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1 | INTRODUCTION

Abstract

Artificial intelligence (AI) algorithms achieve outstanding results in many application
domains such as computer vision and natural language processing. The performance of
Al models is the outcome of complex and costly model architecture design and training
processes. Hence, it is paramount for model owners to protect their AI models from
piracy — model cloning, illegitimate distribution and use. IP protection mechanisms have
been applied to Al models, and in particular to deep neural networks, to verify the
model ownership. State-of-the-art Al model ownership protection techniques have been
surveyed. The pros and cons of Al model ownership protection have been reported.
The majority of previous works are focused on watermarking, while more advanced
methods such fingerprinting and attestation are promising but not yet explored in
depth. This study has been concluded by discussing possible research directions in the
area.

supported by the proliferation of both software development
frameworks and dedicated hardware accelerators. From the

The amount of data collected from all kinds of personal de-
vices reaches staggering levels. The data collection process
includes distributed and heterogeneous computing devices
densely interconnected. The expectation is in the capacity of
artificial intelligence (AI) algorithms to leverage the large
amount of data and learn to perform tasks commonly asso-
ciated to intelligent beings, reliably and automatically [1]. We
see Al today used in different application domains ranging
from robotics in manufacturing, speech processing in retail,
knowledge reasoning in healthcare or control in autonomous
driving. The development of Al and its applications is

cybersecurity standpoint, Al systems are susceptible to cyber-
threats, including piracy, in addition to Al algorithm specific
attacks.

The rate of cyberattacks increases year after yeat, with the
introduction of more efficient and targeted attacks. Moving
forward, it is predicted that damages caused by cyberattacks
will rise to six trillions USD by the end of 2021 [2]. Cyber-
attacks do not target only classical ICT technology. Attacks
specifically conceived against Al systems have been proven to
be effective and are becoming a real threat, as indicated by
some scientific  studies.

examples recently reported in
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Goodfellow et al. [3] presented an attack that showed the
simplicity of fooling image recognition algorithms based on
Al Originally, the picture of a panda has been recognized with
approximately 57% confidence. But, if a carefully constructed
noise is added to the picture, the system will recognize a
gibbon instead, with a level of confidence up to 99%. Similatly,
Sharif et al. [4] demonstrate how to fool facial recognition by
constructing adversarial glasses. Image recognition is a
fundamental instrument in some applications such as auton-
omous driving. In this context, it was demonstrated [5, 6] that
simple graffiti sprayed on traffic sign or even a single patch
placed on specific position on the traffic sign will easily lead to
wrong recognition.

Functionality is not the only target of cyberattacks in the
context of Al. Al system consists of a network having some
topology which is trained with the specific data. The exact
definition of the utilized network topology, the number of
layers, and the specific parameter used to design it are direct
consequences of a long and costly process of design space
exploration. Similarly, the weight corresponding to the trained
network is also the outcome of the training process. This can
be a long and resource consuming process, and it certainly
requires data that may not be easily available (e.g it has to be
properly and legitimately collected, may be formatted and
finally used for training the networks). As a result, a trained Al
algorithm is a very valuable intellectual property (IP) for a
company realizing it, and as such it becomes a relevant target
for adversary.

IP piracy, over-production and illegitimate use of a device
or software are problems that have plagued the cyberworld
for some time. However, in the context of Al, the problem is
very recent and is not yet addressed in depth. Even though
the problem is relatively new, a number of approaches have
been proposed to deal with the protection of Al IP and
model ownership. For example, Juuti et al. propose a generic
detection mechanism for model extraction attacks through
querying [7]. Chakraborty et al. [8] rely on secure hardware to
grant services only to authorized end users. The rationale
behind the assumption of availability of such trusted hardware
devices is as follows: propose a framework in which the deep
neural network is firstly trained as a function of a secret key,
and then hosted on a public platform. Only devices embed-
ding the secret key will be able to run the trained networks
using the published model. However, the large majority of
protection mechanisms in the study focus on watermarking
and fingerprinting. We review the state-of-the-art of the
watermarking and fingerprinting schemes designed for pro-
tecting Al algorithms, and we discuss the problems that are
still open and the possible future research directions. Due to
the rapidly evolving nature of this domain, we also include in
this survey study that, to this date, have not been formally
published in peer-reviewed venues, but have appeared on
preprint archives, such as the computing research repository
or the arXiv open-access preprint repository managed by
Cornell University.

