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ABSTRACT

This paper introduces TINA, a novel framework for imple-

menting non Neural Network (NN) signal processing algo-

rithms on NN accelerators such as GPUs, TPUs or FPGAs.

The key to this approach is the concept of mapping mathemat-

ical and logic functions as a series of convolutional and fully

connected layers. By mapping functions into such a small sub

stack of NN layers, it becomes possible to execute non-NN al-

gorithms on NN hardware (HW) accelerators efficiently, as

well as to ensure the portability of TINA implementations

to any platform that supports such NN accelerators. Results

show that TINA is highly competitive vs alternative frame-

works, specifically for complex functions with iterations. For

a Polyphase Filter Bank use case TINA shows GPU speedups

of up to 80x vs a CPU baseline with NumPy compared to

8x speedup achieved by alternative frameworks. The frame-

work is open source and publicly available at https://
github.com/ChristiaanBoe/TINA.

Index Terms— Non-NN algorithms, signal processing al-

gorithms, neural networks, HW accelerators

1. INTRODUCTION

In recent years, there has been a rapid increase in the number

of specialized NN accelerators, either as standalone HW (e.g.,

TPUs) or as accelerated components in existing HW (e.g.,

GPUs or FPGAs). This creates a lucrative opportunity for

using such accelerators to boost the performance of non-NN

algorithms, in the same way that GPUs are used to accelerate

non-graphics algorithms.

Existing research performed on this topic is limited. One

example is JAX, a machine learning framework for trans-

forming mathematical functions and mapping them on NN

HW [1]. However, JAX is mainly focused on making ML pro-

gramming more intuitive, rather than providing a general API

to run non-NN algorithms on NN HW. Other efforts are either

limited to a specific application (e.g., brain simulation [2]),

or limited to a specific HW platform (e.g., GPUs [3] or FP-

GAs [4]).

Table 1. Signal processing functions implemented in this pa-

per and the TINA building blocks used to implement them

Function Building blocks Section

Elementwise matrix mult. Depthwise conv. Section 3.1

Matrix-matrix mult. Depthwise conv. Section 3.2

Elementwise matrix add Depthwise conv. Section 3.3

Summation Fully conn. layer Section 3.4

DFT Pointwise conv. Section 4.1

Inverse DFT Pointwise conv. Section 4.2

FIR filter Standard conv. Section 4.3

Unfolding algorithm Standard conv. Section 4.4

This paper introduces a novel framework, referred to as

TINA1, to reduce the complexity of implementing non-NN

applications on NN accelerators, thereby ushering in the era

of GPNPUs (general-purpose neural processing units). In this

paper, we introduce the idea of representing signal processing

functions as a series of convolutions and fully connected lay-

ers. TINA makes use of the strengths of NN HW designed

to accelerate NN layers, such as matrix operations. By rein-

terpreting traditional mathematical and logic functions as NN

layers, we facilitate a form of computation that is intrinsically

compatible with NN accelerators. As its input programming

language, TINA uses Python, one of the most widely used

programming languages in data science [5].

TINA provides a number of unique advantages, such as

ensuring the portability of TINA implementations to any HW

platform that supports NN accelerators. Furthermore, TINA

allows non-NN algorithms to be optimized using methods

previously exclusive to NNs (e.g., pruning libraries or auto-

matically optimized quantization using quantize aware train-

ing libraries such as Brevitas [6]).

TINA consists of two main components: 1. basic building

blocks, and 2. APIs that use the building blocks to implement

various functions. Table 1 provides an overview of the func-

tions discussed in this paper and the building blocks used to

implement them.

1TINA stands for ”This Is Not AI”
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2. BUILDING BLOCKS OF TINA

The building blocks of TINA can be divided into four NN

layers: standard convolution, depthwise convolution, point-

wise convolution and fully connected layers. These building

blocks will be used later in the paper to implement signal pro-

cessing functions. We use these specific four NN layers since

they are the most widely used layers in ML applications [7, 8],

thereby making them well-supported by accelerators, and eas-

ily portable to alternative hardware platforms.

