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Abstract
Given the growing number of environmental and societal concerns we confront today, the idea of sus-
tainability has gained importance. At the same time, new strategies for improving the performance of
structures and systems have been developed due to developments in engineering and computational
design. This research aims to generate a sustainable design using topology optimization by focusing
on design for disassembly. One advantage of design for disassembly is that when a product can be
disassembled, the parts can be reused, repaired, recycled, and remanufacture. This facilitates other
aspects of product sustainability, such as the product’s life cycle and end-of-life. A structure is divided
into two parts and attached by a connection point, this connection point is called the connector. Due to
sustainability, the connection method needs to be a non-destructive method, which in this case is the
bolts. Next to the connector, two voids are required to insert, tighten and remove the bolts. Therefore,
in this research, a structure is optimized using topology optimization and simultaneously optimizing the
position of cut lines and connectors. The approach taken uses level set functions to model the cut of the
structure, as well as the connectors and the voids. Then, they are converted into a density field using a
smoothed Heaviside function. A Solid Isotropic Material with Penalization (SIMP) motivated method is
used to join all the different density fields into an equation for the interpolated elasticity modulus. The
optimization aims to minimize compliance with volume and no-overlap constraints. The non-overlap
constraint is applied to the connectors. The structure and the position of the cut line and the connectors
are optimized using the Method of Moving Asymptotes (MMA) method. A gradient based sensitivity
analysis is used in the MMA. Afterwards, the influence of the cut line, the connector and the voids are
observed individually. After optimizing the parts individually, the full optimization was performed, where
the structure, the cut lines and the connectors with the voids were optimized. Furthermore, a parameter
study was done to observe their influence on the final layout. The optimizer’s behaviour was observed
by looking at the optimization results and the parameter study. For example, how the optimizer tends
to stack some connectors together to create a member of the structure or the influence of the voids.

With the approach presented, the main idea of optimizing a structure using topology optimization
and simultaneously dividing it and optimizing the connector’s position is obtained. However, the op-
timization has some limitations, as some assumptions and design considerations are not accurate,
further research is needed to get accurate results.
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1
Introduction

The importance of sustainability has grown over the past years. The concept of sustainability had its
origins as a policy concept. It was first introduced in the Brundtland Report 1987 (Imperatives, 1987).
In this report, the United Nations Brundtland Commission defines sustainability as:

“Sustainable development is a development that meets the needs of the present without compro-
mising the ability of future generations to meet their own needs” (Imperatives, 1987).

However, over the years, the definition has evolved. Regarding sustainability and design, there
is a concept called Design for X (DFX), sometimes called Design for Excellence. This concept has
been developed to help with the design in the product development phase. Some benefits are reduced
product cost, shorter launch time, reduced product risk, improved product quality, enhanced testability,
improved production, customer satisfaction, and improved operational efficiency (Usmani, 2021). This
concept aims for the designers and engineers to improve a product during the design phase by focusing
on one aspect. For example, if a designer is trying to design a product, the designer could use one of
these techniques to focus on and improve the product in the chosen direction.

Figure 1.1: Design for sustainability (Mayyas et al., 2012)
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DFX has a wide range of techniques. One of these techniques is design for sustainability (DFS).
Fig.1.1 shows an overview of all the design aspects DFS can be involved in.

It is estimated that over 80% of all product-related environmental impacts are determined during
the design phase of a product (Querol, 2021).

Topology optimization is a computational design method that creates optimized structures based on
mathematical optimization algorithms. The algorithm optimizes the material layout by maximizing the
performance and efficiency of the design. It was first introduced in a seminal paper by Bendsøe and
Kikuchi, 1988, and is currently widely used in industry.

Topology optimization is used to create high-performance structures that meet specific design re-
quirements. It distributes material in a design domain by minimizing an objective function and fulfilling
a set of constraints. To use topology optimization, certain initial conditions are required and defined by
the user, including a defined initial domain, a set of loads, conditions, and constraints. Some people
might think that topology optimization is already sustainable due to the reduction of material usage.
This is different from the approach that will be taken here, which is to generate a sustainable design
by not only reducing the material used.

Design for disassembly was chosen as the focused DFS technique in the previous literature study.
Brennan et al., 1994 defined disassembly as the systematic removal of desirable parts from an assem-
bly while ensuring that parts are not impaired due to the process. Nowadays, designers aim to be able
to disassemble a product to recycle, remanufacture, or repair the broken product. Disassembly can be
categorized into destructive and non-destructive disassembly (Battaia et al., 2018 Chang et al., 2017).
Destructive disassembly focuses on the material and non-destructive focuses on the recovery of the
parts. Regarding sustainability, a non-destructive disassembly is preferred. A product will need to be
divided into parts and assembled to be later able to disassemble it. A division line, also called a cut
line, is needed to separate the product into different parts. The different sections will be connected
using a non-destructive method. The connector is where the structure is assembled together. Looking
at further research on design for the division of a topology optimized structure, the connection method
between the separate parts used is primarily welding, which is a destructive method for disassembly.
Therefore, the research question is:

How can a structure be divided into different parts by optimizing the position of the cut
lines and the connection points simultaneously while optimizing the structure using topology
optimization?

The remainder of this report is organized as follows. Chapter 2 introduces design for disassembly
and an idea of the initial approach to solve this research question. Chapter 3 introduces the methods
used for modelling connectors, cut lines, and voids and Chapter 4 shows the optimization problem and
the sensitivity analysis. The results are shown in Chapter 5 and the discussion in Chapter 6. Finally,
the conclusion and future work is found in Chapter 7.



2
State of the art

Design for disassembly is mentioned in the introduction as the sustainable approach to use with topol-
ogy optimization. This section introduces the topic of design for disassembly and the connection meth-
ods. At the end of this section, the idea on how to answer the research question is proposed.

2.1. Design for disassembly
How can design for disassembly and topology optimization be used to make a design sustainable?
A possible solution is to have a structure that needs to be divided to disassemble by optimizing the
division line and the connection points simultaneously while optimizing the structure using topology
optimization.

One advantage of design for disassembly is that when a product can be disassembled, the parts
can be reused, repaired, recycled, and remanufacture. This facilitates other aspects of product sus-
tainability, such as the product’s life cycle and end-of-life.

Designing for disassembly additionally includes designing for assembly. However, the main differ-
ence is their focus. Design for assembly only focuses on the assembly of the part, not the steps after,
and design for disassembly focuses on how easily the pieces can be taken apart after the assembly.
There are two types of disassembly: destructive and non-destructive disassembly (Battaia et al., 2018).
Although to be able to disassemble the product quickly and be able to reuse or repair the parts, the
disassembly must be non-destructive. This makes the design focus on the part rather than the material.

Literature research was done on how this topic and topology optimization are related in previous
studies. It was found that most studies which include a focus on both topics focused on the connection
mechanism, for example, a compliant mechanism as in Li et al., 2004, a snap-fit pressure-based fas-
teners as in Shalaby and Saitou, 2008 andWillems et al., 2007 or the concept of one-to-many fasteners
as in Willems et al., 2006. However, there was little research on dividing and connecting the structure
while optimizing it using topology optimization.

When looking for the objective of having a structure, dividing and connecting it while optimizing it
using topology optimization, some research was found in terms of topology optimization and design for
assembly. Most studies as Pollini and Amir, 2020, Yi and Saitou, 2021, and Saeed et al., 2021 have
welding as the connection method. Welding leads to a destructive disassembly procedure, which is not
desired. However, the idea of dividing the structure used in this report is based on the methodology
proposed by Pollini and Amir, 2020. The part is divided with a 1-D profile, a piece-wise linear geometric
entity composed of a chain of piece-wise linear segments. One of the coordinates nodes is fixed in the
segments, and the other is a variable. However, as mentioned, the connection method needs to be
changed. The following section introduces connection methods.

2.2. Connection methods
How the connections will be modelled is an essential aspect of the project. In this section, there is one
clear goal: non-destructive connections. Non-destructive connections typically have a specific size and
lower strength than the complete structure or the destructive connection methods such as welding.
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In the previous literature research, different studies on how the position of the connectors is opti-
mized are done (Chickermane and Gea, 1996, Chickermance et al., 1999 and Oinonen et al., 2010).
These studies have different criteria for their optimization and have the bolt inserted perpendicular to
the structure. However, the main idea is to connect it parallel to the structure.

Non-destructive connection methods are the types of connections that are easy to remove and do
not damage the structure, they are also called temporary connectors. Some examples are snaps-
fits, retaining rings (circlip), quick-release devices (clip/lock/latch/clamp), pins, tapered keys, magnetic
devices, threaded fasteners and adhesives. For retaining rings, it needs to be a circular connection
point. The quick-release devices are similar to threaded fasteners. For pins, the connection shape
should be adapted to be able to put a tapered key. The magnetic devices and the adhesive have a
similar connection to welding. For easy disassembly, threaded fasteners such as bolts and screws and
snap-fits are looked into.

There are three types of snap-fits, annular, cantilever and torsional. They must have the same
orientation to be able to disassemble it. If the snap-fit breaks, it is hard to repair. Moreover, it is a
fast method to assemble and disassemble pieces. However, the threaded fasteners are chosen as the
non-permanent connection method. However, they need some space to be able to insert them.

2.3. Proposed idea
As mentioned, the main idea is to optimize a structure and simultaneously optimize the cut lines and
the connection points. In term of the connection point, the idea is that it will be divided in half, where
each half is part of the divided structure and it is the point where the bolt will be inserted to join the
structure together.

One requirement to join two surfaces with a bolt is to be bolted perpendicular to the connection
surface. Another critical requirement is space for the bolt to be inserted, fastened and removed.

To ensure these requirements are met, the connection point consists of a void-solid-void fixture,
which position will be optimized. Fig. 2.1 visualises the main idea. The dark grey area is the structure
which is optimized. The red dashed line is the cut line, which divides the structure and the connector.
The connector is the part which is inside the green borders. In the optimizations, the connector will
not be divided, it is optimized a solid piece. As mentioned, the bolts need to have a minimum space
around them to insert and remove them. Therefore, the blue boxes represent two voids, which are the
minimum required spaces. This is the initial idea on how to approach the aim of this paper.

Figure 2.1: Main idea of the cut and the connector and how it will be bolted.



3
Methodology

In this chapter, the methodology used to complete the aim of dividing a structure into different parts
and joining them together by a connection point similar to the one shown in Fig. 2.1 is presented. The
methodology chapter includes the introduction and modelling of the connectors, cut lines and voids,
and the next chapter includes the optimization problem with the sensitivity analysis.

The different topology methods used and other information needed are introduced. Followed by
the modelling of the connector, voids and cut lines and how they are added to the interpolated elastic
modulus.

3.1. Topology optimization approaches
There are different methods for topology optimization. One method is the Solid Isotropic Microstructure
with Penalization (SIMP) (Bendsøe, 1989, Zhou and Rozvany, 1991, Mlejnek, 1992). The initial idea of
this method was to reduce the complexity of the homogenisation approach and improve convergence.
Bendsøe and Sigmund, 1999 stated the power law gave a relation between the density design variable
and the material property. The material distribution is seen by the SIMP approach as a continuous
density field with a range of 0 (void or empty space) to 1 (completely solid material). The proportion of
material existing at each location within the design domain is represented by the density field. Greater
density values denote areas with more material concentrated in them, whilst lower density values de-
note areas with less material concentrated in them.

Another method is the level-set, which is the most used alternative to the density-based approach.
Introduced and developed by Osher and Sethian, 1988. The boundaries are represented as zero-level
curves of a scalar function (Deaton and Grandhi, 2014). The level-set approach was first applied to
topology optimisation by Sethian and Wiegmann, 2000.