The rest of the study is organized as follows. Section 2
summarizes the main approaches used in Al and the archi-
tectures implementing it. Section 3 introduces the threat model
and the background on watermarking and fingerprinting,
Section 4 discusses the protection techniques proposed so far
to mitigate IP violations in Al algorithms. Section 5 reports
existing attacks applied to IP protection techniques in the
context of Al

2 | BACKGROUND ON ARTIFICIAL
INTELLIGENCE

Research in Al is often described as the study of intelligent
agents [9] and, according to Stephanie Dick’s chronology,
started in the 1950s at Dartmouth college, USA [10]. Al has
been widely applied in a variety of settings, from competing
against humans in strategic games (most notably Chess [11]
and, more recently, Go [12]), to the interpretation of human
speech [13], artificial vision [14], autonomous vehicles [15] and
countless more.

In the following we briefly analyze some of the most widely
used Al techniques, including machine learning (ML), deep
learning, swarm intelligence, expert systems and intelligent
planning, schedule and optimization techniques.

2.1 | Machine learning

ML is arguably the most researched and studied Al technique.
ML techniques can be further subdivided into three paradigms:
supervised learning, unsupervised learning and reinforcement
learning [16]. While other categories of ML schemes have been
proposed, such as transfer learning and online learning, such
techniques can be often traced back to a special case of one of
the basic three schemes [17]. Fundamentally, ML comprises
two main stages: training and testing [18]. In the former stage,
a model is trained based on an initial set of known data.
Subsequently, the trained model is used to make predictions in
the latter stage.

In supervised learning, the training data set is composed of
labelled data. Supervised learning can be divided into two
categories, based on the characteristics of training data [17]. If
the training data only comprise discrete values, then the
problem is a classification, and the output of the trained
model will be a classification which is also discrete. Conversely,
if the training data also comprise continuous values then the
problem is a 7egression, and the output of the model is a
prediction.

In unsupervised ML, training is instead based on unlabelled
data. The goal is to find an efficient representation of the
unlabelled data, by analyzing its features. For instance, Bayesian
techniques can be used to capture hidden variables that un-
detlie such features. Clustering is a form of unsupervised
learning aimed at grouping together samples with similar
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features. Examples of clustering algorithms are k-means,
spectrum clustering and hierarchical clustering [19].

Reinforcement learning uses rewards to direct the learning
process, where the agent is incentivized to take actions that
would maximize the notion of cumulative reward. In rein-
forcement learning the focus is on finding a balance between
exploration (of uncharted territory) and exploitation (of
current knowledge) [20]. Markov decision process is an often
utilized model for reinforcement learning [20].

2.2 | Deep learning

Deep learning is closely related to ML based on artificial neural
networks, but uses deeper networks of neurons in multiple
layers [21]. Deep learning is aimed at extracting knowledge
from data representations that can be generated using ML. The
artificial neural network is a system inspired by biological
systems, where each node in the network (an artificial neuron)
can transmit a signal to other nodes. A deep learning neural
network consists of an input layer, a number of hidden layers
and an output layer: the word ‘deep’ refers to the number of
layers through which the data is transformed. Fach of these
layers learns to transform its input data (which is the output of
the preceding layer) into a slightly more abstract and composite
representation, which is in turn fed as input to the subsequent
layer [22].

2.3 | Swarm intelligence

Swarm intelligence (SI) can be described as a collective
behaviour of self-organized and decentralized systems [23].
The behaviour of ant colonies, flocks of birds, schools of fish,
as well as collective microbial intelligence such as bacterial
growth all are real-world examples of SI. In an experiment
petformed by Denecubourg in 1990 [24], a group of ants was
given two paths (short/long) that connect their nest to the
food location. It was discovered from their results that ant
colonies had a high probability to collectively select the
shortest path. In computing, the term Swarm Intelligence (SI)
was first introduced by Beni and Wang in the context of the
cellular robotic systems [25]. In computing, SI is shown by a
population of agents that interact locally with one another and
their environment. This could be the case, for instance, of
autonomous vehicles or peers in a network, which operate
without any centralized control system. SI can be further
categorized according to the collective strategy used and the
specific setting. Most notably: particle swarm optimization, a
global optimization algorithm used to solve a problem whose
solution can be represented as a point or a surface in an
n-dimensional space [26]; ant colony optimization (ACO),
which aims to find near-optimal solutions to problems that can
be represented as graph optimization problems [27] and P2P
SI, sometimes referred to as swarm casting, the application of
SI to peer-to-peer P2P file sharing systems [28].

2.4 | Expert systems

Expert systems (ES) aim to emulate the human ability to make
decisions in specific contexts. The goal of ES is therefore to
solve complex problems by following a line of reasoning that is
derived from human knowledge. This reasoning is normally
represented by if—then—else statements, instead of conven-
tional procedural code [29]. Fundamentally, a knowledge-based
system is based on two main components [30]: a knowledge
base and an inference engine. The knowledge base is the set of
rules that have been extracted from human knowledge on the
specific setting. The inference engine then applies the rules
from the knowledge base to known facts, in order to deduce
new facts. Inference can follow a forward strategy, starting with
the available data and using inference rules to extract more data
(known as forward chaining), or proceed inversely (backward
chaining) [31]. More advanced systems also include explanation
capabilities, which can motivate particular decisions made by
the system.

