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Abstract

The use of fiber-reinforced composite materials in marine applications is limited by uncertainty surrounding

their long-term fatigue behavior and micro-damage tolerance. This thesis aims to present and validate an

experimental framework to detect and classify mechanical micro-damage in unidirectional carbon-fiber

composites using acoustic emission (AE) monitoring and X-ray micro-computed tomography (micro-CT).

AE monitoring provides real-time insight into the evolution of internal damage by capturing elastic waves

emitted during micro-structural failure events, while micro-CT offers high-resolution visualization of internal

damage states before and after mechanical loading. A comprehensive analysis was conducted involving

signal processing, (normalized) frequency spectrum characterization, and unsupervisedmachine learning to

classify AE events by damage type. This classification was subsequently validated against micro-CT scans.

Results challenge the common assumption that AE signals with dominant low-frequency contributions are

reliably indicative of matrix cracking. The proposed AE framework, when validated with micro-CT, shows

promise for enabling accurate in-situ damage monitoring of composite structures in offshore environments.

This approach supports the broader adoption of composites by improving confidence and knowledge about

their structural integrity over time.
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1
Introduction

1.1. Uncertainty Management in the Offshore Industry
Managing uncertainty is one of the major challenges in the offshore industry. The sector is laid out for

the long term but regularly faces unpredictable factors such as changing weather, fluctuating costs, and

evolving regulations. These conditions demand that companies remain flexible and proactive.

One way to keep ships and structures safe, efficient, and sustainable under these constantly changing

conditions is for engineers to continuously adopt advanced technologies like predictive analytics, real-time

monitoring systems, and AI-based decision tools. Spotting disruptions early can help maritime companies

safeguard their assets, streamline logistics, and ensure compliance.

Composite materials are a class of materials limited heavily in their application by their unpredictable

long-term fatigue behavior [1]. Safety, cost, and ensuring operability are factors that sometimes make the

application of composite materials prohibitively risky in the maritime industry. Structural health monitoring

using acoustic emissions has the potential to unlock new areas of application for these materials, driving

technological advancement and opening up market opportunities.

1.2. Composite Ship Hulls and Propellers
Composite marine propellers and ship hulls have the potential to reduce the environmental signature and

carbon emissions of maritime vehicles. However, the reaction of composite hulls under high-amplitude

impact loads and the fatigue lifetime of composite propeller blades are challenging topics that have not

been sufficiently investigated so far. The challenges lie mainly in the high energy of wave impact loads, the

complex geometry and loading of the propeller blades, the large number of loading cycles they experience

throughout their lifetime, and the diverse material damage mechanisms involved at the micro-scale. It is

necessary to demonstrate that composite materials can be safe and reliable before they can be safely

deployed in real offshore applications.

Composite materials pose challenges in long-term applications, where cyclic loads and the occurrence

of impacts are to be taken into account, largely due to unresolved questions regarding their damage

resistance and damage tolerance properties [2]. Damage resistance refers to the ability of a material to

avoid the formation of (internal and micro-) damage under conditions of loading and deformation. Damage

tolerance is the ability to maintain functionality (structural integrity in the case of structural materials) after

damage has occurred. This thesis aims to develop an acoustic monitoring framework designed for both the

detection and the classification of micro-damage to support the assessment of resistance and tolerance of

composite materials, both in the laboratory and in offshore applications.

1.3. Layout of the Thesis
This report presents the work conducted as part of the experimental Master’s thesis titled ”Characterization

of Mechanical Damage in Composite Materials Using Acoustic Emissions and Micro-CT”. The two methods

(AE monitoring and micro-CT) provide complementary insights, where AE monitoring will be used to provide

a real-time supervision of damage creation, while micro-CT can offer a discrete-time insight with detailed

spatial resolution before and after damage has taken place.

Chapter 2 covers scientific literature in the field of fatigue, mechanical (micro-)damage, and structural

health monitoring of fiber-reinforced composite materials. The objective was to identify a knowledge gap

1



1.3. Layout of the Thesis 2

(Section 2.4) and a set of research questions laid out in Chapter 3 that have guided the development of the

experimental research framework of this thesis. Chapter 4 covers said research framework, which includes

quasi-static tensile testing on unidirectional carbon-fiber composite coupon specimens while monitoring

acoustic emissions (AEs), micro-CT scanning before and after tensile testing, and the processing of the

recorded AE signals and tomographic images. The results of the experimental campaign are presented in

Chapter 5 and discussed further in Chapter 6. The main body of the report is concluded with Chapter 7,

where the main findings are collected and a novel interpretation laid out. The final chapter of this thesis

(Chapter 8) covers recommendations for further work aimed at improving the current benchmark, as well

as an outlook on a potential application of the testing and analysis framework, whose feasibility has been

evaluated in the scope of this study.



2
Background

2.1. Fatigue of Fiber-Reinforced Composite (FRC) Materials
Composite materials differ from metals in their fatigue behavior. In metals, fatigue is defined as a (near)

surface phenomenon and is usually dominated by a finite number of cracks initiating at critical locations

and propagating up to fracture. The overall lifetime of a structure is governed by crack nucleation and short

crack growth at locations of macroscopic stress concentrations. These can cause the plasticity threshold

to be locally exceeded even when applying a sub-yield nominal cyclic stress. The microscopic structure of

metals is composed of crystalline grains of uniform atomic composition, and the strength of atomic bonds

at the grain interfaces is reduced, creating critical locations for micro-crack initiation and growth [3].

Long fiber composite materials, on the other hand, exhibit a fatigue behavior with additional complexities.

Their internal structure is characterized by an inhomogeneous and anisotropic composition on multiple

length scales. On the microscopic scale (typical fiber diameter: 5− 10µm), they are made up of matrix and

fiber materials and their bonding interface. On the mesoscale (0.1− 0.5mm), there are plies of different

orientations and the inter-ply interfaces between them. Fatigue damage can initiate and grow within any

one of these components or interfaces, leading to a variety of different and relevant mechanical degradation

and failure mechanisms [4].

Vassilopoulos [5] provides an extensive review of the history of research on the topic of FRC fatigue.

In the 1970s and 80s, the understanding of fatigue in composite materials as a phenomenon of creation

and growth of internal damage was established. As damage accumulates, the internal structure of the

material ’degrades’. Several measures of degradation, so-called damage state metrics, have been used

over the decades of research on the topic:

Highsmith and Reifsnider [6], for example, used residual stiffness as a running measure of damage and

attempted to associate it with remaining lifetime (see Fig. 2.1).

Figure 2.1: Typical stiffness degradation during fatigue life of FRC materials [6].

They identified three stages of fatigue degradation in composite materials dominated by different damage

mechanisms. In stage I, matrix cracking is the dominant damage mechanism in cross-ply laminates: cracks

3
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form in the resin matrix, particularly in off-axis plies and create local stress concentrations and redistributions

(load is deviated away from the cracked transverse plies). In addition, initial random fiber fractures are

expected in the 0°-plies during the first loading cycle, depending on the maximum applied load. These are

caused by statistical imperfections present even in the pristine fiber-reinforced material.

Stage II is the stage of progressive damage accumulation, where cracks start to link up and affect the

integrity of interfaces. Fiber-matrix debonding and delamination initiate and dominate the degradation of

stiffness in this stage.

In the final stage (stage III), fiber breakage becomes the leading damage mode, bringing about a sharp

drop in residual stiffness and final structural failure. Final failure shall be expected when the matrix damage

reaches a point of saturation, inhibiting successful load transfer and creating cascading fiber failures or

shear failure, or when enough fibers reach the end of their cyclic lifetimes.

Highsmith and Reifsnider’s narrative of the fatigue life of composite materials is still relevant to today’s

understanding of tensile fatigue of cross-ply FRCs.

Talreja [7] follows a conventional interpretation of fatigue by applying the well-established fatigue

lifetime diagrams (S-N curves) to observed data of fatigue experiments of FRCs. He also uses dominant

damage mechanisms to differentiate between types of fatigue progression: He adopts Dharan’s [8] division

of S-N-diagrams of composites into three regions of interest with markedly different slopes. Fiber breakage

dominates failure in the low-cycle (high-strain) fatigue range. Fiber-matrix debonding and radial matrix

crack growth are more pronounced in the mid-cycle range, and no initiation/crack arrest in the fatigue limit

range. This research is summarized in the graph presented in Fig. 2.2.

Figure 2.2: Talreja’s division of fatigue life diagrams of unidirectional FRCs, and corresponding

final-failure-governing damage modes [9].

Talreja & Singh [4] offer a comprehensive guide to the fatigue and failure of composite materials.

They elucidate the fundamental principles that govern damage initiation and progression with the help

of extensive experimental data. This data shows that fatigue behavior can vary significantly in terms of

speed and type of damage progression, even for the same composite material with the same lay-up and

the same geometry, depending on internal damage history and random manufacturing defects.

2.1.1. Fatigue Modeling
Different approaches exist for the modeling of fatigue behavior. In his review of existing methods for

estimating the fatigue life of fiber-reinforced resin matrix composites, Sendeckyj [10] divides theoretical

models into two major categories. The first comprises theories that use statistical descriptions to establish

macroscopic failure criteria under constant or variable amplitude fatigue loading (Talreja’s approach [7]).

This means that mathematical models are used to describe the lifetime data without an apparent physical

foundation, but using a rigorous framework that is well-established in the scientific and engineering com-

munity. Degrieck and Van Paepagem call this type simply ’fatigue life models’ in their review on fatigue life

models for composite materials [11].

Sendeckyj’s [10] second category includes fatigue theories that take into account the ’physical’ development

of the internal damage state of the material using a damage metric as an indicator of physical damage

accumulation (Reifsnider’s approach [6]). Thus, measurements of actual damage metrics can complement
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these models during fatigue life testing. A common mechanical damage metric is residual stiffness ([6]).

It can be conveniently measured with most fatigue testing setups and reported in a progressive lifetime

diagram (see Reifsnider’s stiffness-based damage model in Fig. 2.1). Degrieck and Van Paepagem

categorize this type of fatigue description as ’phenomenological’ fatigue models [11]. Attempts have been

made to associate residual stiffness with residual strength, as a secondary, or ’derived’ damage state

metric ([12]). Residual strength is a useful parameter in practice, but cannot be directly measured without

destructive testing of the specimen or part.

Progressive damage models are a third category identified in [11], and they aim to represent the develop-

ment of the internal damage state and the remaining structural lifetime by modeling intrinsic defects in the

matrix and matrix crack growth. Wickanson & Chai [13]’s review covers progressive damage modeling

in FRCs, and they also highlight energy release rate as a key metric for predicting damage initiation and

propagation.

Vassilopoulos [5] summarizes Sendeckyj’s [10] vision of an ideal fatigue theory for FRCs as a damage

state model that would be based on a damage metric that accurately represents the observed development

of the internal damage state, allow for accurate remaining lifetime estimation based on (two-stage or

spectrum) fatigue loading, involves a large class of materials, and accounts for scatter in the data.

Additionally, a desirable feature would be the capability to predict a component’s fatigue lifetime using

only readily available material properties and design conditions or limited-size quasi-static coupon sample

measurement campaigns. A theory that allows to predict the fatigue behavior of large-scale composite

structures with confidence without intensive full-scale fatigue testing has not yet, to the knowledge of the

author, emerged in the scientific community.

An example of a method that does allow for a quick translation between static and dynamic inference in

the context of the prediction of fatigue lifetime is Kassapoglou’s method for fatigue life of metal alloys [14].

Kassapoglou’s method uses stress-strain data directly from static testing to predict fatigue lifetimes for a

range of amplitudes and loading ratios. He uses the non-linearity in the static stress-strain curve to infer

the plastic energy dissipated per loading cycle. The procedure involves fitting a Ramberg-Osgood type

constitutive equation to the static stress-strain curve and using the non-linear relation (and a few additional

geometric assumptions on the hysteresis loop) to calculate plastic energy dissipation for a given loading

cycle (see Figure 2.3).

Figure 2.3: Kassapoglou’s calculation of cyclic plastic hysteresis energy dissipation for 0 ≤ R ≤ 1 ([14]).

The material lifetime can be predicted by calculating the number of cycles when the cumulative plastic

strain energy dissipation reaches the total available strain energy density, represented by the total area

under the stress-strain curve.

As mentioned in 2.1, composites exhibit a more complex fatigue behavior than metals. In terms of damage

work, for example, when dealing with composites, it may be more accurate, on the macroscale, to speak

of discrete and heterogeneous (damage) energy release events than of continuous plastic dissipation

per loading cycle. Nevertheless, relating non-linearity in stress-strain measurements to progressive and

irreversible cyclic energy release by damage events may provide an insightful and exciting new approach

to fatigue modeling of FRCs.
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2.1.2. Mechanical Damage Events
Mechanical micro-damage in composite materials can initiate within one of the components, leading

to fiber breakage or matrix cracking, or at one of the interfaces: delamination, fiber-matrix debonding,

interfacial shear failure/fiber sliding ([15], [16]). Delamination indicates a major damage type that involves

the failure of the bond between two plies of the composite structural element. This happens in particular

between plies of different orientation, where large out-of-plane shear effects can cause failure of the

bonded interface. Fiber-matrix debonding happens when the resin detaches from the fiber, effectively

isolating parts of the fiber from load transfer. Interfacial shear failure or fiber pull-out is another failure

mode of the fiber-matrix interface, which also leads to unsuccessful load transfer between the fiber and

the surrounding material, causing the fibers to slide out of the matrix. Physically, this damage mode may

be regarded as a combination of fiber breakage and interfacial debonding.

