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Prof. dr. ir. R. Benedictus
Prof. dr. P.A. Lagacé
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Summary

The increased use of advanced composite materials on primary aircraft
structure has brought back to the forefront the question of how such structures
perform under repeated loading. In particular, when damage or other stress
risers are present, tests have shown that the load to cause failure after a given
number of cycles is a decreasing function of these cycles. This is a result
of damage that was already present in the structure or was created during
cyclic loading. In composites, multiple types of damage may be present in the
structure at the same time such as matrix cracks, fiber kinks, delaminations,
broken fibers, etc. These types of damage may interact and transition from
one type to another and are, ultimately, responsible for structural failure. In
trying to predict the number of cycles to failure of a composite structure it is,
therefore, necessary to understand how damage is created, how it evolves and
how different types of damage may interact or coalesce. A first step in that
direction, using what is one of the simplest models that can be used, is the
subject of this thesis.

The number of cycles to failure is related to the residual strength of
the structure for constant amplitude loading. A simple first-order model
is postulated that determines the residual strength at any point during the
fatigue life as a function of the residual strength at any earlier point in time.
For constant amplitude loading, the resulting expression relates the maximum
applied load, the number of cycles, the cycles to failure corresponding to the
applied load, and the residual strength at the beginning of a test, to the
residual strength at the end of the test. With the residual strength known
as a function of cycles, a cycle-by-cycle probability of failure is introduced.
It is shown that, if the static (or residual) strength follows a two-parameter
Weibull distribution, the cycle-by- cycle probability of failure is constant and
independent of the number of cycles. For the case of constant cycle-by-cycle
probability of failure, the number of cycles to failure is determined as the value
that maximizes the likelihood of failure. The resulting expression is in terms
of the cycle-by-cycle probability of failure. If the residual strength distribution
is known, the cycles to failure can be expressed in terms of parameters of this
distribution. Simple closed-form expressions are obtained for two-parameter
Weibull distributions. For other types of distributions (normal or lognormal
for example) no closed form expressions were found. The effect of R ratio
is incorporated using a simple proportional relation that accounts for the
load excursion being different from that for R=0. The predictions of this
approach for constant amplitude loading situations were compared to test
results in the literature for a wide variety of laminates, materials, and loading
conditions. While in some cases the agreement of test results with predictions
was excellent, in others the discrepancy clearly suggested that the analytical
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model must be improved.

The analytical model was also used to construct Goodman diagrams and
determine omission levels for tests. Comparison of analytically predicted
Goodman diagrams to test results showed good agreement in the tension-
dominated portion of the diagram but some disagreement in the compression-
dominated portion. This is attributed to the simplicity of the model which
does not accurately capture interaction of failure modes when both tension
and compression loads are present.

The omission level is the load level below which no damage is created, no
growth of existing damage is observed, and no failure occurs for a prescribed
number of cycles. This allows shortening of test programs by eliminating
cycles with loads below the omission level. Comparisons of predictions to test
results showed very good agreement over a wide variety of tests, materials, R
ratios, notches, and layups.

The model, in its simplest form, was then extended to spectrum loading
cases. This was done by creating an equivalence between different load levels
and applied cycles by matching the residual strength at the end of each
load level. For this approach to work, the failure mode and damage type
dominating the fatigue life must be the same for the two (or more) load
segments of interest. This then allows a single quantity, the residual strength,
to accurately describe the damage state. Simple closed form expressions were
obtained for the number of cycles or load segments to failure under spectrum
loading. Comparisons with test results showed good agreement for tension-
dominated spectra but major discrepancies for compression-dominated spectra
again pointing to the need for improving the model to account for interaction
of multiple failure modes and types of damage.

The main reason for the discrepancies between test results and analytical
predictions was the constant cycle-by-cycle probability of failure that resulted
from the original assumptions in the model. If there is one dominant failure
mode the cycle-by-cycle probability of failure is constant. However, when
more than one types of damage or failure modes are present, their interaction
and the resulting load redistribution in the structure changes the cycle-by-
cycle probability of failure. The model was, therefore, modified by assuming
that the probability of failure is constant over a limited number of cycles until
another failure mode or damage type occurs and changes the residual strength
and the cycle-by-cycle probability of failure. This can become quite complex
even for the apparently simple case of a uni-directional laminate under tension
where, during cyclic loading, weak fibers fail and their load is redistributed
to adjacent fibers. The main difficulty is then in creating an analytical model
that can accurately determine stresses throughout the structure as damage
evolves and, on the basis of these stresses, predict the residual strength.

The improved model was applied to two cases, a uni-directional laminate
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and a cross-ply laminate of the form [0m/90n]s under tension-tension fatigue.
For the uni-directional laminate, the improved predictions for cycles to failure
were in excellent agreement with test results. For the cross-ply laminate,
the accuracy of the predictions ranged from excellent to poor depending on
the ratio of the thickness of internal 90◦ plies to that of the surrounding 0◦

plies. The main issue in this case is that the analytical model developed for
predicting stresses around matrix cracks and the associated load redistribution
in the laminate are not very accurate as the crack density increases beyond a
certain point. More accurate analytical modeling of this situation is expected
to improve the predictions for cycles to failure.

The analysis method proposed here is still in its infancy. In its simplest
form, it is shown to work well in many cases but not well in others. What is
important is that a framework for performing fatigue analysis of composites
is presented, which relies on the residual strength and how that varies with
cycles as damage is created and evolves. Essentially, what is proposed here
is a wear-out model. Wear-out models have been proposed before. The
main difference and potential improvement here is that there is no need for
curve fitting test data or experimentally determined fatigue parameters. The
equations governing the model are determined analytically and, in some cases,
in closed form. While the model needs further improvements mainly in how the
creation of different types of damage is predicted and how their interaction and
evolution is accounted for, it is very promising because it provides a general
and purely analytical methodology to predict cycles to failure under constant
amplitude or spectrum loading.
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Samenvatting

Door het toenemende gebruik van geavanceerde composieten materialen in pri-
maire vliegtuigconstructies is de vraag opnieuw gerezen hoe zulke constructies
zich gedragen onder cyclische belasting. Experimenten hebben aangetoond
dat de belasting, die leidt tot breuk na een bepaald aantal cycli, afneemt
met het aantal cycli wanneer beschadiging of andere spanningsverhogers in
het spel zijn. Dit is het gevolg van de beschadiging die reeds aanwezig
was in de constructie of die ontstaan is tijdens de cyclische belasting.
Verschillende soorten van beschadigingen kunnen tegelijkertijd aanwezig zijn
in de constructie, waaronder scheurtjes in de matrix, een kink in de vezels,
delaminaties, gebroken vezels, enz. Deze soorten van beschadigingen kunnen
interageren en veranderen van het ene type naar het andere en zijn uiteindelijk
verantwoordelijk voor het bezwijken van de constructie. Wanneer men
tracht het aantal cycli te voorspellen, dat leiden tot het bezwijken van een
composieten constructie, is het dan ook noodzakelijk om te begrijpen hoe
de beschadigingen ontstaan. De eerste stap in die richting, gebruik makend
van een van de eenvoudigste modellen die gebruikt kunnen worden, is het
onderwerp van deze thesis.

Het aantal cycli dat leidt tot bezwijken is gerelateerd aan de structurele
reststerkte onder een belasting met constante amplitude. Een eenvoudig eerste
ordemodel, dat de reststerkte bepaalt op elk punt in de vermoeiingscurve
als functie van de reststerkte op elk moment eerder in de tijd, wordt
aangenomen. Voor een belasting met constante amplitude wordt er een
uitdrukking opgesteld die de maximale opgelegde belasting, het aantal cycli,
het aantal cycli die leiden tot bezwijken onder de opgelegde belasting en de
reststerkte aan het begin van de test relateert aan de reststerkte aan het
einde van de test. De kans op bezwijken voor elke cyclus wordt berekend
op basis van de reststerkte als functie van de cycli. Als de statische (of
rest-) sterkte voldoet aan een Weibullverdeling met twee variabelen, dan is
aangetoond dat kans op bezwijken bij elke cyclus constant is en onafhankelijk
van het aantal cycli. In het geval dat de kans op bezwijken per cyclus
constant is, dan wordt het aantal cycli dat leidt tot bezwijken bepaald
door de waarde die de kans op bezwijken maximaliseert. De resulterende
uitdrukking kan worden geschreven in termen van de kans op bezwijken
per cyclus. Wanneer de reststerkteverdeling gekend is, kan het aantal cycli
dat leidt tot bezwijken uitgedrukt worden in termen van de parameters
van deze verdeling. Eenvoudige analytische uitdrukkingen zijn afgeleid voor
Weibullverdelingen met twee variabelen. Analytische uitdrukkingen werden
niet gevonden voor andere soort verdelingen, zoals normaalverdelingen of
lognormale verdelingen. De invloed van de R-verhouding is meegenomen door
gebruik te maken van een eenvoudige recht evenredige relatie die in acht neemt
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dat de belastingsuitschieter verschillend is van deze bij R=0. De voorspellingen
van deze aanpak, bij situaties waar de amplitude van de belasting constant
was, zijn vergeleken met testresultaten uit de literatuur voor een heel aantal
laminaten, materialen en types belasting. Hoewel er gevallen waren waar
de overeenkomst tussen de restresultaten en de voorspellingen excellent was,
waren er andere gevallen waar de discrepanties duidelijk aantoonden dat het
analytische model verbeterd moest worden.

Het analytische model werd ook gebruikt om Goodman diagrammen te
creren en om te bepalen welke testen weggelaten konden worden. Een
vergelijking tussen de Goodman diagrammen die gecreerd waren met het
analytische model toonde aan dat er een goede overeenstemming was voor
het gedeelte van het diagram dat gedomineerd wordt door trekspanning, maar
er ontstond een zeker verschil in het gedeelte van het diagram dat gedomineerd
werd door drukspanningen. Dit wordt toegeschreven aan de eenvoud van het
model wat niet in staat is om op een accurate manier de interactie tussen
de bezwijkvormen te beschrijven wanneer zowel trek- als drukbelastingen
aanwezig zijn.

Het weglatingsniveau is het belastingsniveau onder hetwelk er geen
beschadigingen worden gecreëerd, er geen groei van bestaande beschadigin-
gen geobserveerd wordt en waarbij er geen bezwijken optreedt voor een
voorgeschreven aantal cycli. Hierdoor kan het testprogramma verkort worden
omdat de cycli met belastingen onder het weglatingsniveau weggelaten kunnen
worden. Vergelijking van de voorspellingen met de testresultaten toonde
een goede overeenkomst aan voor een groot aantal testen, materialen, R-
verhoudingen, beschadigingen en vezelvolgordes.

Het model in zijn meest eenvoudige vorm werd vervolgens uitgebreid met
spectrale belastinggevallen. Dit werd bewerkstelligd door verschillende belast-
ingniveaus en toegepaste cycli gelijkwaardig te stellen door de reststerktes aan
het eind van elk belastingniveau overeen te laten komen. Om dit te bewerk-
stelligen moeten de bezwijkvormen en beschadigingstypes die de vermoeiing
domineren hetzelfde zijn voor twee of meer relevante belastingsegmenten.
Dit zorgt er voor dat slechts een parameter, namelijk de reststerkte, de
beschadiging op een accurate manier kan beschrijven. Eenvoudige analytische
uitdrukkingen werden afgeleid voor het aantal cycli of belastingsegmenten
onder spectrale belasting. Een vergelijking met experimentele resultaten
toonde aan dat er een goede overeenkomst is voor spectra die gedomineerd
worden door trekspanningen maar grote afwijkingen werden er gevonden voor
spectra die gedomineerd werden door drukspanningen, hetgeen opnieuw wijst
op de noodzaak om het model te verbeteren en de interactie van verschillende
bezwijkvormen en beschadigingstypes mee te kunnen nemen.

De belangrijkste oorzaak van de verschillen tussen testresultaten en an-
alytische voorspellingen was de constante kans op bezwijken per cyclus in
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het oorspronkelijke model. Indien er slechts een dominante bezwijkvorm
is, dan is de kans op bezwijken per cyclus constant. Echter, wanneer er
meerdere beschadigingstypes of bezwijkvormen zijn, veranderen hun interactie
en de resulterende structurele belastingherverdeling de kans op bezwijken per
cyclus. Daarom werd het model aangepast waarbij werd aangenomen dat de
kans op bezwijken constant was voor een beperkt aantal cycli totdat er een
nieuwe bezwijkvorm of beschadigingstype opdook en de reststerkte en kans op
bezwijken per cyclus veranderde. Dit kan redelijk ingewikkeld worden zelfs
voor het schijnbaar eenvoudige geval van een uni-directioneel laminaat dat
belast wordt op trek waarin tijdens het uitharden zwakke vezels bezwijken
en hun belasting herverdeeld wordt over de aanliggende vezels. De grootste
moeilijkheid bevindt zich in het opstellen van het analytische model dat op
een accurate manier de spanningen kan berekenen in de constructie wanneer
de beschadigingen evolueren en op basis van die spanningen de reststerkte kan
voorspellen.

Het verbeterde model werd toegepast op twee gevallen, een uni-directioneel
laminaat en een laminaat met vezels loodrecht op elkaar in de vorm [0m/90n]s
onder een trek-trek vermoeiingsbelasting. Voor het uni-directioneel laminaat
bleken de verbeterde voorspellingen voor het aantal cycli die leiden tot
bezwijken goed overeen te komen met testresultaten. In het geval van het
laminaat met loodrechte vezels varieerde nauwkeurigheid van de voorspellingen
van excellent tot matig, afhankelijk van de verhouding tussen de dikte van de
interne 90◦ laagjes en de omliggende 0◦ laagjes. Het belangrijkste probleem
in dit geval is het feit dat het analytische model, dat ontwikkeld was om
spanningen rond matrixscheurtjes en de resulterende spanningsherverdeling te
berekenen in het laminaat, niet erg nauwkeurig was omdat de scheurdichtheid
toeneemt vanaf een bepaald punt. Verwacht wordt dat een meer accurate
analytische modellering van deze situatie de voorspelling voor het aantal cycli,
dat leidt tot bezwijken, zal verbeteren.

De analytische methode die hier wordt voorgesteld staat nog steeds in de
kinderschoenen. Het is aangetoond dat het model, in zijn meest essentiële
vorm, goed functioneert voor talrijke gevallen, maar niet goed functioneert
voor andere gevallen. Het belangrijkste is dat er een raamwerk om een
vermoeiingsanalyse voor composieten uit te voeren, is voorgesteld. Dit
raamwerk is gebaseerd op de reststerkte en hoe deze varieert met het
aantal cycli terwijl beschadigingen ontstaan en evolueren. Wat hier eigenlijk
voorgesteld wordt is een wear-out model. Dit type model is reeds vroeger
voorgesteld. Het belangrijkste verschil en mogelijke verbetering is dat er
in dit geval geen noodzaak is om meetgegevens of experimenteel bepaalde
vermoeiingsparameters af te leiden uit grafieken. De vergelijkingen die het
model beschrijven zijn afgeleid op een analytische manier en, in sommige
gevallen, in een vergelijking. Hoewel het model verder verbeterd moet
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worden, hoofdzakelijk op het vlak van hoe het ontstaan van verschillende
beschadigingstypes voorspeld wordt en hoe hun interactie en evolutie in
rekening gebracht worden, is het erg veelbelovend omdat het een algemene en
zuiver analytische methode is om het aantal cycli te voorspellen die leiden tot
bezwijken onder een belasting met constante amplitude of spectrale belasting.
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1 Introduction

1.1 Background

Under cyclic loading, the strength and stiffness of composite and metal
structures degrade. Damage is created and may grow throughout a structure
eventually leading to failure. This damage formation and subsequent growth
is accompanied by strength and stiffness degradation and forms the basic
mechanism driving structural fatigue. There are, however, several important
differences between how metal and composite materials behave under cyclic
loading and one should carefully define the terms to be used when referring
to the performance of composites under repeated loading.

The first important difference is in the failure stress versus cycles (S-N)
curve. The S-N curve relates a certain load or stress level S to the number of
cycles to failure N. It can be used to determine the maximum load amplitude
S of N load cycles before the structure fails. For composites, S-N curves tend
to be much shallower than those for metals. The loss of strength for a given
number of cycles is significantly smaller in composites. A typical example is
shown in Figure 1.1 where the continuous lines represent best fits to the test
data. For both curves in Figure 1.1 the damage present at the beginning of the
tests resulted in a ratio of notched static failure strength to un-notched static
failure strength of 1.5. The composite specimens were sandwich with two
plain weave fabric plies and 12.7mm honeycomb core. The unnotched static
strength was 367MPa (failure due to facesheet wrinkling). The Aluminum
specimens were standard hourglass specimens with specially machined notch
having the same unnotched to notched static strength ratio of 1.5.

When the applied stress is normalized by the static strength, the quasi-
isotropic (QI) sandwich composite appears to be superior to the 7075-T6
Aluminum. The Al data shown in Figure 1.1 were taken from [1]. For the
composites sandwich specimens, the required damage level before the fatigue
test started was determined by impacting various specimens at different energy
levels and statically testing them to failure. The impact energy that led to a
compression after impact (static) strength to undamaged strength ratio of 1.5
was used to impact the fatigue test specimens. In addition, both the metal and
composite specimens are loaded in their critical failure mode, the composite
in compression after impact (R = σmin/σmax ≈ 10) and the metal in notched
tension (R = 0).
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Figure 1.1: Typical S-N curves for Composite and Metal (normalized)

A more instructive comparison can be drawn if the data shown in Figure
1.1 are plotted without normalizing the strength as shown in Figure 1.2.

Figure 1.2: Typical S-N curves for composite and metal (not normalized)
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It is now evident, as can be seen from Figure 1.2, that for low cycle fatigue,
metals can be better than QI composites. The two curves cross at about 105

cycles. Beyond 105 cycles the curve for the metal is below the curve for the
composite and thus, in terms of the stress level needed to reach a given number
of cycles, the composite outperforms the metal.

The relative “shallowness” of the composite S-N curves has led many to
suggest that composites have no fatigue problems and, even, infinite fatigue
lives. While some test data seem to suggest no strength degradation of uni-
directional laminates under tension-tension loading, (at least up to 1 million
cycles) generalizing this to multiple materials and different stacking sequences
and loadings can be misleading and, in fact, dangerous. For example, it can be
seen from Figure 1.1 that the applied compression stress cannot exceed 70% of
the static strength for a QI composite to last one million cycles. This means
that, if composite structures are not properly designed to account for strength
reduction under repeated loading, once damaged, they may fail prematurely.
Conversely, for structures that undergo relatively few cycles in a lifetime (< 105

- 2 · 105), as do many fuselage parts, a good static design typically also covers
the fatigue requirement, while for parts that see a large number of cycles in
a lifetime (> 106) such as vibrating parts of the fuselage, engine parts, rotor
and wind turbine blades, performance under fatigue loads may be the critical
condition for designing the structure [2, 3]. This sensitivity to cyclic loading
is particularly pronounced for constant amplitude loading and load spectra
dominated by constant amplitude load segments. Composite parts undergoing
spectrum loading with multiple load segments of different amplitudes are less
sensitive.

The second important difference between composites and metals, evident
from Figure 1.1, is that composites exhibit greater scatter than metals. This
means that a design curve or value for a composite with a specified reliability
will be a fraction of the mean strength that is lower than the corresponding
fraction for the equivalent metal design.

The third important difference between composites and metals is how the
fatigue process evolves within these materials. While in a metal damage
progression, which is in the form of crack initiation and growth, is self-similar
with one or more cracks growing parallel to their original orientation under
repeated loading, in composites, multiple complex types of damage can be
present and interact.

In general, damage in composites first manifests in the form of matrix cracks
in plies with fibers not aligned with the load(s). Under repeated loading,
these cracks multiply and grow. Depending on the loading and stacking
sequence however, these cracks may either branch out to adjacent plies or form
delaminations at ply interfaces. Upon further loading, the matrix cracks and
delaminations grow, and which type of damage will dominate is a function of
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loading, part geometry, and stacking sequence, as well as constituent (mainly
resin) properties. Stress concentrations at the tips of matrix cracks and/or
delaminations can also lead to fiber breakage. A hand-drawn schematic
showing representative types of damage in a composite is shown in Figure
1.3.

Figure 1.3: Damage created during fatigue loading (tension-tension loading)

Understanding damage creation and evolution in a composite structure
involves analysis and testing over a great range of scales, from the fiber
diameter scale, 7 µm for typical carbon fibers, where surface cracks on the fiber
surface or flaws in the fiber/matrix interface may act as stress concentration
points, to the ply scale, 0.15 mm, with matrix cracks, voids, and delaminations
at the ply interfaces, to the macro-scale, on the order of centimeters, where
large scale delaminations and fiber breakage occur and may lead to final failure.
While a complete understanding of these effects requires modeling across all
these scales, the focus in the present work will be on scales in the range of a
few hundred fiber diameters to the macro scale with the assumption that the
process of damage nucleation at lower scales has already taken place during
fabrication. In a sense, this assumes the presence of inherent flaws such as
fiber surface cracks, fiber/matrix disbonds, etc. It is a convenient assumption
that simplifies the analytical modeling, and one that can be relaxed when
models at the smaller scales are necessary. The approach presented here is
still applicable at different scales; only the appropriate models will change.

The multiple types of damage present in composites during fatigue loading
complicate modeling of the structure and, as mentioned earlier, depart
significantly from those found in metals where a single type of damage, a
crack, grows in a self-similar mode. Determining the number of cycles to
failure for a composite structure under a given loading, requires tracking the
evolution of all possible types of damage and their effect on the strength and
stiffness of the structure.
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This multiplicity of damage types, and the fact that the type(s) of damage
that dominate performance and lead to failure can, in fact, change with cyclic
loading, make a growth-based modeling of damage tolerance of composites
difficult and not cost-efficient. While in metals, a crack may grow in a
stable fashion over a large number of cycles permitting economical inspection
methods and intervals to be established, in composites, certain types of
damage such as delamination or a through cracks may arrest or grow very fast
without presenting any useful region of stable growth to allow for structural
monitoring on the basis of damage tolerance. This is illustrated in Figure 1.4
where typical growth curves for composites and metals are provided. In the
composite, a typical sandwich fuselage skin 15 cm wide by 30 cm long with a
cross-crack through the thickness of one facesheet approximately 2 cm across is
loaded in tension-tension (R=0.05) with maximum stress equal to 67% of the
static strength of the specimen. During the cyclic test, there is some growth
in jumps, evidenced by the fact that the data do not follow a smooth curve,
until approximately 160000 cycles. This growth is characterized by some crack
growth but mostly by the creation and growth of delaminations. After 160000
cycles, rapid growth and final failure follow at about 370000 cycles. This
means that the only region where some inspection intervals might reliably be
established is between 20000 and 150000 cycles. This region is very narrow.
Since at least three inspection intervals should be established, each inspection
interval would correspond to about 43000 cycles. For many applications, this
translates to a few hundred or, at most one thousand flight hours. Grounding
an aircraft for detailed inspection looking for delamination growth at these
intervals is not economical. Conversely, 7075-T6 Aluminum has a well defined
region of stable growth between 2000 and 500000 cycles (data taken from [4]).
The inspection intervals in this case would be longer and thus more economical.

As seen from Figure 1.4, damage growth in composites is, usually, sudden
and unstable as implied by the steep slope at the end of the curve. This coupled
with their increased scatter during fatigue loading, which increases the cost
and reduces the accuracy, makes growth-based damage tolerance of composites
non-economical (in most cases). In the past, this has led to damage tolerance
designs where no growth of damage typical of what is expected to occur during
service was permitted in the structure. Such an approach results in weight
penalties because the structure must be designed ensuring that damage of
a certain size will not grow under service loads. This does not mean that,
under certain circumstances, stable growth of damage in composites cannot
occur and economically feasible inspection intervals cannot be established.
Unfortunately, these situations are quite limited and, in general, a “no-growth”
approach is used. The “no-growth” approach has been shown to be both
reliable and economically feasible [5, 6].

In the above discussion, fiber-reinforced composites were considered as
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Figure 1.4: Flaw growth as a function of cycles

the only material present. Some of the differences between metals and
composites become less pronounced when they are combined to create fiber
metal laminates. A good overview of the behavior of fiber metal laminates is
given by Schijve [7]. It should be noted that the emphasis in this thesis is on
fiber-reinforced composite laminates without any metal layers in the stacking
sequence.

1.2 Previous Work

Given the important differences mentioned above between composites and
metals, it became clear early on, that fatigue analysis methods specific to
composites would have to be developed if accurate models were to be used
to predict the structural performance of composites under cyclic loads. If the
ultimate goal is the design of safe, economically viable composite aircraft with
quantified and statistically meaningful service lives, the methods developed
should (a) provide an understanding of the degradation of structural properties
of composite structures under fatigue loading, (b) link this understanding
to the certification or qualification requirements via rational interpretation
of these requirements as they apply to composites and unaffected by the
prevailing experience on metal structures and (c) provide a methodology
that can associate a specific design and loading scenario with an accurately
measured and/or predicted number of cycles to failure with an associated
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reliability level. An overview of this entire problem with its implications for
composite, as opposed to metal, structures, is provided by Rouchon [8]. To put
things into perspective, it helps to examine, in rough chronological order, the
development of fatigue analysis methods for composites. At the beginning,
the work was concentrated on isolating the different types of damage and
quantifying their effect on the strength and stiffness of composite structures
[9–18]. A good summary of the damage mechanisms is given by Talreja in his
book [9]. The simpler case of uni-directional composites under fatigue loading
was examined by Lorenzo and Hahn [10]. Different mechanisms and damage
accumulation were studied by Charewics and Daniel [11] and Reifsnider et
al [12]. An attempt to combine various effects of stacking sequence and loading
on the creation of damage and its subsequent effect on residual strength was
made by Reifsnider and Stinchcomb [13] using the concept of a critical element.
This concept was successfully applied to un-notched laminates and was later
extended to notched laminates by Bakis et al [14]. At this point, understanding
of the micromechanics of damage creation was advanced enough to attempt
modeling of fiber, matrix, and their interface [15], as well as laminates with
holes under compression [16, 17] and, the most complex situation where in-
plane and out-of-plane effects combine to cause damage, [18].

As a result of its inherent complexity, impact damage modeling under fatigue
loading led to the creation of multiple models with limited success [19,20]. As
a result of these efforts it became obvious that understanding delamination
creation and growth under fatigue loading would be instrumental to obtaining
more accurate fatigue models for impacted laminates. To this end, OBrien
and others have made numerous contributions [21–26] based mostly on energy
release rate approaches.

Continuing along these lines, Subramanian, Reifsnider, and Stinchcomb [27]
attempted to include the effects of fiber-matrix interface to track damage
creation at smaller scales than previously used. Fatigue of matrix-dominated
laminates was examined by Yang, Lee, and Sheu [28, 29] monitoring stiffness
degradation as a function of cycles. Compression fatigue methodologies were
developed by Badaliance and Dill [30] and Ratwani and Kan [31]. Schaff
and Davidson extended their work for constant amplitude fatigue loading [32]
to spectrum loading [33]. Implications of damage accumulation for design
of fatigue-sensitive composite structures were discussed by Kedward and
Beaumont [34]. Philippidis and Vassilopoulos [35] studied the effect of multi-
axial loading on fatigue of composites. Whitney [36, 37] and Sendeckyj [38]
addressed important aspects of the statistical treatment of test data and
interpretation of model parameters in fatigue models. Studying primarily
tension-dominated fatigue loading, Schulte [39–41] observed, among other
things, that tougher resins lead to longer lives, transverse cracks in 90◦ plies
transition to adjacent 0◦ plies, and intersecting longitudinal cracks tend to
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create delaminations.
The complexity of the phenomena involved required correspondingly com-

plex and computationally intensive analytical models. These models were not
efficient enough to be used for design purposes and simplified methods (with
rather limited applicability) were developed by Ronold and Echtenmeyer [42],
Chamis and Ginty [43], and Lee and Harris [44].