2.5 | Planning, scheduling and optimization

The Al research community has also produced extensive re-
sults in the area of intelligent planning and scheduling, starting
from the 1960s. Most of the published work focuses on the
development of algorithms (known as planners) that imple-
ment planning models. Although different definitions have
been used for planning, Spyropoulos defines planning as ‘the
process of putting in a sequence or partial order a set of
activities/actions to fulfil temporal and resoutce constraints
required to achieve a certain goal’ [32]. On the other hand,
scheduling is ‘the allocation of activities/actions over time to
resources according to certain performance criteria’ [32].
However, there are many researchers who consider scheduling
as a special case of planning [33]. Recently, Al planning
researchers have developed algorithms able to manage
distributed planning activity, where plan generation can happen
concurrently with plan execution. These often require distrib-
uted systems of cooperating agents for continuous planning
and decision support [34]. Current areas of research include
multiagent planning architectures, distributed planning, mixed-
initiative planning, distributed scheduling and work-flow
management methods.

3 | BACKGROUND AND THREAT
MODEL

The threat model that watermarking and fingerprinting want to
address is illegitimate use of IP. In our case, the IP is the
trained Al algorithm that is available to the adversary. This can
happen, for instance, in the following two scenarios. In the
first, the device or the software that implements the Al algo-
rithm and the AI algorithms (and the related model) already
trained are available to the attacker, but the exact model and
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the trained parameters of the model are not known to the
attacker. The adversary can be the legitimate user of the device
or the software, for instance, after having purchased it. But it is
also possible that the adversary has gained access illegitimately,
for example, by manipulating an edge or IoT device with
embedded Al that is deployed in a hostile environment. In the
second scenario, the adversary uses an open source Al
framework (such as the PyTorch [35] or Caffe [36] deep
learning frameworks), so she/he has full control to the
implementation, but uses previously trained models purchased
as an IP. Both scenarios are going to be very relevant in the
near future, where a significant portion of the Al will be carried
out on edge or IoT devices rather than in the cloud. Unlike
cloud implementation, edge and IoT devices are more open to
piracy and other forms of IP right violations.

In all the cases, the goal of the adversary is to gain infor-
mation about the topology and the training parameters of the
algorithms and use them illegitimately, for instance, to illegally
copy the trained neural network and redistribute it, to use it in
more devices than the purchased ones, or to do any other type
of abuse against the intellectual properties right of the legiti-
mate owners. This attack is quite common and can be easily
carried out when the Al algorithm does not include any sort of
protection. Illegitimate use of Al algorithms can potentially
cause a huge economical lost for the owner of the trained Al
algorithms, and thus must be avoided. At the high level, the
problem is similar to other scenarios where protection of IP is
needed, and for which several solutions have been proposed in
the past. The main goals of mitigation techniques against IP
right violations are (1) try to avoid the misuse of the IP and (2)
try to guarantee the identification of parts illegitimately copied.
To achieve these goals three main solutions have been pro-
posed in the past: watermarking and fingerprinting. In the
reminder of the section we will discuss the high-level propet-
ties of each of them. The two main techniques used for IP
protections are watermarking and fingerprinting, and they are
depicted in Figure 1.

Watermarking is a technique that aims at proving the
authorship. A watermark, as defined by Kahng et al. [37] is a
mark that has three main properties: (1) it is embedded in the
intellectual properties that have to protect, (2) it is specifically
designed to identify the source of the IP and (3) it has to be
difficult to be removed. As it can be seen, watermarking does
not avoid the illegitimate use of the IP it intends to protect, but
it aims at discouraging that behaviour by making a violation
easily and certainly identifiable (thus, for instance, suitable to
be used in a court to prove ownership). Depending on the type
of IP that has to be protected, requirements on watermarking
can be more strict. For instance, a watermark for use in an
integrated circuit must ensure that the circuit continues to
operate correctly after the watermark’s insertion. This
requirement reduces the design space available to the designer
of the watermark, in contrast to watermarks embedded, for
instance, into an image. In this case, the watermark can
alter the original image up to the point that the introduced
alteration is not captured by the user, thus practically
transparent.

Fingerprinting is a technique that allows to track each in-
dividual IP. A fingerprint should guarantee the following three
properties [38]: (1) the correct functionality of the IP that has
to be protected needs to be preserved, (2) each fingerprint
should be unique and associated to only one IP to track the
source of the IP right violation and (3) the fingerprint should
be maintained in all the illegitimate copies of IP to keep trace
of the IP right violation. Watermarking and fingerprinting are
often used together. In this case, when the author of an IP
suspects an episode of IP thief, he or she uses watermarking to
verify if the episode really happened and fingerprinting to track
and uniquely identify the source of the IP thief.

