2 or [60] for an example).

Task Relevance. Modelling how conversational moments are
encoded through participants’ (non-)verbal behaviour could be useful for
various applications. In meeting facilitation systems, identifying which
segments are likely encoded by participants can help focus on moments
that enhance mutual understanding and shared history [3,162]. Sharing
this information might highlight points one person found important but
others missed, prompting further discussion. In automatic meeting
summarisation, recognising which segments are likely encoded can
produce summaries that emphasise key information or enhance memory
by focusing on less memorable points [50,75].

MeMo Resources for the Task. The output labels for this task could
be the memory features described in Section 2.5.2 - free recall reports
combined with participants’ encoded events annotation (see descriptive
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statistics of the memory measure in Section 2.7.3). These memory data
could then be divided into binary labels per chosen time slice (retained/
non-retained for each specific participant) or a cumulative group-level
aggregated measure as described in Section 2.8.2 or [60]. One more
possible option for an output variable could be a textual description from
the participants’ memory report(s). The raw video or audio (full as well
as separated channels) data that can be used for the input measures
is described in Section 2.7.2. Along with that, a variety of automatically
extracted features is available for this purpose (see Section 2.6.4).

2.9.2. CONVERSATIONAL MEMORY RETENTION MODELLING
Task Description. To model how humans retain conversations on
a long-term, it is possible to use the MeMo corpus with the long-term
memory reports. Modelling retention implies predicting whether a
moment will be remembered long-term using free-recall reports from
two points in time: shorter term - straight after the interaction, and
longer-term - 3-4 days after the interaction, when most forgetting
would have occurred, and only the most persistent memories would
have stayed [34]. The task, in this case, is similar to the encoding
modelling, except for more incremental output labels - a time slice
could be forgotten (not mentioned in any memory reports), retained
in the short-term (only mentioned in the short-term memory reports),
and retained long-term (mentioned in both short-term and long-term
reports). For this purpose, however, more annotation is required to
connect the long-term memory reports to the events in the recording.
The input features could be the same as those in the encoding task -
various verbal and non-verbal behaviour during the conversation.

Task Relevance. This task is relevant for long-term facilitation
systems and conversational agents. Since long-term user engagement
remains a challenge [163, 164], efforts have been made to enhance
agents with shared memory models [73, 165–167]. However, there
is no way to identify which memories are shared or forgotten by the
user. Memory retention modelling could improve agents’ long-term
understanding of users and adapt dialogue strategies based on the
likelihood of events being retained. Facilitation systems could also
benefit from knowing which events are retained long-term. These
models could be personalised for a better user experience or modified
to support dementia patients.

MeMo Resources for the Task. The output labels for this task
could be the memory reports described in Section 2.5.2 - free recall
reports, participants’ encoded events annotation and long-term memory
reports. The input features could be similar to the encoding task above
(audiovisual data described in Section 2.7.2 and features from Section
2.6.4).
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In our initial modelling experiments (Section 2.8.2), we show that
memory encoding can be predicted above chance using relatively simple
classifiers and a limited set of non-verbal features. While further work
is needed to evaluate the generalisability of these results to more
complex modelling tasks, these findings suggest that the dataset may
be sufficient in quantity for the other described computational tasks.

2.9.3. PERCEIVED REASON FOR RETENTION MODELLING
Task Description. To model the reasons why conversational segments
were encoded and retained, the MeMo corpus contains self-reported
reasons why participants recalled each moment. The reasons were
then categorised by two annotators, with the label frequencies reported
in [60]. In future research, it would be important to further investigate
the types of reasons that participants report for considering a moment
memorable. This could be a separate modelling task of inferring a
perceived reason for remembering a moment from verbal or non-verbal
data as well as memory reports themselves.

Task Relevance. This task offers a qualitative perspective on
conversational memory modelling, providing an opportunity for deeper
user understanding in applications, such as meeting facilitation and
conversational agents. Inferring and understanding the perceived
reasons for remembering can help extract information about the
underlying relevance of a specific memorable event for a user. This
reasoning could be crucial for further dialogue strategies in human-
agent interaction. What is more, perceived reasons can serve to
improve the accuracy of the encoding prediction and to refine the
encoding memory prediction labels into more specific memorable event
categories, potentially reducing noise in the data.

MeMo Resources for the Task. The output labels could be the
description of the perceived reasons mentioned in Section 2.8.2, as well
as a categorisation of these descriptions described in [60] which are
available by request. The input labels could be the moment free-recall
memory reports as well as any conversational behaviour, similar to the
encoding and retention tasks above.

2.10. CONCLUSIONS
In the present paper, we introduce MeMo - the first multimodal corpus
with first-party memory annotations. The multi-party interactions were
conducted in an ecologically valid, spontaneous setting in a typical
online meeting environment and participants in the comfort of their
own homes. For each group, there were three 45-minute group
meetings spread 3-4 days apart, which provided opportunities for
investigating group dynamics and relationships in newly formed groups.
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The rich collection of perceptual measures from pre- and post-session
questionnaires can serve as a source for studies on how individual
participant characteristics and perception of interaction, group, and
other participants affect group dynamics and conversational memory.
With the first investigation on how non-verbal signals can indicate
conversational memorability, we show that group eye-gaze behaviour
can discriminate over conversational memorability levels [60]. We
also show that throughout 3 sessions there was an interpersonal
relationship development: participants assessed their groups as having
more rapport, syncness and entitativity. Participants assessed their
social distance from other participants as closer in the 3rd session in
comparison to the first session.

With this research, we hope to pioneer multi-modal corpus research
of conversational memory and create opportunities for studying
conversational memory and group dynamics, along with other topics
related to longitudinal group discussions.

2.11. LIMITATIONS
As with any dataset, the MeMo corpus has its limitations. In the
following, we will highlight several key aspects relevant to the intended
use of the corpus.

Validity of Memory Annotations MeMo contains two types of memory
annotations: Moment Free-Recall Self-reports (MFRS), and Encoded
Event Annotations (EEAs). While we argue that jointly these provide
valid resources for modelling both the encoding and retention processes
of participants, there are some caveats we want to highlight.

First, our corpus assumes that each MFRS corresponds to a single EEA,
i.e., a remembered moment in the conversation corresponds to a single
segment in the multimodal signal. However, this might not always be
true, for example, when multiple similar events are reported as a single
memory (with more than one EEA included in one MFRS).

Secondly, it is likely that there are events that participants remembered
but failed to either report or annotate. Our protocol required participants
to identify multiple segments in the recording at a fine granularity, which
is a cognitively taxing task. This might impact the comprehensiveness
and accuracy of the resulting annotations.

Finally, our protocol asked participants to report MFRS from previous
sessions (see Section 2.5.2). We have argued that this data forms a
viable source for modelling retention. However, we cannot rule out that
participants could access memories from previous sessions but failed
to report them (i.e., we do not know if they forgot about a moment or
simply failed to produce a matching MFRS).
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In addition, the dataset therefore does not provide any metrics of
’recall rates’ used in previous literature [17], or any measures of
recall quality (e.g. percentage of the information that was retained
vs forgotten). The memory annotation only provides the encoded
conversational events, accessible to participants at the time of the
moment free-recall task. This said, it could be possible to compute
recall quality using third-party annotators, for example, by annotating
free-recall reports as well as conversation transcripts with idea units and
computing the percentage of the units that have been reported within
memorable moments.

Comprehensiveness of Memory Annotations While we believe that
MFRS and EEAs capture properties relevant for modelling retention
and encoding, the current annotations do not facilitate work on the
functional use of memories in conversations (i.e., how people use
memories to convince others or for bonding purposes [11]). However,
it is likely that MeMo captures a substantial amount of such instances,
and we intend to investigate their presence in future work (i.e., to
provide additional annotations). Note that even though our protocol
for obtaining MFRS explicitly asks participants to "recall" memory,
this is merely a methodological necessity (i.e., it is not possible to
study memory content without prompting for it); it does not facilitate
modelling retrieval processes as such (i.e., the conditions under which
content is dynamically accessed or accessible).

Choice of Conversational Setting First, the MeMo corpus was recorded
online. Therefore, it is specific to the memory of online video-call
conversations, which could be different from the memory of face-to-face
interaction, because of different conversational dynamics [168]. This
said, the research on how humans remember information from online
and face-to-face lectures shows no differences in recall quality between
these settings [169].

Second, the topic of the conversations in the MeMo corpus is limited
to the Covid-19 pandemic. At the time of the recording, this topic
was naturally engaging since it noticeably affected most people’s lives.
Humans tend to remember information that is personally relevant
to them [170] and, therefore, with a different topic, the trends in
memorable moments might have been different.

Additionally, having a trained moderator may create a sense of
hierarchy in the group as well as introduce different moderation styles,
potentially affecting the discussion structure and group dynamics. A
different setting might lead to different results, depending on the
environment, goals, and roles in the conversation.
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Notes on ecological validity Although we strove for maximising eco-
logical validity in the MeMo corpus (see Section 2.3), it still has some
differences from the real-world interactions. Although the online setting
of the corpus is highly representative of a typical online meeting setup
(i.e. in the comfort of people’s homes and with their own technological
set-up, using Zoom software that at the time of the data recording
had est. 300 million daily active users worldwide [123]), it was still
an experiment and therefore does not represent complete real-world
interactions. First, participants had to complete surveys before and after
the recording, which does not usually happen in real-world settings.
Second, participants were recruited for the experiment and were not an
already acquainted team, as they would be in a real-world work meeting.
For the same reason, although paid for the experiment, they did not have
the social and professional incentives in mind that a real-world work
team would have. Third, the conversations were guided by moderators,
and although it is typical to have a professionally assigned or emerging
leader in team meetings, the moderation style or the fact that they
are assigned rather than emerging meeting leaders could affect the
representativeness of the real-world team meeting dynamics [171]. In
addition, although representing a wide range of demographics (e.g. age
groups), our sample includes people who fluently speak English and
reside in the UK, and therefore only represents a specific subsection
of (mostly white) people in a developed English-speaking country and
therefore might not generalise to the rest of the world.

2.12. DATASET AND CODE AVAILABILITY
The MeMo dataset will be made publicly available following a compre-
hensive review process. This process aims at the removal of sensitive
and potentially harmful information to the best of our knowledge. Once
this step is complete, the wider release will occur gradually through
multiple subsets of data, each focusing on different aspects of the
dataset. The first release, associated with this paper, will include
audio-visual recordings and temporal memory segment annotations.
Unfortunately, specific timelines for the dataset release cannot be
provided at this time.
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ABSTRACT
Humans have a selective memory, remembering relevant episodes and
forgetting less relevant information. Possessing awareness of event
memorability for a user could help intelligent systems in more accurate
user modelling, especially for such applications as meeting support
systems, memory augmentation, and meeting summarisation. Emotion
recognition has been widely studied since emotions are thought to signal
moments of high personal relevance to users. The emotional experience
of situations and their memorability have traditionally been considered
to be closely tied to one another: moments that are experienced as
highly emotional are also considered to be highly memorable. This
relationship suggests that emotional annotations could serve as proxies
for memorability. However, existing emotion recognition systems
rely heavily on third-party annotations, which may not accurately
represent the first-person experience of emotional relevance and
memorability. This is why, in this study, we empirically examine
the relationship between perceived group emotions (Pleasure-Arousal)
and group memorability in the context of conversational interactions.
Our investigation involves continuous time-based annotations of both
emotions and memorability in dynamic, unstructured group settings,
approximating conditions of real-world conversational AI applications
such as online meeting support systems. Our results show that the
observed relationship between affect and memorability annotations
cannot be reliably distinguished from what might be expected under
random chance. We discuss the implications of this surprising finding for
the development and applications of Affective Computing technology. In
addition, we contextualise our findings in broader discourses in Affective
Computing and point out important targets for future research efforts.
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3.1. INTRODUCTION
Memory for conversations and other social interactions plays a crucial
role in shaping social bonds and fostering relationship building [11].
Considering human conversational memory in intelligent systems is,
thus, essential for explaining and predicting human behaviour in
conversations, including their affective responses. Conversational
memory can be defined as a subtype of episodic memory, which
manages the encoding, storage, and retrieval of personally experienced
events [80], particularly within conversational settings.

Affective Computing (AC) has long focused on recognising and
interpreting human emotions to enhance interactions between users
and intelligent systems [18]. Emotions are considered to be central
to human experience, shaping decision-making, social interactions, and
memory. Their automatic detection is valuable for intelligent systems
because emotional responses often signal moments of high personal
relevance to users. To capture these signals, Multimodal Emotion
Recognition (MER) commonly uses human behavioural cues, such as
facial expressions, speech patterns, and physiological signals, to infer
emotional states. While MER has made significant strides in detecting
momentary affective states, its potential to model longer-term cognitive
processes, such as memory, remains underexplored.

Both theoretical and empirical research suggests that the way we
emotionally experience events is strongly linked to how well we
remember them [37]. Emotional arousal enhances memory encoding
and retrieval, with emotionally charged events being remembered
better than neutral ones [38]. The effect is linked to hormone release
during arousing experiences, which strengthens memory formation in
the brain [39]. Both valence [172, 173] and arousal [39, 40], as well
as their combination [174], have been shown to enhance memory
processes. Additionally, affect and memory are closely tied to the
personal relevance of a stimulus, as relevance influences both emotional
experience [175] and the likelihood of remembering an event [45]. Given
these well-documented relationships, it is reasonable to hypothesise
that perceived affect could serve as a proxy for memory.

These and similar findings have been used to motivate various
intelligent systems to integrate emotional components into computa-
tional memory models, e.g., to drive interactions between users and
virtual agents [41–43], social robots [176,177], or between agents in
multi-agent systems [178].

However, despite this prevalent conceptual connection between
emotional responses and memorability, Affective Computing research
has not yet explored this connection in the context of MER technology.
Unfortunately, without targeted empirical exploration, it remains unclear
to what extent theory and findings from the behavioural sciences
connecting the two phenomena actually translate to many of the



3

60 3. The relationship between memory and affect

settings in which MER technology is developed or expected to operate.
Notably, the following aspects span crucial practices of the development
and deployment of MER technology but are not sufficiently covered in
existing findings connecting the two phenomena:

1. Choice of Annotation Perspectives: Although research robustly
links experienced emotions (measured through self-reports and
physiological signals) with memory encoding, it remains uncertain
whether third-party observed affect annotations, which are widely
used in affective computing, can reliably serve as proxies for
personal memorability (more detail in Section 3.2.1).

2. Continuous Conceptualisation: Previous research on the link
between affect and memory operationalises those as static states,
while in MER systems it is more common and desirable to view
those as continuous. The link between continuous annotation of
affect and memory has not been studied, to our knowledge (see
Section 4.2.3).

3. Group-based Analysis: Group-based MER systems are crucial for
real-world applications like meetings and collaborative tasks, yet
existing research on the emotion-memory link primarily focuses on
individuals, overlooking the social dynamics that shape both affect
and memory in group interactions (see Section 3.2.3).

Given these gaps, the extent to which third-party affect annotations
capture memory-relevant information in real-world settings remains an
open question. To address this question, in this paper, we present an
empirical investigation evaluating the association between annotations
of Perceived Group Emotions (Pleasure-Arousal) and Group Memorability.
Our study leverages time-continuous annotations of emotions and
memorability in dynamic, unstructured group interactions, mirroring
real-world conditions relevant to MER applications like online meeting
support. We discuss the implications for Affective Computing, situate our
findings within broader Affective Science discussions, and highlight key
directions for future research to bridge the gap between computational
modelling of affect and memory.

3.2. BACKGROUND AND MOTIVATION
In this section, we briefly expand on some of the core properties of
Affective Computing development practices that we believe could limit
the insights that existing empirical findings on the emotion-memorability
link can provide for the development and applicability of Multimodal
Emotion Recognition (MER) technology. To support this discussion,
we provide a graphical overview of the components and relationships
involved in the development practices we discuss in Figure 3.1.
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Figure 3.1.: An illustration of perceived vs experienced emotion and
the object of this study (shown with a blue dashed arrow).
The states with observable information are shown in blue,
and the states we have no access to are shown in orange.
The green dashed arrow represents the relationships that
have been studied in previous literature. (Based on the
component model of emotions according to Scherer [179])

3.2.1. CHOICE OF ANNOTATION PERSPECTIVE
As mentioned in Section 3.1, there is substantial empirical evidence
indicating a link between emotional episodes and the memorability
of events. However, the findings supporting this link are largely
grounded in physiological signals of emotions and self-reports of first-
person experience (e.g. [38–40,172,173]), i.e., they capture what we
could call "Experienced Emotions" and "Self-reported Memorability"
of events. When a person encounters an event, the event is
thought to be experienced through a process of cognitive appraisal
- evaluation of event relevance, implication, coping potential and
normative significance [180]. Such appraisal is thought to result in
motor expression (behaviour), physiological reaction and a subjective
feeling (experienced emotion) according to Scherer’s widely accepted
component model of emotion [179]. Along with that, a process that
is triggered is memory encoding (if the event is considered relevant).
The well-established link between emotion and memory described
above applies to the relationship between memory encoding and
measures of experienced emotion (subjective feeling) [45,172–174] or
the physiological responses related to emotions [38,39] (shown with a
green dashed arrow in Figure 3.1) 1.

In the context of affective computing, however, it is more common to
focus on observed emotion - a hired annotator (observer in Figure 3.1)
1Note that these studies have focused on individual memory and emotion, not memory

in a group context.
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watches videos and labels arousal and valence of participants’ emotional
behaviour [44]. Relying on observed annotations is done on the one
side for pragmatic reasons - it is easier to employ external annotators
than to collect self-reports, and it is possible to hire many annotators for
each temporal segment to reduce annotation subjectivity. On the other
side, it is more practical for modelling reasons, since annotators rely on
external behaviour to make their judgement, similar to what an emotion
recognition model would do.

This distinction between experienced and observed emotion is
important since the observed emotion is an external evaluation of a
participant’s behaviour by a third-party observer. Since such third-party
annotation is solely based on the observed behaviour, it may contain
some inaccuracies. For example, not all emotions might be expressed
through behaviour or sometimes the expressed behaviour might not
reflect the experienced emotion because of social norms (e.g. covering
anger with a polite smile to avoid confrontation). In addition, in the case
of group affect [181], the third-party annotation reflects the observed
emotions of the group rather than the individual participants one-by-one
and might not be equal to specific emotions of each group member (e.g.
if one participant displays a negative valence while three display highly
positive valence, the valence of the group would probably be labelled as
high).

In conclusion, while the literature points towards a clear physiological
link between experienced affect and memory encoding, the question
of whether observed affect annotations are representative of memory
labels remains open. It remains uncertain whether previous insights
from the behavioural sciences can inform research about the ability
of Multimodal Emotion Recognition (MER) to provide insights into the
memorability of situations.

3.2.2. TIME-CONTINUOUS OPERATIONALISATION OF CONCEPTS
A common practice in developing MER systems is to collect data
that operationalises emotional responses through time-continuous
measurements (e.g., annotations collected for every frame in a video
stream [46]). Some of the proposed benefits [47] of this practice
are considered to be its high temporal granularity (i.e., being able
to capturing nuanced changes in emotional qualities over time), but
also its capacity to capture emotional variability (i.e., being able to
describe changes in emotional qualities within some specified unit of
analysis, such as a video clip). Pragmatically, it seems also plausible
that time-continuous estimates of emotion are highly desirable from the
point of view of many applications, since they might enable systems to
respond to changes observed in users dynamically.

While common in data collection for MER development, studies inves-
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tigating the emotion-memorability link in the behavioural sciences do
not operationalise either concept with such time-continuous measures.
Instead, these concepts are typically operationalised with self-reports
describing events as reconstructed from memory, without access to
information at encoding time or fine-grained breakdowns of parts of the
event (e.g., see Talarico et al. [182] for an example).

Given this misalignment in operationalisation, it seems unclear
to what extent existing findings about the emotion-memorability
link can generalise to the outcome achieved with practices used
for developing MER. For example, memory biases might distort
how emotion is attributed to remembered events or emotional
connections to memorability might be due to increased rehearsal
over time [37] (see also Dudzik and Broekens [183] for a more extensive
discussion of potential influences manifested by the choice of when
to provide emotional self-reports). Overall, it does not seem self-
evident that estimates based on datasets that have a time-continuous
affective ground truth reliably approximate memorability when similarly
operationalised.

For this reason, our study operationalises both concepts in a time-
continuous way, leveraging the MeMo dataset [36] that contains relevant
annotations for memorability, which were recently complemented with
associated time-continuous Affect Annotations by Prabhu et al. [181].

3.2.3. GROUP-BASED ANALYSIS
Many applications for which Multimodal Emotion Recognition is beneficial
are often expected to operate in group settings, such as work
meetings [5], educational settings [184], and collaborative tasks [185].
In these contexts, MER can not only be used to analyse individual
emotions but also to assess group-level affective dynamics, where the
target of predictions extends beyond individuals to an entire team and
its emergent characteristics.

Group affect, the collective emotional state of a group, has gained
attention in affective computing and computational modelling. It
encompasses shared moods and emotions among group members
during interactions [25,48]. Research has explored integrating group
affect into decision-making processes, developing computational models
that consider individual, group, and emerging processes [186]. Studies
have investigated the dynamics of group affect, including convergence
and divergence of affective expressions, using multimodal approaches
to extract synchrony-based features from audio and visual cues [181].

Existing research on the relationship between emotion and memory in
the behavioural sciences has primarily focused on individual experiences
rather than group-based settings. Most studies investigating this link
have been conducted in controlled environments where participants
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engage with stimuli in isolation, rather than within dynamic social
interactions (e.g., [38–40, 172, 173]). Social interactions such as
conversations differ from individual contexts because of the continuous
exchange of (non-)verbal signals and relational dynamics, changing the
resulting quality and quantity of remembered information [12–17,33].
Although there is some research on emotion and memory in social
contexts, the literature linking the two concepts to each other
typically conceptualises them as personal cognitive-affective processes,
without considering how these phenomena may emerge differently in
conversations and other group contexts. This individual-level focus
limits the applicability of prior findings to real-world scenarios where
memory and emotions are often shaped by collective interactions.

This gap is particularly relevant for Affective Computing applications,
as the cognitive-affective processes at play in group settings may
differ significantly from those observed in isolated individuals. Social
dynamics such as emotional contagion and regulation not only influence
individual affective states but also the overall emotional climate of a
group, potentially affecting how shared experiences are remembered,
while also significantly impacting group interaction outcomes, including
creativity, analytical performance, sense of belonging, and information
sharing [132, 187, 188]. These factors suggest that findings from
traditional emotion-memorability studies may have limited capacity
to inform the development of MER systems intended for group-based
applications, underscoring the need for research that explicitly addresses
affect and memory at the group level.

For these reasons, we believe that our study’s setup provides
a meaningful addition to the existing body of research since it
explicitly focuses on group-based analysis: it 1) takes place in
group-conversational settings and 2) conceptualises both emotion and
memorability as group-level constructs.

3.2.4. RELATED WORK: MEMORABILITY PREDICTION
The few studies that do investigate memorability from a computational
perspective focus on memorability of media stimuli [20,21,35]. These
studies have generally been successful in identifying features (such
as semantic richness, emotional valence, and visual distinctiveness)
that contribute to enhanced memorability of media segments across
individuals [20,21,35]. Such memorability modelling has the potential
to advance user modelling to understand what is actually relevant for
the user and what needs to be repeated or reframed for a greater
impact on the user in the long term. Nevertheless, in an arguably
more common and socially important context of conversations, memory
modelling remains underexplored. Unlike media memorability, where
the stimulus is a fixed and repeatable entity, conversational memory
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emerges from dynamic, interactive, and multi-speaker contexts, making
it more complex to model. Moreover, many conversations happen in a
group of people, offering an additional complexity as well as a source
of insights into what is considered memorable in a group (e.g. team
meetings, friends and family gatherings).

3.2.5. CONVERSATIONAL MEMORY MODELLING
Although understanding the way humans remember conversational
stimuli has been the subject of decades of cognitive research
(see [12–17] for illustrative examples), it has only recently been
approached from a computer science perspective. To our knowledge,
only one study and dataset have addressed the task of predicting
conversational memory: Tsfasman et al. [60] has introduced a baseline
model using the MeMo conversational memory corpus [36].