It was soon recognized that the simplified models would not capture the
material behavior correctly and would not be sufficiently accurate over a wider
range of applications. Investigators turned to improved modeling of damage
and its progress under cyclic loading. Diao et al, [45], use a statistical model
to predict probability of failure for cross-ply laminates. A shear lag model
is used to estimate stiffness reduction and the associated load redistribution
from 90 to 0 plies. The model makes an attempt to predict both matrix cracks
in the 90 plies and delaminations at the 0/90 ply interface triggered by these
cracks. The approach gives good agreement with test results for several types
of cross-ply laminates but requires a basic fatigue curve for 90◦ plies and a
strength degradation model for the critical element of the structure. This
model requires two curve-fitting parameters.

Turon et al [46] model delaminations during high cycle fatigue by linking
the crack growth rate da/dN with evolution of a damage variable obtained
using a cohesive model. This model works well but requires experimentally
determined Paris law parameters for the growth rate law of the material.

In another recent attempt, Lian and Yao [47] use a finite element model
with built-in stiffness and strength degradation to predict fatigue lives of
glass/epoxy composite laminates. Their model requires the basic S-N curves
for longitudinal, transverse, and shear loading as inputs. In addition, each
element in the finite element model is randomly assigned material properties
representative of the experimental scatter of the material. The predictions are
in very good agreement with test results, except for cases where local out-of-
plane loading dominate damage creation and failure. For these cases, no basic
S-N curves are obtained for incorporation into the analytical model.

Effects of different fiber architectures and fiber volumes have been examined,
mostly experimentally. One example is work by Mandell et al [48] focusing on
wind turbine applications. They show a significant improvement in fatigue
life with increasing fiber volume fraction. They also show that the fiber
architecture can have a big effect. For example, stitched laminates have a
significant advantage over unstitched laminates.

Kawai and Koizumi, [49], have developed a semi-empirical approach to
determine constant life diagrams. For the method to work, reference S-N
curves, obtained by fitting test data, are necessary. On the same subject of
constant life diagram determination, Vassilopoulos et al, [50], examine the use
of piecewise linear models to obtain the complete constant life diagram and
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find that the results compare favorably with other methods and, in several
cases, give the most accurate answers.

Filis et al, [51], have studied the load cycle-mix damage events with emphasis
on fiber dominated composites. They show that two-level block test data can
be used to account for damage accumulation in composites. This can then be
extended to multi-block tests. Preliminary comparisons of their predictions
with test data showed that the approach is very promising.

Heuristic arguments about material behavior ahead of a delamination front,
combined with a Paris-type law for crack growth, are used by Andersons et
al [52] to obtain good predictions of delamination growth as a function of
cycles for various materials. As in almost all the models discussed so far, this
model involves the use of curve-fitted parameters (such as the constants in the
Paris law).

Kim and Hwang [53] propose a semi-empirical method to correlate fatigue
performance of composites with property degradation caused by impact
damage. The assumption is that at any given point during fatigue life, the
stiffness and strength reduction of the composite will equal that caused by the
impact of a specific energy level.

Post et al [54] combine a phenomenological residual strength model with an
empirical model to track damage accumulation in a Monte Carlo simulation
to predict the remaining strength in a composite structure.

Shivakumara et al [55] have developed a predictive model for the complete
growth history of a delamination in a composite under cyclic loading. They
use basic static and fatigue tests to obtain several model parameters needed
in their equation for the delamination growth rate da/dN.

Boerstra, [56], proposes using a set of equations relating mean and vibratory
stress to fatigue life to obtain constant life diagrams for composites. A number
of constants, mostly exponents in the equations, different for tension and
compression, have to be determined experimentally before the model can be
used.

Harper and Hallett, [57] concentrate on improving the numerical techniques
based on cohesive elements. They have developed a fatigue degradation law by
relating energy release rates to Paris law data. Once the model was calibrated,
very good agreement with Mode I, Mode II, and mixed mode fatigue test
results was observed.

Of particular interest to the method presented in this thesis is the work of
Verhoef, [58], where he attempts to relate the residual strength of a structure
to the probability of failure during fatigue cycling, which is analogous to the
approach in the present work. In the approach by Verhoef, [58], the structure
is divided into elements which have a certain probability of failure. The state
of damage and loading determines which elements will fail and when. Once an
element fails, load is redistributed and the probability of failure changes. The
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probability of failure is linked to the residual strength but it is not analytically
determined nor is there a solid analytical method for residual strength and
probability of failure link. In addition, the damage state and its relation to
residual strength are not quantified. Test results are used to fill in the analysis
gaps in the approach.

The above discussion covers only some of the more representative attempts
to model damage creation, growth, and failure during fatigue loading of
composites. The main conclusions to be drawn from the above summary
are:

(a) all models require some combination of fatigue testing of representative
plies, or elements with some semi-empirical constants obtained by curve-
fitting some test results.

(b) there is no comprehensive analytical model for composites that can be
used to predict fatigue behavior where all the parameters or variables
involved can be calculated analytically or from static tests. As a result,
the applicability of existing models is restricted and using them requires
expensive and time consuming experiments and computation.

The conclusion, and the motivation for the present work, is that there is
a need for analytical models for fatigue of composites that do no include
empirical, or semi-empirical parameters and require no fatigue testing to
obtain basic behavior. A new model is needed, based, as much as possible,
on modeling of physical processes and understanding how the strength and
stiffness of a composite structure change with cyclic loading and damage
creation and growth.

The approach will be based on the residual strength of the structure and
how that changes with cyclic loads. This is coupled with the determination of
a cycle-by-cycle probability of failure and a model that predicts the number
of cycles with the maximum likelihood of failure. This is used to predict
cycles to failure under constant amplitude loading. Under spectrum loading,
the residual strength of the structure is first determined as the applied cyclic
loads change. This is then used in conjunction with the model for constant
amplitude loading to predict the number of spectrum cycles or load blocks to
failure.

1.3 Outline

The basic concepts for constructing a model to predict cycles to failure under
constant amplitude loading are presented in Chapter 2. These include a
residual strength model to predict the strength of a composite structure after
a certain number of cycles, and the cycle-by-cycle probability of failure. Under
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certain assumptions, the cycle-by-cycle probability of failure can be calculated
in closed form and related to the static strength of the structure. Closed
form equations used to predict cycles to failure for different loading cases are
presented.

The model developed in Chapter 2 is compared to experimental results in
Chapter 3. The two main ingredients of the analytical model are isolated
and comparisons to test results are done separately, first for the residual
strength and then for cycles to failure. This will help in identifying where any
model weaknesses are most pronounced. In addition, constant life diagrams
(Goodman diagrams) are constructed and compared to test results. A wide
variety of laminate stacking sequences, materials, and loadings are used for
comparison. As a result, all major types of damage, matrix cracks, fiber
splitting, delaminations, and fiber breakage are included in the test results.
This gives a good understanding of the range of applicability of the model
presented in Chapter 2 in its simplest form. It also points to weaknesses of
the model which will be evaluated further in Chapter 6.

A summary of how the model can be used to answer important questions in
production programs of composite structures is provided in Chapter 4. The
first is the determination of number of test cycles needed on a single specimen
or component, to establish B-Basis reliability. The second is the determination
of the omission level corresponding to one million cycles. This is the load level
below which a composite structure can be cycled up to one million cycles with
no creation of damage, no growth of existing damage, and no failure. The
results of both applications are compared to test results.

The basic model of Chapter 2 for constant amplitude loading is extended
to spectrum loading in Chapter 5. Closed form expressions are developed for
cycles or blocks to failure. Predictions are compared to test results to establish
the accuracy of the model.

Throughout the first five chapters, the shortcomings of the analytical model
are presented and discussed. The main shortcoming is the fact that the model
uses a constant cycle-by-cycle probability of failure. This is a valid assumption
as long as the type of damage created does not change. While there are many
cases in which this assumption is valid, there are also numerous cases where
this is no longer valid. An approach to rectify this shortcoming is presented
in Chapter 6. First, the general approach is presented and then two special
cases, one for a uni-directional laminate and one for a cross-ply laminate, are
examined in detail.

Finally, the main conclusions and recommendations are summarized in
Chapter 7.
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2 Analytical model for determining the cycles to
failure under constant amplitude loading

It became obvious from the discussion in the previous chapter that, to predict
the number of cycles to failure of a composite structure accurately, the type(s)
of damage created during cyclic loading, their interaction, and their effect on
the strength of the structure must be accurately modelled. The formation
and evolution of damage is complicated by the multiplicity of failure modes
and their interaction. Depending on the stacking sequence, geometry and
loading, any combination of matrix cracks, fiber kinking, delaminations, failure
of the fiber matrix interface, and fiber failures may occur in almost any
sequence (see for example [10–19]). Usually, matrix cracks (tension dominated
loading) or fiber kinking and micro-buckling (compression dominated loading)
are among the first failure modes that occur followed by delaminations
emanating at matrix cracks or in regions of high stresses such as free edges
and plydrops. Subsequently, more matrix cracks are created and/or branching
of matrix cracks to adjacent plies occur while delaminations extend. Stress
concentrations caused by the matrix cracks and delaminations eventually cause
fibers to break. Accumulation of fiber breakage leads to final failure of the
structure.

Developing a general model that accounts for all types of damage and failure
modes and their interactions is complicated and requires modeling the correct
sequence of damage creation, which depends on stacking sequence, geometry,
loading, the presence of notches, etc. In this chapter, the approach is simplified
assuming one type of damage dominates the behavior. This will help describe
the features of the analytical model better and will isolate some important
characteristics of the analysis. In subsequent chapters some of the obvious
limitations of the model will be discussed (Chapters 3-5) and enhancements
to the model accounting for additional types of damage created during cyclic
loading, will be proposed in Chapter 6.

To develop the model, it is assumed that a single type of damage exists.
Exactly what that damage is does not matter as long as it is the same that
causes failure under static loading. The damage present determines the static
strength under static loading or the residual strength after fatigue loading.
This direct relation between the state of damage and the strength of the
structure forms the basis of the analytical model. More specifically, residual
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strength is selected here as the critical design parameter. The approach is
then aimed at determining:

• the damage state of a composite structure after repeated loading

• the relation between the damage state and the (residual) strength of the
structure after repeated loading

• the relation between the residual strength and cycles to failure given a
damage state in the structure

The above points are discussed in some detail in what follows.

2.1 Damage state in a composite structure after repeated
loading relation to residual strength

At a sufficiently small scale, there will always be some damage present in
an “as-manufactured” composite structure. This may be in the form of
surface cracks or flaws in individual fibers, small disbonds between fibers and
matrix, or other flaws at the matrix/fiber interface. In the present model,
these types of damage are considered to be part of the pristine structure and
are partially responsible for the experimental scatter observed during tests of
static strength. These types of damage along with tiny voids, or resin-rich and
resin-poor areas act as nucleation sites for the creation of larger-scale damage
which is the damage of interest discussed in the present work. One of the most
common combinations of damage occurring in composites is matrix cracks and
delaminations. Usually, in-plane stresses exceeding the matrix strength cause
matrix cracks while out-of-plane stresses lead to delaminations [59]. Under
cyclic loading the two may interact [60]. Local geometry changes such as
plydrops may contribute in promoting delamination growth in one location
and slowing it down or arresting it in another [60]. However, damage growth
of one type of damage, matrix cracks, versus the other delaminations, may
change with cycles, even for the same stacking sequence [60].

Sufficient number of load repetitions, even if the load intensity is relatively
low, will lead to damage creation in a composite structure. As mentioned
in chapter 1, typically, the first type of damage is matrix cracks in off-
axis plies. These cracks may branch out to neighboring plies and/or, at
sufficiently high crack density, lead to delaminations at ply interfaces. The
stress concentrations at the tips of matrix cracks and delaminations eventually
lead to fiber breakage and subsequent collapse of the structure.

Given a state of damage, there is a load at which either (a) the structure will
fail, or (b) the next type of damage will be initiated. This load will be loosely
termed residual strength. Note that this term is used here in a broader sense as
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it does not necessarily refer to final failure but also covers local failure. It will
also be assumed that there is a one-to-one correspondence between residual
strength, as defined here, and damage state. If after repeated loading the
damage state D reached in the structure corresponds to a residual strength
σr, then if one started from a pristine structure and applied repeated loads
such that the residual strength reached the value σr, the corresponding damage
state will be D. This assumption may not be valid in complex structures where
it is possible that different damage states lead to the same residual strength.
The implications of this will be discussed later in section 6.1.

It should be noted that the model developed here is a wear-out model with
similarities to the ”strength-life equal rank assumption” wear-out model first
presented by Hahn and Kim [61] and later formulated into a rigorous approach
to fit fatigue data by Sendeckyj [62]. The main difference from these models
is that no curve fitting of test data is required and the model parameters are
analytically determined.

The relationship between residual strength and load required to cause failure
after n cycles is shown schematically in Fig. 2.1.

Figure 2.1: S-N curve and residual strength curve

Suppose that a constant amplitude load with maximum stress
σ (R=σmin/σmax=0) is applied to a composite structure. The corresponding
cycles to failure when σ is applied are N . This means that if the test is stopped
at any cycle level n < N the structure would not have failed and would still be
able to carry load. At this point, a strength test on the structure would show
a failure strength σr as shown in Fig. 2.1 with σr > σ. So, during cycling, the
curve for the residual strength σr decreases from the static failure strength σfs
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at one cycle, to σ after N cycles. The residual strength curve is always above
the S-N curve coinciding with it only at two points, when n = 1 and n = N .

It is now postulated that, given the damage stateD in a composite structure,
the subsequent damage created by cycling at load σ changes the residual
strength by an amount that is only a function of the number of cycles and
the residual strength level corresponding to D. One of the simplest relations
of this type is:

∆σr = (Aσr +B)∆n (2.1)

which states that if a structure has residual strength σr after n cycles,
the change in residual strength ∆σr when ∆n more cycles are applied at
the same load level σ is proportional to the cycle level ∆n with constant of
proportionality a linear function of the current residual strength level σr.

Eq. 2.1 is an assumption partially validated by test results presented in
chapters 3.1 and 5.2.1. The problem with test results on residual strength is
that they are limited and have significant scatter. More tests are necessary to
better quantify the validity of this equation. The equation has the advantage
of simplicity at the same time capturing what is intuitively expected, that the
state of damage at some point during the life will affect the state of damage at
subsequent stages. Other expressions can be used, with the added difficulty of
additional unknown constants appearing in the solution for the determination
of which there is no immediately available information. Still, other forms of
Eq. 2.1 should be investigated. For the purposes of this work, this simplest
form is considered sufficient for developing basic trends.

In the limit, for infinitesimal changes in cycles and residual strength, and
with proper assumptions on continuity of the functions involved, one can
rewrite Eq. 2.1 as:

dσr
dn
−Aσr = B (2.2)

with A and B unknown constants.

The solution to Eq. 2.2 is

σr = CeAn − B

A
(2.3)

with C another unknown constant.

The following three conditions are now imposed:

(a) At n = 0, before cycling, the residual strength equals the static failure
strength σfs (see Fig. 2.1). This leads to:

σfs = C − B

A
(2.4)
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(b) One cycle before failure when s is applied, at n = N − 1, the residual
strength equals σ, i.e., the structure would fail at the next cycle at applied
stress σ. This gives the condition:

σ = CeA(N−1) − B

A
(2.5)

(c) For very large n, with applied load σ, the residual strength tends to the
endurance limit σE , see Fig. 2.1. The endurance limit is the stress level below
which any applied stress will cause no fatigue failure no matter how many
cycles are applied. Assuming A is negative, this condition requires that:

σE = −B
A

(2.6)

Eqs. 2.4-2.6 form a system of three equations in the three unknowns A, B,
and C. Solving the system gives:

A =
1

N − 1
ln

(
σ − σE
σfs − σE

)
B =

σE
N − 1

ln

(
σ − σE
σfs − σE

)
C = σfs − σE (2.7)

Note that since σ < σfs, the logarithm in the right hand side of Eq. 2.7 is
negative which makes A negative in agreement with the prior assumption.

With A, B, and C known from Eq. 2.7, one can substitute in Eq. 2.3 to
obtain, after some manipulation:

σr = (σfs − σE)

(
σ − σE
σfs − σE

) n
N−1

+ σE (2.8)

It is now assumed that the endurance limit σE is zero. That is, any
stress level repeated for a sufficient number of cycles will, eventually, lead
to failure of the structure. Depending on loading, material, and stacking
sequence, composites do exhibit non-zero endurance limits, however, accurate
determination of endurance limit requires testing beyond 500 · 106 cycles and
is quite difficult [63]. In addition, test data by Samborksy et al [64] at very
high cycles shows no clear evidence of an endurance limit up to 108 cycles for
laminates and 1010 cycles for fiber strands. This is supported by very high
cycle data obtained by D. van Delft at TUDelft. For the purposes of this
study, which deals with constant amplitude cycles up to 100 · 106, setting the
endurance limit equal to zero will, at most, introduce a small error.

Then, Eq. 2.8 is simplified to:
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σr = σfs

(
σ

σfs

) n
N−1

(2.9)

or, rearranging:

σr = σ
n

N−1σ
N−n−1
N−1

fs (2.10)

Eq. 2.10 relates the residual strength after n cycles to the applied stress σ,
the static strength σfs and the cycles to failure N when σ is applied. Note
that, while the static strength can be determined from simple tests or analysis,
the number of cycles to failure N is, at this point unknown.

In general, if N is constant, it can be shown that Eq. 2.10 is a decreasing
function of n. This means that the residual strength predicted by this
model will never increase. However, there are cases [65], such as open hole
tension specimens with combinations of 0 and angle plies (0 aligned with the
loading direction) where the residual strength increases, as much as 50%, as
longitudinal cracks forming in the 0 plies reduce the stress concentration and
then decreases once other forms of damage are created in the angle plies and/or
weak fibers in the 0 plies start to fail. The rigorous way to incorporate this
effect in the model would be to replace the residual strength Eq. 2.2 with a
more general equation that would account for this effect.

2.2 Determination of cycles to failure relation to residual
strength

2.2.1 Cycle-by-cycle probability of failure

Consider a composite structure under constant amplitude loading with
maximum applied stress σ. For simplicity, it is assumed that the structure
starts from the pristine condition with static strength σfs. The approach is
the same if the structure starts from an already damaged state, after it has
been cycled for a number of cycles no, with a proper redefinition of terms such
that the static strength is the residual strength of the structure σro after no
cycles.

Assume now that the static strength of the structure follows a two-parameter
Weibull distribution. This is a fairly standard assumption for composite
structures where strength for a wide variety of loading and stacking sequences
is shown to follow two-parameter Weibull, normal, or log-normal distribution
[66]. It will be shown in this section that, as long as the damage during
cyclic loading stays the same, the Weibull parameters of the static strength
distribution will also determine the residual strength after any number of
cycles.
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The probability density function for a two-parameter Weibull distribution
is given by:

f(X) =
α

β

(
X

β

)α−1
e
−
(
X
β

)α
(2.11)

where X is the variable (strength in this case) and α and β are the two
parameters of the distribution. α is the shape parameter and β is the scale
parameter. The shape parameter α is a measure of the data scatter. The larger
the value of α the lower will be the scatter. It will be shown later (section
3.3) that the shape parameter is inversely proportional to the coefficient of
variation (CV=standard deviation/mean). The scale parameter β shifts the
entire distribution to the left or to the right. From this perspective, the scale
parameter is analogous to the mean of a normal distribution. However, unlike
the normal distribution where the mean coincides with the 50th percentile,
the scale parameter of a Weibull distribution, is the 63.2 percentile of the
distribution.

As an example, the two-parameter Weibull probability density distri-
bution, Eq. 2.11, for the compression strength of typical uni-directional
graphite/epoxy with mean strength 1379 MPa and CV 11%, corresponding
to a value of a=10.375 is shown in Fig. 2.2.

One important aspect, of immediate implications for the model under
development, is the probability p that the strength of a specimen or structure
be lower than a given value Xo. With reference to Figure 2.2 , this probability
is the area under the curve to the left of Xo (shaded region) divided by the
total area under the curve.

An equivalent way to see this is to use the cumulative distribution function
F(X) which for a two-parameter Weibull distribution is given by:

f(X) = 1− e
(
X
β

)α
(2.12)

The cumulative distribution function for the same example of Figure 2.2 is
plotted in Figure 2.3.

Given a strength value on the x-axis, the curve can be used to read off the y
axis the probability p that the strength of a specimen is less than that value.
For example, for the same Xo value as in Figure 2.2 , the dashed horizontal line
gives a probability of about 0.05. That is, the probability that the strength of
any specimen from this population is less than Xo(≈ 1100 MPa) is 5%.

Replacing X with σ in the above discussion, the model for determining
cycles to failure can now be presented. The main objective at this point is to
determine the probability of failure p when σ is applied, i.e. the probability
that the strength is less than the applied load σ, for a number of cycles n.
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Figure 2.2: Probability density distribution for compression strength of typical
Graphite/Epoxy (two-parameter Weibull: α = 10.375 β = 1447.1
MPa)

The residual strength after n cycles of maximum applied stress σ is given
by Eq. 2.10. In order to determine the probability p that the residual
strength σr is less than the applied stress σ, the type of statistical distribution
corresponding to Eq. 2.10 must be determined given the fact that the static
strength σfs follows a two-parameter Weibull distribution.

As can be seen from Eq. 2.10, the statistical variable, σfs, is raised to the
power:

q =
N − n− 1

N − 1
(2.13)

It can be shown [67] that raising a two parameter Weibull variable to a
power q results in a new distribution that is also a two-parameter Weibull
with shape parameter αnew and scale parameter βnew given by:

αnew =
α

q
βnew = βq (2.14)

That is, the new scale parameter is the original scale parameter raised to
the same power q and the new shape parameter is the original one divided by
q.

This means that the quantity

σ
N−n−1
N−1

fs

in Eq. 2.10 is a two-parameter Weibull variate with
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Figure 2.3: Cumulative distribution function for compression strength of
typical Graphite/Epoxy (two-parameter Weibull: α = 10.375 β
= 1447.1 MPa)

αnew =
α(N − 1)

N − n− 1
βnew = β

N−n−1
N−1 (2.15)

In addition, the same quantity

σ
N−n−1
N−1

fs

is multiplied, in Eq. 2.10 by the constant

σ
n

N−1

and it can be shown, [68], that multiplying a two-parameter Weibull variate
by a constant yields another two-parameter Weibull variate with the same
shape parameter and α scale parameter multiplied by that same constant. So
the final Weibull parameters after multiplying by

σ
n

N−1

are:

αfinal =
α(N − 1)

N − n− 1
βfinal = σ

n
N−1β

N−n−1
N−1 (2.16)

Therefore, if α and β are the shape and scale parameters of the two-
parameter Weibull distribution describing the static strength σfs of a com-
posite structure, applying n cycles of maximum stress σ to that structure will
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result in a residual strength σr which is also two-parameter Weibull distributed
with shape and scale parameters given by Eq. 2.16.

One important conclusion can be drawn from the first of Eq. 2.16. The
quantity multiplying the original shape parameter α on the right hand side
is always greater than 1. This implies that the new shape parameter, after n
cycles, is greater than the original shape parameter, i.e. the shape parameter
increases with fatigue cycles. An increasing shape parameter implies reduction
in experimental scatter, therefore, the present model predicts that the scatter
of the residual strength will decrease with cycles.

There is not sufficient data in the open literature to clearly support or refute
this conclusion of decreasing scatter with increasing cycles even though results
by Young and Jones [69] clearly demonstrate that for [45]2s Graphite/Epoxy
laminates. There are two qualitative arguments supporting the conclusion:
One, it is well known, for example in specimens with holes tested in uniaxial
tension or compression, that after fatigue cycling, the damage created in some
specimens reduces notch sensitivity and the residual strength is higher than
the static strength before cycling. This means that the effect of flaws present in
regions of high stresses is less pronounced and since scatter is directly related
to the presence of flaws, reduced sensitivity to flaws implies lower scatter.
Two, specimens in a population with low strength will fail early during fatigue
cycling leaving the stronger specimens in the population. Thus, the resulting
population will be characterized by a narrower probability density distribution
which is consistent with lower scatter. This is shown schematically in Figure
2.4 where, for emphasis, a non-zero endurance limit σE is included. During
cycling, at a given load σ, specimens with strength less than σ fail early and the
remaining form a population whose low strength must asymptotically reach
σE . If the strength got lower than σE there would be specimens that would
fail when σ < σE , contradicting the fact that σE is the endurance limit. At
the same time, the high strength end of the population decreases with cycles
because weaker fibers in specimens in the high strength end of the population
fail but the failure stress is calculated using the original cross-section thus
giving a lower strength. As a result, the residual strength population gets
narrower with increasing cycles, implying reduced scatter. It should be pointed
out that there is some experimental evidence that this conclusion of decreasing
scatter of residual strength is not true in all cases [70].

This predicted effect of reduced experimental scatter of residual strength
with increasing cycles becomes significant as the number of cycles n approaches
the cycles to failure N corresponding to the applied stress σ. This can be seen
by rearranging the first of Eq. 2.16 to obtain:

αfinal
α

=
1

1− n
N−1

(2.17)
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Figure 2.4: Evolution of residual strength probability density distribution with
cycles when a constant cyclic stress σ (σ > σE) is applied

The shape parameter after n cycles αfinal normalized by the shape
parameter α of the static strength population as given by Eq. 2.17 is plotted
as a function of normalized fatigue cycles n/(N-1) in Figure 2.5. It can be
seen from Figure 2.5 that, to double the shape parameter, i.e. decrease the
CV by a factor of 2, the structure must be subjected to cycles corresponding
to, approximately, 50% of its fatigue life.

Figure 2.5: Change of shape parameter (scatter) of residual strength as a
function of cycles

Given the shape and scale parameters from Eq. 2.16 and an applied
maximum cyclic stress σ, the probability p that the strength of a given
specimen is less than σ can be obtained from Eq. 2.12 with p(n) = F (σ):

p(n) = 1− e−
(

σ
βnew

)αnew
(2.18)
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Substituting for αnew and βnew from Eq. 2.16:

p(n) = 1− e
−
(

σ

σ
n

N−1 β
N−n−1
N−1

)α(N−1)
N−n−1

= 1− e
−

 σ

α(N−1)
N−n−1

σ
n

N−1
α(N−1)
N−n−1

( 1
β

)α(N−1)(N−n−1)
(N−n−1)(N−1)

= 1− e
−
(
σ
α(N−1)
N−n−1

− αn
N−n−1

)(
1
β

)α

= 1− e
−
(
σ
α(N−n−1)
N−n−1

)(
1
β

)α

= 1− e−
(
σ
β

)α
(2.19)

Note also that the value of p before cycling when X = σ can be obtained
from Eq. 2.12 as:

p(n) = 1− e−
(
σ
β

)α
(2.20)

Comparing Eqs. 2.19 and 2.20 it is obvious that the probability of failure
p(n) after n cycles is the same as the probability of failure p before cyclic
loading started. That is, the surviving population of specimens after cyclic
loading at stress σ has a residual strength distribution in which the probability
p that the strength of any given specimen is less than σ is constant. For
conciseness, p will be referred to as the cycle-by-cycle probability of failure.
The value of p does not change with cyclic loading, and is equal to its static
value from the static strength population. This is a direct result of the residual
strength assumption of Eq. 2.2 and the assumption that the static strength
follows a two- parameter Weibull distribution.