3.2. Introduction to the modelling part
Fig.2.1 shows that the connection consists of two voids and a solid connection over the cut line. There
are different ways to approach modelling a solid movable component and movable voids. In topology
optimization, there are two approaches called the Moving Morphable Component (MMC) and the Mov-
ing Morphable Void (MMV) (Guo et al., 2014), which are part of the feature mapping method (Wein
et al., 2020) . This provides a different solution framework which can be achieved explicitly and geo-
metrically. In MMC, a set of components are adopted as the building blocks of topology optimization,
and for MMV, a set of voids is used to optimize the structural topology. However, these methods are
not used as the modelling approach in this research.

Zhu et al., 2016 reviews different ways to optimize multi-component structure systems, integrated
component layout, and structural topology optimization. In the paper Wang et al., 2020, the optimiza-
tion of the layout of continuum structures embedded with movable parts and holes using a SIMP-based
optimization to maximize the overall stiffness. This paper uses a level-set method to model the embed-
ded voids and the embedded components, and it is then converted into a density field. The modelling
used for the connector, cut lines and voids is based on this paper.
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Fig. 3.1 shows the schematic to understand the problem better. The grey area is the design domain
as well as the structure, which will be optimized using the density variable, the red lines are the cut lines
which will be used to divide the structure. For the cut line, the red points are the coordinates which
will be optimized. The green area is the connectors, they will be on the top of the cut line as they will
connect the structure, this represents the connection point for the bolt as in Fig. 2.1. Their position is
optimized by optimizing the green dots, the mid-point of the connector. On both sides of the connector
is a void, represented as the blue area. They represent the area needed to insert, tighten and remove
the bolt, therefore, they need to be on the side of the connector. Due to their dependency, the position
of the voids is not optimized, they depend on the position of the connector.

Figure 3.1: Schematic graph to understand idea showing the starting point of the optimization and which ones are the variables
to optimize on the cut line and the connectors. The voids are dependent on the connector and their position is not optimized.

3.3. Density as a design variable
The SIMP method is used for topology optimization. It is a density-based approach. Each element has
a density 𝜌𝑖 for i = 1 to the number of elements (Nelx x Nely), where Nelx is the number of elements in
the x direction and Nely is the number of elements on the y direction. 𝜌𝑖 has 0-1 values. When 𝜌𝑖 = 0,
there is a void and no material, and when 𝜌𝑖 = 1, there is a solid material for the 𝑖𝑡ℎ element.

As the design variables must be continuous, the density values can be 0 ≤ 𝜌𝑖 ≤ 1. There are more
design variables in the optimization, this will be introduced in the modelling section.

The density-basedmethod often suffers from well-known numerical instabilities due to finite element
discretization. This is also known as the checkerboard pattern (Diaz and Sigmund, 1995). To avoid
it, filters are used. The most common filters are the density filter (Bruns and Tortorelli, 2001) and
the sensitivity filter (Sigmund and Petersson, 1998). The primary function of the sensitivity filter is to
filter the sensitivities after they are calculated before using them in the optimization method. The aim
is to smooth the sensitivities values to improve the optimization performance, as it uses the filtered
sensitivities instead of the real ones. The density filter averages the element densities over the number
of elements in a circular region with the 𝑟𝑚𝑖𝑛. Both filters use 𝑟𝑚𝑖𝑛, which is the filter size/radius.

In this part, a density filter is applied. Therefore, 𝜌 → 𝜌𝑒. The density filter is applied by using the
equation:

𝜌𝑒 =
1

∑𝑁𝑒𝑖=1𝐻𝑒𝑖

𝑁𝑒
∑
𝑖=1
𝐻𝑒𝑖𝜌𝑖 , (3.1)
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where, 𝜌𝑒 are the filtered densities, and 𝜌𝑒 are the non filtered, the design variable. 𝑁𝑒 is the number
of elements, 𝜌𝑒 are referred to as physical densities due to the filter causing the initial density to lose
its physical meaning (Andreassen et al., 2011) 𝐻𝑒𝑖 is weight factor defined as:

𝐻𝑒𝑖 = 𝑚𝑎𝑥(0, 𝑟𝑚𝑖𝑛 − Δ(𝑒, 𝑖)), (3.2)

where 𝑟𝑚𝑖𝑛 is the filter radius and Δ(𝑒, 𝑖) is the centre-to-centre distance.
The filtering affects the sensitivity analysis of the objective function and the volume constraint con-

cerning the density. They are calculated with the filtered 𝜌𝑒. The sensitivities with respect to the design
variable 𝜌𝑒 are calculated in the following chain rule:

𝛿𝜓
𝛿𝜌 = ∑

𝑒∈𝑁𝑗

𝛿𝜓
𝛿𝜌
𝛿𝜌
𝛿𝜌 = ∑

𝑒∈𝑁𝑗

1
∑𝑖∈𝑁𝑒 𝐻𝑒𝑖

𝐻𝑗𝑒
𝛿𝜓
𝛿𝜌 (3.3)

where 𝜓 represents the objective function (J) or the volume constraint (𝑔𝑣).

3.4. Modelling introduction
As mentioned, the aim is to divide a structure into different parts and join them by a connection point
similar to the one shown in 2.1 and simultaneously optimize the structure using topology optimization.
From now on, this section focuses on the modelling aspect of the division of the structure with cut
lines, the connection point, referred to as the connector and the two voids needed on each side of the
connector as a bolt requirement. The approach taken here is based on the paper Wang et al., 2020,
where level set functions are used to model the components and holes and mapped into density fields
to optimize it using SIMP method.

Firstly, the modelling of the connector and the voids are shown, followed by the modelling of the
cut lines and lastly, how all the previous ones, the connectors, the voids and the cut lines, are added
together.

3.5. Modelling of the connection
In this section, the connectors are modelled first, followed the addition of the voids. The new design
variable introduced for the connector is 𝑐𝑘 = {𝑥𝑐𝑜𝑛𝑘 , 𝑦𝑐𝑜𝑛𝑘 , 𝜃𝑐𝑜𝑛𝑘}, which determines its positioning for
the 𝑘𝑡ℎ connector. The term 𝜃𝑐𝑜𝑛𝑘 is also called 𝜃𝑐𝑘 . For the addition of the voids, their coordinates
are not optimized as they need to be next to the connector, thus the position is determined with the
coordinates of the connector, and their sizes are determined by the minor and major lengths 𝑎𝑐𝑜𝑛
and 𝑏𝑐𝑜𝑛 for the connector and 𝑎𝑣𝑜𝑖𝑑 and 𝑏𝑣𝑜𝑖𝑑 for the voids. The coordinates of the connector are
𝑧𝑘 = {𝑥𝑣𝑜𝑖𝑑𝑡 , 𝑦𝑣𝑜𝑖𝑑𝑡 , 𝜃𝑣𝑜𝑖𝑑𝑠𝑡}, and as the voids must have the same orientation as the connector, then
𝜃𝑐𝑜𝑛𝑘 = 𝜃𝑣𝑜𝑖𝑑𝑠𝑡 is also called 𝜃𝑐𝑘 .

3.5.1. Modelling of the connector
As mentioned, the initial idea of how the connectors are added into the design field is based on Wang
et al., 2020. Furthermore, changes and additions to the methodology presented in this paper are made.
For example, using a density filter, a new equation for thematerial interpolation scheme, a new equation
for the volume constraint, and a different optimization problem. Some of these changes are due to the
change to a density filter, the structure and the connector were not joining, this is explained in more
details on Appendix. A.1.

3.5.1.1 Topology description of the connectors

The topology description function 𝜑 describes the shape and topology of the connector. This is based
on previous work from J. Zhang et al., 2012 and Kang and Wang, 2013. It can be expressed as follows:

{
𝜙(𝑥) > if 𝑥 ∈ (𝐷\Ω)
𝜙(𝑥) = if 𝑥 ∈ (𝛿Ω ∩ 𝐷)
𝜙(𝑥) < if 𝑥 ∈ (Ω\𝛿Ω)

(3.4)
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Where D is the fixed design domain, Ω and 𝛿Ω are the sub-domain occupied by the connector or
void and its boundary. If a point x lies inside the connector, then the corresponding value of the topology
description function will be less than zero. The value of x is calculated with 𝑥𝑐𝑜𝑛𝑘𝑖𝑛 multiplied by the
scaling factor 𝑐𝑥, which corresponds to the number of elements on the x direction. 𝑥𝑐𝑜𝑛𝑘𝑖𝑛 is the input
and the optimized value, which is a value between 0 and 1. For the y, the same case is applied. 𝑦𝑐𝑜𝑛𝑘𝑖𝑛
is the input and the optimized value, which is a value between 0 and 1, and it is multiplied by 𝑐𝑦, which
is the number of elements on the y direction to obtain the scaled value for the y coordinate.

For an object, the corresponding topology description function can be expressed with the following
function based on W. Zhang et al., 2015:

𝜙(𝑥, 𝑥𝑜 , 𝑦𝑜 , 𝜃, 𝑎, 𝑏) = 𝜙(�̄�, �̄�), (3.5)

where:

{�̄��̄�} = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃] {

𝑥 − 𝑥𝑜
𝑦 − 𝑦𝑜} (3.6)

In this equation, �̄� and �̄� are the local coordinates on the object, and the rotation angle is 𝜃, which
is relative to the horizontal axis. 𝑥𝑜 and 𝑦𝑜 are the horizontal and vertical coordinates of a specified
reference point on the object. These coordinates are calculated with the following equations.

𝑥𝑐𝑜𝑛𝑘 = 𝑥𝑐𝑜𝑛𝑘𝑖𝑛 ⋅ 𝑐𝑥 , 𝑦𝑐𝑜𝑛𝑘 = 𝑦𝑐𝑜𝑛𝑘𝑖𝑛 ⋅ 𝑐𝑦 and 𝜃𝑐𝑘𝑖𝑛 = 2𝜋𝜃𝑐𝑘 − 𝜋 (3.7)

These values are used to calculate the topology description function (TDF) representing an object
is obtained with the following formula:

𝜙 = (�̄�𝑎)
6
+ (�̄�𝑏)

6
(3.8)

Where a and b are the semi-major and semi-minor lengths of the object, respectively. The equation
is based on the superellipse equation, also known as the Lamé curve (Gielis et al., 2021), and has an
exponential of 6, creating a rectelliptical shape, a rectangle with rounded corners. This function will not
be used only for the connectors, it will also be used later with the cut line and the voids. Therefore,
each one will have different values of a and b. For the connector, the notation 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛 will be
used in the remainder of the text.

Fig.3.2a shows the TDF representing a rectelliptical object with a value of 𝑎𝑐𝑜𝑛 = 2 and 𝑏𝑐𝑜𝑛 = 1.
The TDF is a level-set function that needs to be mapped to the mesh to perform the analysis. The

level set function needs to be converted into a 0-1 field to be able to combine it with the density field
and use the SIMP method. A smoothed Heaviside function projects the TDF of the connectors into a
density field (Saxena, 2011; Kumar and Saxena, 2015;Hoang and Jang, 2017 ; Wang et al., 2018) with
the following equation:

𝜂𝑒 = 1 −
𝑁𝑐
∏
𝑘=1

1
1 + 𝑒𝑥𝑝(−𝛽𝜙𝑐𝑜𝑛𝑘(𝑥𝑒))

(3.9)

𝜙𝑐𝑜𝑛𝑘 is the TDF corresponding to the 𝑘𝑡ℎ connector. 𝑁𝑐 is the number of connectors. 𝑥𝑒 represents
the centroid coordinate of element e in the Cartesian coordinate system. 𝜙𝑐𝑜𝑛𝑘(𝑥𝑒) represents the value
of TDF calculated at point 𝑥𝑒.
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(a) The topology description function representing a rectelliptical ob-
ject (b) The smoothed Heaviside function 𝜂𝑒

Figure 3.2: TDF of an object and its smoothed Heaviside function 𝜂𝑒

In Fig. 3.2b, the values of the center point are 𝑥𝑐𝑜𝑛 = 20, 𝑦𝑐𝑜𝑛 = 5, 𝜃𝑐 = 0.5 and where 𝑎𝑐𝑜𝑛 = 3
and 𝑏𝑐𝑜𝑛 = 2 , this is on a 60 by 20 element domain. It can be appreciated that the obtained field 𝜂𝑒 is
set to 1 for the connector and 0 for the rest of the domain.