3.3. METHODS: DATASET
3.3.1. DATA SOURCE
In this paper, we use data contained in the recently created MeMo
dataset [36]. It was collected in an online video-conferencing setting of
45-minute longitudinal group conversations. Each group included 3 to 5
participants and one professional moderator. The moderator was tasked
with keeping the conversation going and trying to keep the atmosphere
in the group comfortable for participants to be ready to openly express
their opinions and emotions. The topic of the conversations was the
Covid-19 pandemic, focusing on people’s experiences and opinions
about the pre- and post-pandemic world (a relatable topic for many at
the time of the recording of the corpus in 2021). Each group participated
in three 45-minute long conversations scheduled 3-4 days apart. While
the MeMo corpus originally does not contain any affect annotations,
these were provided in a follow-up by Prabhu et al. [181].

3.3.2. DATA PREPARATION
In this paper, we used a subset of the original MeMo corpus: the
sessions and specific timestamps for which Prabhu et al. [181] have
collected affect annotations. This selection resulted in 3 groups from the
original MeMo corpus being excluded and the timestamps at the start
and end of the recordings being trimmed to match the timestamps of
the annotations (for details on the exclusion criteria, see the relevant
publication [181]). In addition, we excluded 4 sessions with gaps in
memory annotation (i.e., instances where at least one participant did
not fill out the post-session survey). The subset of MeMo used in this
paper consisted of 30 conversational sessions totalling 1457 minutes of
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recording (mean of 41.6 min. per video +- 7.5 min.), 12 groups with 42
participants in total.

3.3.3. ANNOTATION COLLECTION
Perceived Group Affect. Group affect annotations are present
in 15-second intervals across two affect dimensions: arousal and
valence, based on Russell’s circumplex model [189]. The annotations
are on an ordinal scale (1-9), allowing annotators to express varying
intensities of affective states in a continuous manner. The study
employed 8 annotators with backgrounds in organisational psychology
and prior experience in annotating social behaviours. Each annotator
underwent training designed to ensure consistency and reliability in
their evaluations. This training emphasised the importance of focusing
explicitly on observable emotional behaviours, ensuring that annotations
were grounded in visible cues rather than inferred internal states. Each
group interaction video was assessed by at least 6 annotators. Inter-
annotator reliability was evaluated, revealing moderate agreement
across both affect dimensions. For additional details, see Prabhu et
al. [181].

REMEMBERED MOMENTS

Memory annotation procedure. The memory annotation procedure
consisted of two stages. First, immediately after each conversational
session, participants completed an open-ended free-recall task, reporting
up to 10 moments they remember in their own words with as much
detail as possible in a free form. This step ensured that memories
reflected participants’ accessible recollections at the time (for more
detail, see Tsfasman et al. [36]). Second, participants reviewed
the session recordings to match their reported moments to specific
events by providing start and end times or indicating if the memory
lacked a precise interval. This self-assignment ensured memory-event
alignment based on participants’ perspectives rather than third-party
interpretations. The process was designed to prioritise construct validity
while managing participant fatigue and minimising bias (see more
details on the MeMo setup in Tsfasman et al. [36]).

In total, there were 419 self-reported memorable moments in the data
used in this paper, with a mean duration of 110 seconds (+- 116, from 1
to 580 seconds)1.

1The minimum duration of a memorable moment is equal to 1 second because the
videos were cropped based on the valid segments used in the curated dataset and
affect annotations. A one-second moment is likely part of a longer event, with its
start or end removed for varying reasons (see Tsfasman et al. [36] and Prabhu et
al. [181] for details on video cropping).
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3.3.4. PROCESSING AND DERIVED MEASURES
In this section, we briefly outline how we processed the annotations
described above to arrive at operationalisations of Perceived Group
Affect and Group Memorability.

GROUP MEMORABILITY MEASURES
Continuous Group Memorability Index. To compute the combined
measure of what segments were memorable to the group, for each
second of the recording, we calculate a Group Memorability Index. It
is defined as the ratio of participants from a group that included those
timestamps in their annotations for Remembered Moments.

Binary Group Memorability Index. From the continuous memory
measure, we compute a Boolean metric of whether each individual
second was recalled by at least one member from within the group.
The memory Boolean value was 0 if the memory index was 0. If the
memory index was greater than 0 the value was 1. In essence, this
variable encodes the most generous operationalisation of the group
memorability concept.

PERCEIVED GROUP AFFECT MEASURES
Continuous Affect: Valence and Arousal. We aggregate the arousal
and valence annotations across raters using a median of all the reported
scores for each second. In addition to aggregation, we shift the scales
to be able to compute an additional measure of affect intensity (see
below).

Specifically, we shifted the values for both dimensions to Likert scale
from 0 to 8. For arousal we used the following formula:

A′
t
= At − 1 (3.1)

where t represents the timestamp (in seconds).
To better reflect the bipolar nature of valence, we shifted and rescaled

the original values according to the following formula:

V′
t
= 2 · (Vt − 5) (3.2)

This changes the original 1-to-9 scale to a symmetric range from −8
to 8, ensuring that the intensity of both negative and positive valence is
represented with equal magnitude.

Continuous Affect: Intensity. Some versions of the emotion-
memorability link conceptualise the emotional component not in terms
of specific emotional qualities (e.g., pleasure), but instead as the
intensity of the emotional episode at the time of encoding [190].
According to Reisenzein [191], emotional intensity refers to the strength
or magnitude of an emotional experience, which can be understood
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in terms of the circumplex model of affect [189]. This model posits
that emotions are organised along two primary dimensions: pleasure
(valence) and arousal. Emotional intensity represents the degree to
which a person experiences these two dimensions, ranging from mild
to strong. In this framework, the intensity of an emotion can be
computed based on the values of arousal and valence [192]. In this
paper, emotional intensity labels  for timestamp t is calculated as the
Euclidean norm of valence score Vt and arousal score At:

t =
Ç

V2
t
+ A2

t
(3.3)

The resulting intensity metric ranges from 0 to
p

82 + 82(∼11.3).
Affect - Binary. To investigate if the relationship between group

affect and memory annotations is clearer with binary affect values with a
meaningful threshold, we computed binary affect labels with the middle
of each annotation scale as a threshold: 0 for valence, 4 for arousal and
4 for intensity. The threshold of 4 for intensity does not correspond to
the mathematical midpoint of the intensity range, but is instead derived
from a functionally meaningful point: the intensity calculated when
arousal is at its midpoint (4) and valence is neutral (0). That is:

mid =
r

V2
md + A

2
md =
Æ

02 + 42 = 4 (3.4)

This threshold reflects a moderate level of emotional engagement
based on the meaningful input scales, rather than a purely statistical
midpoint. It is thus used to distinguish between lower and higher
affective intensity in a way that reflects the underlying annotation
schema and preserves interpretability in relation to arousal and valence
contributions.

3.4. METHODS: ANALYSIS
3.4.1. METRICS
Comparing human internal states to each other to evaluate their
alignment brings several challenges. First, human data is typically
characterised by noise and is prone to errors, especially when it comes
to perceived measurements such as affect (e.g., there might be a
delay in annotation [46] or misinterpretations or lapses in annotators’
attention). Second, there might be confounding variables at play, such
as the introduction of new stimuli or non-measured factors. Third,
when dealing with continuous data such as human interactions and
changing internal states, there is temporal context that needs to be
taken into account. To address these challenges, it is essential to use
evaluation metrics that are sensitive to the temporal nature of the data.
Traditional measures of time-series comparison, such as Mean Squared
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Error (MSE) or Mean Absolute Error (MAE), penalise slight temporal shifts
or discrepancies too harshly.

PATE

Therefore, the first metric we rely on is a recently introduced metric
designed specifically for time-series predictions that accounts for such
temporal shifts - the Proximity-Aware Time series Evaluation (PATE)
metric [193]. PATE is conceptually similar to the Area Under the
Precision-Recall Curve (AUCPR) but introduces additional considerations
for time-series. Specifically, PATE does not treat all mismatches
between predictions and ground truth equally; instead, it introduces a
tolerance window around each ground truth event, recognising that in
real-world human-centred data, small temporal shifts in responses (such
as memory recall or affect expression) are expected. The metric assigns
partial credit to predictions that fall within this window, reducing the
penalty for minor misalignments. The PATE framework introduces the
assumption that temporally proximate events are functionally related,
making it particularly well-suited for evaluating human behavioural data
where slight timing discrepancies should not be treated as errors.

In this paper, we use the standard PATE measure, which operates
on one binary time-series (memory Boolean in our case) and one
continuous (affect annotations), by setting various thresholds on the
continuous data and computing the area under the curve as the output
PATE value. Additionally, we use PATE F1, which compares two binary
time-series representations, to assess whether a meaningful manually
set threshold on affect data, such as the midpoint of the scale, would
indicate a stronger relationship with memory labels.

EUCLIDEAN DISTANCE

The PATE metric assesses relationships based on discrete categories
rather than continuous values. This binary nature can lead to limitations
when examining more nuanced or gradual changes in affect and
memorability traces, as it does not account for the varying degrees
of response or activation that may occur outside of strict categorical
boundaries. Therefore, to quantify the relationship between emotion
and memorability annotations without threshold assumptions, we use
Euclidean distance as an additional metric. Euclidean distance offers
a straightforward estimate of how similar the two time-series are to
each other.

DYNAMIC TIME WARPING (DTW)

Euclidean distance does not take into account small shifts or stretches
in the data, for example, if the affect signal increases consistently some
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time before/after the interval becomes memorable, which is plausible
based on the literature [115, 194]. This is why our final metric is
Dynamic Time Warping distance (DTW) [195]. DTW is a technique
used to measure similarity between two temporal sequences that may
vary in speed or timing. By warping the time axis, DTW aligns sequences
in a flexible manner, allowing for the comparison of patterns that may
be out of phase. This adaptability makes DTW particularly suitable for
analysing time-series data in the context of memory and affect, as it
can capture meaningful correlations even when events occur at slightly
different times, thus providing a more accurate representation of the
underlying relationships.

Since all these metrics denote different types of relationships, we
compute all four measures - PATE F1 on binary memory labels
(Section 3.3.3) and binarised affect with manually set thresholds
(Section 3.3.3), PATE on binary memory and continuous affect, Euclidean
distance and DTW distance on continuous memory (Section 3.3.3) and
continuos affect (Section 3.3.3).

Since our distance-based metrics, such as Dynamic Time Warping
(DTW) and Euclidean distance, compute mathematical differences
between values at each time-step, it is important to ensure that
all time-series are on comparable numerical scales. The memory
signal in our analysis is already bounded between 0 and 1, while the
affective dimensions (e.g., valence, arousal, intensity) span broader and
heterogeneous ranges (e.g., from –8 to 8 or from 0 to 11.3). Without
scaling, these differences in range would bias the distance metrics
toward dimensions with larger numerical intervals, thereby distorting the
results. To address this disparity, we normalised all affective dimensions
to a range of 0 to 1, ensuring consistency and meaningful comparisons
across metrics. Note that valence was normalised from 0 to 1, resulting
in the loss of its original bipolar structure (i.e., negative to positive).
This transformation is justified in the context of our distance-based
metrics, which assess the similarity in shape and temporal alignment
between signals, rather than their absolute semantic values. Since
the goal is to compare how closely the dynamics of affective signals
track memory over time, rather than interpret the polarity of affect,
preserving comparability in scale takes precedence over retaining the
original meaning of zero as neutrality. This said, for all other metrics
(PATE, PATE F1) the annotation scales are not normalised and remain in
their original shape.

3.4.2. STATISTICAL TESTING PROCEDURE
A crucial challenge testing the relationship between our memory and
affect annotations lies in the absence of a baseline to interpret the
strength of that relationship.
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Simply put, while we can compute correlation and similarity metrics
(PATE F1, PATE, Euclidean distance, and DTW) to quantify the association
between these variables, interpreting these values without a frame of
reference leaves us uncertain about whether the observed relationships
are relatively strong, weak, or even meaningful.

To address this, we followed the procedure shown in Figure 3.2,
generating synthetic affect data with different assumptions in three
experiments. These synthesised datasets act as estimates of the
sampling distribution under the null hypothesis, enabling us to create
a comparative framework for understanding the relationship between
memory and group affect annotations. In each experiment, we simulated
synthetic data with a specific hypothesis in mind: for example, assuming
random affect annotations independent of memory (experiment 1), or
annotations shuffled over time (experiment 2).

Figure 3.2.: Illustration of the affect-memory annotations comparison
procedure

Using the same metrics as for the actual data, we then evaluated the
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relationship between each synthetic and the real memory annotations.
For each iteration of an experiment, we computed the metric averages
over 35 sessions, representing each session’s memory data within the
dataset and comparing it to a synthesised affect annotation. To ensure
the robustness of our results and account for random variations, we
repeated this process for 10000 iterations, generating new synthetic
data at each iteration. This produced a distribution of 10000 average
metric values under the null hypothesis for each experiment.

With this distribution, we could then assess how the actual observed
relationship values between real memory and affect annotations
compare to the simulated point of reference. This was computed by
calculating the probability that the real data metrics belong to the
same distribution as the synthetic data. Specifically, by examining how
likely the real data metrics are to belong within the range of values
produced by the synthetic data, we could assess whether the observed
relationships in the real data are likely to have occurred by random
chance. If the real data metrics deviate significantly from the synthetic
distribution, one would reject the null hypothesis that the association
between these two variables is not different from random chance. In
other words, this would suggest a meaningful difference in the alignment
between group affect annotations and memory in the actual dataset
compared to what we would expect under random conditions.

The three computational experiments differed in the way the data
under the null hypothesis was generated. In the 1st experiment, we
generate the random affect data using the fewest assumptions - drawing
random affect values from a random distribution of the full feature
range (-8 to 8 for valence, 0 to 8 for arousal and 0 to 11.3 for intensity).
This experiment is meant to answer the question of how likely it is that
the relationship between memory and affect annotations is completely
random. In the 2nd experiment, we generate affect annotations closer
to the original data by keeping the observed range of affective labels,
i.e. if in one session the arousal annotations range from 1 to 6, this is
the range we use for the annotation generation for that session. In the
3rd experiment, we mimic the distribution within the observed affect
when generating annotations while destroying the temporal alignment
between affect and memory - we take the real affect annotations and
shuffle them within the time-series. This experiment is meant to test
the strength of temporal alignment between affect and memory. In all
the experiments, the comparisons are performed on emotional arousal,
valence and intensity annotations separately.

The decision on rejection of the null hypothesis was made using the
following rule: if the p-value is significant across all 3 experiments, we
could reject the overall hypothesis that the relationship between memory
and observed affect annotations could belong to the same distribution
as the relationship between memory and random or permuted affect
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annotations.

3.5. EMPIRICAL INVESTIGATION
3.5.1. EXPERIMENT 1: RANDOM UNIFORM
SIMULATION UNDER THE NULL HYPOTHESIS.

In this experiment, we compare the actual observed affect to memory
alignment metrics (PATE F1, PATE, Euclidean distance, and DTW) to
those on random affect data with minimal assumptions (with comparison
procedure described in Figure 3.2 and Section 3.4.2). For this, for each
of the 35 videos, we simulate affect annotations randomly drawn from a
uniform distribution in the range of each affect dimension scale: 0 to 8
when simulating arousal, -8 to 8 when simulating valence and 0 to 11.3
when simulating emotional intensity. To maintain the basic structure of
affect annotation, the random affect label is drawn every 15 seconds.
Through this simulation, we wanted to test if the relationship that we
can observe in our real data is likely random.

RESULTS.

Table 3.1.: Mean metric values for arousal (A), valence (V) and intensity
(I). Green cell denotes a significant p-value (p<0.004), cell
without a colour denotes insignificant p-value (p≥0.004) -
0.004 is the significance level with Bonferroni correction over
multiple comparisons. Arrow up (↑) means the higher the
measure the more aligned the two annotations, Arrow down
(↓) - the lower the more aligned.

Aff. Mem. Metric

Mean

Observed Value

Experiment 1:

H0 means

Experiment 2:

H0 means

Experiment 3:

H0 means

A V I A V I A V I A V I

Bool. Bool. PATE (F1) ↑ 0.69 0.67 0.70 0.63 0.62 0.69 0.66 0.66 0.69 0.69 0.68 0.70

Bool. Cont. PATE ↑ 0.65 0.66 0.66 0.66 0.65 0.63 0.68 0.68 0.65 0.64 0.64 0.64

Cont. Cont. Eucl. dist. ↓ 20.7 19.4 15.9 25.1 24.6 24.9 22.9 22.6 18.7 20.8 19.5 15.9

Cont. Cont. DTW↓ 17.7 16.2 13.1 18.8 18.3 18.4 17.7 17.1 13.9 17.5 15.9 12.9

The comparison between the observed data and the simulated random
alignment metrics is shown in Table 3.1. For arousal and valence,
all the metrics except for PATE showed that the observed relationship
between affect and memory is unlikely due to chance (p < 0.004, which
is a significance level with Bonferroni correction for 12 comparisons - 4
metrics across 3 affect dimensions). For intensity, all metrics except for
PATE F1 were significant.

We used PATE F1 to compare binary memory annotations with affect
annotations, binarised using a meaningful threshold - the middle of



3

74 3. The relationship between memory and affect

Likert scales for each dimension of affect. This metric showed significant
results for arousal and valence and insignificant ones for intensity. This
means that while the relationship between observed arousal/ valence
and memory is unlikely due to random chance, it is more likely due
to random chance in the case of intensity. This might be due to the
fact that for intensity the threshold is not as meaningful as for the
measures of arousal and valence, since intensity was not measured on
a Likert scale and, therefore, the threshold is not as meaningful for that
dimension. Binarising intensity might remove the important trends that
contain information about a moment being encoded into group memory.
This is consistent with the fact that continuous PATE on intensity showed
a significant result.

In contrast, the PATE metric that operated on continuous affect, and
the observed relationship showed insignificant results, suggesting that
the observed PATE measure is likely to belong to the same distribution
as the random simulated data. This was a surprising result, which might
be due to the fact that PATE which operates on continuous annotation
binarises the data by generating thresholds for every observed value of
the data and computes the resulting metric as the area under the curve
for all those binary PATE instances. What the insignificant results might
point towards is that some thresholds are more meaningful than others
(this is why PATE F1 returned significant results for affect dimensions
with a Likert scale). This said, PATE for intensity showed a significant
result.

Lastly, the metrics that were computed based on continuous metrics
of affect and memory, Eucledian distance and DTW distance, returned
significant results across all three affect dimensions (p ≤ 0.004). Judging
by these distance metrics, whether or not the metric allows for shifts and
stretches in the aligned data (in case of DTW), the observed relationship
between group effect and memory is unlikely random. For illustration,
Figure B.1 shows the difference between the observed average DTW
distance and the simulated random distribution (the lower the distance
the more alignment there is between the two time-series). The top row
of the figure illustrates how unlikely it is that the observed relationship
would be a part of a random distribution in experiment 1 (for more
detail, see figures for other metrics in Appendix B).

3.5.2. EXPERIMENT 2: RANDOM WITH OBSERVED RANGE
SIMULATION UNDER THE NULL HYPOTHESIS.

Experiment 2 is similar to experiment 1, but the data under the null
hypothesis is simulated to be closer to the observed distribution of the
affect values. This is done to ensure that the differences between the
observed metrics and the random data are not due to the differences in
the range of affect values represented in the observed data. Specifically,
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experiment 1 assumes that the affect data ranges across all the possible
values of a Likert scale for each affect dimension. This assumption
does not hold for the real data. First, the emotion annotations across
the dataset are skewed to the positive side: the arousal annotations
range from 1 to 8 (with no instances of 0), the valence values range
from -6 to 8 (with no instances of -7 and -8). Second, the range of
captured emotions differs depending on the session, with the smallest
range for arousal being 2 to 5 and the smallest range for valence
being -3 to 2 for one session. Consequently, the full emotional range
assumption in Experiment 1 does not hold for the data, which might
exaggerate the differences between the observed and simulated data.
Instead, in experiment 2, we simulate the data based on the affect
values represented in each video. Similar to experiment 1, random
values are drawn for each 15 seconds of each video, but they are drawn
from the set of values present in the affect data for that specific video.
For example, if an observed annotation has arousal values [1, 3, 5, 6,
8], the simulated arousal data would draw random values from that set
for every 15 seconds of the video. Except for simulation assumptions,
the analysis is done according to the same procedure as experiment 1
(see procedure details in Figure 3.2 and Section 3.4.2).

RESULTS.
As shown in Table 3.1, the results for Experiment 2 are similar to
Experiment 1, indicating that the observed relationship between group
affect and memory annotations is unlikely to belong to the same
distribution as the relationships between simulated affect and memory.
This is true for all the values except for PATE F1 for intensity, PATE for
all the dimensions, and DTW for arousal. In comparison to experiment
1, two more values became insignificant (DTW distance for arousal and
PATE F1 for valence).

3.5.3. EXPERIMENT 3: TEMPORAL SHUFFLE
SIMULATION UNDER THE NULL HYPOTHESIS.
While experiments 1 and 2 show a comparison of observed affect to
memory alignment metrics to completely random data, experiment 3
investigates the importance of temporal alignment between the affect
and memory annotations. This means that in comparison to experiments
1 and 2, the simulated data in Experiment 3 represents the exact
distribution of affect values in the observed data, but in randomised
order within each video. In other words, we simulate data by shuffling
the actual affect annotations for each video, destroying the temporal
alignment between memory and affect labels. Similar to experiments
1 and 2, we are keeping the integrity of the basic data structure by
shuffling windows of 15 seconds within each video. Apart from this,
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the analysis procedure is the same as for experiments 1 and 2 (see
procedure details in Figure 3.2 and Section 3.4.2).

RESULTS.

Surprisingly, all the metrics across all the affect dimensions showed an
insignificant difference from the simulated distribution in Experiment
3 (see Table 3.1). This means that under the assumptions of this
experiment, we cannot reject the null hypothesis, meaning that the
observed relationship between group affect and memory annotation is
likely to belong to the same distribution as the memory compared with
temporally shuffled affect data.

3.6. DISCUSSION
We conducted three computational experiments to evaluate the
relationship between memory and group affect annotations. Despite
significant values in the first two experiments, we can conclude that the
null hypothesis cannot be rejected, since there are no metrics or affect
dimensions for which all 3 experiments produced a significant p-value
(see our null hypothesis rejection rule in Section 3.4.2).

Annotation Perspectives. One of the core assumptions motivating
this study was that emotional experiences influence memory encoding,
a well-established link in cognitive science [38, 45]. However, in
affective computing, emotional states are often inferred from third-
party annotations of observed behaviour rather than first-party reports
of experienced emotions [44]. Our findings indicate that this
distinction is crucial: while experienced emotions are directly tied to
personal relevance and cognitive appraisal [179,180], third-party affect
annotations reflect an external interpretation of group behaviour that
may not reliably map onto internal memory processes. Experiment 3
has demonstrated that the significant effects seen in Experiments 1 and
2 were likely due to the differences in distributions of affect labels in the
observed data, rather than the fact that affect annotations align with
memory annotations better than chance. This discrepancy aligns with
potential concerns regarding third-party annotations, which are known
to be influenced by external factors such as social norms and individual
expressivity [196]. For instance, emotional behaviours may not always
correspond to experienced emotions due to social masking, such as
hiding frustration with a polite smile.

Continuous Conceptualisation. A second key issue is how affect
and memory are conceptualised over time. To the best of our
knowledge, traditional memory studies assess emotional experience
and memorability as static states, typically using retrospective self-
reports [182]. In contrast, MER applications require continuous,



3

78 3. The relationship between memory and affect

time-aligned affective labels to enable real-time system responses [46].
By testing the relationship between time-continuous affect annotations
and memory, we examined whether existing findings on affect and
memory translate to a dynamic, multimodal annotation setting. While
time-continuous annotations are widely used in affective computing
to capture fine-grained emotional fluctuations [18], previous research
linking affect and memory has not employed such temporally granular
methods. Our results suggest that while emotional intensity, valence,
and arousal may contribute to memory encoding, their influence is
not reliably captured through continuous third-party annotations. This
aligns with previous findings that retrospective memory reports are
influenced by post-event reconstruction biases, which are not accounted
for in continuous affect or memory annotation frameworks [37, 183].
The lack of a robust relationship between continuously observed affect
and memory shown by our results suggests that real-time affective
annotations alone may not be sufficient for predicting memory in
conversational contexts, necessitating alternative methodologies that
consider retrospective appraisal effects and the temporal structure of
memory retrieval.