At first glance, the conclusion that p is constant might appear to be limiting
and unrealistic given the discussion in Chapter 1 about the different types of
damage and their evolution during cyclic loading. One would expect that
as damage evolves, p will change and, in general, it does. However, examples
where this conclusion of constant p is supported by experimental evidence and
analysis can easily be found.

The first such example is the case of a [0m/90n/0m] laminate under tension-
tension loading. The applied load is along the fibers in the 0◦ plies. Even if
the applied load is relatively low, there will be a number of load repetitions
after which matrix cracks will appear in the 90◦ plies. The first such matrix
crack is shown in Figure 2.6 and extends along the full width of the laminate,
perpendicular to the surface of Figure 2.6, through the thickness of the 90◦
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layer. The matrix cracks in such a laminate are confined to the 90◦ plies
because the 0◦ plies act as crack stoppers. Upon further cycling, more cracks
will appear in the 90◦ plies and the crack density will increase [71]. For a
large number of cycles, the only discernible difference at this scale of a few ply
thicknesses, is the creation of more cracks in the 90◦ plies. Considering how
load is transferred from one end of the laminate to the next, it is obvious that
in the vicinity of a matrix crack, and because the crack surface is unloaded, the
axial load in the 90◦ plies must shear itself to the adjacent 0◦ plies. This means
that interlaminar shear and normal stresses develop near the matrix cracks
(for a detailed solution of this problem see section 6.2.2). These interlaminar
stresses die out very quickly and the matrix cracks must be very close to each
other for interaction to occur. Therefore, for quite a large number of cycles,
the crack density increases but in the vicinity of individual cracks the stress
field does not change. This is shown in 2.7.

Figure 2.6: [0m / 90n / 0m] laminate with matrix crack in 90◦ plies

So as long as adjacent matrix cracks are not too close and the stress field
from one affects that from another, the critical stresses, in the 0◦ ply, since
all the axial load is in the 0◦ ply, both in terms of magnitude and shape do
not change. As a result, the residual strength of the laminate as predicted
using any stress-based failure criterion does not change with cycles. This
conclusion will be valid for the entire population of specimens tested under
tension-tension fatigue. Therefore, for a large number of cycles, the residual
strength population of specimens such as the one shown in Figure 2.7 will
remain unaffected. This means that, for a given applied load σ, the cycle-by-
cycle probability of failure p will remain constant.

Another example where the cycle-by-cycle probability of failure remains
constant with cycles, is that of a laminate loaded in tension and developing
an edge delamination. The situation is shown schematically in Figure 2.8.

Due to the fact that interlaminar stresses develop at the free edges of the
laminate shown in Figure 2.8, delaminations of length a are created along
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Figure 2.7: Stresses in the 0◦ ply between two successive matrix cracks

the entire edge of the laminate (at symmetric ply interfaces on both edges of
the laminate). The static problem has been solved by O’Brien in [72] where
he showed that the applied strain ε is related to the energy release G, the
laminate axial stiffness ELAM , the axial stiffnesses Ei of the sub- laminates
created by the delaminations, and the corresponding thicknesses h (laminate)
and ti (sublaminates) through the relation:

G =
1

2
ε2h

(
ELAM −

∑n
i=1Eiti
h

)
(2.21)

O’Brien [72] found excellent agreement of Eq. 2.21 with test results. Note
that using strain instead of stress does not change anything in the model.
What is really significant for the present discussion is that the delamination
size does not appear in Eq. 2.21. This suggests that, even if, under repeated
loading the delamination grows, towards the center of the laminate in Figure
2.8, the energy release rate will still be given by Eq. 2.21. As a result, one can
expect that, even though the delamination grows under repeated loading, the
cycle-by-cycle probability of failure p, directly related to G in this case, will
remain relatively constant.

The two examples mentioned above are not meant to be proofs but strong
indicators that under certain circumstances it will be possible to have constant
cycle-by-cycle probability of failure p. In fact, in the present model it
will, for the time being, be assumed that given a starting condition of a
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Figure 2.8: Edge delaminations developing in a laminate under tensile loading

composite structure, the probability of failure p will stay constant with cycles
until a significant change in damage occurs (matrix cracks transitioning to
delaminations, or delaminations leading to fiber breakage, etc.). In a sense,
a constant value of p implies that (a) the current damage state is increasing
without interaction or creation of a different type of damage, for example more
matrix cracks are created without interacting with each other, or (b) damage
mechanisms at lower scales than the ones examined are occurring and until
they coalesce to form damage in the scale of interest (for example micro-voids
coalesce to form matrix cracks or delaminations) they have no effect on the
value of p.

It should be noted that a constant value of p does not mean that the residual
strength is constant. The residual strength will always decrease according to
Eq. 2.21. It is expected that this assumption of piecewise constant value of
p as a function of cycles, will not always be sufficiently accurate. The range
of applicability of this assumption will be investigated in more detail later in
sections 2.3 and 6.1.

2.2.2 Determination of cycles to failure

The analytical framework that can be used to determine the cycles to failure
N under constant amplitude loading has now been established. If p is the
(constant) probability of failure during a cycle given an applied stress σ, then
the probability Pi that there has been “failure” between cycle 1 and cycle i
can be determined as the product of the probability of failure p during any
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cycle and the probability that there has been no failure during any of the other
i − 1 cycles (the reason for the quotes for the word failure will be discussed
later on in this section):

Pi = p(1− p)i−1 (2.22)

then the probability of failure P anywhere between 1 and N cycles is the
sum of all probabilities Pi given by Eq. 2.22:

P =
N∑
i=1

Pi =
N∑
i=1

p(1− p)N−1 (2.23)

From a mathematical perspective, Eq. 2.23 gives the probability that there
has been one (and only one) failure between 1 and N cycles. For the case of
constant p, which is the case examined here, the summation in Eq. 2.23 can
be simplified to:

P = Np(1− p)N−1 for constant p (2.24)

Eq. 2.24 relates the probability P that the structure has failed anywhere
between 1 and N cycles to the cycle-by-cycle probability of failure p. It is
important to emphasize that P is not the probability of failure after N cycles
but the probability that the structure failed at some point between cycles 1
and N . A plot of P as a function of N for an arbitrary value of p(= 1x10−6)
is shown in Figure 2.9.

Figure 2.9: Probability that the structure failed between 1 and N cycles as a
function of N

28



Analytical model - constant amplitude

As can seen from Figure 2.9, P goes through a maximum as N increases
and then decreases to zero. The number of cycles Nc at which P is maximum
(Pmax) can be determined by differentiating Eq. 2.24 with respect to Nc and
setting the result equal to zero. Then:

Nc = − 1

ln(1− p)
(2.25)

This relationship will form the basis for predicting the cycles to failure
under constant amplitude σ. Before proceeding, however, a discussion on the
derivation of Eq. 2.25 is in order.

The mathematical treatment from Eq. 2.22 to Eq. 2.25 used the word
“failure” in rather broad terms and this is why it appears in quotes. Strictly
speaking, Eq. 2.22 gives the probability that there has been one and only one
failure between 1 and i cycles. However, for any structure, there can be no
more than one failures, nor can one say that the structure can continue cycling
after it has failed. This is a situation where a mathematical model can be
applied to reality only with proper redefinition of terms. In the mathematical
derivation the assumption is made that there is a probability p of an event
happening. This event may happen more than once. For example, when
tossing a fair coin, p = 0.5. Then, P from Eq. 2.22 could be the probability
that after i tosses, heads has occurred once and only once. This is also the
reason for the shape of the function P in Figure 2.9. There is a maximum and
then P goes to zero because, for a sufficiently large number of tries (tosses),
there would be a second time that heads occurred, and a third, etc.

If instead of occurrences of heads one used structural failure, there would be
an inconsistency between the mathematical model and physical reality. Three
explanations are provided to reconcile the two: One, in the physical model the
structure is not allowed to fail but to get arbitrarily close to failure. So Eqs.
2.22-2.24 calculate the probability that the structure has gotten arbitrarily
close to failure, but has not failed, once and only once between 1 and N
cycles. Two, in a broader sense, and in agreement with damage modeling as
already described, failure here denotes a change from one type of damage to
another (matrix cracks transitioning to delamination for example). In such a
case there is no problem with structural failure invalidating the mathematical
model. Three, one can arbitrarily neglect the derivation from Eq. 2.22 to Eq.
2.24 and postulate that the cycles to failure are given by Eq. 2.25 without any
proof or derivation.

Proceeding now with the implications of Eq. 2.25, it should be pointed
out that the value of Pmax corresponding to Nc can be found by substituting
N = Nc in Eq. 2.24. For small values of p, i.e. p < 0.05, which covers most
cases, it can be shown that:
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Pmax ∼=
1

e
, p < 0.05 (2.26)

This implies that the maximum value of P is relatively constant and
independent of p, as long as p < 0.05, and equal to approximately 0.368
or 36.8%. The simplification of Eq. 2.25 that occurs when p is small, is also
of some interest. If p is less than 0.05, Nc ≈ 1/p.

Eq. 2.25 is the general expression of cycles to failure under constant
amplitude with maximum stress σ. The dependence on σ is through p and
Eqs. 2.19 or 2.20. For the special case where the static strength follows a
two-parameter Weibull distribution, Eq. 2.19 can be used to substitute in Eq.
2.25 to obtain:

Nc = − 1

ln(1− p)
= − 1

ln

1−

1− e−
(
σ
β

)α︸ ︷︷ ︸
p

 (2.27)

This can be further simplified to:

Nc = − 1

ln

(
e
−
(
σ
β

)α) (2.28)

which finally leads to:

Nc =

(
β

σ

)α
(2.29)

or, solving in terms of stress σ, to recast in the form of an S−N curve (and
dropping the subscript c from Nc):

σ =
β

(N)
1
α

(2.30)

Eq. 2.30 gives the stress level that would be required for a structure to fail
after N cycles where α and β are the shape and scale parameters of the static
strength distribution of the structure for the same type of loading, and failure
mode, as during fatigue loading. Since α and β are readily obtained from the
statistical characterization of the static strength population, Eq. 2.30 has the
great advantage of being a closed form expression that requires no curve fitting
of fatigue data or the use of any model parameters that need to be determined
by fatigue testing. This equation is only based on the residual strength model
of Eq. 2.2 and the assumption that the static strength population follows a
two- parameter Weibull distribution.
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A minor correction to Eq. 2.30 may be necessary for low values of N . It
can be seen from Eq. 2.30 that when N = 1, which coincides with a static
strength test, the stress to cause failure is:

σ = β (2.31)

This is a small inconsistency as the shape parameter β, as mentioned earlier,
see discussion after Eq. 2.11, corresponds to the 63.2 percentile value and not
the 50th percentile. Eq. 2.30 should recover the mean of the static strength
population, 50th percentile, when N = 1. Using Eq. 2.30 as it is would give a
small error for low values of N . For consistency, Eq. 2.30 can be corrected to
read:

σ =
Xm

(N)
1
α

(2.32)

where Xm is the mean of the static strength population. A comparison of
the predictions of Eqs. 2.30 and 2.32 is shown in Figure 2.10 for the same
static strength population as that shown in Figs 2.2 and 2.3. The biggest
difference (in stress) occurring for N = 1 is, in this example, less than 5%.

Figure 2.10: S-N curves predicted by Eqs 2.30 and 2.32

In the case where, instead of two-parameter Weibull, the static strength
follows a normal distribution, the cycle-by-cycle probability of failure p is
given by the well known expression for normal distribution:

p =

∫ σ

−∞

1

s
√

2π
e−

(x−Xm)2

2s2 dx (2.33)
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where Xm and s are the mean and standard deviation respectively of the
static strength population. Eq. 2.33 can be evaluated using canned software or
tables of the standard normal distribution, or, to within 0.07%, the following
equation can be used [73]:

p = 1− 0.5b1− [1 + (A+BZp)
C ]D + [1 + (A−BZp)C ]Dc (2.34)

where

Zp =
|σ −Xm|

s
A = 0.644693 B = 0.161984 C = 4.874 D = −6.158

Then, if the static strength population follows a normal distribution with
mean Xm and standard deviation s, Eq. 2.34 can be used to obtain p which
can then be substituted in Eq. 2.25 to obtain the cycles to failure. Note that,
unlike the case of a two-parameter Weibull distribution where a concise closed-
form S − N curve was derived, for a normal distribution the corresponding
expression is more involved and requires combining Eqs. 2.25 and 2.34.

2.3 Effect of R Ratio

It has been implicitly assumed in the derivation of the previous two sections
that the load excursion in each cycle starts from 0, goes to a maximum (or
minimum) stress σ and returns again to 0 or starts from some negative value,
goes to zero and then back to the same negative value. These correspond to
the cases where

R =
σmin
σmax

=
0

σmax
= 0 or

σmin
σmax

=
σmin

0
=∞ (2.35)

The case R = 0 is shown in Figure 2.11. In this case, the cycle-by-cycle
probability p is the ratio of the shaded area in Figure 2.11 to the total area
under the strength distribution curve along the y axis.

If R is not equal to zero or infinity, the load excursion does not start and
stop at zero and the cycle-by-cycle probability of failure p is smaller than the
ratio of the areas in Figure 2.11. The structure must be credited for damage
creation or accumulation corresponding to the load excursion going all the way
down to zero. In a sense, this is analogous to calculating life expectancy values,
which, at any time to in a persons life, are higher than the value when a person
is born (to = 0) since the person has survived up to that point (to). Therefore,
the solution must be modified when R 6= 0 to account for the different load
excursion. To do this accurately, test data in which specimens are tested
statically loading from some non-zero value to failure would be needed but
such data are not available. For the purposes of this work, relatively simple
adjustments were made to the equations to account for the effect of R ratio.
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Figure 2.11: Cyclic loading for R = 0

2.3.1 Tension-tension (0 < R < 1) or compression-compression (R >
1) cases.

The tension-tension (0 < R < 1) and compression-compression (R > 1)
situation are shown in Figure 2.12. In this case, there is a loading region
between 0 and the minimum load for tension-tension or 0 and the maximum
load for compression-compression that is not exerted to the structure. This
region has a probability of failure associated with it, however small, that must
not be included in the value of p for the structure. This means that the value
of p in this case is smaller than for the case where the load goes to zero.

Figure 2.12: Cases where 0 < R < 1 or R > 1

33



Analytical model - constant amplitude

As a first approximation, the (known) probability distribution density when
the maximum (or minimum) value equals zero (R = 0 or R = 8) is modified
as follows:

Let x1 and x2 be the 1 percentile and 99 percentile values of the distribution
when R = 0 or R =∞. In addition, without loss of generality, assume this is
a normal distribution. If now the load excursion does not start from zero, x1
is moved to a new value x∗1 such that its distance from the mode (maximum
value) of the original distribution is a fraction r times the original distance
Xmode − x1. Using normal distribution statistics, where the mode and the
mean are the same (Xmode = Xm) one can write:

x1 = Xm − r(2.326)s

x2 = Xm − (2.326)s (2.36)

where Xm is the mean (and mode) of the original distribution, s is the
standard deviation of the original distribution, 2.326 is the one-sided tolerance
limit factor for the 99th percentile value for normal distribution taken from
Table 9.10.1 given in [73] and r is defined as:

r = 1−R for 0 ≤ R < 1

r = 1− 1

R
for R > 1 (2.37)

Note that when R = 0 or R = ∞ Eq. 2.37 gives r = 1 and, thus, Eq.
2.36 gives back x1 which is the original 1 percentile of the original normal
distribution. When r 6= 1, the first of Eqs 2.36 gives x1 = x∗1. Also, by
construction, the quantity Xm − 2.326s is the 1 percentile value of a normal
distribution with mean Xm and standard deviation s (Table 9.10.1 in [73]).

With this transformation of the 1 percentile value, note that the 99
percentile value remains unaffected, a new population is created 98% of which
is contained between x∗1 and x2. This population is approximated as a two-
parameter Weibull distribution with mode equal to the mode or the original
normal distribution (which equals the mean for a normal distribution) and
98% contained between x∗1 and x2. The shape and scale parameters of this
two-parameter Weibull distribution are obtained using Eq. 2.20, which gives:

e
−(x1

β
)α − e−(

x2
β
)α

= 0.98 (2.38)

and the equation for the mode of a Weibull distribution:

β

(
1− 1

α

)1/α

= Xm (2.39)

34



Analytical model - constant amplitude

Eqs. 2.38 and 2.39 can be solved iteratively for α and β which define the
two- parameter Weibull distribution describing the strength of the structure
when 0 < R < 1 or R > 1. The change from one statistical distribution to
another is shown schematically in Figure 2.13.

Figure 2.13: Modification of probability density distribution when R 6= 0

The procedure in this case is as follows:

1. given the static strength distribution, the 1 and 99 percentile points x1
and x2 are determined.

2. depending on the R value used, r is calculated from Eq. 2.37

3. the new x1 value (= x∗1) is determined from Eq. 2.36

4. the shape and scale parameters α and β for a two-parameter Weibull
distribution describing the modified strength population are determined
by solving Eqs. 2.38 and 2.39.

5. the mean Xm of the modified strength population is determined using:

Xm = βΓ(1 +
1

α
) (2.40)

with α and β as determined from step (4)

6. Eq. 2.32 is used to obtain cycles to failure with Xm from step (5) and
α from step (4)
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Figure 2.14: Typical cyclic load for R < 0

2.3.2 Tension-compression cases (R < 0)

The situation is shown in Figure 2.14. The maximum load is positive and the
minimum load is negative.

The way to model this situation is to recognize that each cycle consists of
two portions. One from 0 to the maximum (positive) load and back to zero
and another from zero to the minimum (negative) load and back to zero. Each
portion has its own probability of failure directly related to the static strength
distribution for tension or compression. Representative strength distributions
for tension and compression are shown along the y axis in Figure 2.14. Note
that the corresponding mean values Xt

m and Xc
m respectively do not, usually,

have the same magnitude. Nor are the corresponding standard deviations the
same; this is why the bandwidths of the two distributions shown in Figure
2.14 are different. As a result, given a σmax and a σmin value, the cycle-by-
cycle probabilities of failure during the tension portion of the cycle (pT ) and
the compression portion of the cycle (pc) are, in general different. This is a
situation where the use of two different values of p, pT and pC implicitly allows
for two different types of damage to be included in the model one for tension
and one for compression. For example, the tension could be dominated by
matrix cracks and the compression could be dominated by kink band formation
and fiber kinking. One type of damage could lead to failure during the tension
portion of the cycle and the other during the compression portion.

The approach presented in section 2.2 must now be modified to account for
the presence of two cycle-by-cycle probabilities of failure values pT and pC .
The problem is formulated as follows.
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Determine the probability of occurrence P of one failure after N trials each
with probability pT and N trials each with probability pC . The derivation is
analogous to that for Eqs. 2.23 and 2.24 and leads to the expression:

P = N(pT + pC − 2pT pC)(1− pT )(N−1)(1− pC)(N−1) (2.41)

As before, the cycles to failure are determined by maximizing P in Eq. 2.41.
Differentiating the right hand side of Eq. 2.41 with respect to N and setting
the result equal to zero gives:

N = − 1

ln(1− pT ) + ln(1− pC)
(2.42)

Setting pC equal to zero, results in a tension-tension case with R = 0 as
discussed in section 2.2. In such a case, Eq. 2.42 reduces to Eq. 2.25 as
expected.

For the case where the static tension and compression strengths are
described by two- parameter Weibull distributions, using Eq. 2.12 or 2.20
to substitute for pT and pC in Eq. 2.42 gives:

N =
1

(σmaxβT
)αT + (σminβC

)αC
(2.43)

For the special case of fully-reversed loading (σmin = σmax, i.e. R = −1),
Eq. 2.43 simplifies to:

N =
1

( σ
βT

)αT + ( σ
βC

)αC
(2.44)

Eqs. 2.43 or 2.44 are analogous to Eq. 2.29 for the case R = 0. Due to their
form, with, in general, aT 6= aC it is not possible to solve them in terms of σ
as a function of N to recast them in a standard S −N curve form, however,
they can easily be used to obtain S −N curves when R < 0 by picking values
for σ and solving for the corresponding cycles to failure N .

At this point, the basic model is complete. It relates fatigue life to residual
strength through the cycle-by-cycle probability of failure. Other than the need
to determine the statistical characteristics (mean and standard deviation for
example) of the static strength distribution, it is a closed-form analytical model
that requires no curve fitting of test data and does not depend on empirical or
semi-empirical parameters. It is simple to use and, so far, requires no complex
computational model to work. Comparisons of model predictions with test
results in the next chapter will be used to identify its advantages and some
of its shortcomings; the latter will require further improvements that will be
introduced in chapter 6.
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3 Comparison of analytical predictions with test
results - implications

In order to gauge the applicability and accuracy of the model in determining
fatigue lives, its predictions are compared to test results in this chapter. These
comparisons establish the accuracy of the model and help identify areas where
the model needs improvements. Different parts of the model such as the
prediction of residual strength and the prediction of cycles to failure are
isolated and each is compared to test results. This helps in isolating areas
where the analytical model may have difficulty in simulating the performance
of composite structures under cyclic loading.

The predictions of residual strength are compared to test results in section
3.1. The predicted load or stress that would cause failure after a specified
number of cycles under constant amplitude loading is compared to test results
in section 3.2. Constant life diagrams constructed using the present model are
compared to test results in section 3.3. Areas where the present model needs
improvement as deduced from the results presented in the first three sections,
are discussed in section 3.4. Conclusions are summarized in section 3.5.

3.1 Residual strength comparison

The first aspect of the model was to determine the residual strength σr for
a composite structure undergoing n cycles with maximum (or minimum)
cyclic load σ. Test data obtained by Yang and Jones [69] for a [±35]2s
Graphite/Epoxy laminate were used for comparison to model predictions. In
these tests, both matrix cracks and fiber failures were present.

The test results were obtained for R = 0.1 so the procedure described
in section 2.3.1 was used to generate predictions. The resulting Weibull
parameters for the static strength population were α=23.28 and β=431.1 MPa
with a mean strength σfs of 418.3 MPa obtained from Eq. 2.40. The following
table can then be created:

The predictions of the model are in good agreement (within 8%) with test
results in [69]. Unfortunately, very few data points were available at each cycle
level to make more conclusive comparisons. This suggests that the proposed
model for determining residual strength can be very useful in predicting fatigue
lives of composite structures. It should be noted, however, that the analytical
predictions obtained here were based on a constant cycle-by-cycle probability
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Table 3.1: Comparison of residual strength predictions to test results

Applied Applied N to failure Predicted Test res. %
cycle, n stress σmax under σmax res. strength, strength Difference

[69] MPa [69] (Eq. 2.32 MPa (Eq. MPa ( [69])
2.10)

1100 298.1 2663 363.7 392.3 -7.3

12100 268.3 30918 351.6 379 -7.2

137500 238.4 483964 356.5 363.7 -2.0

150000 232.9 833292 376.4 348.8 +7.9

900 290.7 4781 390.6 405.3 -3.6

of failure p which, as discussed in the previous chapter, will not necessarily
be true for the entire fatigue life of the structure. Still, the accuracy of the
predictions shows that this assumption does not limit the predictive capability
of the method significantly.

3.2 Applied stress level to cause failure after N cycles (S-N
curves)

With some confidence in the residual strength model established, one can
proceed with predicting the cycles to failure for different cases and comparing
predictions to test results. A wide variety of materials, loadings, and
geometries will be used for comparison in order to better understand the
limitations of the model.

It should be noted that wherever the published test data included more than
one data point at the same load level, only the points corresponding to the
minimum and maximum cycles at that load level are shown here for clarity.
It is also important to note that, in many cases, the statistical information
for the static strength data was not provided in the published papers used for
comparison to analytical predictions. In such cases, the static strength data
provided was assumed to cover a certain percentage of the population between
90 and 95%, depending on the number of data points. The actual percentage
value was determined using Monte Carlo simulations for populations with
the same mean as the available data and a range of standard deviations in
the vicinity of the standard deviation of the test data. Then corresponding
statistics for normal or two-parameter Weibull distributions were used to
obtain the needed quantities, i.e. mean and standard deviation for normal
distribution, shape and scale parameter for two-parameter Weibull.

One of the problems when comparing predictions to test data from fatigue
tests is the quantification of the discrepancy between the two. It is possible
to measure the error on stress for a given cycle level, or on life for a given
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stress level. These two error estimates will be drastically different (less than
20% on stress level but a factor of 10 or more in some cases on life especially
when the S-N curves are rather flat). In addition, this comparison requires a
rigorous determination of the best fit curve to the test data which, in itself,
can be an elaborate approach involving some degree of uncertainty [62]. For
this reason, no quantitative measure of the discrepancy between analytical
predictions and test results is given. Other than a qualitative assessment, it
is left to the reader to form his/her own opinion.

The predictions of the present model are compared to test results for uni-
directional AS4/3501-6 Graphite/Epoxy under cyclic loading with R=0 in
Figure 3.1. Normal distribution for the static strength and Eq. 2.25 were used
in this case.

Figure 3.1: Analysis versus test for uni-directional AS4/3501-6 (R=0). Test
results are taken from [74]

While the predictions are in good agreement with test results, it is obvious
from Figure 3.1 that the analytical model consistently under-predicts the
test results. There are several reasons for this discrepancy. First, the
statistics of the static strength distribution are not given in the reference
and were estimated as described earlier. More importantly, the cycle-by-cycle
probability p was assumed to be constant, however, as the weaker fibers in the
laminate fail and load is redistributed, p will change. This effect is accounted
for in the modified version of the model presented in section 6.2.1 where this
case will be revisited.

To examine the validity of the model when R 6= 0 two additional cases shown
in Figures 3.2 and 3.3 are used. Comparisons for tension-tension fatigue for
two positive R values (R=0.1 and R=0.5) are shown in Figure 3.2. This is a
case of a [(±45/02)2]s T800/5245 bismaleimide (BMI) laminate using the test
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results obtained from [75]. No clear description of the types of damage created
during test was provided in the reference. The predictions are obtained using
the methodology of section 2.3.1. Excellent agreement between analytical
predictions and test results is observed.

Figure 3.2: Analysis versus test for [(±45/02)2]s T800/5245 (R=0.1 and
R=0.5). The test results are obtained from [75]

The case of fully-reversed loading (R=-1) for the same material is shown
in Figure 3.3. Here the methodology described in section 2.3.2 was used.
Again very good agreement is observed between the results and analytical
predictions. To complete the range of typical R values, a compression-
compression case (R=10) with same laminate as in Figures 3.2 and 3.3 is shown
in Figure 3.4. The agreement between predictions and test results shown in
Figure 3.4 is not as good as that found in the previous cases. The predictions
are conservative. There are a couple of explanations for this discrepancy.

Figure 3.3: Analysis versus test for [(±45/02)2]s T800/5245 (R=-1). The test
results are obtained from [75]
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Figure 3.4: Analysis versus test for [(±45/02)2]s T800/5245 (R=10). The test
results are obtained from [75]

The main reason is the assumption made of constant cycle-by-cycle proba-
bility of failure p, for the present laminate, breaks down as soon as kink-bands
due to fiber micro-buckling occur. At this point, there is a jump in the value
of p to a new value which will stay roughly constant until the next type of
damage (e.g. delaminations) appears. Another reason is that it is difficult to
obtain accurate information for the statistics of the static strength distribution
of the laminate used in tests.