3.5.1.2 Material interpolation scheme

The material interpolation scheme is based on the discrete material optimization (DMO) developed in
Stegmann and Lund, 2005, ensuring all elements have one material from a set of pre-defined ones. It is
used to solvemulti-material topology optimization problems. The SIMP-motivatedmaterial interpolation
scheme is used. The new term 𝜂𝑒 is the element density of the connectors. The structure has the elastic
modulus of 𝐸0, and 𝐸𝑐 is the Young’s modulus for the connector. The interpolated elastic modulus is
based on the one introduced at Wang et al., 2020. However, this was changed. One of the reasons for
this modification is the filter. Now a filtered density is used (𝜌𝑒). A p-norm is also added to obtain the
smooth maximum between the density and the solid connector. This was added due to the connector
and the structure not joining. This is explained in Appendix. A.1. The equation for the interpolated
elastic modulus is the following:

𝐸𝑒(𝜌𝑒 , 𝜂𝑒) = (Emin + ((Ec 𝜂𝑒𝑝2)
𝑝 + ( 𝜖 + Eo 𝜌𝑒𝑝1)

𝑝)
1/𝑝
) (3.10)

3.5.2. The addition of the voids
As shown in Fig. 2.1, the desired connection consists of an connector with two voids, one on each
side. The connector represents the bolt connection, and the voids are free spaces with a density of
zero, which is needed to offer the necessary clearance to be able to put the bolt and the nut in place.

This section will explain how the voids are modelled and their dependency on the connectors. The
position of the voids will not be optimized.

3.5.2.1 Topology description of voids

As in Eq. 3.8 for the connectors, the horizontal and vertical coordinates of a specified reference point
on the voids are needed. The voids are dependent on the position of the connectors. Thus, their
coordinates are obtained with the connector’s coordinates. A visualisation of how how the voids depend
on the position of the connectors is shown in Fig. 3.3. It shows .
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Figure 3.3: Visualization of the how the coordinates of x and y are calculated

Simple trigonometry is used with the coordinates of the solid connector for the relation. This uses
sine and cosine operations. The values of 𝑧𝑣𝑜𝑖𝑑𝑡 = ( 𝑥𝑣𝑜𝑖𝑑𝑡 , 𝑦𝑣𝑜𝑖𝑑𝑡 and 𝜃𝑣𝑜𝑖𝑑𝑡), which represent the
variables of the voids for the 𝑡𝑡ℎ void. The angle 𝜃𝑐𝑘 is equivalent in solids and voids as the voids must
have the same orientation as the connector, and therefore,𝜃𝑣𝑜𝑖𝑑𝑡 = 𝜃𝑣𝑜𝑖𝑑𝑡+1 = 𝜃𝑐𝑘 for 𝑡 = 2𝑘 − 1 .
Furthermore, each connector needs to have two voids, one void at each side.

They are values of 𝑧𝑣𝑜𝑖𝑑𝑡 are calculated:

𝑥𝑣𝑜𝑖𝑑𝑡 = 𝑥𝑐𝑜𝑛𝑘 + ((𝑎𝑐𝑜𝑛 + 𝑎𝑣𝑜𝑖𝑑) ⋅ 𝑐𝑜𝑠(𝜃𝑐𝑘)), 𝑥𝑣𝑜𝑖𝑑𝑡+1 = 𝑥𝑐𝑜𝑛𝑘 − ((𝑎𝑐𝑜𝑛 + 𝑎𝑣𝑜𝑖𝑑) ⋅ 𝑐𝑜𝑠(𝜃𝑐𝑘))
𝑦𝑣𝑜𝑖𝑑𝑡 = 𝑦𝑐𝑜𝑛𝑘 + ((𝑎𝑐𝑜𝑛 + 𝑎𝑣𝑜𝑖𝑑) ⋅ 𝑠𝑖𝑛(𝜃𝑐𝑘)), 𝑦𝑣𝑜𝑖𝑑𝑡+1 = 𝑦𝑐𝑜𝑛𝑘 − ((𝑎𝑐𝑜𝑛 + 𝑎𝑣𝑜𝑖𝑑) ⋅ 𝑠𝑖𝑛(𝜃𝑐𝑘))

(3.11)

for 𝑡 = 2𝑘 − 1, where k is the number of the connector.
These values are used to calculate the TDF 𝜑, used to describe the shape and topology of the voids

in Eq. 3.6 and then Eq. 3.5. For the voids, the notation 𝑎𝑣𝑜𝑖𝑑 and 𝑏𝑣𝑜𝑖𝑑 are used in the equations as
the semi-major and semi-minor lengths.

Similarly to the connector, the voids are projected from the level set function onto a 0-1 field using a
smoothed Heaviside function. This new field is called 𝜁𝑒, which represents a zero field used to describe
the presence of the holes:

𝜁𝑒 =
𝑁ℎ
∏
𝑡=1

1
1 + 𝑒𝑥𝑝(−𝛽𝜙𝑣𝑜𝑖𝑑𝑡(𝑥𝑒))

(3.12)

𝜙𝑣𝑜𝑖𝑑𝑡 is the TDF corresponding to the 𝑡𝑡ℎ void. 𝑁ℎ is the number of voids. 𝜙𝑣𝑜𝑖𝑑𝑡(𝑥𝑒) represents
the value of the TDF calculated at the centroid of element e.

In Fig. 3.4a, the values of the center point are 𝑥𝑣𝑜𝑖𝑑 = 12, 𝑦𝑣𝑜𝑖𝑑 = 7, 𝜃𝑐 = 0.5 and where 𝑎𝑣𝑜𝑖𝑑 = 2
and 𝑏𝑣𝑜𝑖𝑑 = 2, this is on a 60 by 20 element domain. It can be appreciated that the obtained field 𝜁𝑒
that is set to 0 for the void and 0 for the rest of the domain.

3.5.2.2 Material interpolation scheme

Now, 𝐸𝑒 is a function of 𝐸𝑒 = 𝐸(𝜌𝑒 , 𝜂𝑒 , 𝜁𝑒). As the 𝐸𝑒 is now also a function of 𝜁𝑒, the Eq. 3.10 is modified
to the following equation:

𝐸𝑒(𝜌𝑒 , 𝜂𝑒 , 𝜁𝑒) = 𝜁𝑒𝑝3 (Emin + ((Ec 𝜂𝑒𝑝2)
𝑝 + ( 𝜖 + Eo 𝜌𝑒𝑝1)

𝑝)
1/𝑝
) (3.13)
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This equation prioritizes the void, if there is an overlap of the position of the voids and connectors,
and they overlap each other, the void will overwrite the connector. Fig. 3.4b shows the plot of 𝐸𝑒 using
Eq. 3.13, with a 𝜌𝑒 = 0.5 and a connector and two voids.

(a) The smoothed Heaviside function 𝜁𝑒 (b) Plot of 𝐸𝑒 in EQ. 3.13 with two voids, a connector and 𝜌 = 0.5

Figure 3.4: TDF of an object and its smoothed Heaviside function 𝜂𝑒

3.6. Modelling the division of the structure, the cut line
To model the division of the structure, cut lines are needed. The idea of the optimization of the cut lines
is based on the paper Pollini and Amir, 2020.

To divide the structure, a division line with a zero density field is needed. How the cut line is modelled
is the same as the voids, 𝜁𝑒. Themain difference is that the points optimized in the cut line are endpoints
of the line instead of the mid-point, as it is in the voids and connectors.

The new design variable introduced in this part for the optimization is 𝑥𝑐𝑢𝑡𝑖 . It is a column vector,
𝑥𝑐𝑢𝑡 = (𝑥𝑐𝑢𝑡1 , 𝑥𝑐𝑢𝑡2 , ..., 𝑥𝑐𝑢𝑡𝑛𝑐+1), where 𝑛𝑐 is the number of cut lines. Each cut segment has two values
of x, as can be appreciated in Fig. 3.5. The coordinate 𝑦𝑐𝑢𝑡𝑖 is not optimized; it is a user input. This will
determine how many cut lines there are.

The following figure, Fig. 3.5, visualises the cut lines with their coordinates on the MBB beam. The
MBB beam is introduced in more detail in section 5.1. The cut line on the figure is not optimized, it is
manually added to have a visual idea of how it will work.

Figure 3.5: Cut line visualisation on the MBB beam

As mentioned, changing the x coordinates will optimise the cut line. In the case of a single cut line,
the values to optimize are 𝑥𝑐𝑢𝑡1 and 𝑥𝑐𝑢𝑡2 .
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𝑦𝑐𝑢𝑡 is a parameter chosen by the user and not optimized. The thickness of the cut line is determined
by the variable 𝑏𝑐𝑢𝑡. This is also determined by the user and not optimized. As in the previous parts,
the inputs and outputs for the optimization method will range from 0-1. Therefore, the coordinates of
the cut lines are:

𝑥𝑐𝑢𝑡𝑖 = 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 ⋅ 𝑐𝑥 (3.14)

where 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 are the optimized values and as mentioned, they have a range from 0-1. However, 𝑥𝑐𝑢𝑡𝑖
will be the values used in the following formulation.

The formulation used is the same as before. The topology description function, as shown in Eq. 3.5
is (𝜙(�̄�, �̄�)), where the local coordinates �̄�, �̄� are calculated in Eq.3.6. In this equation, the values of x
and y used are the mid-points of the cut line. The mid points are presented by 𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑 , for the 𝑙𝑡ℎ cut
line. Each cut line has two coordinates. For example, a single cut line will have a mid point 𝑥𝑐𝑢𝑡1𝑚𝑖𝑑
and the x coordinates 𝑥𝑐𝑢𝑡1 and 𝑥𝑐𝑢𝑡2 . The mid-points of the cut lines are calculated with the following
equations:

𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑 =
𝑥𝑐𝑢𝑡𝑖 + 𝑥𝑐𝑢𝑡𝑖+1

2 𝑦𝑐𝑢𝑡𝑙𝑚𝑖𝑑 =
𝑦𝑐𝑢𝑡𝑖 + 𝑦𝑐𝑢𝑡𝑖+1

2 (𝑖 = 2𝑙 − 1) (3.15)

The angle of rotation 𝜃𝑐𝑢𝑡𝑙 for the 𝑙𝑡ℎ line will be the same as the angle 𝜃𝑐𝑘 as there will only be
one connector per cut line, therefore 𝜃𝑐𝑢𝑡𝑙 = 𝜃𝑐𝑘 as 𝑙 = 𝑘. From now, the angle of rotation notation for
the cut line is 𝜃𝑐𝑘 .The rotation angle is used in Eq.3.6, is determined by the endpoints of the cut line,
therefore, is dependent on the values 𝑥𝑐𝑢𝑡𝑖 and 𝑥𝑐𝑢𝑡𝑖+1 for 𝑖 = 2𝑘−1 . It is calculated with the following
equation:

𝜃𝑐𝑘 = 𝑡𝑎𝑛−1 (
𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖
𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖

) (𝑖 = 2𝑘 − 1) (3.16)

For the TDF of the cut line (𝜙𝑐𝑢𝑡𝑙 ) the values of 𝑎𝑐𝑢𝑡𝑙 and 𝑏𝑐𝑢𝑡 are needed. As mentioned, the
𝑏𝑐𝑢𝑡 value is constant in the optimization, this value is constant as it is the thickness of the cut line,
which is used to ensure the structure is divided. However, the value of 𝑎𝑐𝑢𝑡𝑙 is also determined by
the endpoints of the cut. The value of 𝑎𝑐𝑢𝑡𝑙 determines the vertical length from the mid-point to the
endpoints. Therefore, for each 𝑙𝑡ℎ cut line it differs.

