
 
 

Delft University of Technology

Optimizing entanglement generation and distribution using genetic algorithms

Ferreira Da Silva, Francisco; Torres-Knoop, Ariana; Coopmans, Tim; Maier, David; Wehner, Stephanie

DOI
10.1088/2058-9565/abfc93
Publication date
2021
Document Version
Final published version
Published in
Quantum Science and Technology

Citation (APA)
Ferreira Da Silva, F., Torres-Knoop, A., Coopmans, T., Maier, D., & Wehner, S. (2021). Optimizing
entanglement generation and distribution using genetic algorithms. Quantum Science and Technology, 6(3),
Article 035007. https://doi.org/10.1088/2058-9565/abfc93

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/2058-9565/abfc93
https://doi.org/10.1088/2058-9565/abfc93


Quantum Science and Technology

PAPER • OPEN ACCESS

Optimizing entanglement generation and distribution using genetic
algorithms
To cite this article: Francisco Ferreira da Silva et al 2021 Quantum Sci. Technol. 6 035007

 

View the article online for updates and enhancements.

This content was downloaded from IP address 154.59.124.113 on 19/07/2021 at 13:36

https://doi.org/10.1088/2058-9565/abfc93
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv59B_0-0oyf_SPQIgWn2jYpgphJVBfKD4r7NnViPPJF-JYeD5Ur9mVYCA4sQ7qr0YJDRXEV1cpy5bVHL33Gyh6Xkk770SZjz6336dlzTxCFZsAOeBYjw13D6QsAg2nV-j468V0ccS7dNVH6ZLuxfU-NjAVBKTYbF_APy6QXo4uN2wdVnIi12ANOzLNkv-Z0BGp7Nh6i6FreY7-j-esKr5kUypNOtozctYKTYwVlI9J3DwrqFfpACDA1gvC0-uXY3hm_9jqtSXk_vfIrgSkUN9VqvgBCqcGu1U&sig=Cg0ArKJSzLSuNtd4f9dJ&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Quantum Sci. Technol. 6 (2021) 035007 https://doi.org/10.1088/2058-9565/abfc93

OPEN ACCESS

RECEIVED

18 November 2020

REVISED

15 April 2021

ACCEPTED FOR PUBLICATION

28 April 2021

PUBLISHED

15 June 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.
Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Optimizing entanglement generation and distribution using
genetic algorithms

Francisco Ferreira da Silva1,2 ,∗ , Ariana Torres-Knoop3 , Tim Coopmans1,2 ,
David Maier1,2 and Stephanie Wehner1,2

1 QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2 Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3 SURF, Utrecht, Postbus 19035, 3501 DA Utrecht, The Netherlands
∗ Author to whom any correspondence should be addressed.

E-mail: f.hortaferreiradasilva@tudelft.nl

Keywords: quantum repeater, entanglement distribution, optimization, repeater chain, quantum network, genetic algorithms,
quantum internet

Abstract
Long-distance quantum communication via entanglement distribution is of great importance for
the quantum internet. However, scaling up to such long distances has proved challenging due to
the loss of photons, which grows exponentially with the distance covered. Quantum repeaters
could in theory be used to extend the distances over which entanglement can be distributed, but in
practice hardware quality is still lacking. Furthermore, it is generally not clear how an
improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the
overall network performance, rendering the path toward scalable quantum repeaters unclear. In
this work we propose a methodology based on genetic algorithms and simulations of quantum
repeater chains for optimization of entanglement generation and distribution. By applying it to
simulations of several different repeater chains, including real-world fiber topology, we
demonstrate that it can be used to answer questions such as what are the minimum viable
quantum repeaters satisfying given network performance benchmarks. This methodology
constitutes an invaluable tool for the development of a blueprint for a pan-European quantum
internet. We have made our code, in the form of NetSquid simulations and the smart-stopos
optimization tool, freely available for use either locally or on high-performance computing centers.

1. Introduction

A quantum internet could be used to perform tasks that are impossible with classical communications
alone, the best known example being that of quantum key distribution (QKD) [1, 2]. Beyond QKD, several
other applications have been identified, ranging from quantum clock synchronization [3] to distributed
quantum computing [4]. The level of network development required is application-dependent, but all of
them rely on entanglement generation and distribution [5].

Entanglement generation has been demonstrated at short distances [6], but scaling up has proved very
challenging due to the exponential growth of photon losses with the length of fiber covered. Classically,
photon loss is overcome by direct amplification, but in the quantum case this is impossible for
non-orthogonal states due to the no-cloning theorem. As an alternative, two distant end nodes can be
connected by intermediate nodes, known as quantum repeaters [7]. These are devices that can, in theory,
enable long-distance entanglement generation. This is done by (i) establishing elementary links between
neighboring nodes, i.e. entangled states shared by these nodes and (ii) gluing links together by means of bell
state measurements, a process known as entanglement swapping. The simplest possible quantum repeater
protocol consists in having nodes constantly trying to generate entanglement and swapping as soon as they
hold two entangled qubits, one to each side of the chain. This is known as an SWAP-ASAP protocol. It can
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Figure 1. Overview of our optimization process. The user inputs the desired optimization parameters and defines a cost
function. Using simulation and optimization tools, our methodology finds a set of parameters optimizing the cost function. For
example, the optimization parameters could be parameters defining a quantum repeater model and the cost function could be
the inverse of the secret key rate plus a penalty term for parameter values that are much better than a given baseline. The output
would then be the values of the parameters defining the quantum repeater model optimizing the cost function.

be enhanced by imposing a cut-off condition, such as a maximum time after which stored entanglement is
discarded [8]. For an in-depth introduction to quantum repeaters, see for example [9].

Despite ongoing experimental efforts, a scalable quantum repeater has yet to be demonstrated [10].
Several physical systems are being explored as possible platforms for such a repeater, for example color
centers in diamond (e.g. NV centers [11]), atomic ensembles [12] and trapped ions [13], but it is not yet
clear which are most feasible in the short-term, nor how imperfections in the physical system would
generally affect relevant network performance metrics like end-to-end fidelity and entanglement generation
rate.

In the quest for a quantum internet, the question of what the minimal requirements on a quantum
repeater are to achieve a certain network performance benchmark is thus fundamental. Furthermore, as we
will show in section 2, it is a question that can be framed as an optimization problem. Broadly speaking,
two different approaches are being explored in the theoretical study of quantum repeaters: analytical
(see e.g. [7, 9, 14]) and simulation-based (see e.g. [15–17]). In the first case, simplifying assumptions are
made, such as approximating the states shared between nodes by Werner states or assuming simple
topologies for the networks under study, e.g. restricting the analysis to chains of equally spaced nodes. In
the second case, accurate and realistic simulations of networks of quantum repeaters are developed, at both
the protocol level and the physical level. Each of these approaches offers benefits and drawbacks; opting for
an analytical approach enables obtaining analytical expressions for interesting metrics such as the
end-to-end fidelity. This means that traditional gradient-based optimization methods can be employed,
offering a clear path to an answer. However, this may come at the cost of less detailed predictive power. On
the other hand, choosing a simulation-based approach allows the modeling to be as realistic as desired. The
downside here is, of course, that analytical results are no longer available, and that the simulations may
become very complex, especially taking into account the exponential overhead in simulating quantum
systems on classical computers. It also renders optimizing more difficult, as all that is made available to the
optimization procedure are the inputs and outputs of the simulation in consideration. For example, having
more information about the function landscape, such as number of minima, would render the optimization
process simpler. Besides this, a realistic simulation requires a large number of parameters, thus resulting in a
large search space to be explored. Nonetheless, if one wants to arrive at a realistic answer, a
simulation-based approach seems inevitable.

In this work we propose a methodology based on genetic algorithms (GAs) and simulations of quantum
repeaters for optimization of entanglement generation and distribution in quantum networks. This allows
us to answer questions such as what are the worst possible repeaters satisfying target benchmarks.
Contrasting with previous work on repeater chain optimization [18–23], our methodology constitutes a
systematic and modular approach to this problem, successfully integrating simulation and optimization
tools, as well as allowing for the use of high-performance computing (HPC) clusters. A high-level overview
of how a user interfaces with this process is shown in figure 1.

We performed our simulations using NetSquid [15]. NetSquid can accurately model the effects of
time-dependent noise, rendering it well equipped to predict quantum network performance in a physically
accurate setting. The tools used in this methodology, which allow for running NetSquid simulations
together with an optimization algorithm both locally and on an HPC cluster, are made freely available
(see [24]).

We structure the paper as follows. In section 2 we introduce our methodology, together with the
required preliminaries. Section 3 concerns the validation of the methodology. This comprises two steps:
(i) benchmarking our GA implementation by running it on standard optimization problems and
comparing its performance to those found in the literature; and (ii), validating our approach by applying it
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to a repeater chain where elementary link states are in the Werner form and all noise sources are
depolarizing [25]. In this case, analytical results can be found, so we can evaluate how well our optimization
method performs.

After validating our methodology, we apply it to some different repeater chain setups, in order to
demonstrate its potential usefulness. We present these results in section 4, where we first consider a repeater
chain based on real-life fiber data, courtesy of SURF, a classical network provider for Dutch education and
research institutions. This showcases the power of our simulation-based approach, as chains of unevenly
spaced nodes are hard to study analytically. We further apply our methodology to chains of varying length,
internode distance and number of repeaters and we compare the solutions found with our methodology for
each of these different setups. This allows us to investigate how the impact of the parameters varies across
setups, thus identifying possible bottlenecks and paths toward scalable quantum repeaters.

2. Methodology

In this section we introduce the main contribution of our work, a methodology for the optimization of
entanglement generation and distribution. We first present each of the elements that are used in this
optimization process. We finalize the section with an overview of how they are integrated to answer the
question of what are the minimum requirements on quantum repeaters to achieve a given benchmark.

2.1. Question
We aim to answer the question of what the minimum requirements are on the quality of quantum repeaters
to achieve a given benchmark by framing it as an optimization problem. To do so, we must first clarify what
we mean by requirements and by quality of a quantum repeater. Let us say that a quantum repeater is
described, in a given model, by a set of N parameters {xi}i∈{1,...,N}. The meaning of xj is model dependent.
For example, if we consider a model of a trapped ion system, xj and xk could be single-qubit and two-qubit
gate error probabilities. We could also, in a more abstract model, combine these two parameters together to
obtain a swap quality that quantifies the noise introduced in an entanglement swap operation, which would
then be yj in this model. The quality of a quantum repeater is then a function of the set of parameters
describing it. This also helps clarify what we mean by requirements. Suppose we have some fixed network
topology and performance metric. To give a concrete example, the topology could be a repeater chain of 10
equally spaced nodes and the performance metric the end-to-end secret key rate. The requirements on the
repeaters are then the worst set of parameters that enable attaining some value of the end-to-end secret key
rate over a chain of 10 nodes, i.e. the lowest quality repeaters satisfying this metric. The meaning of repeater
quality will be made clear in the following section.