Damage takes place due to stress concentrations, stress anisotropies, and shear effects that arise in

the complex stress state during (multi-axial) loading, which is caused by the internal structural anisotropy

of FRCs. According to Degrieck & Van Paepegem [11], the first cracks during tensile fatigue loading of

cross-ply specimens are transverse through-thickness matrix cracks in the 90°-plies (perpendicular to the

loading direction), which have the weakest longitudinal properties. The cracks in the matrix then spread to

the plies of lower angle orientation.

In addition to the inhomogeneity of the intended design, undesirable manufacturing defects are present

even in ’pristine’ specimens. For manufacturing using vacuum infusion, these defects include voids,

resin-rich areas, fiber misalignment or waviness, and regions where the resin has poorly wetted the fibers.

When using a prepreg layup for the manufacturing of the laminate material, the main source of unintended

manufacturing defects is the poor adhesion of the plies and inter-ply voids caused by air or moisture

trapped between the layers of prepreg during manual layup. Suriani et al. [17] noted that damage initiates

in these regions and eventually brings about the onset of structural failure in natural fiber-reinforced hybrid

composites.

The progressive damage state of the material during fatigue loading can also exacerbate localized stress

concentrations. The further development of damage is therefore accelerated as the specimen deteriorates

under fatigue loading.

Damage initiates when the strain potential energy locally exceeds a threshold value due to the stress

concentrations in the complex internal stress field. This threshold value depends on the material(s) and

the observed damage mode. The excess strain potential energy is then irreversibly released in a burst

event that marks a fiber fracture, a crack initiation, or a crack growth.

The released energy travels away from the source in different forms and dissipates over distance. It can

be picked up by a variety of (passive) structural health monitoring techniques, such as passive infrared

thermography (IRT) or acoustic emission (AE) monitoring. Passive IRT measures temperature changes

in the material due to fatigue heating, i.e., the irreversible thermoelastic strain release caused by rapid

damage formation. Zalameda & Winfree [18] were able to identify damage locations and size by picking

up the transient thermal responses of the material during quasistatic and cyclic mechanical testing using

an IRT camera. AE monitoring is covered in further detail in section 2.2.1.

The elastic energy, on the other hand, is redistributed onto the intact material. This redistribution of elastic

strain energy can cause the overall mechanical properties of the composite structure to change compared

to the pristine state, well before final failure is expected. An accurate model of fatigue of composite

materials should capture and take this perceptible effect of global stiffness and strength degradation into

account.

2.2. Structural Health Monitoring (SHM) and Non-Destructive Testing

(NDT) Techniques for FRCs
Nondestructive testing (NDT) refers to the process of detecting and evaluating damage on both the surface

and within the interior of materials without physically cutting, modifying, or damaging them. A variety of

techniques are employed in the field of composite NDT, including Visual Inspection, Ultrasonic Testing

(pulse echo ultrasonic method), Thermography Testing, Radiographic (X-Ray) Testing, Acoustic Emission,

and Shearography Testing [19].

SHM techniques are NDT techniques that are used to monitor the damage/health state of structural

elements in situ throughout their lifetime.
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2.2.1. Acoustic Emission (AE) Monitoring
AE monitoring is a passive SHM technique that involves the measurement and analysis of the elastic waves

emitted by damage events [19]. During a (micro-) damage event, the localized excess strain potential

energy is transformed partly into local damage work, and partly into mechanical vibration and heat. The

mechanical vibration causes the emanation of (elastic) stress waves that travel out concentrically and can

be detected by an array of highly sensitive receptors.

In her review on non-destructive testing methods of composite materials, Gholizadeh [19] points out

that AE monitoring can be used to identify and characterize the source of a recorded signal, a significant

advantage over other passive NDT methods. She claims that the (frequency-) information carried by the

wave can be used to differentiate between signal sources, i.e., different physical damage mechanisms such

as fiber fractures, matrix micro-cracks, fiber-matrix debonding, and delamination. This claim is supported

by extensive research that has been carried out on the topic in recent years ([20],[21],[22],[23]). Please

refer to 2.3 for an overview of damage mode classification using AE waveforms.

In practice, AE monitoring involves an array of sensors that can detect the micro-displacements of

the material due to the propagation of the elastic wave generated by the damage event [16]. The elastic

oscillations can be picked up on the surface by surface-mounted piezoelectric sensors or by laser-based

methods such as Laser Doppler Vibrometry.

Embedding sensors into the material is another option that may improve the sensitivity of damage detection.

Huijer et al. ([24],[25]) proved the feasibility of embedding piezoelectric wafer sensors into a composite

marine propeller blade. They were able to implement an SHM framework for in situ damage detection

using embedded piezoelectric sensors that allow monitoring of damage without disrupting the propeller’s

operation in real-world applications.

Fiber optic sensors have been explored as an alternative to piezoelectric AE sensors for embedded

monitoring. They have drawbacks compared to piezoelectric sensors in terms of detecting high-frequency

displacements, but can be easily embedded without disrupting the fiber-array structure of FRCs [26].

2.2.2. X-ray Micro-Computed Tomography (Micro-CT)
Micro-CT has emerged as a highly effective ex-situ NDT method for the evaluation of FRCs [16]. This

technique enables detailed scanning and characterization of internal material structures, offering insight

into material heterogeneities, defects, and fiber distribution without damaging the specimen. The technique

uses high-energy (X-ray) photons to create a 3D tomographic image of the internal structure of a scanned

specimen.

In X-ray (micro-CT) tomography, the core workflow consists of the following steps:

First comes the measurement. As the X-ray source emits photons through the specimen, a detector (e.g.,

a flat-panel sensor) records how many photons arrive at each pixel. What’s measured at each pixel is the

transmitted intensity, I, i.e., how many photons “make it through” along each ray path.

Then comes reconstruction. From the transmitted intensities, the system computes the line�integral of the

attenuation coefficient µ along each ray,
∫
µ(x)dx. A reconstruction algorithm (e.g., filtered back�projection

or an iterative method) then “inverts” all of those line�integrals to produce a 3D map of local attenuation

coefficients, µ(x, y, z). Finally, that µ-map is displayed as a grayscale image, where each voxel’s brightness

is proportional to its X-ray attenuation.

This is the reason why air looks dark and metal looks very bright: Almost all X-rays pass through air with

minimal interaction. In other words, if a ray goes through “just air” before hitting the detector, its transmitted

intensity I is almost equal to the incident intensity I0. Mathematically, because µair ≈ 0, the line integral∫
µairdx ≈ 0. Reconstruction assigns a very low attenuation value to those voxels, and by convention,

low-µ materials (like air) are displayed as dark (black) in the CT slice.

In contrast, metals have a very large attenuation coefficient µmetal, and almost all X-rays get absorbed or

scattered out of the primary beam. As a result, the transmitted intensity I reaching the detector is extremely

small. During reconstruction, a small I (relative to I0) corresponds to a large value of
∫
µ(x)dx. Voxels that

contain (or lie behind) metal get assigned large µ-values, and appear bright (white).

The result of each micro-CT scan is a tomographic grayscale image representing matter density (i.e.

photon absorption/beam attenuation) in 3D space.

In composite materials, the micro-CT will highlight material heterogeneity, both desired and undesired.

In particular, fibers and matrix have different scattering properties and can, in theory, be differentiated in a
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high-resolution scan. Material heterogeneity is present on multiple length-scales, and the resolution of the

measurement determines the kinds that the scan will be able to detect. Identifying single broken fibers or

first micro-cracks in the matrix during the initiation of fatigue deterioration probably requires a resolution in

the order of a few microns (5− 10µm) or less. Larger regions of coherent damage, voids, and resin-rich

areas can be detected using lower resolutions.

As the resolution of a scan increases, the total scanned volume portion of material per scan becomes

smaller. One of the challenges when working with Micro-CT is the vast amounts of data generated by every

scan, so to keep the amount of raw data manageable, it is advisable to limit the scanning to a localized

region of the specimen [27].

Nevertheless, Micro-CT offers a high-resolution insight into the structure of (a section of) the composite

specimen at the meso- (and possibly micro-) scale, and can be considered a ground truth in terms of the

damage state of the material. It can, in theory, detect all types of damage where a fracture leads to an

interface detachment and plastic misalignment, making it a very useful tool to validate predicted damage

in a small, localized region of composite material.

2.3. Damage Identification and Characterization using AE
When a sensor detects an AE hit, a waveform, among other properties in the time domain, can be stored.

A hit is usually registered whenever the transduced signal crosses a certain threshold (often 40 dB).

In a post-processing step, properties in the frequency domain can be computed using a variety of transforms

on the registered waveform. Two of the most prominent numerical techniques for generating frequency

spectra from a time series are the fast Fourier transform (FFT) and the continuous wavelet transform (CWT)

[22]. The registered waveforms are transient and multi-modal signals, which makes the CWT preferable

over the FFT for computing frequency information. The drawback of the CWT is the increased computational

effort compared to the very efficient FFT [22], and a limitation concerning frequency resolution for high

frequencies that will be discussed further down in this Section.

Commonly observed features of the waveform are covered in section 2.3.1. Many of them have been

used as inputs to a variety of (unsupervised) machine-learning algorithms to classify AE hits in categories

related to specific damage modes. A few relevant instances of application of such methods are reported in

Section 2.3.2.

2.3.1. Feature Selection
Feature extraction is the process of vectorizing observations by registering d pertinent features. Selecting

these is the first challenge encountered when dealing with AE data analysis.

In general, properties of a hit, both in the time and frequency domains, have been used to differentiate

damage mechanisms at the source of the AE. In the literature, there are many examples of characterizations

of damage modes using different choices of observed features. According to Huguet [20], the following six

parameters in the time domain are the most used in AE damage mode classification problems: rise time,

number of counts, energy, duration, amplitude, and number of counts during the rise. Harizi et al. [23] chose

13 descriptors, both in the time and the frequency domain, to perform a multivariable statistical analysis:

rise time, counts to peak, counts, duration, amplitude, energy, absolute energy, average frequency, ASL

(Average Signal Level), RMS (Root Mean Square), reverberation frequency, initiation frequency and signal

strength.

Although both time- and frequency-domain descriptors of AE signals can be used for damage mode

classification, Muir et al. [22] suggest that there is a common agreement that features in the frequency

domain are superior to features in the time domain. They state that ”there are encoded characteristics

within the frequency domain of waveforms that relate AE to damage modes”.

Obtaining the frequency spectrum of an AE event is a question of post-processing the recorded waveform.

The waveforms of AE events are non-stationary signals, which means that the frequency content is

transient and changes over time. Common options to extract frequency information are the fast Fourier

transform (FFT), continuous wavelet transform (CWT), wavelet packet transform (WPT), and empirical

mode decomposition (EMD) [22]. Direct FFT returns one-dimensional frequency information in the form of

an energy spectrum vector, and it is ill-suited for non-periodic, transient waves. CWT has an automatic

windowing property that makes it suitable for analyzing non-stationary signals [28]. The CWT consists

of a convolution of the signal x(t) with a wavelet function ψ(f, t) for different time-shifts t and -scales f
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according to Eq. 2.1 (τ being the dummy variable of signal convolution along the time-axis):

CWT (f, t) =

∫ ∞

−∞
x(τ) · ψ(f, τ − t)dτ (2.1)

Popular wavelet functions ψ are the Morlet (see Figure 2.4) and the Daubechies wavelets. The CWT

returns 2-dimensional time-frequency information in the form of a signal energy matrix.

In the following paragraph, the issue of the resolution of frequency spectra in the frequency domain

is discussed, including an intuitive explanation of the Heisenberg Uncertainty Principle. Another popular

method of time-frequency analysis (next to CWT) is the Short-Time Fourier Transform (STFT), which uses

the Discrete-Time Fourier Transform (DTFT) on short sub-periods of the signal to get time-dependent

frequency spectra. The length of the sub-periods can be varied, and the frequency resolution of the

instantaneous spectra resulting from the DTFT on the sub-period is related to the Nyquist frequency and

the number of samples included in the sub-period of the signal. The Nyquist frequency is the highest

frequency that can be accurately represented in a discrete signal and is constant for a signal, equal to half

of its sampling frequency, fs/2. Specifically, the resolution of the short-period frequency spectra is given by

the sampling frequency (fs) divided by the number of samples (N): fs/N. This essentially means that the

spectrum generated by DTFT has a constant top frequency of fs/2, and the resolution of the rest of the

spectrum (between 0 and the Nyquist frequency fs/2) is given by fs/N, with N being the size of the time

window. So, smaller N (i.e., smaller time window, i.e., higher time-resolution) gives a coarser frequency

resolution, i.e., a larger fs/N.

This phenomenon is called the Heisenberg Uncertainty Principle, which states that there’s a trade-off be-

tween time and frequency localization. It is explained conceptually by the fact that neighboring frequencies

only go out of phase and cancel out after a large number of cycles. Therefore, to catch fine differences in

the frequency contents of a signal, many cycles, i.e., long periods in time, must be included. A lemma of

this principle is that frequency contributions with low cycle counts (e.g., high-frequency contributions of

short durations) can never be identified with a high resolution (because it would require a high resolution in

time and frequency combined, which is impossible).

This principle applies in general, and therefore to the method of CWT as well. In this case, it manifests in

the fact that the frequency content (i.e., the Fourier transform) of the Morlet wavelet itself is narrow-banded

for large σ (i.e., low frequencies) and broader for high-frequency wavelets. This leads to a worse resolution

in the frequency domain, as it captures a broader band of frequency contributions.