A case where the static strength is described more accurately using a two-
parameter Weibull distribution is shown in Figure 3.5. This is a [02/±45/02/±
45/90]s BMI laminate at R=-1 using test data obtained from Maier et al
[76]. During the tests, transverse cracks developed in the 90 and 45 degree
plies followed by delaminations. What is interesting in this case, from the
perspective of the analytical model, is that the difference in static strengths
in tension and compression is significant with the tension strength having a
higher magnitude than the compression strength. As a result, the value of p
during the tension part of the cycle pT is negligible compared to the value of
p during the compression part of the cycle pC . The life predictions then can
be generated either using Eq. 2.44 or Eq. 2.32 using only information from
the compression part of the cycle. The latter approach was used here. Good
agreement between tests and analytical predictions is observed.

A more complicated loading case of combined tension-torsion for woven glass
fabric is shown in Figure 3.6. The magnitude of maximum tension and torsion
loads was the same and R=0. As might be expected, this case stretches the
“abilities” of the model. The complexity of the loading leads to the creation
of different types of damage. A single constant value of the cycle-by-cycle
probability of failure p is not sufficient to capture the behavior. The predicted
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Figure 3.5: Analysis versus test for [02/±45/02/±45/90]s Celion 6000/ H795E
BMI (R=-1). The test results are obtained from [76]

curve has a different slope than the test results but, after 105 cycles, the
predictions are reasonable. This suggests that the damage has coalesced to
a single major type of damage, which is captured well by a single p value.
Unfortunately the authors of [77] did not give any description of the type of
damage and how it evolved with cycles.

Figure 3.6: Tension-Torsion case (tension=torsion and R=0) for woven glass
fabric. The test results are obtained from [77]

So far, the test results have not included delaminations, other than as a
by-product of coalescence of other types of damage such as matrix cracks. To
examine how well the model performs when delaminations are the main type
of damage created, three cases are shown in Figures 3.7 - 3.9. In all cases the
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onset of delamination load is plotted as a function of cycles.

Figure 3.7: Onset of delamination load for skin/stiffener pull-off configuration
(R=0.1, material: IM6/3501-6). The test results are obtained from
[78]

The case of a stiffener flange with layup [45/90/-45/0/90]s co-cured on a
skin with layup [90/45/02/ − 45/45/ − 45/90]s both made with IM6/3501-6
Graphite Epoxy is shown in Figure 3.7. The damage observed during testing
was matrix cracks followed by delaminations. Note that only three data points
were available for the static strength case. They were assumed to cover 90% of
the entire population which was assumed to follow normal distribution. Good
agreement is observed between the analysis and the test results.

The case of onset of edge delamination in a thermoplastic laminate with
layup [352/ − 352/02/902]s is shown in Figure 3.8. Here, the energy release
rate G is used as the loading parameter. The material is AS4/PEEK where
the resin is thermoplastic. The dominant failure mode during the tests was
edge delamination. The predictions are slightly unconservative but follow the
trend of the test data very well.

The last onset of delamination case is shown in Figure 3.9. This is the
case of quasi-isotropic glass/epoxy. Edge delamination was again the damage
observed during the tests. The predictions were obtained following the
procedure in section 2.3.1. Good agreement between test results and analytical
predictions is observed but the analytical curve has different slope from that
of the test data.

The last comparison in this section involves a more complex structure.
This is a bolted joint with T300/914 material and layup: [02/ ± 45/02/ ±
45/90]s base plate with [02/45/9/ − 45/90]s doublers. Loading was tension-
compression with R=-1.66. The test data were obtained from Gerharz et
al [81]. A combination of bearing failure, matrix cracks, and delaminations
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Figure 3.8: Onset of edge delamination for [352/ − 352/02/902]s AS4/PEEK
(R=0.1). The test results are obtained from [79]

were observed during tests. The comparison between theory and test is shown
in Figure 3.10. The methodology in section 2.3.2 was used to obtain the
analytical predictions. This is, again, a case where a constant cycle-by-cycle
probability of failure p is not sufficient to capture the complexity of the types
of damage created throughout the fatigue life. The analytical curve has a
different slope, which matches the test results more closely at low cycles but
is unconservative at high cycles.

3.3 Goodman diagrams

One disadvantage of S-N curves is that they are specific to a given R value.
There is no way to use the S-N curve obtained for one R value to determine
the corresponding S-N curve for another R value. Thus, given that most
applications in practice are exposed to a variety of R values, the use of S-N
curves can be limited. One method that can be used to account for different
R values is to use constant life or Goodman diagrams.

Goodman diagrams are very useful in structural design because they provide
lines of constant fatigue life for different combinations of steady and vibratory
loads that relate directly to different R values. The term Goodman diagram
is used here in a broader sense than in metals where clear regions of crack
initiation, stable crack growth, and unstable crack growth are defined. In
a composite several types of damage, matrix cracks, delaminations, fiber
kink bands, cracks etc., may be present and interacting. This means that
a Goodman diagram for a composite structure gives the cycles to failure for
a given a combination of steady and vibratory loads, but does not give any
information about the state of damage and damage evolution during cycling.
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Figure 3.9: Onset of delamination for quasi-isotropic glass/epoxy (R=0.1).
The test results are obtained from [80]

Generating Goodman diagrams in practice requires a large amount of testing
covering a wide range of R ratios and cycles. The method presented in
chapter 2 can be used to generate the Goodman diagram for a given composite
application without resorting to any fatigue testing. A brief description of how
this is done is given below.

The steady and vibratory loads in a fatigue test are defined as

σst =
1 +R

2
σmax =

1 +R

2R
σmin σvib =

1−R
2

σmax =
1−R

2R
σmin (3.1)

with R = σmin/σmax
The approach is easier to follow using an example. An open hole specimen

is chosen here. The mean Open Hole Tension (OHT) strength is assumed
to be equal to 410 MPa and the Open Hole Compression (OHC) strength
to 331 MPa. These are typical values for intermediate modulus toughened
Graphite/Epoxy material. For consistency, the statistical distribution for the
static strength (even for R=0 cases) is assumed here to be a two-parameter
Weibull distribution.

This choice of two-parameter Weibull distributions introduces a small
complication. Statistical information pertaining to test data in the open
literature is typically presented in terms of a mean value and a coefficient
of variation (CV) which is the ratio of the standard deviation divided by
the mean. For a two-parameter Weibull distribution, a relation between
mean and CV and the Weibull shape and scale parameters is needed. The
scale parameter β is related to the mean of the distribution through Eq.
2.40. It is the relation between the CV and the shape parameter α that
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Figure 3.10: Tension-Compression (R=-1.66) failure of T300/914 bolted joints.
The test results are obtained from [81]

requires a little extra work. This was first introduced in section 2.2. Several
authors have developed rigorous relations between CV and the Weibull
shape parameter. For example, Sheikh et al [82] have developed a rather
complicated expression between CV and the Weibull shape parameter that
requires iterations. They also note that, for most CV values, the plot of
shape parameter versus 1/CV is a straight line. This was verified here by
taking various standard normal distributions with different CV values and
determining the “equivalent” two-parameter Weibull distribution that would
match the 1 and 99 percentile values for the two populations using Eqs 2.12
and 2.33. For each of the equivalent two-parameter Weibull distributions, the
corresponding shape parameter was calculated. A plot of the results is shown
in Figure 3.11. The points in Figure 3.11 define a straight line (goodness of
fit R2 = 1) the equation of which is

α = −0.9686 + 124.78
1

CV
(3.2)

with CV expressed as a percentage. Note that the negative constant in
Eq. 3.2 is an artifact of the curve-fitting procedure and will affect the results
significantly only for very large CV values.

In order to proceed, the scatter (shape parameter or CV) for the OHT and
OHC mean values is needed. This would depend on the specific material and
stacking sequence selected. Instead of fixing material and stacking sequence,
representative values are used to generate a generic Goodman diagram.
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Figure 3.11: Relationship between Weibull shape parameter and Coefficient of
Variation (CV)

Whitehead et al [83] examined thousands of data points for typical composite
structures and, after pooling the data, determined that strength follows a
two parameter Weibull distribution. This distribution has a shape parameter
which, itself, follows another two-parameter Weibull distribution with modal
value of 20 and mean value 23.2.

One can now use either the modal value or the mean value to substitute for
α in Eq. 3.2 to obtain the corresponding CV value. For conservatism, which
results in a larger CV, the modal value is used. Then, solving for CV gives a
value of 6%. Using Eqs. 2.39 and 2.40 and the mode of 20 and mean of 23.2,
one can solve for the shape and scale parameters of the distribution describing
the shape parameter of all the data examined in [83]. The equations to be
solved are:

20 = β(1− 1

α
)

1
α (3.3)

23.1 = βΓ(
1

α
+ 1) (3.4)

Solving these two equations for α and β gives α=2.22 and β=26.2. These
values can now be used in Eq. 2.12 to determine the percentile corresponding
to the CV value of 6%. It is found that a modal value of 20 corresponds to
p ≈ 0.42. This means that a CV value of 6% is greater than or equal to 42%
of the cases examined in reference [83]. In what follows, it was decided to add
a degree of conservatism by increasing the CV for OHT from 6% to 7% and
the CV for OHC from 6% to 10%. Using a greater CV value for OHC than
OHT is consistent with the fact that compression tests typically have greater
CV values than tension tests [83].
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Using the CV values established above, the Goodman diagram can now be
constructed using the following steps. An R value and a value N for the cycles
to failure are selected. Then, Eqs 2.32 or 2.43 , with appropriate adjustments
for the value of R, are used to calculate the maximum or minimum stress to
cause failure after N cycles. These results are then combined with Eq. 3.1
to determine the corresponding steady and vibratory loads. The cycle levels
selected were, N = 1016 (assumed to represent infinite life), 1010, 108, 107, and
106. Repeating the process for different R values will give different constant
life curves. The resulting Goodman diagram is shown in Figure 3.12.

Figure 3.12: Typical Goodman diagram for open hole specimens (CVten = 7%,
CVcomp = 10%)

Usually, to construct a Goodman diagram, limited test data are used to
obtain a few points on the Goodman diagram which are then connected with
straight lines (see also [50]). The present method, which does not require any
fatigue testing, allows the detailed and accurate construction of such a diagram
to any desired level of detail. The curves shown in Figure 3.12 are not smooth
because a finite number of R values were used to create them and straight line
segments were used to interpolate in-between. It is interesting to note that the
curves for positive steady stress (right hand side of the plot) are concave while
the curves for negative steady stress (left hand side of the plot) are convex.
Analytical derivations of Goodman diagrams with a very similar shape have
also been developed by Schaff and Davidson [32], and Vassilopoulos et al [50].
Experimental evidence of such shapes has been reported by Gerharz et al [81]
and Vassilopoulos et al [50] for notched and unnotched laminates.

As already mentioned, the Goodman diagram provides an overview of the
fatigue life for different R values. Thus, comparing a Goodman diagram
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created using the method presented here to test results will give a better
overview of the accuracy of the method for a variety of R values. This
comparison is shown in Figure 3.13 where test results from Gathercole et al [75]
on T800/5245 BMI material are compared to predictions obtained using the
present method. All stress values are normalized to the static tension strength.
Note that in generating the predictions in Figure 3.13 actual CV values from
the static test results in [75] were used and not the conservative values used
for Figure 3.12.

Figure 3.13: Predicted Goodman diagram versus test results from [75]

It can be seen from Figure 3.13 that for positive steady loads there is
reasonable agreement between the analytical predictions and the test results.
For negative steady loads, however, there an appreciable discrepancy and the
predictions are always conservative, i.e. lower than the test results. This
suggests that the present method has trouble capturing the effect of damage
on fatigue life when compressive loads are involved (R < 0). As mentioned
earlier, this is a limitation of using a constant cycle-by-cycle probability of
failure p. In compression, small scale damage such as fiber micro-buckling
combines with matrix cracking and fiber-matrix disbonds to create damage on
larger scales. This suggests that the value of p changes as the different types
of damage are created and coalesce. Such multiple interacting damage types
are not as common during tension-dominated loading, (0 < R < 1), and using
a single p value in such cases gives reasonable predictions.
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3.4 Evaluation-shortcomings of the method as presented so far

The basic model presented in chapter 2 was compared to test results in this
chapter covering predictions for residual strength, cycles to failure under
constant amplitude loading for different R values, and Goodman diagrams.
The comparisons presented in sections 3.1-3.3 showed that the agreement of
the analytical predictions with test results, when based on a constant cycle-
by-cycle probability of failure p, ranges from excellent to poor. More complex
structures and/or loadings create multiple types of damage during cycling
which result in a variable value of p and this must be accounted for in the
analytical model. A method to do that will be presented later in chapter 6.

Nevertheless, the main advantages of the model presented so far should not
be underestimated. The ability to generate approximate S-N curves without
any fatigue data is of paramount importance in industry as it will help speed
up the design process. Having to wait for fatigue test results in order to
determine whether good static designs will have the required performance
under fatigue loading can cause major delays and can carry significant cost
penalties in a program. It was shown that reasonable to excellent predictions
can be obtained, even with a constant value of p, for a variety of resins,
thermosets, thermoplastics, BMIs, fibers (graphite, glass), in-plane and out-of-
plane loading conditions, and laminates from uni-directional to quasi-isotropic
and anything in-between. The power of the model lies in the fact that it is
purely analytical and all the variables are either known from static tests or
from other considerations. There is no need for curve-fitting of fatigue data,
extra fatigue tests to characterize properties, or for other empirical or semi-
empirical models to generate model variables. This makes the model very
promising for general use in particular when the modifications presented in
chapter 6 to model damage accumulation and interaction better are used.

Some important characteristics of the analytical model presented here
should also be discussed. The first is the sensitivity of the model predictions
to the scatter of residual strength. As can be seen in the general equation,
Eq. 2.25, the cycles to failure depend on the cycle-by-cycle probability of
failure p. This, in turn depends on the scatter of the residual strength. For
the case where the residual strength follows a Weibull distribution this can be
seen directly from Eqs. 2.29 or 2.32 where the shape parameter appears in
the exponent in the right hand side. As mentioned in section 2.2, the shape
parameter is inversely proportional to the scatter (the higher the value of α
the lower the scatter). As a result, the larger the scatter of residual strength,
the lower will be the number of cycles to failure for a given cyclic load.

This means small differences in the determination of scatter, measured
by α in a Weibull distribution or standard deviation s or CV for a normal
distribution, translate to big changes in the predicted cycles to failure. For
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example, for R=0, a 10% increase in the standard deviation s can decrease
the fatigue life by a factor of 5-10 (depending on the case). Thus, accurate
characterization of the static strength or, after cycling, the residual strength
population, is important for getting accurate predictions of cycles to failure.

The second characteristic, which indirectly relates to the point just made
about the scatter, is the need for accurate characterization of the type of
statistical distribution followed by the static or residual strength. There are
rigorous methods for characterizing the statistical distribution of strength
data described in detail in [84]. The discussion in the previous chapter was
confined to normal and two-parameter Weibull distributions because these two
cover the vast majority of distributions encountered in practice. If a different
distribution is more appropriate, the approach to determine p is modified
accordingly. Note however, that Eq. 2.25 is still valid.

One example of the effect of the statistical distribution on the prediction of
cycles to failure is shown in Figure 3.14. This is the same case as in Figure
3.5 but now, instead of a two-parameter Weibull distribution that was used to
generate the results in Figure 3.5, a normal distribution is also used. Clearly,
the normal distribution gives erroneous predictions in this case.

Figure 3.14: Effect of type of statistical distribution on theoretical predictions
for [02/± 45/02/± 45/90]s Celion 6000/ H795E BMI (R=-1)

The third characteristic is the assumption that there is no endurance or
fatigue limit. Unlike ferrous materials, composite materials do not clearly
show an endurance limit. It should be noted that the method presented does
allow for the existence of endurance limit through Eq. 2.8. However, because
there is no hard evidence of the existence of endurance limit, it was decided to
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set it equal to zero. This assumption can be modified as necessary by keeping
a non-zero σE value in Eq. 2.8 and then following the same procedure as given
in chapter 2. As already mentioned the presence of an endurance limit, if it
exists, (see [64, 66] for indications to the contrary) will have an effect mostly
for high cycle fatigue

It should be pointed out that the numerics of the model presented may
reproduce an artificial endurance limit depending on the type of software used
to calculate the value of the cycle-by-cycle probability of failure p. If the
applied load is low enough given the static strength distribution, the value
of p will be so small (e.g. p < 10−17 in excel spreadsheets) that it will be
treated as equal to zero and will give an infinite life. This would suggest that
the stress level corresponding to that low p value behaves as an endurance
limit. There is, however, no reason to believe that this numerical problem
reflects a physical fact. Note also that this numerical problem manifests in life
predictions greater than 1017 cycles which is way beyond any situation found
in practice and thus is of no particular immediate concern.

3.5 Summary

The simplest form of an analytical model that can be used to predict the cycles
to failure of a composite structure under constant amplitude cyclic loading was
presented in this chapter. It is the simplest form because it assumes that the
cycle-by-cycle probability of failure of the structure is constant. Comparisons
with test results showed that the model predictions range from excellent to
poor. The main cause for the discrepancies between analytical predictions and
test results was identified as the fact that the model in its present form does
not account accurately in all cases for the way in which damage evolves in a
composite structure. This suggests that better modeling of damage creation
and evolution during cyclic loading must be incorporated in the model. This
will result in a variable cycle-by-cycle probability of failure. Steps towards
generalizing the present model are taken in Chapter 6.
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4 Applications of the proposed model to establish
reliability-based design curves and omission

levels and reduced number of test cycles

The model presented in the previous two chapters can be used to provide useful
answers to two application-related questions with which typical composite
programs in industry are faced. These are the following:

• determination of the required number of test cycles to achieve a given
reliability

• determination of omission level during a test program

As also mentioned in previous chapters, the derivations and results presented
in this chapter are consistent with one damage state dominating the fatigue
performance and having no major interactions with or transitions to other
damage states. A method to determine the number of test cycles required
to achieve a specific reliability value is shown in section 4.1. The method
to determine omission levels for fatigue tests of composite components is
presented and is compared to test results in section 4.2. An approach to derive
an exchange rule for reduced test cycles equivalent to the required service life
cycles is presented in section 4.3. A summary of the chapter is provided in
section 4.4.

4.1 Determination of number of lifetimes testing for B-basis
reliability

As mentioned in chapter 1, composites have flatter S−N curves than metals.
While this is a significant advantage over metals because the strength reduction
for a given number of cycles is less than the corresponding value for metals,
it carries a significant penalty with it. Flatter S − N curves require a much
larger number of tests in order to obtain a specific design curve, with a specific
reliability.

For example, for secondary structure, the failure of which does not lead to
loss of the aircraft, or for redundant structure ( which has redundant load
paths) the loads of which, upon failure, can be taken by adjacent structure
without compromising the performance of the adjacent structure, the design
curve is a B-Basis reliability curve. A B-Basis value is, by definition, the 10
percentile of a statistical distribution such as the strength of a specimen [85].
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This can be generalized to a B-Basis curve to imply the design curve which
is below at least 90% of the test data of the fatigue test. A typical situation
is shown in Figure 4.1 where the test data from Figure 3.1, taken, in turn,
from [74], are shown. Recall that, for clarity, only the low and high data
points are shown in Figure 4.1 at each load level.

Figure 4.1: Fatigue tests on uni-directional AS4/3501-6 Graphite/Epoxy
Scatter of fatigue tests.

It is easy to see from Figure 4.1 that, even at the same load level (max
stress value on the y axis) the corresponding cycles to failure can easily cover
three decades. For example, when the normalized maximum stress equals 0.8,
the cycles to failure ranged from less than 2000 cycles to almost a million
cycles, i.e., three orders of magnitude. This means that the mean curve fitted
to the data in Figure 4.1 cannot be used for design since there will be a 50%
probability that the actual structure will have a lower life than the mean
curve for any given applied maximum stress. A statistically significant design
curve must be determined that will be lower than almost all the test data,
thus guaranteeing that the actual structure will have life longer than the one
indicated by the design curve. The term statistically significant means that
the design curve has a specific reliability value associated with it. Typical
reliability values used in practice are B-Basis (90% reliability) as mentioned
above for redundant or secondary structure and A-Basis (99% reliability) for
primary structure, failure of which leads to loss of the aircraft.

There are rigorous methods for determining design fatigue curves with
specific reliability, for example in [83] or [62]. These methods all require that
a sufficient number of tests be done across several load levels. This adds to
the cost and duration of the test program. Following these methods, a B-Basis
design curve can be determined as shown in Figure 4.2.
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Figure 4.2: Mean and B-Basis curves for the data in Figure 4.1

The continuous line in Figure 4.2 is the B-Basis curve obtained by statistical
analysis that determines at each cycle level the applied normalized maximum
stress which is lower than 90% of the test data. The dashed line is the mean
curve. What is of primary interest here is the relation of the B-Basis life
compared to the mean life for a given stress level. One such example is shown
in Figure 4.2 when the applied maximum stress is 80% of the static strength
(normalized max stress=0.8 as shown by the horizontal dashed line in the
Figure). Reading off the x-axis the cycles to failure that correspond to the
intersections of the 0.8 normalized maximum stress line with the B-Basis and
Mean curves, one gets approximately 1600 cycles for the B-Basis cycles to
failure or life and 21000 cycles for the mean life. The ratio of these two values,
mean/B-Basis life, is 13.4. This implies that if a single specimen or structure
is used in a test program to verify that the structure has adequate life, then
it should be tested to 13.4 times the service life in order to demonstrate B-
Basis reliability. Rigorous statistical analysis of thousands of data points in
reference [83] has shown that, for typical graphite/epoxy materials, this ratio
of mean to B-Basis life is 13.6. This is a direct result of the flatness of S-N
curves for composites and is a major problem in composite programs with
fatigue sensitive parts because it requires a very large number of cycles to
demonstrate the required reliability. Reduced test times where the applied
loads are increased by a load enhancement factor are also possible [83] but the
structure is running the risk of failing early because of the increased applied
loads.

It is clear from this discussion that, for a given application, a large number
of tests is necessary to obtain design fatigue curves. Simply using published
values for the mean to B-Basis life ratio is not acceptable, unless the exact
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same layups, materials and loads are used as in the references. An alternative
methodology in which the analytical model presented in previous chapters is
used without the need for fatigue tests is presented here.

The life prediction in the present model was obtained by determining when
the probability P that there has been a (single) failure in a certain range of
cycles is maximized. The expression for P , Eq. 2.24 was derived in section
2.2. It is now assumed that this expression for P , also describes the percentile
values of N . That is, P = 0.1 corresponds to a life NB that is lower than 90%
of the tests done at a given load level. There is no proof that this is valid
but the fact that there is one-to-one correspondence between the probability
P of one failure between 1 and N cycles and the cycles to failure, makes this
a plausible assumption worth investigating.

For a B-Basis life prediction, P is set equal to 0.1, so the B-Basis design
curve is lower than 90% of the test data. Rearranging Eq. 2.24:

0.1

p
= NB(1− p)NB−1 (4.1)

where NB denotes the number of cycles corresponding to the B-Basis life
(and P = 0.1).

For a given p value, Eq. 4.1 can be solved iteratively for NB. This can
be done for different values of p and the first two columns of Table 4.1 are
obtained. Now the mean cycles to failure Nm must be obtained for the same
values of p. This would correspond to the mean value of P . It was shown in
Eq. 2.25 that the modal value of P (the maximum value) is given by:

NB = − 1

ln(1− p)
(4.2)

The value of N that corresponds to the mean or average of P is by definition
the first moment of the function given by the integral of the variable N
times the function divided by the integral of the function. According to the
correspondence established between P and N , this value Nm is the mean life:

Nm =

∫ inf
0 N(Np(1− p)N−1)dN∫ inf
0 (Np(1− p)N−1)dN

(4.3)

The integrals can be evaluated in closed form (after successive use of
L’Hospital’s rule for the upper limit). The result is:

Nm =
− p

1−p
2

(ln(1−p))3

− p
1−p

(−1)
(ln(1−p))2

= − 2

ln(1− p)
(4.4)

Comparing the result for Nm to Eq. 2.25 it can be seen that the mean value
of N is twice the modal value. Thus, the third and fourth columns in Table 4.1
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Table 4.1: B-Basis, modal, and mean cycles to failure for various p values

Cycle-by-cycle B-Basis cycles Cycles to max value Mean cycles
probability of to failure of P Nc Nm

failure p NB (Eq. 2.25) (Eq. 4.4)

1.0E-7 1120000 1.00E+07 2.00E+07

1.0E-6 112000 1.00E+06 2.00E+06

1.0E-5 11200 1.00E+05 2.00E+05

1.0E-4 1120 1.00E+04 2.00E+04

1.0E-3 112 1.00E+03 2.00E+03

1.0E-2 11.1 1.00E+02 2.00E+02

0.1 1 9.49E+00 1.90E+01

0.4 1.64E-01 1.96E+00 3.92E+00

can be completed using Eqs. 2.25 and 4.4 respectively. Now the ratio of the
mean life Nm to the 10 percentile (B-Basis) life NB can be easily calculated
and is shown in Table 4.2. For comparison purposes, the ratio of the modal
life Nc is also shown in Table 4.2.

The results in Table 4.2 are plotted in Figure 4.3. It can be seen that over
a very wide range of p values (p < 0.1) the two ratios of mean and modal lives
to B-Basis life are essentially constant. This means that unless the applied
load is very high, which would correspond to p > 0.1, the ratios are constant.
So with the exception of very low cycle fatigue cases, the mean/B-Basis and
modal/B-Basis ratios are constant.

Figure 4.3: Ratios of Mean and Modal lives to B-Basis life as a function of p

This means that these ratios can be used in test programs to determine by
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Table 4.2: Ratio of Mean to B-Basis and Modal to B-Basis lives

Cycle-by-cycle Modal to B-Basis Mean to B-Basis
probability of life Nc/NB life Nm/NB

failure p

1.0E-7 8.93 17.86

1.0E-6 8.93 17.86

1.0E-5 8.93 17.86

1.0E-4 8.93 17.86

1.0E-3 8.93 17.86

1.0E-2 9.01 18.02

0.1 9.49 18.98

0.4 11.9 23.87

how much the service life testing of a single specimen should be increased to
demonstrate B-Basis life reliability. If one uses the Mean/B-Basis life ratio,
the factor is 17.86, i.e. 17.86 lives are equivalent to one service life with B-Basis
reliability. If the Mode/B-Basis ratio is used, the factor is 8.93. These two
ratios compare favorably with the value of 13.4 generated from two data points
in Figure 4.2. What is interesting, is that the average of the two ratios, 13.4
is very close to the value of 13.6 determined in [83] after statistical analysis of
thousands of data points.

More work is needed in this area to determine whether it should be one of
these two ratios or their average that should be used to determine the design
(B-Basis) life curve in relation to the average curve. It should be noted that
the approach in previous chapters has been to use the modal value to obtain
cycles to failure so, for consistency, the ratio 8.93 should be used. However,
using the mean instead of the modal value is also possible, increasing predicted
lives by a factor of 2 which is barely discernible as a difference in an S − N
plot, and should be investigated further.