2.2. Cost
Let us say that we have two repeaters described by a set of parameters {yi}i∈{1,...,N} and {zi}i∈{1,...,N}, and
that the values of these parameters are the same for all but two of them, i.e. {yi} = {zi}∀i ∈ {1, 2, . . . , N}\
{j, k}. Let us further say that yj is better than zj, but zk is better than yk. Which of these sets of parameters is
the better one? To answer this, we will now introduce the quantity to be optimized, the cost function. We
emphasize that our method is completely general and could be applied to any cost function, but for
concreteness we focus on a particular one from here on out.

We expect that in an experimental setting a given physical parameter becomes harder to improve the
closer to its perfect value it is, so we would like our cost function to reflect this. We start by transforming
our parameters so that they all live in the [0, 1] interval, with 1 being the perfect value and 0 the worst
possible value. We refer to appendix B for details. Denoting xb as the baseline value of a parameter, i.e. the
value from which we are improving, k as the improvement factor and xnew as the new improved value, we
claim that the following equation reflects this behavior:

xnew(k) = x
1
k
b . (1)

This can be read as: we improve xb by a factor k to get xnew. To see that equation (1) does in fact reflect the
desired behavior, we note the that

xnew(k = 1) = xb, (2)

lim
k→∞

xnew = 1. (3)

Equation (2) can be read as: improving a parameter by a factor of 1 is equivalent to not improving it all,
whereas equation (3) can be taken to mean that in order to improve a parameter to its perfect value we
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must improve by a factor of infinity, i.e. there is no such thing as a perfect process.
We can then define the cost associated to xnew as the factor k by which we must improve the baseline

value xb to obtain xnew. Therefore, solving equation (1) for k, we get

k =
1

logxb
(xnew)

. (4)

With this in hand, we can finally define the cost associated to a set of parameters. Let us say our model is
described by a set of parameters {xi}i∈{1,...,N}, and that the current baseline value of each of these
parameters is {xib}i∈{1,...,N}. A set of values {xic}i∈{1,...,N} is mapped to a cost, C, by equation (5). Intuitively,
this can be seen as taking the average of the cost associated to each of the parameters.

C
(
x1c , . . . , xNc

)
=

N∑
i=1

1

logxib

(
xic

) . (5)

Note that with this definition, the minimum parameter cost is N, with N being the number of parameters in
the model under consideration. Since this cost function is meant to be used for comparing the relative cost
of parameter sets of the same model, N is the same for all parameter sets under consideration, and hence it
is nothing but a constant shift in each set’s cost. One could, for instance, divide the cost by N to normalize
it or subtract N from it, making the minimum cost 0. This would however have no impact on the results
obtained, since the relative ordering of parameter sets according to their cost would remain the same.

There is still the matter of how the network’s target performance metrics are taken into account.
Throughout this work we will focus on fidelity F of the end-to-end state with the ideal Bell state and
entanglement generation rate R, but we stress that our method is not limited to optimizing for these
quantities. More concretely, we will try to answer the question of what are the minimum requirements on
repeaters to concurrently achieve certain values of F and R. We are then faced with a multi-objective
problem, as we want to optimize multiple quantities simultaneously, namely end-to-end fidelity,
entanglement generation rate and parameter cost. Furthermore, there are trade-offs between these goals.
For example, improving the memory lifetime of nodes in a chain has a positive contribution toward
end-to-end entanglement fidelity, but a negative one toward parameter cost. There is a multitude of possible
ways of approaching such problems [26]. We chose to map our multi-objective optimization problem to a
single-objective one by assigning weights to the different objectives and adding them, a process known as
scalarization [27]. In this way, the total cost function TC to minimize becomes a weighted sum of the
parameter cost and the thresholds on end-to-end rate and fidelity:

TC

(
p1c , . . . , pNc , Fmin, Rmin

)
= w1Θ(Fmin − F) + w2Θ(Rmin − R) + w3C

(
x1c , . . . , x1N

)
, (6)

where the wi are the weights of each objective, Θ is the Heaviside function and Fmin and Rmin are,
respectively, the minimum required end-to-end fidelity and end-to-end entanglement generation rate.
Using step functions reflects the idea that we are looking for solutions that satisfy performance benchmarks,
with no reward given for surpassing them. The weights in equation (6) are hyperparameters of our method,
meaning that they are not determined by some algorithm but must instead be chosen. This choice can be of
any real number, and it has an impact on which sets of parameters have the lowest costs and hence on the
solutions found by the method. For example, if we assign very high values to w1 and w2 and a low value to
w3 the best sets of parameters will be those that satisfy the requirements on the end-to-end fidelity and rate
without much regard for how costly it is to achieve them. To give a concrete example of what the
hyperparameter values might be, for the applications we present in section 4, we set w1 and w2 to 20 000
and w3 to 1. The parameter cost term, defined in equation (5), depends on the baseline values of the
parameters, which must also be chosen. Typically, for the use cases we consider, these will be chosen to
reflect what is currently achievable experimentally.

Optimal solutions to this single-objective optimization problem are then solutions to the multi-objective
optimization problem.

2.3. Abstract model
In order to explore and better understand the methodology we propose, we believe it to be wise to employ a
relatively simple model whose behavior we understand. We must however again emphasize that our
methodology is completely general in terms of the model used for the quantum repeater hardware.

We consider a simplified five-parameter model for a quantum repeater, the five parameters being
denoted by [FEL, psuc, sq, T1, T2]. We assume that elementary links states have fidelity FEL with the ideal Bell
state upon generation, and that they are generated with a success probability psuc. We assume also that each
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Figure 2. Overview of our optimization process. The user inputs the desired optimization parameters, their ranges and a
stopping criterion. Smart-stopos generates sets of parameters in the allowed range and feeds them to the NetSquid simulation.
The outputs of the simulation are used to compute the cost associated to each parameter set, which in turn is used by
smart-stopos to generate new parameter sets. This process is repeated until the stopping criterion is reached. In our particular
case, the optimization parameters are the parameters defining the abstract repeater model introduced in section 2.3, the relevant
simulation outputs are the fidelity and generation rate of end-to-end entangled states and the cost function is the one defined in
section 2.2.
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swap introduces depolarizing noise parametrized by a swap quality sq and that memory decoherence is
described by a T1, T2 process, with T1 (T2) being the memory’s relaxation (dephasing) time. In simple
terms, this means that T2 determines how fast the off-diagonal components of the density matrix decay,
whereas T1 defines how long it takes for a quantum system to relax to its lowest energy state. For more
details on T1, T2 noise processes see appendix C, where our parametrization of depolarizing noise is also
clarified. We further assume that entanglement swapping, although noisy, is deterministic. We note that this
model is quite abstract. It could, in principle, describe the behavior of any repeater of the processing node
type, examples being NV centers and trapped ions. By this we mean that it is possible to map the
parameters in a physically accurate model of an NV center or trapped ion to this smaller set of more
abstract parameters. In fact, we did exactly this for NV centers in order to validate this model, as laid out in
appendix C. It is important to note that in this mapping we considered induced dephasing noise instead of
the usual memory dephasing. Furthermore, atomic ensemble based repeaters could be described by
considering non-deterministic entanglement swaps and enriching the model with a swap success probability
parameter, but this lies beyond the scope of this work.

We again highlight that this model was chosen for demonstrative purposes, and that our methodology
could just as well be applied to more realistic hardware models, as discussed in section 5.

2.4. Genetic algorithms
Evolutionary algorithms (EAs) have been shown to have an advantage over conventional gradient-based
methods in finding global minima in multimodal functions whose search space is not well known [28],
although we stress that this is not guaranteed. They are also robust to noise in data and easy to parallelize.
There are multiple approaches within the umbrella of EAs, with prominent examples being GAs [29],
evolution strategy [30], differential evolution [31] and particle swarm optimization [32, 33]. In this work
we have used GAs, a search heuristic inspired by the theory of evolution. We limit ourselves to a high-level
overview of GAs. For a comprehensive introduction, we direct the interested reader to [34].

We start with a population of randomly generated individuals. In our case, each individual in a
population is a set of values for the parameters of the abstract model introduced in section 2.3. The GA
generates new individuals in an iterative process, with each iteration being known as a generation. In each
generation, the cost function is evaluated for every member of the population, the resulting value being
known as the fitness. A subset of the population is then selected according to a fitness-dependent rule, in
which higher-fitness solutions are more likely to be chosen. New individuals are then generated through
random crossover and mutation operations. The new population is used for the following iteration of the
algorithm, meaning that the simulation is run with the new individuals (i.e. sets of abstract model
parameters) as input and the cost function is computed using the simulation outputs. The algorithm can
terminate after a set number of generations or once some predefined condition is attained. For the examples
given in this work, we have chosen to use the first condition and let the algorithm terminate after a preset
number of generations, typically 150. Exploration of the search space is assured by the crossover and
mutation-driven recombination of solutions, whereas fitness-based selection ensures exploitation of
minima.

GAs come in several different flavors. See appendix B for details on our particular implementation.

2.5. Smart-stopos
The simulation tools we use are computationally heavy and produce large amounts of data. In order to
make good use of them and extract useful information from said data, we need a systematized way of
feeding input parameters to the simulations in batches, run the simulations on a HPC cluster using stopos
[35], feed the outputs to the optimization algorithm and iterate this procedure. To these ends, we made use
of smart-stopos (freely available at [24]), a set of tools we developed to allow for parameter exploration and
optimization, both locally and in an HPC setting. Smart-stopos can be seen as an addition to stopos,
extending its capabilities by allowing for the seamless integration of simulation and optimization tasks. We
used GAs in this work but in principle any other algorithm could be plugged in, provided that it can be run
with only simulation inputs and outputs. Furthermore, we note that we used NetSquid but our
methodology could also be made to work with any other quantum network simulator. For more details on
the use of smart-stopos, we direct the interested reader to appendix A.