Figure 2.4: Real-valued Morlet wavelet ψ(t) = Re{e2jπfte−t2

2σ }, with σ = n
2πf , and n umber of cycles

included in the wavelet. [29].

Returning to the frequency spectra of acoustic emissions in composite materials, Muir et al. [22]

point out that energy contents at specific frequencies can depend not only on the type of source but

also on propagation pathways. Therefore, values at a single frequency alone should not be used for the

characterization of the signal’s source. The authors suggest instead the option to analyze patterns in the

frequency domain or the overall frequency spectrum to accurately link AE signals to damage modes.

Kempf et al. state that the ”entire frequency composition of an AE signal is characteristic for the under-

lying failure mechanism” [21]. They perform static tensile testing on glass fiber-reinforced polyurethane

specimens while recording AE and identify frequency spectra associated with matrix cracking, interphase

failure, and fiber breakage. The average spectra are reported in Figure 2.5. The sensors used in that
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study were two wideband WD-sensors with a bandwidth of 100–1000 kHz. They show sensitivity peaks at

around 270 kHz, 410 kHz, and 530 kHz, which are reflected in the spectra in Figure 2.5. The signals were

grouped into three classes based on a feature clustering algorithm (including the following features: peak

frequency fpeak, weighted peak frequency fWPF =
√
fpeak · fcentroid, and partial energy of the frequency

spectra in low- (0− 250kHz), mid- (250− 450kHz), and high-frequency range (450− 800kHz) ). Weighted

peak frequency is significant to capture both peak sharpness and spectral center at the same time. The

three clusters were subsequently assigned to a class of damage by assuming that matrix cracking emits

AEs of lower frequencies, whereas fiber breakage emits AEs of higher frequencies. Interphase failure was

assumed to cause AEs with frequency contributions in the middle range.

Figure 2.5: Average FFT spectra of matrix cracking, interphase failure, and fiber breakage in glass fiber

reinforced polyurethane as identified by Kempf et al. [21]

Finally, Kempf et al. used a post-mortem scanning electron microscopy (SEM) fracture surface

micrograph to highlight that for one sample, the one for which fewer AE hits had been registered before

final failure during testing, the interface between matrix and fibers seemed to have snatched right off during

final failure, whereas for the other one the degradation of the interface had seemingly been more gradual.

The study provided initial insights, though it lacked extensive experimental validation of the robustness of

classification.

It is generally accepted that fiber fracture has the largest contribution in the high-frequency range due

to the higher modulus of elasticity of the fibers, and the energy spectrum of matrix cracking is more skewed

to the left, towards lower frequencies [30]. AEs generated by fiber-matrix interfacial failure are assumed

to have signals in the mid-frequency range. Qiao et al. [31] used frequency bands of the main energy

distribution of the registered waveforms (62.5–125 kHz) (125–187.5 kHz), (187.5–250 kHz), (250–312.5

kHz) and (312.5–375 kHz) to recognize four types of signals corresponding to matrix cracking, delamination,

fiber/matrix debonding and fiber breakage repsectively. They used pre-cracked and untreated specimens

to controllably favor different kinds of damage modes during a three-point bending test and subsequently

compared the classification results of their novel machine learning (ML) approach (using support vector

machines (SVMs) ) to the more conventional k-means clustering, achieving similar accuracy. Again, no

extensive validation campaign was conducted in this context to validate the classification of the registered

signals empirically.
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2.3.2. Unsupervised Machine Learning Techniques
Once the pertinent signal features (in the time or frequency domain) are chosen, the AE data can be uni-

formly represented. The next challenge is to identify structures within this data that allow the differentiation

between damage modes. Machine Learning (ML) is a set of powerful algorithms that learn from input data

and can uncover naturally occurring structures. Supervised ML can be used to train a classification model

if a large set of labeled feature data is already available. Popular examples of this include regression

algorithms and neural network training.

In the case of AE, it is very difficult to obtain labeled AE data, i.e., AE data differentiated in advance by

damage modes. For this reason, another approach of blind labeling or ’unsupervised’ ML is more suitable.

Two of the most common types of unsupervised ML algorithms are clustering algorithms and dimensionality

reduction techniques ([22], [32], [31], [33]).

Dimensionality Reduction

Principal Component Analysis (PCA) is an unsupervised ML method from the field of multivariate data

analysis that returns the principal components of a dataset [34]. The principal components (PCs) or ’modes’

of the data are the (orthogonal, i.e., non-redundant) directions of largest variance from the mean feature

vector and are ordered in ascending order. The order of a principal component is a measure of the variation

of the data in that direction. The first PC describes the direction of maximum variance of the data from the

mean, the second denotes the direction of largest remaining variance, and so on [28]. In simpler terms,

PCA finds the most meaningful directions in the data along which AE features vary the most. It follows that

representing AE datasets in the space of the first two or three principal directions may spatially separate

and visibly highlight qualitatively different subgroups of data points in the dataset.

PCA is performed by finding the eigenvectors of the (mean-subtracted) dataset’s covariance matrix or,

more efficiently and stably, by performing a singular value decomposition (SVD) directly on the (mean-

subtracted) dataset. Implementations of the technique exist for most programming languages and return

an orthonormal basis of the feature vector space. The Eckart-Young-Mirsky theorem guarantees that

the truncated SVD finds the best-possible low-rank approximation, i.e., the orthogonal projection into a

lower-dimensional subspace that minimizes the squared reconstruction error [35].

For this reason, PCA is a valid method of reducing the dimensionality of the AE data without losing the

features that are most significant for the differentiation of the signals. This explains why PCA is a popular

technique in studies using automatic pattern recognition for blind AE source identification, because it

highlights characteristic compositions of features that point to qualitatively different points in the data ([32],

[33]).

Baccar & Söffker [28] used PCA to identify the first two dominant spectral components of each AE hit in

their AE dataset. They applied CWT to generate the energy matrix from the waveforms consisting of 1000

time samples. Thus, they generated a set of 1000 frequency spectra for each hit. Then, they repeatedly

used PCA on each of these sets separately and identified for each the first two principal components. They

further used these as input for their classification scheme. This reduced the stored frequency data for

each hit from 64,000 (64 x 1000) to 128 (64 x 2) values. A running algorithm that reduces the amount of

stored data without losing relevant information can be of great advantage, especially during fatigue tests,

throughout which vast amounts of AE data are generated.

Clustering Algorithms

Once the data is ’spatially’ separated into directions of largest variance from the mean vector with the

help of PCA (even using 2 or 3 coordinates only), it can be categorized blindly using clustering algorithms

with improved accuracy. Clustering algorithms are useful to group data points into several ’clusters’ such

that each cluster contains points that are close to each other in the given metric space. Muir et al. [22]

mention two unsupervised classification (or clustering) algorithms that are used in the context of AE data

processing: K-means and Gaussian mixture models (GMMs).

K-means finds k spherical clusters in the feature space according to a distance norm, usually L2. This

makes it particularly suited for differentiating convex and well-separated regions of data point density [36].

K-means is a hard clustering type of method.

A popular example of a soft clustering method, on the other hand, is the fuzzy C-means algorithm [37].

Instead of assigning a distance-based cluster membership to each data point (like K-means), fuzzy C-

means assigns to each data point distance-based membership values (between 0 and 1) for each cluster.
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This means that it allows partial membership to multiple clusters, which is an advantage when dealing with

partially overlapping clusters or when data points do not fit neatly into one cluster.

Figure 2.6: The performance of a generic k-means (left) and GMM (right) algorithm on a sample 2D

isotropic (top row) and anisotropic (bottom row) Gaussian data set to show GMM’s improved performance

in recognizing naturally occurring Gaussian data distributions ( [22]).

GMMs are an alternative to K-means, which allows for soft, probabilistic clustering. They offer an

advantage in representing anisotropic data clusters in the feature space, and there is reason to suspect

that this is beneficial in the context of AE data classification in many feature spaces [32]. The GMM

algorithm finds k multivariate Gaussian distributions (fully characterized by two parameters: mean feature

vector µ and covariance matrix Σ), such that the training data is optimally represented by their probabilistic

distributions. After the GMM has been trained, a new data point can be classified into one of the k clusters.

The probabilities of generation can be calculated using the Gaussian distribution of each cluster, and

the new point will be assigned to the cluster with the highest probability of generation. GMM is also an

example of soft clustering, i.e., each data point belongs to all clusters with varying degrees of membership.

Moreover, it is a probabilistic clustering method that assumes that Gaussian distributions are underlying

the generation of the data. Therefore, it performs particularly well when the data is naturally Gaussian

distributed (around a mean with an elliptic variance).

Sample performances of k-means and GMM are demonstrated on dummy Gaussian data sets in Figure

2.6.

2.4. Knowledge Gap
Returning to Talreja’s findings in Figure 2.2, note that fatigue failures of unidirectional composites in Region

II are caused by fatigue of the fibers or (prematurely) by a progressive degradation of the matrix, which

results in stress concentrations, redistribution, and parts of the structural material becoming isolated from

the load due to growing and cumulating cracks. This is a gradual and discrete-event process that manifests

in acoustic emissions during loading cycles.

A standardized methodology for the identification of damage modes in FRCs using AE signals is still

lacking. In many cases, the classification of AE events includes information about signal amplitude and

energy content, but a promising alternative is to identify damage modes using normalized frequency

information only. Here, opinions diverge as to which is the best way to extract frequency information from
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registered signals (FFT, CWT, WPT, Hilbert-Huang transform, [22]), and how to handle that frequency

information. In the current research, an approach is proposed to extract the frequency content of an AE

wave packet and to characterize the physical damage mode at the source of an AE event without taking

into account the energy content of the signal.

AE classification typically lacks physical validation, so, in this study, the classification of the normalized

frequency spectra shall undergo a targeted validation campaign using X-ray Micro-CT scanning. This

technique can be used to create high-resolution snapshots of the internal structure of the specimen before

and after mechanical loading. These can, in theory, be used to assess the evolution of damage during

mechanical loading and support or refute the predictions made by the AE monitoring framework.

Please refer to Chapter 4 for further details on the developed methodology.



3
Research Questions (RQs)

Literature says that micro-structural damage events can be located in the material and differentiated by

type of damage using acoustic emission (AE) monitoring. Based on findings in the reviewed literature (in

particular [22],[21],[31]) and the identified knowledge gap, the need is recognized to assess the feasibility

of an acoustic emission (AE) monitoring framework capable of tracking the local evolution of damage in

composite materials while distinguishing between different damagemodes, and of validating said monitoring

framework using a high-fidelity method such as X-ray micro-CT scanning. The following research questions

and sub-questions can thus be formulated:

(I) How can damage events in composite materials be detected and accurately characterized using

the entire shape of the normalized frequency spectra (in a relevant range) and the energy contents

of the corresponding AE signals independently?

• (I.a)What is an effective method of extracting frequency information from registered AE signals, so

that the impacts of background noise and reflections at the specimen’s boundaries are reduced and

the specificity of the frequency content (related to the source of the signal) is increased?

• (I.b) How can the normalized frequency spectra of AE events be classified into a finite set of families

based on the similarity of their shapes? Moreover, do AE events have characteristic frequency

contents that are comparable between different transducers (of the same type) located at different

positions along the specimens?

• (I.c) Do different families of AE spectra correlate with the physical damage states observable in

high-resolution micro-CT scans (fiber fracture, inter-fiber or transverse matrix cracking, fiber-matrix

interface failure, and delamination)? In particular, can a family of frequency spectra be identified that

uniquely corresponds to fiber fracture events (for transducers of a given type)?

(II) Can X-ray micro-computed tomography (micro-CT) be used to validate the AE monitoring

framework elaborated in the scope of RQs (I.a-c) by allowing to visualize and track the development of

micro-structural damage in unidirectional fiber-reinforced composite coupon specimens?

• (II.a) Are tomographic images that are recorded before and after the infliction of damage comparable

using basic image processing techniques or visual inspection, and can this comparison be used to

assess what kind of damage event took place?

• (II.b) What is the highest attainable resolution of the micro-CT image, and is it high enough to reveal

micro-damage (such as (single) fiber fractures, initiating and growing inter-fiber or longitudinal matrix

cracks, and fiber-matrix debonds)?

14



4
Methodology

In the following, an AE monitoring setup (with related data processing, and analysis methods) and a series

of tomographic imaging and mechanical tests are proposed to answer the RQs I and II in Chapter 3 using

a batch of unidirectional carbon fiber reinforced composite (CFRC) coupon specimens.

4.1. Materials and Specimen Preparation
A batch of twelve unidirectional CFRC coupon specimens has been manufactured in the context of this work

from a carbon-fiber-epoxy-resin-prepreg system for out-of-autoclave (OOA) curing (TORAY Composites

2510 Prepreg System, data sheet in [38]). Relevant material properties used in the context of this work are

given in Table 4.1. The assumptionG13 ≈ G12 is made because transversely isotropic behavior is assumed

for the unidirectional laminate. This is a reasonable assumption, although in reality they might differ due to

manufacturing defects, in particular at the interface between the plies of prepreg, and non-uniform scaling

of the material properties in different dimensions.

Material Property Symbol Value [38]

0° Tensile Strength F1t 2172MPa

0° Tensile Modulus E1t 125GPa

0° Compressive Modulus E1c 112GPa

In-Plane Shear Modulus G12 4.23GPa

(Out-of-Plane Shear Modulus) (G13) (4.23GPa)

Poisson’s Ratio ν12 0.31

Laminate Density ρ 1517 kg/m3

Fiber Volume Fraction Vf 54.4%

Cured Ply Thickness CPT 0.152mm

Table 4.1: Selected mechanical properties of the cured unidirectional (carbon-fiber-epoxy) laminate

(P707AG-15) at 22°C ambient temperature. Note that the assumption G13 ≈ G12 has been made.