4.2 Determination of omission levels in test programs

A typical fatigue test program contains a large number of cycles per service
lifetime. Given the requirement of demonstrating specific reliability (B-Basis
or A-Basis) with the test program, the service lifetime can be multiplied by
at least a factor of 9 (Modal to B- Basis reliability calculated in the previous
section) to create the required number of cycles for the test program. As was
mentioned in the previous section, to avoid such a large number of cycles,
combinations of lower multiples of service lives, for example 2 instead of 9,
and increased applied loads, through a load enhancement factor in the range
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of 1.13 to 1.18 according to [83], are possible. Even so, non-rotating parts
and parts not exposed to rotor wake or vibration excitation can have as many
as 500000 cycles per lifetime (for 20-30 years service life), which is a large
number of cycles. At the other extreme, rotors, and high frequency vibrating
parts may undergo billions of cycles per service life. At no more than a few
Hz loading rate or, more appropriately for full-scale test articles at less than
one Hz, testing to 500000 cycles would take anywhere from 46 hrs (approx. 2
days) to 277 hrs (11.5 days). This assumes continuous round the clock shifts
without stopping the test for inspection, maintenance, etc.

It is obvious that the number of test cycles can be so high that the test
duration and cost can be prohibitive. For this reason, methods to reduce test
duration, without reaching unconservative conclusions or compromising the
reliability of the test data, are always in high demand. One such method is
based on the determination of an omission level. The omission level is the
load level corresponding to a number of cycles that is comfortably higher than
the number of cycles expected in service. Any load in the spectrum below
the omission level would cause failure only after that high number of cycles
is reached. It can, therefore, be truncated out of the spectrum. This reduces
drastically the number of cycles that need to be applied in a test program.

The omission level is a function of the number of cycles expected in service
and the extra margin applied to them for safety. For non-rotating parts
whose service life requirement is less than 500000 cycles, one million cycles
is a target life that gives a comfortable margin. For parts with higher service
life requirements, the target life is accordingly increased. For rotating parts,
depending on the rotational speed, the target life can be more than 107 or 108

cycles.

The approach would then involve testing representative laminates or
structural details from the structure at different R values that cover the entire
spectrum and determining for each laminate, loading, and R value combination
the load level that will cause failure at one million cycles. Load levels below
the omission level are eliminated from the test spectrum of sub-components
and full-scale tests. Clearly, this approach, even though it helps reduce the
duration of the full scale and component tests, is quite expensive and time
consuming.

The model presented in previous chapters can be used to determine
analytically the omission level. In order to be able to apply the results across
different materials and layups, the omission level will be determined as a
fraction of the static strength. In addition, to incorporate damage tolerance,
the reference static strength may include the effect of damage so the omission
level is determined as a ratio of the load to reach one million cycles divided by
the static strength in the presence of damage (barely visible impact damage,
open hole, delamination, etc.).
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The omission level will also depend on the value of R. Usually a large
number of R values are present in a test spectrum. For this reason, the most
conservative omission level is determined and used across all R values. It is
possible, of course, to use R value- specific omission levels to minimize the
number of test cycles.

The omission level determined here analytically will depend on the scatter
of the residual strength. This happens because the cycles to failure for a given
load depend on the scatter of the residual strength as demonstrated in chapter
2. Instead of calculating different omission levels for different values of scatter,
conservative values can be used to obtain a single value that will cover all, or
most, cases. In what follows, the same conservative CV values as in section
3.3 will be used: for tension CVten = 7% and for compression CVcom = 10%.

The procedure is the following.

1. A value of R in the range −10 ≤ R ≤ 10 (which covers most cases in
practice) is selected.

2. The value of p, or pT and pC in Eqs. 2.25 or 2.42 is determined that
yields cycles to failure N equal to one million cycles

3. The value of p is translated to a normalized maximum and/or minimum
cyclic stress using Eqs. 2.32, 2.34, 2.43

4. The procedure is repeated for other R values

Certain characteristics of the resulting omission curve can be anticipated by
considering the equations developed in chapter 2. For high negative R values
(R < −2), the tension part of the cycle is small. The corresponding pT value
would be negligible compared to the pC value. Thus the pc value dominates
the prediction. Then, Eq. 2.43 simplifies to:

N =
1

(σminβC
)αC

(4.5)

In this equation, the parameter αC can be determined by using the
assumption that CVcom = 10% to substitute in Eq. 3.2. N is set equal to
1 million. Then, the ratio σmin/β or σmin/Xm, see analogy between Eqs. 2.30
and 2.32, can be determined. This ratio is uniquely defined independent of the
value of R because the tension part of the cycle has a negligible effect on the
right hand side of Eq. 4.5. As a result, the omission curve is expected to be
a horizontal line for R < −2. This means that the omission level is constant
with R for large negative R values.

Similarly, for large positive R values (R > 5) the compression part of the
cycle will have a negligible effect and Eq. 2.43 simplifies to:
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N =
1

(σmaxβT
)αr

(4.6)

Again, αT can be determined from CVten = 7% and Eq 3.2. With N = 1
million, the ratio of maximum stress to mean static strength σmax/Xm can be
obtained as a constant value independent of R. Thus, the omission curve is
expected to be constant for high positive R values.

For R values in the intermediate range, −2 < R < 5, both the tension
and compression portion of the cycles will have significant contributions. The
omission curve is, therefore, expected to be a strong function of R in this
range.

The analytically predicted omission curve obtained by the procedure
described above is shown in Figure 4.4. In addition to the analytical
curve shown as a continuous line, test data obtained from a wide range of
publications is also shown in Figure 4.4 as individual points [10, 18, 19, 34,
74–76, 78, 79, 81, 86–95]. The test data cover 72 different material/geometry/
damage/loading configurations. The materials include various thermoset and
thermoplastic materials, graphite, glass, and even boron fibers, undamaged
and damaged with holes, delaminations or impact, and both thin and thick
laminates are included ranging from simple coupons to bolted joints.

Figure 4.4: Omission level for one million cycles. Test results and analytical
prediction

The test data in Figure 4.4 cover a range of omission values for each R value.
This is because of the variety of materials, layup, loading, and damage levels
used. This also makes it imperative that a conservative omission level that
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covers all these cases without being too conservative be developed. As can be
seen from Figure 4.4, the analytical prediction, based on the two conservative
CV values of 7% in OHT and 10% in OHC, envelops the test data very well.
Only 3-4 data points fall just outside the envelope with the worst case a
shear test on Boron/Epoxy [92] for which the omission level is 0.34 (34%).
An analytically predicted conservative omission level valid for all R values
would be 0.38 (38%) which is only 10% higher than the worst outlier, the
Boron/Epoxy case just mentioned. It is suspected that the shear tests that
generated this outlier had scatter greater than the CV value of 10% assumed
here. Of course, instead of using a single omission level of 0.38 across all R
values it is possible to follow the curve shown in Figure 4.4, which, especially
for positive R, values would give significant reductions in test times by using
omission levels higher than 0.38 wherever appropriate.

It should also be emphasized that the shape of the predicted curve in Figure
4.4 is a function of the CV values used and the relative magnitudes of tension
and compression strength. A different selection would lead to a different curve
shape. It is expected that the case presented in Figure 4.4 is conservative for
most cases.

The results of Figure 4.4 are important because they provide analytical and
experimental evidence that an omission level between 34-38% of the mean
static strength, including damage where appropriate, is sufficient for the great
majority of composite structures to reach at least one million cycles. Similar
curves can be constructed for other cycle levels. Unfortunately, beyond one
million cycles, available test data are scarce. The fact that the present method
worked well for test results for one million cycles gives confidence in the method
and suggests that it can be used to determine omission levels for different life
requirements even when the available test data are limited. It should be
noted that these predictions are in line with results presented in reference
[96] (sections 6.3.4.1, 7.6.5 and 7.9.1) with the present method being more
conservative (34-38% versus 40-50% in [96]).

4.3 An exchange rule for reduced equivalent number of cycles

In a typical application, a number of load cycles representing a desired number
of lifetimes for the structure must be applied to demonstrate or verify the
structural adequacy of the design. Usually, the number of cycles to be applied
is quite high and the test duration can be very long. For dynamic components
(propellers, blades, rotating engine parts) the number of cycles can be more
than 108 and for fuselage and wing components it can be as high as 106 cycles.
It is often desirable to devise test programs of reduced duration to lower cost
and shorten the time to market.

Eq. 2.9 can provide the means to define test programs of reduced duration.
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A one-to-one correspondence between different combinations of load levels and
applied number of cycles can be created where the residual strength remains
constant. This can be used as an exchange rule that maps the desired number
of test cycles to a reduced number of cycles that can be used for shorter
duration of the test program.

Using Eq. 2.9, the number of cycles n2 for which an applied maximum stress
σ2 will cause the same residual strength as a maximum stress σ1 applied for
n1 cycles, must satisfy the following relationship:

σr = σfs(
σ1
σfs

)
n1

N1−1 = σfs(
σ2
σfs

)
n2

N2−1 (4.7)

which can be simplified and rearranged to read:

n2 =
N2 − 1

N1 − 1

lnσ1 − lnσfs
lnσ2 − lnσfs

n1 (4.8)

and using Eq. 2.32 with Xm = σfs:

n2 =
(
σfs
σ2

)α − 1

(
σfs
σ1

)α − 1

lnσ1 − lnσfs
lnσ2 − lnσfs

n1 (4.9)

This equation relates the number of cycles n2 for which maximum stress
σ2 must be applied to result in the same residual strength and thus, by
assumption, damage state, as a number of cycles n1 with applied maximum
stress σ1. Usually, this equation will be applied when n1 is large and a reduced
number n2 is sought for to shorten the test duration. For sufficiently large n1
and n2, the corresponding cycles to failure N1 and N2 are even larger and
thus the stress ratios raised to the exponent α in the right hand side, are
equal to N2 or N1 respectively and are much larger than 1, see also Eq. 2.32.
Therefore, Eq. 4.9 can be rewritten:

n2 =

(
σ1
σ2

)α lnσ1 − lnσfs
lnσ2 − lnσfs

n1 (4.10)

valid for N1, N2 >> 1.

Eq. 4.10 or its equivalent:

n2 =

(
σ1
σ2

)α ln( σ1σfs )

ln( σ2σfs )
n1 (4.11)

can be used to obtain a plot that shows how n2/n1 varies as a function
of σ1 and σ2. As an example, assume the ratio of the applied load σ1 to the
static strength σfs to vary in the range 0.4-0.85 and the allowable load increase
σ2/σ1 to vary between 1.05 and 1.23.
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σ1
σfs

= 0.4− 0.85 (4.12)

σ1
σ2

= λ, λ < 1 (4.13)

and α = 20, which is a value typical of the scatter of most composites [83].
Results are shown in Figure 4.5. Even for a load increase as little as 5%

(σ2/σ1 = 1.05) the number of test cycles is reduced to 50% of its original
value (for σ1/σfs = 0.85) or 40% (for σ1/σfs = 0.40). A 15% increase in loads
(σ2/σ1 = 1.15) reduces the numbr of cycles to 17% of its original value for
σ1/σfs = 0.85 and 7% of its original value for σ1/σfs = 0.40. It should be
noted that for σ1/σfs values greater than 0.75 Eq. 4.9 should be used instead
of 4.10 for increased accuracy.

Figure 4.5: Reduction in number of test cycles as a function of increase in
applied load

While such drastic reductions in the number of test cycles are very welcome
in a test program, it is important to keep in mind that additional load
enhancement factors, on the order of 1.15 for typical compositres [83] must
be applied in order to demonstrate B-Basis reliability when the test duration
is, for example, equal to two service lives (one full-scale specimen). Therefore
it is unlikely that one will be able to operate towards the right of Figure 4.5
with σ2/σ1 > 1.15 because the combined load increase would be greater than
1.15 ∗ 1.15 = 1.323 and the structure may not be capable of withstanding
these loads. Judicious choice of the load increase to reduce the number of test
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cycles and the load increase to demonstrate the required reliability would give
an economical test duration with manageable risk due to the increase in the
applied loads.

The results presented in this section are based on three key assumptions:
(a) the residual strength of the structure follows a two-parameter Weibull
distribution, (b) the failure mode during fatigue cycling is the same as
during static testing and (c) the residual strength is sufficient to describe
the damage state of the structure. The first assumption can easily be relaxed
and other distributions can be used. The second implies that the cycle-by-
cycle probability of failure does not change. The third neglects the fact that
two different damage states can lead to the same residual strength. These
assumptions are revisited and discussed in more detail in chapter 6. In
addition, the numerical results in Figure 4.5 make use of the assumption of a
Weibull shape parameter α = 20 which, even though representative of most
composites used in aerospace industry, is not specific to a material and loading
case.

4.4 Summary

The analytical model for predicting the cycles to failure developed in previous
chapters was used in this chapter to determine the number of test cycles that
correspond to a specific reliability value. It was shown that the number of
test cycles should be between 9 and 18 times the number of required service
life cycles. In a second application, the model was used to determine the
load level that will lead to a life of at least one million cycles. All cyclic
loads below this omission level can be removed or truncated out of the test
spectrum if no more than one million cycles are required. It was found that
the omission level varies with R-ratio but a conservative value that covers all
R-ratios is 38% of the static ultimate strength when damage is present in the
structure. The same methodology can be used to determine omission levels
corresponding to life requirements different than the one million cycles used
here as an example. In addition, a simple exchange rule that can be used to
replace a certain number of test cycles by an equivalent reduced number of
cycles, but at a higher applied load, was presented.
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5 Extension of the analytical model to situations
with spectrum loading

The method presented in chapters 2 and 4 was focused exclusively on constant
amplitude loading. In this chapter, the method is extended to include
spectrum loading. As in previous chapters, the formulation assumes one
dominant damage state is present in the structure with no interaction with
or transition to another damage state. Typical airframe structures are mostly
under spectrum loading and not constant amplitude. Thus, extending the
method to encompass spectrum loading makes the model developed here more
widely applicable. A schematic example of a spectrum loading situation is
shown in Figure 5.1.

Figure 5.1: Schematic of loading spectrum as a function of cycles

In the past, many methods have been proposed to predict the performance
of composite structures under spectrum loading. These are usually based
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on a model for the residual strength or the loss of stiffness as a function of
cycles. One of the early efforts with moderate success was that proposed
by Broutman and Sahu [97]. It is based on a linear model of residual
strength. Modifications to include non-linearity have been introduced by
many researchers [e.g. [98], [99], [100], [101], [32] ]. Linear and non-linear
cumulative damage models were compared to experimental data by Adam et
al in [101]. Weibull statistics and a wear-out model were proposed by Kedward
and Beaumont [33] within the context of aircraft certification. Philippidis and
Vassilopoulos [34] used a tensor-based fatigue criterion which required several
fatigue strength parameters obtained through curve fitting fatigue test data for
basic laminates. In addition to strength-based models, stiffness-based models
used to track damage creation and growth have been proposed [ [26], [102]].

All these models, except the linear ones, require some parameters to be
predetermined. These can either be arbitrary parameters such as exponents in
the model, or parameters related to static or fatigue strength of basic laminates
or laminate constituents such as the fiber/matrix interphase [ [26], [102]].
Usually these models show good to excellent agreement with test results but
the use of semi-empirical or curve-fitted parameters limits their applicability
and ease of use. In addition, extending the models to cases that are drastically
different than those used to obtain the model parameters may not be valid.

5.1 Model development

The model is developed based on the assumption that the static strength
follows a two- parameter Weibull distribution. This, as was shown in section
2.2, leads to a two- parameter Weibull distribution for the residual strength
after n cycles. The assumption of a two-parameter Weibull distribution is
made here to simplify the derivation and obtain closed form expressions. Other
assumptions such as normal distribution are also possible. The procedure for
different distributions is the same but the resulting transcendental equations
may require iterations to solve for the number of cycles to failure.

5.1.1 Residual strength as a function of applied load segments

To understand the model better, it is easier to consider first a case where only
two load segments are considered, n1 cycles at maximum (or minimum) stress
σ1 and n2 cycles at σ2 (see for example Figure 5.1). Let N1 the number of
cycles to failure if σ1 were applied alone, and N2 the cycles to failure if σ2
were applied alone.

The approach is based on tracking the state of residual strength of the
structure and determining the equivalent number of cycles under one type of
loading that will lead to the same residual strength as a given number of cycles
under the other type of loading. This is shown in Figure 5.2. Suppose that ,
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n1 cycles at σ1 are applied first followed by n2 cycles at σ2. Then, after the
first n1 cycles, the residual strength σr1 is given by Eq. 2.10 with appropriate
subscripts for the present case:

σr1 = σ
n1

N1−1

1 σ
N1−n1−1
N1−1

fs (5.1)

The question is how many cycles N2u at σ2 are required to reach the same
residual strength σr1 if one starts with loading σ2 instead of σ1. This can be
determined by substituting σ2 instead of σ1, N2 instead of N1 and N2u instead
of n1 in the right hand side of Eq. 5.1 to obtain:

Figure 5.2: Combinations of cycles and loads giving the same residual strength
at the end of two load segments

σr1 = σ
N2u
N2−1

2 σ
N2−N2u−1

N2−1

fs (5.2)

Eq. 5.2 can be solved for N2u using Eq. 2.32 which is rewritten here in
terms of the cycles to failure:

N =

(
Xm

σ

)α
(5.3)

Thus, combining Eqs. 5.2 and 5.3 and solving for N2u gives:

N2u = (N2 − 1)
lnσr1 − lnσfs
lnσ2 − lnσfs

= (N2 − 1)
lnσr1σfs

ln σ2
σfs

(5.4)

Note that while Eqs. 5.1 and 5.2 are general, within the assumptions of
the residual strength model given in section 2.1, Eq. 5.3 also requires that
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the strength be described by a two parameter Weibull distribution. In what
follows, it is assumed that the static strength follows a two-parameter Weibull
distribution.

Using now Eqs. 2.10 2.30, and 2.32 to substitute in Eq. 5.4 and rearranging,

N2u =
N2 − 1

N1 − 1
n1
lnN1

lnN2
(5.5)

Eq. 5.5 gives the number of cycles N2u for which the second load case with
applied cyclic stress σ2 must be applied to result in a residual strength σr1,
which is the same residual strength that would result if n1 cycles were applied
with applied cyclic stress σ1. This means that the n1 cycles at σ1 that started
the spectrum loading can be replaced by N2u cycles at σ2 and, from a residual
strength perspective there will be no difference in the resulting condition of
the structure. It is now easy to apply the second load segment of the spectrum
which was n2 cycles at σ2 because it is the same load level as the N2u cycles.
Therefore, n1 cycles at σ1 followed by n2 cycles at σ2 is the same as N2u + n2
cycles at σ2. This means that the residual σr2 strength at the end of the two
segments (n1 cycles at σ1 followed by n2 cycles at σ2) can easily be obtained
using Eq. 2.10 with applied load σ2 for N2u + n2 cycles. The result is:

σr2 = σ
n2+N2u
N2−1

2 σ
N2−(n2+N2u)−1

N2−1

fs (5.6)

which, using Eq. 5.5 and rearranging leads to:

σr2 = σ
n2

N2−1
+

n1
N1−1

lnN1
lnN2

2 σ
1−
(

n2
N2−1

+
n1

N1−1
lnN1
lnN2

)
fs (5.7)

Eq. 5.7 gives the residual strength if n1 cycles at σ1 were applied first
followed by n2 cycles at σ2. If the order of loading were reversed, n2 cycles at
σ2 were applied first followed by n1 cycles at σ1, the residual strength σ∗r2 is
obtained from Eq. 5.7 by interchanging indices:

σ∗r2 = σ
n1

N1−1
+

n2
N2−1

lnN2
lnN1

1 σ
1−
(

n1
N1−1

+
n2

N2−1
lnN2
lnN1

)
fs (5.8)

The first important conclusion that can be drawn, is that the right hand
sides of Eqs. 5.7 and 5.8 are equal. This can be shown by rearranging, bringing
the fractions under a common denominator and using Eq. 5.3 to relate applied
stresses to cycles to failure. This result can easily be generalized to any number
of applied load segments and means that the residual strength does not change
when the order of applied loads changes. This does not mean that the number
of cycles (or load segments) to failure does not change with a change in the
order in which the load segments are applied. This will be demonstrated later.
Only the residual strength is independent of the order of load application. The
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fact that the residual strength is not a function of the order in which loads are
applied is a result of the residual strength model that was used (section 2.1)
and the assumption that the static strength follows a two-parameter Weibull
distribution.

Assuming now that there were three load segments instead of two, applied in
the order n1 (at σ1), n2 (at σ2), and n3 (at σ3), the number of cycles N3u used
up from the cycles to failure N3 after the first two segments are applied and
right before the third segment starts, can be determined in a similar fashion
to Eqs. 5.4 or 5.5:

N3u = (N3 − 1)

[
n1

N1 − 1

lnN1

lnN3
+

n2
N2 − 1

lnN2

lnN3

]
(5.9)

Eq. 5.9 gives the number of cycles that, if only σ3 were acting, would result
in the same residual strength as the case where n1 cycles at σ1 were applied
followed by n2 cycles at σ2. Thus, to determine the residual strength after n1
cycles at σ1, n2 cycles at σ2 and n3 cycles at σ3, it suffices to determine N3u
(at σ3) followed by n3 again at σ3. As a result, spectrum loading with three
different load segments becomes equivalent to constant amplitude loading
(N3u + n3 cycles at σ3). Then, Eq. 2.10 can be applied again to obtain
the residual strength at the end of the third load segment as:

σr3 = σ
n3+N3u
N3−1

3 σ
N3−(n3+N3u)−1

N3−1

fs (5.10)

By induction, the general expression for the cycles Nmu that give the same
residual strength after m− 1 load segments at constant amplitude σm, can be
shown to be:

Nmu =
Nm − 1

lnNm

[
m−1∑
i=1

ni
Ni − 1

lnNi

]
(5.11)

and, finally, the residual strength after m load segments is found to be:

σrm = σ
nm+Nmu
Nm−1

m σ
Nm−(nm+Nmu)−1

Nm−1

fs (5.12)

5.1.2 Cumulative damage law

At this point, Eq. 2.12 can be used to determine how many cycles at σm
would cause failure after m− 1 load segments. If, for a pristine structure, Nm

cycles cause failure at applied stress σm, and Nmu cycles given by Eq 5.11 have
already been used during the first m − 1 load segments, there are nm cycles
to failure given by:

nm = Nm −Nmu (5.13)
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Using now Eq. 5.11 to substitute in Eq. 5.13,

1

lnNm

[
nm
Nm

lnNm +
Nm − 1

Nm

m−1∑
i=1

ni
Ni − 1

lnNi

]
= 1 (5.14)

Eq. 5.14 provides the condition for failure when m different load segments,
each with cycles to failure Ni, are applied to the structure. This, therefore, is
analogous to Miner’s rule used for metals. A simplification of Eq. 5.14 can be
obtained if Nm− 1 can be set equal to Nm. This can be done when Nm > 20.
To see what Nm > 20 means in terms of applied load, Eq. 5.3 is solved for
σ/Xm. For a typical Graphite/Epoxy material, tension-dominated properties
have α = 16.86 (CV = 7%). Then, rearranging Eq. 5.3:

σ

Xm
=

(
1

N

)1/α

(5.15)

and setting N = 20 and α = 16.86 gives σ/Xm = 0.837. That is, if the
applied load is less than 83.7% of the mean strength, the term Nm − 1 in Eq.
5.14 can be approximated by Nm. Eq. 5.14 is then simplified to:

1

lnNm

m∑
i=1

ni
Ni
lnNi = 1 (5.16)

This expression should be compared to Miner’s rule:

m∑
i=1

ni
Ni

= 1 (5.17)

to see how the two expressions differ.

First, the form of the equations is significantly different with Eq (5.16)
involving logarithms of the cycles to failure and, in the case of Eq. 5.14 not
being linear in ni/Ni. The second difference is that, in Miner’s rule, the order
in which the load segments are applied makes no difference. In the present
model, however, changing the order changes the answer.

This can be seen easily if the two load segment case is considered. According
to Miner’s rule, Eq. 5.17, if n1 cycles are applied with cyclic stress σ1, then,
the number of cycles n2 to failure under load σ2 is given by

n2 =

(
1− n1

N1

)
N2 (5.18)

If now the order is reversed and (1−n1/N1)N2 cycles at level σ2 are applied,
the number of cycles to failure under σ1 is:
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cycles to failure =

1−

(
1− n1

N1

)
N2

N2

N1 = n1 (5.19)

and the order of load application makes no difference.

On the other hand, according to the present model, after n1 at σ1, Eq. 5.16
gives

n2 = N2

(
1− n1

N1

lnN1

lnN2

)
(5.20)

If the order is reversed and n2 cycles given by eq. 5.20 are applied at stress
σ2, the subsequent number of cycles to failure under σ1 is given by:

cycles to failure = N1

1−
N2

(
1− n1

N1

lnN1
lnN2

)
N2

lnN2

lnN1

 = N1

(
1− lnN2

lnN1

)
+ n1

(5.21)

which does not equal n1 except for the unlikely situation where N1=N2.,
Therefore, according to the present model, changing the order of load
application changes the answer. There is strong experimental evidence that
changing the order of load application changes the cycles to failure [97], The
present model, predicting different cycles to failure when the order of load
application changes, is expected to be more versatile than the conventional
Miner’s rule.

It should be emphasized again that one should not be confused here with
the order of load application affecting the cycles to failure given the earlier
statement in the discussion following Eqs. 5.7 and 5.8 that the residual
strength is not affected by changing the order of load application. Cycles
to failure will change when the order is changed but the residual strength will
not.

The third difference between the expression for cumulative damage derived
here, Eq. 5.16, and the classic Miner’s rule is that the summation of ni/Ni

may be greater than, equal to, or lower than 1, depending on the situation.
In the classic Miner’s rule, that summation always equals 1.

Again, for simplicity, this will be demonstrated for the two load segment
case. Solving Eq. 5.16 for n2/N2 gives:

n2
N2

= 1− n1
N1

lnN1

lnN2
(5.22)

while solving Eq. 5.17 for n2/N2 gives:
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n2
N2

= 1− n1
N1

(5.23)

It can be seen from equations 5.22 and 5.23 that while the plot of n2/N2

versus n1/N1 is a line of slope -1 in the case of Eq. 5.23, linear Miner’s rule,
the slope of the curve for the present model given by Eq. 5.22 can be less than
-1 or greater than -1 depending on the value of the ratio (ln(N1)/ln(N2)).
This is shown schematically in Figure 5.3.

Figure 5.3: Comparison of present method to (linear) Miner’s rule predictions
(two load segment case)

As can be seen from Figure 5.3, the present method predicts that for high-
low load sequences the summation n1/N1 + n2/N2 is always greater than 1
and for low-high load sequences it is always less than 1. This can be seen
by referring to Eq. 5.22. In a high- low sequence, the high loads are applied
first. This means that the cycles to failure N1 corresponding to these high
loads will be lower than the cycles to failure N2 corresponding to the low
loads. Therefore, ln(N1)/ln(N2) < 1 and the magnitude of the (negative)
slope of the curve in Figure 5.3 will be less than 1. Then, the curve will lie
above the Miner’s rule curve, which has slope -1. Conversely, in a low-high
sequence, N1 > N2 and the magnitude of the slope will be greater than 1. The
resulting curve is below the Miner’s rule curve. It should be noted that by
cyclically exchanging n1,N1 with n2,N2, a symmetric plot of that in Figure 5.2
is obtained with respect to a line dissecting the right angle at the origin to two
equal angles. Then, for example, the dashed line would extend from 0.6 on the
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y axis to 1.0 on the x axis and the bold line would start from appoximately,
the point (0.35,1) and extend to the point (1.0,0.)