2.6. Process overview
We will now show how the tools we introduced can be pieced together to answer the question of what the
minimum requirements are on the quality of quantum repeaters. To that end, we show in figure 2 a diagram
of the workflow of our methodology.
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Figure 3. Variation of end-to-end fidelity across five equally spaced nodes as the elementary link fidelity is varied and the other
four parameters are kept at their perfect values. The value of the elementary link fidelity that results in an end-to-end fidelity of
0.7 is at the intersection of the two lines in the plot, being just above 0.9 in this case.

The process is started by defining the parameters to be optimized and their allowed range of values. This
information, together with a termination criterion, is passed to smart-stopos, which then randomly
generates sets of parameters within the defined ranges. Each of these sets of parameters is fed to the
NetSquid simulation, which outputs an end-to-end entangled state and the time its generation took,
allowing us to compute the fidelity with the ideal Bell state and the entanglement generation rate. Note that
these quantities are stochastic, so throughout this work we average them over multiple runs of the same
setup. These metrics, together with the parameter values and the baseline values, are used to compute the
cost function, as defined in equation (5). This process is then repeated for each set of parameters. The
ensemble of parameter sets and respective costs are given as input to smart-stopos, which generates new sets
of parameters using our GA. The process repeats until the termination criterion is reached. The final output
is the minimum value of the cost function found by the algorithm, which in this case corresponds to an
answer to the question of what are the minimum requirements on a quantum repeater.

Figure 2 makes the modularity of our approach clear. Any of the building blocks of our process, namely
the optimization algorithm used by smart-stopos, NetSquid simulation and cost function, can be swapped
out without changes to the overall workflow. For example, if we wanted to apply our methodology to a
simulation of a repeater chain of trapped ions, all we would have to do would be to replace our abstract
model NetSquid simulation for an appropriate trapped ions simulation. Similarly, to answer a different
optimization question one just has to redefine the cost function.

2.7. Challenges in applying GAs to quantum systems
We came across some challenges when applying GAs to simulations of quantum systems. Some of these
were of a practical nature, and others were more fundamental. We will now give an overview of what these
issues were, and how we overcame them.

2.7.1. Practical challenges
We came across two practical challenges: (i) the size of the parameter space and (ii) the amount of data
generated. (i) Is due to the complexity of quantum repeater modeling. In general the search space may be
big, but in our illustrative example of the abstract model introduced in section 2.3 it is manageable. We
nevertheless introduced a pre-processing procedure for restricting the parameter space, as we believe it
would be useful when considering use cases with larger parameter spaces. This procedure consists of
performing sensitivity analysis for each of the five parameters individually, i.e. holding four parameters
constant and running simulations varying the fifth one from its baseline value to its perfect one. As an
example of how this can reduce the search space, we show in figure 3 the variation of the end-to-end fidelity
with the elementary link fidelity when all other parameters are kept at their perfect values. The optimal set
of parameters for this setup will certainly contain less-than-perfect values, so the elementary link fidelity of
this set will be higher than the one found using this sensitivity analysis, so we can safely restrict the search
space for this parameter in GA optimizations runs to the interval [fperf , 1], where fperf is the elementary link
fidelity that results in an end-to-end fidelity of 0.7 when all other parameters are perfect.

7
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Another practical challenge is the sheer amount of data that is produced. For each setup we consider we
run our simulations for hundreds of different sets of parameters at each optimization step, with each set of
parameters being in turn run a hundred times. In order to systematically and efficiently process all of this
data, we developed smart-stopos, as detailed in section 2.5.

2.7.2. Fundamental challenges
Fundamental challenges occur due to the fact that quantum systems produce inherently non-deterministic
outputs. This can be problematic if the cost function has terms that are step functions, which is our case.
For a concrete example, let us say that in generation 34 of the optimization procedure, the GA found a set
of parameters that result in an entanglement generation rate of 1.05 Hz, just above the desired threshold. In
generation 35, this parameter set would again be fed into the simulation. However, this time around, due to
statistical fluctuations, the simulation outputs an entanglement generation rate of 0.99 Hz, just below the
threshold. Since the cost function defined in equation (6) assigns a very high cost to any solution that does
not attain the performance metrics, this solution would in generation 35 have a very high cost function
value. This means that it would almost certainly not be chosen as a parent for the following generation, and
the algorithm would effectively lose it. This is a problem, as it results in the algorithm losing a good solution
and potentially wasting computation time finding it again.

There are several possible solutions to this problem. The one we chose, due to its simplicity, was to run
the simulation multiple times for each set of parameters and compute the value of the cost function using
the average end-to-end fidelity and entanglement generation rates. Running the simulations multiple times
provides some security against statistical fluctuations, although it increases the computation time. We found
empirically that running the simulation 100 times for each set of parameters represents a good trade-off
between minimizing fluctuations and keeping computation times feasible.

Another possible solution that we also explored was to use a smoother function, such as a sigmoid,
instead of a sharp step function. This would in principle address the problem we mentioned of a set of
parameters being heavily penalized because its metrics dipped just below the targets due to statistical
fluctuations. For a smoother function, such fluctuations would lead to small fluctuations in the value of the
cost function. There are however some issues with this solution. Since the function is smoother, it no longer
acts as a hard constraint, which is the behavior we are looking for. What we mean by this is that a solution
whose performance metrics are slightly below the targets will only be lightly penalized. It might thus have a
lower cost function value than a solution with better, i.e. more expensive, parameters that attains the
performance metrics. In less technical terms, this translates as the cost function not being well aligned with
the stated optimization goal.

This concludes the introduction of the optimization methodology we propose. The rest of the paper
concerns itself with two questions: (i) is our methodology valid, addressed in section 3 and (ii) what results
do we get when we apply it, addressed in section 4.

3. Validation

As we stated in the previous section, before we apply our methodology we must validate it. By this we mean
that we must verify that the methodology we propose for applying GAs to simulations of quantum
networks can produce meaningful results. We can see this validation as being split into two different steps.
One, benchmarking the GAs i.e., evaluating how well they perform and two, validating that the
methodology is sound. The first step will be accomplished by applying our specific implementation of GAs
to the optimization of common benchmarking functions and comparing their performance to that of
implementations found in the literature. The second step will consist of applying our methodology to a
chain of evenly-spaced nodes generating Werner states, for which analytical expressions for the end-to-end
fidelity and entanglement generation rate in terms of repeater parameters can be found. Having these
expressions, we can compute what are the repeater parameters that minimize the cost function. If our GA
approach is capable of finding this solution, we have compelling evidence that our methodology would also
perform well when applied to the more realistic cases we are interested in, for which analytical results
cannot be readily derived.

We have also validated the abstract model we use in our simulations against a more physically accurate
model of NV center-based repeaters. These results are shown in appendix C.

3.1. Benchmarking genetic algorithms
In order to evaluate the performance of GAs and how it is affected by the algorithm’s hyperparameters,
several benchmarking functions have been defined [36]. These are designed to test how well each GA
implementation handles cost functions with given properties. For example, if we expect the function we
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Figure 4. Plot of the two-dimensional versions of (a) Rastrigin’s function and (b) quartic function. The multiple minima of
Rastrigin’s function and the noisy landscape of the quartic function can be clearly seen.

Figure 5. Evolution of the cost of best solution (red) and population average (green) for the (a) quartic function and
(b) Rastrigin’s function over 75 and 400 generations, respectively. The data used in (a) ((b)) was acquired in roughly 1h30 (26h)
on consumer-market hardware (Intel Core i7-8665U and 8 GB RAM). These runtimes can be significantly reduced via
parallelization and use of HPC clusters. All costs approach zero, the global minimum of both cost functions, with the average cost
being consistently higher than the best cost, as expected. This indicates that our GA implementation is capable of finding good
solutions for said functions.

want to optimize to be noisy, i.e. to have the output for a given input randomly oscillate each time the
function is called, we should benchmark the GA against a noisy function, such as the quartic function,
defined in equation (7)

fq (x) =
30∑

k=1

(
kx4

k +N (0, 1)
)

− 1.28 � xk � 1.28, (7)

where N (0, 1) is a normal distribution with mean 0 and standard deviation 1. This function, plotted in the
bottom half of figure 4, is a unimodal function padded with Gaussian noise. Therefore, a GA that performs
poorly on it will also perform poorly on any function with noisy outputs.
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Figure 6. Evolution of the lowest value of the cost function over 50 generations. After little more than 30 generations the
algorithm finds the parameter set that optimizes the cost function. This optimum is marked in the figure by a blue dashed line.

Taking this into account, we chose two functions to benchmark our GA implementations. This choice
was made by taking into account which of the functions best represented the cost landscape we expect our
problem to have. Since the quantum nature of our simulations implies that they will necessarily be noisy in
the above-defined sense, we will choose the quartic function as a benchmarking function. Furthermore, we
expect that the landscape of the cost function defined in equation (5) will have multiple local minima,
corresponding to different sets of parameters that satisfy the imposed constraints on end-to-end fidelity and
entanglement generation rate. With this in mind, we also chose Rastrigin’s function, defined in equation (8)

fr(x) = 200 +
20∑

i=1

(
x2

i − 10 cos (2πxi)
)

, −5.12 � xi � 5.12 (8)

For illustrative purposes, the two-dimensional version of Rastrigin’s function is shown on the top half of
figure 4. It can be seen that it has a very bumpy landscape, with a global minimum at 0, in the center of the
plotted region. Its many local minima render it a challenging benchmark for GAs. We applied our GA
implementation to both of these functions, with the results being plotted in figure 5. The hyperparameters
used for these optimization runs were chosen according to the guidelines given in [36] and population
selection was done using the Roulette Wheel method [37]. For an explanation of the Roulette Wheel
method we point the interested reader to appendix B. By best value we mean the lowest value of the cost
function achieved by any of the parameter sets in the population. Similarly, by average value we mean the
average of the costs of all parameter sets in the population. We see that, for both functions, the average cost
and the best cost at each generation approach their global minimum, 0. Furthermore, the performance of
our implementation is in line with that of those in [36], which indicates that our GA is capable of handling
both noisy and multimodal functions. We note that convergence requires significantly more generations for
Rastrigin’s function than for the quartic function. This reflects the well-known fact [36] that multimodal
functions are challenging for GAs. We must also note that we could, by further tuning some of the
algorithm’s hyperparameters, obtain a marginally better performance on these benchmarking functions.
However, since our goal is only to verify that our implementation is correct and performs reasonably well
for the type of cost landscapes that we expect to encounter, we abstain from doing so.