The design of the specimens is based on the ASTM D3039 [39]/ISO 527-5 [40] standards for unidirec-

tional 0°-laminate for tensile experiments. A slight deviation from the standards is the specimen width of

20 mm, which was introduced to ensure the successful mounting and bonding of the AE transducers onto

the specimens (compare [21]). The standard and the custom dimensions for specimens and end tabs are

shown in Table 4.2 and Figure 4.1.

Figure 4.1: Standard specimen and end tab dimensions [41]

15
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ASTM D3039 [39] / ISO 527-5 [40] Used in this study

Width 15 mm 20 mm

laminate Thickness 1 mm 1 mm

total specimen Length 250 mm 250 mm

End Tabs chamfered (7°-90°), rectangular straight (90°), rectangular

Table 4.2: Design standards for unidirectional 0°-laminate tensile coupon specimen ([39], [40]) and

custom dimensions used in this study.

The end tabs were glued onto the specimens using epoxy adhesive (EA3430) to protect the clamped

ends from surface damage due to the compressive traction grip of the mechanical testing rig during the

application of mechanical loading. Moreover, they can relieve stress concentrations that would cause

premature failure at the clamped end, well before the gauge length of the specimen fails [41]. Aluminum

end tabs were used in this study as they are the most common and readily available option. Woven or

[45°] glass-fiber end tabs may be preferred when testing specimens up to higher loads.

The specimens were manufactured by applying the desired layup and carrying out the OOA curing of

a 300 mm by 300 mm unidirectional carbon fiber plate of 1 mm thickness. The plate was subsequently

machined into twelve specimens of the desired dimensions. The desired layup consists of six unidirectional

plies of 0.152 mm in longitudinal direction ([0°]6), amounting to a total thickness of 1 mm.

4.2. Tools and Equipment
The following paragraphs detail the machines, tools, and equipment used in the experimental campaign.

4.2.1. Tensile Testing Machines
In the current work, two specimens (’U7’ and ’U9’), out of the twelve that have been manufactured

according to 4.1, have been tested under tensile loading to induce internal damage while monitoring

acoustic emissions using a 20 kN (specimen U7) and a Zwick 250 kN Universal Test Machine (specimen

U9). Note that both machines are displacement-controlled and load is transferred to the specimens by

traction grips that press into the specimen end tabs and are controlled hydraulically (in the case of the 250

kN Test Machine) or mechanically (20 kN Test Machine). Mechanical clamps (used for specimen U7) are

set manually to a defined clamping pressure at the beginning of the experiment and then remain fixed

throughout the tensile experiment. This may result in a drop in traction force and premature termination of

the experiment as the specimen elongates during tensile loading and consequently contracts in the through-

thickness direction due to its positive Poisson ratio. Hydraulically controlled grips (used for specimen

U9) are capable of tightening automatically as the specimen contracts under tensile loading. This way,

clamping pressure can be kept constant during the experiment, which can help prevent specimen slippage

and premature termination due to the loss of traction.

For accurate strain measurements, there is the option of adding an extensometer to the testing setups. The

extensometer pin heads attach to the specimen at an initial gauge length of 50 mm and follow the elongation

of the specimen, giving an accurate value for the theoretically uniform internal strain of the unidirectional

specimen. Strain measurements using an extensometer were included while testing specimen U7 on the

20 kN testing machine, but when testing U9 on the 250 kN machine, the extensometer was out of service

due to technical issues in the data collection motherboard.

4.2.2. Micro-CT scanner
The Micro-CT scanner used to visualize the internal microstructure of the material before and after

mechanical testing is the TESCAN, CoreTOM Micro CT, which theoretically allows for a volumetric

resolution of up to 3 µm. However, the maximum attainable resolution depends on the diameter/width

dimension of the scanned object, because the machine uses a flat panel detector with a resolution of 2856

by 2856 pixels. This means that for the given specimen width of 20 mm, the top constraining resolution

of a scan covering the entire width is 20mm/2856 ≈ 7µm. Achieving a top-resolution scan of high quality

that covers the whole width of the specimen requires skill and expertise to align the object and the X-ray

cathode with extreme precision.
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4.2.3. AE Monitoring Setup
Acoustic emissions (AE) were monitored during the quasi-static tensile tests using externally mounted

piezoelectric sensors. Similarly to Huijer’s testing campaign [24], two transducers were mounted on the

specimens to allow for the redundant identification of damage and to localize the events by triangulating

the sources of the signals using the time difference of arrival (TDOA) method (see Section 4.4.1 covering

the TDOA method). The ultrasonic signals of interest originating from micro-structural damage are in a

measurable frequency range of 100 kHz to 1 MHz [21]. In the scope of this work, commercial surface-

mounted white-band sensors shall be used for increased spectral sensitivity and setup reproducibility,

namely the WSα (100 − 1 000kHz) wide-band AE sensors by MISTRAS Group. The transducers were

mounted on the specimen using manual mechanical clamps that pressed into the top of the transducer

and the back of the rectangular specimen (see Figure 4.2). A thin layer of grease was applied between the

surface of the transducers and the specimen to create an acoustically transparent interface.

Figure 4.2: Specimen U7 mounted in the tensile testing rig. AE trasducers are clamped onto the back of

the specimen using (black) manual clamps. The extensometer had locked onto the specimen for accurate

strain measurement.

For the data acquisition (DAQ) Vallen Systeme’s multi-channel AMSY-6 system and the corresponding

AE Suite software have been used (software documentation in [42]). This system identifies AE hits by

registering threshold crossings of the voltage recorded by the previously described transducers (corre-

sponding, in this case, to a threshold of 25.3dB). A hit starts when the threshold is first crossed, and it’s

concluded when no threshold crossing occurs for a period called the ’rearm time’ [42]. After a threshold

crossing, once the rearm time has expired, a new hit is registered when the threshold is crossed once

again. Hence, hits are differentiated by the period of ’silence’ between them, when this period exceeds the

amount of the ’rearm time’ parameter.

In the context of this work, a rearm time of 100µs has been chosen to enhance and favor sensitivity of the

AE monitoring framework in relation to successive events. Reflections, i.e. wave group packets that are

reflected the ends of the specimens, are predicted to reach the transducers while the original hit is still

being recorded (within 90µs of the arrival time of the primary wave packet), i.e. when the rearm time has

not yet passed. It is undesirable to use a waveform that contains reflections in the analysis step, instead

one would prefer to use only the ’clean’ primary wave packet signal Ψ in this context. One could achieve a

clean signal by reducing the rearm time, but this would also cause more hits to be recorded than intended,

because reflections would cause additional hits at the transducers. A post-processing step is necessary to

select only the duration of the first significant wave packet Ψ (with a duration ≤ 100µs) from the recorded

waveform. Increasing the rearm time may have an advantage in terms of reducing the number of AE hits

caused by boundary reflections, but it may also reduce the sensitivity to successive hits that happen in

a short period of time. Improving the choice of the rearm time parameter shall be the subject of further

proposed work.
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4.3. Experimental Procedure
This section covers the implementation and testing of the AE-based damage characterization framework

and the validation thereof using Micro-CT scanning on the specimens detailed in 4.1. The execution of the

experimental campaign involved the following three steps:

• High-resolution micro-CT scanning (with a resolution of 8µm) of ’pristine’ specimens in two different

locations along the intra-sensor distance.

• Static tensile loading while monitoring AEs using two surface-mounted transducers aiming to induce

and detect the creation and growth of internal damage.

• High-resolution Micro-CT scanning of damaged specimens in the same locations along the intra-

sensor distance to validate the AE-based damage mode recognition framework.

It is crucial to limit damage in the observed regions to a few significant events. If too much damage

develops in the specimen during mechanical testing, it will be difficult to assess if individual events are

being characterized correctly by their type, or if just a general state of damage is being detected by the

AE monitoring framework. For this reason, it is important to have the localization and characterization

frameworks running before the start of mechanical testing. The specimen shall then be loaded carefully in

stages of gradually increasing load. Once a few AE events have been recorded, the increase of mechanical

load will be arrested to assess the development of damage in the regions of interest using the recorded

AE data. Based on that, it will be decided whether to continue increasing the load or to stop mechanical

testing, dismantle the AE monitoring setup, and get the specimen scanned for a second time.

Once the (now damaged) specimen has been scanned for the second time, the experiment is considered

terminated for the specimen in question. If testing is to continue using the same specimen, it must be taken

into account that the exact monitoring conditions are difficult to reproduce once the monitoring setup has

been taken apart. Therefore, a second round of damage caused by tensile loading should be considered

as an entirely new AE experiment with the second CT scan as the starting condition.

4.4. Data Collection and Analysis
This section covers the collection and analysis of the data generated by structural health monitoring using

acoustic emissions (Subsection 4.4.1) and non-destructive testing using micro-CT (Subsection 4.4.2). It

outlines the methods used to extract meaningful features from the raw signals and tomographic scans.

The goal is to enable damage characterization and validate the AE-based classification framework.

4.4.1. AE Monitoring Framework
As detailed in Section 2.1.2, mechanical damage events can emit high-frequency elastic waves that travel

away from the source and can be registered by the proposed AE monitoring framework. The surface-

mounted PZT sensors are able to pick up out-of-plane elastic waves traveling through the specimen, and a

digital filter of 40 kHz− 960 kHz is applied by the DAQ system directly to ensure that low-frequency elastic

deformations or noise are not registered as additional hits or damage events.

(a) Event 2 (x = 151mm) (b) Event 18 (x = 155mm) (c) Event 38 (x = 151mm)

Figure 4.3: Waveforms recorded by transducers 1 (above) and 2 (below) for three sample events located

in the quarter-length region of validation (138mm− 156mm) of specimen U9.
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When a hit is stored, baseline information includes the time of arrival, the channel, and the threshold of

detection (25.3dB). Furthermore, Vallen Systeme’s DAQ system can save a range of AE feature data to a

primary data file (PRImary Data Base, PRIDB), which prominently includes burst signal peak amplitude,

burst signal energy, burst signal duration, ring down counts, and burst signal risetime [42]. The signal of

a hit is sampled and the waveform stored to a transient data file (TRADB), with a sampling frequency of

2.5MHz and with a fixed length of 4096 sample points per waveform. The waveforms registered by the

two transducers for three sample events are shown in Figure 4.3.

Source Localization using Time Difference of Arrival (TDOA)

An AE ’event’ is defined as an elastic wave that arrives at both transducers within a short time window

(∆t ≤ 30µs) and is registered as a pair of transient waveforms Ψtotal(t) (one for each sensor). Events

are localized using TDOA, which makes use of the time of arrival of the signal at the transducers and

knowledge about the group velocity of elastic waves in the material to locate the source. When a long

rectangular unidirectional fiber-reinforced composite specimen is monitored using two transducers, the

location of the source along the length of the specimen xsource can be estimated according to Equation 4.1

using the longitudinal speed of sound vg (along the direction of the fibers) and the time difference of arrival

of the signal at the two sensors ∆t [43].

xsource =
∆t · vg

2
(4.1)

TDOA is sensitive to the input parameters, and the accuracy is limited by the time of arrival measured by

the DAQ system and the longitudinal group speed of out-of-plane elastic waves. The time of arrival is

defined as the time of the first threshold crossing of the event’s signals at the respective transducer [43].

cp,S0 =

√
A11

I0
=

√
E1

ρ
= 8838.3m/s, cg,S0 = cp,S0, where E1 =

E1t + E1c

2
(4.2)

S0 is the fastest and hence the first wave mode to arrive at the transducers; however, the flexural (A0)

mode usually causes the excursions of highest amplitude in the measured signal. This can be attributed

to the different natures of the two types of elastic deformations and how they are transferred to the PZT

transducer: the bending deformation (A0) causes an oscillation of higher amplitude at the contact surface

of the sensor than the axial deformations of the S0 mode. Therefore, a large amount of useful signal

information travels with the A0 mode, i.e., at lower speeds. This wave mode is dispersive and, therefore,

requires detailed analytical or semi-numerical studies to estimate phase and group velocities. In the context

of this work, exact values for the two velocities of the A0 mode are not essential for analysis and will

therefore be replaced by an estimation of their high-frequency limits. In the limit of high frequencies, the

phase velocity of the A0 mode vp,A0 approaches the shear wave speed vs (see formula in Equation 4.3),

and the group velocity vg,A0 approaches a limiting value close to shear wave speed, but not exactly equal

because of residual dispersive effects and the effect of specimen geometry.

vs =

√
G13

ρ
= 1669.8m/s vp,A0,lim = vs ≈ vg,A0,lim (4.3)

The limiting group velocity of the A0 mode vg,A0,lim will become useful at a later stage in section 4.4.1,

where it will be used to estimate an interval of the registered waveform containing the ’clean’ signal, which

can be used to generate frequency spectra.
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Pencil Lead Break (PLB) Tests

A pencil lead break (PLB) test is a simple and widely used method in AE testing to simulate a localized and

repeatable mechanical event (like a crack initiation) on the material’s surface. The test involves breaking

the tip of a pencil lead (usually 0.3 mm or 0.5 mm diameter, 2H or HB hardness) against a solid surface to

create an acoustic signal (in the range of 100 kHz).
Three PLBs have been performed for each monitored specimen in three locations on the intra-sensor

length (x = 100, 125, 150mm) as shown in Figure 4.4.

Figure 4.4: Locations of the PLB Tests performed on the monitored specimens U7 and U9. PLB locations

are marked as blue crosses, sensor locations as yellow circles, and scanned regions as red rectangles.