Previous study often divides IP protection techniques in
two categories, according with the type of information that
needs to be observable for the verifier. In the so-called ‘white-
box’ setting, the verifier of the watermark has access also to
internal information and parameters of the protected IP. In the
‘black-box’ setting instead, the only information available to
carry out the verification is the output of the protected IP.

Embedding antipiracy support in the IP is often not
sufficient to discourage advanced attackers. The adversary can
try to remove them, alter their insertion or to make them
somehow ineffective. The strength of the attack depends on
the exact capability that the adversary has (for instance, if he/
she has access to the module injecting the watermark or the
fingerprint, ot if he/she just has access to the inputs to the IP).
In last part of the study we will revise attacks directed towards
IP protection mechanism.

4 | PROTECTIONS

Distinction between white-box and black-box settings is used
also when IP protection techniques are applied to Al. Black-
box setting has exactly the same meaning, namely that the
verifier can access only the output of the IP. In the white box
setting, the verifier has access to the internals of the AI
algorithm, and in particular to the exact model used and to the
weights.

Another common way to classify IP protection techniques
applied to Al is by the way in which they are activated [39].
Following this, we can distinguish between feature-based and
trigger-based IP protection techniques. In the first approach,
the protection technique is embedded into the protected Al
model by imposing additional regularization parameters to the
weights of the model. In the second approach, the embedding
technique is similar to the one used for adversarial training and
consists of training the Al algorithms with samples that will be
classified using specific labels.

Watermarking and fingerprinting techniques can also be
classified based on the moment in which they are embedded
into the AI algorithm. The embedding can be carried out in
three main moments [40]: (1) during the training phase, when
the Al algorithm is trained and the labels of the model atre
available and can be modified by the IP protection algorithm;
(2) during the fine-tuning phase, when a pretrained network is
used and the labels of the model are already initialized, but the
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fine-tuning of the AI algorithm has to be carried out to tailor
the model to the specific task; (3) after the training phase is
completed and when the labels of the model are not available
using the ‘distilling’ [41] approach to train a network without
label and (iv) after the model and its weight has been finalized.
We will use these categories to classify the IP protection
techniques that we review in this section.

In the rest of this section we will revise the main water-
marking and fingerprinting techniques that have been pre-
sented in the context of Al. The surveyed techniques are also
summarized and compared in Table 1.

4.1 | Watermarking

Watermarking applied to Al shares most of the requirements of
watermarking applied to other domains, with mostly two
notable exceptions [40]. In all cases, watermarking has to be
secure, be capable of storing all required information and has
to be included and extracted in an efficient way. Specifically to
the Al domain, the watermark is allowed to the specific pa-
rameters of the model. However, the performance of the
watermarked model has to be comparable with the original
one. Also, the watermark should be robust against modification
of the models and should propagate into the novel models.
Watermarking applied to Al appeared for the first time
when Uchida et al. [40] proposed to use digital watermarking
technology to protect the trained models of a deep neural
network from IP theft and to detect infringement of their use.
The authors propose to embed the watermark during the
training phase of the network. The choice is done in order to
avoid that a direct modification of the weights within the
network would negatively affect the performance of the model.
The watermark consists of a binary string that is embedded
into the weights of selected layers of the Al algorithm imple-
mentation. Practically, this is achieved using a specific param-
etet, called regularizer that is added to the cost function of the
model to regularize the mean of the weights. Because of the
presence of the regularizer, the weights of the model are
biased, and so are their distributions. The watermark is
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Techniques for protecting IPs: watermarking (a) and fingerprinting (b)

extracted by projecting the means of the weight in specific
layers of the model using the embedding regularizer. The
watermark can be embedded during each of these three phases:
training, fine-tuning and distilling. Access to internal layers of
the model is required to complete the verification step, thus the
approach belongs to the ‘white-box’ watermarking. The au-
thors experimentally measured that the performance of a deep
neural network was not negatively affected by the inclusion of
this type of watermark and that the watermark was not
removed after fine tuning or compression of the model
(reported results show that the watermark is still complete
when up to 65% or the parameters are removed).

Adi et al. propose to utilize the over-parameterization of a
model as a watermarking technique [42]. Normally over-
parameterization is considered a weakness (from a security
perspective) as it allows backdooring [53], that is, the training
of a model with the purpose of deliberately outputting specific
incorrect labels for a particular set of inputs. Adi et al. argue
that this technique can also be used to hide watermarking that
is resistant to removal. As such, the watermark is embedded
into the model during training, and the authors demonstrated
that the watermark is not affected by fine-tuning, including
adversarial fine-tuning aimed at watermark removal. The
proposed verification step includes the presence of a trusted
third party, which is involved in all the interactions needed to
complete it. The participation of such a third party guarantees
the security of the verification process, but it can be quite
costly. A benefit of this model is that it follows the black-box
paradigm, and therefore allows public verifiability without the
need to access the network weights.