3.2. Validating on Werner chains
The previous section focused on benchmarking the performance of the GA, but the question of whether
applying GAs to repeater chain optimization problems can produce good results remains. In order to
answer it, we consider the simple scenario of a chain of 3 nodes generating Werner states, and we pose the
question of what are the worst parameters that can deliver an end-to-end entangled pair of fidelity 0.6 every
second. Similarly to the abstract model presented in earlier sections, the nodes in the chain generate
elementary links of fidelity FEL with success probability psuc and depolarizing noise parametrized by sq is
applied after entanglement swaps. This is a problem for which we can analytically find expressions for the
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Figure 7. Visualization of the quantum network we will consider. The end nodes, represented by circles, are placed in Delft and
Amsterdam. The repeater nodes, represented by squares, are placed in The Hague and Leiden. The placement of the nodes
roughly approximates their actual geographical location and the length of the fibers connecting them is included for reference.

end-to-end rate and fidelity, and thus for the ideal value of the cost function. We expect that the structure of
this problem is similar to that of the one we want to tackle. By this we mean that we expect its cost
landscape to show some of the same features as our target problem, namely multiple minima and noisiness.
Therefore, despite being simpler, good performance in this problem should indicate that our approach is
valid. For details of how we derived analytical results for this setup we defer the interested reader to
appendix D.

In figure 6, we show the evolution of the cost of the best individual in each generation obtained by
applying the GA-based method to the setup we described. Also present in the plot, in a dashed line, is the
optimum cost.

The cost function drops to the global optimum at around the 30 generation mark, indicating that the
algorithm is capable of finding the worst set of repeater parameters satisfying the benchmarks we set. This is
then a good indicator that our methodology is well-suited to the optimization of entanglement generation
in repeater chains.

4. Evaluation: use cases

Having validated our methodology, we applied it to two use cases demonstrating its power and potential
usefulness. In the past decade, NV centers have been demonstrated to be capable of generating remote
entanglement between matter memories with long coherence times [6, 11, 38], establishing them as
promising candidates for the realization of scalable quantum repeaters [10]. A better understanding of
hardware requirements would then be useful in illuminating the path toward scalable NV-based quantum
repeaters. We thus used the abstract model of NV-type states that we introduced in section 2.3 in the
simulations of all use cases. We furthermore chose to consider, for simplicity, SWAP-ASAP protocols with
no memory cut-offs. More precisely, we simulate the protocol introduced in appendix E2 of [15], which
proceeds as follows: we assign indices to each node going from left to right in the chain and starting with 1.
Even-numbered nodes are called initiators, whereas odd-numbered nodes are called responders. As the
name implies, initiators are responsible for initiating the process of entanglement generation, which they do
by sending a request for entanglement generation to their left-hand neighbors and waiting for a response.
Once the responders respond, the process of entanglement generation begins. This is simulated by sampling
the time taken to generate entanglement according to the success probability parameter and the cycle time,
which determines how long a single entanglement generation attempt takes. Once entanglement is
successfully generated, the initiator proceeds to attempt to generate entanglement with the right-hand
neighbor and the process unfolds in the same way. Whenever a node holds two entangled qubits in hand, it
performs an entanglement swap by measuring them in the Bell basis. The simulation stops once the end
nodes of the chain share an entangled pair.

Another roadblock in the way of the quantum internet is that even when quantum repeater technology
is at deployment stage, it is expected that it will be very costly. One way of rendering the implementation of
quantum networks more cost-effective is to take advantage of preexisting infrastructure by using previously

11



Quantum Sci. Technol. 6 (2021) 035007 F Ferreira da Silva et al

Figure 8. Evolution of the (a) best and (b) average values of the total cost function for the use case discussed in section 4.1.1. The
best value converges to roughly 13, whereas the average oscillates around 50 000 (note the different scales). The high values of the
average cost throughout the optimization process are due to the mutation process, which sometimes produces solutions that do
not fulfill the target metrics. Our simulation was run 100 times for each individual.

deployed optical fiber networks [39]. With this in mind, we used real-life fiber data of the Netherlands. This
was made available to us by SURF, a classical network provider for Dutch education and research
institutions. We considered a repeater chain with nodes in Delft, The Hague, Leiden and Amsterdam, as
depicted in figure 7, as this is an example of a possible near-term quantum network in the Netherlands. We
use real fiber length and attenuation in our simulations. We chose Delft and Amsterdam as the end nodes of
the chain as out of these four cities they are the most distant pair. The baseline values used for computing
the value of the cost function for each set of parameters were obtained from actual state-of-the-art
experimental results using NV centers. The process through which we converted these experimental results
to our abstract model parameters is described in detail in appendix E1. We set as performance targets
end-to-end fidelity Fmin = 0.7 and end-to-end entanglement generation rate Rmin = 1 Hz. The value of Fmin

was chosen to ensure that we remain in the regime where the agreement between the abstract model and
the detailed NV model is good (see appendix C for details). Besides this practical argument, there is no
strong reason to pick a particular number for the fidelity or the rate. These numbers are simply examples,
meant to show how our methodology can find the minimal hardware requirements satisfying them.

In order to study the effects of internode distance, chain length and number of repeaters we further
applied our methodology to chains of equally spaced nodes with varying numbers of repeaters. In one case,
we kept the internode distance fixed, and in the other we kept the total length fixed as we varied the number
of repeaters. More concretely, we considered (i) a chain of equally spaced nodes spanning 800 km and (ii) a
chain with an internode distance of 100 km. For each of these, we considered the cases of 3, 5, 10 and 12
repeater nodes. The baseline parameter values are computed in the same manner as in the previous use
case, so we again defer to appendix E1 for details. We also consider the same target performance metrics as
in the previous use case.

4.1. Results
4.1.1. Real network
We will now show the main results obtained by applying our methodology to the network introduced in
figure 7.

In figure 8 we show the best and average values of the total cost function (equation (6)) as a function of
the optimization step. Contrasting with figure 5, we see that (i) the average value of the cost function
remains significantly higher than the best value and that (ii) the best value per generation oscillates. The
first observation is explained by the combination of the inherent randomness of the GA and the fact that we
used step functions for the cost. A GA generates new candidate solutions through a process of mutation and
recombination, as detailed in appendix B. While these processes allow for a thorough exploration of the
parameter space, they may also produce solutions that fall outside the defined target metrics. The step
functions in the cost ensure that such solutions will be heavily penalized, explaining the high average values
of the cost function in figure 8. The second observation is also explained by a combination of two factors,
namely the already mentioned step functions in the cost and the non-deterministic nature of our
simulations. Since across different simulations for the same set of parameters there are fluctuations in the
values of the end-to-end metrics, it might happen that these sometimes dip below the predefined targets.
Due to the step function, the cost associated to this particular set of parameters will become much higher,
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Table 1. Experimentally-derived baseline parameter values and
values of the best solution found using our methodology for the
use case discussed in section 4.1.1. The biggest relative increases
happen for T2 and psuc, suggesting that improving these
parameters is key for achieving scalable NV-based repeaters.

FEL psuc sq T1 T2

Baseline 0.9698 0.004 600 0.8590 10 h 4.9 ms
Solution 0.9806 0.097 70 0.9414 10.23 h 22.79 ms

Figure 9. Total cost, as defined in equation (6), of the best solutions found by our GA for setups with varying number of
repeaters. The cost grows linearly for FID. There is no discernible pattern for FCL. Each data point corresponds to the best
solution found after 200 generations, with 150 population individuals per generation and 100 simulation runs per individual.

meaning that it will no longer be the best solution. This effect can be minimized by running our
simulations multiple times for each set of parameters, as discussed in section 2.6.

In table 1 we show the parameters of the best solution found using our methodology. For comparison
purposes, we also show the baseline values we considered. The biggest relative increases are in psuc and T2,
suggesting that induced dephasing noise is the biggest hurdle in the way of NV-based repeater technology.
On the other end of the spectrum, the solution’s T1 value is barely higher than that of the baseline,
indicating that T1 coherence times in NV centers are already long enough.

4.1.2. Equally spaced nodes
We now show the main results obtained by applying our methodology to repeater chains of equally spaced
nodes with different numbers of repeaters. To study how the overall length of a chain and the internode
distance affect the solutions found, we considered two cases: (a) fixed chain length (FCL) and (b) fixed
internode distance (FID). For both FCL and FID we applied our methodology to chains of 3, 5, 10 and 12
repeater nodes. We note that each data point in the plots shown in this section corresponds to the best
solution found after 200 generations, with 150 population individuals per generation and 100 simulation
runs per individual. Running our optimization procedure once with these parameters takes roughly
46 hours locally using consumer-market hardware (Intel Core i7-8665U and 8 GB RAM), underlining the
need for access to HPC centers. In fact, by using such a center, the computation time can be reduced to
2 hours (using 2 nodes of the HPC center, each endowed with 64 GB of memory and 24 cores with CPU
E5-2690). We note that the vast majority of this time is taken by quantum repeater simulations, with the
time needed by the GA being negligible in comparison. We further note that, as shown in figure 9 of [15],
the runtime of repeater chain simulations using NetSquid grows linearly with the number of nodes in the
chain. This implies that our method remains applicable for chains that are significantly longer than the ones
considered in this work.

In figure 9 we show how the total cost of the best solution found varies with the number of repeaters in
both cases. We observe a linear growth of the FID cost with the number of repeaters, which is not
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Figure 10. Comparison of the metrics characterizing the best solutions found by our GA for each of the different setups. The
end-to-end fidelity is very close to the goal of 0.7 we defined, for both FID and FCL. On the other hand, the end-to-end
entanglement rate is well above the 1 Hz goal for both cases. For FID, it decreases from roughly 80 Hz in the 3 repeater node
setup to about 30 Hz in the 12 repeater node setup. For FCL, it increases slightly from 40 Hz in the 3 repeater node setup to
50 Hz in the 12 repeaters setup. Each data point corresponds to 100 runs of the simulation. The error bars are smaller than the
markers.