The first objective of the PLB tests in this context is to validate the theoretical group speed of elastic

wave packets vg,S0 = 8838.3m/s and the localization method using TDOA. The theoretical speed of guided

waves along the longitudinal direction of the unidirectional FRC coupon specimens can be validated by

performing PLBs at different locations along the intra-sensor section of the specimen (e.g., at 1/4 and 3/4

of the section) and measuring the time difference of arrival between the two sensors using the time of

arrival of the wave packet.

PLB testing also has another purpose: In general, AE measurements are dependent on the sensors and

the sensor-specimen transmission interface. So the measured energy content of the acoustic emissions

generated by PLBs could be used at a later stage to compare signal energy contents across different

transducers and monitoring setups.

Generating (Normalized) Wave Packet Spectra

Using a continuous wavelet transform (CWT, see Section 2.3.1) with a Morlet wavelet on the waveform

signals x(t) returns instantaneous frequency spectra in the form of matrices whose entries represent

the energy of the signal at a given frequency and time. Figure 4.5 shows the CWTs of the six sample

waveforms from Figure 4.3.

Integrating the wavelet spectra over all frequencies (Eq. 4.4) gives a representative value of the total

instantaneous energy content of the signal over all frequencies at a given time. The instantaneous energy

contents of the three sample events from Figure 4.3 are plotted in Figure 4.6 for channels 1 and 2.

E(t) =

∫ ∞

0

|CWT (f, t)|2df (4.4)

Integrating the CWT over a time interval (Eq. 4.5), on the other hand, gives a vector whose components

represent the energy at given frequencies contained in the chosen interval of the waveform.

SΨ(f) =

∫ TΨ2

TΨ1

|CWT (f, τ)|2dτ (4.5)

The normalized frequency spectrum ŜΨ will be the normalized version of the vector SΨ, i.e., divided by the

nominal energy content of the corresponding waveform (see Eq. 4.6).

ŜΨ(f) =
SΨ(f)

EΨ
, EΨ =

∫ TΨ2

TΨ1

|x(τ)|2dτ =

∫ TΨ2

TΨ1

|Ψ(τ)|2dτ (4.6)

Computing the integral (4.5) over the desired interval and normalizing according to (4.6) results in the six

frequency spectra reported in Figure 4.7 for the three sample events from Figure 4.3.
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(a) Event 2, Ch 1 (b) Event 18, Ch 1 (c) Event 38, Ch 1

(d) Event 2, Ch 2 (e) Event 18, Ch 2 (f) Event 38, Ch 2

Figure 4.5: CWTs of sample waveforms recorded by transducers 1 (top row) and 2 (bottom row).

(a) Event 2 (b) Event 18 (c) Event 38

Figure 4.6: Instantaneous energy contents E(t) of sample waveforms recorded by transducers 1 (above)

and 2 (below). Vertical lines indicate the boundaries of the observed wave packet.

Figure 4.7: Normalized frequency spectra ŜΨ(f) of the waveforms recorded by transducers 1 (above)

and 2 (below) on specimen U9 for sample events 2, 18, and 38.
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How to choose the time interval over which to integrate the CWT (i.e. the two vertical lines in Figures

4.3, 4.5, and 4.6) to capture the frequency content of the full wave packet Ψ but avoid reflections is a

pertinent question that will be answered in the following paragraph.

Ψ(t) is the section of the total waveform x(t) representing the ’clean’ primary wave packet, excluding

reflections from the boundaries of the specimen. The frequency spectrum of the wave packet SΨ(f) is the
time-integral of the CWT of the waveform over the interval containing Ψ.

The lower bound of the integral TΨ1 is determined as the first local minimum of the (smoothed)

instantaneous energy content of the waveform preceding the time of arrival of the signal TThr. The upper

bound of the integral TΨ2 is determined as the first local minimum of the (smoothed) instantaneous energy

content of the waveform preceding the first estimated time of arrival of reflections from the boundary of the

specimen of the A0 mode of the wave. Assuming that the instant of maximum instantaneous energy content

(tmax|E(tmax) = Emax) of the waveform coincides with the time of arrival of the A0 mode, reflections are

not expected to arrive at the transducer before a time period of TΨ = 89.8µs (see Eq. 4.7) after tmax.

In Equation 4.7, 75mm corresponds to the distance between the transducers and the closest end of the

specimen. The signal has to travel this distance twice (with a predicted velocity smaller than vg,A0,lim)

before the first reflection is registered at the transducer. This means that ∆TΨ can be considered as a

probable ’clean’ portion of the waveform following the instant of maximum instantaneous energy content of

the signal.

∆TΨ =
2 · 75mm

vg,A0,lim
= 89.8µs (4.7)

The first local minimum preceding the end of the interval ∆TΨ (Tend = TThr + tmax +∆TΨ) is taken as

the upper bound of the time-integral of the CWT TΨ2, representing the end of the primary wave packet of

interest.

Classification using PCA and GMM Clustering

The intention is to use normalized AE frequency spectra for the classification of damage modes. This

leaves the amplitude/energy content of a signal decoupled from the classification problem, allowing it to

become a measure of the magnitude of damage rather than the type of damage

Each AE event is associated with two waveforms (one for each sensor), resulting in two, possibly

different, (normalized) frequency spectra for each event. For redundancy, the classification algorithm

was run on the two datasets of normalized frequency spectra (one from each sensor) independently,

which resulted in two classes being assigned to each event. Then, each event was assigned to one of

the following classes: high-frequency event, low-frequency event, or undecided. The procedure of event

classification is detailed in the following paragraphs.

First, the classification algorithm is run on the two transient AE datasets (one from each transducer)

independently: It includes a Principal Component Analysis (PCA) step to identify the principal composition of

the normalized frequency spectra and reduce their dimensionality, and a proximity-based event classification

using a Gaussian Mixture Model (GMM, see Section 2.3.2) in the space of the first principal coordinate.

Finally, events are labeled only if they have been assigned to the same class by the two channels. The

remaining events (which have been assigned to different classes based on the frequency spectra measured

by the two transducers) are assigned to the category ’undecided’.

Further details on the PCA step: The normalized frequency spectra ŜΨ of all waveforms registered at

one of the transducers during tensile testing can be stacked into a single dataset, which is then ready to be

processed using PCA (see section 2.3.2). Applying PCA will return the orthogonal directions of greatest

variance, meaning the most significant, non-redundant contributions to the shapes of the spectra in the

dataset, i.e., the principal directions of the dataset.

Figures 4.8 and 4.9 show the mean normalized frequency spectrum (in blue) and the first two principal

components of the four datasets of normalized frequency spectra of the waveforms recorded by the two

transducers for the two tensile experiments on specimens U7 and U9.

The principal components can be interpreted as features that contribute with different magnitudes to all

events in the dataset. Representing the dataset in the space of the first few principal components should

automatically capture directions of large variance and separate the points into regions of similarly shaped

spectra. This property makes this feature space particularly convenient for an efficient distance-based

low-dimensional clustering, such as GMM.
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Figure 4.8: Results of PCA: mean and first two principal components of the dataset of normalized

frequency spectra recorded by transducers 1 and 2 during testing of specimen U7.

Figure 4.9: Results of PCA: mean and first two principal components of the dataset of normalized

frequency spectra recorded by transducers 1 and 2 during testing of specimen U9.

The principal components are unit vectors, and thus the (mean-subtracted) normalized frequency

spectra in the dataset can be projected into 2D principal space by performing a dot product with the first

two principal components (which is equivalent to a convolution of the signal with the principal component).

The two scalar values resulting from the convolution with the first two principal directions can be used as

X- and Y-coordinates of each event in 2D principal space. The resulting projections of two out of the four

collected datasets into the respective 2D space of principal coordinates are shown in Figure 4.10. The

remaining datasets (collected by transducer 1 on specimen U7 and by transducer 2 on specimen U9) can

be found in Figure 9.3 in Chapter 9 (appendix).

The scatter plots in Figure 4.10 are colored according to the assigned type of event. The classification was

performed using an unsupervised machine learning approach: Gaussian Mixture Models (GMM) with two

clusters. The GMM clustering algorithm was run on the (1D) projection of each dataset onto the first principal

component, which returned two one-dimensional Gaussian distributions. The Gaussian distributions are

characterized by model mean and standard deviation, such that each event has a probability of belonging

to either one of the two clusters, depending on its contribution from the first principal component. The

event was then assigned to the distribution, which would generate it with the highest probability.
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This procedure was repeated twice for each experiment (on specimens U7 and U9), once on each dataset

resulting from the two transducers. The result was a twofold classification of each event into a low- and a

high-frequency cluster. Whenever the classification using the two transducers agreed for an event, the

corresponding class was assigned to the event; otherwise, the event was classified as ’undecided’.

(a) Specimen U7, Channel 2. (b) Specimen U9, Channel 1.

Figure 4.10: Two out of the four collected datasets projected into the 2D space of principal coordinates.

It has to be mentioned that the classification using one principal component and only two clusters

presents a limitation in terms of the specificity of the recognition of damage mode. In this study, it is

assumed that the principal components of the normalized frequency spectra are indicative of different

damage modes. Looking for more groups of AE corresponding to different areas in the space of principal

coordinates (and thus different damage modes) increases the specificity of the event differentiation, but

it has also been observed to increase the disparity in classification between the two channels using the

current methods. This means that more events were categorized as ’undecided’ when increasing the

number of clusters. For this reason, the number of types of events has been kept to two in the scope of

this work. Increasing that number, however, shall be recommended as future work in the final chapter of

this thesis (see Chapter 8).

The novelty of this approach is given by applying PCA to the dataset of normalized frequency spectra

directly, without selecting other features in the time or frequency domain in advance. Thus, the shape of the

entire frequency spectrum (in the range of 40 kHz−960 kHz) theoretically contributes to the characterization
algorithm.

4.4.2. Specimen Inspection using Micro-CT
Micro-CT has been performed at two specified locations per specimen (U7 and U9) before and after tensile

loading with a resolution of 8µm. The locations of the two scanned sections are shown in Figure 4.11.

Figure 4.11: Schematic map of the specimen including locations of the AE transducers (yellow circles)

and the scanned sections (red rectangles, ’regions of validation’).
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The scanned sections are called ’regions of validation’ in this study, and they are located at the mid-

length of the specimen (centered at x = 125mm) and 22mm to the right centered x = 147mm), and have

a width of 17.25mm.

This results in two (number of scanned locations) times two (number of scanned specimens) times two

(before and after tensile testing), which equals eight scans in total. From the set of eight scans, two must

be compared at a time (same specimen and location before and after tensile testing). To compare two

scans, the tomographic data must be represented in an interpretable format, and for visual comparison,

a visually appealing format is preferred. The volumetric data was sliced into 2D frames from the front to

the back of the specimen using the image rendering software ’Dragonfly’. This made the size and shape

of internal defects and damage most accurately observable. The orientation of the CT images is shown

schematically in Figure 4.12.

Figure 4.12: Schematic representation of the orientation of CT image frames. The blue arrow indicates

the viewing direction of the CT frames. Ply interfaces are pointed at by the red annotation lines.

Figure 4.13: Specimen inside the micro-CT scanner. Scanned regions are marked with strips of tape that

indicate the desired alignment of the X-ray cathode.

Basic image processing techniques such as pixel-wise comparison, histogram comparison, and Struc-

tural Similarity Index (SSIM) have also been implemented, but the outcomes thereof were rather insufficient.

Issues arose due to the scans and the reconstruction of the data being carried out under different conditions

before and after tensile testing. The reconstructed tomographic data of the two scans did not overlap

properly enough for successful pixel-wise comparison. The implementation of advanced image processing

techniques for automated comparison of the tomographic data shall be the subject of further work.
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Results

The experiment detailed in section 4.3 was run for two specimens (U7 and U9), which included micro-CT

scanning and tensile testing to induce mechanical damage while monitoring AEs and locating probable

damage hotspots.

The results of the micro-CT scanning of the two specimens before and after the tensile experiment are

detailed in the next section, followed by the results of the AE monitoring during tensile testing in Section

5.2 and 5.3.

5.1. Micro-CT Scans
A selection of frames from the preliminary scan (before tensile testing) of the mid-length section (centered

at x = 125mm) of specimen U9 is shown in Figure 5.1. Defects in the material manifest as dark spots in

the scans, which indicate regions of lower matter density, such as voids, air inclusions, and weak interface

bonds. The slices are selected in an interval of about 20, which corresponds to the ply thickness of 0.16mm

(0.16mm = 20 · 8µm), to capture the imperfections that are expected at the interfaces of the plies.

(a) Interface I (slice 86) (b) Interface II (slice 106) (c) Interface III (slice 125)

(d) Interface IV (slice 145) (e) Interface V (slice 167)

Figure 5.1: Preliminary micro-CT of specimen U9 centered at x = 125mm before tensile experiment. Five

frames showing the five ply interfaces.

26
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In general, the expected damage modes in the unidirectional specimen under the given loading

conditions (i.e., longitudinal tensile loading) are inter-fiber matrix cracks, longitudinal fiber detachment, and

fiber fractures. Longitudinal fiber detachment occurs when the epoxy matrix that bonds the fibers cracks

along the direction of the fibers due to shear effects that arise at the fiber-matrix interface. This is most

likely to happen at the interface between the plies of prepreg, because this is where the bond between

adjacent layers of fibers is likely to be weakest due to manufacturing defects in the cured interface. Note

that the quality of the bond seems to be best for ply Interface I and worst for ply Interface IV in Figure 5.1.