Zhang et al. [43] also explored watermarks implementing
the black-box paradigm in deep neural networks. The basic
idea behind the approach is to exploit the intrinsic capabilities
of the deep neural network to automatically learn specifically
designed patterns—which serve as watermarks—and to
generate specific predictions for them. To exploit this capa-
bility, the embedding of the watermark is carried out during the
training phase. The authors explore three different ways for
embedding watermarks: include during the training meaningful
data samples to which unique features are superimposed and
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TABLE 1

The schemes surveyed, categorized according to the Al technique they focus on (e.g deep learning or ML), the access required to the verifier

(white or black box) and the moment of application (training, fine-tuning, distilling or after the model has been finalized)

Access Stages of application

Scheme Al White box Black box Training Fine-tuning Distilling After
Watermarking

Uchida et al. [40] Deep neural networks v v v v

Adi et al. [42] Deep neural networks v v

Zhang et al. [43] Deep neural networks v v

Guo et al. [44] Deep neural networks v v

Fan et al. [39] Deep neural networks v v

Namba et al. [45] Deep neural networks v v

DeepSigns [46] Deep neural networks v v v

Sakazawa et al. [47] Deep neural networks v v

Li et al. [48] Deep neural networks v v

Le Metrer et al. [49] Deep neural networks v v

BlackMarks [50] Deep neural networks v v
Fingerprinting

DeepMarks [51] Machine learning v v

1PGuard [52] Deep neural networks v v

use them as watermark; include data samples not related to the
current task during the training phase and use them as
watermark; include noise during the training phase and use it as
watermark. The key for the watermark is composed by the
pairs patterns, predictions that are known by the legitimate
owner of the deep neural network. The verification of the
watermark is carried out by performing normal requests to the
deep neural network using the watermarking patterns as inputs
and matching the results with the expected predictions. The
proposed approach is evaluated using benchmark data sets
taken from image processing, and the watermarking technique
is verified to be robust against classical watermark removal
attacks including fine-tuning, parameter pruning and model
inversion attacks.

A similar approach to that of Zhang et al. is proposed by Li
et al. [48]. The proposed framework uses an encoder to embed
a watermark in the dataset. The encoder combines the regular
input dataset with a ‘logo’, and is targeted at making the final
watermarked images barely distinguishable from the original
images. The discriminator is trained to distinguish between
training samples and ‘trigger’ samples embedded with the
watermark. The model is trained so that a specific label is
assigned to watermarked inputs — and this backdoor provides
the basis for model ownership claims.

The work by Sakazawa et al. [47] introduces a novel idea
for watermark detection: the cumulative decoding of the
embedded watermarks. The embedded patterns are cumula-
tively (and visually) decoded using only a subset of the key
watermark dataset, which enables third-party verification
without requiring disclosure of the entire dataset. In their
experiments, 20 images out of 60,000 are used to decode the

watermark. This translates into the fact that means only a
subset of watermark ‘key’ images are enough to decode,
without significant performance degradation to the original
image classification task.

The principle of known pairs is also used by Guo and
Potkonjak [44] in their black-box approach for watermarking a
deep neural network in embedded systems. The watermark is
embedded during the fine-tuning phase. The deep neural
network is trained using the original data set and a modified
dataset in which data are altered according the watermark
signature. During normal operation, the deep neural network
behaves normally. When an input belonging to the signature
dataset is encountered, the deep neural network behaves in a
predefined way. Reported results obtained using datasets from
image classification showed that the approach incurs a limited
performance degradation, while confirming that the proposed
watermark could be embedded into the considered deep neural
network models.

Fan et al. [39] proposed a passport-based scheme for the
verification of a deep neural network’s ownership. The pass-
port-based approach is imposed by the need to mitigating
so-called ambiguity attacks, which aim at creating confusion
during watermark verification (we will describe them in detail
in Section 5.4). The main idea presented in the study consists
of two steps. First, the passport is included during the design
and the training of the deep neural network models, such as to
make both of them dependent on the passport. Second the
verification process is expanded to consider, as part of the
signature verification step, both the behaviour of the deep
neural network models when predefined inputs are applied and
the performance of the models themselves. If a wrong
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passport is used, then the performance of the model is
different than the expected one. Practically, the passports are
embedded by appending, after each convolution layer, a pass-
port layer. The specific parameters of the passport, including
bias and scale factors, are selected depending also on the
weight of the kernel after which the passport is appended. The
passport-based approach presented requires the access to in-
ternals of the model (thus belonging to white-box setting).
However, the authors propose to use it in combination with
other black-box approaches, to maintain the advantages of
black-box approaches, while mitigating the effects of ambiguity
attacks complementing the used black-box approach with the
passport-based watermarking technique. The authors verify the
proposed approach using classical benchmarks and release the
code and the model used to carry out the experiments.