𝑎𝑐𝑢𝑡𝑙 =
√(𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖)

2 + (𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖)
2

2 (𝑖 = 2𝑙 − 1) (3.17)

As with the connector and the voids, the cut line has to be converted from a level set function into a
0-1 field to combine it on the equation of the interpolated elastic modulus. Therefore, 𝜙𝑐𝑢𝑡𝑙 are projected
onto a density field 𝛾𝑒 using the following smoothed Heaviside function:

𝛾𝑒 =
𝑁𝑙
∏
𝑙=1

1
1 + 𝑒𝑥𝑝(−𝛽𝜙𝑐𝑢𝑡𝑙(𝑥𝑒))

(3.18)

where 𝜙𝑐𝑢𝑡𝑙 is the TDF corresponding to the 𝑙𝑡ℎ cut line and 𝑁𝑙 is the number of cut lines. 𝜙𝑐𝑢𝑡𝑙(𝑥𝑒)
represents the value of the topology description function calculated at the centroid of element e.

The 𝛾𝑒 is obtained separately and not in the same function as 𝜁𝑒 due to the equation of the material
interpolation (𝐸𝑒). The void 𝜁𝑒 multiplies the density (𝜌𝑒) and the connector 𝜂𝑒 in the equation. Therefore
it overwrites both of them, leading to the cut over the connector. A new equation for the 𝐸𝑒 is used to
avoid this problem where the connector is over the cut line.

3.6.0.1 Material interpolation scheme

In this part, the equation for 𝐸𝑒 in Eq. 3.13 is changed to add 𝛾𝑒. A new equation for the 𝐸𝑒 is used
where the connector is over the cut line.
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𝐸𝑒(𝜌𝑒 , 𝜂𝑒 , 𝜁𝑒 , 𝛾𝑒) = Emin + 𝜁𝑒𝑝3 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1/𝑞

(3.19)

𝜖 is a constant value to avoid the undercuts. Due to the p-norm, small values tend to give an error
in the calculation of the sensitives of the objective function. The term 𝜖 is added, with a value of 1e-10,
which will give a minimum value and avoid low values when multiplying the density and the cut line
field. There is an addition of a minimum value for the Young’s modulus (𝐸𝑚𝑖𝑛). To prevent the stiffness
matrix from becoming singular, void areas are given an extremely low stiffness 𝐸𝑚𝑖𝑛.

3.7. Modelling of the combination of the cut the connectors
In the previous sections, the modelling of cut lines, components and voids are introduced. This part
explains how the cut line and the connector with the voids are combined and their dependencies.

3.7.1. Modelling of the cut line with movable connector
The position of the connector must lie in the cut line. Previously, when modelling the positioning
of the connector, the variables of 𝑐𝑘 were optimized, assuming 𝑐𝑘 represented the design variable
𝑐𝑘 = {𝑥𝑐𝑜𝑛𝑘 , 𝑦𝑐𝑜𝑛𝑘 , 𝜃𝑐𝑜𝑛𝑘} for the 𝑘𝑡ℎ connector. However, as the connector is now dependent on the
coordinates of the cut line, the optimized variables will be different.

A new variable is introduced. This variable ensures that the 𝑥𝑐𝑜𝑛𝑘 and 𝑦𝑐𝑜𝑛𝑘 are in the cut line. As
the connector will have the same orientation as the cut line, the 𝜃𝑐𝑜𝑛𝑘 will be the same as 𝜃𝑐𝑢𝑡𝑙 in Eq.
B.47, which both are equal to 𝜃𝑐𝑘 . The variable to ensure the connector position on the cut line is 𝑠𝑐𝑜𝑛𝑘 ,
introduced in Eq. 3.20.

The new equations are:

𝑥𝑐𝑜𝑛𝑘 = 𝑥𝑐𝑢𝑡𝑖 + 𝑠𝑐𝑜𝑛𝑘(𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖), 𝑦𝑐𝑜𝑛𝑘 = 𝑦𝑐𝑢𝑡𝑖 + 𝑠𝑐𝑜𝑛𝑘(𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖) (3.20)

for 𝑖 = 2𝑘 − 1 for the 𝑘𝑡ℎ connector.

This has a limit of 0-1. Therefore, when 𝑠𝑐𝑜𝑛𝑘 is 0, the connector will be at 𝑥𝑐𝑜𝑛𝑖 , and when it is
1, then the connector will be at 𝑥𝑐𝑜𝑛𝑖+1 for 𝑖 = 2𝑘 − 1. As mentioned, the decision was made to have
a single connector in each cut line, the more connector needed, the more cut lines could be added,
also allows each connector to have a different orientation. As there is one connector in each cut line,
the number of cut lines, 𝑙, is the same as the number of connector 𝑘. The number of voids is double.
For the first cut line, when the cut is 𝑙 = 1, the x coordinates of the cut lines is 𝑥𝑐𝑢𝑡1 and 𝑥𝑐𝑢𝑡2 , the
component number is 𝑘 = 1, and the voids are 𝑡 = 1 and 𝑡 = 2. Therefore, 𝑘 = 𝑙, and the relationship
between 𝑘 and cut lines x coordinates and the voids number for each component is 𝑖 = 2𝑘 − 1 and
𝑡 = 2𝑘 − 1.

3.7.2. Addition of the voids
The position of the void depends on the position of the connector. The dependency of the voids shown
in Fig. 3.3 and Eq. 3.11 has to be changed due to the connectors are now dependant on the cut line.
The new dependency is shown in Fig. 3.6. The main difference is the change between 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛.
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Figure 3.6: Visualization of how the voids are dependent on the connector

If Fig 3.6 is compared to Fig. 3.3, the relation of the voids with the angle 𝜃𝑐𝑘 has changed. Now, it
is the angle of the cut line concerning the horizontal axis. The distance from the connector’s mid-point
to the void’s mid-point is now calculated with the horizontal distance of the solid and the void. The
variable used is the 𝑏𝑐𝑜𝑛 and 𝑏𝑣𝑜𝑖𝑑 instead of the values of 𝑎𝑐𝑜𝑛 and 𝑎𝑐𝑢𝑡𝑙 , as the length 𝑎𝑐𝑜𝑛 is parallel
to the cut line. As the orientation of the voids are still the same as the connector, 𝜃𝑣𝑜𝑖𝑑𝑡 = 𝜃𝑣𝑜𝑖𝑑𝑡+1 = 𝜃𝑐𝑘
for 𝑡 = 2𝑘 − 1. The new equations for the mid-point of the voids are:

𝑥𝑣𝑜𝑖𝑑𝑡 = 𝑥𝑐𝑜𝑛𝑘 + ((𝑏𝑐𝑜𝑛 + 𝑏𝑣𝑜𝑖𝑑) ⋅ 𝑐𝑜𝑠(−𝜃𝑐𝑘)), 𝑥𝑣𝑜𝑖𝑑𝑡+1 = 𝑥𝑐𝑜𝑛𝑘 − ((𝑏𝑐𝑜𝑛 + 𝑏𝑣𝑜𝑖𝑑) ⋅ 𝑐𝑜𝑠(−𝜃𝑐𝑘))
𝑦𝑣𝑜𝑖𝑑𝑡 = 𝑦𝑐𝑜𝑛𝑘 + ((𝑏𝑐𝑜𝑛 + 𝑏𝑣𝑜𝑖𝑑) ⋅ 𝑠𝑖𝑛(−𝜃𝑐𝑘)), 𝑦𝑣𝑜𝑖𝑑𝑡+1 = 𝑦𝑐𝑜𝑛𝑘 − ((𝑏𝑐𝑜𝑛 + 𝑏𝑣𝑜𝑖𝑑) ⋅ 𝑠𝑖𝑛(−𝜃𝑐𝑘))

(3.21)

for 𝑡 = 2𝑘 − 1.

3.7.2.1 Material interpolation scheme

As there is no new variable introduced from the last equation of 𝐸𝑒, the equation for the interpolated
elastic modulus stays the same as in Eq. 3.19



4
Optimization problem and sensitivity

analysis
This chapter shows the optimization problem and the sensitivity analysis needed for the optimizations.

All the optimizations are performed on the classic example of topology optimization, the MBB beam,
which is explained in Section 5.1. Therefore, the topology optimization code combines the 88-line code
for MATLAB from Andreassen et al., 2011 and the 99-line code from Sigmund, 2001. The density filter is
used from the 88-line code, however, in both of these papers, the method used to optimize the structure
is the Optimality Criteria (OC). Furthermore, this is modified to use the Method of Moving Asymptotes
(MMA), which was first introduced by Svanberg, 1987. The MMA method has a better performance
with multi-constrained and density-based topology optimizations.

4.1. Optimization problem
The position of the cut line, the position of the connectors on the cut line and the overall structure need
to be optimised with the aim of maximizing the stiffness of the overall system. For this purpose, the
structure’s compliance is minimized. The formula for the layout optimization problem is the following:

𝐹𝑖𝑛𝑑 ∶

⎧
⎪

⎨
⎪
⎩

𝜌 = (𝜌1, 𝜌2, ..., 𝜌𝑁𝑒)

s𝑐𝑜𝑛𝑘 = (s𝑐𝑜𝑛1 , s𝑐𝑜𝑛2 , ..., s𝑐𝑜𝑛𝑁)

x𝑐𝑢𝑡𝑖 = (x𝑐𝑢𝑡1 ,x𝑐𝑢𝑡2 , ...,x𝑐𝑢𝑡𝑛𝑐+1)

𝑚𝑖𝑛 ∶ 𝐽 = F𝑇U (4.1)

𝑆.𝑡.

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

KU = F

𝑔𝑣 = ∑
𝑁𝑒
𝑒=1 𝐸𝑒𝑉𝑒 − 𝑓1𝑉𝑜 ⩽ 0

𝑔𝑐 = ∑
𝑁𝑒
𝑒=1(1 − 𝜁𝑒)𝑉𝑒 − (𝑉𝑜 − ∑

𝑐=1
𝑁𝑐 𝑉𝑐) ⩽ 0

0 ⩽ 𝜌𝑒 ⩽ 1

0 ⩽ s𝑐𝑜𝑛 ⩽ 1

0 ⩽ x𝑐𝑢𝑡𝑖𝑛 ⩽ 1

(4.2)

where the objective function J is the following:

15
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𝐽 = U𝑇KU =
𝑁𝑒
∑
𝑒=1

𝐸𝑒u𝑇𝑒k0u𝑒 (4.3)

where K is the global stiffness matrix, F is the load vector, and U is the displacement vector. u𝑒 is
the element displacement vector. 𝑁𝑒 is the number of elements used to discretize the analysis domain.
𝐸𝑒 is the interpolated elasticity modulus determined by 3.19.

In Eq. 4.2, there are two constraints. 𝑔𝑣 is the volume constraint limiting the amount of material
used. 𝑉𝑒 is the volume of the element e, and 𝑉0 is the volume of the entire design domain. 𝑓1 is the
volume fraction ratio of the available material in the design domain. In this case, the considered volume
is the entire structure, including the voids, cut lines and connectors. It must be considered to ensure
a connection between the structure part optimized by the density and the connectors. There is no
penalisation on the volume constraint due to not being effective in preventing intermediate designs.
The volume constraint is the following:

𝑔𝑣 = Emin + 𝜁𝑒 ((𝜖 + Veo 𝜌𝑒 𝛾𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1/𝑞

(4.4)

The constraint 𝑔𝑐 is the non-overlap constraint for avoiding overlaps between the connectors and
between each connector and the design domain boundary. 𝑉𝑐 is the volume of the 𝑐𝑡ℎ connector. This
is not the same as the sum of 𝜂𝑒; if not, the overlap constraint will not work. It is equal to the sum of
each connector separately. Here the contribution of the void is not added as 𝜁 does not contribute to
the overlap constraint 𝑔𝑐.

4.2. Sensitivity Analysis
Sensitivity analysis discusses “how” and “how much” changes in the parameters of an optimization
problem modify the objective function value and the point where the optimum is attained (Castillo et
al., 2008). This section introduces the sensitivity analysis for the different design variables and the
constraints.