This result is supported, to some extent, by the test results obtained by
Broutman and Sahu [97] where the authors report that 10 out of 12 low-
high cases had Miner’s sum less than 1 and six out of 12 high-low cases had
sum greater than 1. Similar but less definitive test results are reported by
Wahl [103].

5.1.3 Implications of the spectrum loading model

Two important aspects of Eq. 5.22 and the corresponding curve shapes in
Fig. 5.3 should be discussed here. The first relates to the fact that, under
certain circumstances, it is impossible to apply any of the cycles of the second
load segment. For example, for the low-high case, the curve terminates at
n1/N1 = 0.6 and continues horizontally to n1/N1 = 1. The reason for this
is that, when (n1 = 0.6N1) cycles are applied, the residual strength of the
structure has dropped to the applied stress σ2 of the second load segment.
Thus, during application for the first cycle of the second load segment, the
structure will fail. Of course, the value 0.6 here is just an example and the
actual value will depend on the applied loads and cycles to failure for each
load segment.

At the other extreme of fatigue behavior, for the high-low case, the curve
terminates at n1/N1 = 1 and n2/N2

∼= 0.35 and drops vertically to meet the
x axis in Figure 5.3. This simply means that if n1 = N1 the structure fails
after application of the first load segment and there is no way to apply even a
single cycle of the second load segment. For the specific example of Figure 5.3,
this is true for n2/N2 = 0.35. If n2/N2 > 0.35, say 0.4, the only way to apply
both load segments is if n1/N1

∼= 0.9. Again, the values 0.35, 0.4, and 0.9 are
used here to illustrate an example and are not generic. The actual values will
depend on the applied loads and cycles to failure for each load segment.

The second important aspect, a direct consequence of Eq. 5.22 and the fact
that the residual strength at the end of m segments is independent of the order
in which these m segments are applied, is that the number of cycles to failure
during the mth segment, after m− 1 segments are applied, does not change if
the last segment does not change. That is, if the m−1 segments are reordered,
as long as the mth segment does not change so its applied stress remains σm,
the cycles to failure during this mth segment does not change. Only if the last
segment is replaced by another segment in the series, do the cycles to failure
Nm change.

To demonstrate this, a minimum of three load segments are necessary: n1
at σ1, n2 at σ2 and a third load segment at σ3.

If the order of applied loads is as stated, then Eq. 5.9, repeated below for
convenience, gives the number of cycles N3u that have been used up from a
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life of N3 cycles if only σ3 were applied, after n1 at σ1 and n2 at σ2 have been
applied.

N3u = (N3 − 1)

[
n1

N1 − 1

lnN1

lnN3
+

n2
N2 − 1

lnN2

lnN3

]
(5.24)

In this case, the number of cycles to failure when the application of σ3 starts
is:

(cycles to failure)σ3 = N3 −N3u (5.25)

If the order of the first two segments is reversed, the right hand side of Eq.
5.9 does not change. This is due to the fact that the two terms in brackets
are interchanged as the indices 1 and 2 are interchanged. Thus, the result of
Eq. 5.25 remains unaffected. If, however, the last load segment is changed
from σ3 being the applied load to any of the other two (σ1 or σ2), then the
denominators involving the logarithm of N3 in the right hand side change.
This changes N3u which, in turn, changes the result of Eq. 5.25.

It should be pointed out that this result, that the cycles to failure during the
mth segment are not affected by the order in which the previous load segments
are applied, is again a result of the assumptions made in the present model.
If these assumptions do not hold, this result will not be valid. An example
where this result is probably not valid is given in section 5.2.3 and a method
that can be used to modify the model for improved predictions is presented in
chapter 6.

5.1.4 Number of block repetitions to cause failure

The conclusions drawn in section 5.1.3 can be used to obtain a relatively simple
expression for the number of blocks to failure for a given spectrum loading.
Typically, the loading segments are combined in repeating blocks to create
the applied test loads. An example is shown in Figure 5.4. Suppose that
m loading segments are combined in some loading sequence that makes up
a single block and that this block is repeated until the structure fails. The
number of repetitions of test blocks Mfail to cause failure must be determined.

It was shown, in section 5.1.1, that the residual strength is independent of
load sequence. Then, if m load segments are combined in a block which is
repeated M times, the residual strength at the end of M blocks is the same as
a situation where a single block is applied within which each loading segment
is repeated M times. That is, a single block where the cycles ni of segment
i are repeated M times gives the same residual strength as M blocks where
each segment i has ni cycles. Using Eq. 5.11 the number of cycles Nmu(M)
that have been used up, from a total of Nm cycles at constant σm, when m
segments repeat M times is given by:
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Figure 5.4: Schematic of repeating blocks making up a spectrum

Nmu(M) =
Nm − 1

lnNm
[
m−1∑
i=1

Mni
Ni − 1

lnNi] = M
Nm − 1

lnNm
[
m−1∑
i=1

ni
Ni − 1

lnNi] (5.26)

The residual strength after M blocks is given by Eq. 5.12 with Nmu given
by Eq. 5.26. Failure occurs when the residual strength equals the applied
stress at any given time. Using Eq. 5.26 to substitute in Eq. 5.11 and setting
successively the residual strength equal to the applied stress of each segment,
different predictions for the blocks to failure Mfail can be obtained. Each
prediction corresponds to the number of blocks at which the residual strength
equals the applied load for one of the load segments. The lowest value of
Mfail is the sought-for number of blocks to failure. For example, assuming
σrm = σmax ( σmax is the highest stress across all load segments) the following
relation is obtained:

M
Nm − 1

lnNm
[

m−1∑
i=1

ni
Ni − 1

lnNi] = (Nm − 1)
lnσmax − lnσfs
lnσm − lnσfs

− nm (5.27)

Letting:

Km =
m∑
i=1

ni
Ni
lnNi (5.28)

and using Eq. 5.3 to express stresses in terms of cycles to failure, one can
solve for the number of blocks to failure Mfail:
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Mfail =
1

Km
(lnNmin −

nm
Nm − 1

lnNm (5.29)

where Nmin is the number of cycles to failure corresponding to σmax:

Nmin =

(
σfs
σmax

)α
(5.30)

and Nm, nm are the cycles to failure and applied cycles for the last segment
in the block, segment m. The value of Mfail in eq. 5.29 will either be the
blocks to failure or one less if σmax is reached after the corresponding segment
in the block has been completed. In this case, failure will occur the next
time the applied load equals σmax which will be during the next block. Note
that while the basic form of Eq. 5.29 does not change, Nmin will have to be
replaced by the number of cycles to failure corresponding to the applied stress
σ to which the residual strength after (m)Mfail segments is set equal to.

5.2 Comparison with test results and discussion

The analytical results presented in the previous sections of this chapter are
compared here to test results available in the open literature. Two sets of
comparisons are made. The first is when only two load segments are applied
and the second when four load segments are applied. Conclusions are drawn
after both sets of results are presented.

5.2.1 Two-load segment case: test versus analytical predictions

The two load segment case is based on test results obtained on fiberglass by
Broutman and Sahu [97]. Before comparing directly spectrum loading results,
it is instructive to compare the building blocks of the present model, the cycles
to failure under constant amplitude loading and the residual strength to test
results of [97]. This helps identify specific strengths and weaknesses of the
model and, in cases of discrepancies with test results for spectrum loading,
might point to problem areas in the model building blocks.

First, because the static strength data in [97] are relatively limited, the static
strength information in that reference was used to create a two-parameter
Weibull distribution to describe it. This was done by matching the mean
value and setting the 10 percentile value of the Weibull distribution equal to
the lowest static strength value in the tests. Setting the 10 percentile value
of the distribution equal to the lowest value in the static strength tests is
justified because, as mentioned in section 3.3, a typical CV value is 6%. The
mean static strength in [97] was 65 ksi (448.1 MPa) and the low value was
60 ksi (413.6 MPa). Using normal distribution statistics it can be shown that
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the 60 ksi value of the low strength corresponds to the 9.99 percentile of the
strength distribution.

Using Eqs. 2.12 and 2.40, the corresponding two-parameter Weibull
distribution was found to have shape and scale parameters α = 20.01 and
β = 67.14 respectively. Since the fatigue tests were done at R = 0.05, the
correction mentioned in section 2.3.1 was also applied but was shown to have
a negligible effect compared to using R = 0. Then, the predicted S−N curve
was obtained using Eq. 2.32 and is compared to test results from [97] in Figure
5.5.

Figure 5.5: S-N curve for E-glass/epoxy (test results from [97])

It can be seen that the prediction from the present model is in very good
agreement with test results for lives greater than 1000 cycles even though the
slope of the predicted curve is different than that of the test data. For lower
lives (< 1000) the predictions are conservative, i.e., below the test data. The
test results suggest an S −N curve that is nearly horizontal up to about 100
cycles then dropping gradually with a slope slightly higher than the slope of
the predicted curve.

For the residual strength, Broutman and Sahu [97] tested specimens at
different stress levels (at least three specimens per level) then stopped the
tests at prescribed fractions of the fatigue life and tested the specimens to
failure (residual strength test). The stress levels are shown in Table 5.1. The
percentage of static strength to which the applied stress level corresponds is
also given in Table 5.1.

Comparisons of the analytical predictions from Eq. 2.10 to test results are
given in Figures 5.6 - 5.9. The test data, only the high and low are shown in the
figures, are limited so it is hard to make conclusive comparisons. Discrepancies
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Table 5.1: Cases for residual strength comparison (from [97])

Case Stress Level % static
(ksi / MPa) strength

1 56/386 86.1

2 49/338 75.4

3 43/296 66.1

4 35/241 53.8

in Figures 5.7 and 5.9 for n/N ∼= 0.2 may be due to the lack of test data
or inaccuracies in the analytical model. The model as used here does not
differentiate matrix cracking from fiber failure. Both mechanisms are present
in cross-ply laminates, the specimens used here. More accurate modeling,
accounting for matrix cracks, fiber failures, and the resulting changes in the
cycle by cycle probability of failure p, is presented in chapter 6. Despite
this discrepancy, the predictions are in good agreement with the test results
available. It should be noted that the prediction is not a straight line. The
parameters of the graph and the scale are such that it appears so. In general,
it is a curve convex to the origin.

Figure 5.6: Residual strength: Analysis versus test (Case 1)

The test data from [97], summarized in Table 5.2 were used to compare
predictions to test results when two load segments are applied. The test
procedure was as follows. First, the load in column 2 of Table 5.2 was applied
for the number of cycles shown in column 3 of the same Table. Then, the load
shown in column 3 was applied until failure. The goal is to predict the cycles
to failure when load segment 2 is applied and compare to the test results given
in [97].
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Figure 5.7: Residual strength: Analysis versus test (Case 2)

Figure 5.8: Residual strength: Analysis versus test (Case 3)

Due to the large scatter in test results shown in [97], comparing the
cycles to failure during load segment 2 to the test result requires some care.
Since the static strength σfs was assumed to follow a two-parameter Weibull
distribution, it can be shown, based on Eq. 2.29, and on arguments presented
in section 2.2, thatN1 andN2 also follow two- parameter Weibull distributions.
However, lnN1 and lnN2 , which are both present in Eq. 5.20, do not. They
both are extreme value distributions. It is very difficult to determine the type
of distribution that n2 follows on the basis of the right hand side of Eq. 5.20.
Instead, a different approach was selected. First, a random number generator
was used to select 100 σfs values from the two-parameter Weibull distribution
that was constructed to represent the static strength of the data given in [97].
The shape and scale parameters were as presented earlier (α = 20.01 and
β = 67.14). The random number generator was based on an equation of the
form (see for example ref [104]):
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Figure 5.9: Residual strength: Analysis versus test (Case 4)

σfs = [−βαln(1− x)](1/α) (5.31)

where x is uniformly distributed between 0 and 1 (α = 20.01 and β = 67.14).

For each σfs value obtained from Eq. 5.31, N1 and N2 in Eq. 5.20 were
determined by solving Eq. 2.32 for N (setting Xm = σfs and σ = σ1 or σ = σ2
from columns 2 and 4 in Table 5.2). Then, Eq. 5.20 was used with n1 taken
from the third column of Table 5.2 to determine a corresponding n2 value.
The procedure was repeated for all 100 σfs values to generate 100 n2 values.
The resulting n2 population was checked to see if it followed two-parameter
Weibull distribution using the Anderson-Darling test [105]. As expected from
the form of Eq. 5.20, the test failed in all the cases given in Table 5.2. The n2
population was then checked for lognormality, again using the tests in ref [105].
The test was successful in all 22 cases of Table 5.2, i.e. the assumption that
n2 follows lognormal distribution cannot be rejected. This is in agreement
with the test results given in [97] where a lognormal distribution was found to
describe the test data well. Therefore, the logmean, average of the logarithms
of the data, value of the resulting n2 population was compared to the logmean
value of the test data reported in [97]. The results are shown in Figure 5.10.

It should be noted that the scale of the y axis of Figure 5.10 is logarithmic.
This was done to better fit all 22 cases in one graph. The agreement between
predictions and test results is very good except for cases 3, 4, 5, 16, 18, 19,
20. In all these cases, the prediction is lower than the test result. Also, all
but one of these cases involved the highest load of 56 ksi (386.1 MPa). And
the remaining one (case 18) involved the second highest load of 49 ksi (337.8
MPa). This is consistent with the results of Figure 5.5, which showed that in
the low cycle fatigue region (high applied stresses) the present method does
not match the test results as well as it does in the high cycle fatigue region.
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Table 5.2: Cases for spectrum loading comparison on fiberglass [97]

Case Segement 1 stress Segment 1 cycles Segment 2 stress
(ksi/MPa) (ksi/MPa)

1 35/241.3 50000 49/337.8

2 35/241.3 20000 49/337.8

3 49/337.8 1000 56/386.1

4 49/337.8 250 56/386.1

5 56/386.1 100 49/337.8

6 49/337.8 1000 42/289.5

7 49/337.8 1000 35/241.3

8 49/337.8 250 35/241.3

9 49/337.8 250 42/289.5

10 42/337.8 2000 35/241.3

11 56/386.1 250 35/241.3

12 56/386.1 250 42/289.5

13 56/386.1 100 42/289.5

14 42/289.5 10000 35/241.3

15 56/386.1 100 35/241.3

16 35/241.3 20000 56/386.1

17 42/289.5 10000 49/337.8

18 42/289.5 2000 49/337.8

19 42/289.5 2000 56/386.1

20 56/386.1 250 49/337.8

21 35/241.3 50000 42/289.5

22 35/241.3 20000 42/289.5
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Figure 5.10: Comparison of predictions to test results from [97] for two-
segment spectrum loading of cross-ply fiberglass laminates

And since the cycles to failure appear in Eq. 5.20, either as N1 or as N2, it is
believed that the discrepancy found for these cases is due to the discrepancy
in the cycles to failure.

5.2.2 Four load segment case: test versus analytical predictions

Another set of comparisons of the analytical predictions from section 5.1 to
test results is presented in this section for spectrum loading where each block
contains four different load segments. The test results were obtained from the
work of Adam et al [101] where a Bismaleimide (BMI) [(45/02)2]s T800/5245
laminate was tested. A summary of the test cases is shown in Table 5.3.

Each case in Table 5.3 is made up of four segments described by the load
sequence in the second column. For example, sequence 1/3/2/4 had the first,
third, second, and fourth load segments applied in that order to make one
loading block, and this loading block was repeated until failure. The load
segments are described in the top half of Table 5.3 where load segment 1, for
example, consisted of 231 cycles with maximum stress at 77.8% of the static
failure strength. For all load segments, the R value was 0.1.

The analytical predictions were obtained using Eq. 5.29. They are compared
to the test results from [101] in Figure 5.11. No detailed information was given
in the reference about the type and sequence of damage created during the
test. Bars in the Figure indicate the range of test results. It can be seen that
the predictions are in very good agreement with the test results. Even though
they are not very close to the average test result, they are well within the
range of test results. It should also be noted that the predictions consist of
only two different values, 4.94 and 4.73 blocks for all six cases given in Table
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Table 5.3: Cases for spectrum loading comparison on Graphite/BMI material
[101]

Load Level (% of static strength) Number of cycles

(1) 77.8% 231

(2) 71.9% 4016

(3) 65.9% 29256

(4) 59.9% 162574

Test cases

Case 1 Load sequence in each block

1 1/3/2/4

2 4/2/3/1

3 4/3/2/1

4 1/2/3/4

5 3/1/2/4

6 2/4/3/1

5.3. The reason is that cases 2,3, and 6 have the same last segment, segment
1, and cases 1, 4, and 5 have the same last segment, segment 4. As was shown
in section 5.1.3, rearranging the load segments in a block leads to the same
number of blocks to failure if the last segment in the block is unchanged. Even
though the predictions are in good agreement with test results in Figure 5.11,
using the present method is not always as successful. Two cases with larger
discrepancies between analysis and test are the remaining spectrum loading
cases in reference [101]. In the first case one of the segments of Table 5.3 is
replaced by compressive load. In the second all load segments are compressive.

For the case where tension and compression cycles are mixed, the residual
strength model described by Eqs. 2.2 and 2.10 does not explicitly account
for the effect of load reversal. The damage and failure mechanisms are,
typically, different in tension than in compression. Applying first tension
and then compression in a loading sequence does not mean that the residual
strength at the beginning of the compression segment will be given by that
predicted at the end of the tension segment from Eq. 2.10. For example,
if, after applying the tension loading, the residual tensile strength is 80% of
the static tension strength, continuing on with compression loading does not
mean that the residual strength in compression is also 80% of the compressive
static strength. In this case, more detailed modeling of damage creation and
evolution under the types of loading present in the sequence is necessary. As
a simplifying compromise, it is proposed that two separate residual strength
values, one for tension and one for compression, be determined and failure then
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Figure 5.11: Spectrum loading predictions compared to test results from [101]

be assumed to occur when one of the two residual strength values reaches the
corresponding applied cyclic tension or compression stress. For the particular
case of combined tension and compression loading of reference [101], this
approach predicts failure during the first block while the test results range
from 1 to 5 blocks depending on the loading sequence. For the all-compression
loading sequences presented in reference [101] the prediction is also failure in
the first block with the test failures ranging from 1 to 39 blocks. While the
test scatter is very large, the analysis model clearly needs to be improved. A
method to incorporate such improvements is presented in chapter 6.

5.2.3 Discussion

One implication of the model presented that requires more careful evaluation
is the fact that the cycles or blocks to failure do not change if the order of load
application changes (provided the last load segment remains the same). A
thought experiment that suggests inapplicability of this conclusion in general,
is provided in the following.

Consider an all 0o laminate with a hole loaded first in tension-tension and
then in compression-compression. The situation is shown in a hand-drawn
schematic in Figure 5.12. During the tension-tension loading, longitudinal
splits and delaminations develop at the edges of the hole and progress along
the load direction (vertically in Figure 5.12). Test data for this situation was
obtained by Badaliance and Dill [88]. This damage is confined in a narrow
strip above and below the hole. If now the compression-compression loading
is applied, the laminate acts as if it consists of two individual undamaged
strips on either side of the hole with one failed strip in the middle the width
of which equals the hole diameter. As a result, the damage state at the end
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of the compression-compression cycling will consist of fiber splits mostly in
the region above and below the hole and failed fibers, caused by fiber micro-
buckling, forming cracks with brooming failure as shown in the right part of
Figure 5.12.

If instead of tension followed by compression, the loading sequence were
reversed, the damage state would be quite different. Loading a uni-directional
laminate with a hole under compression-compression leads to the creation of
delaminations and fiber breakage emanating from the hole, perpendicular to
the loading direction. Test results for such a case have been obtained by
Guynn et al [15] and are shown in a hand-drawn schematic in Figure 5.13. If
at the end of the compression-compression loading the tension-tension loading
is applied, the damage created, shown in the right of Figure 5.13 will be very
different than that shown in the right if Figure 5.12. In Figure 5.13, it will
consist of mostly fiber splits emanating from the delaminations and broken
fibers that occurred during the tension- tension part of the loading.

The different types of damage shown at the end of the two load sequences
on the right of Figs. 5.12 and 5.13 suggest very different cycle-by-cycle
probabilities of failure. Then, even if the same type of loading is applied
as a third load sequence to each of the end results in the two Figures, the
cycles to failure are expected to be different. This is in disagreement with
the analytical prediction that the cycles to failure do not change as long as
the last, third in this case, load segment is the same. The reason is that the
analytical model assumed that the cycle-by-cycle probability of failure p does
not change.

The analytical conclusion would still be valid if p were relatively constant
as was shown in comparing predictions with test results in Figure 5.11 in the
previous section.

One last comment related to comparison of test results with analytical
predictions is in order. When comparing predictions to experimental results
from fatigue tests one should be careful in using the term good agreement
between the two. Fatigue test data commonly have large scatter and several
predictive models based on quite different assumptions may appear to be in
equally good agreement with tests. Also, the test data may be limited and the
predictions may not agree with test results not only because of drawbacks in
the analytical model but also because of insufficient data. It is worth stressing
that, although perfect accuracy was not been achieved for the validation case
under examination, the proposed model represents a solid starting point which
can be further improved.

Since the residual strength predictions, see Figures 5.6-5.9, are in good
agreement with test results, it is believed that the first area where the model
needs improvement is in the determination of cycles to failure under constant
amplitude loading. The main issue is that the probability of failure during
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Figure 5.12: All 0o laminate with a hole: Damage creation when tension-
tension is applied first followed by compression-compression

each cycle is constant as a consequence of the assumptions given in section
2.2. Improvements in this direction are proposed in chapter 6.

Despite the issues just mentioned, some of the obvious attractive aspects of
the model should not be glossed over. The model leads to relatively simple
closed form expressions for the cycles or blocks to failure under spectrum
loading and requires no fatigue testing for calibration or determination of semi-
empirical parameters. The predictions of the model for two-segment spectrum
loading of fiberglass laminates were in good agreement with test results except
in some low-cycle fatigue cases. The model was also found to be in very good
agreement with test results from four-segment all-tension spectrum loading of
Graphite/BMI.
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Figure 5.13: All 0o laminate with a hole: Damage creation when compression-
compression is applied first followed by tension-tension
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6 Enhancements to the analytical model for
prediction of cycles to failure

The comparison of the analytical predictions of the model to test results taken
from the literature showed that the accuracy of the model ranged from poor
to excellent depending on the loading case. While, overall, its ease of use,
closed form expressions, and no dependence on empirical parameters make the
model in its current form a useful tool for preliminary design, the discrepancies
found between the model and test results in more complex structure which
may exhibit multiple failure modes and in load cases that include compression
suggest that further improvements are necessary. Improvements to the model
developed in chapter 2 are presented in this chapter. The goal is to provide
a framework within which more than one types of damage and their possible
interactions can be included. As examples, fiber damage, matrix cracking,
and, to a lesser extent, edge delaminations will be considered.

Specific reasons were presented for these discrepancies in the discussion
presented in chapters 3, 4, and 5. The main reason for these discrepancies
was the convenient simplification that the cycle-by-cycle probability of failure
p was constant throughout the fatigue life. It was shown in section 2.2 that,
under certain assumptions, the value of p is, indeed, constant. However, these
assumptions hold true only as long as the damage that is present and failure
mode do not change. That is, if the main type of damage is matrix cracks, as
long as no other type of damage, such as delaminations, appears, the value of
p will be, according to the analytical framework presented here, constant. As
soon as, subsequently, different types of damage appear and/or the failure
mode changes from the static failure mode, p will no longer be constant.
This fact was recognized in chapters 3, 4, and 5 when some test results
were presented but it was overlooked in order to see how far the simplifying
assumption of constant p could go.

The assumption of constant p will be relaxed in this chapter and improved
analytical predictions will be developed. The improvements will be demon-
strated for two cases: (a) a uni-directional laminate under tension-tension
loading where new results will be compared to results from chapter 3, and (b)
a cross-ply laminate under tension-tension loading.
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6.1 Description of improved model

Consider a composite laminate or structure under constant amplitude cyclic
loading σa. The structure is divided into representative sections (such as plies
and ply interfaces as appropriate) each of which is under its own load which
is a function of the total applied load. For the ith section, the applied cyclic
stress is σ(i). The division into sections is done based on the types of damage
and failure patterns expected during cyclic loading. These include matrix
cracking, delaminations, fiber kinking, fiber splitting, etc. Note that these
types of damage are not selected on the micromechanics scale (on the order
of a few fiber diameters) or smaller where surface or internal cracks in the
fibers or damage in the fiber/matrix interphase would have to be included. It
is assumed that damage from the micro scale will have already evolved to the
next scale level of damage represented by matrix cracks, delaminations, etc.
It is possible to start modeling at lower scales but considerable test data and
elaborate analytical modeling is needed. While this modeling at lower scales
could and should be done, at this point it is not necessary to do so to convey the
approach. Damage modeled at the level of matrix cracks and delaminations
is sufficient to show how the model works and its accuracy suggests that, for
most cases, this level may be sufficient. The accuracy of the approach, of
course, depends on how representative the damage model is.

For each section into which the structure is divided, the stress at which
the first type of damage occurs, whichever damage is appropriate for that
section, is determined using a static analysis. As soon as damage is created
in one section, any load redistribution from that section to other (adjacent)
sections must be taken into account to update the applied loads in the various
sections. Then, the model determines the stress at which the next type of
damage occurs, in the same section, and so on, until final (static) failure of
that section occurs. The same analysis is done for the remaining sections
such that, for each section, the static stresses at which damage occurs are
determined and the stress at which the section cannot carry any more load
(failure stress) is also determined.

The applied stresses at which different sections develop various types of
damage and eventually fail, form the basis of the improved fatigue model. For
purposes of discussion, it is assumed that there is only one type of damage for
section i, occurring when the applied static stress is σi(i). It is also assumed
that the failure stress for the ith section, the stress at which it can carry no
more load, is σf (i). Finally, it is assumed, for simplicity, that the structure
consists of only two sections, section i and section j. Extending to more than
two sections, each with more than one damage types, can be done relatively
easily provided good analytical models for each damage type are available.

The situation just described is shown schematically in Figure 6.1. It is
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assumed that the applied cyclic stress σ(i) is lower than σi(i) (the stress at
which first damage occurs in section i). Also, to be consistent with Figure
6.1, it is assumed that cyclic loading starts with the structure in a pristine
(undamaged) condition. This assumption is not necessary for the analytical
model to work but simplifies the discussion. During cycling at σ(i), the
residual strength of section i starts from the static strength σf (i) and decreases
following the lower curve in Figure 6.1. During this process, and until the first
damage in section i appears, the cycle-by-cycle probability of failure pi for
section i is assumed constant. This means that damage at a lower scale than
the one accounted for in this model is occurring and is causing a decrease in
the residual strength of section i. The type of damage occurring could be
coalescence of micro-voids, matrix crazing, damage creation and growth in
the fiber/matrix interphase, etc. The residual strength for section i can be
predicted using Eq. 2.10. To use Eq. 2.10, it is necessary to know the cycles-
to-failure N which are obtained through Eq. 2.25. As soon as the residual
strength value equals σi(i), the first damage (at the scale used in this analysis)
appears. This corresponds to point A in Figure 6.1. Once the first damage
is present, it is expected that the stiffness of section i will change (probably
decrease), which, in turn, means that load will be redistributed from section i
to section j. Then, due to the change in load in section i and the presence of
damage there, the applied stress in section i will now be a different percentile
of the residual strength of section i. Therefore, pi given by Eq. 2.18 or 2.34
changes as does the slope of the residual strength curve for section i.