Group-Level Analysis. Finally, this study contributes to the growing
need for group-based emotions and memory research. While prior work
has examined emotion’s role in individual memory encoding [39,40,172],
our study explicitly considers group dynamics, a key factor in real-
world settings like meetings and collaborative tasks [5, 184, 185].
Our results suggest that group emotion annotations, which capture
collective emotional states rather than individual experiences, may
fail to account for memorability. This could be due to the fact
that group memorability annotations might not capture an emergent
group-level processes in a way that group affect does [25], since
they are aggregated from individual memory reports rather than
inferred from group states to begin with. Another possible reason is
that people express emotions differently in group settings compared
to one-on-one conversations or non-social situations. For example,
research suggests that emotions tend to be expressed more strongly in
dyads than in larger groups [26]. Additionally, group members often
adjust their emotional expressions to match each other, a phenomenon
known as emotional convergence [187, 197]. This convergence may
dilute individual emotional expressions, driving observable emotion
further from the individual experienced emotion that would have been
connected to memorability.
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3.7. CONCLUSIONS
This study investigated the potential of using group emotion annotations
as proxies for conversational memorability in multi-party settings.
By analysing the relationship between memorability and affective
dimensions using data from the MeMo corpus [36], we conducted
a series of computational experiments comparing affect annotations,
particularly arousal, valence, and intensity and memorability.

While the relationship between affect and memory showed to be
significantly different than random (see experiment 1), when correcting
for distribution biases of real affect annotations, experiments showed
that such a relationship is insignificantly different from random
(experiment 2) or temporally shuffled data (experiment 3). Overall,
our analyses revealed that the observed metrics for real data did
not deviate meaningfully from the distributions derived from synthetic
data generated under null hypotheses. This finding suggests that,
within the scope of this dataset and methodology, affect annotations
(in terms of arousal, valence, or intensity) do not serve as reliable
proxies for conversational memorability. Therefore, despite a common
belief that affective states capture inter-personal relevance in alignment
to memory, our findings highlight the need for dedicated research
on modelling memorability - a distinct indicator of long-term event
relevance.

While emotions and memory have been conceptually linked in cognitive
science, our findings suggest that this relationship may not translate
to the settings typical of Affective Computing applications. These
applications traditionally operate with continuos affect annotations,
collected from third-party observers, that rely on participants’ behaviour
to infer their affective states (illustrated in Figure 3.1). In contrast,
prior research on the emotion-memory link has used static self-reports
or physiological measures of emotional experience. Our study shows
that observed affect annotations, particularly at the group level, do
not meaningfully align with memorability, highlighting the importance
of these conceptual differences between the operationalised constructs.
Although the memory-emotion link has been treated as a given in some
Intelligent Systems applications [41,177,178], we urge future research
to account for differences in how these constructs are defined and
measured (e.g., third-party vs. first-party, group vs. individual level,
continuous vs. static). Failing to consider these discrepancies may
lead to inaccurate transfers of empirical findings into computational
applications.

To better understand the emotion-memorability link, we recommend
further research into whether individual-level perceived affect annota-
tions exhibit the same lack of relationship with individual memorability
as observed at the group level. We also suggest examining these
phenomena in face-to-face interactions rather than online video con-
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ferencing to determine whether the setting influences the relationship
between memory and affect annotations. Lastly, there may be differ-
ences in the types of memorable moments that are linked to affect and
those that are not, warranting further investigation into the contextual
factors shaping memory and affect.



4
PREDICTING CONVERSATIONAL

MEMORY

This thesis chapter is an extended and substantially revised version
of a previously published conference paper 1. The extension includes
a significantly extended theoretical framing of conversational mem-
ory, with an expanded literature review drawing from cognitive and
social sciences, and the introduction of a new visual chart mapping
the relationships between memorability, attention, engagement, and
involvement. Key constructs were defined more explicitly and supported
with visual aids. The reasons annotation procedure was also described
in greater detail, with clearer justification and sampling details to
improve transparency and reproducibility. Methodologically, the chapter
introduces hyperparameter optimisation across all models, corrects the
data splitting procedure to prevent session overlap, and increases the
number of experimental iterations from 20 to 200, ensuring greater
statistical robustness. Permutation importance analyses were replaced
with ablation studies to better assess the contributions of different
feature sets. These changes yielded a new set of model performance
results, which, unlike those in the original version, show no clear
differences in predictive power across feature groups.

1M Tsfasman, K Fenech, M Tarvirdians, A Lorincz, C Jonker, C Oertel, “Towards creating
a conversational memory for long-term meeting support: predicting memorable
moments in multi-party conversations through eye-gaze,” in Proc. International
Conference on Multimodal Interaction (ICMI), pp. 94–104, 2022.
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ABSTRACT
Humans have selective memory, remembering personally relevant in-
formation and filtering out the less relevant details. Understanding what
makes certain conversational moments memorable could aid meeting
facilitation and conversational AI. While memory modelling (computa-
tional prediction of what content people are most likely to remember)
has been extensively studied in static media like images and videos,
conversational memorability remains under-explored. Conversations are
interactive and multimodal, with verbal and non-verbal cues shaping
what individuals remember. In this paper, we approach memory
encoding in group conversations from a computational perspective,
analysing multimodal predictors of conversational memorability using
the MeMo corpus - a dataset of recorded group discussions with memory
annotations. Our study follows three objectives: (1) to model conver-
sational memorability using verbal and non-verbal features (eye-gaze
and speech activity), (2) to empirically investigate the relationship
between different non-verbal features and conversational memorability,
(3) to investigate the diverse categories of memorable moments for
further applications. We show that gaze and speaker activity features
can predict group memorability levels significantly above chance. Our
empirical investigation shows which group gaze behaviours are partic-
ularly indicative of memorability levels. Our analysis of self-reported
reasons for remembering a conversational episode confirms the previous
research on the importance of social and self-directed memories in
a conversational context. The results have practical implications for
intelligent meeting support systems, personalised virtual assistants,
and collaborative tools designed to enhance retention and knowledge
transfer in group settings. By bridging the gap between memory
modelling and conversational AI, our work paves the way for developing
memory-aware systems for long-term interaction.
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4.1. INTRODUCTION
Humans are inherently social beings, and their psychological and
physiological well-being is deeply intertwined with the quality of their
social interactions [88]. The ability to recall past conversations plays
a crucial role in shaping social bonds, guiding future decisions, and
reinforcing one’s sense of self [11, 15, 16]. In group conversations,
such as work meetings or social gatherings, remembering key moments
can influence relationship dynamics, collaboration, and decision-making.
However, human memory is selective: only a fraction of conversational
events are retained over time [22]. While forgetting is a natural
and sometimes even adaptive process, understanding which moments
are likely to be remembered opens up valuable opportunities for
technology. Memory modelling could support intelligent systems that
help users retain socially or personally meaningful information, facilitate
follow-ups after meetings, or personalise interactions based on past
experiences. Despite this potential, the question of what makes
certain conversational moments memorable remains largely unexplored
in computational research.

Existing research on conversation analysis and meeting support
systems has primarily focused on tracking and responding to immediate
user states, such as affect [44, 181, 186, 188], attention [97, 198],
engagement [6, 95], and social presence [99]. These approaches
rely on verbal and non-verbal cues to infer real-time measures of
interaction quality, often aiming to enhance participation and group
dynamics. However, while these systems capture the present state of a
conversation, they do not account for how users remember and interpret
these experiences in the long term. Yet, memory plays a fundamental
role in human communication, shaping learning, social cohesion, and
continuity in interactions [62,63]. A facilitation system that understands
which conversational moments are likely to be remembered could
provide more personalised and contextually aware support.

While the study of memory modelling has gained traction in other
domains, such as image and video memorability prediction [35,53,137],
memorability of conversations has not been computationally modelled
before, to our knowledge. Unlike media, conversations involve complex
multimodal dynamics, requiring continuous verbal and non-verbal
processing [13, 33]. Previous psychological studies have identified
conversation-specific interpersonal and linguistic factors influencing
memory, such as self-relevance, linguistic features, and conversational
role [14, 15, 17]. However, there has been no systematic effort to
computationally model conversational memorability using real-world
multimodal data.

This work strives to address several gaps in the literature. First,
we shift the context of analysis from visual media to spontaneous
conversation, a setting characterised by interpersonal coordination,
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dynamic turn-taking, and embodied social cues. Second, rather than
focusing on individual recall alone, we examine memory on a group
level, exploring which moments are consistently remembered across
participants and why. This enables us to investigate whether there exist
properties of conversational events that increase their likelihood of being
encoded. Finally, we adopt a time-continuous modelling approach that
allows for fine-grained analysis of behavioural signals during interaction.

We focus on eye-gaze and speaker activity as primary input features
for several reasons. First, these signals are continuously measurable,
accessible through standard audio-visual recording tools. Second, both
eye-gaze and speaker activity have been previously used to predict
attention and involvement - the internal states that are known as memory
modulators [58, 199–201]. While attention and involvement are not
directly observable, prior work shows they can be reliably inferred from
gaze patterns and speaking behaviour [56,202]. Given their predictive
value and traceability in naturalistic settings, these multimodal signals
provide a promising foundation for developing intelligent systems
capable of detecting and modelling shared memorable moments in
conversation [19,29,30].

By linking real-time indicators of attention and involvement (gaze,
speaker activity behaviour) to later memory outcomes, this study aims
to identify multimodal cues that signal memorability and explore the
technical feasibility of conversational memorability modelling in group
interactions. We use the MeMo corpus [36], a dataset of recorded
group discussions with memory annotations to achieve the following
overarching goals:

(G1) Model conversational memorability using verbal and non-verbal
features (eye-gaze and speech activity).
(G2) Empirically investigate the relationship between different mul-
timodal features (eye-gaze and speech activity) and conversational
memorability.
(G3) Analyse the reasons behind why certain moments are
remembered.

By advancing computational models of conversational memory, this
work strives to provide insights into human recall processes and
contribute to the development of memory-aware conversational AI
systems, such as meeting facilitation, automatic summarisation and
memory augmentation.

4.2. BACKGROUND AND MOTIVATION
In human memory research, memory is typically conceptualised as
comprising three interconnected subprocesses: encoding (processing an
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experience to be preserved or forgotten), retention (the preservation
of that experience over time), and retrieval (the subsequent extraction
of the preserved information) [22]. Although these processes are
intrinsically linked and cannot be entirely disentangled, empirical studies
often choose one subprocess as the primary focus of investigation. The
focus on one primary subprocess matters for the methodological and
contextual choices in the study. For instance, retrieval, intentional
(voluntary) or spontaneous (involuntary) is commonly studied in the
context of how and when memories are accessed, such as during
collaborative tasks [23]. In contrast, studies with a focus on memory
encoding investigate the specific stimuli or human behaviour at the very
moment of an event that would subsequently form into a memory. In
other words, although memory tasks (e.g., free recall or recognition [24])
inherently involve all three subprocesses, encoding studies focus on
the contextual and behavioural factors present at the time an event is
experienced and the likelihood of that event being encoded or forgotten.

While modelling all three subprocesses has potential applications in
intelligent systems, we argue that memory encoding is particularly
useful. Arguably, encoding occurs at the time of the event or
shortly after, making it possible to observe and analyse in real
time. By predicting which events are likely to be encoded, we can
estimate their intrinsic relevance as they happen. This opens up
the possibility of identifying what makes an event memorable and
enabling real-time interventions that could influence what participants
will ultimately remember from a meeting. Applications could include
personalised user interfaces that adapt content based on what users
are likely to remember, meeting facilitation tools that emphasise key
discussion points to improve retention, and conversational agents that
selectively recall relevant past exchanges to enhance rapport. Memory
encoding modelling has been ly referred to as ’memorability modelling’
- the likelihood of a stimulus or an event to be encoded in user’s
memory [137]; therefore, for the purpose of this study we use these
terms interchangeably.

In fact, stimulus memorability has been computationally modelled
before, in the context of image and video memorability [20, 21, 105].
These studies typically focus on identifying stimulus-driven features
(such as visual composition, semantic content, or motion patterns) that
contribute to the likelihood of a media item being remembered across
a wide audience. While some findings suggest a degree of universality
in what makes visual media memorable [137], these models largely
generalise over controlled, short-form stimuli and do not account for
social, contextual, or interactive dynamics. In parallel, other work
has shown that media memorability can also be predicted from neural
responses such as EEG signals during viewing [20], highlighting the role
of individual cognitive processing at encoding.
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However, these approaches are not directly applicable as baselines
in our work, for two key reasons. First, they model memory for
externally presented media, rather than for personally experienced
conversational moments, which are shaped by autobiographical, social,
and interactional factors. Second, the features they rely on (stimulus-
centred or neurophysiological) do not capture the interpersonal and
temporal dynamics central to group conversation. While our dataset
(Zoom recordings) does contain audiovisual data, the nature of the
memory task (first-party recall of co-constructed interaction) requires
modelling beyond stimulus salience. Therefore, our approach shifts
focus from what makes a media stimulus memorable to what makes a
social interaction memorable from the perspective of its participants.

This paper aims to analyse and model memory encoding (1) in
a conversational setting, (2) on a group level, (3) with continuous
annotations. These are the gaps within the existing literature that will
be described in this section.

4.2.1. CONVERSATIONAL SETTING
Although the media memorability have been approached from computa-
tional perspective before, it has never been modelled in conversations,
despite it being a common setting for intelligent systems (e.g. meet-
ing support [5, 92, 97], meeting summarisation [75, 203–205], public
deliberations [4,91] or collaborative educational tools [185,206]).

Conversations are a systematically different setting than media
consumption for several reasons. First, unlike media consumption,
which is largely passive, conversations require active engagement in
both comprehension and production of verbal and non-verbal signals.
This continuous exchange places additional cognitive demands on
participants, influencing which moments are encoded into memory
[13, 33]. Second, memory formation in conversations is shaped by
interpersonal dynamics, such as turn-taking, speaker emphasis, and
shared attention, which do not exist in media consumption even if
consumed media involves a recorded conversation [12,13,15,16]. Third,
social factors such as emotional contagion and group cohesion influence
memory retention, as shared emotional experiences can strengthen
collective recall [132]. Finally, conversations often involve goal-directed
interactions, such as persuasion, problem-solving, or bonding, which
impact what is remembered based on its social relevance rather than its
intrinsic stimulus features [11,45].

These differences imply that the media memorability models may not
translate to the context of conversations. Existing computational work
on memorability has primarily focused on media that differ considerably
from natural conversation, such as highly edited advertisements,
static images, or curated video clips (e.g. [20, 35, 53]), rather than
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on interactive, spontaneous dialogue. Highlighting this distinction
is important, as a critical reader might reasonably ask: if existing
models are indeed unsuitable, why was this not tested empirically?
One way to address this is by emphasising the difference in task
formulation. Media memorability studies typically concern semantic
memory (recall of facts or content), whereas this work is concerned
with autobiographical memory, in which individuals recall personally
experienced conversational moments. Just as prior psychological
studies have focused specifically on the mechanisms of conversational
memory [12–14, 16, 33], there is a clear need for computational
approaches that are likewise tailored to the distinctive nature of
conversations and the ways in which they are encoded and remembered.

4.2.2. GROUP-LEVEL ANALYSIS
Many intelligent system applications operate in group settings, such as
workplace meetings [5], educational discussions [184], and collaborative
problem-solving tasks [185]. In these contexts, memory plays a crucial
role in shaping group decision-making, knowledge retention, and long-
term interaction outcomes [11]. Previous research has highlighted that
dyadic interactions are different from group interactions, with distinctive
patterns and emergent states [26,140,197,207]. Nevertheless, the focus
of conversational memory encoding studies has only been on dyadic and
not group interactions, to our knowledge [13,14,17,33]. Understanding
which conversational moments are collectively remembered in a group
context is essential for improving intelligent systems that support
collaboration, facilitate discussion, and enhance knowledge transfer in
teams.

Similar to media memorability research, which aims to identify
stimulus characteristics that make images or videos universally mem-
orable [53, 105], it is valuable to understand what qualities make
conversational segments consistently memorable across different par-
ticipants. Unlike many media memorability studies, which often assess
recall of watched stimuli, conversational memory involves remembering
personally experienced interactions. As such, it is typically more
autobiographical in nature, shaped by personal relevance, subjective
interpretation, and emotional salience [45]. This said, by treating
moments within a conversation as stimulus events, we could potentially
consider their memorability as partly driven by features intrinsic to
those moments. If multiple participants independently recall the same
conversational moment, this may suggest that it may possess properties
(such as emotional intensity, novelty, or salience) that make it more
universally memorable. Thus, by aggregating individual memory reports
across participants, we can approximate a measure of shared or conver-
sational memorability, reflecting which moments are more likely to be
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encoded and retained by different people. Identifying these inherently
memorable event features could inform intelligent systems designed
for meeting summarisation, meeting facilitation, and conversational AI,
enabling them to highlight key moments that are not just personally
memorable but collectively significant.

By investigating group-based memorability, this research aims to
bridge the gap between individual and collective memory modelling,
providing insights into how intelligent systems can better support
long-term information retention in group interactions.

4.2.3. CONTINUOUS OPERATIONALISATION
A common practice in developing predictive models of internal states
(e.g. affect, involvement and attention) is to collect data that op-
erationalises user interactions through time-continuous measurements
(e.g., annotations collected for every frame in a video stream [46]).
Some of the proposed benefits [47] of this practice include its high
temporal granularity (i.e., the ability to capture nuanced changes in user
engagement over time) and its capacity to track dynamic variations
in behaviour (i.e., identifying fluctuations in attention, involvement, or
interaction patterns within a specified unit of analysis, such as a con-
versation segment). From an application perspective, time-continuous
estimates of user states are valuable, as they enable systems to adapt
dynamically to shifts in user behaviour.

While common in user state modelling, this perspective has not been
applied to memory, to our knowledge. Media memorability prediction
studies focus on short video fragments with one memory annotation
per video [20, 21, 35, 105]. Contrary to media consumption setting,
conversations in the focus of many intelligent system applications are
typically long (from 10 minutes to several hours [4,5,75,91,92,97,185,
203–206]). Since human working memory capacity has been shown
to last up to 20-60 seconds [208,209], it is logical to expect to have
more than one (non-)memorable event within one conversation. In
psychological research, this has been approached from the perspective
of recall rates - the percentage of idea units that were retained over the
duration of the entire conversation [17,28,83]. Although this approach
offers a valid estimation of recall quality, it is still a singular measure for
the entirety of a conversation session and, therefore, is not suitable for
the development of a real-time conversational memorability prediction.

Empirical studies of conversational memory commonly use self-reports
that are not grounded in specific moments of encoding (i.e. recording
of the interaction). The few studies that do attempt to ground these
in moments of encoding [17], ask third-party annotators to relate self-
reports back to the events in the interaction, bringing potential issues
concerning the subjective nature of memory reports and therefore a
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threat to the validity of such annotation [182]. Since memory reports can
provide quite a subjective and condensed summary of the remembered
event, it is highly likely that several events would match each memory
description, and this could cause mistakes in the annotation. This could
be avoided if the participants themselves would provide an encoded
event annotation, relating their free-recall reports to specific moments
of discussion they are referring to. This approach to increasing the
validity of continuous conversational memorability annotation has been
implemented in the dataset we base this study on [36].

In conclusion, we highlight three major gaps in previous research on
memory modelling: conversational context, group-level analysis and
continuous operationalisation of memory encoding labels. In this paper,
we aim to fill those gaps with empirical and computational investigation
of group-level conversational memorability.

4.3. THE OVERALL APPROACH
4.3.1. MULTIMODAL ANALYSIS
For continuous group memorability modelling in conversations, it is
important to choose the input features that could serve as reliable
predictors of memory and be usable in an intelligent system setting (e.g.
meetings, deliberations, learning settings mentioned above). For this,
the input features need to be continuous (see Section 4.2.3 for why) and
traceable via standard meeting software. Previous studies of continuous
modelling of internal states (e.g. affect, involvement, attention) in social
settings have shown that multimodal social signals, extractable from
audio and video recordings, are promising for such a task [19,29,30].
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Figure 4.1.: Visualisation of the interaction between the key concepts
of the present study and the main object of the study (see
green dashed arrow).

Figure 4.1 outlines our overall approach, the major concepts at
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operation of this study and how they relate to each other. When
an event occurs in a conversation, participants in a group engage
in cognitive appraisal, evaluating the relevance of the event, its’
implication, coping potential and normative significance [179,180]. This
appraisal is thought to result in some memories being encoded and
some forgotten. The encoded memories can then be measured through
self-reports. These self-reported memories can then be aggregated
to estimate group-level memorability, reflecting the extent to which
an event is universally memorable for a group. This is how memory
construct transitions into memorability - a quality of an event as
memorable for its participants (shown by an arrow at the bottom of
Figure 4.1). Cognitive appraisal also influences whether the event
is considered relevant enough to pay attention, which in turn affects
both behavioural expressions (e.g., speech activity and eye-gaze) and
whether the participant will be involved/ engaged in the next event.

Cognitive appraisal, attention, and involvement play an important
role in memory encoding, shaping what individuals later report as
accessible memories [58, 199–201]. Since attention and involvement
are not directly observable to an intelligent system, external behaviours
could potentially be used as their indicators. Specifically, observable
behaviours, such as eye-gaze and speech activity, have been previously
shown to be predictive of the level of attention as well as involvement
[17, 56, 202]. Since attention and subsequent (physical) involvement
have been previously linked to memory, it is logical to assume that
similar (non-)verbal signals would also be predictive of conversational
memorability.

Given previous research, we hypothesise that it is possible to predict
which moments will be more memorable for the group using eye-gaze
and speaker activity features previously connected to attention and
involvement. Therefore, the first research question (RQ1) that the
present paper aims to answer is following:

RQ1: Do humans non-verbally signal which moments they are more
likely to encode in their memory? If so:

RQ1(a) What patterns in eye gaze and speaker activity behaviour
indicate memorability?

RQ1(b) Can group eye gaze behaviour and speaker activity be
used to predict conversational memory?

We approach RQ1 from two perspectives: RQ1(a) - with empirical
analysis and RQ1(b) - from a computational modelling perspective.

4.3.2. QUALITATIVE ANALYSIS OF MEMORABLE MOMENTS
Conversations are a complex setting with heterogeneous characteristics.
Conversational memory holds three different functions in our social
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brains - people are more likely to remember experiences that
(1) reinforce or shape their self-image [15], (2) strengthen social
connections [16,62,63], and (3) inform their future decisions, thoughts,
and behaviours [11]. According to those three functions of memory,
the encoded moments could be systematically different and therefore
hold different characteristics, including non-verbal signals. Although
widely accepted as memory functions, they have not been studied in
a conversational context and therefore it is unclear which functions
are most commonly reported within conversations. For an intelligent
system, knowing what kind of moments are more likely to occur could
help understand how to reuse those memories in future interactions.
For example, a conversational AI that recognises when a memory
serves a social bonding function could strategically reference shared
past experiences to enhance rapport with users, while a system that
detects directive memories could prioritise recalling task-relevant details
to provide personalised recommendations or reminders. Nevertheless,
previous research in conversational memory has not attempted to
separate memorable events into such categories, to our knowledge.
We approach categorising memorable moments through analysing
participants’ self-reported reasons behind remembering a particular
segment. Through annotations of these reasons, we divide them into
subgroups by underlying appraisal and memory function. Based on this
data, we aim to answer the following research question (RQ2):

RQ2: What kind of self-reported reasons for remembering a
conversational moment are the most common and how do they align
with the previous theories on memory functions?

General contribution. In conclusion, the present study pioneers
a largely unexplored topic of conversational memory modelling in
group interactions. This study provides the first step on the path
of characterising the multimodal features that are predictive of
conversational memory. This paper introduces a novel computational
framework for modelling conversational memorability, addressing
gaps in previous research by focusing on multimodal analysis of
memory encoding in group conversations with continuous memory
annotations. By leveraging group-based memorability, this study
identifies conversational moments that are consistently memorable
across participants, providing insights that have the potential to
enhance intelligent systems for meeting summarisation, facilitation, and
conversational AI.
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4.4. DATASET
4.4.1. GENERAL DESCRIPTION
For conversational memorability modelling, there needs to be a dataset
of conversations, annotated with memorability labels. For memorability
labels to be valid, the annotation needs to be first-party - collected
from participants of the conversations themselves. This is particularly
important for the validity of the memory report, since previous research
has shown that observers remember conversations qualitatively and
quantitatively different than participants [13, 33]. In addition, given
the highlighted gaps in Section 4.2 above, the corpus needs to have
group conversations, contain continuous annotations of memorability
and recordings of multimodal signals. To our knowledge, there is only
one dataset that satisfies these criteria - the MeMo corpus [36] .