Figure 11. Parameters of the best solutions found for FCL and FID with different numbers of repeaters. Each data point
corresponds to the best solution found after 200 generations, with 150 population individuals per generation and 100 simulation
runs per individual. For a detailed discussion of these results, see the text in section 4.1.2.

surprising: fixing the internode distance but increasing the number of repeater nodes corresponds to
increasing the total length covered. In fact, the leftmost data point in figure 9 corresponds to a chain
spanning 400 km, whereas the rightmost is associated to a chain spanning 1300 km. We would expect
connecting end nodes that are further apart to be a greater challenge due to the exponential growth in
photon losses, which necessitates repeater parameters of higher quality. This does not apply to the FCL use
case. All the data points in the associated curve correspond to a repeater chain that spans 800 km and we
observe in figure 9 that the cost is slightly higher for the three-repeater setup. It was not a priori obvious
that this would be the case. A smaller number of repeaters implies that the swap quality and fidelity of the
elementary link do not need to be as good, as there will be fewer swaps and hence less fidelity loss. On the
other hand the elementary links are longer than in a setup with many repeaters, so the associated baseline
values are worse (see appendix E1 for details). Any improvement then requires a higher parameter cost, as
per equation (5).
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To further explore how the solutions found vary, we plot in figure 10 the end-to-end fidelity and
entanglement generation rate of these solutions against the number of repeaters in the chain. We see that,
for both use cases and all numbers of repeaters, the end-to-end fidelity is very close to 0.7. On the other
hand, the rate decreases from around 80 Hz to 30 Hz as the number of repeater nodes increases from 3 to
12 at FID and it increases slightly from 40 Hz to 50 Hz with the number of repeaters at FCL. While the
fidelities obtained are what we expected, since the limit we imposed via the cost function was 0.7, the same
is not true for the rates. The penalty term we added to the cost function only comes into effect if the rate
drops below 1 Hz, so there is no benefit in terms of the cost to have a solution that results in a rate of e.g.
50 Hz versus one of 1 Hz. We would thus expect the best solutions to have rates close to 1 Hz, which was
not the case.

In order to explain this, we note that T2 and psuc are inextricably linked. T2 reflects the intensity of the
induced dephasing effect, (see appendix C) with a higher value of T2 corresponding to a weaker induced
dephasing effect, and vice-versa. This type of noise is applied every time entanglement generation is
attempted. Therefore, its intensity heavily depends on psuc: a lower success probability implies more
entanglement generation attempts and thus more dephasing. One would naively think that the GA would
always converge toward a solution with lower rate (R) up until the limit of 1 Hz we defined, as that would
allow for lower values of psuc and hence a lower value of the parameter cost. However, due to the connection
between psuc and T2, a lower value of the former necessitates a higher value of the latter. This then implies
that solutions whose R is closer to the established requirement of 1 Hz, with their lower values of psuc, might
actually have higher costs than solutions with higher R, accounting for why the ideal solutions have such
high rates.

To conclude our analysis of the solutions found with our optimization procedure, we present in
figure 11 the values of each of the parameters in the solutions found for each setup. Starting with the top
row, we note that the relative variations of T1 for different setups are small when compared to the ones of
T2. Similarly to what we saw in the use case of section 4.1.1, this indicates that T1 is not a crucial parameter
to improve for NV center-based repeaters. We note also that for FID, T2 grows with the number of
repeaters, whereas it remains roughly constant for FCL. This is again explained by the fact that in the first
case the total distance covered increases with the number of repeaters, so one expects that longer coherence
times will be required. Regarding psuc, we observe that it tends to be higher for chains with more repeaters,
reflecting the fact that in order to achieve similar end-to-end rates across longer chains, one cannot afford
to spend as much time generating elementary links as in shorter chains.

We move now to the bottom row, whose plots concern FEL and sq. Both increase with the number of
repeaters, approaching 1. This was to be expected, as a higher number of repeaters implies more
entanglement swaps and hence more decay in fidelity. Therefore, to reach the same end-to-end fidelity one
needs better elementary links and swaps. We further note that for few repeaters, FEL is higher and sq is lower
at FID than at FCL. The opposite is true for many repeaters. We believe this may be explained by the length
of the elementary links in the FCL case. For few repeaters, the FCL elementary links are longer than the FID
elementary links (133–200 km vs 100 km), with the situation being reversed for many repeaters (73–89 km
vs 100 km). A longer elementary link translates into a worse baseline value of FEL, as detailed in appendix
E1, and thus more expensive improvements. On the other hand, the baseline value of sq is the same
irrespective of the elementary link length, and thus so is the cost of improving it. Therefore, for few
repeaters the less costly solution at FCL has a lower elementary link fidelity and higher swap quality than
the the less costly solution at FID. The opposite is true for many repeaters, explaining the observed
behavior.

5. Conclusions

We have introduced a methodology for the optimization of entanglement generation and distribution in
repeater chains using GAs. In contrast with previous work in this area [18–22], our methodology is
systematic, modular and broadly applicable. We validated it by benchmarking our GAs on functions
commonly used for this purpose and by applying it to a repeater chain generating Werner states. We can
derive analytical results for such a chain and thus gauge how well our methodology performs. Having
validated our methodology, we applied it to three use cases. First, we considered a repeater chain built using
real-life fiber data, thus demonstrating that our methodology can go beyond simple network topologies.
The other two use cases consisted of chains of equally spaced nodes for which we varied the number of
repeaters. In one we kept the internode distance constant, and in the other we fixed the total chain length.
By applying our methodology to these use cases we found what are the worst parameters achieving
end-to-end fidelity and rate of at least 0.7 and 1 Hz, respectively, in different scenarios. Even though this
was the question we focused on answering in this work, we must note that our methodology is more general
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and can be applied to a variety of problems, given that they can be restated as optimization problems and
that an appropriate cost function is designed.

On a similar note, we must again stress that even though we have here focused on a simplified
five-parameter repeater model, in no way is our methodology restricted to such a model. In fact, one
interesting application of our methodology would be to consider a more realistic hardware model, such as
the one proposed in [40] for NV-center based repeaters. Such models are described by a very large number
of parameters, on the order of 30 in this case, which means that the initial search space is too large for a
direct application of our methodology. To practically apply our methodology to such a large parameter
space, one could opt for a two-stage optimization process. The first stage would be similar to what was
shown in this work, i.e. applying the methodology to a simpler model that can be mapped to the more
accurate one. This step would allow us to both reduce the search space by finding minimal requirements on
parameters and to identify which of these parameters have a bigger impact on the target metrics. With this
knowledge in hand, we could apply the methodology to a select subset of parameters in the more detailed
model, performing the optimization procedure in a reduced, more feasible search space. The outcome of
this two-step procedure would then be a realistic picture of what kind of hardware improvements are
required to achieve long-range entanglement, constituting a useful guide for experimental groups working
on repeater technology. This establishes the methodology we have proposed as an invaluable tool for the
development of a blueprint for the quantum internet.

Acknowledgments

We thank Guus Avis, Kaushik Chakraborty, Axel Dahlberg, Hana Jirovská, Rob Knegjens and Julian Rabbie
for insightful comments and discussions. We thank also Julian Rabbie and Matthew Skrzypczyk for critical
reading of the manuscript. We further thank SURF for sharing data regarding their fiber network. This
work was supported by the QIA-project that has received funding from the European Union’s Horizon 2020
research and innovation program under Grant Agreement No. 820445, and also by an ERC Starting grant
and NWO Zwaartekracht QSC.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
gitlab.com/FranciscoHS/optimizing-entanglement-generation-and-distribution-using-genetic-algorithms-
data.

Appendix A. Smart-stopos

In figure 12, we present a detailed overview of the smart-stopos workflow. The user must provide a script,
entitled program.py in figure 12, that runs the simulation and an input_file.ini that contains information
about the optimization procedure, such as the number of iterations and parameter specifications. Given
these inputs, smart-stopos generates sets of parameters for which the simulation will be run according to the
specifications given in input_file.ini. The outputs of the simulation are then used to generate a new set of
parameters for the next iteration. This generation is done in an algorithm-dependent way. We used GAs in
this work but in principle any other algorithm could be plugged in, provided that it can be run with only
simulation inputs and outputs.

Appendix B. Genetic algorithms

In this appendix we give a detailed view of the GA implementation we used for the simulations described in
this work.

We started by transforming all parameters to be in the [0, 1] range. This is trivial for the elementary link
fidelity, success probability and swap quality. For T1 and T2, which usually live in the [0,∞] range, we
performed the following transformation:

T
′
=

⎧⎨
⎩

1

T + 1
if T > 0

0 o.w.,
(B1)

which results in T ′ ∈ [0, 1], as required. A chromosome, i.e. a set of parameters constituting a candidate
solution, is thus a set of 5 real numbers in the [0, 1] interval.
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Figure 12. Diagram of the smart-stopos workflow for parameter optimization. input_file.ini is used to define optimization
parameters such as algorithm to be used, parameters to optimize and allowed range of values. The execution of a simulation
(program.py) and the optional post-processing of resulting data (analysis.py) can be done locally (run_local.sh) or using HPC
facilities (run.sh). The stopos [35] job manager tool is required for running on HPC facilities. Files marked with ∗ are optional.

We used populations of 150 individuals, as the literature suggests that numbers of this order of
magnitude are enough to get adequate parameter space exploration while still being computationally
feasible [34].

After the cost function is computed for all members of the population, we select 10 of them, 20% of the
total population, according to the Roulette Wheel method [34]. Again, the literature indicates that the
percentage of selected individuals should be of this order of magnitude and we empirically verified that this
value produced the best results for our particular use case. One of the major challenges in GA-based
optimization is to balance exploration of the search space with exploitation of known minima. If the
algorithm performs selection in a purely random manner, it is no different than random search. On the
other hand, if it simply selects the best individuals in a given generation, the population will tend to get
stuck in local minima and be vulnerable to premature convergence. The Roulette Wheel selection method is
a well-known approach to this problem, balancing exploration and exploitation by assigning selection
probabilities to individuals biased, but not completely determined, by their fitness value. Applying this
method to a maximization problem, the probability pi of individual i being selected is
given by:

pi =
fi∑

j
fj

, (B2)

with fj being the value of the fitness function for individual j. The probability of selection is then
proportional to how a big of a share of the total fitness the individual’s fitness represents, i.e. how good it is
in comparison to its peers. Our problem is, however, one of minimization, not maximization. Therefore, we
adapted this method by simply inverting the values of the fitness function.

Crossover is subsequently applied on the 10 selected members of the population, known as parents. This
is done by randomly choosing two of the parents, sampling a crossover point, and mixing the two
accordingly. To give a concrete example, if the chromosomes of the two parents are given by
[a1, a2, a3, a4, a5] and [b1, b2, b3, b4, b5] and the crossover point was 2, the resulting child would have
chromosome [a1, a2, b3, b4, b5]. The number of children generated in this way is given by the crossover
parameter, a hyperparameter of the algorithm defining how often crossover happens, times the desired
population size.