Using the new pi a new cycles to failure for section i can be determined
from Eq. 2.25 and used with Eq. 2.10 to determine the residual strength
beyond point A. When it equals the applied stress σ(i), at point B in Figure
6.1, section i fails.

At the same time, section j follows an analogous scenario to that of section
i with σ(j) the stress acting on it. Its residual strength goes from σf (j) to
σi(j) when the first damage appears in section j.

This is shown as point C in Figure 6.1. The new value of pj is calculated
for section j and load is redistributed, as necessary, from section j to section
i. Equations 2.10 and 2.25 are used to track progress of the residual strength
beyond point C. However, when nA cycles are reached and damage appears
in section i, any load redistributed onto section j must be accounted for.
This may lead to changes in the applied stress and/or pj , with corresponding
change of the slope of the residual strength curve. This is shown schematically
in Figure 6.1 as a second big slope change on the residual strength of section j
occurring after nA cycles. Upon further cycling, the residual strength of section
j decreases until cycle level nB is reached when, as already mentioned, section
i fails. This means that the remaining load in section i is now transferred over
to section j and the slope of the residual strength for section j changes again as
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Figure 6.1: Example of damage tracking and interaction in a composite
structure consisting of two sections, i and j. The residual strength
of section i and j come from Eq. 2.11

shown in Figure 6.1. The cycle- by-cycle probability of failure pj is recalculated
and the cycles to failure N, with static strength the current residual strength
of section j, are determined from Eq. 2.25. Using these to substitute in Eq.
2.10 gives the residual strength curve from this point forward. In the end after
more cycling, the residual strength of section j becomes equal to its applied
stress σ(j) and section j fails. This happens at point D in Figure 6.1, after
nD cycles. Since section i has failed already after nB cycles, this point defines
complete failure of the structure. Therefore, the applied stress σa on the entire
structure and the cycles to failure nD define one point on the S-N curve, (nD,
σa), for this structure and this type of loading. Repeating the procedure for
other σa values will give the complete S-N curve.

The description of interaction between different parts of the structure as
damage occurs, given above, was one of several possibilities in order to bring
out the basic features. The sequencing of which section is damaged first and
which fails first can vary depending on slopes of residual strength curves,
load redistribution, etc. It should also be noted that a pristine structure was
assumed at the beginning of the scenario just presented. This is not limiting
as one can start anywhere in the fatigue life of a structure treating the residual
strength at any point as the static strength to be used as input in Eq. 2.10 and
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proceeding from that damage level onward. This, of course, requires knowledge
of the damage state of the structure in question at that particular point in time.
With respect to load redistribution, the approach just described implicitly
accounts for load sharing between fibers or plies through the adjustment of the
residual strength of each constituent of the structure every time a local failure
event occurs. However, the mutual enhancing of failure modes that occurs,
for example, when matrix cracks lead to delaminations, is not accounted for
in the current form of the model.

It should be emphasized again that one important implicit assumption of
the approach presented here is that there is a one-to-one correspondence
between residual strength and damage. This was already discussed in section
2.1 but becomes even more important here where the model is modified.
The implicit assumption is that if a certain type of damage results in a
certain residual strength in a structure then, if, during cycling, that residual
strength is reached, that specific type of damage will also occur. Even though
some experimental evidence supporting this assumption can be found in the
literature [e.g. [74]], this may not be always true and must be investigated
further. It is possible that different damage types will have the same residual
strength.

A rather extreme example where this assumption is violated would be an
all 0◦ laminate under tension-tension cyclic loading compared to the same
laminate under the same loading but also subjected to impact damage. In
the first case, (blue curve in Figure 6.2) if the tension-tension cycles are
repeated a sufficient number of times, some fibers will fail and their load will
be redistributed to adjacent fibers. This causes a significant slope change in
the residual strength curve. Suppose that after nt cycles at maximum stress σ
(with R = 0), the residual strength is 65% of the static strength. Consider now
the same laminate starting with the same static strength and undergoing the
same cyclic loading but for a fraction ni of the nt cycles (red curve in Figure
6.2). Then, the laminate is impacted with sufficient energy to drop its residual
(tensile) strength from the undamaged value σr to the value σrt = 0.65σfs that
is the residual strength of the undamaged laminate after nt cycles. Clearly,
the damage states of the two laminates after nt cycles without impact and ni
cycles with impact are different (more localized damage under the impact site
in the second case) but their residual strengths are the same. This example
is extreme in the sense that the damage in one case is not caused by fatigue
loading but it does represent a real life scenario where different damage states
may correspond to the same residual strength.

To summarize, the enhanced analysis model:

• divides the structure in sections each of which has its own applied cyclic
load and cycle-by-cycle probability of failure p
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Figure 6.2: Different damage scenarios leading to the same residual strength
when starting with identical specimens.

• assumes that pi in section i is constant and proceeds with the calculations
presented in chapters 2 and 4 until damage appears in section i that is
different from that already present and/or load is redistributed to/from
section i due to failure in adjacent sections

• calculates new value of pi due to new damage creation and/or load
redistribution

• continues cycling until residual strength in section i equals the applied
stress in section i, at which point, section i fails

• redistributes the load of section i to adjacent sections and repeats the
procedure until all sections fail

Two examples of how the enhanced model described in the previous section
can be applied are presented in the next two sections. The first is a uni-
directional laminate with all plies in the 0 direction loaded under tension-
tension cyclic loading. The second is a cross-ply laminate under tension-
tension cyclic loading. Both examples were selected to demonstrate different
types of damage created during cyclic loading and how they can be modeled
using the analysis framework presented here.
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6.2 Application 1: uni-directional laminate under tension-
tension loading

In a general laminate under tension-tension cyclic loading, different types of
damage occur at different stages of the life. The R ratio, maximum load,
and the stacking sequence have a significant effect on the damage scenario.
A detailed description of the type of damage and its evolution was given by
Charewicz and Daniel [11]. Damage first manifests as matrix cracks in plies
with fibers not aligned with the loading. This is most pronounced in laminates
with plies at 90◦ to the (dominant) load direction. As loading continues, the
crack density in these plies increases and some branching to adjacent plies,
which are not at 90◦ to the load direction, may occur. These cracks can
then become longitudinal cracks or splits in plies with fibers aligned with the
loading direction. When transverse and longitudinal cracks intersect at ply
interfaces in a laminate delaminations are created. Delaminations may also
appear at free edges of composite laminates due to the presence of interlaminar
stresses. At later stages of cyclic loading, matrix cracks and delaminations act
as stress risers that cause localized fiber failures which accumulate to lead to
final laminate failure.

The simplest special case of such a situation is a uni-directional laminate
with all the plies in the 0 direction. The loading is also in the 0 direction.
Here the types of damage considered are multiple fiber failures causing load
redistribution within the plies. In view of the discussion of the previous section
where the laminate or structure is sub-divided into sections, it would appear
that a uni-directional laminate consists of only one section. As will be shown
below, however, it is still possible to divide it into different sections. Each
section contains a number of fibers that have approximately the same strength.
Different sections will have different strength values, and these strength values
differentiate one section from another.

It is known from static tests (e.g. [106]) that the static strength of 0 plies may
be lower than the value that would be predicted using the individual fiber and
matrix strengths and a rule of mixtures. This can also be seen by checking
several commercially available materials for which individual fiber strength
and 0◦ ply strengths are reported. For example, for AS4/8552, reference [107]
reports the fiber strength as 4433 MPa and the 0◦ ply strength, at 60% fiber
volume, as 2205MPa. The rule of mixtures would give a 0◦ strength of at
least 0.6x4433=2660 MPa, not including a tiny contribution from the matrix.
Several methods have been proposed to improve the prediction of a straight
rule of mixtures equation [e.g. [108]]. Of interest in the present discussion are
the reasons why the test value is often lower than the prediction. These are
related to flaws in the laminate. The main flaws are surface flaws or cracks in
fibers, inadequate bond between fibers and matrix, non-uniform distribution
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of fibers in the matrix, variations in fiber diameter, and fiber misalignment.
Related to some of these flaws, and their frequency of occurrence, is the fact
that individual fiber strength is a function of fiber length [109]. In order to
proceed, a model is needed that incorporates all these effects.

Due to the reasons just mentioned, fibers within each ply will have different
strengths that, depending on the material, may cover a relatively wide range
with mean fiber strength Xf . The sources of fiber strength variation are
arbitrarily divided in two categories. The first category contains variations
in fiber diameter, and fiber misalignment as the possible sources. The
second contains flaws in the fibers or the fiber/matrix interphase. These two
categories are treated as independent and can thus be considered separately.
After the effect of each is quantified, they are combined to create a model of
the strength of fibers in a uni-directional ply.

6.2.1 Effect of fiber diameter variation and fiber waviness on fiber
strength

The variation in fiber diameter and the presence of waviness are considered
first. For a fiber with sinusoidal waviness embedded in a ply, as shown in
Figure 6.3, the governing equation for the displacement w, when a tensile load
Nx is applied, can be obtained by treating the fiber as a beam surrounded
by linear and torsional springs with stiffnesses representing the constraining
effect of the material (matrix and fibers) surrounding the fiber. The governing
equation can then be shown to be [110]:

EfIf
d4w

dx4
− (λ2kT +Nx)

d2w

dx2
+ kLw = Nx

d2wi
dx2

(6.1)

where Ef is the fiber stiffness, If is the fiber moment of inertia per unit of
fiber width, kT and kL are torsional and linear spring stiffnesses provided by
the material surrounding the fiber and wi is the initial waviness of the fiber
(prior to loading) given by:

wi = Aosin
πx

L
(6.2)

as shown in Figure 6.3.
The solution to Eq. 6.1 can be found by assuming that the wavy fiber and

the surrounding material have a deformation that can be described by:

w = A
z

zc
sin

πx

L
(6.3)

where zc is the length over which the fiber waviness affects its surrounding
material.

Then, in a manner analogous to Lee and Harris, [110], the torsional and
linear spring stiffnesses of the surrounding material are found to be:

100



Enhancements to the analytical model

Figure 6.3: Wavy fiber in a uni-directional composite

kT = 2(zc − rf )Gxz (6.4)

kL =
2Ec

zc − rf
(6.5)

where the assumption that the original amplitude of the fiber waviness Ao is
much smaller than zc has been imposed. Note that rf is the radius of the fiber,
and Gxz, Ec are the shear and Youngs moduli of the surrounding material. If
zc, at this point unknown, turns out to be smaller than the average distance
between fibers, then Gxz and Ec are matrix properties. Otherwise they are
properties of the composite as a whole, i.e. fiber and matrix at the desired
fiber volume.

The unknown distance zc is determined in a manner analogous to the
determination of the portion of the core that is effective in sandwich wrinkling
(see, for example, [111]). By minimizing the total energy, (bending of fiber,
shear and extensional energy of the surrounding material), zc is found to be:

zc =
L

π

√
3Ec
Gxz

(6.6)

Based on the previous derivation, the geometry parameter λ defined as the
ratio of the total structure under deformation divided by the portion of the
material surrounding the fiber that undergoes deformation is given by

λ =
zc

zc − rf
(6.7)

The solution to Eq. 6.1 can now be completed using Eq. 6.3 with z = zc to
substitute for w and solving for A. The result is:

A = − A0

1 +
(
π
L

)2 Ef If
Nx

+ λ2kT
Nx

+ kL
Nx

(
L
π

)2 (6.8)
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with λ, kT , and kL determined from Eqs 6.7, 6.4 and 6.5 respectively.
The effect of the waviness and fiber diameter variation on the fiber strength

can now be assessed by determining the maximum stress in the fiber and
examining how it varies as the waviness (defined by Ao and L) and fiber radius
rf vary within typical ranges measured in practice. The maximum fiber stress
in a wavy fiber is obtained by combining the axial stress with the maximum
bending stress:

σw =
Mrf
If

+
Nx2rf
πr2f

(6.9)

where M is the bending moment in the fiber (per unit width) given by:

M = EfIf
d2w

dx2
(6.10)

Using the solution for w to substitute in Eq. 6.10 and, in turn, in Eq. 6.9,
the maximum stress in the wavy fiber is found when the sine in Eq. 6.3 is
maximized and is given by:

σw,max =
EfA0rf

(
π
L

)2
1 +

(
π
L

)2 Ef If
Nx

+ λ2kT
Nx

+ kL
Nx

(Lπ )2
+

2Nx

πrf
(6.11)

Fiber failure will occur when σw,max equals the tensile failure strength of
the fiber. If Ao, L, and rf are now allowed to vary over their expected ranges
corresponding to the composite system under investigation, the variation of the
fiber strength due to waviness and fiber diameter variation can be obtained.
This is done using a Monte Carlo simulation. It is assumed that Ao, L,
and rf are each normally distributed with a mean and standard deviation
obtained from tests. For example, for AS4 fiber in 3501-6 epoxy resin, the
mean diameter is found to be 6.9 microns, with a standard deviation of
0.25 microns and L/(2rf ) and Ao/(2rf ) lie in the ranges 150-400 and 3-10
respectively ( [109], [112], [113]). In the Monte Carlo simulation, a random
number generator for a normally distributed variable is used three different
times to obtain a value of rf , Ao, and L. These values are then substituted
in Eq. 6.11. The process is repeated 1000 times to create 1000 values of the
maximum bending stress in a wavy fiber. These values are used to obtain the
coefficient of variation CV for the fiber strength population. The resulting CV
value was 0.0642. It is important to note that this CV value was found to be
very stable. Repeating the simulation 10 times yielded a CV value that varied
after the fourth decimal (less than 0.1%). Changes by almost a factor of 2 on
the waviness parameters Ao and L had a negligible effect to its value. There
was a somewhat stronger dependence on the variation of the fiber diameter
but, still, a 40% change in the fiber diameter caused less than a two percent
change in the CV value.
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6.2.2 Effect of flaws on fiber strength

The strength variation due to the presence of flaws in the fiber and the
fiber/matrix interphase is now considered. It is well known that fiber strength
depends strongly on fiber length [109]. Longer fibers have lower strength. The
exact reason(s) for this are not clearly understood. It is believed that, in longer
fibers, the probability of a larger flaw being present in the fiber is greater than
in a short fiber and thus longer fibers will have lower strength. In the present
model, it is assumed that an individual ply will contain fibers with strengths
that cover the entire range of strength values from very low to very high. This
should be expected as the number of fibers present in a ply is so large that the
likelihood that fibers are present with any given strength value in the range is
very high. However, the number of fibers with strength value within a specific
range will vary. A very small number of fibers will have either very low or very
high strength with larger quantities of fibers having strengths comparable to
the mean value Xf . Therefore, the strength of the fibers in a ply is assumed to
follow the shape of the cumulative distribution curve as shown in Figure 6.4.
The y-axis denotes strength with Xf the mean strength corresponding to the
50th percentile of the strength distribution. The x axis denotes some measure
of the number of fibers within each quantile. Wider bars indicate that a larger
number of fibers fall in that strength range.

It is now assumed that all fibers have the same stiffness. Then, if a stress
σ is applied to the fibers, all fibers with strength less than σ, (the diagonally
shaded portion on the left of Figure 6.4) will fail. Now the load acting on the
failed fibers is redistributed to the remaining fibers. If there is no resin, the
load is equally distributed to all non-failed fibers. The presence of the resin,
however, allows load to shear from failed fibers to adjacent fibers and fibers
further away from a failed fiber will share a smaller fraction of the load to be
redistributed than fibers closer to the failed fiber. On-going work by Qian [114]
using detailed finite element models, has shown that in a typical uni-directional
composite with fiber volume around 60%, the stress concentration in non-failed
fibers in the immediate vicinity of a failed fiber ranges between 1.04 to less
than 1.1 depending on the number of adjacent (non-failed) fibers and how they
are arranged (2-D array or 3-D spatial distribution). There are several models
for the stress concentration factor [e.g. [115], [116]] for 2-D arrays of fibers. In
a 3-D situation, however, which is the case for a uni- directional ply, modeling
becomes very complex and, so far, reliable solutions can only be obtained using
finite element methods as in [114]. In what follows, the load acting on the failed
fibers will be evenly re-distributed among the remaining fibers, neglecting the
effect of the matrix. Improved models for the load re-distribution can be
incorporated, if desired, without changing the basic approach.

If Xf is the mean strength of the fibers and sf is the standard deviation
describing the curve in Figure 6.4, the fraction of failed fibers when σ is applied
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is given by:

f = cdf(σ,Xf , sf ) (6.12)

where cdf denotes the cumulative distribution function evaluated at σ, for a
normal distribution of mean Xf and standard deviation sf . Then, distributing
evenly the load of the failed fibers to the remaining fibers, the new applied
stress (on the remaining fibers) is:

Figure 6.4: Schematic of strength of fibers in a uni-directional ply (width of
each bar is proportional to number of fibers with strength in the
corresponding range)

σnew =
σ

1− f
(6.13)

which is shown (on the y axis) in Figure 6.4. Again, some fibers with
strength less than σnew will fail and are denoted by the checkered shading in
Figure 6.4. The load is again re- distributed to the remaining fibers and the
procedure is repeated until the process either converges to a value of f < 1,
meaning that there is no failure and some fibers are still able to carry load, or
it diverges and all fibers fail.

At this point, the mean fiber strength Xf and standard deviation σf are
unknown. Note that these are not the conventional strength and standard
deviation one would measure by testing individual fibers for two reasons: (a)
fiber strength is a function of fiber length and (b) in the present model, the
fiber strength in Figure 6.4 represents all possible values corresponding to flaws
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of different severity and does not include the effect of waviness or variations
in fiber diameter which were modeled separately earlier.

Information from static strength tests for uni-directional plies of the material
of interest is used to determine Xf and σf . This information consists of an
average strength Xp value for the entire ply and its corresponding standard
deviation σp. Again, a Monte Carlo simulation was used. A random number
generator was used to create 40 strength values for a normally distributed
variable with mean Xp and standard deviation σp. To check convergence and
stability, the process was repeated 10 times and showed that extreme Xp and
σp values varied by less than 2% suggesting that a sample with more than 40
strength values would be needed if higher accuracy were deemed necessary.
These 40 Xp values represent strength values of a 0 ply. For each of these
values, the nominal fiber strength Xfi is obtained by dividing it by the fiber
volume fraction:

Xfi =
Xpi

vf
(6.14)

Then, Eqs. 6.12 and 6.13 are applied to this population. The fraction of
failed fibers fi for an applied fiber stress of Xfi,is given by (see also analogous
Eq. 6.12)

fi = cdf(Xfi, Xfav, si) (6.15)

where the mean fiber strength Xfav is the experimentally measured average
across all individual fiber tensile tests (all lengths) and si is an assumed
standard deviation of fiber strengths for the specimen i. This means that
first a series of individual fiber tests are done with different fiber lengths and
the overall average fiber strength, Xfav, is determined experimentally. The
new fiber stress Xfinew resulting from redistributing the load that was applied
to the fraction fi of fibers that failed is given by (see also analogous Eq. 6.13):

Xfnew =
Xfi

1− fi
(6.16)

The fiber stress is updated as the load from failed fibers is redistributed
to all unfailed fibers. This is done until all fibers fail or some that have not
failed remain. In the latter case, the value of standard deviation σi used is
increased and the procedure repeated until there is convergence or failure of
all the fibers. The value of σi at which the specimen just fails is the sought-for
standard deviation for the specimen in question. The process is repeated for
all 40 specimens in the Monte Carlo simulation yielding 40 values of σi. The
average value of σi across all 40 specimens is the standard deviation σf used
to determine the shape of the curve in Figure 6.4. It represents the standard
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deviation of the fibers in an average uni-directional specimen and reflects the
fact that the presence of flaws causes nominally identical fibers (since they
have no waviness and have all the same diameter) to fail at different strength
values.

Since now the effect of flaws is represented by the shape of the curve in Figure
6.4, which is determined by the standard deviation σf just obtained, the mean
strength for the fibers in the same population has to be the mean strength
from individual fiber tests with the shortest fibers. This is done since, as
already mentioned, short fibers tend to have less critical flaws and, therefore,
the average strength for the shortest available fibers which are about 1 cm
long, will be a reasonable approximation of the average strength of a flawless
fiber. This is based on the fact that data, in [109] for example, show that the
strength levels off at this range of fiber lengths (around 1 cm). More testing
at even shorter fiber lengths and for different fibers is necessary to verify this
trend.

The AS4 fiber in 3501-6 matrix is used again as an example. For 60%
fiber volume, the average strength of a uni-directional ply of AS4/3501-6 is
Xp = 2002.5 MPa and the corresponding CVp = σp/Xp is 0.05855 [117] from
which σp can be determined. Note that the strength value is the average over
the bleed and no-bleed versions of the material reported in [117] and the CV
is the average across environments and across the two material forms (bleed
and no-bleed). The average fiber strength for fiber lengths between 1 and
10 cm was calculated as Xfav = 3849.5 MPa. This was obtained by first
interpolating, linearly, the values for 1 and 20 cm given in [109] to obtain the
average strength of 10 cm long fibers, which is the approximate gage length
of the specimens used in fatigue testing mentioned below. Then, the average
strength of 1 and 10 cm long fibers (3849.5 MPa) gives a measure of the
average strength of the fibers used in the specimens during fatigue testing.
The average fiber strength for the shortest fibers (1cm length) is Xf = 4142
MPa [109]. Then, the procedure just described gives 40 σi values from which
corresponding CV values can be obtained ranging from 0.018 to 0.155 with
average CVf = 0.0696. Therefore, for AS4/3501-6, the curve in Figure 6.4
is described by a mean fiber strength Xf = 4142 MPa and a coefficient of
variation CVf = 0.0696. The fact that this value is close to CV = 0.0642
found earlier for the effect of waviness and fiber diameter is, probably, entirely
fortuitous.

6.2.3 Analysis procedure

A procedure to predict cycles to failure for a unidirectional ply under tension-
tension loading can now be established. According to the modeling approach
described in the previous section, the ply is divided into sections. Each
section, represented in Figure 6.4 by a different bar, has a different strength
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starting from very low to very high. Care was taken so that a large number
of sections (in the cases run here 22 were sufficient) with different (increasing)
strength Xfi exceeding the stress applied to the fibers during the first cycle.
For example, if the applied stress were σa = 1700 MPa for AS4/3501-6
with vf = 0.6, the applied fiber stress is σ = 2837 MPa. Then, the range
between 2837 MPa and 1.05Xf = 4350 MPa was divided in 22 sections with
corresponding strength values (in MPa): 2900, 2960, 3000, 3050, 3100, 3150,
etc. Note that the exact division into sections and the number of sections is
arbitrary. The more sections are used the higher the accuracy but the solution
was found to converge with approximately 20 sections. Convergence to within
3% can be obtained with 10 or less sections but the ease of computation
and efficiency of the approach allowed a higher number to be used to obtain
convergence within less than 1%.

Thus, the overall fiber strength distribution is determined by the effect of
flaws in the fibers (or in general effects other than waviness and diameter
variation). Within any given portion of that distribution, or section, the
variation in strength is determined by the CV caused by waviness and diameter
variation. This is valid since it is assumed that any fiber irrespective of its
flaws and their severity can have any waviness or fiber diameter.

The required inputs are the fiber volume, the average fiber strength Xfav

across all fiber lengths from 1 cm to the length of the ply, the average fiber
strength for short fibers (approx. 1 cm), and the mean strength Xp and
standard deviation σp for the tensile strength of a ply. In addition, data on
the variation of fiber diameter (mean and standard deviation) are needed. The
procedure is then as shown below.

1. A Monte Carlo simulation modeling the waviness and fiber diameter
variation is performed to determine the CV of fiber strength.

2. A second Monte Carlo simulation is used to determine the CVf of fiber
strength resulting from factors other than in step 1.

3. An applied stress σa is selected.

4. The corresponding stress σ applied to the fibers is determined by dividing
σa by the fiber volume fraction vf .

5. The fibers with strength between σ and an arbitrary value higher than
the mean fiber strength Xf , are divided arbitrarily into a number
of sections (22 used here) each with different strength but constant
coefficient of variation = CV (0.0642 for AS4/3501-6)

6. The fraction f of failed fibers under σ is determined using Eq. 6.12 with
σf = Xf (CVf ). Note here CVf is used, related to flaws, and not CV
which results from variations in diameter and waviness.
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7. Load is redistributed to remaining fibers using Eq. 6.13.

8. Steps 6 and 7 are repeated until either all fibers fail and the ply fails or
there is convergence to a value of f < 1.

9. If the ply has not failed in the previous step, for each section i, the cycle
by cycle probability of failure pi is determined using

pi = cdf(σi, Xsi, ssi) (6.17)

where σi is the stress applied to the fibers of section i, obtained from step
7 (and is constant for all sections), Xsi is the strength of the fibers of
section i, obtained from step 5 (or step 11 below), and ssi is the standard
deviation for the fiber strength in section i, obtained from ssi = CV (Xsi)
or by using Eq. 6.18 below.

10. The number of cycles to failure Ni for section i is determined using Eq.
2.25. After N1 cycles, the first section fails. Then, section 2 becomes
the new section 1, the yet unfailed section that is closest to the applied
load. Thus, every time steps 6-11 are repeated, the section numbers
decrease by one and the total number of unfailed sections decreases by
1. Each time, N1, the number of cycles to failure for the fibers in the 1st

section, is recorded and added to the previous sum of all N1 values. Of
course, the value of N1 is not the same each time since it corresponds
to a section with a different residual strength and coefficient of variation
(and thus p value) each time.

11. For sections 2 to the maximum number of sections (22 was the starting
number of sections used here), the new residual strength σr and CV are
determined. The residual strength is obtained from Eq. 2.10. The new
CV is determined from combining Eqs. 2.17 and 3.2 and solving for CV :

CVnewi =
1.2478

Ni−1
Ni−N1−1(1.2478CV − 0.9686) + 0.9686

(6.18)

where N1 is the number of cycles to failure for section 1. Note that
this determination of CV is approximate as it assumes the normally
distributed fiber strength within a section can also be approximated by
a two-parameter Weibull distribution.

12. Since after N1 cycles the first section has failed, the applied fiber stress is
adjusted to Xs1, the strength of the failed section, and the process steps
6-11 are repeated with the updated values of applied stress, strength,
and CV of each section.
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13. The sum of all N1 values until the ply fails (see step 8) gives the cycles
to failure under applied σa.

14. Repeating steps 3-13 for different σa values gives the predicted S-N curve
for this case.

6.2.4 Comparison with test results

The above procedure was applied to tension-tension fatigue (R ≈ 0) of
AS4/3501-6 uni- directional laminates. This case was also examined in section
3.2 where a constant value of p was used until failure. Using the updated
model, p is no longer constant. The predictions of the present approach
are compared to test results, from Lee et al [74], in Figure 6.5 The original
predictions from section 3.2 (Figure 3.1) are also included for comparison.

Note that all test data points are included in Figure 6.5, unlike Figure
3.1 where only the low and high cycle points were included for each stress
level. It can be seen from Figure 6.5 that the improved model described in
this section is an improvement over the simplified model developed in section
2.2 and is in excellent agreement with the test results. It is clear that the
constant value of p, which gives the blue prediction curve in Figure 6.5, is not
sufficient in this case. The reason for this is that the main form of damage,
fiber breakage, changes drastically the cycle-by-cycle probability of failure p.
The improved model accounts for this change in p and, as a result, gives much
better predictions.