Please note that a portion of about 3.5mm is missing from the left of the preliminary scan. This was

caused by an issue with the alignment of the specimen with the X-ray cathode that was recognized only

after the tensile experiment had taken place. The quality of the scans improved substantially during the

second round of scans, which is exhibited in Figure 5.2.

The same selection of frames, but from the scan taken after the tensile experiment, is shown in Figure

5.2. The slice numbering does not correspond directly to the one in Figure 5.1, because scanning conditions

varied slightly between the two scans. Nevertheless, the difference in slice numbering corresponds to a

physical distance between the slices (measured in units of 8µm) and remains consistent across the two

scans.

(a) Interface I (slice 176) (b) Interface II (slice 196) (c) Interface III (slice 215)

(d) Interface IV (slice 235) (e) Interface V (slice 257)

Figure 5.2: Follow-up micro-CT of specimen U9 centered at x = 125mm after tensile experiment. Five

frames showing the five ply interfaces.

Almost every defect exhibited in the preliminary scan could be associated with an identical entity in

the follow-up scan, either in the slice corresponding directly to the one in the preliminary scan or in an

adjacent one. Exceptions are structural defects displayed by the follow-up scans that differ in shape and

general appearance from the corresponding area in the preliminary scan. Only two exceptions could be

found overall by visually comparing the scans of both specimens for all scanned locations before and after

tensile testing. They are reported and detailed in the following paragraphs.

The first exception was found in the ply Interface IV of the quarter-length scan (x = 147mm) of specimen

U9. The corresponding frames from the scans before and after tensile testing are displayed for comparison

in Figures 5.3 and 5.4.
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(a) Before tensile testing (b) After tensile testing

Figure 5.3: Frames from the micro-CTs of specimen U9 centered at x = 147mm showing the interface IV

viewed from the front before and after tensile testing.

(a) Before tensile testing (b) After tensile testing

Figure 5.4: Frames from the micro-CTs of specimen U9 showing a portion of the total cross-section (at

∼ x = 152mm) viewed from above before and after tensile testing.

The spot circled in red likely corresponds to the location of a damage event that took place during the

quasi-static tensile experiment. The damage is located at the right external edge of the ply interface IV

and appears as a bright elongated shape (size: 0.22mm × 0.96mm) in the follow-up scan that was not

present in the preliminary scan. The alteration is consistently present in the follow-up scan over a range

of five slices (corresponding to a crack opening of ∼ 0.04mm), and could therefore not be attributed to

an issue in the orientation of the specimen or alignment of the X-ray beam (as was the case for all other

major defects in the follow-up scans of specimen U9 that did not appear directly in the corresponding slice

of the preliminary scan).

The second exception was found in the ply Interface IV of the quarter-length scan (x = 147mm) of

specimen U7. The corresponding frames from the scans before and after tensile testing are displayed

for comparison in Figures 5.5 and 5.6. The dark area of the defect seemingly shrinks during the tensile

experiment (from 0.62mm× 2.04mm to 0.15mm× 0.24mm).
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(a) Before tensile testing (b) After tensile testing

Figure 5.5: Frames from the micro-CTs of specimen U7 centered at x = 147mm showing the interface IV

viewed from the front before and after tensile testing.

(a) Before tensile

testing

(b) After tensile testing

Figure 5.6: Frames from the micro-CTs of specimen U7 showing a portion of the total cross-section (at

∼ x = 146mm) viewed from above before and after tensile testing.

The CT scans of the two locations on the two specimens have been compared frame by frame before

and after tensile testing using visual inspection. An attempt was made to automate the comparison using

basic image processing techniques such as pixel-wise comparison, histogram matching, and the metric

of Structural Similarity Index Measure (SSIM). However, they all failed because the two scans were not

perfectly aligned. Automating the comparison while accounting for the small mismatches in specimen

orientations and the alignment between preliminary and follow-up scans is a complex task. It requires the

use of advanced image processing tools and therefore falls beyond the scope of the current work.

Two hotspots of initiating damage could be identified by visual inspection: one in specimen U7 at

location x = 146mm (see Fig. 5.5) and one in specimen U9 at location x = 152mm (see Fig. 5.3). No

other visible damage could be identified in the scanned regions using micro-CT with the current setup.

In particular, the regions of validation at the mid-length section of both specimens remained seemingly

perfectly intact under the applied loads during tensile testing.
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5.2. AE Monitoring Framework
During the quasi-static tensile testing in stages of progressively increasing load (by 1 kN) acoustic emissions

(AEs) were recorded by the PZT transducers, resulting in 91 events recorded on specimen U7 and 127

events on specimen U9 during the loading phase (i.e. excluding the AEs recorded during clamping and

PLB testing).

Figure 5.7 shows the AE events recorded, located, and characterized by the AE monitoring framework

detailed in Section 4.4.1 throughout the tensile experiment on specimen U7. The error bars show the

plausible localization error that has been measured while validating the TDOA method using PLBs. AEs

recorded during clamping (Time < 100 s, first the top, then the bottom of the specimen), and the phase of

PLB testing (600 s < Time < 800 s, at locations x = 100, 125, 150mm) are also included in the figure.

Figure 5.7: Evolution of the AE event map of specimen U7 over the course of the full experiment, showing

location, type, and size of AE events over time. The red strips indicate the regions scanned using

micro-CT, and the yellow lines the locations of the two sensors.

The Kaiser effect can be observed in Figure 5.7 (with only two exceptions: one at Time = 1374 s and
one at Time = 1635 s). It refers to the phenomenon observed in materials (particularly composites) under

quasi-static loading, where acoustic emissions are only generated when the applied load exceeds the

previously experienced maximum load. In other words, no significant acoustic emissions occur until the

material is stressed beyond its prior peak load. Deviations from the Kaiser effect (like AEs before the

previous maximum load) may indicate an observable reduction in stiffness and in strength due to damage

accumulation or fatigue.

Note that during tensile testing, a high-frequency event (Event 51, EΨ,51 = 0.004mV
2
s) has been

detected in one of the regions of validation (find the waveform in Figure 6.3b). It was located at x = 145.3mm

and took place at Time = 1569 s, during the load of 8 kN. A cascade of further, ’undecided’ events was

detected in correspondence with this high-frequency event during the peak load of 10 kN at Time = 1840 s.
A high-frequency event (Event 82, EΨ,82 = 0.003mV

2
s) was also detected at the bottom boundary of the

other region of validation during the peak load of 10 kN (Time = 1840 s, x = 118mm), but the error in

localization makes it probable that this event actually occurred outside of the scanned region. Besides said

events, only low-frequency and ’undecided’ events occurred in the remaining scanned regions (marked by

the red rectangles in Figure 5.7) of the specimen during this experiment.

For specimen U9, it was not possible to retrieve force data due to a malfunctioning of the testing

machine’s data-acquisition motherboard. Therefore, the force data was artificially recreated using the

time stamps of the load levels noted manually in the AE data during the experiment. The evolution of
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the damage map throughout the full experiment (including clamping, tensile testing, PLB testing, and

unclamping) is shown, with the artificial force data, in Figure 5.8. The loading phase starts at Time = 196 s
and ends after reaching 8 kN at Time = 667 s. PLB tests happened during 1080 s < Time < 1147 s.

The clamping into the tensile testing machine of the bottom of specimen U9 had to be repeated twice

to increase safety precautions before the mechanical test. The series can be traced back in Figure 5.8:

clamping top (∼ 20 s), clamping bottom (∼ 45 s), unclamping bottom (∼ 70 s), re-clamping bottom (∼ 155 s).
During the re-clamping of the bottom, AEs originated both from the bottom and the top of the specimen.

This indicates an effect of strain transfer from one clamp to the other due to the Poisson effect, causing

contraction and expansion of the specimen along its length.

Figure 5.8: Evolution of the AE event map of specimen U9 over the course of the full experiment showing

location, type, and size of AE events over time. The red strips indicate the regions scanned using

micro-CT and the yellow lines the locations of the two sensors.

Note that during tensile testing a major high-frequency event (Event 2, EΨ,2 = 0.03mV
2
s) has been

detected at Time= 220 s in the quarter-length region of validation, located at x = 151mm, during the load of

1 kN (find the waveform in Figure 4.3a). A cascade of major ’undecided’ events followed the high-frequency

event at this location during the peak load of 8 kN.
Another high-frequency event (Event 96, EΨ,96 = 0.002mV

2
s) was recorded at the bottom of the other

region of validation (x = 119mm). This event was also accompanied by an entourage of low-frequency

and ’undecided’ events. However, this second apparent AE hotspot consists of events of smaller size, i.e.,

with less energetic signals.

A third high-frequency event (Event 119, EΨ,119 = 0.023mV
2
s) was found at the top boundary of the

mid-length region of validation (x = 134mm). However, the error band of this event reaches outside the

region of validation, and, therefore, it is possible that it does not fall within the scanned region at all.

In summary, for specimen U7, only one high-frequency was located into the regions of validation (at

x = 145.3mm), in correspondence of the damage shown in Figure 5.5 located at x = 146mm.

For specimen U9, two high-frequency events were located in the regions of validation. The first one

at x = 150mm in correspondence with the damage shown by the micro-CT in Figure 5.3, located at

x = 152mm. The second high-frequency event was located at x = 119mm and no corresponding visible

damage could be identified in the follow-up scan of specimen U9 (shown in Figure 5.2). This could be

explained by the fact that the damage is small in size, and since it happens during the last load level

(see Figure 5.8), there is no chance for it to grow to a visible size. This explanation is in agreement with

the working assumption that the damage size correlates with the energy content of the associated AE

event, because the (cumulative) energy content of the first high-frequency event (x = 150mm) and its

surrounding ’undecided’ events is much larger than the second one (at x = 119mm).
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5.3. Categorized AE Frequency Spectra
The frequency contents of all events have been extracted from the recorded AE data, normalized, and

categorized according to the methodology in 4.4.1. For each specimen, this resulted in three groups of

data (’high-frequency events’, ’low-frequency events’, and ’undecided’), which contain, for each event, the

two normalized frequency spectra of the waveforms recorded by the two transducers/channels.

Figure 5.9: Normalized frequency contents of each class/type of events recorded by the two

transducers/channels on specimen U7. The datasets of each class are represented by mean value and

standard deviation.

Figure 5.10: Normalized frequency contents of each class/type of events recorded by the two

transducers/channels on specimen U9. The datasets of each class are represented by mean value and

standard deviation.
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Figures 5.9 and 5.10 show the normalized frequency contents obtained using the proposed method

(making use of CWT) of each class or ’type’ of events, for specimens U7 and U9 respectively. The

two datasets (from channel 1 and channel 2) belonging to each class (low-frequency, high-frequency,

and undecided) are represented in the figures by their mean normalized frequency spectra and the

corresponding standard deviation of all events of that type.

Increasing the number of identified classes to match the number of expected damage modes is desirable,

but in the current setup, it has been observed to lead to more inconsistency in the classification of the

normalized frequency spectra by the two sensors.

Please note that CWT can create sharper spectra at low frequencies and more blurred (blunt) spectra

at high frequencies. This is because narrow wavelets are highly localized in time (good time resolution),

meaning they can accurately identify transient events or signals with short durations. However, this comes

at the cost of frequency resolution, which explains the broad peak t 580 kHz. Please refer to Section 2.3.1

for further insight on CWT and Heisenberg’s Uncertainty Principle.

The AE events are divided into two classes: the blue and red classes (low- and high-frequency events).

The two classes are characterized by signature energy peaks at two different frequencies: at ∼ 100 kHz
for the low-frequency type of events, and at ∼ 580 kHz for the high-frequency type. Note that the high-

frequency class of events recorded on channel 1 in specimen U7 shows a secondary peak at∼ 300 kHz and
a large standard variance compared to the other high-frequency datasets. The classes of low-frequency

and undecided events have a secondary peak at ∼ 230 kHz in all datasets, except the one generated by

transducer 1 on specimen U7 (Fig. 5.9, top). The frequency spectra from sensor 1 on specimen U9 (Fig.

5.10, top) show larger contributions in the range of 400− 500 kHz than the others do.

Another notable observation is that the low-frequency datasets of specimen U9 (Fig. 5.10) have flatter

shapes with the peak at ∼ 100 kHz less pronounced and stronger high-frequency contributions than for

specimen U7. The flatter shapes of the low-frequency datasets from specimen U9 in Figure 5.10 than for

specimen U7 in Figure 5.9 may be caused by differing sounds of damage, or be an indication of different

monitoring conditions between the two tests. Differing damage sounds may be caused by different damage

mechanisms dominating in the two experiments, or by the different clamping conditions causing different

boundary interactions of the elastic waves at the ends of the specimen (remember, a fixed mechanical

clamp was used for testing specimen U7, while specimen U9 was clamped using automatically adjusting

hydraulic grips). Different monitoring conditions are unlikely because all setup parameters from the test on

specimen U7 were reproduced for the second test on specimen U9. However, even small differences in

the monitoring setup can lead to different signal transfer functions, causing e.g. a right-shift of all spectra

as is seen in Figure 5.10 compared to 5.9.

The class of ’undecided’ events contains all the events that were classified inconsistently using the

normalized frequency spectra generated by the two transducers. For specimen U7, the mean frequency

spectrum of this class at transducer 1 looks similar to the high-frequency mean, but at transducer 2, it is

more similar to that of low-frequency events. This sheds doubt on the consistency of the frequency spectra

of different damage modes, at least when extracting them with the current method. More on this subject in

Section 6.3 of the following chapter.