The parents plus the children resulting from the crossover process are then mutated. In this process, all
chromosomes of a given member of the population are randomly changed by some value that keeps them
inside their range. For the mutation probability of a given parent, we implemented the adaptive scheme
introduced in [41], which was shown the reduce the likelihood of corrupting a high-quality solution and
enhance the exploratory properties of the algorithm. In this scheme, the probability of parent k being
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mutated is given by:

pm =

⎧⎪⎨
⎪⎩

0.5 if ck > c̄

0.5
ck − cmin

c̄ − cmin
o.w.,

(B3)

where ck is the value of the cost function for parent k, c̄ is the value of the cost function averaged over the
previous generation’s population and cmin is its minimum value. For the children generated in the crossover
process, for which there is no cost value yet, the mutation probability is a hyperparameter of the algorithm.
Previous work suggests that a high cross over parameter and low mutation probability produce good results
[34], so we used a crossover parameter of 0.7 and a mutation probability of 0.02 to obtain the results
showed in this work.

Since generation of new individuals is to some extent probabilistic, the size of a generation can vary. To
keep our population size fixed, we either randomly remove elements or add some of the best members of
the previous generation. We also implement a form of elitism, meaning that the best element of the
previous generation is always preserved in the following generation, in order to prevent the algorithm
wasting time searching for solutions it has already found [42].

We have empirically determined that 200 generations are usually enough to achieve satisfying solutions
while still being computationally feasible on a cluster.

Appendix C. Abstract model validation

In this appendix we show how we validated the abstract model against a physically-accurate NV model.

C1. Matching to NV model
In order to ensure that the simulations of the abstract model can contribute to our understanding of actual
physical implementations of quantum repeaters, we must verify that this abstract model captures the
relevant physics to a reasonable extent. To do so, we will compare the results of simulations of a repeater
chain in the abstract model with those of a repeater chain running a physically accurate model. For this
purpose, any model of a physical system being studied as a possible platform for quantum repeaters would
do. We will thus focus on one such system, namely NV centers, modeled as described in [43]. This is a very
detailed model that accurately captures the physics of NV centers, including for instance modeling the
photon emission, capture and detection processes as well as differentiating between communication and
memory qubits, with all the restrictions that entails. In contrast, the simplified model we consider abstracts
away all of the subtleties of photon emission and detection into an overarching success probability and
treats all qubits as equal. Another key difference is that in the NV model the parameters are not mutually
independent e.g. there is a relation of inverse proportionality between the fidelity of the generated entangled
states and the rate at which they are generated due to the fact that both of these parameters depend on the
bright state population. On the other hand, in the abstract model we make the simplifying assumption that
all parameters are independent from one another. We must however emphasize that this does not reflect a
limitation of our method. Taking the constraints arising from interparameter dependence into account
would be possible, but we chose not to consider any such constraints in this preliminary study.

More concretely, we will perform the validation of the abstract model by taking a set of parameters
describing an NV center in the model, converting it to the five parameter set that defines our model,
running both simulations, and checking how the end-to-end fidelity and entanglement generation rate
compare.

We start by proposing a mapping from the NV model in [43] to the five-parameter abstract model we
introduced in section 2.3. We assume that elementary link states generated in the abstract repeater chain are
of the form:

|φ〉 〈φ| = FEL |ψ〉 〈ψ|+ (1 − FEL) |↑↑〉 〈↑↑| , (C1)

where |ψ〉 〈ψ| is the ideal Bell state, FEL is the elementary link fidelity and |↑↑〉 〈↑↑| is given by:

|↑↑〉 〈↑↑| =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

The overlap between |ψ〉 and |↑↑〉 is 0, so FEL is in fact the elementary link fidelity, the sole parameter
defining elementary link states. To map states from one model to another we compute the fidelity of the NV
state described in the appendix of [43] and use the result to define the abstract model state as in
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equation (C1). The probability of successfully generating these elementary links is obtained in an identical
manner.

We take into account any errors that might occur in an entanglement swap, which include gate errors,
measurement errors and initialization errors by modeling them all as depolarizing channels, with
parameters {pi} and multiplying them to obtain a single parameter, sq, as shown in equation (C2).

sq =
∏

i

(1 − pi) (C2)

1 − sq is then used to parameterize a depolarizing channel that is applied after an ideal Bell state
measurement. The action of this channel Φ on a given state ρ as a function of sq is given by

Φ(ρ, sq) =

(
1 + 3sq

4

)
ρ+

1 − sq

4
(XρX + YρY + ZρZ). (C3)

This implies that sq is a measure of the quality of an entanglement swap, and it is thus named swap quality.
The two remaining parameters in the abstract model are T1 and T2. An NV center’s qubits can be either

electrons, used as communication qubits, or carbons, used as memory qubits, each of them having different
coherence times. This subtlety is lost when going to the abstract model, in which all qubits are created
equal. We expect that decoherence will be more relevant in the memory qubits than in the communication
qubits, so we ignore it for the latter. Besides this, one of the major sources of noise in NV centers is induced
dephasing, the dephasing applied to the memory qubits whenever the communication qubit attempts to
generate entanglement [44]. This noise source can also be accurately modeled by a T1, T2 noise model. In
such a model, one applies dephasing noise with probability given by

p =
1 − e−t(1/T2−1/2T1)

2
, (C4)

with t being the relevant time period. This is formalized by means of a dephasing channel Φd whose action
on a given state ρ is given by

Φd(ρ, p) = (1 − p)ρ+ pZρZ. (C5)

On the other hand, the noise introduced in an NV center’s carbon atoms over n entanglement generation
attempts can be modeled by a dephasing noise process of probability

pn =
1 +

(
2(1 − p1) − 1

)n

2
, (C6)

with p1 being the probability of a single attempt inducing dephasing noise, which can be experimentally
determined [44]. If we assume that a node is always trying to generate entanglement through its electron,
we can write n as a function of time:

n =
t

Tcycle
, (C7)

with Tcycle being the time it takes the NV to go through one entanglement generation attempt.
Matching the probability in equation (C4) to the one in equation (C6) and solving for T2, we find:

T2 =
1

1/2T1 − log(1 − 2p1)/Tcycle
. (C8)

This allows us to account for the effect of induced dephasing in our simulations by modeling it as a T2 noise
process. We note that, in order to more closely capture induced dephasing, this noise should only be
simulated when nodes are attempting entanglement generation.

In summary, we have two important sources of noise that can be modeled by T1, T2 processes: induced
dephasing and memory decoherence. Since we want to restrict our model to 5 parameters, we must restrict
ourselves to account for one of the two. In order to make an informed decision regarding which noise
source to model, we run repeater chain simulations using the abstract model and the NV model introduced
in [43]. For simplicity, we ignore distillation and consider an SWAP-ASAP protocol where the nodes can
only attempt entanglement generation, wait or perform an entanglement swap. In order to obtain a better
agreement between the entanglement generation rates of both models, we impose that nodes in the abstract
model simulation can only generate entanglement with one neighbor at a time, as is the case for NV
centers.
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Figure 13. Variation of the end-to-end fidelity of states generated by a chain of five equally spaced nodes as the chain’s length is
varied in the NV model (green, triangles) and in both abstract model mappings: memory decoherence (blue, circles) and
induced dephasing (red, inverted triangles). The curves overlap for short chains, but as the internode distance grows the fidelity
of the NV chain falls faster. The results of the two mappings are virtually identical. The error bars are smaller than the markers.

Figure 14. Variation of the end-to-end entanglement generation rate in a chain of five equally spaced nodes as the chain’s length
is varied in the NV model (triangles) and in the abstract model (circles). At short lengths, the rates achieved are higher in the
abstract model by a factor of almost 2. As the distance increases, the two curves overlap.

C2. Comparison of NV and abstract models
We will look into how the internode distance affects the metrics we are interested in, namely end-to-end
fidelity and entanglement generation rate, in the two models. To do so, we will focus on chains of equally
spaced nodes, for which varying the internode distance is equivalent to varying the total length of the
repeater chain.

In figure 13, we plot the end-to-end fidelity of the states generated by a chain of five equally spaced
nodes as the chain’s length is varied in the NV model and in both abstract model mappings. The three
fidelity curves are very similar for shorter chains, roughly overlapping in chains of up to 200 km. At this
point the curve for the NV model starts to diverge, dropping abruptly.

Overall, the difference between the two mappings is small. They both show very good agreement at
short chain lengths, and they both perform poorly as the distances grows. This indicates that for longer
distances or, alternatively, for lower fidelities, ignoring either of the noise sources results in poor agreement
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Figure 15. Variation of the end-to-end entanglement generation rate in a chain of five equally spaced nodes as the chain’s length
is varied in the NV model (triangles) and in the abstract model (circles) with instantaneous SWAP gates. The two curves are very
close for all simulated chain lengths. The error bars are smaller than the markers.

with the NV model. In this work we will focus on scenarios where the obtained fidelities are high, above 0.7,
so that the agreement is good. We will consider the induced dephasing mapping.

We turn our attentions now to the other metric of interest, the end-to-end entanglement generation
rate. In figure 14, we plot the end-to-end rate against the total chain length for the same setup in both
models. The behavior of the two curves is similar, although the rates in the abstract model are significantly
higher. We believe that this is due to the fact that, since NV centers have only one communication qubit,
they must swap established entanglement from it to a memory qubit as soon as it is generated. This does
not happen in the abstract model, and thus there is no time spent on swapping the entangled states around
qubits, allowing for a higher entanglement generation rate. The difference between the two curves becomes
smaller as the distance increases, which could be explained by the fact that at long distances, the majority of
the time is spent on generating elementary links, as success probabilities become low. The duration of local
node operations become negligible in comparison, and the time taken by internal swaps is not as important
in this regime.

In order to verify this, we reran the NV simulation with the internal swap being performed instantly.
The results are shown in figure 15. The curves overlap over all distances the simulation covered,
corroborating our hypothesis.

We conclude that the entanglement generation rates attained by the two models are similar across the
board, with the the biggest difference, which happens at short internode distances, being a factor of roughly
1.8. At longer distances, the rates are the same up to statistical fluctuations.

Appendix D. Werner chains

In this appendix we give details about our approach for validating our GA-based optimization approach by
applying it to a repeater chain generating Werner states.

The crux of this validation procedure is that we are able to find the optimum value of the cost function
by a method other than the GA-based one we proposed. In order to do so, we require closed-form
expressions for end-to-end fidelity and entanglement generation rate as functions of the input parameters,
elementary link fidelity, success probability and swap quality.