2.1. Standard convolution

Convolutions are critical in deep learning for feature extrac-

tion from various types of input data, such as images and au-

dio. This process involves sliding a kernel across the input

data, conducting elementwise multiplication with the input

values covered by the kernel, and summing these products

to generate output feature maps, as depicted in Eq. (1).

O(h,w, cout) = b(cout)+

Cin∑

cin

M∑

m

N∑

n

I(h+m,w + n, cin) ·K(m,n, cin, cout)
(1)

where O is the output, I is the input, K is the kernel, cin
and cout are indices representing the input and output chan-

nels, respectively, while b is the bias. TINA leverages Py-

Torch to enable precise customization of convolutional lay-

ers. This customization includes controlling the dimensions

of both the input matrix, represented as (T , Cin, H , W ), and

the output matrix, represented as (T , Cout, H , W ), where T is

the batch size, C denotes the number of channels, and H and

W are the height and width of the input/output, respectively.

PyTorch provides a variety of parameters to allow for ex-

tra controls over the convolution. For example, we can use

groups to define blocks of connections between input and

output channels. Other notable parameters include stride, de-

termining the kernel movement steps, and padding, adjusting

the input border size.

2.2. Depthwise convolution

Depthwise convolution represents a mechanism within convo-

lutional neural networks for dissecting spatial relationships in

input data. Distinct from standard convolutional layers, which

convolve across both input channels and spatial dimensions,

depthwise convolution applies the corresponding channel of

the kernel to each input channel independently, resulting in an

output with the same number of channels as the input. This

operation is represented in Eq. (2).

O(h,w, cout) = b(cout)+

M∑

m

N∑

n

I(h+m,w + n, cout) ·K(m,n, cout)
(2)

Depthwise convolution causes the kernel to slide across

the input data, executing elementwise multiplications be-

tween the kernel and input values, with the sums producing

the output. This procedure is independently executed for each

channel, thereby generating distinct feature maps for every

channel.

2.3. Pointwise convolution

Pointwise convolutions, also known as 1 × 1 convolutions,
are a special case of standard convolutions where a kernel of
dimensions 1×1 is used to process individual elements across
the channels of input data, which allows for the mixing of
channel information. This operation is represented in Eq. (3).

O(h,w, cout) = b(cout) +

Cin∑

cin

I(h,w, cin) ·K(cin, cout) (3)

2.4. Fully connected layer

A fully connected layer, also known as a dense layer or lin-

ear layer, is a commonly-used layer in many neural network

architectures. Its core role is to transform input data by ap-

plying a linear operation, typically followed by a non-linear

activation function to introduce non-linearity into the model.

The operation performed by a fully connected layer involves

computing the output from the input through matrix multipli-

cation with the kernel matrix, and adding a bias term b, as

shown in Eq. (4).

O(cout) = b(cout) +

Cin∑

cin

I(cin) ·K(cin, cout) (4)

3. ARITHMETIC FUNCTIONS MAPPING

In this section, we show how we can compute various arith-

metic functions using the TINA building blocks discussed in

Section 2.

3.1. Elementwise multiplication

An elementwise matrix multiplication can be implemented

using a depthwise convolution. As shown in Eq. (5), a depth-

wise convolution applies the corresponding channel of the

kernel to each input channel independently, causing the ker-

nel to slide across the input matrix, executing elementwise

multiplications between the kernel and input values, with the

sums producing the output.

O(h,w, cout) = b(cout)+

M∑

m

N∑

n

I(h+m,w + n, cout) ·K(m,n, cout)
(5)

In order to have this equation represent an elementwise

matrix multiplication, we first set the bias b(cout) = 0. In
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addition, we convert the width and height of both the input

matrix and the kernel into 1×1 matrices and reshape the el-

ements of these two matrices into vectors along the channel

axis where Cout = H ×W , resulting in Eq. (6).