To summarize the findings from the AE data the author would like to stress that two principal types

of signals were distinguished in the scope of this work: One type with a peak frequency contribution of

95 kHz and one with a peak frequency contribution of 580 kHz.
The high-frequency type with a peak at 580 kHz seems to indicate locations that are in agreement with the

damage visible in the micro-CT scans.
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Discussion

6.1. Micro-CT Scans
The Micro-CT scans were performed to assess the internal state of the material non-destructively before

and after the specimens were subjected to tensile loading. The objective was to compare the scans to

identify the mechanical damage generated during the loading experiment. The suspicion was that many

defects would already be present in the material before loading due to the manual prepreg layup process.

This type of manufacturing increases the risk of imperfect adhesion of successive plies of prepreg. For

this reason, the five slices in Figure 5.1 (and Fig. 9.1) showing the state of the interfaces between two

successive plies have been chosen, and indeed, the preliminary scans already show imperfections and

voids in the specimens before they have been subjected to any loading. This means that they probably

stem from manufacturing. The defects were likely caused by the use of expired prepreg material and the

vacuum system’s failure to ensure proper adhesion of the plies prior to oven-curing, likely due to material

embrittlement. The dark spots in Figure 5.1 probably correspond to voids, air inclusions, and generally

weak ply bonds.

These defects in the ’pristine’ specimens affect the type of damage to be expected during tensile loading.

The unidirectional specimens for tensile loading had been designed with the intention to induce and isolate

the sound of fiber fractures, but the type of defects shown by the preliminary CT scan probably favored the

development of other types of damage in the composite material (like longitudinal fiber detachment and

delaminations) as well. Nevertheless, during a major damage event in a unidirectional fiber-reinforced

composite, i.e. a permanent deformation visible in a micro-CT image, fiber fractures are expected to occur:

If fibers remain perfectly intact, it is unlikely that a visible difference will appear in the micro-CT scans of the

unidirectional specimens that consist of more than 50% of carbon fibers (Vf = 54.4%). Therefore, visible

changes in the internal meso-structure of the material are thought to be caused by a combination of fiber

fractures and fiber-matrix debonding/longitudinal matrix cracks.

A few remarks on the comparison of preliminary and follow-up scans (e.g. Figures 5.1 and 5.2):

Note that the micro-CT images before and after the quasi-static tensile experiment are comparable using

visual inspection. Small defects in the ’pristine’ specimen, up to a few pixels in size (in the range of 20µm
with the given resolution of 8µm), could be identified in the preliminary scans (Figure 5.1) and recognized

at the same locations in the corresponding follow-up scan after the tensile experiment had taken place

(Figure 5.2).

Sometimes, defects did not appear in the same plane but in one of the adjacent slices. This happens

because it is almost impossible to reproduce the scanning conditions exactly in terms of orientation and

alignment up to a few micrometers. Nevertheless, almost all internal structural features and defects visible

in the follow-up scans could be associated with an identical entity in the preliminary scan.

The only two exceptions were found at x = 146mm in specimen U7 and at x = 152mm in specimen

U9. They are reported in Figures 5.3-5.6. In both cases, the dark area seemingly becomes smaller,

and bright artifacts are introduced in the follow-up scans after the tensile experiment compared to the

preliminary scans. A bright elongated entity appears in the follow-up scan in Figure 5.3b, and the area

directly surrounding the highlighted defect in Figure 5.5b also appears brighter than the rest of the material.

Why might a damaged area appear brighter than its surroundings and than the same area in the

preliminary scan? One possible explanation is an effect of densification or compression of the material
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caused by the microstructural rearrangement during the damage event. Such densified areas absorb

more photons, making them appear brighter in CT images. This could have happened in specimen U9,

for example, if a residual out-of-plane stress caused by the adhesive force at the ply interface in the

’pristine’ specimen was pulling fibers from one ply to the other. This would cause them to warp slightly in

the out-of-plane direction and contribute to the adhesive force between the two plies in that region. This

pretensioned state, coupled with a low-quality adhesion in this region (which is recognizable already before

tensile testing in Figure 5.3a), may have been released during tensile loading, as the two plies detached

in this region and slid slightly relative to each other. This would probably cause fiber fractures and the

initiation of an edge delamination. As the pretensioned state is released, the fibers that were being pulled

out of shape may break and return to their natural and denser packing state, which may explain the bright

entity in the follow-up scan. Isolated fiber segments may appear denser than fibers integrated in the matrix

because of the lack of residual tension from the surrounding material.

Another possible explanation is that the brightness increases in this area due to the effect of crack interfaces

and phase contrast. As the edge delamination initiated in specimen U9, space was created between the

two plies, and two new interfaces with air appeared. Interfaces can generate absorption and refraction

artifacts, artificially enhancing brightness at edges due to refracted photons, causing a peak in brightness

in high-resolution micro-CT. For example, the place where two plies separate with a specific distance may

appear bright due to the photons getting trapped by reciprocal reflection at the two interfaces. Another

effect of phase contrast could be that, after the two plies separate during the damage event, the area

where they touch may appear brighter than the surrounding void that has been created.

The explanations for the bright shape in the follow-up scan can be manifold. Nevertheless, an alteration

in the internal structure can be observed that is subtle and localized, not widespread, indicative of initial-

stage damage during tensile loading. The observed damage probably consists of a combination of fiber

breakages and an initiating edge delamination.

This type of damage would be expected to grow in the horizontal direction, towards the left, if subjected to

a mode III type of loading.

The defect of specimen U7 highlighted in Figure 5.5b has bright surroundings, while the corresponding

area in the preliminary scan is rather dark. A possible explanation is that the defect in the preliminary scan

(Fig. 5.5a) shows a weak or faulty bond between the plies that results in the formation of the damage

hotspot that is visible in the follow-up scan (Fig. 5.5b). Again, it may be that residual stresses in the

’pristine’ specimen are released by the damage event during tensile testing, causing the previously strained

region to recompact as it is relieved of its residual stresses. This may explain the brighter shading around

the presumed damage hotspot in Figure 5.5b. The observed damage probably consists of a combination

of fiber breakages and debonds/longitudinal matrix cracks.

This type of damage would be expected to grow in the vertical (i.e. longitudinal) direction, if subjected to a

mode II type of loading.

The findings derived from the micro-CT scans are summarized in Table 6.1.

Specimen Horizontal location x [mm] Proposed damage type Crack-driving mode

U7 146 Fiber debond/longitudinal matrix crack II

U9 152 Initiating edge delamination III

Table 6.1: Characteristics of the two damage hotspots from Figures 5.3 and 5.5.

So, in conclusion, major visible damage due to tensile loading of the specimens was observed to initiate

at the imperfect interfaces of the prepreg plies, and in association with fiber fractures, followed by other

forms of damage (fiber debonding and ply delamination).
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6.2. AE Monitoring Framework
The acoustic emissions (AEs) recorded during tensile testing of the two specimens are visualized in Figures

6.1 (U7) and 6.2 (U9).

Figure 6.1: Damage map of specimen U7 (maximum load: 10 kN), showing events registered during

tensile testing only. (Note that the vertical coordinate of the event locations is a random variable

introduced for better visualization - events are located only along the length.)

Figure 6.2: Damage map of specimen U9 (maximum load: 8 kN), showing events registered during

tensile testing only. (Note that the vertical coordinate of the event locations is a random variable

introduced for better visualization - events are located only along the length.)

In general, it must be noted that many more AE events have been recorded than visible damage has

been identified in the micro-CT images (compare Table 6.1 and Figures 6.1 and 6.2). At least so is the

case for low-frequency and undecided AE events.

The locations of high-frequency events, however, are in agreement with the damage hotspots visible in

the scans.

Furthermore, the number of events classified as ’undecided’ was relatively high for both experiments,

meaning that many events were assigned to a different category when using the waveforms recorded by

the transducers at the two ends of the specimen.

This was the first hint to shed doubt on the conventionally defined notion of high-frequency AEs corre-

sponding to fiber fracture events and low-frequency events to matrix damage. A novel interpretation will

be proposed in the next section that may, if true, resolve this common inconsistency.

6.3. Categorized AE Frequency Spectra and Waveforms
In the previous chapter and also in the previous section, it has been hinted at that there was often an

inconsistency in the frequency spectra extracted from the two waveforms registered by the two sensors.

This does not necessarily imply that damage events do not generate consistent signals at their source, but

it does shed doubt on the consistency of frequency spectra extracted from the waveforms registered at the

transducers with the current methodology.

This common inconsistency led to many events being classified as ’undecided’, and to the question as to
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why the frequency contents of the events often appeared so different at the two transducers. This question

will be given a possible answer in the following paragraphs.

There are a few steps of transmission and signal processing between the sources of the AEs and the

generated frequency spectra. Every transmission step (through the specimen, between the specimen and

the transducer, and between the transducer and the digital signal) has its respective complex transfer

function in the frequency domain. So, even if damage modes do emit AE signals with consistent frequency

contents at the source, they may still appear differently at the end of the chain of transmission. There is

the suspicion that dispersion (and visco-elastic damping) of the mechanical wave along the length of the

specimen may distort the frequency contents of the waveforms at the two transducers. In particular, this

effect probably delays the detection of low-frequency contents at the sensor further away from the source.

Combined with the frequency-content-extraction method from Section 4.4.1, which limits the window of

analysis of the waveform using minima of the instantaneous energy content (see Figures 4.6), this may

lead to low-frequency contributions being effectively omitted from the spectra of some waveforms. This

effect can be observed in Figure 4.7, where the spectra from the sensor further away from the source

(Ch 1) seem generally skewed to the right, toward higher frequencies, compared to the spectra from the

sensor closer to the source (Ch 2), because low-frequency contributions arrive late due to dispersion and

are partly cut away with the back of the waveform.

Please refer to the final chapter on recommendations for further work for a suggestion on how to improve

the current method to counter the effect of the distorted frequency contents due to the length of the path of

propagation.

Observing the effect of dispersion, causing many events to be classified as undecided, led to a key

insight about the recorded waveforms that will be exposed in the upcoming paragraph.

In general, most of the recorded waveforms have been observed to consist of a high-frequency head,

followed or not by a lower-frequency tail (see Figure 6.3), which was the key feature distinguishing low-

from high-frequency events.

(a) Sample low-frequency event (x = 128.7mm). (b) Sample high-frequency event (x = 142.8mm).

Figure 6.3: Waveforms of two sample events from specimen U7.

In undecided events, the low-frequency tail may be included by one channel, but not by the other,

leading to inconsistent classification. See e.g., in Figure 4.3b, the waveform of Event 18 from specimen U9

(’undecided’): The sub-period of integration includes almost the whole wave packet for the sensor closest

to the source (Ch 2), but, due to dispersion, only the high-frequency wave packet is fully included in the
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waveform registered by the sensor further away (Ch 1). In Figure 4.5, this effect can be observed in the

CWT of that same event as well.

This observation concerning the recorded waveforms of ’undecided’ and low-frequency events led the

author of this work to stipulate the interpretation laid out in the following paragraph.

The common understanding in the literature is that low-frequency events are associated with matrix damage

and high-frequency events with fiber fractures. However, there is a possible alternative interpretation:

A low-frequency tail may be observed in the emanated waveform when a fiber fracture occurs, but the

surrounding material remains intact, and some of the released strain energy remains conserved in the

form of a lower-frequency elastic vibration, effectively halting the further ripping of the surrounding material.

High-frequency events, on the other hand, do not have such a tail, which might suggest that the fiber

fracture leads to further ripping of the matrix, instead of being halted by it. In this narrative, during a high-

frequency event, strain energy is consumed by further ripping of the material, which leads to the creation

of a (contagious) damage hotspot. Hence, the absence of a low-frequency tail may be an indication that

the event included a large and visible surface detachment internal to the material. This would explain why

low-frequency events are located all over the material and high-frequency events only in correspondence

with damage visible in the micro-CT.

If this explanation is true, this would mean that, contrary to common belief (and to an assumption made

at the beginning of this work), the energy content of the elastic wave is not an indication of the size of

damage. It is rather the absence of a low-frequency tail that indicates a visible rip in the material.

Whichever the explanation, the result holds that in the current setup, the locations of (early) high-

frequency events (with a peak at 580 kHz) are in agreement with the locations of damage observable in the

micro-CT scans. Moreover, many low-frequency (100 kHz) events have been located in regions where no

damage could be identified in the micro-CT. This may indicate that early high-frequency events announce

the development of visible damage in later stages, when the load is increased. Visible damage has been

associated with fiber fractures, because that is the damage mode expected in association with ’large’ (order

of ∼ 0.1mm), plastic, structural changes in the unidirectional composite that are visible in the micro-CT

with the naked eye. This may lead to a similar conclusion as Kempf et al. [21], who state that the AEs of

fiber fractures have a peak contribution in the frequency range of 450− 800 kHz.
However, no further statement can be made, with the current information, about the differentiation of AEs

of inter-fiber or transverse matrix cracking, fiber-matrix interface failure, and delamination. That information

may be contained in the ’undecided’ events that were located in correspondence with the two damage

hotspots on specimens U7 and U9, but requires further analysis.
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Conclusions

In this final chapter, the main conclusions of the research are presented. These findings are discussed

in relation to the research questions and initial objectives, highlighting the contributions made and the

limitations encountered.

Research Questions (I.a-c) refer to the AE monitoring and analysis framework worked out in the context

of this thesis. They tackle the topic of damage characterization using frequency and energy contents

independently of each other.