Figure 6.5: Analytical predictions compared to test results for uni-directional
laminate (R ≈ 0). The test data is from [74]
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6.3 Application 2 - cross-ply laminate under tension-tension
loading

Conceptually, the case of a [0n/90m/0n] under tension-tension loading would
appear to be a simple extension of the model used in the previous section.
However, as will be demonstrated, even for a simple laminate such as this,
the damage created during cyclic loading, matrix cracks and fiber failures, can
cause quite a complex stress state in the laminate. This stress state requires
accurate analysis to determine local load redistributions from the 90 to 0 plies
and, based on this, localized failure that will signal the creation of new damage
as cyclic loading progresses. This might appear to contradict the discussion in
section 2.2.1 where it was stated that as long as the spacing of matrix cracks in
the 90◦ is large, the cycle-by-cycle probability of failure p is relatively constant.
As the crack spacing gets smaller, adjacent cracks will interact and promote
creation of additional cracks and fiber failure in the 0 plies. As a result, the
residual strength will change the value of p will vary with cycles.

In order to apply the improved model just presented, the structure must
be divided into sections. Accounting for the expected types of damage, the
laminate should be divided into three main sections, the 0 plies, the 90
plies, and the 0/90 ply interfaces. Including the 0/90 ply interfaces is done
to capture the creation of delaminations. The delaminations, even though
limited in these laminates, may play an important role in determining cycles
to failure for certain stacking sequences. As will be demonstrated later by
analysis, the interlaminar normal stresses that develop are mostly compressive
(which do not cause delamination) and the interlaminar shear stresses have
too low a magnitude to cause delamination. There is only one case where the
interlaminar normal stresses become tensile, the mid-point between successive
matrix cracks in the 90◦ plies. This case will be discussed later. As a result,
for the time being the 0/90 ply interface is not accounted for in detail. The
main sections are the 0 and 90 plies and these may be divided into subsections
as necessary.

In the above discussion the interlaminar stresses developing at the free edge,
in particular the normal stress σz, which is tensile at the free edge, were not
mentioned. The reason is that calculations of these stresses using the method
in [118] show the maximum σz stress to be less than 6% of the applied average
tensile stress and its effect is, therefore, neglected. This however does not
account for any interaction of the free edge with a matrix crack which could
lead to higher σz stresses locally.

Considering static loading, the types of damage that occur as tensile stress
on the laminate σa is increased from 0 to final failure are determined. For a
[0n/90m/0n] laminate, the first damage that appears are matrix cracks in the
90◦ plies. These cracks extend the full width of the laminate and are confined
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in the 90◦ plies by the fibers in the 0◦ plies which are tough and do not easily
allow the matrix cracks to extend into the 0◦ plies. Two such cracks separated
by a distance d are shown in Figure 6.6.

As σa is increased from 0, a level is reached at which the first matrix cracks
will appear. This will occur at locations where local flaws are present such as
small voids, resin rich areas, trapped volatiles or contamination, etc. While
these locations act as stress risers that will cause the first matrix cracks,
the local stress in the 90 plies when this happens is close to the in-situ, i.e.
transverse, strength of the 90◦ ply.

As soon as the first matrix cracks appear in the 90◦ plies, the axial load in
these plies must transfer to the 0 plies in the vicinity of the matrix cracks.
As a result, interlaminar shear and normal stresses develop. Upon further
increase of the applied load, these stresses combine with the axial stress to
create further matrix cracks. The crack density will increase with increasing
applied load. Depending on the relative thickness of the 0 and 90 plies, these
matrix cracks at high crack densities may create delaminations at the 0/90
interface [74]. At some point fibers in the 0 plies will start to break and,
eventually, the 0 plies will fail causing complete failure of the laminate.

Therefore, in order to predict cycles to failure in such a laminate, a model is
needed that can determine when matrix cracks occur, how load is redistributed
from 90 to 0 plies, and when failure occurs in the 0 plies. The problem, at
least as far as determining when matrix cracks occur and at what density,
has been addressed by several investigators. Berthelot, [119] used a shear lag
model based on a displacement formulation. A stress-based approach using
energy minimization was used by Hashin [120]. In another attempt, Berthelot
and his colleagues used finite elements to determine the stresses in cross-ply
laminates with matrix cracks [121]. Berthelot also gives a good summary of
work done in this field in [122].

Figure 6.6: Matrix cracks caused in a cross-ply laminate under tension
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6.3.1 Determination of stresses in a cross-ply laminate with matrix
cracks under tension

A stress-based solution is developed here by minimizing the complementary
energy in the laminate using calculus of variations. This approach is similar
to the solution by Hashin [120], and it is analogous to the method presented
before [ [123], [124]] for determining interlaminar stresses at skin/stiffener
interfaces of stiffened composite panels and straight free edges of composite
laminates.

The situation to be analyzed is shown in Figure 6.6. The thickness of the
90◦ plies is t1 and the thickness of the 0◦ plies is t2. First, the stress at which
one matrix crack appears in pristine 90◦ plies is determined. This is done by
determining when the applied stress in the 90◦ plies equals the in-situ strength
of these plies. Using the in-situ strength of the 90◦ plies is important because,
depending on the relative thickness of 0◦ and 90◦ plies, it is anywhere from
20-40% higher than the transverse strength of the material. The presence of
the 0◦ plies on either side of the 90◦ plies slows down the growth of transverse
cracks in the 90◦ plies. Dvorak and Laws, [125], have developed curves that
relate the energy release rate to laminate geometry, which are applicable to the
present case. The in-situ strength of 90◦ plies can be determined by equating
the energy release rate to the critical energy release rate and back-calculating
the corresponding applied stress.

Once the first crack has appeared, the problem in Figure 6.6 with two cracks
can be solved. The results from that problem can be matched to the case of
a single crack by allowing the crack spacing d to go to infinity.

Due to symmetry, the 0 plies below the mid-plane need not be considered.
Two coordinate systems are set up, one for the 0◦ and one for the 90◦ plies
as shown in Figure 6.6 The stresses are then determined separately in the 0
and 90 plies using the respective coordinate system. It is assumed that the
laminate is very long in the y direction (perpendicular to the plane of Figure
6.6) and, therefore, there is no dependence of stresses on the y coordinate.
It is also assumed that the shear stresses τxy and τyz are zero. The stress
equilibrium equations, either in the 0 or the 90 plies, with the y dependence
neglected, have the form:

∂σx
∂x

+
∂τxz
∂z

= 0

∂τxz
∂x

+
∂σz
∂z

= 0 (6.19)

It is now assumed that the σx stress in the 0◦ or the 90◦ plies is given by:

σx = σxff +Aif(x) (6.20)
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where σxff is the far-field stress (large x) when only one crack is present,
which is the same as the stress when there are no cracks at all. This far-field
stress can be determined considering strain compatibility (all plies extend by
the same amount) of an uncracked laminate. Respectively, for the 90 and 0
plies,

σ
(90)
xff =

E22(t1 + 2t2)

E22t1 + 2E11t2
σa σ

(0)
xff =

E11(t1 + 2t2)

E22t1 + 2E11t2
σa (6.21)

The constant Ai (i = 1 for 90 plies and 2 for 0 plies) is different for the two
sets of plies and is determined by requiring that the total axial load at any
location x along the laminate equals the applied load. Setting A1 = 1 with no
loss of generality, A2 (in the 0 plies) is determined from force equilibrium, per
unit width y of the laminate:

∫ t1/2

−t1/2
(σ

(90)
xff + f)dz + 2

∫ t2/2

−t2/2
(σ

(0)
xff +A2f)dz = σa(t1 + 2t2) (6.22)

where the factor of 2 in front of the second integral accounts for both sets
of 0 plies, above and below the mid-plane. Using Eq. 6.21 to substitute in Eq.
6.22 and solving for A2 gives:

A2 = − t1
2t2

(6.23)

The function f is still unknown at this point. The remaining stresses,
except σy, are determined by using the equilibrium equations, the stress-free
boundary conditions at the top of the laminate,

τ (0)xz (z =
t2
2

) = 0

σ(0)z (z =
t2
2

) = 0 (6.24)

and the stress continuity conditions at the interface between the 0◦ and 90◦

plies:

τ (90)xz (z =
t1
2

) = τ (0)xz (z = − t2
2

)

σ(90)z (z =
t1
2

) = σ(0)z (z = − t2
2

) (6.25)

Using Eqs. 6.19 to determine τxz and σz and applying conditions 6.24 and
6.25 the stresses are found to be:
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σ(90)x = σ
(90)
xff + f(x) (6.26)

τ (90)xz = −zf ′(x) (6.27)

σ(90)z = (− t1t2
4
− t21

8
+
z2

2
)f ′′(x) (6.28)

σ(0)x = σ
(0)
xff −

t1
2t2

f(x) (6.29)

τ (0)xz = (− t1
4

+
t1
2t2

z)f ′(x) (6.30)

σ(0)z = (− t1t2
16

+ t1
z

4
− t1z

2

4t2
)f ′′(x) (6.31)

where primes next to f denote differentiations with respect to x and σ
(90)
xff

and σ
(0)
xff are given by Eqs. 6.21.

The transverse stress σy is still unknown. It is determined by using
the inverted stress- strain equations and strain compatibility, following the
procedure in [124], [125]. This finally leads to:

σy = k0 + k1z −
S12
S22

σx −
S23
S22

σz (6.32)

where k0 and k1 are unknown constants determined from classical laminated
plate theory, at large x, away from the crack for a single-crack case. Eq. 6.32
is applied to both the 0 and 90 plies provided the compliances Sij and stresses
are evaluated accordingly.

The only unknown left, is the unknown function f(x). It is determined
via energy minimization and calculus of variations [124], [125]. The energy
expression to be minimized is:

Πc =
1

2

∫ ∫ ∫
V
σT S σdxdydz −

∫ ∫
A
T T udxdz (6.33)

where underscores denote matrices or vectors. S is the compliance tensor
for the portion of the laminate being evaluated in Eq. 6.33, for example 0◦ or
90◦ plies, T are the tractions corresponding to the prescribed displacements u.
V is the volume of the laminate and A is the area over which displacements
are prescribed.

Eq. 6.33 includes the unknown function and its derivatives. It turns out
the second term in Eq. 6.33 does not contribute to the solution. It affects the
particular solution of f which is already fixed by requiring that the stresses
in Eq. 6.20 recover the far-field classical laminated-plate theory solution. For
the remaining part of the complementary energy Πc the y and z integrations
can be carried out easily, leaving the x integration. Thus, Πc has the form:
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ΠC =
1

2

∫ d

0
H(f, f ′, f ′′)dx (6.34)

where H is the integrand in Eq. 6.34 containing f and its first two
derivatives along with the compliances and geometry of the problem resulting
from the y and z integration of Eq. 6.33.

To minimize the energy, one must find the function f that minimizes the
integral in the right hand side of Eq. 6.34. This is a classic problem in
calculus of variations. The unknown function f is determined by solving the
Euler equation:

d2

dx2
(
∂H

∂f ′′
)− d

dx
(
∂H

∂f ′
) +

∂H

∂f
= 0 (6.35)

This turns out to be a fourth order ordinary differential equation for f that
is solved subject to the boundary conditions at x = 0 (σx = τxz = 0) and
x = d/2 (τxz = dσz/dz = 0). The solution is in terms of exponentials. Note
that as this solution must be valid for large values of d, any exponentials
with positive exponents will lead to ever increasing stress values and are thus
neglected.

6.3.2 Comparison of analytically determined stresses to finite ele-
ment results

Comparison of this solution to finite element results taken from [121] shows
excellent agreement for relatively large crack spacing and some discrepancy
for very small crack spacing (d < 10t1). This comparison is shown in Figure
6.7.

The stresses are now combined in a Hashin-type failure criterion [126]
including the interlaminar stresses to determine failure at any given point
in 0 or 90 plies. It should be noted that, for the transverse strength of the 90◦

plies, the in-situ strength mentioned earlier is used. As an additional check
of the accuracy of the improved model, the number of cracks as a function of
applied stress in various cross-ply laminates made with T300/934 predicted
by the analysis method presented are compared to test results obtained by
Wang [127], in Figure 6.8.

As already mentioned, the first cracks typically appear at locations where
local flaws or inconsistencies act as stress concentrations. Therefore, some
discrepancy between the present method and test results is to be expected
at low crack densities. This discrepancy is most pronounced in the case of
the [0/902/0] laminate. The rest of the predicted curves are in reasonable
agreement for the [0/904/0] and [0/903/0] laminates. At higher crack densities,
the problem already highlighted in Figure 6.7 becomes significant. It is
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Figure 6.7: Normal stress σx in 90◦ ply compared to finite element results
from [121]

suspected, that the implicit assumption of the analytical model that the σx
stress does not vary with z, is no longer valid for higher crack densities.
In any case, while it is understood that the analytical model needs some
improvements, it is much easier to use than finite element solutions and, for
the time being, is considered sufficient for using to generate predictions of
strength evolution under cyclic loading.

To proceed with fatigue life predictions, knowledge of the critical locations
in the 0◦ and 90◦ plies is needed. Typical plots of the stresses in these plies
are shown in Figure 6.9. The axial stress σx in the 0◦ plies is zero at the
two matrix cracks and goes through a maximum at the mid-point between the
cracks. The interlaminar normal stress σz is compressive at the two matrix
cracks and slightly tensile at the mid-point between them. It should be noted
that as the crack spacing decreases, the tensile σz value half way between
adjacent cracks keeps increasing and it is possible that at very high crack
densities it might affect further damage creation by causing delaminations at
the 0/90 ply interface. For most crack densities, however, this tensile value
is quite low and does not alter the damage evolution. The interlaminar shear
stress τxz is zero at two matrix cracks and zero at the mid-point between
them. It reaches a maximum (or a minimum) at two intermediate points
symmetrically located with respect to the mid-point of the distance between
the two cracks. The maximum interlaminar shear stress is very low and does
not lead to failure of the ply.

The axial stress σx in the 0◦ plies is maximum at the location where the two
cracks are (recall the cracks are confined in the 90◦ plies) and goes through a
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Figure 6.8: Crack density versus applied stress for cross-ply laminates Test
versus theory. (Test results from [127]

minimum half-way between them as is shown in the bottom part of Figure 6.9.
The interlaminar stresses σz and τxz in the 0◦ plies have very similar shapes
as in the 90◦ plies but their peak magnitudes are much lower than in the 90◦

plies. The stresses in the 0◦ plies at the bottom of Figure 6.9 are plotted at the
0/90 interface for two reasons: one because as one moves towards the top of
the laminate, which is stress free, the interlaminar stresses become negligible
and two, because the 0/90 interface is the only interface where delaminations
may occur if the magnitude of the interlaminar stresses is sufficiently high.
As it turns out, for the laminates examined here, this was not the case and
no delaminations are predicted. This is not in complete agreement with the
test results reported in [74] where some delaminations appeared at high crack
densities.

6.3.3 Predictions of cycles to failure compared to test results

The above discussion and the stress shapes in Figure 6.9 help determine
the critical locations where damage might be created during cyclic loading.
To quantify this better, the Hashin failure criterion (modified to include
interlaminar stresses) was used to determine the critical location in 0◦ and 90◦

plies. Two locations came out as the most critical: (a) The interface between
0 and 90 plies at x = 0 (next to a matrix crack) and (b) The same interface
at x = d/2 (midway between matrix cracks). At the first location, σx in the 0
plies reaches its maximum value, σz reaches its maximum compressive value,
and τxz = 0. At the second location, σx in the 0 plies reaches its minimum
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value (which is close to the maximum), σz reaches its maximum tensile value,
and τxz = 0. The first location was always more critical in predicting failure
than the second for all the cases examined.

The fatigue approach described in the previous sections will now be
combined with the stress analysis presented in this section to predict the
cycles to failure for cross-ply laminates made with AS4/3501-6. The laminates
examined were [0/902]s, [02/902]s and [0/904]s. Each laminate was divided in
two sections, the 0 and 90 plies. The 0 plies were then divided into sub-sections
in exactly the same way as described in section 6.2.1 for the laminate with
all 0◦ plies. As already mentioned, the critical location for all laminates and
load levels was the 0/90 interface next to a matrix crack (x = 0). Then, the
results from the previous section on the uni-directional plies can be applied
here directly. This neglects any effects of the compressive σz stress at the
critical location.

The analytical predictions are compared to test results obtained by Lee et
al [74] in Figs. 6.10 - 6.12. The best fit curve to the test data is also included
for comparison. The agreement is good for the [0/902]s laminate (Figure 6.10)
but not as good for the [02/902]s laminate (Figure 6.11). The comparison
for the [0/904]s laminate in Figure 6.12 shows that the present method needs
improvement.

As can be seen from Figs. 6.10 - 6.12, the predictions from the present model
are always conservative (below the best fit curve) and they get progressively
worse (more conservative) as the thickness of the 90◦ plies increases. It is
believed that the main reason for the discrepancy is that, within each section
(0◦ and 90◦ plies) σx is independent of z. Work by Berthelot [122] suggests
that for low crack spacings this assumption is no longer valid. An improved
stress model is expected to improve the fatigue life predictions.

Another reason for the discrepancies in Figs. 6.11 and 6.12 is that the
model evenly redistributed load from failed fibers to all unfailed fibers in the
0 plies. As mentioned in the previous section, in a real situation only the
nearest fibers to a failed fiber will participate in load sharing. This would
localize load redistribution and keep fibers from failing early. As a result, the
predicted lives will increase raising the analytical predictions higher and closer
to the test data.

6.4 Discussion

The improved model described in the previous sections brought to the surface
what is, perhaps, the most important issue in developing predictive tools
for fatigue performance of composites: The need for accurate static analyses
that can quantify the strength and stiffness of a composite structure given its
damage state. This was shown in section 6.2 where by tracking fiber breakage,
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excellent predictions were obtained. As soon as the level of complexity went
up, in the [0n/90m/0n] laminates, section 6.3, the shortcomings of the stress
analysis model translate to inaccuracies in the predictions.

The analytical framework for predicting fatigue strength of composite
structures works extremely well if the associated (static) stress analysis models
that account for the types and extent of damage are accurate. Future efforts
should concentrate on improving these models. The basic models for residual
strength and cycles to failure may need improvements but this is secondary
compared to the issues that arise when the static analysis models needed for
the method to work are not accurate or available.
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Figure 6.9: Stresses in a [0/902/0] laminate under tension with two matrix
cracks in the 90◦ plies
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Figure 6.10: Analytical predictions compared to test results for [0/902]s
AS4/3501-6 laminate. (Test results taken from [74])

Figure 6.11: Analytical predictions compared to test results for [02/902]s
AS4/3501-6 laminate. (Test results taken from [74])
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Figure 6.12: Analytical predictions compared to test results for [0/904]s
AS4/3501-6 laminate. (Test results taken from [74])
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7 Conclusions and recommendations

An analytical model that can be used to predict cycles to failure of composite
structures under constant amplitude or spectrum loading was presented in
the previous chapters. First, a simple model for determining the residual
strength as a function of cycles, applied load, and the strength distribution
at the beginning of the cyclic loading was created. This model was used to
determine the cycle-by-cycle probability of failure p for a composite structure
under cyclic loading. The cycles to failure were then determined as the cycles
at which the probability p that failure has occurred is maximized. The cycle-
by-cycle probability of failure p was shown to be constant if the static strength
follows a two-parameter Weibull distribution and the residual strength obeys
the residual strength model presented here. The model was extended to
spectrum loading by tracking the evolution of residual strength as different
loads (in terms of amplitude, direction, type) are applied and creating an
equivalence between spectrum and constant amplitude loading.

The model developed is purely analytical and, as such, requires no fatigue
or other calibration tests or empirical or semi-empirical parameters or curve
fitting. It is therefore, very efficient and versatile and can be used not only as a
predictive tool but also as a means for establishing design guidelines and curves
in the form of Goodman diagrams, omission levels for fatigue test programs,
cycles to failure curves with a specific reliability, and reduced number of test
cycles. Predictions for the cycles to failure based on a constant p match test
results very well in many cases but deviate from test results when multiple
forms of damage and complex stress states are present in the structure. A
correction to the model, still based on the same residual strength and cycles-
to-failure equations was created to account for the fact that, in general, the
cycle-by-cycle probability of failure p does not remain constant during a fatigue
test. This improved the accuracy of the predictions but also identified some
areas where more work is needed.

The main issue that must be addressed so that the model can have more
general applicability, is the need to track multiple types of damage as they are
created and transition to other damage types. If one form of damage dominates
the fatigue behavior, the model presented here is adequate. If more than one
types of damage are present and each affects structural performance by locally
or globally changing strength and stiffness, the model must be modified. Areas
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where modifications are needed and some suggestions for these modifications
are briefly given in the two sections that follow.

7.1 Conclusions

A summary of the conclusions drawn from the analytical model follows.
While there is experimental evidence to support most of them, some of
them have not yet been experimentally verified or have been only partially
verified. The status of experimental verification is indicated at the end of
each conclusion with, accordingly, the word(s), “verified”, “partially verified”,
or “not verified”.

1 The proposed model relating the rate of change of residual strength to
the current value of the residual strength gives very good prediction for
residual strength as a function of cycles as long as the residual strength
is a monotonic function of cycles. (Verified)

2 It is possible to obtain excellent predictions for the cycles to failure
provided the statistical distribution for the static and residual strength
are accurately known and one type of damage dominates the fatigue
behavior. (Verified)

3 It is possible to extend the model to spectrum loading, giving very good
predictions for the blocks to failure for tension-dominated spectra, by
mapping the residual strength to a number of cycles and loading type.
This requires that one type of damage dominates the behavior. (Partially
Verified)

4 The cycle-by-cycle probability of failure is constant if the static strength
distribution is two-parameter Weibull and the residual strength model
introduced here holds. (Not Verified).

5 The cycle-by-cycle probability of failure will change when significant
load redistribution occurs and/or new types of damage appear in the
structure. This has been incorporated in the model with excellent
results but also identified the need of accurate static strength models
that account for the damage present in the structure as a necessary
requirement for the model to be accurate. (Partially Verified)

6 The scatter of the residual strength decreases with cycles. As the number
of cycles increase, only the stronger specimens remain in a population
and the scatter becomes narrower. (Not Verified)

7 The Miner sum of applied cycles divided by the cycles to failure
∑ ni

Ni
can be less than, equal to, or greater than 1 depending on the sequence
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of applied loads. According to the present model, low-high sequences
add up to less than 1 and high-low sequences add up to more than 1.
(Partially Verified)

8 Changing the order of application of load segments in a fatigue test does
not change the residual strength but it does change the number of cycles
to failure. The cycles to failure will not change as long as the final
load segment in the sequence remains the same irrespective of how all
previous load segments are ordered. (Not Verified)

9 The present model can be successfully used to construct Goodman
diagrams without the use of any fatigue testing. The accuracy of
the resulting diagrams ranges from good (tension-dominated loading
with one type of damage dominating behavior) to poor (compression-
dominated loading). (Verified)

10 The present model can be used to determine the number of fatigue cycles
or fatigue lives to which a specimen should be tested to provide B-Basis
life reliability. Depending on the assumptions, this number of lives ranges
from 8.9 to 17.9. (Verified)

11 The proposed model can be used to determine omission levels for test
programs. These are the load levels below which, cycling up to a
prescribed number of cycles will cause no damage beyond that already
in the structure, will cause no growth of the damage already present,
and will cause no failure. (Verified)

12 The proposed model can be used to derive an exchange law to determine
a reduced number of test cycles at a slightly increased applied load as a
function of the required number of service cycles and applied loads (Not
verified).

7.2 Recommendations

As with every new model that attempts to be general and cover all possible
cases, there are several areas where more work is needed to improve the model’s
accuracy. For convenience, the section or sections where a specific issue arose
is also included at the end of each recommendation.

1 Currently, the cycles to failure are obtained as the cycles that maximize
the probability P that there has been (one and only one) failure between
1 and N cycles. It should be examined whether using the mean (which
is twice the modal value) instead of the mode, gives a better prediction.
At the same time, physical reasoning for making this change should be
provided. (Section 2.2)
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2 The determination of experimental scatter for static and residual
strength must be accurate. The information available was not sufficient
for some of the tests compared to the analytical predictions.(Sections
3.2, 3.3, and 5.2)

3 The main difficulty in the proposed method is in determining the residual
strength given a level of damage. If more than one interacting types
of damage are present, for example matrix cracks and delaminations,
analytical modeling of this interaction and its effect on strength and
stiffness is necessary. This is a static analysis that can be quite complex.
If this analysis is accurate, marching onwards in cycles to the next major
damage event using the methodology presented here is easy and accurate.
(Sections 6.2 and 6.3).

4 The effect of damage caused during the tensile part of the cycle on
the compressive residual strength and, vice versa, the effect of damage
caused during the compressive part of the cycle on the residual strength
in tension are, currently, not modeled as accurately as it would have
been desirable for cyclic loads with significant tensile and compressive
components, (R < 0). More work is needed in this area where more than
one types of damage interact. (Section 5.2.2)

5 Correcting for the R-ratio was done here using simple multiplicative
factors to credit the structure when the load excursion does not go
through zero. More accurate methods are needed (Section 2.3)

6 A small discrepancy is introduced for two-parameter Weibull static
strength distributions if p is calculated using the cumulative distribution
function and then the predictions are forced to go through the mean
static strength after one cycle. This inconsistency must be reconciled.
(Section 2.2)

7 In updating the cycle-by-cycle probability of failure p, it was assumed
that the residual strength distribution at any given point can be made
into an “equivalent” two-parameter Weibull distribution. This is valid
in many cases but not always and no rigorous description of when this
breaks down was given. Multiple types of damage and their interaction
would change the distribution parameters or, even, the type of the
distribution. (Section 6.2.3)

8 It is assumed that p is piecewise constant while residual strength changes.
This is meant to represent evolving damage mechanisms at smaller scales
than accounted for in the model. The extent to which this assumption
is valid must be examined. (Section 6.1)
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9 Under spectrum loading, the analysis presented suggests that the order
of load application can change without any effect on the number of
cycles (or blocks) to failure as long as the last segment in the sequence
remains the same. This is, probably, not as widely applicable as the
equations suggest. It relates to the fact that loading in tension creates a
damage state that will affect the subsequent behavior of the structure in
compression. If the situation is reversed this will give a different answer
(see section 5.2.3) . More work is needed in this area accounting for
multiple types of damage and their interaction.

10 A one-to-one correspondence between damage state and residual strength
of the structure was assumed with the requirement that if a certain
residual strength is reached, the uniquely defined damage state
corresponding to it also occurs. The range of applicability of this
assumption has not been fully explored. (Sections 2.1 and 6.1)

11 The redistribution of load from failed fibers to adjacent fibers was done
by distributing the load of the failed fibers evenly to all other fibers.
This is conservative. Three-dimensional finite element models of the
load redistribution from one fiber to its neighbors [114] show that the
stress concentration factor in adjacent fibers is lower than what was used
here. Improved load sharing models should be investigated. (Sections
6.2.1, 6.2.2).

12 An improved stress solution, for example with a σx that is a function of
the out-of-plane coordinate z, is needed for more accurate predictions of
fatigue lives of cross-ply laminates. (Section 6.3.1)

13 The residual strength at any cycle level was obtained as a solution
to a simple first order differential equation. This was an assumption
that needs experimental verification beyond what is presented here. In
addition, different assumptions for this dependence on cycles and damage
state should be investigated.
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