O(0, 0, cout) =

0∑

0

0∑

0

I(0 +m, 0 + n, cout) ·K(m,n, cout)

= I(0, 0, cout) ·K(0, 0, cout)

⇒ O(cout) = I(cout) ·K(cout) (6)

3.2. Matrix-matrix multiplication

A matrix-matrix multiplication is a common operation in lin-

ear algebra and can be seen as a combination of a summa-

tion and a pointwise multiplication as shown in Eq. (7), where

X(m, l) represents the first input matrix X with dimensions

M and L, Y (l, n) represents the second input matrix Y with

dimensions L and N , and Z(m,n) represents the output ma-

trix Z with dimensions M and N .

Z(m,n) =

L∑

l

X(m, l) · Y (l, n) (7)

We can represent the matrix-matrix multiplication using a

pointwise convolution by taking the following additional

steps. We start with setting the bias of the pointwise convolu-

tion b(cout) to zero resulting in Eq. (8).

O(h,w, cout) = 0 +

Cin∑

cin

I(h,w, cin) ·K(cin, cout) (8)

In order for Eq. (8) to represent a matrix-matrix multi-

plication, we apply the following transformation as shown in

Eq. (9), by reshaping our input and output matrices with di-

mensions H and W into vectors with dimension 1×M where

M = H × W , and making Cin = L and Cout = N . This

in turn is equal to our original definition of a matrix-matrix

multiplication in Eq. (7).

O(0,m, n) =

L∑

l

I(0,m, l) ·K(l, n)

⇒ O(m,n) =

L∑

l

I(m, l) ·K(l, n) (9)

3.3. Elementwise addition

Elementwise addition builds further upon the elementwise

multiplication introduced in Section 3.1. By opting to set

the weights of the kernel to an all-ones matrix and the bias

b(cout) of the convolution as one of the input matrices, we

are able to transform Eq. (6) to an elementwise addition as

shown in Eq. (10). Note that I , bias and O in the equation

represent vectors of size Cout = H ×W .

O(cout) = b(cout) + I(cout) ·K(cout)

= b(cout) + I(cout) · 1(cout)
⇒ O(cout) = b(cout) + I(cout)

(10)

3.4. Summation

The implementation of summation within TINA using the

building blocks described in Section 2 can be achieved

through the utilization of a fully connected layer as described

in Section 2.4. By opting to set the number of output chan-

nels to 1, the weights of the kernel to an all-ones vector and

the bias to a zero vector, Eq. (4) can be transformed to a

summation as shows in Eq. (11).

O(0) = 0 +

Cin∑

cin

I(cin) · 1(cin, 0)

⇒ O =

Cin∑

cin

I(cin)

(11)

4. SIGNAL PROCESSING FUNCTIONS MAPPING

4.1. DFT

In this section, we show how to use TINA building blocks to

implement a Discrete Fourier Transform (DFT). One way an

input signal can be transformed towards the frequency domain

is by matrix-matrix multiplying the input signal vector with a

Discrete Fourier Matrix (DFM) [9] as seen in Eq. (12), with

X being the input signal and F being the Fourier matrix.

Z(m,n) =
L∑

l

X(m, l) · F (l, n) (12)

Using our matrix-matrix multiplication Eq. (13) as further de-

tailed in Section 3.2 we can draw a direct parallel to Eq. (12)

by setting the kernel equal to the Fourier matrix.

O(m,n) =

L∑

l

I(m, l) ·K(l, n) (13)

4.2. IDFT

In this section, we show how to use TINA building blocks

to implement an Inverse Discrete Fourier Transform (IDFT).

One way an input Fourier signal can be transformed back to-

wards the time domain is by matrix-matrix multiplying the

input signal vector with an Inverse Discrete Fourier Matrix

(IDFM) [9] as seen in Eq. (14), with Z as the input signal and

IF being the IDFM.

X(i, j) =

K∑

k

Z(i, k) · IF (k, j) (14)
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(a) Elementwise matrix mult. (b) Matrix-matrix multiplication (c) Elementwise matrix addition

b

(d) Summation algorithm

Fig. 1. Runtime of the arithmetic functions vs input size using TINA, NumPy, CuPy & JAX

Using our matrix-matrix multiplication Eq. (13) as further de-

tailed in Section 3.2 we can draw a direct parallel to Eq. (14)

by setting the kernel equal to the IDFM.