Namba and Sakuma [45] present a watermarking method
called exponential weighting, The proposed method aims at
defeating attacks that intercept the queries used to verify the
authorship of the models and modify the images removing the
verification tag (more details about query modification attacks
are given in Subsection 5.3). This attack is successful because it
is possible to identify images used for verification since they
are often regular images with a certain superimposed signing
feature (such as a specific word or a logo). To mitigate this
attack and being resistant against model modifications, the
authors propose a watermarking method that consists of two
components. The first is to use verification samples that are
not distinguishable from the regular training samples, and limit
the change imposed by the watermark only to the labels. The
second is to use a training algorithm in which only model
parameters with large absolute values contribute to the pre-
dictions. The proposed approach is realized in the black-box
settings, thus does not require access to the internal model to
carry out the ownership verification step. The authors exper-
imentally show the performance of the watermarking verifi-
cation and its robustness against known attacks, including
model modification and query verification. Reported results
show that the performance of the model is marginally affected
by the presence of the watermarks.

A formal framework for embedding watermarks in deep
learning models has been proposed by Rouhani et al. [40].
Practically, DeepSigns, the name of the framework, is encap-
sulated as a high-level wrapper that can be used with state-
of-the art deep learning frameworks. The framework includes
both white-box and black-box settings. The watermarks are
embedded in the probability density distribution of the acti-
vation sets corresponding to different layers of the neural
network to be protected. Depending on the settings, the
watermark can be embedded in the hidden layers of the model,
ot in the output layer. Reported results on several state-of-the-
art datasets showed the practicability of the approach and the
resistance against compression attacks, fine-tuning attacks and
watermark overwriting attacks.

Merrer et al. [49], following the principle used during
adversarial attacks, propose to add a small perturbation to a
number of original samples so that they are classified incor-
rectly, and then to correct the labels so that they are labelled

correctly. The model with corrected labels is then used as
watermark. Since models without the watermark are likely to
not correctly classify the adversarial samples, the ownership
verification can be carried out by measuring the gap between
the correctly classified adversarial examples and the incorrectly
classified ones. The proposed approach is suitable for opera-
tion in the black-box setting, and the embedding is performed
during the training phase. Reported experiments show good
performance of the watermark, even if some false positive
during the watermark extraction phase would require further
analysis to be explained in depth.

Still in the black-box setting, Chen et al. [50] propose the
framework BackMarks to watermark deep neural networks.
The embedding of the proposed watermark requires few steps.
The first step is the generation of a model-dependent encoding
scheme that splits all the classes belonging to a specific task into
two groups. The second step, that requires the binary string
corresponding to the signature of the model owner, is the
generation of the watermark key pairs using adversarial attacks.
These watermarks are finally embedded in the models of the
deep neural network in the fine-tuning phase. The signature is
extracted using the key pairs that return the encoded signatute of
the model owner. The signature is finally decoded and verified.
The proposed approach is applied to state-of-the-art datasets.
Reported results show a runtime overhead of approximately 2%
for embedding the watermark, while the functionality of the
original deep neural network is maintained.

Improvements in the way in which the patterns to trigger
the watermarks have been also studied. Guo and Potkonjak
[54] proposed to use an evolutionary algorithm to generate
trigger patterns that incur in a limited false-positive rate while
maintaining the robustness of the embedded watermark
against state-of-the-art attacks.

4.2 | Fingerprinting

Fingerprinting is less explored than watermarking. Chen et al.
[51] proposed the framework DeepMarks to allow the owner
of deep learning models to embed a unique fingerprint within
the weights of the model itself. The fingerprinting is performed
by assigning a unique binary code vector to each user of the
mode. As in the case of DeepSign, the unique identifier is
encoded and embedded in the probabilistic distribution on the
weights. The proposed methodology is verified using state-of-
the-art datasets. Reported results show accuracy comparable to
the one of the baseline neural network, while achieving resis-
tance against classical attacks such as fingerprint collusion,
parameter pruning and model fine-tuning.

Fingerprinting can be combined with trusted execution
environment to provide a complete attestation method for AL
In the approach proposed by Chen et al. [55], the fingerprint
embedded during the fine-tune of the deep neural network is
extracted with the support of the trusted execution environ-
ment and used as attestation criteria to ensure that only the
programs that can correctly match the fingerprint are allowed
to be used in the target hardware device. The attestation
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support is deployed with the support of high-level APIs for
integrating it into existing deep learning frameworks.