The MeMo corpus is the first conversational dataset annotated
with participants’ memory retention reports, aimed at facilitating
computational modelling of human conversational memory. The dataset
consists of video-call discussions in small groups over three consecutive
sessions distanced 3-4 days apart. Throughout ∼45 minutes long
sessions, participants discussed COVID-19 and their experiences in the
pandemic. To facilitate an active discussion, each group was paired
with a moderator with experience in moderating meetings, facilitating
creative sessions, and conducting interviews. The discussions were
conducted in English, all participants were fluent English speakers
and resided in the UK. Participants were divided into groups with 3-5
participants and 1 moderator per group.

Before and after each session, participants and moderators filled in
a series of surveys. The surveys included a wide range of perceptual
measures, for conciseness, we only mention the ones used in the current
analysis. These are described in the following subsections (for further
details on the corpus see Tsfasman et al. [36]).

4.4.2. INDIVIDUAL MEMORABILITY ANNOTATION
In order to capture memorable moments from the interaction and collect
ground-truth labels of when they occurred, the memory annotation
consisted of two stages illustrated by Figure 4.2 - free-recall self-reports
and encoded event annotation.

Free recall self-reports. The free-recall task was the first in the
post-session questionnaire, administered immediately after the session
to minimise potential biases that could influence memory recall. The
task was open-ended, allowing participants to recall any aspect of the
conversation (see the exact task formulation in Tsfasman et al. [36]).
Participants were asked to describe each remembered "moment" in their
own words, without a word limit, and could report between three and
ten moments (the upper limit was set to prevent fatigue and ensure
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Describe the moment you 
remember.
Moment 1: 

32:15

I started jogging 
during lockdown.

When was moment 1?

Start 32:15

End 34:

Moment 1: 

I remember participant 2 
sharing that he had also started 
exercising during the lockdown.

Free recall task  Timing annotation

Figure 4.2.: The procedure of memory annotation after the discussion
session. Free-recall reports on the right and timing
annotation on the left. The moment mentioned on the
screen is an example from the data: "I remember participant
2 sharing he had also started exercising during lockdown."

sufficient time for subsequent survey questions). They could proceed
to the next section only if they had no additional memories to report
or had already reached the maximum of ten moments. This approach
aimed to capture all currently accessible memories [134] while also
providing insight into how participants segment the continuous flow of
social interactions into discrete, memorable events [150].

Encoded event annotation. In contrast to previous studies [17,112],
participants were tasked with assigning their self-reports to specific
events within the conversation. This approach was designed to ensure
that the self-reported memories were linked to the corresponding
encoded events, thereby preserving the validity of the memory
measures. For this task, participants were provided with a link to the
recorded interaction and asked to note the start and end times (down
to the minute and second) for each moment they reported within the
free-recall task (they were brought back to their free-recall answers
without an option of changing them). They could freely scroll through
the video, without the need to watch it in its entirety, to minimise
fatigue. If they struggled to pinpoint a specific moment, they had the
option to leave the time blank, particularly for instances tied to broader
feelings or memorable moments not linked to a specific time interval.
Additionally, we ensured that the free recall reports could not be altered
at this stage.

4.4.3. MEMORY REASON SELF-REPORTS
After each memory encoding annotation question, participants were
also asked to self-report the reason why they thought they remembered
each particular moment.
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4.5. DATASET PRE-PROCESSING
4.5.1. MEMORY PREPROCESSING
GROUP-LEVEL MEMORABILITY INDEX

For group-level analysis, the individual memory annotations were
aggregated to a group level (see Section 4.2.2 for the motivation behind
group-level analysis).

Figure 4.3 illustrates the process of creating the group-level memo-
rability labels step-by-step. We employed a 5-second sliding window
approach and considered the memorable moment as a binary variable
derived from the individual annotations (see Section 4.4.2). For
individual memory annotations, each moment was represented as
an array of the time slice t per participant . It was 1 if at least half
of the time slice t was included in the moments remembered by the
participant , and it was 0 otherwise.

We considered individual memorable moments as consecutive in case
they overlapped in time, unless one of the moments lasted longer than
half of the discussion session. All annotations encompassing more than
half a session were discarded as they did not apply to a particular
moment but rather "an overall feeling" of discussion.

After that, we computed the group-level memory index as the
proportion of participants who considered each time slice t memorable.

We then divided the group memory indices into four memorability
level labels: zero - if nobody remembered a slice; low - if > 0 and
< 30 % remembered a slice; middle - if 30-70% considered a slice
memorable; high - >70% reported a slice as remembered (see the
last line in Figure 4.3). We used these memory level labels in the
classification and for other analyses further on.

MEMORY REASON ANNOTATION

To answer RQ2 (see Section 4.3.2), self-reported reasons were manually
annotated by third-party observers. Figure 4.4 shows the developed
annotation scheme. These particular labels and sub-labels were created
to capture the diverse reasons why people remember conversational
moments, distinguishing between different cognitive, emotional, and
social factors that contribute to memory encoding. Each label represents
a unique memory trigger: "Facts about others" and "Facts about the
world" focus on external information, yet they differ in scope: the former
pertains to interpersonal knowledge (e.g., opinions, surprising details
about people), while the latter encompasses broader factual statements
about events and entities. "Self perception" reflects how individuals
integrate conversations into their self-concept through emotional
responses or personal narratives. "Shared experience" highlights social
bonding through mutual experiences, while "Meta-behaviour of other"
label focuses on the observed actions or emotions of others. "Cognitive
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5 s5 s

M1

M2

M3

M1 M2 M3 M4

1 1 0 0
Individual memory 
annotations

Mid (30-70%) Low (<30%)Memorability level

M1 M2 M3 M4

0 1 0 0

M4

High (>70%)

M1 M2 M3 M4

0 1 1 1

5 s

75%25%50%Group memory index

Figure 4.3.: Memorability level annotation. The blue frames on the top
illustrate moments remembered by four different partici-
pants. There are three consecutive time windows on the
x-axis (5 seconds each). The memorability is considered
True (=1) if the moment lasts for half or more of the specific
window. Therefore, M3 is 0 for the second window.

Figure 4.4.: Multi-layer annotation scheme for memorability reasons with
corresponding descriptions. "Annotator" is a participant for
whom the segment was memorable. "Speaker" is the main
speaker of the segment.

empathy" label captures moments where understanding another’s
perspective required active cognitive engagement. Finally, the "Time"
label captures moments remembered due to primacy or recency effects,
a common memory bias where people tend to recall the first and last
events in a sequence more easily than those in the middle [157]. This
is a multi-layer annotation scheme, since more than one of those labels
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can be assigned to the same self-reported reason for remembering a
moment.

These labels align with Bluck’s memory functions [11]: directive
memory supports learning from experiences (e.g., remembering factual
insights within "Facts about the world" category), self memory
category aids in identity construction ("Self perception" category),
and social memory strengthens relationships ("Facts about others",
"Shared experience", "Meta-behaviour of other", "Cognitive empathy"
categories).

These categories can be described with cognitive appraisal theory,
which explains how emotional responses emerge through primary and
secondary appraisals [179,180]. Primary appraisals (e.g., novelty, goal
congruence) determine whether an event is worthy of further processing
and, therefore, memory encoding, while secondary appraisals (e.g.,
accountability, coping potential, and future expectancy) shape how
deeply it is processed and whether it affects future decisions (i.e. in
how much detail it will be encoded). For instance, "Facts about others"
(unexpected_info) engages novelty appraisal in the primary stage, as
surprising information naturally draws attention. It can also involve
coping potential or future expectancy in secondary appraisal, influencing
whether the surprising fact alters future expectations or decision-making.
Similarly, "Meta behaviour of others" (emotional_moment) aligns with
relevance appraisal, as witnessing an emotional reaction in someone
else prompts an assessment of its personal significance. It also engages
accountability appraisal, since people naturally evaluate who or what
caused the emotional response, influencing their interpretation and
memory of the event. Together, these categories provide a structured
approach to understanding memory formation in conversations through
appraisal mechanisms and functional significance.

The annotation was performed by two annotators with a social
signal processing research background. The annotators used reasons
self-reports along with free-recall reports and corresponding encoded
event video segments when assigning labels. They were instructed to
prioritise the information stated in the reasons self-reports, with other
information to be used as context rather than a primary source for the
labels. The annotation was done using Elan annotation software [210].
To assess the inter-rater reliability, 145 samples were double-annotated.
The annotators were not given information about the other annotator’s
labels. The inter-annotator agreement was measured using Fleiss’ kappa
statistics, which was found to be 0.60 - moderate agreement according
to Landis and Koch [211].
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4.5.2. MULTIMODAL FEATURES
SPEAKER ACTIVITY IDENTIfiCATION
From the recorded audio of the discussions, we extracted active
speaker information using Kaldi Speech Recognition Toolkit [152]. After
conducting speaker diarisation, we extracted an active speaker array per
time window t containing binary values of each participant  speaking at
that time interval (s(t)). The value was 1 if the participant  spoke for
at least half of the slice t and 0 otherwise:

s(t) =

¨

1, if  ∈ speaking(t)
0, otherwise

(4.1)

We then calculated the active speaker index per time window t using
the following equation:

S(t) =

∑N
=1m(s(t), s(t − 1), s(t − 2))

N
(4.2)

Simply put, we calculated the number of individual participants () that
were speaking in each time slice (t) or in two time slices preceding
it (t − 1 and t − 2) and divided that sum by the overall number of
participants N in the session.

EYE-GAZE ANNOTATION
Eye gaze target extraction. Point of gaze was estimated with
GazeSense software [153]. For each participant, a grid matching the
gallery layout was defined based on their provided screen capture. At
the start of each session, a calibration stage was performed: participants
were required to fix their gaze on the screen segment containing the
current target participant. We estimate the target calibration point of
the -th segment of the grid pgrd, to be the coordinates in the centre
of the segment. Point of gaze estimates pgze were then obtained for
all remaining frames beyond the final calibration frame. The final gaze
target Tgze for each frame was determined as

Tgze =

¨

rgmin∥pgze − pgrd,∥, if pgze detected
−1, otherwise

(4.3)

Group gaze features. As illustrated by Figure 2.5.1, a significant
body of research indicated that there is a link between attention and
involvement and memory encoding [58, 199–201]. As attention and
involvement are not directly observable by intelligent systems, external
behaviours like eye gaze and speech activity, which are known to
correlate with attention and involvement levels [56, 202], may serve
as indicators of memorability. Specifically, Oertel and Salvi [56] have
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shown a connection between group eye gaze behaviour and participants’
conversational involvement. There was a series of group-level eye-gaze
features that have been shown to correlate with perceived involvement:
presence, maxGaze, entropy, and symmetry [56]. In this paper, we
use the first three of these, since the gaps in data made the symmetry
feature unreliable.

All the features are calculated from the gaze matrix g with N × K
dimensions: N being the number of participants with valid gaze data
and K - the number of targets (number of participants and an additional
label for when they look away from other participants or the screen).

Individual gaze matrix gj consisted of binary measures of gaze for
each time slice t. It was 1 if participant  looked at participant j for at
least half of the time window t, it was 0 otherwise.

gj(t) =

¨

1, if  gazes at j at time t

0, otherwise
(4.4)

Unlike Oertel and Salvi [56], a participant can gaze at themself on the
screen, so there are no limitations to the value of g in this regard.
Nevertheless, since each participant could only gaze at one target at a
time, the following equation applies:

N
∑

=1

K
∑

j=1

gj(t) = N,∀t (4.5)

The speaker-directed gaze feature ƒs(t) was calculated to see how
many participants are looking at the active speaker at any time t. It
was based on matrix sj(t), which also consisted of binary measures - it
was 1 if j was an active speaker at that time slice t and 0 otherwise.
For each participant  and target participant j we then computed a
speaker-directed gaze value Sj - it was 1 if participant  was gazing
towards j (gj(t) = 1) and j was an active speaker (sj(t) = 1) at that time
slice t:

Sj(t) =

¨

1, if sj(t) = 1 & gj(t) = 1
0, otherwise

(4.6)

To compute the final speaker-directed gaze feature ƒs we then computed
a fraction of participants looking at the active speaker for each time
slice t:

ƒs(t) =

∑N
=1

∑N
j=1 Sj(t)

N
(4.7)

The gaze presence feature ƒp(t) from Oertel and Salvi [56] is the
proportion of participants looking at other participants as opposed to
looking away:

ƒp(t) =

∑N
=1

∑N
j=1 gj(t)

N
(4.8)



4.6. Classification methods

4

99

The MaxGaze feature ƒm computes the maximal number of participants
looking at the same target at a particular time window t:

ƒm(t) =
mj∈[1,K]
∑N
=1 gj(t)

N
(4.9)

The entropy measure indicates the probability of each target being
looked at by all others at each particular time:

P(target = j|t) =

∑N
=1 gj(t)

N
(4.10)

To compute the final entropy measure ƒe(t) the probability is then
normalised as follows:

ƒe(t) =

∑K
j=1 P(target = j|t)og(P(target = j|t))

og(K)
(4.11)

Therefore, it is the lowest (ƒe(t) = 0) when all participants are looking at
the same target. It is the highest (ƒe(t) = 1) if all participants are looking
at different targets.

4.5.3. MEMO SUBSET USED IN THIS STUDY
Because of recording imperfections and problems with some screenshots
participants uploaded, the gaze data had 40 participants (14 groups)
and 16248 individual 5-second time slices (∼23 hours). The videos were
recorded with a resolution of 1280x720, with a frame rate of 25. In
alignment with available gaze data, we used a subset of the data that
comprised 34 hours of group discussions (42 sessions). The session
duration was 45 minutes long (with a standard deviation of +- 6.6
minutes).

Within this subset, there were 53 participants (28 F, 25 M; 18-76 y. o.)
and 4 moderators (3 M, 1 F; 24-45 y.o.).

There were 633 memorable moments (mean duration= 143.5,
standard deviation = 183.6 seconds).

4.6. CLASSIfiCATION METHODS
4.6.1. MODEL ARCHITECTURES
For classification of memorability levels, we trained standard supervised
machine learning models: logistic regression, support vector machine
(with RBF kernel), random forest classifier, and a multi-layer perceptron
(MLP or "neural network" further). The selected machine learning
methods were chosen because they are standard techniques commonly
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used in the field. Logistic regression provides a straightforward
and interpretable baseline for identifying linear relationships between
features and group memorability. The SVM with RBF kernel is well-suited
to handle non-linear relationships, making it effective for the complex
and noisy multimodal data typical in social settings. Random forests,
with their ensemble nature have the potential for capturing intricate
feature interactions and can manage high-dimensional data, which is
essential for real-world applications like meeting support systems. The
MLP, or neural network, enables the exploration of deep, non-linear
patterns in data, offering the potential to uncover more complex
associations. As standard machine learning methods, they not only
provide robust performance for this task but also offer a solid baseline for
future research, enabling comparisons with more advanced techniques
and ensuring the results’ generalisability and reproducibility.

MLP fixed parameters. The neural network consisted of one input
layer, one to three hidden layers (with optimised sizes ranging from
single layers of 50 or 100 neurons to progressive architectures like (16,
8), (32, 16, 8), and (64, 32, 16)), and one output layer to enable
hierarchical learning and capture complex relationships between the
input features. For multi-layer architectures, the progressively smaller
hidden layers helped prevent overfitting while allowing for sufficient
learning capacity. L2 regularisation (alpha) was applied to reduce model
complexity and prevent overfitting. We used cross-entropy loss (implicit
in scikit-learn’s MLPClassifier), as it helps the model optimise the
prediction of categorical outcomes, such as the likelihood of a moment
being memorable. The Adam optimiser was chosen for its efficiency
in handling sparse gradients and adaptively adjusting the learning rate
during training. ReLU was selected as the activation function for its
ability to introduce non-linearity while being computationally efficient
and effective in preventing vanishing gradients. We trained the model
for a maximum of 300 iterations with early stopping (patience = 30),
ensuring that the network converges effectively without overfitting. The
validation fraction was set to 0.2 for early stopping evaluation.

Other ML models fixed parameters. Logistic Regression was
configured with balanced class weights to mitigate class imbalance, a
maximum of 1000 iterations for convergence, and a tolerance of 1e-4.
NuSVC was configured with an RBF kernel for flexibility in capturing
complex patterns, a cache size of 1000 MB for computational efficiency,
and shrinking enabled for optimisation. Random Forest classifier used
600 estimators, as more estimators typically exhibit higher performance.
Other than the optimised hyperparameters described below, we used
default parameters defined in scikit-learn 0.24.1 [212] package.

Hyperparameter optimisation. We employed a grid search strategy
with 5-fold cross-validation to optimise model hyperparameters, using
balanced accuracy as the optimisation metric. We made sure that no
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data from the same session was present across training and validation
folds, to avoid overfitting. For the MLP, we optimised the learning
rate ([0.0001, 0.001, 0.01, 0.05, 0.1]), hidden layer sizes ([(50,),
(100,), (16, 8), (32, 16, 8), (64, 32, 16)]), L2 regularisation strength
(alpha) ([0.0001, 0.001, 0.01, 0.1, 1.0]), and learning rate schedule
([’constant’, ’adaptive’]) to control overfitting. The progressively smaller
hidden layers helped prevent overfitting while allowing for sufficient
learning capacity. For Random Forest, we varied the maximum depth
([None, 3, 5, 7, 10, 13, 15]), minimum samples split ([2, 3, 4, 5, 6,
8, 10]), and minimum samples per leaf ([1, 2, 3, 4, 5]) to balance
model complexity and performance. Logistic Regression optimisation
focused on regularisation strength (C) (100 points from 100 to 0.001,
log-spaced), controlling the trade-off between bias and variance. For
NuSVC, we optimised the nu parameter ([0.5, 0.3] plus 20 log-spaced
points from 0.1 to 0.01), gamma ([’scale’, ’auto’] plus 5 log-spaced
points from 0.01 to 10), and class weighting ([None, ’balanced’]) to
adjust margin tightness, kernel flexibility, and class imbalance handling.

4.6.2. FEATURES
The models were trained to predict the output label of one of four
classes of memorability levels: zero, low, middle and high.

For the input features, we used the 5 gaze and speaker features
mentioned above: gaze entropy, gaze presence, maxGaze, speaker-
directed gaze, and active speaker index.

4.6.3. TRAINING SAMPLES
The train and test sets were divided into 80% and 20% respectively
for all the models. The Machine Learning techniques we employ treat
each data point as independent. Yet, this is not the case because of
the time-series nature of our data. To ensure robust evaluation of our
models, we therefore employed a session-based sampling approach with
100 re-samples. In each re-sample, we randomly split the conversation
sessions (videos) into training (80%) and test (20%) sets. We then
train all models on this train-test sample. Within validation folds, we
also ensure that validation and training sets do not contain data from
the same conversation sessions. This session-based splitting ensured
that data from the same interaction session did not appear in both
training, validation and test sets, preventing potential data leakage
and providing a more realistic evaluation of model generalisation. This
approach resulted in 100 different train-test splits, allowing us to assess
the models’ performance across different random partitions of the data
and obtain robust estimates of model performance variability. The
performance metrics we present in the results are therefore aggregated
over 100 re-samples.
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Since the class distribution was severely unbalanced (zero: 8501,
low: 2355, middle: 4865, high: 527 instances), in addition to a
session-based split, we took an under-sampling approach. Each training
set was under-sampled after being re-sampled to have an equal class
representation.

4.6.4. RANDOM BASELINE
We employed a stratified Dummy classifier as our baseline, which
predicts classes based on their training set distribution, rather than
using uniform random prediction. We did not employ undersampling
for this model in order to create a realistic baseline. This approach
provides a more meaningful baseline for imbalanced datasets, as it
accounts for the natural class distribution in the data and represents the
performance that could be achieved by simply guessing according to
class frequencies (see DummyClassifier function in scikit-learn [212]).

4.6.5. FEATURE ABLATION STUDY
In order to understand which features were most important for the
model’s predictions, we conducted a feature ablation study for all 4
models. This included removing features one at a time and training
the models on the remaining features. We trained these models using
the same procedure as the original models, using the best-performing
hyperparameters from the hyperparameter optimisation described
above. The results were aggregated over the same 50 re-samples with
the same sampling procedures as with non-ablated models. We then
used balanced accuracy scores to compare the ablated models to the
models trained on the full feature set.

4.7. RQ1(A): EMPIRICAL RESULTS
To answer RQ1(a) (how do non-verbal behavioural features differ
between more and less memorable moments in group conversations?)
we investigate whether specific non-verbal cues are associated with
moments of varying memorability. We approach this question from
two complementary perspectives. First, in the Memory Level Analysis
(Section 4.7.1), we examine how non-verbal behaviours (such as gaze
and speaking patterns) differ across varying levels of group-level
memorability. This helps us identify patterns associated with moments
remembered by many vs. few or no participants. Second, in the
Memory-Level Analysis Across Time (Section 4.7.2), we explore how
these same features change immediately before, during, and after a
memorable moment. This temporal perspective allows us to investigate
whether certain non-verbal cues might precede or signal the beginning
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of a memorable event, offering potential insights into the dynamics that
lead up to memorable moments, not just their characteristics. This
extensive empirical analysis aims to provide explainable insights into
the dynamics of human behaviour in conversational moments of varying
memorability.

4.7.1. MEMORY LEVEL ANALYSIS
To explore the relationship between memorability level and non-verbal
features, we need to examine how the features can change depending
on group memorability level. Figure 4.5 illustrates means of different
features and their confidence intervals for windows of different levels of
memorability.

The gaze presence feature significantly differs depending on how
many people reported the moment as memorable. The presence is
significantly lower in highly memorable time slices (see ’high’ on the y
axis of Figure 4.5) than in low, middle and non-memorable moments
(χ2(3)= 750.96, p < 0.001, with a mean presence score of 0.74 for
’zero’, 0.69 for ’low’, 0.61 for ’middle’ and 0.5 for highly memorable
intervals). Dunn’s Multiple Comparison post hoc test indicated that
presence is significantly different between each pair of memorability
labels (p<0.001 for each combination of zero, low, middle, and high
memorability labels). This means that participants looked away more
than they looked at each other in highly memorable moments as
opposed to other moments.

Gaze entropy (blue in Figure 4.5) follows a similar trend as presence. It
is significantly different between the memorability levels judging by the
Kruskal-Wallis H test (χ2(3) = 420.65, p < 0.0001), with a mean entropy
score of 0.38 for zero memorability, 0.36 for low memorability, 0.32 for
middle memorability and 0.23 for moments of high memorability. Dunn’s
post hoc test reports significant differences for all pairs of memorability
levels: zero, low, middle, and high (p<0.001 for all combinations). It
also has a similar negative trend as the group presence feature: it is
significantly lower in moments of high memorability than in middle, low
and zero memorability. This means participants were more likely to look
at the same target in highly memorable moments and were more likely
to look in different directions in less memorable moments.

A Kruskal-Wallis H-test revealed that maxGaze (green in Figure 4.5)
is significantly different between the different memorability levels
(p<0.001). A Dunn’s post hoc test revealed that all differences between
levels are significant except for moments of mid-level memorability to
highly memorable (p=0.062) and zero to low (p=0.004).

Similarly, a Kruskal-Wallis H-test showed that speaker-directed gaze
proportion (pink in Figure 4.5) is significantly different between the
different memorability levels (p<0.001). A Dunn’s post hoc test revealed
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Figure 4.5.: The differences between gaze and speaker features in
relation to group memorability levels. On the y-axis: points
are means of the feature for specific memorability levels
and 95% confidence intervals as bars. (On the x-axis: "zero"
is for time slices that no one in the group recalled after the
discussion; "low" are moments remembered by less than
30% of participants in the group; "middle" applies to slices
remembered by 30-70% of participants; "high" - moments
that 70 % or more of participants recalled)

that all different levels except for moments of mid-level memorability
to highly memorable (p=0.5) and zero to low (p=0.038). This means,
in the moments of high or middle memorability participants were more
likely to look away from the speaker and have fewer people looking
toward the same person than in moments of low or zero memorability.