The method used for the optimization is the MMA, which is a gradient-based algorithm. The sen-
sitivities checks of these cases are in Appendix. A.2. The forward finite element method was used
to check the derivations for all the numerical sensitivities. Some optimizations were performed with a
tensile bar to try and optimize where there are fewer possible optimal solutions.

4.2.1. Dependencies
The dependencies are shown here for a better understanding of the sensitivity analysis.

𝐽(𝐸𝑒(𝜌, 𝜂𝑒(𝜙𝑐𝑜𝑛), 𝜁𝑒(𝜙𝑣𝑜𝑖𝑑), 𝛾𝑒(𝜙𝑐𝑢𝑡))) (4.5)

where:

𝜙𝑐𝑜𝑛(𝑥𝑐𝑜𝑛(𝑠𝑐𝑜𝑛(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛))), 𝑦𝑐𝑜𝑛(𝑠𝑐𝑜𝑛(𝑦𝑐𝑢𝑡(𝑦𝑐𝑢𝑡𝑖𝑛))), 𝑎𝑐𝑜𝑛 , 𝑏𝑐𝑜𝑛 , 𝜃𝑐(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛))) (4.6)

𝜙𝑣𝑜𝑖𝑑(𝑥𝑣𝑜𝑖𝑑(𝑥𝑐𝑜𝑛(𝑠𝑐𝑜𝑛(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛)))), 𝑦𝑣𝑜𝑖𝑑(𝑦𝑣𝑜𝑖𝑑(𝑦𝑐𝑜𝑛(𝑠𝑐𝑜𝑛(𝑦𝑐𝑢𝑡(𝑦𝑐𝑢𝑡𝑖𝑛)))),
𝜃𝑐(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛))), 𝑎𝑣𝑜𝑖𝑑 , 𝑏𝑣𝑜𝑖𝑑) (4.7)

𝜙𝑐𝑢𝑡(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛), 𝑦𝑐𝑢𝑡(𝑦𝑐𝑢𝑡𝑖𝑛), 𝑎𝑐𝑢𝑡(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛), 𝑏𝑐𝑢𝑡 , 𝜃𝑐(𝑥𝑐𝑢𝑡(𝑥𝑐𝑢𝑡𝑖𝑛)) (4.8)

A visualization of the dependencies is shown in Fig. 4.1, the variables with a black box are not de-
pendent on anything else, the coloured ones are dependent on the variables which the same coloured
arrow leads to.
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Figure 4.1: Flow chart of the visualization of the dependencies

4.2.2. Sensitivity analysis of the objective function with respect to the element
density variable

The design sensitivities of the objective function with respect to the element relative density variable
𝜌𝑒 can be written using the adjoint method as follows:

𝛿𝐽
𝛿𝜌𝑒

= −𝛿𝐸𝑒𝛿𝜌𝑒
⋅ u𝑇𝑒K𝑜u𝑒 (4.9)

The result of differentiating the equation 𝐸𝑒 (Eq. 3.19) with respect to 𝜌𝑒 is equal to:

𝛿𝐸𝑒
𝛿𝜌𝑒

= Eo 𝑝4 𝜌𝑝1𝑒 𝜁𝑒𝑝3 𝛾𝑒𝑝4−1 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1
𝑞−1 (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞−1 (4.10)

4.2.3. Sensitivity analysis of the objective function with respect to the cut line
When the cut lines move, the connector and the holes linked to that cut line are forced to move, there-
fore, they have a contribution to the sensitivity of that cut line, this is due to the connector and the voids’
positions being dependent on the position of the cut line. The dependencies are shown in the section
4.2.1.

When there are different cut lines, they are connected. Therefore, the movement of one will influ-
ence the other cut line. The sensitivity on 𝑥𝑐𝑢𝑡𝑖 , where two lines have a common point, both cut lines’
contribution needs to be added. For example, in Fig. 3.5, for 𝑥𝑐𝑢𝑡2 , the sensitivities of line one and line
two need to be added. This is added into Eq. 4.11 with the summation ∑𝑖𝑙=𝑖−1. This means for the 𝑖𝑡ℎ
𝑥𝑐𝑢𝑡𝑖 , the contribution of the 𝑙 = 𝑖 − 1 and 𝑙 = 𝑖 are added, where 𝑙 is the number of the cut line. For
the initial point, 𝑥𝑐𝑢𝑡1 and the last point, 𝑥𝑐𝑢𝑡𝑙+1 , the contribution is only a single line.
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The design sensitivities of the objective function concerning the cut lines are:

𝛿𝐽
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(4.11)

As mentioned, the connectors and holes are forced to move when the cut lines move. They have a
contribution to the sensitivity calculated for the cut lines. The second sum in Eq. 4.11 is the contribution
of the connector, and the last sum is the contribution of the void. It is necessary to add the contribution
of both voids on each cut line.

The gradient of the objective function over the cut lines field 𝛾𝑒, the connectors field 𝜂𝑒 and the void’s
field 𝜁𝑒 are:

𝛿𝐽
𝛿𝛾𝑒

= −𝛿𝐸𝑒𝛿𝛾𝑒
⋅ u𝑇𝑒K𝑜u𝑒 ,

𝛿𝐽
𝛿𝜂𝑒

= −𝛿𝐸𝑒𝛿𝜂𝑒
⋅ u𝑇𝑒K𝑜u𝑒 ,

𝛿𝐽
𝛿𝜁𝑒

= −𝛿𝐸𝑒𝛿𝜁𝑒
⋅ u𝑇𝑒K𝑜u𝑒 (4.12)

Where the derivative of 𝐸𝑒 with respect to the cut line field 𝛾𝑒 is the following:

𝛿𝐸𝑒
𝛿𝛾𝑒

= Eo 𝑝4 𝜌𝑝1𝑒 𝜁𝑒𝑝3 𝛾𝑒𝑝4−1 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1
𝑞−1 (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞−1 (4.13)

and where Eq. 3.19 is derived over the connector’s field 𝜂𝑒:

𝛿𝐸𝑒
𝛿𝜂𝑒

= Ec 𝜂𝑒𝑝2−1 𝑝2 𝜁𝑒𝑝3 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1
𝑞−1 (Ec 𝜂𝑒𝑝2)

𝑞−1 (4.14)

and where the derivative of 𝐸𝑒 with respect to the voids field 𝜁𝑒 is the following:

𝛿𝐸𝑒
𝛿𝜁𝑒

= 𝑝3 𝜁𝑒𝑝3−1 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1/𝑞

(4.15)

In Eq. 4.11, the gradient of the cut lines field 𝛾𝑒 over the input value for the cut line 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 :

𝛿𝛾𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

= 𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(4.16)

From Eq. 4.16, the derivative of 𝜁𝑐𝑢𝑡, on Eq. 3.18 with respect to the topology description function
for the cut 𝜙𝑐𝑢𝑡𝑙 is:

𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

= 𝛾𝑒
𝛽𝑒𝑥𝑝(−𝛽𝜙𝑐𝑢𝑡𝑙)

(1 + 𝑒𝑥𝑝(−𝛽𝜙𝑐𝑢𝑡𝑙))
(4.17)

The second term in Eq. 4.16, is the derivation of Eq. 3.5 with respect to the cut coordinates. Where
𝑖 = 𝑘 due to the design decision of having a single component per cut line:

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑖

∑
𝑙=𝑖−1

(
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑

𝛿𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝜃𝑐𝑘

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑎𝑐𝑢𝑡𝑙

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

) (4.18)

Where the topology description function with respect to the mid x coordinates of the cut line:

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥 = 6( �̄�𝑎)

5 −𝑐𝑜𝑠𝜃𝑐𝑘
𝑎 + 6(�̄�𝑏)

5 𝑠𝑖𝑛𝜃𝑐𝑘
𝑏 (𝑥 = 𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑 ) (4.19)

for 𝑎 = 𝑎𝑐𝑢𝑡𝑙 and 𝑏 = 𝑏𝑐𝑢𝑡. The differentiation of the mid x coordinate position of the cut with the x
coordinate is:
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𝛿𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑
𝛿𝑥𝑐𝑢𝑡𝑖

= 0.5 (𝑖 = 𝑙) (4.20)

The derivative of the mid-point is the same for the cut’s top and bottom x coordinates.
The topology description function with respect to the angle is:

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝜃 = 6( �̄�𝑎)

5 −𝑠𝑖𝑛𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑐𝑜𝑠𝜃𝑐𝑘(𝑦 − 𝑦𝑜)
𝑎

+6(�̄�𝑏)
5 −𝑐𝑜𝑠𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑠𝑖𝑛𝜃𝑐𝑘(𝑦 − 𝑦𝑜)

𝑏

(4.21)

for 𝑎 = 𝑎𝑐𝑢𝑡𝑙 and 𝑏 = 𝑏𝑐𝑢𝑡
The angle in Eq.3.16 with respect to the top and bottom x coordinates of a single cut is:

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖

(𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖)2 + (𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖)2
(for 𝑖 = 𝑘)

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= −
𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖−1

(𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖−1)2 + (𝑥𝑐𝑢𝑡𝑖 − 𝑥𝑐𝑢𝑡𝑖−1)2
(for 𝑖 = 𝑘 + 1)

(4.22)

The first term of the last sum in Eq. 4.18, is the length from the mid-point to the cut coordinates
𝑎𝑐𝑢𝑡𝑙 :

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑎𝑐𝑢𝑡𝑙

= − 6 �̄�
6

𝑎7𝑐𝑢𝑡𝑙
(4.23)

The derivative of 𝑎𝑐𝑢𝑡𝑙 is different with respect to the bottom (𝑖 = 𝑙) and top (𝑖 = 𝑙 + 1) x of the cut
line.

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

=
2𝑥𝑐𝑢𝑡𝑖 − 2𝑥𝑐𝑢𝑡𝑖+1

4√(𝑥𝑐𝑢𝑡𝑖 − 𝑥𝑐𝑢𝑡𝑖+1)
2 + (𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖+1)

2
(for 𝑖 = 𝑙)

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

= −
2𝑥𝑐𝑢𝑡𝑖−1 − 2𝑥𝑐𝑢𝑡𝑖

4√(𝑥𝑐𝑢𝑡𝑖−1 − 𝑥𝑐𝑢𝑡𝑖)
2 + (𝑦𝑐𝑢𝑡𝑖−1 − 𝑦𝑐𝑢𝑡𝑖)

2
(for 𝑖 = 𝑙 + 1)

(4.24)

The last term in Eq. 4.16, is the derivative of the actual value with respect to the input one. The
scaling:

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

= 𝑐𝑥 (4.25)

In Eq. 4.11, the gradient of the cut lines field 𝛾𝑒 over the input value for the cut line 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 :

𝛿𝜂𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

= 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(4.26)

There is only one connector per cut line, then, for each cut line, the only connector contributing is
the one on it, therefore, 𝑘 = 𝑖 for the index.

The second term is the derivative of 𝜂𝑒 with respect to 𝜙𝑐𝑜𝑛𝑖 . Giving the following equation:

𝛿𝜂𝑒
𝛿𝜙 = −(1 − 𝜂𝑒)

𝛽𝑒𝑥𝑝(−𝛽𝜙)
(1 + 𝑒𝑥𝑝(−𝛽𝜙)) (𝜙 = 𝜙𝑣𝑜𝑖𝑑𝑡) (4.27)

As the cut line moves, the connector is forced to, as it has to be on the cut line. Therefore, the
x coordinate and the connector’s angle, which is the same as the cut line, contribute to the cut line’s
sensitivities.
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𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑖

∑
𝑙=𝑖−1

(
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛

𝛿𝑥𝑐𝑜𝑛
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑘

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

) (4.28)

Where the derivative of 𝜙𝑐𝑜𝑛𝑖 with respect to 𝑥𝑐𝑢𝑡𝑖 is found in Eq. 4.19, when 𝑥 = 𝑥𝑐𝑢𝑡𝑖 .
The differentiation of the connector’s x coordinate over the cut line x coordinate is:

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 1 − 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘)
𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘 + 1) (4.29)

The last term in the connector’s contribution in Eq.4.11 is the same as calculated in Eq. B.46

In Eq. 4.11, the gradient of the cut lines field 𝛾𝑒 over the input value for the cut line 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 :

𝛿𝜁𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

= 𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(4.30)

The derivative of 𝜁𝑒 over 𝜙𝑣𝑜𝑖𝑑𝑡 in Eq. 4.30, is equivalent to Eq. 4.17. However, using the values of
the voids instead of the cut lines.