4.3. FIR filter

In this section, we show how to implement a Finite impulse

response (FIR) filter using a TINA layer. Both an FIR fil-

ter and convolution involve a linear operation applied to a

sequence of input values or signals as seen in Eq. (15) rep-

resenting an FIR filter. a(k) represents the filter coefficients

defining the weights (FIR taps) applied to each delayed input

sample. These coefficients indicate how the input signal is

weighted at different time indices.

y(i) =

K∑

k

a(k) · x(i− k) (15)

We can implement this equation using the standard con-

volution defined in Section 2.1 by setting the dimensions Cin,

Cout, H and M to 1. Then by setting the bias b(cout) equal

to zero, we get Eq. (16).

O(0, w, 0) = 0 +

0∑

0

0∑

0

N∑

n

I(0 + 0, w + n, 0) ·K(0, n, 0, 0)

⇒ O(w) =

N∑

n

I(w + n) ·K(n) (16)

Mathematically, an FIR filter represents a discrete-time

system with a finite duration impulse response, typically char-

acterized by a set of coefficients determining the filter’s be-

havior. Using the standard convolution, we can simply set the

weights of the kernel equal to these coefficients.

4.4. Unfolding algorithm

An unfolding algorithm takes an input vector and produces an

output matrix representing subsequences of the input with a

successively increasing index. The unfolding algorithm can

be represented using the Eq. (17).

Y (i, j) = X(i+ j) (17)

For an input vector X of length I and for an unfolding

window of width J , the output matrix Y has dimensions of

(I − J + 1) × J . As an example, for an input vector of

length 4, X = [1, 2, 3, 4], and a window of 2, the output

Y = [[1, 2], [2, 3], [3, 4]], which is a matrix of dimensions

3× 2.
We can implement this equation using the standard con-

volution defined in Eq. (1) (Section 2.1) by setting the Cin,
H and M to 1. Then by setting the bias b(cout) equal to zero,
we get Eq. (18).

O(0, w, cout) = 0 +

0∑

0

0∑

0

N∑

n

I(0 + 0, w + n, 0) ·K(0, n, 0, cout)

⇒ O(w, cout) =

N∑

n

I(w + n) ·K(n, cout) (18)

In order to reproduce Eq. (17), first we make the kernel

as defined in Eq. (18) a square matrix by setting the kernel

dimensions N = Cout. Then, we make the kernel weights

equal to an identity matrix, which reproduces the input at the

diagonal (i.e., when n = cout), else the input gets multiplied

with 0. This results in Eq. (19).

O(w, cout) = I(w + cout) (19)

5. EXPERIMENTAL RESULTS

In this section, we discuss our experimental results. Sec-

tion 5.1 compares the performance of the basic functions

implemented in Section 3 and Section 4 using TINA (us-

ing PyTorch running on GPU) vs other solutions, namely

NumPy [10] (runs on CPU), CuPy (automatically runs Python

on GPU) and JAX (optimized for NN HW). Two results are

shown for TINA, with 32 bits (running on GPU CUDA cores)

and 16 bits (running on FPU Tensor cores). Then, Sec-

tion 5.2 shows the experimental results of a practical use case

for implementing a polyphase filter bank in TINA vs other

solutions.

The experiments were executed on Google Colab’s Tesla

T4 GPU (2560 CUDA cores and 320 Tensor cores), along-

side an Intel Xeon CPU with 2 vCPUs and 13GB of RAM.

By executing our code 100 times and averaging the results,

we can show statistically representative performance evalua-

tion. Aside from the TINA 16 bit float implementation, all
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b

(a) Fourier transform

b

(b) Inverse Fourier transform (c) FIR algorithm

b

(d) Unfolding algorithm

Fig. 2. Runtime of signal processing functions vs input size using TINA, NumPy, CuPy & JAX

implementations use 32 bit floating point input data gener-

ated randomly. The measurement start once the input data

has been copied to the GPU memory in order to minimise the

measurement of overhead.