Regarding the active speaker index (orange-red in Figure 4.5), the
proportion of active speakers is significantly higher in highly memorable
moments (Kruskal-Wallis H(3) = 124.89 and p < 0.001) with a mean
active speaker index score of 0.37 for zero memorability, 0.38 for
low memorability, 0.35 for mid-level memorability and 0.42 for high
memorability. Dunn’s post hoc test postulates significant differences
(p<0.001) for the active speaker index for all pairs of levels, except
for low vs zero memorability (p = 0.011). The active speaker index is
significantly higher in high memorability moments than in middle, low
and zero memorability ones. This means that there are more active
speakers in highly memorable moments than in moments of lower
memorability.
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(a) Memory level

(b) Timing

Figure 4.6.: Kruskal-Wallis H test results when comparing gaze and
speaker features for different memorability levels (a) and
different timing in relation to memorable moment (b)

4.7.2. MEMORY-LEVEL ANALYSIS ACROSS TIME
We also investigated whether any contextual cues might signal a
memorable moment coming up or some changes that occur directly
after the moment. For that, we compared how features changed
in the two time windows before the memorable moment("BM" in
Figure 4.7), within memorable moments ("M"), two time windows after
each memorable moment ("AM"), and all other windows outside the
mentioned groups ("NM"). In this case, a memorable moment is
a moment remembered by at least one participant. Therefore, the
comparison between the windows that fall into the categories "NM" and
"M" was somewhat similar to the results described in Section 4.7.1.
However, the difference between "NM"/"M" vs "BM"/"AM" is of greater
interest, since it sheds some light on whether there might be a cue that
indicates the start or the end of a memorable moment.

There were no significant differences in group gaze entropy for
different timing as indicated by the post hoc Dunn’s test (p>0.001). For
maxGaze and speaker-directed gaze, there was a significant difference
between during vs. before, during vs. after, outside vs. within
memorable moments (p<0.001 in all three pairs judging by Dunn’s test)
but there were no significant differences between outside vs. before
(p=0.2 for maxGaze, p=0.9 for speaker-directed gaze) and outside vs.
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after (p=0.1 for maxGaze, p=0.8 for speaker-directed gaze). This can
mean that while the lower max or speaker-directed gaze features do
indicate memorable moments, there are no distinct predictive cues of a
beginning or an end of the memorable moment within these features.

For the group presence measure, there was a gradual decrease
from outside to right before the memorable moment and an increase
from the end of the memorable moment to further outside the
memorable segments. Although we can see this trend in Figure 4.7,
the differences were significant only in the following pairs: during
vs after/before/outside, outside vs after (p<0.001, Dunn’s post hoc).
Differences between outside vs. before are insignificant (p=0.3, Dunn’s
post hoc).

The most promising candidate for being a cue in signalling a
memorable moment was the active speaker index (fourth subplot in
Figure 4.7). In the time window directly preceding a memorable moment
window, the proportion of active speakers significantly increases
(p>0.001, post hoc Dunn’s test). Although there was also a slight
increase in the subsequent time window, this increase was not significant
(p=0.006, Dunn’s test). Interestingly, the proportion of speakers within
the memorable moment did not differ from moments further away ("M"
vs "NM" p=0.5). This finding might serve as an additional indication that,
in this case, what matters is how many participants are actively involved
in the discussion directly before the moment becomes particularly
memorable.

NM BM M AM0.3
0.4
0.5
0.6
0.7
0.8

va
lu

e

Gaze entropy

NM BM M AM

Gaze presence

NM BM M AM

MaxGaze

NM BM M AM

Active speaker index

NM BM M AM

Speaker-directed gaze

Figure 4.7.: A comparison of gaze and speaker features in different
moments in relation to their timing in relation to moments
remembered by at least one participant in a group. The
windows within such memorable moments - "M" on the
x-axis, two time slices before these moments - "BM", two
time slices after M intervals - "AM", and all remaining time
slices not included in the above - "NM".

4.8. RQ1(B): COMPUTATIONAL RESULTS (CLASSIfiCATION)
To further address RQ1(b) (can group-level memorability be predicted
from non-verbal behavioural features using machine learning?), we
evaluate the predictive power of these features through supervised
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classification models. While the descriptive analyses in RQ1(a)
highlighted feature differences across memorability levels, this section
takes a step further to assess whether those patterns are robust and
consistent enough to enable computational prediction. We first test
whether multiple model types can reliably classify memorable moments
above a realistic random baseline. Then, through a feature ablation
study, we examine which specific features contribute most to the
prediction of memorability.

Algorithm Balanced Accuracy

Logistic Regression 0.30 (± 0.06)***

Random Forest 0.28 (± 0.03)***

NuSVC 0.27 (± 0.05)***

MLP 0.26 (± 0.02)***

Dummy 0.25 (± 0.01)

Table 4.1.: Model performance metrics (mean ± standard deviation),
stars after the performance metric show the significance
of the difference between the model performance and the
random baseline of a Dummy classifier (*** - p < 0.001)

Model performance. Table 4.1 shows balanced accuracy scores
aggregated over models trained on 100 re-samples of train/test split
(see Section 4.6 for more details on the method). For a realistic random
baseline, we have trained a Dummy Classifier along with the main
models. Paired t-test showed that all the models (Logistic Regression,
SVM, Random Forest, MLP) performed significantly above the random
baseline, with p-value < 0.001 (see a "Dummy Classifier" for comparison
in Table 4.1).

Feature ablation study. To understand which features are most
predictive of group memorability, we have performed feature ablation
studies for the same models as in the main task. The ablation results
are shown in Figure 4.8. For all 4 models, removing 1 feature at a
time did not produce significant differences in the model performance,
in terms of balanced accuracy (post hoc Dunn’s p>0.001).

4.9. RQ2 RESULTS: MEMORY REASON ANALYSIS
To answer RQ2 (What kinds of reasons do participants give for
remembering moments from a group conversation?) we qualitatively
analysed participants’ explanations of their own memorable moments,
based on the third-party categorisation, built on theoretical work the
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cognitive and social functions of memory (see Section 4.5.1 and
Section 4.3.2 for more detail).

The distribution of the memory-reason analysis is shown in Figure 4.9a.
The most common reason was self-perception (250 of 633 memorable
moments). The next frequent reason-label captured facts about other
participants in the group (186). Other labels were considerably less
frequent: shared experience (52), facts about the world (46), meta-
behaviour of other participants in the group (44), time label (31), and
cognitive empathy (24).

The sub-level distribution is shown in Figure 4.9b. Self-perception
labels included more sub-labels related to the participant’s feelings
(199) than life experiences (51 reasons labelled "stories" in Figure 4.9b).
The fact-about-other label had the majority of moments with the "view"
sub-label (110 out of 186). This means that the reason for remembering
the moment was related to the views of other participants in the
group (for example, agreeing or disagreeing with their point of view).
The second most frequent sub-label in fact-about-other reasons was
unexpected information (52 out of 186), and the least frequent was
social facts (52 out of 186).

(a) Number of memorable mo-
ments per label

(b) Sub-labels distribution within main reason
labels

Figure 4.9.: Visualisation of reasons label distribution: main label
distribution over the whole data set (plot a), and sub-
labels within the main labels (plot b). Important to note
that a "memorable moment" in this context is the entire
memorable interval, rather than a time slice as in the
statistics for the gaze and speaker features.

4.10. DISCUSSION
This study investigated how non-verbal behaviours reflect and predict
conversational memory in group interactions. Our overarching research
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question (RQ1) was whether humans non-verbally signal which moments
are more likely to be encoded into memory. We approached this question
from two angles: empirical analysis of behavioural patterns (RQ1a)
and predictive modelling (RQ1b). In addition, we explored participants’
introspective reasons for remembering certain moments (RQ2).

RQ1(a): Non-verbal behavioural patterns associated with
memorability. Our empirical analysis revealed that participants’ gaze
and speaker activity indeed differ in moments of high versus low
memorability. Specifically, gaze entropy, a measure of group gaze
divergence, was significantly lower in highly memorable moments than
in less or non-memorable ones. This suggests that participants were
more visually aligned and attending to similar visual targets during
moments they later remembered. This aligns with prior findings
linking shared attention to joint engagement and higher information
salience [56], and supports cognitive models of memory that highlight
the role of attention in encoding [40, 58, 199]. Shared gaze patterns
can thus be interpreted as a collective attentional marker of a salient
conversational content.

We also found that speaker activity, measured as the proportion of
actively speaking participants, was higher in memorable moments. This
supports literature on ego-centric memory biases [12,15], showing that
individuals are more likely to remember parts of the interaction where
they or others were verbally active. Interestingly, speaker activity
peaked just before the most remembered intervals, echoing prior work
suggesting that people are especially likely to remember reactions to
their own contributions [213]. This temporal alignment suggests that
pre-memory speaker dynamics may prime segments for subsequent
encoding.

However, not all features conformed to our initial hypotheses. Contrary
to previous research linking presence and maxGaze to high involvement
and joint attention [56], these features were lower in highly memorable
segments in our dataset. A similar pattern held for speaker-directed gaze.
One possible explanation is that these divergences reflect a cognitive
processing mechanism: gaze aversion has been associated with internal
thought and memory encoding [214,215]. Memorable moments may be
cognitively demanding or emotionally salient, prompting participants to
disengage from the external environment to process internally. Thus,
rather than being contradictory, our findings may illustrate a shift
from overt involvement to internal encoding when moments become
memorable.

RQ1(b): Predictive modelling of conversational memory. IN
order to examine whether gaze and speaker features can be used
to predict group-level conversational memory, we trained a series of
supervised machine learning models using these behavioural cues. All
four tested models (logistic regression, SVM, random forest, and an
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MLP) were able to classify memorable moments significantly above a
random baseline (with 0.26 - 0.30 Balanced accuracy performance),
demonstrating that non-verbal signals carry a meaningful signal for
memory prediction. From all the models, Logistic Regression performed
the best, suggesting that this relationship is best captured with a linear
model.

These findings confirm that the patterns observed in our descriptive
analyses are robust and consistent enough to support computational
modelling. In particular, they show that even without access to verbal
or acoustic information, behavioural traces such as gaze and speaking
activity encode sufficient information to distinguish moments of different
group-memorability levels in conversation. This supports our broader
hypothesis that non-verbal behaviour reflects underlying cognitive and
attentional processes involved in encoding conversational experiences.

Overall, a feature ablation study revealed that removing individual
features did not significantly impact model performance across our top-
performing classifiers. The most resilient to the removal of the features
was Logistic Regression, with no changes to model performance when
any features were removed. Other models, while affected by feature
removal, also did not show significant differences in performance. This
suggests that the predictive signal is not dominated by any single
behavioural feature, but rather emerges from a distributed pattern
across multiple cues. Another most likely explanation is that the
selected features are correlated with each other, which gives the models
enough information about the removed feature from the remaining ones.
Since the features are computed based on the same multimodal data
(gaze target data and speaker-activity data), and even when one feature
is removed, there are others that could point towards the ablated feature
(e.g. in case of speaker activity feature ablation, the information on that
feature might be derived from the speaker-directed gaze feature).

To further explain the results, we have reviewed random example
videos of correct and incorrect predictions of the best-performing model
(logistic regression). Given this preliminary qualitative analysis, it seems
that the misclassification might be connected to several reasons. First,
technical issues in the videos that result in an incorrect prediction of
eye-gaze behaviour, for instance, participants wearing glasses or not
enough lighting on a participant’s face at a certain time segment.
Second, following a thin-slicing approach, we are dividing memorable
moments into smaller segments, where each segment has the same
memorability rating as the other segments of that memorable moment.
This means we are treating memorability as a constant in each
moment annotated as memorable. This is not always the case: for
example, if there is a pause or a moment of hesitation in a longer
memorable segment it would also be classified as memorable, while the
non-verbal signals would indicate participants’ disengagement. Last,
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the neural network might have misclassified some instances because of
ambiguities in non-verbal signals. For example, a segment where most
participants avert their gaze would be classified as memorable, since,
statistically speaking, it is a signal indicative of memorability. However,
it could also be a signal of disengagement and, therefore, the lack of
attention needed to memorise the moment. In this case, the segment
would be incorrectly classified as highly memorable. This highlights
the need for a wider context for accurate predictions of conversational
memorability. Specifically, introducing additional modalities, such as
speech or prosody, along with constructs such as engagement or affect
could help to solve these ambiguities (see e.g., [216,217]).

RQ2: Self-reported reason analysis. To complement the
behavioural analyses, we explored why participants remembered
particular conversational moments by analysing their self-reported
reasons. Drawing on theoretical frameworks of autobiographical
memory [11] and cognitive appraisal theory [179,180], we developed
a structured annotation scheme that categorised memory triggers into
functional and emotional dimensions. This approach allowed us to
investigate not only which types of conversational content tend to be
remembered, but also what those memories might mean to participants,
whether they support identity construction, social connection, or future
decision-making.

Our analysis revealed that the most common reason for remembering
a moment was related to self-perception. Participants frequently recalled
segments that resonated with their personal feelings or narratives. This
goes in line with the previous research on ego-centric bias [15] and
means that people remember things that were personally distinct to
them because of how it reflects on their personal image. This also
confirms the importance of the second memory function described
in Bluck et al. [11] - ’self’, memories that reinforce or shape one’s
self-image. The next most common category involved facts about
others, particularly moments that revealed another person’s opinions or
unexpected traits. This aligns with the social function of memory [11],
where conversations are used to gather and retain interpersonal
knowledge. Less frequent but still meaningful were labels tied to shared
experiences, meta-behaviours of others (such as witnessing someone’s
emotional display), and cognitive empathy, reflecting socially rich but
rarer moments of collective or emotional significance. Interestingly,
factual memories, aligning with Bluck’s directive memory function (e.g.
with "facts about the world" label), were less commonly reported. This
suggests that in natural group conversations, people are more likely to
remember moments that are emotionally salient or socially meaningful,
rather than simply informative.
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4.11. CONCLUSIONS
In this study, we investigated whether conversational memory could be
predicted from non-verbal multimodal cues, focusing on gaze and speech
activity as potential indicators of memorability. Our findings showed
that these features could successfully distinguish between four levels of
memorability on a group level. Specifically, highly memorable moments
were marked by distinct patterns: lower participant presence, reduced
gaze entropy, and more active speaking engagement before and after
the memorable moment. These results suggest that gaze aversion
(lower presence) is a key distinguishing feature between memorable
and merely highly involved moments. Additionally, the most common
reasons participants gave for recalling a specific moment were related
to personal feelings and experiences, highlighting the importance of
social factors in memory formation. The second most common reason
was information about other participants, which underscores the social
and relational nature of conversational memory, rather than factual or
world knowledge.

With this study we aimed to move towards filling three major gaps:

1. Conversational setting: Previous research on memorability has
primarily been limited to static media, such as images and
videos, and has not explored the dynamic, interactive nature of
conversations. This study extends memory modelling into the
conversational setting, acknowledging the unique challenges posed
by ongoing verbal and non-verbal exchanges. Conversations, unlike
media consumption, are inherently social and active, and memory
formation is influenced not just by the intrinsic characteristics
of the conversation but also by interpersonal dynamics such as
turn-taking, emotional contagion, and group cohesion. Our findings
suggest that group behaviour in conversations can be used to
predict memorability levels of the conversational segment. It
also confirms the particular importance of social and self-directed
memories in a conversational context.

2. Group-level analysis: Much of the existing research on memory
encoding has focused on dyadic interactions, where memory is
typically studied in one-on-one conversations. However, many
real-world applications of memory-aware systems, such as meeting
support and collaborative learning, involve group interactions. By
investigating memory at the group level, this study bridges a
significant gap in the literature. We demonstrate that group-level
non-verbal behaviour patterns can be used to predict aggregated
memorability levels.

3. Continuous operationalisation of memory encoding & multi-
modal analysis: A key novelty of this work lies in the continuous
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operationalisation of memory encoding annotation. This approach
is essential in dynamic environments such as meetings or deliber-
ations, where multiple moments within a single conversation may
be memorable. Although previous research has analysed conver-
sations continuously [17], they have only focused on the verbal
information within the conversation. While verbal information
can only provide information about the active speaker, non-verbal
signals provide a continuous signal for both speakers and listeners.
In this paper, we showed that such non-verbal features as gaze can
indeed be successfully used to predict group memorability.

Overall, conversational memory modelling could show promise for
interactive systems in various applications. In user modelling, current
adaptive systems track engagement and mood [44, 206, 218] but
overlook memory, crucial for long-term personalisation [64]. Integrating
memory would help differentiate transient from lasting experiences,
enabling more tailored interactions. In meeting facilitation, existing
tools track verbal and non-verbal cues [4,6,95] but lack conversational
memory. Detecting shared recollections could strengthen social bonds
and common ground [63,71]. Conversational agents also struggle with
long-term rapport, recalling full conversations instead of selectively
remembering socially relevant details, which can hinder trust and
engagement [61,65,163]. Memory-aware systems could foster deeper
connections and more meaningful interactions.
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5.1. CONTRIBUTIONS AND FINDINGS
While human memory has long been studied in controlled environments,
understanding how memory functions in natural conversational settings
presents unique challenges. Group conversations, which involve multiple
speakers and dynamic exchanges, offer a rich context for examining
how different factors (e.g. affect, engagement, and the way content
is communicated) can influence what is remembered. This thesis aims
to provide insights into how memory can be predicted in context-rich
real-world interactions.

Constructing a dataset for conversational memory prediction.
While existing approaches to socio-cognitive computational modelling
often leverage annotated datasets, the unique requirements of memory
research (e.g. self-reported annotations and consistent temporal
frames) make it impossible to rely on third-party annotations or
adapt existing datasets. Furthermore, no existing dataset captures
memory annotations within ecologically valid, multi-modal, multi-party
conversational contexts, which are essential for understanding memory
processes in real-world interactions. Chapter 2 addresses this critical
gap in the availability of datasets for conversational memory prediction
by describing the structure and construction of the MeMo corpus - a
multimodal conversational dataset annotated with first-party memory
reports. The setup and construction ensure ecological validity. Chapter 2
thereby answers research question RQ1 in the following way:

RQ1: How can a multimodal conversational dataset be designed to
validly capture first-party memory reports to support computational
modelling of memory processes in multi-party meetings?

Main takeaway of Chapter 2: We address this question by designing
and collecting the MeMo corpus using three key principles. First,
to ensure ecological validity, we recorded naturalistic, small-group
conversations in a typical online meeting settings of Zoom across
three sessions over two weeks. Second, to reliably capture first-party
memory, we collected individual memory reports after each session
and later asked the participants to relate the memory reports to specific
events in conversation recordings, ensuring the memory annotations
provided first-party continuous ground-truth memory labels directly
usable for computational modelling. Third, we ensured construct
validity of memory and behaviour measures by using established
perceptive measures, integrating them with multimodal signals (audio,
video, gaze, and annotations), and aligning them with theoretical
frameworks from cognitive psychology. The resulting MeMo corpus
consists of 31 hours of multimodal data and offers a rich foundation
for modelling conversational memory, with a particular emphasis on
real-world meeting setting and group behaviour.
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By presenting this novel dataset, we hope to have paved the way
for further research on conversational memory modelling, providing a
foundation for computational modelling of verbal and non-verbal cues
associated with memory and enabling the development of predictive
tools for applications, such as meeting support systems.

Identifying if observed group affect annotations can derive
memory annotations. Building on the development of the MeMo
corpus in Chapter 2, Chapter 3 investigates whether time-continuous,
third-party annotations of perceived group affect can serve as an
effective proxy for group memorability in naturalistic conversations.
Given the substantial effort required to obtain first-party memory labels,
which limits scalability, this chapter explores the potential of leveraging
affective computing resources as a more practical alternative. While
prior research highlights the influence of emotion (in terms of arousal
and valence) on memory encoding, it remains unclear how continuously
annotated group-level affective signals relate to collective memory in
real-world settings. To address this, we examine the extent to which
group affect annotations correspond with group memorability labels
derived from first-party memory reports. Through this investigation,
we aim to clarify whether dedicated memory-specific annotations are
indispensable or if observed affective cues, captured through established
computational methods, can reliably predict conversational memory in
team contexts, thereby addressing RQ2:

RQ2: To what extent do third-party, time-continuous annotations
of perceived group emotions (arousal and valence) predict group-level
memorability in unstructured, naturalistic conversational interactions?

Main takeaway of Chapter 3: This chapter found that although
third-party group affect annotations (arousal, valence, intensity) show
some relationship to conversational memorability beyond chance, this
association largely disappears when controlling for distributional biases
and temporal alignment. These results suggest that continuous,
observer-rated group affect signals do not reliably serve as proxies
for group-level memory in naturalistic conversations. Consequently,
dedicated memory-specific annotations remain necessary, and future
work should carefully consider the conceptual and methodological dif-
ferences between affect and memory constructs in affective computing
contexts.

The findings imply that relying on third-party continuous affect
annotations as a substitute for personal importance or memory labels in
conversational AI or affective computing systems may lead to inaccurate
predictions of memorability in group discussions. This underscores the
need for developing dedicated methods and datasets focused explicitly
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on memory modelling, rather than assuming affect can serve as a
sufficient proxy. Moreover, it highlights the importance of aligning
annotation perspectives and temporal frameworks when integrating
cognitive constructs like memory into intelligent systems.

Identifying multimodal predictors of conversational memora-
bility. While prior work has successfully used verbal and non-verbal
behaviours to infer socio-cognitive states, such as affect, involvement,
and dominance, to our knowledge, there were no existing studies that
explore which behavioural signals may be informative for predicting
memory encoding and retention in conversational contexts, and whether
the conversational memory prediction task is feasible overall. Chapter 4
addresses this gap by investigating the feasibility of using group eye
gaze and speaker activity as behavioural predictors of conversational
memorability. Specifically, we use the MeMo corpus (introduced in
Chapter 2) to explore whether these signals might serve as meaningful
features for future computational models of memory in interaction.

The first aim of Chapter 4 is not to propose a definitive model, but
rather to explore the potential of these behavioural signals as predictors,
based on their known links to attention and involvement. The main
answer that Chapter 4 gives to RQ3 is the following:

RQ3: Can non-verbal behaviours, such as group eye gaze and speaker
activity, serve as indicators of which conversational moments are more
likely to be encoded in participants’ memory? If so, what specific
patterns in these signals predict conversational memory?

Main takeaway: Our research finds that group eye gaze synchrony
and speaker activity are feasible predictors of group memorability
in conversations, with standard computational models performing
with above-chance accuracy. Moments with higher gaze synchrony,
where multiple participants focus on the same speaker or event,
are more likely to be remembered, supporting the role of joint
attention in memory encoding. Additionally, speaker activity patterns
(e.g. sustained speaking turns and dynamic turn-taking) are linked
to memorability, suggesting that conversational engagement and
emphasis influence what is remembered. These findings indicate
that non-verbal coordination, particularly through shared attention and
speaker dynamics, plays a key role in encoding memorable moments in
group interactions.

In addition to exploring behavioural indicators of conversational
memorability, we sought to understand the subjective motivations
behind what people remember. While earlier parts of the study focus
on observable signals of memory encoding, this second component
addresses the question of why certain moments are retained. Specifi-
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cally, we examined participants’ self-reported reasons for remembering
specific conversational segments to investigate whether these align
with established cognitive and social functions of memory, such as
self-relevance, social connection, or future utility [11]. Understanding
these motivations offers insight into the underlying goals of memory in
conversation, which can, in turn, inform which types of moments might
be important to model or support in interactive systems. Following is
RQ4 and the main answer to it, based on our research presented in
Chapter 4:

RQ4: What kind of self-reported reasons for remembering a conversa-
tional moment are the most common?

Main takeaway: The findings indicate that the most frequently cited
reason category for remembering specific segments of the conversation
was "self-perception", coherent with the findings of the main roles
of memory [15]. The second most-reported reason category was
"capturing facts about other participants", which is also coherent with
previous research on the main goals of memory being social [11].