Consider first, for simplicity, a three-node chain. The nodes establish elementary links whose states are
of the form

ρ(x) = x
∣∣ψ+

〉 〈
ψ+

∣∣+ (1 − x)
I

4
, (D1)

where |ψ+〉 = 1/
√

2(|01〉+ |10〉) is the ideal Bell state and I is the identity. x is the Werner parameter and
is related to the fidelity f of the Werner state with the ideal Bell state by f = (1 + 3x)/4. Performing an ideal
BSM on two of these states, both of parameter x, results in a Werner state of parameter x2, i.e. the post-BSM
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Figure 16. End-to-end fidelity of states generated by a chain of ten nodes as the swap quality is varied, for an elementary link
fidelity of 0.99. The analytical and simulation curves perfectly overlap.

state ρBSM is given by

ρBSM = x2
∣∣ψ+

〉 〈
ψ+

∣∣+ (1 − x2)
I

4
. (D2)

To simulate a noisy BSM, we then apply noise via two single-qubit depolarizing channels, one on each of
the two qubits involved in the BSM. Both of these channels are parametrized by the swap quality sq, as
defined in equation (C3). The resulting Werner state has fidelity F with the ideal Bell state:

F(f , sq) =
1

4
+ sq

(
1

2
+

sq

4

)(
4f − 1

3

)2

. (D3)

Iterating this process, one arrives at the following expression for the end-to-end fidelity

F(N, f , sq) =
1

4
+ sN

q

(
1

2
+

sN
q

4

)(
4f − 1

3

)N+1

, (D4)

where N is the number of repeater nodes in the chain. As a sanity check, we ran simulations of a 10-node
chain for a fixed f while varying sq and compared the obtained end-to-end fidelity with the values obtained
with equation (D4). These results are shown in figure 16.

An attentive reader might notice that equation (D4) slightly differs from the well-known result first
derived in [45] in how it accounts for the effect of imperfect operations in the end-to-end fidelity. This is
due to the fact that we have here parametrized the depolarizing noise in a slightly different manner, through
two single-qubit channels.

We shift now our focus to the computation of the end-to-end entanglement generation rate across a
three-node repeater chain. We note that this quantity is simply the inverse of the waiting time, which we
denote by T. Let us start with the generation of elementary links. Since we model elementary link
generation attempts as processes succeeding with a fixed probability psuc, T0 is a discrete random variable
following a geometric distribution. Its expected value is then given by:

E(T0) =
1

psuc
Tcycle, (D5)

where E denotes the expected value and Tcycle is the cycle time, i.e. the time a single entanglement
generation attempt takes. We consider a sequential repeater chain, i.e. one in which nodes can only attempt
entanglement generation with one of their neighbors at a time. Therefore, the end-to-end waiting time is
given by:

E(T) = 2E(T0) + TSWAP, (D6)

where TSWAP is the time an entanglement swap takes. This holds because the repeater node has to generate
elementary links with both its neighbors, and it can only start generating the second once it has finished
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Table E1. Values considered for NV model parameters. See e.g.
[10, 40, 43] for detailed explanations of parameters.

Parameter Value

Visibility 0.90
σ Phase drift 0.35 rad
pdoubleexcitation 0.06
pelectron measureerror 0.025
pelectron1qubiterror 0
FcarbonZrot 0.999
FEC 0.97
T1carbon 10 h
pdet 0.000 13
pdarkcount 2.5 × 10−6

N1/e 1400
plosslength 0.5 dB km−1

generating the first. Furthermore, after having generated these links, it must swap them. We then define the
entanglement rate R as the inverse of the expected waiting time:

R =
1

E (T)
. (D7)

With equations (D4) and (D7) in hand, we can compute the end-to-end fidelity and entanglement
generation rate using only the input parameters f, sq and psuc and the simulation parameters Tcycle and
TSWAP. This implies that we can also directly compute the cost function, as we have analytical expressions
for every term appearing in the cost function defined equation (6). We then used the Basin-hopping
algorithm [46] to find the global minimum of this cost function for a target fidelity fmin = 0.6 and a target
entanglement generation rate rmin = 1 Hz over a chain of equally spaced nodes. We took as baseline values
fb = sqb

= 0.5 and psucb
= 10−10. The Basin-hopping algorithm is available in the SciPy library.

Appendix E. Computing baseline values in the abstract model

E1. Uniform spacing
In order to use a realistic and up to date set of baseline values, we considered the latest results achieved in
Ronald Hanson’s Lab at QuTech, in Delft [47]. The values for T1 and T2 can be directly computed from
experimental values. The same is true for sq, which can be derived from entanglement swap experiments.
This does not hold for the elementary link-related parameters, namely the fidelity FEL and success
probability psuc. Their values are heavily distance-dependent, and to date entanglement generation
experiments using NV centers have only been realized at distances on the single kilometer scale [6]. We
therefore use instead the model proposed in [43] with the experimental values we obtained from the
Hanson group as inputs to compute the baseline values for FEL and psuc for the elementary link lengths we
consider. In table E1 we list the values used as inputs to the NV model to compute the baseline abstract
parameter values. Explaining the physical meaning of each of these parameters would require a detailed
exposition of the NV model, which is beyond the scope of this work. This can instead be found in [40, 43].
We note that although these parameter values have all been measured in actual laboratory experiments, they
are not absolute truths. Different setups might achieve slightly different performances, and even in the same
NV center not all nuclear spins are identical nor do they couple in exactly the same way to the electron spin.
These nonetheless provide a valuable picture of the current state of the art.

The bright state population α is also a required parameter in the model. We chose not to include it in
table E1 as this parameter is not defined by the quality of the hardware but can instead be chosen. It
represents the fraction of the NV electron spin that is in the bright state, i.e. the state that emits photons. It
therefore has a direct effect on the success probability of establishing elementary links, as a bigger α results
in a higher photon emission probability. On the other hand, increasing α also increases the fraction of
terms orthogonal to the Bell basis in the entangled state, decreasing the elementary link fidelity. There is
thus a trade-off between elementary link fidelity and success probability when varying an NV center’s bright
state population [43]. However, in our simplified abstract model we ignore any correlations between
parameters, so such a trade-off is not present. We therefore chose to ignore the existence of the trade-off in
NV centers when computing the baseline value. Our process for computing these values consisted of
performing a parameter scan over α with the NV model and choosing the highest achievable elementary
link fidelity and success probability. In practice, this means that the baseline values considered for the
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Table E2. Baseline values of the abstract model parameters for the
different elementary link lengths considered.

73 km 89 km 100 km 133 km 200 km

T1 10 h
T2 4.9 ms
sq 0.8459
FEL 0.95 0.94 0.90 0.80 0.52
psuc 1.3 × 10−4 7.0 × 10−5 1.5 × 10−5 2.2 × 10−6 9.6 × 10−8

Table E3. Baseline values for the links (DH stands for Delft–The
Hague, HL for The Hague–Leiden and LA for Leiden–Amsterdam)
and at negligible fiber length (NL).

psuc FEL

DH 0.002 588 0.9683
HL 0.000 9187 0.9643
LA 0.000 9082 0.9642
NL 0.004 600 0.9698

elementary link fidelity were obtained with very low values of α and, conversely, the baseline values of the
elementary link success probability were obtained with the highest values of α. We note that we restricted
the parameter scan to the [0, 0.5] interval, because for α > 0.5 entanglement is impossible even for perfect
parameters.

Taking all of this into account, we show in table E2 the baseline values we obtained for the abstract
model parameters. The distances in the table correspond to the elementary link lengths we considered in
the two uniform spacing use cases.

E2. Real network
The way we arrive at the baseline values used in this use case is identical to what was described in the
previous section, with the exception of FEL and psuc. We will now explain why these values must be
computed in a different manner, as well as the process we employed to do so.

In order to arrive at realistic baseline values for the network we introduced in figure 7 we used real-life
fiber data that was made available to us by SURF. Although we cannot share this data, we used both the
physical length of the fibers connecting the locations indicated in the figure 7 and their measured
attenuation values. These two quantities then have an impact on the baseline values we consider for FEL and
psuc, resulting in three different sets of baseline values, one for each of the links in the network. This raises
some questions about how the value of the cost function introduced in equation (5) should be computed, as
this function takes as input only one set of baseline values and a respective set of improved values. There are
multiple ways to address this. We will now explain the approach we took.

We start by computing four sets of baseline values: one for each of the links in the network plus one at
negligible fiber length (NL). By this we mean that the length we use as an input to the model in [43] is such
that the impact of losses in the fiber are negligible. The cost associated with a given set of parameters is
computed with respect to the set of baseline values at NL. One can then think of this set of parameters as
the improved parameters at NL. In order to obtain the sets of parameters that will be used in our simulation
we start by obtaining the improvement factor, defined in equation (4), for each of the parameters. These
improvement factors are then applied to the baseline values of each of the links according to equation (1).
The resulting three sets of values, one for each of the links, are finally the ones fed into our simulation. We
reiterate that this process only applies to FEL and psuc. The baseline values of the remaining parameters, not
being dependent on fiber length, are computed in the same way as described in the previous section. In
table E3 we present the baseline values we arrived at through the aforementioned process.

Appendix F. Search space reduction using previous runs

We can use previous optimization runs to limit the search space of new runs and hence increase the
probability of a good solution being found. As an example of how this can be done, suppose we have
performed an optimization run over a repeater chain of 5 uniformly spaced nodes spanning some distance
L. This resulted in a solution that achieves an end-to-end entanglement generation rate of R = 1 Hz with an
elementary link success probability of psuc5 , the subscript being here used to denote the number of nodes in
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the chain. Say we now want to apply our optimization method to a chain of 7 uniformly spaced nodes
spanning the same distance L. As more elementary links need to be established and more entanglement
swaps need to be performed, we know with certainty that, in order to achieve the same R a higher
elementary link success probability will be needed, i.e. psuc7 > psuc5 . We can thus impose a lower bound of
psuc5 on the search space, reducing it.

These considerations are easy to make for the case of the elementary link success probability. Since we
hold the operation times constant and implement no cut-off, it is the only parameter influencing the
end-to-end entanglement generation rate. The same is not true for the other metric of interest, the
end-to-end fidelity. As a concrete example, assume that the best solution found for a repeater chain of 5
uniformly spaced nodes had an elementary link fidelity FEL = 0.96 and a swap quality sq = 0.98, resulting
in an end-to-end fidelity of 0.75. One could be inclined to, in a future optimization run, upper bound the
search space of FEL by 0.96 to help lead the algorithm to a solution with an end-to-end fidelity closer to the
target value of 0.7. However, it might be that there is a solution with FEL > 0.96 and sq < 0.98 that results
in a lower cost function value than any solution with FEL < 0.96. Therefore, by imposing this upper bound
we could be preventing the algorithm from ever finding the ideal solution.
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[10] Rozpędek F, Yehia R, Goodenough K, Ruf M, Humphreys P C, Hanson R, Wehner S and Elkouss D 2019 Near-term
quantum-repeater experiments with nitrogen-vacancy centers: overcoming the limitations of direct transmission Phys. Rev. A 99
052330

[11] Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J, Markham M and Hanson R 2018
Deterministic delivery of remote entanglement on a quantum network Nature 558 268–73

[12] Yu Y et al 2020 Entanglement of two quantum memories via fibres over dozens of kilometres Nature 578 240–5
[13] Zwerger M, Lanyon B P, Northup T E, Muschik C A, Dür W and Sangouard N 2017 Quantum repeaters based on trapped ions

with decoherence-free subspace encoding Quantum Sci. Technol. 2 044001
[14] Sangouard N, Simon C, De Riedmatten H and Gisin N 2011 Quantum repeaters based on atomic ensembles and linear optics Rev.