The second term in Eq. 4.30, is the differentiation of 𝜙𝑣𝑜𝑖𝑑𝑡 over the 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 . It is calculated in the
following equation:

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑖

∑
𝑙=𝑖−1

2𝑙

∑
𝑡=2𝑙−1

(
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑣𝑜𝑖𝑑𝑡

𝛿𝑥𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑐𝑜𝑛𝑘

𝛿𝑥𝑘𝑐𝑜𝑛
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑦𝑣𝑜𝑖𝑑𝑡

𝛿𝑦𝑣𝑜𝑖𝑑𝑡
𝛿𝑦𝑐𝑜𝑛𝑘

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝜃𝑣𝑜𝑖𝑑𝑡

𝛿𝜃𝑣𝑜𝑖𝑑𝑡
𝛿𝜃𝑐𝑜𝑛𝑘

𝛿𝜃𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

)

(4.31)

There are two voids, one on each side of the connector, both contribute to the movement of that cut
line. Therefore, both contribution needs to be added for each cut line.

Where the first term of each chain rule, 𝜙𝑣𝑜𝑖𝑑𝑡 , is derived over the coordinates of the connectors.
The gradient of 𝜙𝑣𝑜𝑖𝑑𝑡 respect to 𝑥𝑣𝑜𝑖𝑑𝑡 is equivalent to the one calculated on 4.19, where 𝑎 = 𝑎𝑣𝑜𝑖𝑑
and 𝑏 = 𝑏𝑣𝑜𝑖𝑑 .

The term
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝜃𝑣𝑜𝑖𝑑𝑡

is also equivalent to Eq. B.42. With 𝑎 = 𝑎𝑣𝑜𝑖𝑑 and 𝑏 = 𝑏𝑣𝑜𝑖𝑑.
The differentiation of 𝜙𝑣𝑜𝑖𝑑𝑡 over the 𝑦𝑣𝑜𝑖𝑑𝑡 is the following:

𝜙𝑐𝑜𝑛𝑘
𝛿𝑦 = 6( �̄�𝑎)

5 −𝑠𝑖𝑛𝜃𝑐𝑘
𝑎 + 6(�̄�𝑏)

5 𝑐𝑜𝑠𝜃𝑐𝑘
𝑏 (𝑦 = 𝑦𝑣𝑜𝑖𝑑𝑡) (4.32)

where 𝑎 = 𝑎𝑣𝑜𝑖𝑑 and 𝑏 = 𝑏𝑣𝑜𝑖𝑑.
The second term of each chain rule in Eq. 4.31 is the gradient of the coordinates of the voids with

respect to the coordinates of the connector, which are the following:
𝛿𝑥𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑐𝑜𝑛𝑘

= 1,
𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑦𝑐𝑜𝑛𝑘

= 1,
𝛿𝜃𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑜𝑛𝑘

= 1 (4.33)

The third term of each chain rule is the gradient of the coordinates of the connectors with respect
to their position on the cut line.

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 1 − 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘)
𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘 + 1) (4.34)

And for the y values :

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 1 − 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘)
𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘 + 1) (4.35)

The last term of the voids’ contribution on Eq. 4.31 is the same as in the previous ones, found in
Eq. B.46.

The sum of the sensitivities of both voids, one on each side of the connector, must be added.
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4.2.4. Sensitivity analysis of the objective function with respect to the connector

The voids have a contribution to the cut line, and they also have a contribution to the connector
movement over the cut line. The sensitivity analysis of the objective function with respect to the con-
nector is shown below:

𝛿𝐽
𝛿𝑠𝑘𝑐𝑜𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑘𝑐𝑜𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑠𝑘𝑐𝑜𝑛

(4.36)

In the first chain rule, the first term is the gradient of the objective function over 𝜂𝑒. This has been
calculated on Eq. B.8 and Eq. 4.14. The second term, the differentiation of 𝜂𝑒 over 𝜙𝑐𝑜𝑛𝑘 is found on
Eq. B.10, for 𝜙 = 𝜙𝑐𝑜𝑛𝑘 . The last term of the first sum is

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑘𝑐𝑜𝑛

. Which is the sum of the contributions
of the different variables of 𝑠𝑐𝑜𝑛𝑘 .

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

=
𝑁𝑒
∑
𝑒=1

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛𝑘

𝛿𝑥𝑘𝑐𝑜𝑛
𝛿𝑠𝑐𝑜𝑛𝑘

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑦𝑐𝑜𝑛𝑘

𝛿𝑦𝑘𝑐𝑜𝑛
𝛿𝑠𝑐𝑜𝑛𝑘

(4.37)

Where the first term in both sums is previously calculated on Eq. 4.19 for 𝑥 = 𝑥𝑐𝑜𝑛 and Eq. 4.32 for
𝑦 = 𝑦𝑐𝑜𝑛. There is no contribution of the angle, as it’s not optimized and is the same as in the cut line.

The derivative of 𝑥𝑐𝑜𝑛𝑘 respect to 𝑠𝑐𝑜𝑛𝑘 is equal to:

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

= 𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖 (4.38)

for i = k
and the derivative of 𝑦𝑐𝑜𝑛𝑘 respect to 𝑠𝑐𝑜𝑛𝑘 is equal to:

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

= 𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖 (4.39)

for i = k
The second sum is the contribution of the voids. As in the other case, the contribution of both voids

must be added.

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑠𝑘𝑐𝑜𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑣𝑜𝑖𝑑𝑡

𝛿𝑥𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑘𝑐𝑜𝑛

𝛿𝑥𝑘𝑐𝑜𝑛
𝛿𝑠𝑘𝑐𝑜𝑛

+
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑦𝑣𝑜𝑖𝑑𝑡

𝛿𝑦𝑣𝑜𝑖𝑑𝑡
𝛿𝑦𝑘𝑐𝑜𝑛

𝛿𝑦𝑘𝑐𝑜𝑛
𝛿𝑠𝑘𝑐𝑜𝑛

(4.40)

The first two terms on both sums are the same as calculated on the contribution of the voids in the
cut line on Eq. 4.31. However, in this case, there is no contribution of the angle. The last term in both
sums is the differentiation of the x and y coordinate over 𝑠𝑐𝑜𝑛𝑘 , which is the same as in Eq. 4.38 for the
x coordinate and in Eq. 4.39 for the y coordinate.

4.2.5. Sensitivity analysis of volume constraint with respect to the element den-
sity variable

Here the volume constraint 𝑔𝑣 is differentiated with respect to the density as follows:

𝛿𝑔𝑣
𝛿𝜌𝑒

= Veo 𝜌𝑒 𝜁𝑒 (𝜖 + Veo 𝜌𝑒 𝛾𝑒)
𝑞−1 ((𝜖 + Veo 𝜌𝑒 𝛾𝑒)

𝑞 + (Vec 𝜂𝑒)
𝑞)

1
𝑞−1 (4.41)
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4.2.6. The remaining sensitivity analysis

The previous sensitivity analysis shows the main idea of how the contributions are added and how
the equations are obtained. There is a volume constraint as well as a non-overlap constraint. These
sensitivities are also needed for the optimizations. However, they are calculated with the same ap-
proach as the ones explained above. These sensitivities are detailed in the Appendix. B.4.3.1. In
the appendix, the sensitivity analysis of the volume constraint with respect to the cut line, the sensi-
tivity analysis of the volume constraint with respect to the connector and the sensitivity analysis of the
non-overlap constraint with respect to the connector are shown.

4.2.7. Simplified optimization problem and sensitivities
The optimization can be simplified into different separate optimizations. The optimization the only a
connector is explained in Appendix. B.1, and the optimization with the voids is found in Appendix B.2.
For the cut lines, the optimization of a simple cut line and for multiple cut lines in found in Appendix
B.3. In Appendix B.4.1, the optimization problem with the cut line and ca connector in the middle is
found and in Appendix. B.4.2 the one for the single cut line connector optimization. The optimization
problem for these parts also includes the sensitivity analysis.

4.3. Stopping criteria
In some optimizations, the optimization process is terminated when the following convergence criteria
are satisfied:

‖𝜌𝑘 − 𝜌𝑘−1‖
‖𝜌𝑘‖2

≤ 𝜔 (4.42)

where 𝜌𝑘 and 𝜌𝑘−1 represent element relative density vectors for the 𝑘𝑡ℎ and 𝑘 − 1𝑡ℎ iterations in
the optimization process. 𝜔 is an allowable convergence error. This is set to 𝜔 = 0.1%.

With the addition of the connectors, voids and cut lines, the convergence on Eq. 4.42 is not met
when 𝜀 is 0.05 as used in other cases. This is due to the density changing with a minimum oscillation
movement of the connector and the cut line. If the convergence condition cannot be met, the maximum
number of iterations allowed is set to 150 or 200. In literature, this problem is also found, for example,
on Wang et al., 2020 and Pollini and Amir, 2020, which have a similar method, and they create a set
of maximum number of iterations as the stopping method.

Other stopping criteria that can be used also involve the convergence criteria. However, this time
not with the density field, but with the objective function. The change is calculated with the following
equation:

‖𝐽𝑘 − 𝐽𝑘−1‖ ≤ 𝜔𝐽 (4.43)

where 𝐽𝑘 and 𝐽𝑘−1 represent element relative density vectors for the 𝑘𝑡ℎ and 𝑘−1𝑡ℎ iterations in the
optimization process. 𝜔𝐽 is an allowable convergence error. This is set to 𝜔𝐽 = 0.05. The difference
between stopping the optimization by the change of J and by the maximum number of iterations is
shown in the stopping criteria section of the results, in Section. 5.6.

4.4. Overview of the optimization process
To have an overview of the optimization progress, a flowchart is shown in Fig. 4.2. The flow chart of the
numerical implementation for solving the simultaneous optimization of multi-part structure topologies
and connection points problem, subject to the volume constraint and non-overlap constraints.
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5
Results

In this chapter, the results of the optimization explained above are shown. The first set of optimizations
is made to check the influence of the connector with voids, where different voids sizes and starting
positions are shown. Following the structure in Chapter 3, the next sets of results shown are the
optimization of the structure with cut lines, followed by the complete optimization. The complete opti-
mization consists of optimizing the structure, which is entirely cut, and the cut line positioning with its
respective connectors and voids. The positioning of the connectors on the cut line is also optimized.
Then, a parameter study is done, where the influence of the initial starting positions and parameters
is observed. Regarding the stopping criteria of the simulations, the first two sets of results are due to
the stopping criteria in Eq. 4.42. However, a set number of interactions is the stopping method for the
complete optimization and parameter study. This will be discussed further later in this chapter.

In Appendix A.1, the initial challenge obtained when running the simulations can be appreciated,
changing from the sensitivity filter to the density filter with the initial equation for thematerial interpolation
scheme (𝐸𝑒) created a blurry part around the connector in the structure, meaning there was no solid
connection between them. Furthermore, with the change of the volume constraint and a new equation
of 𝐸𝑒, the problem was solved.

In this chapter, only the final results are shown. However, more simplified problems were optimized
for each section, and more tests of individual aspects can be found in Appendix C. All the numerical
results are shown in tables in Appendix E. The initial and final layouts are provided for each optimisation,
following the initial idea in Fig. 2.1. The connector will be shown in green, the voids in blue and the cut
line in red. The final compliance of the optimization is stated in the caption of the figures.