By tackling these questions, this chapter lays the groundwork for
understanding how multimodal signals can be used for group-level
memory encoding prediction and what drives the personal relevance of
memorable moments in conversations.
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5.2. POTENTIAL APPLICATIONS AND SOCIETAL
IMPLICATIONS

5.2.1. USER MODELLING

When constructing an intelligent system suitable for long-term interac-
tion with a human, the success of a system can depend on how well it
can learn and adapt to a specific user [64]. The field of user modelling
focuses on building a rich, adaptive user profile suitable for subsequent
personalisation of intelligent systems to a specific user [64,219]. Updat-
ing information about the user could be done through explicit questions
to the user, but this could interrupt the interaction with the system
and, therefore, usually cannot be done throughout the whole interaction
without causing disruption in the use of the system. This gives rise to
real-time tracking of user internal states, such as engagement [206],
affect [44] and mood [218] throughout the interaction via verbal and
non-verbal signals coming from the user. The most commonly modelled
internal states, such as affect, engagement, attention or mood, can
be used for user preferences within a particular interaction with the
system [7, 9, 99]. However, in a long-term interaction, it is also
important for the system to understand, more globally, what parts of
the interaction stay with the user even after the session is complete. In
other words, when building an intelligent system suitable for long-term
interaction, it is important to model what the user is more likely to
remember from previous interactions with the system. This is important
because, unlike machines, humans do not retain or weigh all parts of
an interaction equally. While a system can access the full interaction
history at any time, humans have selective memory, with only some
moments encoded, retained, and later recalled. Ultimately, these
remembered moments are what shape the user’s long-term experience
with the system. Therefore, memory modelling is essential for user
modelling in the context of systems interacting with a user more than
once. In group interaction, it is not only individual users one-by-one that
a system would need to adjust to, but also the dynamics of the group as
a whole. The system needs to be personalised to the group as a whole,
its preferences, needs and behaviours, which is not necessarily equal
to the addition of those characteristics for each participant, but might
emerge from a unique combination of participants in the group [27].
Group-level memorability modelling presented in Chapter 4 could be
used for this application. The MeMo dataset presented in Chapter 2
allows for both group-level and individual-level memorability modelling
to advance user modelling applications.
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5.2.2. FACILITATION
In a world where loneliness has become a pressing societal issue
[66, 67], impacting both mental and physical well-being across our
society [68, 220], solutions offering to improve the quality of human-
human relationships are essential [221–223]. This is particularly
important since the feeling of loneliness is not solely determined by
the quality of human connections, but rather only by their quantity.
Relationship quality hinges on feeling understood and appreciated within
social relationships in one’s life, with misunderstandings and conflicts
diminishing it [70]. Conversational facilitation is a tool that can be
useful not only on the level of improving one meeting at a time
but also deepening conversations and improving the overall quality of
relationships between people.

Existing meeting facilitation systems can enhance social interactions
by tracking users’ non-verbal and verbal signals in real-time, leading
to improved satisfaction, equal participation, and decreased social
inhibitions [4,6,95]. Although not investigated before, understanding
the intricacies of human memory could be essential for facilitating
meaningful social interactions. By detecting and analysing encoded
conversational segments across users, facilitation systems can foster
social bonding, establish common ground, and guide participants
towards mutual understanding and appreciation [62, 63, 71]. Thus,
integrating memory modelling into facilitation systems holds significant
promise for enhancing social interactions and strengthening human
relationships over the long term.

5.2.3. CONVERSATIONAL AGENTS
Conversational agents are being continuously developed for various
applications: tutor agents designed to train social skills [224], moderator
agents that can prevent and resolve conflicts [225], and conversational
agents that act as human companions in times of need [226].
However, while these systems have shown promise in the short
term, sustaining their impact over time is still a challenge [163].
State-of-the-art longitudinal experiments show that over time, users’
engagement with the existing intelligent systems diminishes, resulting
in a weakened connection and a decline in the positive effects of the
interventions [164,227–229].

One potential reason for conversational agents struggling in long-
term interaction with the user could lie in the role memory plays
in conversations. In human-human interactions, memory is closely
intertwined with social cognition - through shared memories, humans
create and maintain social bonds [62] and identify as part of a certain
social group [63]. The ability to remember and recall memories from
previous interactions in humans correlates with how well they perform
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in a conversation and their perceived social intelligence [16]. Similarly
to an interaction with another human, in a repeated interaction with an
agent, a user expects the agent to remember and reuse experiences
from previous interactions [72]. One could argue that in the absence
of memory, a user-agent bond is not possible, which in turn can hinder
long-term engagement with an agent [164]. In other words, for a
successful long-term interaction with an agent, it should possess the
ability to recall previous sessions and leverage shared memories with the
user when relevant [162]. In fact, leveraging shared memories of past
interactions has already been shown to improve long-term human-agent
interaction [73,165,166,230]. Similar to how humans with better social
memory are perceived by other humans [16], agents with memory for
past interactions are generally perceived as more understanding and
socially present than agents without such ability [73,166].

While these results of memory systems for conversational agents are
widely positive, they are not based on how humans recall conversations
and misuse the term ’shared memory’, assuming the entire past
conversation is in the user’s memory and is ’shared’ with an agent.
In reality, if the memories are forgotten or not recognised by the
user, bringing them up might not induce any positive effect, as shown
in [74,231,232]. This discrepancy might come from the fact that while
an agent can memorise an entire conversation, a human would only
retain some part of that information since, unlike agents, humans have
a highly selective memory [61, 65]. Therefore, only certain (if any)
episodes from the previous interaction would be in the shared memory
between the agent and the user. This misalignment between what
an agent believes is a shared memory and what the user actually
remembers might prove to be a problem, especially when transferring
to a less constrained in-the-wild setting, with a wider range of topics
or with frequently repeated interactions over longer time frames [164].
In other words, although these state-of-the-art agents are able to refer
to previous interactions, they do not possess the ability to identify
memories that are truly shared with the user and are more likely to lose
the connection with the user over time, similar to Campos et al. [74] or
Croes and Antheunis [164].

To truly leverage shared memory with the user and improve the
chances for long-term interaction success, a conversational agent needs
to understand which knowledge and experiences the user is more likely
to retain from the previous interaction. Therefore, an essential step
before designing a memory model for an agent is to first understand
which conversational segments are more likely to be retained by the
user, why, and when to bring them up. Here is where the MeMo corpus
and conversational memory models developed on its basis can be of
help. Aside from aligning the ’true’ shared memories for conversational
agents, a model of the user’s conversational memory can help advance
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the agent’s theory of mind and perception of common ground.
In addition, this topic can be further explored from one-on-one

interview data collected after the three group discussions. During the
interview, the moderator asked each participant about the preferred
capabilities of memory for an agent that is meant to support public
discussions. This qualitative data can be used as a basis for a
user-memory-informed conversational agent memory design in similar
contexts. This data is a part of a conjoint project and, therefore, is
not included in the publicly shared MeMo corpus, but is available upon
request.

5.2.4. SUMMARISATION AND NOTE-KEEPING
Another topic that conversational memory models hold significant
potential for is meeting summarisation applications. The likelihood of
information being retained by each team member can be used as a
more personalised alternative to other measures of individual or group
moment importance (e.g., [50] or [75]). By identifying and prioritising
segments with higher probabilities of being retained by participants,
summarisation algorithms can focus on extracting and emphasising the
most salient information for each participant or group as a whole. This
approach enables the creation of more concise and relevant summaries
that capture key points and discussions, enhancing the efficiency of post-
meeting communication. Additionally, understanding which segments
are more likely to be remembered allows for targeted interventions
during meetings, such as repetition or elaboration, to reinforce important
concepts or decisions. Overall, integrating memory likelihood tracking
into summarisation or automatic note-keeping applications can lead to
more tailored and impactful meeting summaries that better serve the
needs of participants.

5.2.5. MEMORY AUGMENTATION
Finally, our research on conversational memory modelling could aid
memory augmentation applications. The amount of content stored
in a person’s digital footprint is only growing - daily photos, videos,
messages, meetings. To help users deal with the amount of the stored
data, memory augmentation tools are developed to extract relevant
content when needed [76]. When it comes to extracting relevant
moments from work meeting footage, the annotation of relevance for
the user is currently based on text characteristics or frequency of
topic repetitions [77]. While useful, these measures are too generic to
measure what each participant would find relevant enough to remember
from each interaction. For this purpose, it would be useful for a
memory augmentation system to be able to predict what a person would
recall from an interaction for two purposes:first, memorability indicates
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personal relevance of a moment that a human is likely to want to replay
later, after some time has passed. Second, if a system is able to predict
what a person would recall after a meeting, it could augment human
memory with moments that seem important but were not captured by a
participant’s memory.

Memory augmentation tools are also useful for humans with memory
disorders. With an ageing population, this application has become
particularly important (e.g. increasing numbers of people with
Alzheimer’s disease, Dementia, Parkinson’s disease [78]). To help
humans with such a disorder, researchers develop life-logging systems
that record users’ daily activities (e.g. with a wearable camera) and
extract the relevant events when needed. Since the amount of data
recorded by such a device could be increasingly large, evaluating the
relevance of each event is highly important for the usability of such
a system. We suggest that memorability modelling has potential for
advancing such systems. For example, the system could use data from
a healthy individual on which moments are more likely to be memorable
(e.g. MeMo corpus described in Chapter 2) and prioritise those moments
when supporting a person with memory disorders.
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5.3. LIMITATIONS
Chapter 2: All the studies in this thesis are based on the MeMo corpus
(described in Chapter 2). Like any dataset, the MeMo has its limitations.
First, the corpus is confined to online video-call settings and a single
topical domain (Covid-19), which may not fully represent the range
of conversational dynamics present in face-to-face or other contexts.
Second, the memory annotations methodology used in the MeMo corpus
could be limited by the assumption that each free-recall self-report (FRS)
corresponds to a single encoded event annotation (EEA). In practice,
participants might merge multiple similar events into one report, or they
may simply fail to report or precisely annotate all memorable moments
due to the cognitive demands of the task. Furthermore, although the
first-party memory annotations are closer to the experienced state,
not all encoded memories might be accessible at the time of the
survey, and, therefore, the memory annotation only captures a subset
of encoded memories that were accessible to participants at the time of
the survey. The corpus also does not record measures of participants’
fatigue at the time of memory annotation, which might affect the
completeness of memory reports and accessibility of memories. Finally,
having a trained moderator may create a sense of hierarchy in the group
and introduce the confounding variable of different moderation styles,
potentially affecting the discussion structure and group dynamics. A
different setting might lead to different results, depending on the
environment, goals, and roles in the conversation. These limitations
extend to this thesis as a whole, since all the studies are based on the
MeMo corpus. In future work, it would be great to reproduce the results
on another corpus annotated with memory, maybe in the offline setting
or a real-world work meeting setting.
Chapter 3’s study design also had its’ own limitations in addition to

the ones described above. When comparing two types of continuous
annotations (memory and affect), we have assumed that if the affect
and memory are related, they would have a linear relationship with each
other. This might not be the case, and non-linear models might show
more of a connection between the two phenomena. Another limitation is
connected to the reliance on third-party affect annotations as proxies for
experienced emotional states. While these observed annotations provide
valuable insights into the group’s collective emotional atmosphere, they
may not accurately reflect the internal, experienced affect that underlies
memory encoding. This discrepancy between observed and experienced
affect could dilute the predictive power of the models, underscoring the
need for future research to incorporate more direct, physiological, or
self-reported measures of affect.

Memorability modelling in Chapter 4 also comes with its limitations.
One major limitation is that the analysis focuses exclusively on
group-level predictions, leaving individual-level memorability analysis
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and prediction unaddressed. As such, the models may overlook the
variability in how different individuals encode and retain conversational
events. Additionally, the features studied in Chapter 4 are limited to
group eye-gaze behaviour and speaker activity. There could be other
multimodal features promising for memorability prediction that have
been previously used in other social signal processing applications, such
as prosody [216], laughter [217], and participants’ individual [233] or
group characteristics. Furthermore, the predictive models employed
in this work are relatively simple and may not capture the complex,
non-linear patterns inherent in human memory. More sophisticated
time-series models, as well as online prediction frameworks, would
likely improve accuracy and relevance in real-world meeting support
applications.



5.4. Ethical considerations

5

127

5.4. ETHICAL CONSIDERATIONS
Privacy and consent in memory-related inference systems.
Developing systems that predict what individuals are likely to remember
based on their verbal and non-verbal behaviour raises significant
concerns around privacy, autonomy, and consent. Unlike traditional
observable behaviours, memory is an internal cognitive state that
individuals may not wish to reveal or have inferred without their
explicit awareness. Predictive memory systems, when deployed without
appropriate safeguards, may be perceived as invasive or manipulative,
particularly in sensitive contexts, such as workplace meetings or
educational settings. Therefore, any deployment of such models
must ensure clear communication of their purpose and scope, secure
informed consent, and provide individuals with the right to opt out of
memory-related profiling.

Risks of misinterpretation and misuse. Even when developed
with good intent, memorability prediction tools could be misused or
overinterpreted in real-world scenarios. For example, organisations
might use such systems to assess attention or learning outcomes in
job interviews or exams, without understanding the nuanced factors
influencing memory. Because memory is influenced by individual traits,
emotions, social dynamics, and prior knowledge, treating predicted
memorability as a definitive measure could lead to unfair decisions.
In addition, predictive models trained on predominantly neurotypical
populations may fail to account for the cognitive and behavioural
diversity found among neurodivergent individuals, such as those
with ADHD or autism spectrum conditions, whose memory patterns,
attention, and expressive behaviours may differ systematically. As
a result, such models risk embedding normative assumptions and
reproducing discriminatory outcomes if applied uncritically. It is
important to consider the probabilistic and limited nature of these
predictions to avoid their use in high-stakes decisions without robust
validation across diverse populations and with appropriate ethical
safeguards in place.

Responsible development and limitations. While this thesis
presents novel contributions towards understanding and modelling
conversational memory, it does not aim to produce deployable
systems. The work is intended to support future research under
responsible AI development principles, with careful reflection on societal
implications. As the field progresses, developers should be guided by
fairness, transparency, and inclusivity when designing memory-aware
technologies. Future work must consider the broader ethical landscape,
including potential unintended consequences, and involve collaboration
between ethicists, legal scholars, and human-computer interaction
researchers to ensure that these technologies serve users’ interests
without compromising dignity or autonomy.
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5.5. FUTURE RESEARCH
In this section, we summarise several potential areas of research and
applications for which the research and data collected within this thesis
could be useful.

5.5.1. FURTHER MODELLING CONVERSATIONAL ENCODING AND
RETENTION FROM SOCIAL SIGNALS

As described in Chapter 2, the first and primary area that the MeMo
corpus can be useful for is modelling human conversational memory
from (non-)verbal behaviour of the participants during the encoding of
a moment. Although in Chapter 4 we have already presented models
that perform above chance in predicting memory encoding in terms of
group memorability levels, there is more work to be done until such
a model can be used to predict conversational memory in the wild.
In our envisioned application, such models would take verbal and/or
non-verbal features as input, potentially enriched by interpersonal and
intrapersonal traits from questionnaires, and output either (a) a binary
label of whether a timestamp was encoded, or (b) a continuous estimate
of how many participants remembered a moment, as used in Chapter 4.
Other modelling directions, such as predicting retrospective memory or
memory decay over time, remain unexplored. Developing predictive
models for conversational memory "in the wild" will require technical
advances beyond the scope of this thesis. Future work should draw on
dedicated technical research in multimodal memory modelling, which
addresses the development and evaluation of sophisticated model
architectures tailored for social and cognitive prediction tasks. The
MeMo corpus could be used for these tasks. The input features
for these models could include any combination of non-verbal or
verbal features, as well as inter- and intra-personal characteristics of
participants collected in pre- and post-questionnaires. Based on our
annotation of memory (see more detail in Chapter 2), the output
variable in such a model would be either (a) a binary label of whether a
timestamp was in the subset of retained moments or (b) a cumulative
value of the percentage of participants that had the timestamp within
their memorable moments (similar to Chapter 4). Another possible
option for an output variable could be a textual description from the
participants’ memory reports.

As mentioned before, memory can be broken down into three
subprocesses - encoding, retention and retrieval. Since memory
representations are not directly observable, modelling all three processes
relies on memory retrieval tasks (e.g. recognition tasks or free-recall
reports) and the three subprocesses are never completely separable
from each other. However, the main focus can be on one of the three.

As such, the primary focus of the MeMo corpus is on encoding and
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retention of conversational segments (see Chapter 4), but retrieval
can also be studied with some additional annotations. Modelling the
spontaneous retrieval of memories from previous sessions is possible
since the MeMo corpus contains longitudinal data from 3 conversations
spaced by 3-4 days in each group. The research question could be:
What kind of memories are more likely to be revisited within the next
conversations and how are they used within the conversation? For
this research to be possible, one could annotate the moments of the
conversation when events from past interactions are verbally retrieved
by participants. For computational modelling labels, an annotator could
go through these recordings of past interactions and relate the retrieved
events to when they were first mentioned in the conversation. This could
be a promising area of research for further development of automatic
meeting support systems to be able to predict which moments of the
previous interaction are particularly relevant within future conversations.

To model how humans retain conversations long-term, it is also
possible to use the MeMo corpus with the long-term memory reports.
Modelling retention could imply modelling the forgetting curve of a
conversational segment with two recall reports: shorter term - straight
after the interaction, and longer-term - 3-4 days after the interaction,
when most forgetting would have occurred and only the most persistent
memories would have stayed [34]. These persistent memories could be
considered the most personally relevant for the participant. Predicting
those could be used to further specify user profiles or understand the
common ground or shared memory within the group.

To model the reasons why conversational segments were encoded
and retained, the MeMo corpus contains self-reported reasons why
participants recalled each moment. The reasons were then categorised
by two annotators with the frequencies reported in Tsfasman et al. [60].
In future research, it would be interesting to further analyse and predict
the types of reasons that participants report for considering a moment
memorable. This could be a separate modelling task within remembered
moments. Possible research questions could be the following: Are
memorable moments encoded differently depending on different types
of reasons for remembering the moment? Can we automatically predict
the type of reason using (non-)verbal features?

5.5.2. FURTHER EMPIRICAL RESEARCH OF CONVERSATIONAL
MEMORY AND INTER/INTRA-PERSONAL FACTORS

Previous research on conversational memory mainly focused on factors
affecting recall during language comprehension and production tasks. It
is common to have controlled experiments focusing on the memory of
individual words or sentences [15,16,215]. Because of this controlled
manner of experiments, these studies might not extend to real-world
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situations, such as a spontaneous conversation. This said, some studies
did focus on free-flowing conversations [17, 83], proving there are
linguistic predictors of a moment that is to be retained by a participant
in dyadic conversations. However, individual factors that could be
of importance were not investigated in a spontaneous setting. This
leads to the question: how do participants’ individual characteristics
(e.g. personality, values) influence the quantity/type of moments they
encode, retain and retrieve in following conversations?

Conversational memory also has not been studied in group interac-
tions. From the studies of group perception measures on learning, it can
be inferred that group entitativity, cohesion and rapport that positively
affect learning [131,132], could also have a positive effect on memory.
Also, since memory supports social bonding [63] and cohesion is a
measure of the quality of social relationships within a group [234,235],
there might be a positive relationship between memory and cohesion.
Therefore, another research question that could be studied using the
MeMo corpus is the following: How do group cohesion and other group
perception parameters influence the remembered moments? Another
factor that has only been studied in more contained settings is how the
relationship between participants influences memory [14]. This could
also be studied based on the MeMo corpus, using the measures of IOS
(perceived social distance) recorded after every session [130].

These research questions could be answered through further empirical
investigation of the MeMo corpus, with the benefit of ecological validity
of its setting, as compared to more traditional in-the-lab cognitive
experiments. Answering those research questions could not only bring
new insight into cognitive science but also serve as a foundation for
further intelligent systems development. For example, to adjust to
the context of a particular user or group profile for more accurate
memorability prediction.
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A.1. QUESTIONNAIRES USED IN MEMO CORPUS
Table A.1 shows a full list of measures collected within the surveys in
MeMo data collection. See detailed descriptions of each measure in
Section 2.5.
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Table A.1.: A full list of measures collected within the prescreening, pre-session
and post-session surveys. Note that the order of the mentioned
measures does not correspond to the order in which the measures
were presented to participants. ’-’ in scale column means that the
measures were 1-item questions rather than a full validated scale
(see Table A.2 for specific questions).

survey category variable scale when

prescreening

survey

demographics

Age, gender, English fluency,

country of residency,

COVID-19 affected group

-

before

the

experiment
personal

charachteristics

Personality
24-item Brief

HEXACO Inventory [141]

Values
The Short Schwartz’s

Value Survey [142]

Experience with online

meetings
-

consent

Consent for recording and

storing video, audio and

survey data

-

technical requirements

verification

Laptop with working camera

and headset with a working

microphone

-

pre-session

survey

mood at the start of

the session
Mood before the session Affect Button [144] right before

each conversation

sessionscreenshot upload
Zoom setup for gaze target

extraction
-

memory of the previous

session
Free recall -

before 2nd &

3rd sessions &

exit

interview

most important moment

of previous discussion

(start and end times)

Most important moment

for grounding the questions

in the exit interview

-

before

exit

interview

post-session

survey

memory

Free recall -

straight after

each conversation

session

Timing annotation -

Reason for remembering -

memory for conv. agent - -

perception of

the group and interaction

Task & Group Cohesion
Cohesion in newly

formed teams [146]

Entitativity Entitativity Scale [147]

Syncness -

Rapport -

Perceived Interdependence
Situational

Interdependence [148]

Perceived Situation

Characteristics
DIAMONDS [149]

perception of

other participants

(one by one)

Relationship (perceived distance) IOS scale [130]

Mutual understanding

(perceived values)

The Short Schwartz’s

Value Survey [142]

Quality as a listener -

Personal attitude -

Quality as conversational

partner
-
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A.2. FORMULATIONS OF ORIGINAL QUESTIONNAIRE
Table A.2 lists the specific formulations of the original questionnaire
items that were created specifically for this dataset and were not directly
adopted from existing validated scales.



A.2. Formulations of original questionnaire

A

135

Table A.2.: A list of question formulations for the measures that were specific
to this dataset (the ones that were not adopted from an existing
validated scale)

Measure Question formulation
Type

of response

Which

questionnaire

Free recall

reports

"Recall and describe moments of the most recent

discussion session in as much detail as you can

remember. Any details are great - for example,

about the content, other participants, the moderator,

you, your feelings, the reaction of others, your words,

others’ words, timing, or anything that happened

throughout the discussion. Recall at least 3 moments.

If you remember more, the fields will show up as

you go until you leave one of them empty.

...

Write the [first/ second/ third] moment you remember

from the last discussion that you had. The more

details the better :)

...

Do you remember another moment from the last

discussion that you had? In case you remember

more moments, another field will show up on

the next page. If you don’t remember more moments

leave the box empty and proceed. "

text

Post-questionnaire

(after all sessions)

and

Pre-questionnaire

(before 2nd, 3rd

and exit interview)

Timing

annotation

"You wrote down several moments you remembered

from the previous discussion at the beginning of the

survey. Can you now open the video recording and

try to find when those moments occurred? It’s ok if

the timestamp is not too precise. Please, don’t rewatch

the whole video, only use it to look up the specific time

of each memory moment you wrote down. You can

move your cursor along the timeline of the video to go

to a specific moment. Please close it as soon as you are

done with this survey and don’t come back to it until

you finish the experiment (officially finished the entire

experiment on prolific). If you can’t find the exact

moment, put "0" in the time fields and fill in the option

’Comment’ with any details you remember of the timing.

Moment[N_{memory}]: At what point in the conversation

this moment happened: "[quote from the free recall

report [N_{memory}]"."

numbers

Post-questionnaire

Reason for

remembering

"Write down why do you think this moment was

memorable for you."
text

Memory for

conversational

agent question

"We want to build a social robot that really

understands you and what is important to you

and represent you in the future meetings. It

could represent you in the discussions with

other people to make sure your perspective is

being heard. It could also serve as your

personal brain-storming partner with whom

you can deliberate important aspects of your

life or decisions you need to take. What would

be important for such a robot to remember from

this meeting? Which specific moments of the

conversation would you want it to remember?

What details are most important to remember?

Write as many details as you can."

text

Quality as a

listener

"To what extent do other participants have the

following qualities?

- To what extent is [N_{participant}] a good listener? "

7-point likert scale

(1=not at all to

7=very much)Personal

attitude
"- To what extent do you like [N_{participant}]?"

Quality as

conversational

partner

"- How would you rate [N_{participant}]’s ability to

keep the conversation flowing"
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A.3. ADDITIONAL RECRUITMENT CRITERIA
Following are additional recruitment criteria per target group we used to
diversify opinions in each group:

• ’Parents with young children’: having at least one 2-12 y.o. child at
the time of the pandemic.

• ’Students’: an active student status.

• ’Older adults’: 50 years of age or older (since it was the COVID-19
risk group).

• ’(Ex-)business owners’: having had an entrepreneur status in the
last 4 years before the experiment.

Using these criteria, the resulting sample included 9 parents of young
children, 13 students, 10 business owners, 14 older adults (50+), and 7
others, not identifying as parts of the groups above.