A recent work in progress (Cao et al. [52]) proposes to
fingerprint a specific deep neural network model instead of
fingerprinting each user, and to use this fingerprint instead of
the watermark to detect IP violation. The main assumption
behind this approach is that a deep neural network classifier
can be uniquely represented by its classification boundaries.
The fingerprint is then built by carefully selecting some points
across this boundary. The verification is carried out by
querying these points on a suspected model. If the labels
predicted by the suspected model are the same as the ones
predicted by the classifier of the model owner, the suspected
model is considered to be the copied. An extensive evaluation
of the security and suitability of this approach is however still
under process.

5 | ATTACKS

In this section, we analyze the different attacks that have been
proposed in the study against watermarking and fingerprinting
of ML models. Interestingly, Quiring et al. note how the ML
community and the watermarking community have indepen-
dently developed similar attack and defense strategies [56]. The
attacks on ML watermarking are therefore quite similar in
concept and application to the larger class of attacks on ML.
For the scope of this survey, however, we only consider attacks
that have specifically been designed and evaluated against
watermarking and fingerprinting of ML.

In Table 2, we summarize which watermarking and
fingerprinting schemes are affected by the surveyed attacks.

5.1 | Model transformations

Given a trained model, transformation techniques enable
deriving a new model with the same or slightly different
prediction task. This is normally done to embed additional
features such as memory and computational efficiency, how-
ever, transformation can be used to effectively eliminate the
watermark. This strategy is also referred to as watermark
suppression, as it aims at preventing the watermark detection.
Yang et al. [57] provide list of model transformations that can
be used for this purpose, and evaluate their effectiveness
against a number of watermarking schemes. We list and briefly
describe the transformations below, while their effectiveness
against the surveyed schemes is summarized in Table 2. As
this family of attacks can be applied against any trained model,
they are independent of the watermarking technique used. In
the table, we report a high level of effectiveness when the
attack results in an accuracy of watermark extraction from the
model below 0.25, where 1 is a perfectly preserved watermark
and 0 is a watermark that has been fully removed from the
model. When no reference is provided, the effectiveness
results are from the proposer of the respective watermarking
scheme.

In general, the most common type of model trans-
formation is compression, where the objective is to optimize
the memory needed to fit the (parameters of the) model, while
preserving its accuracy. This technique, originally introduced to
optimize the network, is abused by the adversaries to suppress
an embedded watermark. Distillation [41] is a compression
technique that aims to ‘distill’ the original model’s knowledge
into another model of smaller size, for example by reducing the
number of neurons in each layer. By effectively retraining a
new model, this technique is very effective in removing wa-
termarks: this is due to the fact that distillation does not retain
the watermark embedded in the model, as long as it is
redundant and independent to the main learning task. To
counter this, Yang et al. [57] propose a technique which forces
the model to also represent the knowledge of the watermark.

Pruning [58] and rounding [58] are two simpler compres-
sion mechanisms, that instead act on the parameters: in
pruning, the compression is achieved by removing insignificant
parameters and pruning their links between neurons (often
followed by fine-tuning the remaining parameters); in round-
ing, by reducing the precision of the parameters, limiting the
number of required bits to represent them. They ate partially
effective in removing watermarking embedded into the statis-
tical information of parameters (such as Uchida et al. [40]), but
are ineffective when the embedding is achieved through
capacity abuse (e.g. Adi et al. [42]).

A very common practice in ML is to refine and update a
model using new data. This process of retraining a model using
a refining set is normally referred to as fine-tuning [64].
Similarly to compression, fine-tuning can be targeted at
removing watermarking [65]. In particular, Chen et al. [59]
propose a carefully designed fine-tuning method which enables
the adversaries to effectively remove watermarks embedded
using pattern-based (e.g. [43]) and instance-based techniques
(e.g. [42]), without compromising the model functionality.

5.2 | Watermark removal

As the name implies, watermark removal attacks aim at
removing the watermark from an IP. Variations of watermark
removal also exist: watermark overwriting [40], where the
adversary attempts, at the same time, to remove the existing
watermark and to insert a new one; and watermark forging,
where the adversary tries to maliciously claim ownership of the
watermark in the stolen model [43]. In the following we discuss
current attack based on these strategies.

Wang and Kerschbaum [60] proposed a first attack against
the original Uchida et al. watermark design [40]. The attack
reliably detects and removes the digital watermarks by exploiting
the model parameter distribution variations introduced by the
Uchida et al. algorithm, notably the weights standard deviation.