All the optimizations are performed using the MBB beam.

5.1. MBB-beam

The MBB beam is the fundamental geometry used in this research. The MBB is one of the most used
in topology optimization. Fig. 5.1a shows the full beam load cases. The beam is constrained on both
sides in the bottom corners, and a vertical load is applied in the middle of the beam. The lower right
constraint is only applied in the vertical axes.

25
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(a) The full MBB beam (b) Half MBB beam

Figure 5.1: The load cases for the MBB beam

As the beam is symmetric, it can be divided into two equal parts, as the second image in Fig.
5.1b. This reduces the computational costs. A new boundary is added when the beam is divided.
A displacement constraint as a boundary condition is added on the left side. The default boundary
condition of the beam is having a load vertically applied in the upper left corner with support in the
lower right corner. This half beam is used in all the optimization cases in this report. The H is equal
to Nely (number of elements in the y direction), and L/2 is equal to Nelx (number of elements in the x
direction).

5.2. Initial topology optimization, only the structure optimized
Firstly, before starting the optimizations with the addition of a connector, cut line or voids, the MMB
beam is optimized using the 99-line code from Sigmund, 2001, these optimizations are on Fig. 5.2.
These cases are optimized to compare them to the optimization results when connectors, voids and
cut lines are added.

The difference between the two optimizations in Fig. 5.2 is the number of elements. The first
is 60x20 elements, 60 on the x and 20 on the y, and the second is 120x40 elements. The initial
optimizations are solved with the 60x20 elements mesh, the 120x40 elements mesh is used in the
complete optimization as it is a finer mesh, which improves the accuracy of the results by reducing the
interpolation errors. The other parameter inputs are the same in both optimizations, 𝑟𝑚𝑖𝑛 = 1.5, 𝑝 = 3,
and the 𝑓1 is = 0.5. The compliance of the first case is 203.30, and the second is 193.12.

(a) 99 line code optimization with 60x20 elements - J=203.30 (b) 99 line code optimization with 120x40 elements - J=193.12

Figure 5.2: Examples obtained with the 99 line code optimization (Sigmund, 2001)

5.3. Optimization with a single connector with voids
Following the methodology explained in the previous section, the topology optimization of the MBB
beam is performed by adding a connector. In this case, the connector does not behave as a connecting
point as the structure is not divided yet, now, it is an additional connector that contributes to the structural
stiffness. The position of the connector will be optimized with the structure simultaneously. Table 5.1
shows the different values for the constant parameters.
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Constant Value Eq.
𝐸𝑜 1 3.19
𝐸𝑐 1 3.19
𝑉𝑒𝑐 1 4.4
𝑉𝑒𝑜 1 4.4
𝛽 8 3.9, 3.12 and 3.18
𝑝1, 𝑝2, 𝑝3 3 3.19
𝐸𝑚𝑖𝑛 1e-6 3.19
q 30 3.19
F 1 4.2

Table 5.1: Constant parameters in the optimization

In this section, examples of how the connector and the structure are optimized are given. The
optimization is done only with a single connector and the voids, one on each side of the connector.

Different optimization cases are performed to check how the connector with the holes behaves and
the influence on the final layout. In this section, three cases are shown. The optimizations’ initial and
final layouts are shown in the three cases. In each case, different void sizes are optimized, one with
a small size, one with a medium size and one with the void having the same height as the connector.
The small voids are 1x1 (𝑎𝑣𝑜𝑖𝑑 × 𝑏𝑣𝑜𝑖𝑑) element, the medium voids have a size of 2x1 elements, and
the large voids have a size of 2x2 elements.

(a) Case 1 - J = 216.87 (b) Case 2 - J = 218.38 (c) Case 3 - J = 218.53

Figure 5.3: Optimization of the structure with the connectors with voids

When optimizing a connector with voids, the expected results are to have the connector on a mem-
ber of the structure and the voids on a section where the density is zero to minimize compliance and
not to add extra material as it contributes to the overall volume of the structure and the optimization
problem has a volume fraction constraint.

The addition of the connector increases the structure’s compliance if compared to Fig. 5.2a, which
is the optimized structure without any connectors and has a compliance of 203.30. This is due to the
addition of the connector and its positioning, which affect the stiffness of the structure.

In the first two cases, Case 1 in Fig. 5.3a and Case 2 in Fig. 5.3b, the starting position is the same,
and in Case 3, the initial position on an angle. In these cases, the final positioning is similar in all the
cases, however, it is not the same. This is due to the influence of the starting position and the void
size. Another reason the results vary, and they are not optimized to the same position, is that there are
many valid solutions due to the problem having several local optima.

The numerical results, the initial and final values, of these cases are found in Table. E.2 in Appendix
E. The table shows the initial and final positions and the constant values as the voids and connectors
sizes. Furthermore, intermediate results, where only the connector with no voids are optimized and
more results with the connector with the voids, are shown in Appendix C.1.
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5.4. Optimizing the division of the structure, the cut lines
This section is dedicated to the subdivision of the structure into several parts. The structure is divided
using cut lines. The cut lines are optimized to find their most optimal positioning. This section shows
examples of how the cut line is optimized. This section will not show the optimization of the part fully
divided into two. This is because breaking the part without any connection point will lead to a separate
part, which generates an error when optimizing due to not having a connection point between the two
parts.

Multiple cut lines are optimized to observe their behaviour when they are optimized. The cut lines’
positions are optimized by optimizing the x coordinates. As the coordinates to optimize are the cut
line’s top and bottom points, when there are several ones, each cut line shares an x variable with the
adjacent line. The angle 𝜃𝑐𝑘 and vertical direction 𝑎𝑐𝑢𝑡𝑙 depend on the cut line’s position, 𝑏𝑐𝑢𝑡, and
the y coordinates stay constant during the optimizations. Each cut line will have its own angle 𝜃𝑐𝑘 and
vertical direction 𝑎𝑐𝑢𝑡𝑙 .

Fig. 5.4 shows the initial and optimized layout for two cases with multiple cut line optimizations.
Case 1 is shown in Fig. 5.4a, and Case 2 is shown in Fig. 5.4b. The initial position of the cut lines is
different in both cases.

(a) Case 1 - J = 220.20 (b) Case 2 - J = 214.47

Figure 5.4: Optimization of the structure and multiple cut lines

It can be observed the cut line’s initial position influences the final optimized layout. The starting
position of the cut lines is the same on the y-axis, the only change is the initial values of 𝑥𝑐𝑢𝑡. The
influence was concluded by observing how the change of the x values leads to a different optimization
of the cut line and the structure. The reason why there are two results on the same boundary conditions
is that the structure has several local optima solutions. A local optimal is a solution which is optimal
within a neighbouring set of candidate solutions, and the starting position of the cut lines influences it.

In both cases, the optimizer tries to optimize the structure and the position of the cut lines to not
damage them. Therefore, places the cut lines in an area where the density field of the structure is
zero. Moreover, the compliance does not differ much between the cases. However, it is higher than
in the optimization with no cut lines and some of the cases with the connector and the voids. This is
influenced by the position of the cut lines.

Table E.4 shows the starting and optimized values and corresponds to the cases shown in Fig.5.4.
Furthermore, intermediate results, only the connector with no voids and more results with the connector
with the voids are shown in Appendix. C.2.

5.5. Full optimization, optimizing the structure, cut lines and con-
nectors with voids

This report aims to model a structure, divide it with cut lines, and join the two parts with a non-destructive
connection method. Looking at the initial idea where the bolt is shown in Fig. 2.1, some requirements
are needed to use a bolt. For example, the value of 𝑏𝑣𝑜𝑖𝑑 needs to be larger than 𝑏𝑐𝑜𝑛 to insert the bolt.
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In terms of the vertical length, the connector needs to have a larger value for 𝑎𝑐𝑜𝑛 than 𝑎𝑣𝑜𝑖𝑑 to be able
to connect the connector with the structure, and the bolt needs to be smaller than 𝑎𝑣𝑜𝑖𝑑 to be able to
tighten the bolt and the nut with a wrench. A bolt connection is not as strong as a non-divided structure.
Therefore, the Young’s modulus of the connectors needs to be lower than the structure, however,
how weak the bolt connection is depends on the type of connection. There are more parameters and
requirements for a bolt, however, in this report, these are the only ones considered.

The next two cases consist of three cut lines and three connectors, each with two voids, one on
each side. The initial starting point of the connector on the cut line 𝑠𝑐𝑜𝑛 is 0.5, therefore, it will start in
the middle of the cut line. The thickness of the cut line, 𝑏𝑐𝑢𝑡, is set to 1 element. The initial coordinates
of the cut lines are 𝑥𝑐𝑢𝑡 = 48, 72, 60, 60 elements and 𝑦𝑐𝑢𝑡 = 0, 12, 28, 40 elements. These values were
chosen randomly.

The value of 𝐸𝑐 is lower than one, and the voids’ sizes are chosen regarding the connector’s size
and the requirements mentioned above. Two cases with two sizes for the voids and the connector are
tried. In the first case, the connectors’ size is 6x2 (𝑎𝑐𝑜𝑛 × 𝑏𝑐𝑜𝑛) elements and the voids size is 2x3
(𝑎𝑣𝑜𝑖𝑑 × 𝑏𝑣𝑜𝑖𝑑) elements, this is Case 1 on Fig. 5.5a. The value of 𝐸𝑐 = 0.8. In the second case, the
connectors’ size is 6x3 (𝑎𝑐𝑜𝑛 × 𝑏𝑐𝑜𝑛) elements and the voids size is 3x4 (𝑎𝑣𝑜𝑖𝑑 × 𝑏𝑣𝑜𝑖𝑑) elements, this
is Case 2 on Fig. 5.5b. The value of 𝐸𝑐 = 0.8, as in the previous case. These values are assumed
to meet the bolt requirement, but this has not been proved. One observation made from these two
cases is that both connectors on the bottom are joined together, creating a member of the structure to
avoid having a cut line. Furthermore, compared to the previous cases, the full optimization has higher
compliance than the other cases, where the cut line or the connector is optimized. This is due to the
connection point being weaker and having the full optimization with the cut line, voids and connectors.
Looking at the top connector, it can be seen that the optimizer tries to position on an angle so the left
void is outside the design domain.

(a) Case 1 - J = 242.88 (b) Case 2 - J = 315.51

Figure 5.5: Optimization considering the bolts requirements

Until now, the structure has always been cut vertically, however, in the following case, the structure
is cut horizontally. This case is to observe the difference in the optimized structure. The boundary
conditions for the MBB Beam shown in Fig. 5.1b are changed to obtain a horizontal cut. The rotated
boundary conditions are shown in Fig. 5.6a, which are the same as before, to obtain the same optimized
structure, but rotated so the axis change. This change is because the 𝑥𝑐𝑢𝑡 values are the optimized
design variables, and the 𝑦𝑐𝑢𝑡 values are constant for the cut line. The final optimized layout figure in
Fig. 5.6b is rotated to have the same orientation as the other layouts. Fig. 5.6b is the optimization of
three connectors and cut lines, the size of the connector is 8x3 (𝑎𝑐𝑜𝑛 ×𝑏𝑐𝑜𝑛), and the size of the void is
2x3 (𝑎𝑣𝑜𝑖𝑑×𝑏𝑣𝑜𝑖𝑑). As in the previous two cases, the Young’s modulus of the connector is 0.8. The first
cut line changes its positioning to have the connector on an angle where it’s more beneficial to connect
the structure. It can be seen that also, for a horizontal cut line, the method works as intended. In terms
of performance, comparing the vertical and horizontal cuts, as most examples are done in the vertical
cut, can not be determined which cut is more beneficial, this will need further investigation.
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(a) The rotated boundary conditions of the
beam (b) Case 3 - J = 224.96

Figure 5.6: Optimization with a horizontal cut and boundary conditions

5.6. Stopping criteria
As mentioned before, when the full optimizations are performed, the stopping criteria in Eq. 4.42 is not
satisfied due to the small oscillations of the cut line and connector. To see the number of iterations, a
graph was made to check the changes of it. The case used in Case 1𝑎 from the parameter studies is
found in Fig. 5.16a. Fig. 5.7 shows the optimization results in different iterations.