A.4. SEPARATED AUDIO SYNCHRONISATION PROCEDURE
Because of a technical issue with the used version of Zoom, these
audios were not synchronised to the video. We have synchronised these
audios to the original video using Final Cut’s synchronise feature [236].
The audio was then manually checked for inconsistencies and corrected
to match the original audio. We then plotted the sum of all separated
audios against the original audio and calculated the absolute difference
between the two audios to find any missed non-synchronised segments.
The resulting synchronised separated audio channels are recorded in the
original .m4a format, with separate audio for each participant in every
session. Since participants used their own computers and headsets, the
audio might vary in quality, reflecting an ecologically valid setting of a
video-call set-up (see P1.1 in Section 2.3).
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A.5. LONGITUDINAL QUESTIONNAIRE COMPLETENESS
Table A.3 shows the percentage of participants (including the moderator)
that completed pre-and/ or post-questionnaire over all 3 sessions.

Table A.3.: Questionnaire completeness index per group (the percentage
of participants that completed pre- and/or post-survey over
all the sessions)

Group Questionnaire completeness

number pre-survey post-survey total

1 0.80 0.80 0.80

2 0.80 0.60 0.60

3 0.50 0.75 0.50

4 0.83 0.67 0.67

5 1.00 1.00 1.00

6 0.60 0.80 0.40

7 0.75 1.00 0.75

8 0.75 0.75 0.50

9 0.50 1.00 0.50

10 0.83 0.83 0.83

11 1.00 1.00 1.00

12 1.00 0.75 0.75

13 0.75 1.00 0.75

14 0.50 0.25 0.25

15 1.00 1.00 1.00
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A.6. DATASET VERSION STATISTICS
Table A.4 shows the statistics of the data included in each version of the
dataset: pseudo-anonymised, processed and curated.

Table A.4.: Statistics of the data included in each publicly available
version of the dataset

Pseudo- Processed Curated

anonymized

Ngrops 15 15 15

Nsessons 45 45 44

Np in conversation 55 55 54

Np in pre-screening survey 154 55 54

Np in post-questionnaire 54 54 53

Np in pre-questionnaire 54 54 53

recording duration (min) 2050 1942 1892

recording duration (hours) 34 32 31

memorable segments count 853 694 622

memory duration in min (M 3.27 3.27 1.88

+- STD) +- 6.6 +- 6.6 +- 2.01
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A.7. QUESTIONNAIRE DESCRIPTIVE STATISTICS
Table A.5 shows mood and situation perception scores across the
curated version of the MeMo dataset.

Table A.5.: Descriptive statistics of mood and DIAMONDS situation
perception across MEMO data

mean std min max

AffectButton: Pleasure 0.35 0.38 -0.61 1.00

AffectButton: Arousal -0.14 0.77 -1.00 1.00

AffectButton: Dominance 0.22 0.57 -1.00 1.00

DIAMONDS: Duty 3.88 1.62 1.00 7.00

DIAMONDS: Intellect 4.74 1.44 1.00 7.00

DIAMONDS: Adversity 1.42 0.91 1.00 6.00

DIAMONDS: Mating 1.26 0.78 1.00 5.00

DIAMONDS: Positivity 5.75 1.03 3.00 7.00

DIAMONDS: Negativity 2.28 1.41 1.00 7.00

DIAMONDS: Deception 1.61 1.17 1.00 6.00

DIAMONDS: Sociality 5.19 1.51 1.00 7.00
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B.1. VISUALISATION OF METRIC COMPARISON FOR ALL
EXPERIMENTS

B.1.1. DTW

Figure B.1.: DTW distance results for all the experiments (each row of
plots shows data for a different experiment) across the three
affect dimensions - Arousal (blue), Valence (green), Intensity
(gray). The Coloured histogram showed the distribution of
averaged DTW distance values under the null hypothesis,
the red dashed line shows the averaged DTW distance value
for the observed data. (Metric interpretation: The lower the
DTW distance the more alignment is observed in the data.)
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B.1.2. PATE F1

Figure B.2.: PATE F1 results for all the experiments (each row of
plots shows data for a different experiment) across the
three affect dimensions - Arousal (blue), Valence (green),
and Intensity (grey). The Coloured histogram showed the
distribution of averaged PATE F1 values under the null
hypothesis, the red dashed line shows the averaged PATE
value for the observed data. (Metric interpretation: The
higher PATE F1 the more alignment is observed in the data.)
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B.1.3. PATE

Figure B.3.: PATE results for all the experiments (each row of plots
shows data for a different experiment) across the three
affect dimensions - Arousal (blue), Valence (green), Intensity
(grey). The Coloured histogram showed the distribution of
averaged PATE values under the null hypothesis, and the
red dashed line shows the averaged PATE value for the
observed data. (Metric interpretation: The higher PATE the
more alignment is observed in the data.)
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B.1.4. EUCLEDIAN DISTANCE

Figure B.4.: Eucledian distance results for all the experiments (each
row of plots shows data for a different experiment) across
the three affect dimensions - Arousal (blue), Valence
(green), Intensity (grey). The Colored histogram showed the
distribution of averaged Euclidean distance values under
the null hypothesis, the red dashed line shows the averaged
Euclidean distance value for the observed data. (Metric
interpretation: The lower the Euclidean distance the more
alignment is observed in the data.)





BIBLIOGRAPHY
[1] V. Kaptelinin, K. Danielsson, N. Kaiser, C. Kuenen, and M. Nordin,

“Understanding the interpersonal space of online meetings: An
exploratory study of “we-ness”,” Companion Publication of the
2021 Conference on Computer Supported Cooperative Work and
Social Computing, 2021.

[2] S. Kauffeld and N. Lehmann-Willenbrock, “Meetings matter:
Effects of team meetings on team and organizational success,”
Small Group Research, vol. 43, no. 2, pp. 130–158, 2012. [Online].
Available: https://doi.org/10.1177/1046496411429599

[3] J. E. Garon, “Facilitating meetings.” Clinical leadership &
management review : the journal of CLMA, vol. 16 4, pp. 215–
23, 2002. [Online]. Available: https://api.semanticscholar.org/
CorpusID:36829588

[4] T. Lindblom, M. W. Aiken, and M. Vanjani, “Electronic facilitation
of large meetings,” Communications of the IIMA, 2009. [Online].
Available: https://api.semanticscholar.org/CorpusID:55848946

[5] S. Samrose, D. McDuff, R. Sim, J. Suh, K. Rowan, J. Hernandez,
S. Rintel, K. Moynihan, and M. Czerwinski, “Meetingcoach:
An intelligent dashboard for supporting effective & inclusive
meetings,” in Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445615

[6] A. Shamekhi and T. Bickmore, “A multimodal robot-driven meet-
ing facilitation system for group decision-making sessions,” in ICMI
’19. New York, NY, USA: ACM, 2019.

[7] M. Langner, P. Toreini, and A. Maedche, “Eyemeet: A joint attention
support system for remote meetings,” CHI Conference on Human
Factors in Computing Systems Extended Abstracts, 2022.

[8] R. Stiefelhagen, “Tracking focus of attention in meetings,” Pro-
ceedings. Fourth IEEE International Conference on Multimodal In-
terfaces, pp. 273–280, 2002.

147

https://doi.org/10.1177/1046496411429599
https://api.semanticscholar.org/CorpusID:36829588
https://api.semanticscholar.org/CorpusID:36829588
https://api.semanticscholar.org/CorpusID:55848946
https://doi.org/10.1145/3411764.3445615


B

148 Bibliography

[9] T. Dacayan, D. Kwak, and X. Zhang, “Computer-vision based atten-
tion monitoring for online meetings,” 2022 5th International Con-
ference on Pattern Recognition and Artificial Intelligence (PRAI),
pp. 533–538, 2022.

[10] L. Levine, H. C. Lench, and M. A. Safer, “Functions of remember-
ing and misremembering emotion,” Applied Cognitive Psychology,
vol. 23, pp. 1059–1075, 2009.

[11] S. Bluck, N. Alea, T. Habermas, and D. C. Rubin, “A tale of three
functions: the self–reported uses of autobiographical memory,”
Social Cognition, vol. 23, pp. 91–117, 2005.

[12] G. L. McKinley, S. Brown-Schmidt, and A. S. Benjamin, “Memory
for conversation and the development of common ground,”
Memory & Cognition, vol. 45, no. 8, pp. 1281–1294, Nov. 2017.
[Online]. Available: https://doi.org/10.3758/s13421-017-0730-3

[13] W. L. Benoit, P. J. Benoit, and J. Wilkie, “Participants’ and
observers’ memory for conversational behavior,” Southern
Communication Journal, vol. 61, no. 2, pp. 139–154, Mar. 1996.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
10417949609373007

[14] J. A. Samp and L. R. Humphreys, “"i said what?" partner
familiarity, resistance, and the accuracy of conversational recall.”
Communication Monographs, vol. 74, no. 4, pp. 561–581, 2007.
[Online]. Available: https://doi.org/10.1080/03637750701716610

[15] D. Knutsen and L. Le Bigot, “Capturing egocentric biases in
reference reuse during collaborative dialogue,” Psychonomic
Bulletin & Review, vol. 21, no. 6, pp. 1590–1599, Dec 2014.
[Online]. Available: https://doi.org/10.3758/s13423-014-0620-7

[16] J. B. Miller and P. A. de Winstanley, “The role of interpersonal
competence in memory for conversation,” Personality and Social
Psychology Bulletin, vol. 28, no. 1, pp. 78–89, 2002. [Online].
Available: https://doi.org/10.1177/0146167202281007

[17] E. Diachek and S. Brown-Schmidt, “Linguistic features of
spontaneous speech predict conversational recall,” Psychonomic
Bulletin & Review, Jan. 2024. [Online]. Available: https:
//doi.org/10.3758/s13423-023-02440-w

[18] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review of affec-
tive computing: From unimodal analysis to multimodal fusion,” Inf
Fus, vol. 37, 2017.

https://doi.org/10.3758/s13421-017-0730-3
http://www.tandfonline.com/doi/abs/10.1080/10417949609373007
http://www.tandfonline.com/doi/abs/10.1080/10417949609373007
https://doi.org/10.1080/03637750701716610
https://doi.org/10.3758/s13423-014-0620-7
https://doi.org/10.1177/0146167202281007
https://doi.org/10.3758/s13423-023-02440-w
https://doi.org/10.3758/s13423-023-02440-w


Bibliography

B

149

[19] M. Pantic, R. Cowie, F. D’Errico, D. Heylen, M. Mehu,
C. Pelachaud, I. Poggi, M. Schroeder, and A. Vinciarelli,
Social Signal Processing: The Research Agenda. London:
Springer London, 2011, pp. 511–538. [Online]. Available:
https://doi.org/10.1007/978-0-85729-997-0_26

[20] A. García Seco de Herrera, M. G. Constantin, C.-H. Demarty,
C. Fosco, S. Halder, G. Healy, B. Ionescu, A. Matran-Fernandez,
A. F. Smeaton, M. Sultana, and L. Sweeney, “Experiences from the
mediaeval predicting media memorability task,” in The NeurIPS
MemARI Workshop proceedings, New Orleans, USA, Dec. 2022.
[Online]. Available: https://doras.dcu.ie/27948/

[21] R. Cohendet, C.-H. Demarty, N. Duong, and M. Engilberge,
“VideoMem: Constructing, Analyzing, Predicting Short-Term and
Long-Term Video Memorability,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). Seoul, Korea (South):
IEEE, Oct. 2019, pp. 2531–2540. [Online]. Available: https:
//ieeexplore.ieee.org/document/9008778/

[22] N. M. Long, B. A. Kuhl, and M. M. Chun, “Memory and
Attention,” in Stevens’ Handbook of Experimental Psychology and
Cognitive Neuroscience, J. T. Wixted, Ed. Hoboken, NJ, USA:
John Wiley & Sons, Inc., Mar. 2018, pp. 1–37. [Online]. Available:
http://doi.wiley.com/10.1002/9781119170174.epcn109

[23] B. Biancardi, L. Maisonnave-Couterou, P. Renault, B. Ravenet,
M. Mancini, and G. Varni, “The wonowa dataset: Investigating
the transactive memory system in small group interactions,”
in Proceedings of the ICMI’20, ser. ICMI ’20. New York,
NY, USA: ACM, 2020, p. 528–537. [Online]. Available: https:
//doi.org/10.1145/3382507.3418843

[24] A. M. Cleary, “Dependent measures in memory research,” Hand-
book of Research Methods in Human Memory, pp. 19–35, 2018.

[25] E. R. Smith, C. R. Seger, and D. M. Mackie, “Can emotions be truly
group level? evidence regarding four conceptual criteria,” Journal
of Personality and Social Psychology, vol. 93, no. 3, p. 431–446,
Sep. 2007.

[26] R. L. Moreland, “Are dyads really groups?” Small Group
Research, vol. 41, no. 2, pp. 251–267, 2010. [Online]. Available:
https://doi.org/10.1177/1046496409358618

[27] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and W. Cao, “Deep
modeling of group preferences for group-based recommendation,”
Proceedings of the AAAI Conference on Artificial Intelligence,

https://doi.org/10.1007/978-0-85729-997-0_26
https://doras.dcu.ie/27948/
https://ieeexplore.ieee.org/document/9008778/
https://ieeexplore.ieee.org/document/9008778/
http://doi.wiley.com/10.1002/9781119170174.epcn109
https://doi.org/10.1145/3382507.3418843
https://doi.org/10.1145/3382507.3418843
https://doi.org/10.1177/1046496409358618


B

150 Bibliography

vol. 28, no. 1, Jun. 2014. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/9007

[28] S. Brown-Schmidt, C. B. Jaeger, K. Lord, and A. S. Benjamin, “Re-
membering conversation in group settings,” Memory & Cognition,
2024.

[29] A. Vinciarelli, M. Pantic, and H. Bourlard, “Social signal processing:
Survey of an emerging domain,” Image and Vision Computing,
vol. 27, no. 12, pp. 1743–1759, 2009, visual and multimodal anal-
ysis of human spontaneous behaviour:. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0262885608002485

[30] K. Mahajan and S. Shaikh, “On the need for thoughtful data
collection for multi-party dialogue: A survey of available
corpora and collection methods,” in Proceedings of the 22nd
Annual Meeting of the Special Interest Group on Discourse and
Dialogue. Singapore and Online: Association for Computational
Linguistics, Jul. 2021, pp. 338–352. [Online]. Available: https:
//aclanthology.org/2021.sigdial-1.36

[31] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell,
“On the dangers of stochastic parrots: Can language models be
too big?” in Proceedings of the ACM FAccT ’21, ser. FAccT ’21.
New York, NY, USA: ACM, 2021, p. 610–623. [Online]. Available:
https://doi.org/10.1145/3442188.3445922

[32] A. Paullada, I. D. Raji, E. M. Bender, E. Denton, and A. Hanna, “Data
and its (dis)contents: a survey of dataset development and use in
machine learning research,” Patterns, vol. 2, p. 100336, 2021.

[33] L. Stafford, V. R. Waldron, and L. L. Infield, “Actor-Observer Dif-
ferences in Conversational Memory,” Human Communication Re-
search, vol. 15, no. 4, pp. 590–611, Jun. 1989. [Online]. Available:
https://academic.oup.com/hcr/article/15/4/590-611/4584140

[34] J. M. J. Murre and J. Dros, “Replication and analysis of ebbinghaus’
forgetting curve,” PLOS ONE, vol. 10, no. 7, pp. 1–23, 07 2015.
[Online]. Available: https://doi.org/10.1371/journal.pone.0120644

[35] A. Newman, C. Fosco, V. Casser, A. Lee, B. McNamara, and A. Oliva,
“Multimodal Memorability: Modeling Effects of Semantics and De-
cay on Video Memorability,” in Computer Vision – ECCV 2020, ser.
Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox,
and J.-M. Frahm, Eds. Cham: Springer International Publishing,
2020, pp. 223–240.

[36] M. Tsfasman, B. Dudzik, K. Fenech, A. Lorincz, C. M. Jonker,
and C. Oertel, “Introducing memo: A multimodal dataset for

https://ojs.aaai.org/index.php/AAAI/article/view/9007
https://ojs.aaai.org/index.php/AAAI/article/view/9007
https://www.sciencedirect.com/science/article/pii/S0262885608002485
https://www.sciencedirect.com/science/article/pii/S0262885608002485
https://aclanthology.org/2021.sigdial-1.36
https://aclanthology.org/2021.sigdial-1.36
https://doi.org/10.1145/3442188.3445922
https://academic.oup.com/hcr/article/15/4/590-611/4584140
https://doi.org/10.1371/journal.pone.0120644


Bibliography

B

151

memory modelling in multiparty conversations,” arXiv preprint
arXiv:2409.13715, 2024.

[37] J. L. McGaugh, “Making lasting memories: Remembering the sig-
nificant,” Proceedings of the National Academy of Sciences, vol.
110, no. supplement_2, pp. 10 402–10 407, Jun. 2013.

[38] F. Dolcos, K. S. LaBar, and R. Cabeza, “Interaction between the
amygdala and the medial temporal lobe memory system predicts
better memory for emotional events,” Neuron, vol. 42, no. 5, p.
855–863, Jun. 2004.

[39] L. Cahill and J. L. McGaugh, “Modulation of memory storage,”
Current Opinion in Neurobiology, vol. 6, no. 2, p. 237–242, Apr.
1996. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S095943889680078X

[40] T. Sharot and E. A. Phelps, “How arousal modulates memory:
Disentangling the effects of attention and retention,” Cognitive,
Affective, & Behavioral Neuroscience, vol. 4, no. 3, pp. 294–
306, Sep 2004. [Online]. Available: https://doi.org/10.3758/
CABN.4.3.294

[41] Z. Kasap and N. Magnenat-Thalmann, “Interacting with Emotion
and Memory Enabled Virtual Characters and Social Robots,” in
Modeling Machine Emotions for Realizing Intelligence: Foun-
dations and Applications, ser. Smart Innovation, Systems and
Technologies, T. Nishida, L. C. Jain, and C. Faucher, Eds. Berlin,
Heidelberg: Springer, 2010, pp. 209–224. [Online]. Available:
https://doi.org/10.1007/978-3-642-12604-8_10

[42] L. Martin, J.-H. Rosales, K. Jaime, and F. F. Ramos, “Affective
episodic memory system for virtual creatures: The first step of
emotion-oriented memory,” Computational Intelligence and Neu-
roscience, vol. 2021, 2021.

[43] C. Brom and J. Lukavský, “Towards More Human-Like Episodic
Memory for More Human-Like Agents,” in Intelligent Virtual
Agents, ser. Lecture Notes in Computer Science, Z. Ruttkay,
M. Kipp, A. Nijholt, and H. H. Vilhjálmsson, Eds. Berlin, Heidel-
berg: Springer, 2009, pp. 484–485.

[44] S. K. D’mello and J. Kory, “A review and meta-analysis of
multimodal affect detection systems,” ACM Comput. Surv.,
vol. 47, no. 3, feb 2015. [Online]. Available: https://doi.org/
10.1145/2682899

[45] D. Shohamy and R. A. Adcock, “Dopamine and adaptive memory,”
Trends in Cognitive Sciences, vol. 14, no. 10, p. 464–472, Oct.

https://www.sciencedirect.com/science/article/pii/S095943889680078X
https://www.sciencedirect.com/science/article/pii/S095943889680078X
https://doi.org/10.3758/CABN.4.3.294
https://doi.org/10.3758/CABN.4.3.294
https://doi.org/10.1007/978-3-642-12604-8_10
https://doi.org/10.1145/2682899
https://doi.org/10.1145/2682899


B

152 Bibliography

2010. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1364661310001865

[46] S. Mariooryad and C. Busso, “Correcting Time-Continuous Emo-
tional Labels by Modeling the Reaction Lag of Evaluators,” IEEE
Transactions on Affective Computing, vol. 6, no. 2, pp. 97–108,
Apr. 2015.

[47] T. Zhang, A. El Ali, C. Wang, A. Hanjalic, and P. Cesar, “Rcea: Real-
time, continuous emotion annotation for collecting precise mobile
video ground truth labels,” in Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. Honolulu HI USA:
ACM, Apr. 2020, pp. 1–15.

[48] E. A. Veltmeijer, C. Gerritsen, and K. V. Hindriks, “Automatic
emotion recognition for groups: A review,” IEEE Transactions
on Affective Computing, vol. 14, pp. 89–107, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:234225582

[49] J. Cassell, Y. I. Nakano, T. W. Bickmore, C. L. Sidner, and C. Rich,
“Non-verbal cues for discourse structure,” in Proceedings of the
39th Annual Meeting of the Association for Computational Linguis-
tics, 2001, pp. 114–123.

[50] B. Wrede and E. Shriberg, “Spotting "hot spots" in meetings: hu-
man judgments and prosodic cues,” in INTERSPEECH, 2003.

[51] O. Aran and D. Gatica-Perez, “Fusing audio-visual nonverbal cues
to detect dominant people in group conversations,” in 2010 20th
International Conference on Pattern Recognition, 2010, pp. 3687–
3690.

[52] L. Otten, A. Quayle, S. Akram, T. A. Ditewig, and M. Rugg, “Brain
activity before an event predicts later recollection,” Nature Neuro-
science, vol. 9, pp. 489–491, 2006.

[53] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva, “What makes
a photograph memorable?” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, pp. 1469–1482, 2014.

[54] B. Dudzik, H. Hung, M. Neerincx, and J. Broekens, “Collecting me-
mentos: A multimodal dataset for context-sensitive modeling of
affect and memory processing in responses to videos,” IEEE Trans-
actions on Affective Computing, vol. 14, no. 2, pp. 1249–1266,
2023, accepted author manuscript.

[55] J. O’Dwyer, N. Murray, and R. Flynn, “Eye-based continuous affect
prediction,” 2019 8th International Conference on Affective Com-
puting and Intelligent Interaction (ACII), pp. 137–143, 2019.

https://www.sciencedirect.com/science/article/pii/S1364661310001865
https://www.sciencedirect.com/science/article/pii/S1364661310001865
https://api.semanticscholar.org/CorpusID:234225582


Bibliography

B

153

[56] C. Oertel and G. Salvi, “A gaze-based method for relating group
involvement to individual engagement in multimodal multiparty
dialogue,” in Proceedings of the 15th ACM on International
Conference on Multimodal Interaction, ser. ICMI ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 99–106.
[Online]. Available: https://doi-org.tudelft.idm.oclc.org/10.1145/
2522848.2522865

[57] F. Capozzi and J. Ristic, “Attentional gaze dynamics in group inter-
actions,” Visual Cognition, vol. 30, pp. 135–150, 2021.

[58] G. Underwood, Attention and memory. Elsevier, 2013.

[59] J. Q. Sargent, J. M. Zacks, D. Z. Hambrick, R. T. Zacks, C. A.
Kurby, H. R. Bailey, M. L. Eisenberg, and T. M. Beck, “Event
segmentation ability uniquely predicts event memory,” Cognition,
vol. 129, no. 2, pp. 241–255, 2013. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010027713001352

[60] M. Tsfasman, K. Fenech, M. Tarvirdians, A. Lorincz, C. Jonker, and
C. Oertel, “Towards creating a conversational memory for long-
term meeting support: predicting memorable moments in multi-
party conversations through eye-gaze,” in Proceedings of the
2022 ICMI. Bengaluru India: ACM, Nov. 2022, p. 94–104. [Online].
Available: https://dl.acm.org/doi/10.1145/3536221.3556613

[61] R. Stickgold and M. P. Walker, “Sleep-dependent memory triage:
evolving generalization through selective processing,” Nature
Neuroscience, vol. 16, no. 2, pp. 139–145, Feb. 2013. [Online].
Available: https://www.nature.com/articles/nn.3303

[62] C. W. Morris, “On the importance of conversation,” Dialogue,
vol. 32, 1993.

[63] L. Bietti, “Sharing memories, family conversation and interaction,”
Discourse & Society, vol. 21, pp. 499–523, 2010.

[64] S. Rossi, F. Ferland, and A. Tapus, “User profiling and behavioral
adaptation for hri: A survey,” Pattern Recognit. Lett., vol. 99, pp.
3–12, 2017.

[65] U. Rutishauser, L. Reddy, F. Mormann, and J. Sarnthein, “The ar-
chitecture of human memory: Insights from human single-neuron
recordings,” The Journal of Neuroscience, vol. 41, pp. 883–890,
2020.