The first question (I.a) tackled the issue of identifying the length of themeasured signals that is representative

of the elastic wave packet and not tainted by noise, reflections, or lingering sensor response. The method

was based on a transient frequency analysis using CWT, and the key point was the choice of the sub-interval

of the waveform from which to extract ’clean’ frequency information. This sub-interval is also referred to

as ’clean primary wave packet’ in Chapter 4. The extraction of a clean primary wave packet, excluding

frequency contents of noise and boundary reflections, is tentatively considered successful for the scope of

this work, but requires further analysis. Specifically, one of the observed issues was that the identified

clean primary wave packet contained different frequency contributions for the two sensors. This often led

to events being classified as undecided, simply because dispersion had caused the frequency contents to

separate and low-frequency contents to get lost in the waveform behind the upper limit of integration at the

sensor furthest away from the source. This happened e.g. for Event 38 of specimen U9 that is shown as

undecided in Figure 4.7, because the low frequency content was included in the waveform from sensor 2,

but got lost behind the limit of integration at sensor 1 (see Figure 4.3 showing the respective waveforms).

This is a limitation of the current setup, but it also became a chance to exploit the information of the head

and the tail of the waveforms separately.

The original objective of this work, as expressed by RQ (I.b), was to devise a classification scheme that

would take into account spectrum shape in a more granular way, including narrow peaks or common

combinations of peaks instead of energy content over a range of frequencies. The PCA applied to the

generated datasets should, in theory, have been able to highlight such structures and allow to achieve a

detailed insight, but it was limited by the quality of the normalized frequency spectra that were delivered

to it by using CWT. The method seems to have been successful in differentiating groups of high- and

low-frequency spectra qualitatively, but, at the same time, it lacks the narrow-peak sensitivity necessary

to differentiate spectra of different types within the super-categories of high- and low-frequency events.

This issue is probably caused by the generation of frequency spectra using CWT, which leads to a lower

frequency resolution of the spectra for high frequencies due to Heisenberg’s Uncertainty Principle as

detailed in Sections 2.3.1 and 5.3. The generation of frequency spectra using an improved signal processing

method shall be the content of further recommended work. CWT seems promising in terms of identifying

the duration of the wave packet, but it is limited in terms of extracting precise frequency information.

The second part of RQ (I.b) covers the question whether different damage modes really do emit elastic

waves with characteristic and universally recognizable frequency contents, and it could not yet be answered

with confidence.

Finally, research sub-question (I.c) tackled the concrete association of families of AE frequency spectra

with expected damage modes in the composite material that are visible in the micro-CT scan. Some

uncertainty from RQ (I.b) was carried on into this problem, so it was not possible to definitively associate

an AE frequency spectrum with a corresponding damage mode yet. However, a possibly novel insight was
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gained that is exposed in Section 6.3. In summary, it states that low-frequency tails may be indicative of

fiber fractures that were ’caught’ by the surrounding material, whereas high-frequency events are produced

when fiber fractures lead to a further permanent structural change in the surrounding material.

This, if true, may be one of the major findings of this work in terms of characterization of acoustic emissions

of damage modes in composite materials under tensile loading: Contrary to common belief, low frequency

AE events may not indicate matrix cracking in this context, but instead, they may indicate fiber fractures that

are caught by an intact matrix surrounding the fractured fiber, which prevents the fracture from spreading

into the surrounding material.

Research Question (II) tackled the feasibility of using micro-CT as a validation method that can visualize

micro-structural damage in composite materials. Micro-CT was established to be a powerful and useful

method to identify damage at the meso-scale, i.e., the dimension of a ply of prepreg, 0.1mm. The first

sub-question (II.a) was answered partially successfully. The first finding was that the images taken before

and after tensile loading were indeed visually comparable with the naked eye. All visible shapes and

entities up to a few pixels in size were found to match between the two scans, which corresponds to a

defect size in the order of ∼ 0.05mm = 50µm. However, in practice, the smallest difference that could

be spotted using visual inspection of the images was in the order of ∼ 200µm. Comparison using basic

automated image processing techniques failed because it would have required a perfect alignment of

two tomographic datasets, which was impossible to achieve with a manual pre-processing step. The

implementation of advanced image comparison tools, possibly using machine learning and convolutional

neural networks (CNNs), may be the subject of further work to automate and improve the comparison of

the scans. In conclusion, based on the scans, it was possible to make an educated assumption as to the

kind of damage that took place, but the images are open to interpretation to some extent. In particular, the

reason as to why an increased brightness can be observed in the damaged regions remains in question,

although a few possible explanations for this phenomenon are given in Section 6.1.

To answer sub-question (II.b), the highest attainable resolution using the current specimen (with a width of

20mm) was 8µm. It turns out that this resolution is high enough to observe many defects at the interfaces

of the plies (that are 0.16mm thick) and to identify the orientation of the fibers in each ply with the naked

eye. However, true micro-damage, such as single fiber fractures, is simply too small still to be found using

visual inspection only (in the order of ∼ 0.01mm). As previously mentioned, the smallest damage that was

identified has a width of 0.15mm, and damage up to a size of 0.1mm could likely still be found by visual

inspection, but beyond that it starts to get very challenging with the current resolution. This work suggests

that the smallest damage events that generate detectable acoustic emissions may lie in a range that is

undetectable by micro-CT in the current setup, i.e., in a size-range < 100µm. Refer to Section 8.1.2 in the

next chapter on recommendations for future work to learn that increasing the resolution is an option, but it

stands in question whether it will lead to further insight.

To summarize the major contributions of the current work the author would like to point out that acoustic

emission monitoring has been confirmed yet again as a powerful and insightful tool to monitor different

types of mechanical events on the surface and/or the inside of composite materials (see Figures 5.7

and 5.8). Moreover, the combination of AE monitoring and micro-CT scanning has been proven to be a

powerful (if yet in some ways limited) way to confirm and/or put into question the common understanding

of damage-induced AEs in composite materials. A novel conclusion that is proposed in this work is that

many low-frequency events may not be caused by matrix damage at all, but instead be the result of fiber

fractures that are caught by an intact matrix surrounding the fractured fiber.
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Outlook and Further Work

The final chapter of this thesis covers further recommended work and an outlook on a possible application

of the developed (and improved) monitoring system. Recommendations for further work aim at improving

the current state of the experimental approach to deliver even higher-quality results and offer further insight

into the acoustic emissions of micro-damage in composite materials. The second section will offer an

outlook on a possible application of the AE monitoring framework for research purposes in the field of

mechanical fatigue degradation of composite materials

8.1. Recommendations for Further Work
In the first section of this final chapter, a few points for improvement of the current experimental framework

will be laid out.

8.1.1. Analysis of AE Data
First, direct your attention towards the problem of dispersion and visco-elastic dissipation of the signals

as they travel along the length of the specimens to reach the transducers. It was observed that, with the

current method of generating frequency spectra, the frequency content is affected by the distance traveled

by the signal, because part of the waveform at the end of the wave packet may be cut off. The redundancy

of the measurements caused by using two transducers led to the discovery of this problem. In future work,

attempts should be made to reduce the impact of the signal transfer function of transmission along the

length of the specimen by taking into account the location of the source and the distance traveled by the

signal.

A simple way to do this is to do this is to limit the analysis to waveforms registered by the sensor closest to or

furthest away from the source of the AE. Two sensors are still necessary to locate the source longitudinally,

but only one waveform shall be used. Using the waveform of the sensor closest to the source will probably

result in higher fidelity to the original waveform at the source of the signal. Using the waveform of the

sensor furthest from the source, on the other hand, may provide an advantage in dissecting frequency

contents, because they separate along the path of transmission due to dispersion.

A rather more complex way to compensate for signal transmission along the length of the specimen is the

reconstruction of the signal at the source using the sensor transfer function, material dispersion curves,

and, possibly, dissipative properties of the material in a time-reversal method. Attempting to reconstruct

the signal at the source is challenging, but it may result in an increased consistency of the recorded data

(if damage modes are proven to emit consistent waveforms at the source of the sound).

Focus still on the method used to generate the (normalized) frequency spectra from the registered

waveforms: It starts with the identification of a ’clean primary wave packet’ using local minima of the

(smoothed) instantaneous energy content (see Figure 4.6). Frequency spectra are then generated by

integrating the CWT over the identified length of the clean primary wave packet.

The advantage of using CWT to generate frequency spectra by integration is that the resulting resolution

of the frequency spectra is consistent for all waveforms of all lengths. Other methods (e.g., DTFT) may

cause problems of inconsistency of resolution when using waveforms of different lengths, but they may

also lead to higher quality frequency spectra, so they are worth looking into. Applying PCA to higher-quality

frequency spectra may lead to the identification of more characteristic peaks and combinations of peaks

corresponding to specific damage modes. Higher precision in the classification of the frequency spectra
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might make it possible to increase the number of clusters beyond two to represent the real number of

different expected damage modes.

8.1.2. Micro-CT Image Processing
The comparison of two micro-CT datasets is a complex task that can benefit greatly from automation using

advanced image processing tools based on machine learning and convolutional neural networks. It is

worthwhile to undertake this challenge if high-quality tomographic datasets are available, which contain

information about the presence of damage, at least potentially, waiting to be extracted.

High-quality tomographic datasets are tomographic images, in which the specimen was properly aligned

with the cathode tube, and the full width is captured by the scan. This was the case for the follow-up scans

after tensile testing (which were of high quality) but not for the preliminary scans, in which about 3.5mm is

missing from the width on the left side of the specimen.

Another aspect to consider is the resolution. In theory, the resolution can be doubled compared to the

current value, up to 4µm. For this to be possible, the specimens’ width must be reduced to half the current

width. It is possible, in theory, that single fiber fractures (df = 7µm) may become visible with such a

high resolution. Nonetheless, it stands in question whether this would be desirable at all. Doubling the

resolution would also mean doubling the required precision of alignment, which has already been proven

to be challenging. Moreover, it is unclear whether a resolution of 4µm will make more micro-damage

visible in addition to the meso-scale damage visible in the 8µm-resolution CT scans of this work. It is

possible that micro-damage, such as single fiber fractures without surrounding material ripping, remains

invisible with a resolution of 4µm, because the crack opening length (without applied tensile tension) might

be much smaller yet. In that case, the meso-scale damage will still be the only one visible, making the

increased effort unjustified.

8.2. Mechanical Characterization and Fatigue Testing Campaign
The proposed mechanical characterization campaign is intended as an outlook and represents a possible

application of the AE-based damage mode monitoring framework for studying fatigue in fiber-reinforced

composites. The aim is to continuously predict the remaining fatigue life throughout the specimen’s lifetime.

This second experimental campaign would involve a static characterization and tensile fatigue testing of

similar unidirectional carbon fiber coupon specimens to those in Section 4.1 while monitoring acoustic

emissions.

8.2.1. Static Characterization
The phase of static testing of progressively increasing load serves to characterize the material’s mechanical

behavior both in pristine and in a damaged state.

It is proposed to increase the tensile load in stages, then relieve the specimen completely and subsequently

increase the load once more from zero to the next level where AE activity starts once more. States

in which no AE activity is recorded shall be known as ’stabilized damage states’. In such a state, the

fatigue life of fibers may be determined by their micro-plastic energy dissipation during plastic loading. The

micro-plasticity of the fibers may be deduced from the mechanical reaction of the material to applied static

loads.

The mechanical reaction recorded for a stabilized damage state may be associated not only with a material

but also with a material in a given initial damage state. This way, the micro-plastic behavior of the fibers can

be recorded specifically for a given matrix damage state, implicitly taking into account stress concentrations

and redistribution. Plastic energy dissipation in the fibers is expected to proceed throughout fatigue life.

The amount of energy dissipated depends on the overall composite damage state, and it is proposed that

the mechanical behavior of the material in a given (initial) stable damage state can be used to predict the

fatigue lifetime of that damage state for given load amplitude and load ratio according to Kassapoglou’s

method [14]. This method makes use of plastic effects that can be estimated from the static stress-strain

curve and may be used to estimate the remaining cycle lifetime before fatigue-induced fiber fractures.

8.2.2. Fatigue Testing
During the fatigue tests, internal micro-damage is progressively introduced and augmented in the speci-

men. The damage state progresses in the form of discrete damage events that can be monitored and

characterized using AE detection. The degradation of mechanical properties can be tracked by using the
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load and strain data from the testing setup and recording the cyclic hysteresis loops. Moreover, a solid

AE-based damage recognition framework shall allow tracking of damage as it develops in multiple regions

in the composite specimen; the AE monitoring system will, hopefully, be able to identify regions where

damage is particularly dense, affecting overall stiffness of the material in that region.

As the composite degrades, it goes through a progression of damage states before final failure.

Reifsnider [6] suggests that different damage mechanisms dominate the degradation of unidirectional

long fiber composites at different stages of fatigue lifetime: starting with damage nucleation at locations of

manufacturing defects, followed by progressive matrix cracking and fiber-matrix debonding, and finishing

with final failure due to compounding fiber breakage. This narrative may be supported or rejected by the

proposed fatigue tests.



9
Additional Figures

(a) Interphase I (slice 128) (b) Interphase II (slice 149)

(c) Interphase III (slice 169) (d) Interphase IV (slice 187) (e) Interphase V (slice 208)

Figure 9.1: Preliminary micro-CT of specimen U7 at x = 125mm. Five frames showing the five ply

interfaces.
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(a) Frame I (b) Frame II

(c) Frame III (d) Frame IV (e) Frame V

Figure 9.2: Five frames showing the five ply interfaces at the mid-length of the specimen (x = 125mm) of

specimen U7 after the tensile experiment.

(a) Specimen U7, Channel 1. (b) Specimen U9, Channel 2.

Figure 9.3: Remaining two (out of the four) collected datasets projected into the 2D space of principal

coordinates.
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