5.1. Performance of TINA building blocks

Figs. 1a and 1b show that TINA is highly competitive on

multiplication-based functions compared to other frameworks

resulting in the fastest implementation over a large range of

input matrix sizes. For addition-based functions shown in

Figs. 1c and 1d, TINA (while competitive) is not as fast as

CuPy. This could be attributed to the simplicity of matrix

addition functions making it easier for CuPy to find an opti-

mized implementation.

When comparing TINA implementations of DFT and

IDFT to implementations in other frameworks as shown in

Figs. 2a and 2b, we see that JAX appears to be the fastest,

followed by TINA. Here, CuPy shows less competitive per-

formance. Finally, looking at more computationally complex

functions with loops, such as FIR and unfolding as shown

in Figs. 2c and 2d, we can see that TINA is orders of mag-

nitude faster than other frameworks. This is due to the fact

that TINA can map functions with data independent loop

iterations much more efficiently than other frameworks.

One important limitation in the TINA framework indi-

cated by our experiment is that the main limiting factor of

running operations with larger input vectors or matrices is the

large amount of GPU memory used by the TINA framework

as we ran into errors once we increased our input sizes beyond

what is shown in Figs. 1 and 2.

5.2. Use case: polyphase filter bank

A polyphase filter bank (PFB) channelizes time domain dig-

itized input signals to frequency channels. It is a power-

ful filter operation that allows for the efficient division of

signals into multiple frequency bands, enabling filtering of

specific frequency components and simultaneous processing

of different frequency components. The PFB is found in

many different application domains such as radio astronomy

[11, 12], wireless communication [13], radar [14], ultrasound

imaging [15] and quantum computing [16]. A PFB receives

as input a signal x(n) decomposed into P branches, denoted

as xp(n
′) which it turns into a set of subfiltered signals yp(n

′)

yp(n
′) =

M−1∑

m=0

hp(m)xp(n
′ −m) (20)

where hp are filter coefficients (otherwise known as taps)

that have been divided between the P branches, and M is the

number of taps. The subfiltered signals yp(n
′) then will be

run through either a Discrete or Fast Fourier Transform result-

ing in the output signals. We can implement this operation by

combining multiple FIR filters as detailed in Section 4.3 and

have the resulting output go through a DFT filter as described

in Section 4.1.

Fig. 3 shows the speedup results of accelerating PFB us-

ing CuPy, TINA 32 bit and 16 bit, as well as JAX (on GPU)

as compared to a naive implementation written in NumPy (on

CPU). The figure shows that TINA 32 bit achieves significant

acceleration of 25x to 80x [12, 17], followed by TINA 16 bit

with 20x to 30x speedup, while JAX is the next fastest alter-

native with 6x to 8x speedup. This shows the significant po-

tential of TINA as a portable accelerator language for signal

processing applications.

6. CONCLUSION

This paper presented TINA, a novel framework enabling the

development of signal processing applications exclusively

through the utilization of convolutions and fully connected

layers. The paper showed how to map various functions to

NN layers and also demonstrated the potential of this ap-

proach. Results show that TINA is able to achieve up to 80x

GPU speedup over a naive CPU baseline with NumPy [12, 17]

for a PFB algorithm compared to 8x speedup achieved by al-

ternative frameworks.

The main drawback currently found by running TINA lay-

ers on a GPU is the large amount of memory needed to run

the algorithms. Even though for this paper TINA was run on

a server-grade GPU, we found the amount of GPU memory

to be a limiting factor in TINA’s capacity to process larger

applications.

Even though these results are promising, the current pos-
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Fig. 3. GPU speedups with respect to NumPy (CPU) of PFB

without (left column) and with (right column) Fourier trans-

form in TINA, JAX & CuPy

sible application domains are rather narrow. In order to make

TINA more generalisable, further research is needed into

mapping more non-NN operations into TINA layers, in addi-

tion to investigating ways to make these TINA layers perform

efficiently. Furthermore, we will investigate adding more

TINA layers (linear, recurrent, etc.) to increase the flexibil-

ity of the framework, while keeping in mind the three TINA

objectives, namely portability, accessibility, and performance.
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