[66] J. Holt-Lunstad, “The potential public health relevance of social iso-
lation and loneliness: Prevalence, epidemiology, and risk factors,”
Public Policy & Aging Report, vol. 27, p. 127–130, 2017.

https://doi-org.tudelft.idm.oclc.org/10.1145/2522848.2522865
https://doi-org.tudelft.idm.oclc.org/10.1145/2522848.2522865
https://www.sciencedirect.com/science/article/pii/S0010027713001352
https://www.sciencedirect.com/science/article/pii/S0010027713001352
https://dl.acm.org/doi/10.1145/3536221.3556613
https://www.nature.com/articles/nn.3303


B

154 Bibliography

[67] W. H. Organisation, “Social isolation and loneliness among
older people: advocacy brief,” 2021. [Online]. Available:
https://www.who.int/publications-detail-redirect/9789240030749

[68] D. Jeste, E. E. Lee, and S. Cacioppo, “Battling the modern behav-
ioral epidemic of loneliness: Suggestions for research and inter-
ventions.” JAMA psychiatry, 2020.

[69] I. Lefter, D. D. Luxton, A. Baird, T. Chaspari, Z. Hammal, M. Mah-
moud, and A. A. Salah, “Affective computing for mental wellbeing:
Challenges, opportunities, and promising synergies,” in 2023 11th
International Conference on Affective Computing and Intelligent
Interaction Workshops and Demos (ACIIW), 2023, pp. 1–2.

[70] H. T. Reis, K. M. Sheldon, S. L. Gable, J. A. Roscoe, and R. M. Ryan,
“Daily well-being: the role of autonomy, competence, and relat-
edness,” Personality and Social Psychology Bulletin, vol. 26, pp.
419–435, 2000.

[71] J. Raczaszek-Leonardi, A. Debska, and A. Sochanowicz, “Pooling
the ground: understanding and coordination in collective sense
making,” Front Psychol, vol. 5, 2014.

[72] D. Richards and K. Bransky, “ForgetMeNot: What and how
users expect intelligent virtual agents to recall and for-
get personal conversational content,” International Journal of
Human-Computer Studies, vol. 72, no. 5, pp. 460–476, May
2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1071581914000147

[73] M. Elvir, A. J. Gonzalez, C. Walls, and B. Wilder, “Remembering
a Conversation – A Conversational Memory Architecture for
Embodied Conversational Agents,” Journal of Intelligent Systems,
vol. 26, no. 1, pp. 1–21, Jan. 2017. [Online]. Available: https://
www.degruyter.com/document/doi/10.1515/jisys-2015-0094/html

[74] J. Campos, J. Kennedy, and J. F. Lehman, “Challenges in Exploiting
Conversational Memory in Human-Agent Interaction,” in Proceed-
ings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, ser. AAMAS ’18. Stockholm, Sweden:
International Foundation for Autonomous Agents and Multiagent
Systems, Jul. 2018, pp. 1649–1657. [Online]. Available: https:
//dl-acm-org.tudelft.idm.oclc.org/doi/10.5555/3237383.3237945

[75] F. Nihei and Y. I. Nakano, “Exploring Methods for Predicting
Important Utterances Contributing to Meeting Summarization,”
Multimodal Technologies and Interaction, vol. 3, no. 3, p. 50, Sep.
2019, number: 3 Publisher: Multidisciplinary Digital Publishing

https://www.who.int/publications-detail-redirect/9789240030749
https://www.sciencedirect.com/science/article/pii/S1071581914000147
https://www.sciencedirect.com/science/article/pii/S1071581914000147
https://www.degruyter.com/document/doi/10.1515/jisys-2015-0094/html
https://www.degruyter.com/document/doi/10.1515/jisys-2015-0094/html
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.5555/3237383.3237945
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.5555/3237383.3237945


Bibliography

B

155

Institute. [Online]. Available: https://www.mdpi.com/2414-4088/
3/3/50

[76] S. Kashmira, J. L. Dantanarayana, J. Brodsky, A. Mahen-
dra, Y. Kang, K. Flautner, L. Tang, and J. Mars, “A
graph-based approach for conversational ai-driven personal
memory capture and retrieval in a real-world applica-
tion,” ArXiv, vol. abs/2412.05447, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:274597659

[77] S. A. Bahrainian and F. A. Crestani, “Predicting the topics
to review in preparation of your next meeting,” in Italian
Information Retrieval Workshop, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2662007

[78] M. Kopelman, “Disorders of memory.” Brain : a journal of neurol-
ogy, vol. 125 Pt 10, pp. 2152–90, 2002.

[79] M. Tsfasman, R. Ghorbani, C. M. Jonker, and B. Dudzik,
“The emotion-memory link: Do memorability annotations
matter for intelligent systems?” 2025. [Online]. Available:
https://arxiv.org/abs/2507.14084

[80] P. Rotshtein, Ed., Encyclopedia of Behavioral Neuroscience, 2nd
edition. Netherlands: Elsevier, 2021.

[81] M. A. Conway, Autobiographical Memory. Elsevier, 1996, p.
165–194. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/B9780121025700500082

[82] S. Brown-Schmidt and M. C. Duff, “Memory and common ground
processes in language use,” Topics in Cognitive Science, vol. 8,
no. 4, p. 722–736, Oct. 2016.

[83] P. J. Benoit and W. L. Benoit, “Anticipated future interaction
and conversational memory using participants and observers,”
Communication Quarterly, vol. 42, no. 3, pp. 274–286, Jun. 1994.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
01463379409369934

[84] L. Stafford, C. S. Burggraf, and W. F. Sharkey, “Conversational
Memory The Effects of Time, Recall, Mode, and Memory
Expectancies on Remembrances of Natural Conversations,”
Human Communication Research, vol. 14, no. 2, pp. 203–229,
Dec. 1987. [Online]. Available: https://academic.oup.com/hcr/
article/14/2/203-229/4587713

[85] E. Cambria and B. White, “Jumping nlp curves: A review of natural
language processing research,” IEEE Comput Intell Mag, vol. 9,
no. 2, 2014.

https://www.mdpi.com/2414-4088/3/3/50
https://www.mdpi.com/2414-4088/3/3/50
https://api.semanticscholar.org/CorpusID:274597659
https://api.semanticscholar.org/CorpusID:2662007
https://arxiv.org/abs/2507.14084
https://linkinghub.elsevier.com/retrieve/pii/B9780121025700500082
https://linkinghub.elsevier.com/retrieve/pii/B9780121025700500082
http://www.tandfonline.com/doi/abs/10.1080/01463379409369934
http://www.tandfonline.com/doi/abs/10.1080/01463379409369934
https://academic.oup.com/hcr/article/14/2/203-229/4587713
https://academic.oup.com/hcr/article/14/2/203-229/4587713


B

156 Bibliography

[86] B. A. Nosek, T. E. Hardwicke, H. Moshontz, A. Allard, K. S. Corker,
A. Dreber, F. Fidler, J. Hilgard, M. Kline Struhl, M. B. Nuijten et al.,
“Replicability, robustness, and reproducibility in psychological sci-
ence,” Ann Rev Psych, vol. 73, 2022.

[87] M. Hutson, “Artificial intelligence faces reproducibility crisis,”
2018.

[88] J. Holt-Lunstad, “The major health implications of social connec-
tion,” Curr Dir Psychol Sci, vol. 30, 2021.

[89] A. Garcia, “Dispute resolution without disputing: How the inter-
actional organization of mediation hearings minimizes argument,”
Am Soc Rev, vol. 56, 1991.

[90] C. A. Picard and M. Jull, “Learning through deepening conver-
sations: A key strategy of insight mediation,” Confl Res Quart,
vol. 29, 2011.

[91] K. N. Dillard, “Envisioning the role of facilitation in public delibera-
tion,” J Appl Commun Res, vol. 41, 2013.

[92] C. Bruce, A. D. Newell, J. H. Brewer, D. O. Timme, E. Cherry,
J. Moore, J. Carrettin, E. Landeck, R. Axline, A. Millette, R. Taylor,
A. Downey, F. Uddin, D. Gotur, F. Masud, and D. Zhukovsky, “De-
veloping and testing a comprehensive tool to assess family meet-
ings: Empirical distinctions between high- and low-quality meet-
ings,” Journal of Critical Care, vol. 42, p. 223–230, 2017.

[93] S. C. Hayne, “The facilitators perspective on meetings and
implications for group support systems design,” SIGMIS Database,
vol. 30, no. 3–4, p. 72–91, sep 1999. [Online]. Available:
https://doi.org/10.1145/344241.344246

[94] L. Phillips and M. C. Phillips, “Faciliated work groups: Theory and
practice,” Journal of the Operational Research Society, vol. 44, pp.
533–549, 1993.

[95] J. V. Li, M. Kreminski, S. M. Fernandes, A. Osborne, J. McVeigh-
Schultz, and K. Isbister, “Conversation balance: A shared vr
visualization to support turn-taking in meetings,” in Extended
Abstracts of the 2022 CHI EA ’22, ser. CHI EA ’22. New York,
NY, USA: ACM, 2022. [Online]. Available: https://doi.org/10.1145/
3491101.3519879

[96] G. Schiavo, A. Cappelletti, E. Mencarini, O. Stock, and M. Zanca-
naro, “Overt or subtle? supporting group conversations with au-
tomatically targeted directives,” Proceedings of the 19th ACM IUI,
2014.

https://doi.org/10.1145/344241.344246
https://doi.org/10.1145/3491101.3519879
https://doi.org/10.1145/3491101.3519879


Bibliography

B

157

[97] O. A. Kulyk, J. Wang, and J. M. B. Terken, “Real-time
feedback on nonverbal behaviour to enhance social dynamics
in small group meetings,” in MLMI, 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16641435

[98] T. J. Kim, A. Chang, L. Holland, and A. S. Pentland, “Meeting
mediator: enhancing group collaboration using sociometric
feedback,” Proceedings of the 2008 ACM CSCW, 2008. [Online].
Available: https://api.semanticscholar.org/CorpusID:52798570

[99] K. Nowak, L. Tankelevitch, J. Tang, and S. Rintel, “Hear
we are: Spatial audio benefits perceptions of turn-taking
and social presence in video meetings,” Proceedings of
the 2nd Annual Meeting of the Symposium on Human-
Computer Interaction for Work, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259267028

[100] T. Okada, S. Okamoto, and Y. Yamada, “Affective dynamics: Causal-
ity modeling of temporally evolving perceptual and affective re-
sponses,” IEEE Transactions on Affective Computing, vol. 13, pp.
628–639, 2019.

[101] D. A. Norman, “The way i see it memory is more important
than actuality,” Interactions, vol. 16, no. 2, p. 24–26, mar 2009.
[Online]. Available: https://doi-org.tudelft.idm.oclc.org/10.1145/
1487632.1487638

[102] S. Nørby, “Why forget? on the adaptive value of memory
loss,” Perspectives on Psychological Science, vol. 10, no. 5,
pp. 551–578, 2015, pMID: 26385996. [Online]. Available:
https://doi.org/10.1177/1745691615596787

[103] E. Niforatos, M. Laporte, A. Bexheti, and M. Langheinrich,
“Augmenting memory recall in work meetings: Establishing a
quantifiable baseline,” in Proceedings of the 9th Augmented
Human International Conference, ser. AH ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3174910.3174920

[104] S. A. Bahrainian and F. Crestani, “Augmentation of human
memory: Anticipating topics that continue in the next meeting,”
in Proceedings of the 2018 Conference on Human Information
Interaction & Retrieval, ser. CHIIR ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 150–159. [Online].
Available: https://doi.org/10.1145/3176349.3176399

[105] W. A. Bainbridge, D. D. Dilks, and A. Oliva, “Memorability: A
stimulus-driven perceptual neural signature distinctive from mem-
ory,” NeuroImage, vol. 149, pp. 141–152, 2017.

https://api.semanticscholar.org/CorpusID:16641435
https://api.semanticscholar.org/CorpusID:52798570
https://api.semanticscholar.org/CorpusID:259267028
https://doi-org.tudelft.idm.oclc.org/10.1145/1487632.1487638
https://doi-org.tudelft.idm.oclc.org/10.1145/1487632.1487638
https://doi.org/10.1177/1745691615596787
https://doi.org/10.1145/3174910.3174920
https://doi.org/10.1145/3176349.3176399


B

158 Bibliography

[106] N.-A. H. Tan, H. Sha, E. Celen, P. Tran, K. Wang, G. Cheung,
P. Hinch, and J. Huang, “Rewind: Automatically reconstructing ev-
eryday memories with first-person perspectives,” Proc. ACM Inter-
act. Mob. Wearable Ubiquitous Technol., vol. 2, no. 4, pp. 191:1–
191:20, 2018.

[107] F. M. Li, D. L. Chen, M. Fan, and K. N. Truong, “Fmt: A wearable
camera-based object tracking memory aid for older adults,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, pp.
95:1–95:25, 2019.

[108] R. N. Brewer, M. R. Morris, and S. E. Lindley, “How to remem-
ber what to remember: Exploring possibilities for digital reminder
systems,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 3, pp. 38:1–38:20, 2017.

[109] S. W. T. Chan, T. Buddhika, H. Zhang, and S. Nanayakkara,
“Prospecfit: In situ evaluation of digital prospective memory train-
ing for older adults,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 3, no. 3, pp. 77:1–77:20, 2019.

[110] M. Laporte, M. Gjoreski, and M. Langheinrich, “Laureate: A
dataset for supporting research in affective computing and human
memory augmentation,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 7, no. 3, Sep. 2023. [Online]. Available:
https://doi.org/10.1145/3610892

[111] M. L. Knapp and J. A. Hall, Nonverbal communication in human
interaction. Boston, MA: Wadsworth, Cengage Learning, 2010,
oCLC: 244767251.

[112] W. L. Benoit and P. J. Benoit, “Memory for conversational behavior,”
Southern Communication Journal, vol. 56, no. 1, pp. 24–33, Dec.
1990. [Online]. Available: http://www.tandfonline.com/doi/abs/
10.1080/10417949009372813

[113] R. Heale and A. Twycross, “Validity and reliability in quantitative
studies,” Evidence-Based Nursing, vol. 18, pp. 66–67, 2015.

[114] U. Rumpf, I. Menze, N. G. Müller, and M. Schmicker, “Investigating
the potential role of ecological validity on change-detection
memory tasks and distractor processing in younger and older
adults,” Frontiers in Psychology, vol. 10, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:162183455

[115] J. E. Dunsmoor, V. P. Murty, D. Clewett, E. A. Phelps, and
L. Davachi, “Tag and capture: how salient experiences target and
rescue nearby events in memory,” Trends in Cognitive Sciences,

https://doi.org/10.1145/3610892
http://www.tandfonline.com/doi/abs/10.1080/10417949009372813
http://www.tandfonline.com/doi/abs/10.1080/10417949009372813
https://api.semanticscholar.org/CorpusID:162183455


Bibliography

B

159

vol. 26, no. 9, pp. 782–795, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1364661322001401

[116] K. M. Schnitzspahn, L. Kvavilashvili, and M. Altgassen, “Redefining
the pattern of age-prospective memory-paradox: new insights on
age effects in lab-based, naturalistic, and self-assigned tasks,”
Psychological Research, vol. 84, pp. 1370–1386, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:58544411

[117] H. Jiang, X. Zhang, and J. D. Choi, “Automatic text-based
personality recognition on monologues and multiparty dialogues
using attentive networks and contextual embeddings,” in
Proceedings of the CAI’20, vol. 34, no. 10. AAAI, Apr. 2020, p.
13821–13822. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/7182

[118] M. Daneman and I. Green, “Individual differences in comprehend-
ing and producing words in context,” Journal of Memory and Lan-
guage, vol. 25, pp. 1–18, 1986.

[119] J. Erba, P. S. Bobkowski, B. Ternes, Y. Liu, and T. Logan, “Who are
the “masses” in mass communication research? exploring par-
ticipants’ demographic characteristics between 2000 and 2014,”
Howard Journal of Communications, vol. 33, pp. 233–249, 2021.

[120] C. Infante-Rivard and A. Cusson, “Reflection on modern meth-
ods: selection bias-a review of recent developments.” Interna-
tional journal of epidemiology, vol. 47 5, pp. 1714–1722, 2018.

[121] N. Qureshi, M. Edelen, L. Hilton, A. Rodriguez, R. D. Hays, and
P. Herman, “Comparing data collected on amazon’s mechanical
turk to national surveys.” American journal of health behavior, vol.
46 5, pp. 497–502, 2022.

[122] R. Cohendet, A.-L. Gilet, M. Perreira Da Silva, and P. Le Callet, “Us-
ing individual data to characterize emotional user experience and
its memorability: Focus on gender factor,” in 2016 Eighth QoMEX.
IEEE, 06 2016, pp. 1–6.

[123] A. Mahr, M. Cichon, S. Mateo, C. Grajeda, and I. Baggili, “Zooming
into the pandemic! a forensic analysis of the zoom application,”
Forensic Science International: Digital Investigation, vol. 36, pp.
301 107 – 301 107, 2021.

[124] B. Dudzik, J. Broekens, M. Neerincx, J. Olenick, C.-H. Chang, S. W. J.
Kozlowski, and H. Hung, “Discovering digital representations
for remembered episodes from lifelog data,” in Proceedings of
the Workshop on Modeling Cognitive Processes from Multimodal
Data, ser. MCPMD ’18. New York, NY, USA: Association

https://www.sciencedirect.com/science/article/pii/S1364661322001401
https://www.sciencedirect.com/science/article/pii/S1364661322001401
https://api.semanticscholar.org/CorpusID:58544411
https://ojs.aaai.org/index.php/AAAI/article/view/7182
https://ojs.aaai.org/index.php/AAAI/article/view/7182


B

160 Bibliography

for Computing Machinery, 2018. [Online]. Available: https:
//doi.org/10.1145/3279810.3279850

[125] C. Patino and J. Ferreira, “Internal and external validity: can you
apply research study results to your patients?” Jornal Brasileiro de
Pneumologia, vol. 44, no. 3, p. 183, Jun. 2018. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188693/

[126] T. Jd and R. Ml, “Differential effects of induced mood on the recall
of positive, negative and neutral words,” British Journal of Clinical
Psychology, vol. 22, pp. 163–171, 1983.

[127] G. Matt, C. Vázquez, and W. K. Campbell, “Mood-congruent recall
of affectively toned stimuli: A meta-analytic review,” Clinical Psy-
chology Review, vol. 12, pp. 227–255, 1992.

[128] P. R. Mayo, “A further study of the personality-congruent recall ef-
fect,” Personality and Individual Differences, vol. 10, pp. 247–252,
1989.

[129] J. J. V. nor, A. Sklenar, A. Frankenstein, P. U. Levy, M. P. McCurdy,
and E. Leshikar, “Value-directed memory effects on item and con-
text memory,” Memory & Cognition, vol. 49, pp. 1082–1100, 2021.

[130] K. M. Woosnam, “The inclusion of other in the self (ios) scale,”
Annals of Tourism Research, vol. 37, no. 3, pp. 857–860, 2010.

[131] C. R. Evans and K. Dion, “Group cohesion and performance,” Small
Group Research, vol. 22, pp. 175–186, 1991.

[132] S.-Y. Kim and E. Yang, “Does group cohesion foster self-directed
learning for medical students? a longitudinal study,” BMC Medical
Education, vol. 20, 2020.

[133] R. Shaw and C. Kitzinger, “Memory in interaction: an analysis of
repeat calls to a home birth helpline,” Research on Language &
Social Interaction, vol. 40, pp. 117–144, 2007.

[134] E. Tulving and Z. Pearlstone, “Availability versus accessibility of
information in memory for words,” Journal of Verbal Learning and
Verbal Behavior, vol. 5, pp. 381–391, 1966.

[135] W. S. Horton and R. J. Gerrig, “Conversational common ground and
memory processes in language production,” Discourse Processes,
vol. 40, no. 1, pp. 1–35, 2005.

[136] H. H. Clark and D. Wilkes-Gibbs, “Referring as a collaborative pro-
cess,” Cognition, vol. 22, no. 1, pp. 1–39, 1986.

https://doi.org/10.1145/3279810.3279850
https://doi.org/10.1145/3279810.3279850
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188693/


Bibliography

B

161

[137] R. Cohendet, K. Yadati, N. Q. K. Duong, and C.-H. Demarty,
“Annotating, Understanding, and Predicting Long-term Video
Memorability,” in Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval, ser. ICMR ’18. New York, NY,
USA: Association for Computing Machinery, Jun. 2018, pp. 178–
186. [Online]. Available: http://doi.org/10.1145/3206025.3206056

[138] O. Raccah, P. Chen, T. M. Gureckis, D. Poeppel, and V. A. Vo,
“The “naturalistic free recall” dataset: four stories, hundreds
of participants, and high-fidelity transcriptions,” Scientific Data,
vol. 11, no. 1, p. 1317, Dec. 2024. [Online]. Available:
https://www.nature.com/articles/s41597-024-04082-6

[139] Prolific, “Prolific: quickly find research participants you can trust.”
2022. [Online]. Available: http://www.prolific.co/

[140] S. Wheelan, “Group size, group development, and group produc-
tivity,” Small Group Research, vol. 40, pp. 247–262, 2009.

[141] R. E. de Vries, “The 24-item brief hexaco inventory (bhi),”
Journal of Research in Personality, vol. 47, no. 6, pp. 871–880,
2013. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0092656613001220

[142] M. Lindeman and M. Verkasalo, “Measuring values with the short
schwartz’s value survey,” Journal of Personality Assessment,
vol. 85, no. 2, pp. 170–178, 2005, pMID: 16171417. [Online].
Available: https://doi.org/10.1207/s15327752jpa8502_09

[143] Qualtrics, “1 xm platform | powerful experience analytics,” Oct
2021. [Online]. Available: https://www.qualtrics.com/

[144] J. Broekens and W.-P. Brinkman, “Affectbutton: A method for
reliable and valid affective self-report,” International Journal of
Human-Computer Studies, vol. 71, no. 6, pp. 641–667, 2013.

[145] A. Aron, E. N. Aron, and D. Smollan, “Inclusion of other in the self
scale and the structure of interpersonal closeness.” J Pers Soc Psy-
chol, vol. 63, no. 4, 1992.

[146] M. T. Braun, S. W. Kozlowski, T. A. Brown, and R. P. DeShon, “Explor-
ing the dynamic team cohesion–performance and coordination–
performance relationships of newly formed teams,” Small Group
Res, vol. 51, no. 5, 2020.

[147] N. Koudenburg, T. Postmes, and E. H. Gordijn, “Conversational flow
and entitativity: The role of status,” Br J Clin Psychol, vol. 53, no. 2,
2014.

http://doi.org/10.1145/3206025.3206056
https://www.nature.com/articles/s41597-024-04082-6
http://www.prolific.co/
https://www.sciencedirect.com/science/article/pii/S0092656613001220
https://www.sciencedirect.com/science/article/pii/S0092656613001220
https://doi.org/10.1207/s15327752jpa8502_09
https://www.qualtrics.com/


B

162 Bibliography

[148] F. H. Gerpott, D. Balliet, S. Columbus, C. Molho, and R. E. de Vries,
“How do people think about interdependence? a multidimensional
model of subjective outcome interdependence.” J Pers Soc Psy-
chol, vol. 115, no. 4, 2018.

[149] J. F. Rauthmann and R. A. Sherman, “Ultra-brief measures for the
situational eight diamonds domains.” Eur J Psychol Assess, vol. 32,
no. 2, 2016.

[150] C. A. Kurby and J. M. Zacks, “Segmentation in the perception and
memory of events,” Trends Cogn Sci, vol. 12, no. 2, 2008.

[151] Zoom, “Zoom video conferencing platform.” [Online]. Available:
https://zoom.us

[152] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
G. Stemmer, and K. Vesely, “The kaldi speech recognition toolkit,”
in IEEE 2011 Workshop on Automatic Speech Recognition and Un-
derstanding. IEEE Signal Processing Society, Dec. 2011, iEEE Cat-
alog No.: CFP11SRW-USB.

[153] GazeSense, “3d eye tracking software for depth-sensing cam-
eras,” Jul 2022. [Online]. Available: https://eyeware.tech/
gazesense/

[154] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “OpenFace: A
general-purpose face recognition library with mobile applications,”
CMU-CS-16-118, CMU School of Computer Science, Tech. Rep.,
2016.

[155] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,
M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee,
W.-T. Chang, W. Hua, M. Georg, and M. Grundmann, “Me-
diapipe: A framework for building perception pipelines,”
ArXiv, vol. abs/1906.08172, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:195069430
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