Shafieinejad et al. [61] present a comprehensive suite of
attacks aimed at backdoor-based schemes [42—44]. In partic-
ular, they propose a black-box attack, a white-box attack and a
property inference attack. The first two attacks do not require
access to the trigger set, the ground truth function of the
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watermarked model or any labelled data. Instead, they use
inputs from the publicly known domain of the watermarked
model, and query the model for labels. Experimental results
indicate a strong effectiveness of both strategies. The property
inference attack, on the other hand, aims at distinguishing a
watermarked model from an unmarked one. This can be used
in two stages of the watermark removal process: as first step, to
confirm the presence of the watermark, and as the last step, to
confirm successful removal.

REFIT [62] is a framework for watermark removal that
does not require knowledge of the watermarks or of the
schema used to embed the watermark. The watermark removal
is carried out during the fine-tune phase that is extended with
two dedicated techniques: one derived from the elastic weight
consolidation, and one exploiting the augmentation of unla-
belled data. Reported preliminary results show the effective-
ness of the approach in removing the embedded watermark
also in scenarios were the adversary has limited training data.

Aiken et al. [63] propose a ‘laundering’ algorithm aiming to
remove watermarks-based black-box methods ([42, 43]) using
low-level manipulation of the neural network based on the
relative activation of neurons. This effectively removes the
watermark protection while retaining relatively high accuracies
in the resulting models (between 80% and 97% in the study
experiments). The authors conclude that current backdoor-
based watermarks are overestimating the robustness of these
watermarks while underestimating the ability of attackers to
retain high test accuracy. These claims, supported by their
experimental results, seem validated by the similar results by
Shafieinejad et al. [61], and indicate that significant improve-
ment is needed for the second generation of backdoor-based
watermarks.

5.3 | Query modification

Query modification [45] is an attack that aims at altering the
query used to verify the ownership of an Al model to render
the whole verification process ineffective. Often, the data used
to carry out the owner verification process are regular data with
superimposed strings (such as a logo or a ‘test’ text) on top.
Because of this, it is possible to determine whether a query
belongs to the verification process or not. Once the query is
identified by the attacker, the data used for the verification are
modified, removing the superimposed strings and thus
reverting back to the original format. The reverted data are
then classified correctly (thus not returning the verification
string), and the verification process fails.

5.4 | Ambiguity attacks

Ambiguity attacks are the final class of attack covered in this
survey. Also these attacks have been previously analyzed in the
context of digital image watermarking and then applied to deep
neural networks [39]. At high level, the goal of an ambiguity
attack is to create doubts about the ownership of an IP by

embedding into the protected IP itself a number of forged
watermarks. Ambiguity attacks are effective if the false-positive
rate of the watermarking schema is sufficiently high. The exact
definition of ‘sufficiently high’ is strongly dependent on the
application. However, it was reported in study that a false-
positive probability of less than 107" could be needed [66] to
significantly limit ambiguity attacks.

Ambiguity attacks against watermarks of Al implementa-
tions are the least studied class of attacks. Robustness of
existing watermarking schemes against ambiguity attacks has
been addressed only recently [39], and it was shown that at
least one representative of each class of watermarking tech-
niques is susceptible against these attacks (with limited effort
for the attacker). An approach to mitigate these attacks has
been previously described in Section 4.

6 | DISCUSSION AND CONCLUSIONS

Al algorithms and models have achieved outstanding results in
many fields, including speech recognition, health care and
automotive. To develop and train an Al algorithm is a very
costly and time consuming process. As a result, the owner of the
model should be able to protect it, avoiding misuse and piracy.
We reviewed IP protection techniques applied in the field of AL

Concerning the protections, the majority of the works are
focused on watermarking, while very few are considering other
functionalities such as fingerprinting or even more advanced
schemes such as attestation. We believe thus that there is a
need of a more in depth analysis of possible fingerprinting
techniques for Al models. Furthermore we believe that it is
important to explore solutions, also at architectural level, to
provide enhanced functionalities for IP right management,
following the initial works on attestation of deep neural
network. Still on protections, several works proposed so far are
designed for the black-box settings, thus have the advantage of
not requiring access to internal data of the model. However,
there are functionalities that cannot be implemented in this
settings yet (for instance, resistance against ambiguity attacks).
We suggest to explore the possibility of providing robustness
against this attack while still operating in the black-box setting
of, alternatively, to explore ways for efficiently combining
white- and black-box settings. This last approach was only
recently proposed and appears to be promising.

With regard to attacks, most schemes being proposed are
evaluated against the basic pruning attack, which however has
limited significance as a benchmark against more advanced and
powerful attacks. Similatly, the schemes evaluated against fine-
tuning normally use a trivial fine-tuning attack, and as such
results do not fully reflect the potential capability of this
approach, as demonstrated by Chen et al. [59] with their
carefully designed attack. Among the model transformation
attacks, distillation is the most promising, as demonstrated by
Yang et al. [57], although results exist only for a limited number
of schemes. We believe research in distillation attacks, how they
impact current and future schemes and potential counter-
measures should be a focus of future investigation.
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