Mod. Phys. 83 33
[15] Coopmans T et al 2020 NetSquid, a discrete-event simulation platform for quantum networks (arXiv:2010.12535)
[16] Van Meter R, Ladd T D, Munro W J and Nemoto K 2008 System design for a long-line quantum repeater IEEE/ACM Trans. Netw.

17 1002–13
[17] Wu X, Kolar A, Chung J, Jin D, Zhong T, Kettimuthu R and Suchara M 2020 Sequence: a customizable discrete-event simulator of

quantum networks (arXiv:2009.12000)
[18] Wallnöfer J, Melnikov A A, Dür W and Briegel H J 2020 Machine learning for long-distance quantum communication PRX

Quantum 1 010301
[19] Muralidharan S, Li L, Kim J, Lütkenhaus N, Lukin M D and Jiang L 2016 Optimal architectures for long distance quantum

communication Sci. Rep. 6 20463
[20] Jiang L, Taylor J M, Khaneja N and Lukin M D 2007 Optimal approach to quantum communication using dynamic programming

Proc. Natl Acad. Sci. 104 17291–6
[21] Santra S, Jiang L and Malinovsky V S 2019 Quantum repeater architecture with hierarchically optimized memory buffer times

Quantum Sci. Technol. 4 025010
[22] Goodenough K, Elkouss D and Wehner S 2020 Optimising repeater schemes for the quantum internet (arXiv:2006.12221)
[23] Krastanov S, Albert V V and Jiang L 2019 Optimized entanglement purification Quantum 3 123
[24] Torres-Knoop A, Coopmans T, Maier D and Silva F 2020 Smart-stopos https://gitlab.com/aritoka/smart-stopos
[25] Werner R F 1989 Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model Phys. Rev. A 40

4277
[26] Gunantara N 2018 A review of multi-objective optimization: methods and its applications Cogent Eng. 5 1502242

25

https://orcid.org/0000-0003-3642-4350
https://orcid.org/0000-0003-3642-4350
https://orcid.org/0000-0001-8976-2965
https://orcid.org/0000-0001-8976-2965
https://orcid.org/0000-0002-9780-0949
https://orcid.org/0000-0002-9780-0949
https://orcid.org/0000-0002-8433-0730
https://orcid.org/0000-0002-8433-0730
https://arxiv.org/abs/2003.06557
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/physrevlett.81.5932
https://doi.org/10.1103/physrevlett.81.5932
https://doi.org/10.1103/physrevlett.98.060502
https://doi.org/10.1103/physrevlett.98.060502
https://doi.org/10.1109/jstqe.2015.2392076
https://doi.org/10.1109/jstqe.2015.2392076
https://doi.org/10.1109/jstqe.2015.2392076
https://doi.org/10.1109/jstqe.2015.2392076
https://doi.org/10.1103/PhysRevA.99.052330
https://doi.org/10.1103/PhysRevA.99.052330
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-020-1976-7
https://doi.org/10.1038/s41586-020-1976-7
https://doi.org/10.1038/s41586-020-1976-7
https://doi.org/10.1038/s41586-020-1976-7
https://doi.org/10.1088/2058-9565/aa7983
https://doi.org/10.1088/2058-9565/aa7983
https://doi.org/10.1103/revmodphys.83.33
https://doi.org/10.1103/revmodphys.83.33
https://arxiv.org/abs/2010.12535
https://doi.org/10.1109/TNET.2008.927260
https://doi.org/10.1109/TNET.2008.927260
https://doi.org/10.1109/TNET.2008.927260
https://doi.org/10.1109/TNET.2008.927260
https://arxiv.org/abs/2009.12000
https://doi.org/10.1103/prxquantum.1.010301
https://doi.org/10.1103/prxquantum.1.010301
https://doi.org/10.1038/srep20463
https://doi.org/10.1038/srep20463
https://doi.org/10.1073/pnas.0703284104
https://doi.org/10.1073/pnas.0703284104
https://doi.org/10.1073/pnas.0703284104
https://doi.org/10.1073/pnas.0703284104
https://doi.org/10.1088/2058-9565/ab0bc2
https://doi.org/10.1088/2058-9565/ab0bc2
https://arxiv.org/abs/2006.12221
https://doi.org/10.22331/q-2019-02-18-123
https://doi.org/10.22331/q-2019-02-18-123
https://gitlab.com/aritoka/smart-stopos
https://doi.org/10.1103/physreva.40.4277
https://doi.org/10.1103/physreva.40.4277
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242


Quantum Sci. Technol. 6 (2021) 035007 F Ferreira da Silva et al

[27] Schaffer J D 1986 Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence,
optimization, adaptation, pattern recognition) PhD Thesis Vanderbilt University

[28] Vikhar P A 2016 Evolutionary algorithms: a critical review and its future prospects 2016 Int. Conf. on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC) (IEEE) pp 261–5

[29] Holland J H 1992 Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence (Cambridge, MA: MIT Press)

[30] Beyer H-G and Schwefel H-P 2002 Evolution strategies–a comprehensive introduction Nat. Comput. 1 3–52
[31] Storn R and Price K 1997 Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces J.

Global Optim. 11 341–59
[32] Kennedy J and Eberhart R 1995 Particle swarm optimization Proc. of ICNN’95-Int. Conference on Neural Networks vol 4 (IEEE) pp

1942–8
[33] Shi Y and Eberhart R 1998 A modified particle swarm optimizer 1998 IEEE Int. Conf. on Evolutionary Computation Proc. IEEE

World Congress on Computational Intelligence (Cat. No. 98TH8360) (IEEE) pp 69–73
[34] Goldberg D E 2006 Genetic Algorithms (Chennai: Pearson Education India)
[35] SURF 2019 Stopos https://gitlab.com/surfsara/stopos
[36] Digalakis J G and Margaritis K G 2001 On benchmarking functions for genetic algorithms Int. J. Comput. Math. 77 481–506
[37] Goldberg D E 1989 Genetic Algorithms in Search, Optimization and Machine Learning 1st edn (Reading, MA: Addison-Wesley)
[38] Bradley C, Randall J, Abobeih M, Berrevoets R, Degen M, Bakker M, Markham M, Twitchen D and Taminiau T 2019 A ten-qubit

solid-state spin register with quantum memory up to one minute Phys. Rev. X 9 031045
[39] Rabbie J, Chakraborty K, Avis G and Wehner S 2020 Designing quantum networks using preexisting infrastructure

(arXiv:2005.14715)
[40] Dahlberg A et al 2019 A link layer protocol for quantum networks Proc. of the ACM Special Interest Group on Data Communication

pp 159–73
[41] Srinivas M and Patnaik L M 1994 Adaptive probabilities of crossover and mutation in genetic algorithms IEEE Trans. Syst. Man

Cybern. 24 656–67
[42] Luke S 2013 Essentials of Metaheuristics 2nd edn (Morrisville, NC: Lulu) http://cs.gmu.edu/\ignorespaces&tnqx223c;sean/book/

metaheuristics/
[43] Kalb N et al 2017 Entanglement distillation between solid-state quantum network nodes Science 356 928–32
[44] Kalb N, Humphreys P C, Slim J and Hanson R 2018 Dephasing mechanisms of diamond-based nuclear-spin memories for

quantum networks Phys. Rev. A 97 062330
[45] Dür W, Briegel H-J, Cirac J I and Zoller P 1999 Quantum repeaters based on entanglement purification Phys. Rev. A 59 169
[46] Wales D J and Doye J P K 1997 Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters

containing up to 110 atoms J. Phys. Chem. A 101 5111–6
[47] Hermans S 2020 private communication

26

https://doi.org/10.1023/a:1015059928466
https://doi.org/10.1023/a:1015059928466
https://doi.org/10.1023/a:1015059928466
https://doi.org/10.1023/a:1015059928466
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://gitlab.com/surfsara/stopos
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1103/physrevx.9.031045
https://doi.org/10.1103/physrevx.9.031045
https://arxiv.org/abs/2005.14715
https://doi.org/10.1109/21.286385
https://doi.org/10.1109/21.286385
https://doi.org/10.1109/21.286385
https://doi.org/10.1109/21.286385
http://cs.gmu.edu/&tnqx25;20&tnqx25;7Esean/book/metaheuristics/
http://cs.gmu.edu/&tnqx25;20&tnqx25;7Esean/book/metaheuristics/
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1103/physreva.97.062330
https://doi.org/10.1103/physreva.97.062330
https://doi.org/10.1103/physreva.59.169
https://doi.org/10.1103/physreva.59.169
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n

	Optimizing entanglement generation and distribution using genetic algorithms
	1.  Introduction
	2.  Methodology
	2.1.  Question
	2.2.  Cost
	2.3.  Abstract model
	2.4.  Genetic algorithms
	2.5.  Smart-stopos
	2.6.  Process overview
	2.7.  Challenges in applying GAs to quantum systems
	2.7.1.  Practical challenges
	2.7.2.  Fundamental challenges


	3.  Validation
	3.1.  Benchmarking genetic algorithms
	3.2.  Validating on Werner chains

	4.  Evaluation: use cases
	4.1.  Results
	4.1.1.  Real network
	4.1.2.  Equally spaced nodes


	5.  Conclusions
	Acknowledgments
	Data availability statement
	Appendix A.  Smart-stopos
	Appendix B.  Genetic algorithms
	Appendix C.  Abstract model validation
	C1.  Matching to NV model
	C2.  Comparison of NV and abstract models

	Appendix D.  Werner chains
	Appendix E.  Computing baseline values in the abstract model
	E1.  Uniform spacing
	E2.  Real network

	Appendix F.  Search space reduction using previous runs
	ORCID iDs
	References