(a) Optimization at 150 iterations (b) Optimization at 200 iterations

(c) Optimization at 250 iterations (d) Optimization at 300 iterations

Figure 5.7: Optimizations showing the different number of iterations.

In Fig. 5.7, it can be appreciated that in all the iterations plots, 150, 200, 250 and 300 iterations,
the optimized position of the cut line, the connector and the structure is the same. As mentioned, this
is due to small oscillations, which create small changes in the density values, preventing the density’s
convergence. Therefore, stopping the optimization with the number of iterations instead of using Eq.
4.42 will not affect the result. In the previous optimizations, 150 iterations were used to calculate the
results. However, in more complex cases, as the full optimization, 200 iterations are used.

The values of the objective function on each iteration are shown in Fig. 5.8. It can be appreciated
that the maximum compliance is achieved in the first iteration, then starts decreasing until there are
only minor changes. This is around 120 iterations.
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Figure 5.8: Objective function per iteration.

Another stopping criterion was proposed in Eq. 4.43 in the methodology chapter. As mentioned
before, with the complete optimization, the convergence criteria using the densities are not satisfied,
and amaximum number of loops are set to stop the optimization. Here, the difference between stopping
the optimization with a set number of 200 iterations and with Eq. 4.43 is shown. Fig. 5.9 shows both
of the cases, stopped by the maximum number of iterations of 200 in Fig. 5.9a, and by the converge
equation with the objective function in Fig. 5.9b. The compliance obtained using the maximum number
of loops is 210.74, and the compliance using the convergence function is 213.72. The number of
iterations in the case with the converge equation is 132, which is a lower number than in the other case.
Also, comparing both figures in Fig. 5.9, it can be appreciated that the positioning of the connectors
and cut lines are different, which is why compliance is different. Looking at Fig. 5.8, from iteration
90 to iteration 110, the compliance is also constant, and then there is a drop and again constant after
iteration 120. The optimization is different, therefore, the number of iterations is different than in Fig.
5.8, but this can be a reason why they are different.

(a) Using a maximum number of loops as the stopping criteria.
J = 210.74

(b) Using the convergence equation for the objective function in
Eq. 4.43. J= 213.72

Figure 5.9: Visual comparison on the stopping criteria for the most complete optimization

In all the cases of the full optimization, the maximum number of iterations is used as the stopping
method.
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5.7. Parameter studies
One observation from the previous optimizations is that the starting position and parameters influence
the final optimization. This section aims to see how the parameters and starting values change the final
results. The approach taken in this section is to have a reference case, Case 1𝑎 in Fig. 5.16a with no
voids and Case 1𝑏 in Fig. 5.10b with voids. The variables are changed, one per case, to observe what
consequences they have on the optimized structure and the influence of the voids.

More detailed parameter studies are done individually to Case 1𝑎 and then to Case 1𝑏 to observe
how the parameters influence with and without voids. The detailed studies are found in Appendix. D.

5.7.1. Reference cases
The first cases in Fig. 5.10 is used as a reference to observe how one change influences the opti-
mization. The initial values for Young’s modulus in the first cases is 𝐸𝑐 = 1. There are three cut lines
which will cut the whole structure, the initial coordinates of the cut lines are 𝑥𝑐𝑢𝑡 = 48, 72, 60, 60 and
𝑦𝑐𝑢𝑡 = 0, 12, 28, 40. The starting point of the connector on the cut line 𝑠𝑐𝑜𝑛 is 0.5, therefore, it will start
in the middle of the cut line. The connector’s size is 𝑎𝑐𝑜𝑛 = 6 x 𝑏𝑐𝑜𝑛 = 3 elements. The thickness of
the cut line, 𝑏𝑐𝑢𝑡, is set to 1 element.These values are the same in Case 1𝑎 in Fig 5.10a and Case 1𝑏
in Fig. 5.10b. In the second reference case, Case 1𝑏, the difference is that the voids are added, the
size of the voids is kept constant at 𝑎𝑣𝑜𝑖𝑑 = 1 and 𝑏𝑣𝑜𝑖𝑑 = 2.

The first cases, Case 1𝑎 and Case 1𝑏, which are the reference cases, are the following:

(a) Case 1𝑎 - J = 208.92 (b) Case 1𝑏 - J = 213.89

Figure 5.10: Reference cases for the parameter studies, one with and one without voids

Comparing both reference cases in Fig. 5.10, the influence of the voids can be observed. Case
1𝑎, without the void, and Case 1𝑏, with the voids, have already different results due to the addition of
the voids. Case 1𝑏 has higher compliance due to the addition of the voids and the different positioning
of the connectors and cut lines on the structure. The main reason for the change is to try to place
the voids, not to weaken the structure. Comparing the compliance with the case where the only thing
optimized in the structure, in Fig. 5.2b, the compliance is higher in these cases, which was expected
from the observation done in the previous cases. In Case 1𝑏, the optimizer chooses a place for the
middle connector that is not the most beneficial when looking at the optimized structure, meaning that
the expected result would have been at another angle or place. The reason for this positioning is due to
the shape of the cut line, as it is a straight line, the optimizer prioritizes positioning the outer connectors
in the most beneficial position, making the middle connector not have the most suitable position.

In the following sections, all the 𝑎 cases will be compared to Case 1𝑎, and the 𝑏 cases will be
compared to Case 1𝑏. Therefore, all the 𝑎 cases will be without voids, and the 𝑏 cases will have the
same voids size.

5.7.2. Influence of a lower connector’s Young’s modulus
The first parameter to change is the Young’s modulus (𝐸𝑐) of the connector. There are two main com-
parisons, one comparing Case 1𝑎 and one comparing Case 1𝑏.
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In Case 2𝑎 (Fig. 5.11b), the value of 𝐸𝑐 is 0.5. This change means that now, the connector’s
Young’s modulus is half of the structure one. As it can be appreciated, the different values of 𝐸𝑐 affect
the positioning of the connectors and the cut lines. The final compliance is also affected. The case
with the lowest Young’s modulus has higher compliance. This is due to the connector’s lower strength.
In Case 2𝑎, it can be observed that the structure is under the connector. This is due to the equation of
𝐸𝑒 (Eq. 3.19), where the q-norm is used. The optimiser places the connectors on the outer cut lines
in the top and bottom members of the structure and the middle connector connecting the structure in
the middle. This is what is expected to do as the outer part of the structure is the most important and
affects the stiffness of the structure. Another observation is that the final compliance of Case 2a, which
has a connector which is half as strong as the structure, still has low compliance. The compliance is
only 0.5% higher than in Case 1𝑎 and 8.8 % higher than in the original MBB case in Fig.5.2b.

(a) Case 1𝑎 - J = 208.92 (b) Case 2𝑎 - J = 210.07

Figure 5.11: Comparison of Case 1𝑎 to a case with a lower connector’s Young’s modulus 𝐸𝑐

Case 2𝑏, in Fig. 5.12b, is compared to the reference Case 1𝑏. In this case, the 𝐸𝑐 is modified to
0.8, making the connector weaker than the structure. Here, it can be observed that the optimizer tries
to join both connectors together to create a beam. They are not overlapping due to the non-overlap
constraint in Eq. 4.2. This could be due to the optimizer trying to create a structure member and avoid
the cut of the structure while maximising the efficiency of the volume constraint.

(a) Case 1𝑏 - J = 213.89 (b) Case 2𝑏 - J = 221.17

Figure 5.12: Comparison of Case 1𝑏 to a case with a lower connector’s Young’s modulus 𝐸𝑐

5.7.3. Influence of the different number of connectors and cut lines
One of the input parameters is the number of cut lines and connectors. In the reference cases, the
number of cut lines and connectors is chosen to be three, however, this might not be the optimal
number.
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In Case 3𝑎 (Fig. 5.13a), the number of connectors and cut lines is lower; it only has two. With only
two cut lines, the optimizer places the connectors on the top and bottom members of the structure, as
they have a big influence on the stiffness of the structure. The number of cut lines and connectors is
four in Case 4𝑎 in Fig. 5.13c. The connector size is also modified to fit the extra connector. With the
addition of a cut line and connector, the compliance increases. An optimized structure with two cut
lines and connectors has the lowest compliance.

(a) Case 3𝑎 - J = 204.87 (b) Case 1𝑎 - J = 208.92 (c) Case 4𝑎 - J = 220.60

Figure 5.13: Comparison of Case 1𝑎 to a case with more connectors and cut lines and a case with only two

As in the previous cases, Fig. 5.14 shows Case 1𝑏 with two and four cut lines and connectors. In
Case 3𝑏 in Fig. 5.14a, the number of cut lines has decreased to two, and the number of connectors
and cut lines is four in Case 4𝑏, in Fig. 5.14c. In Case 3𝑏, as in the previous optimization with the
two connectors, their position is on the structure’s outer members. In Case 4𝑏, as in Case 4𝑎, the
connector size is also changed to fit an extra connector and avoid the connector being the same length
as the cut line. Due to the voids, the connector’s size is not as small as in Case 4𝑎 to have an area
where the connector can merge with the structure. This case also has the highest final compliance of
all these cases. This can be due to the size of the connectors and the higher number of cut lines and
connectors, making it more challenging to place them as it is forced to place the voids where it is not
beneficial for the stiffness of the structure.

(a) Case 3𝑏 - J = 218.37 (b) Case 1𝑏 - J = 213.89 (c) Case 4𝑏 - J = 251.84

Figure 5.14: Comparison of Case 1𝑏 to a case with one more connector and cut lines

5.7.4. Influence of the connector and cut line dimensions
The 𝑎 and 𝑏 parameters are the width and length of the connector (𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛), and for the cut lines
(𝑎𝑐𝑢𝑡 and 𝑏𝑐𝑢𝑡). In terms of the cut line, only 𝑏𝑐𝑢𝑡 is a parameter as 𝑎𝑐𝑢𝑡 is dependent on 𝑥𝑐𝑢𝑡, as shown
in Eq. 3.17. For this section, the cases compared are not with the reference case, the comparison is
done between the cases with the same change with and without the voids.

Firstly, the thickness of the cut line has been modified. In these cases, the cut line has a thickness of
2 elements, whereas in all the previous cases had a thickness of 1 element. With a cut line with the same
thickness as the connector, the top and bottom sides of the connector are no longer able to be used to
connect to the structure as a void is forced due to the cut line. In Case 5𝑎, shown in Fig. 5.15a, the other
sides of the connector can fully connect to the structure, however, in Case 5𝑏, shown in Fig. 5.15b,
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there are two voids, one in each side of the connector, constraining the connection of the connector
with the structure. Therefore, the optimizer has it more difficult to make those connections, leading to
having voids inside the structural members forced by the position of the connectors in this case. One
conclusion is that with thicker cut lines, it is possible to get well-performing designs. Nevertheless, the
thickness of the connector must always be larger than the thickness of the cut line, 𝑏𝑐𝑢𝑡 < 𝑏𝑐𝑜𝑛 to have
a better connection between the structure and the connector.

(a) Case 5𝑎 - J = 206.99 (b) Case 5𝑏 - J = 226.57

Figure 5.15: Observation of the influence of the 𝑏𝑐𝑢𝑡 parameter on Case 1𝑎 and Case 1𝑏

Regarding the connectors’ size, the parameters that can change are 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛. In the first
comparison, Case 1𝑎 is compared to two different sizes of connectors. Case 6𝑎 has smaller connectors,
and Case 7𝑎 has larger ones than Case 1𝑎. Then, Case 7𝑎 is compared to Case 1𝑏 with the same
connector size, which is Case 7𝑏.

In the first comparison, Case 6𝑎 in Fig. 5.16b has smaller connectors in both horizontal and vertical
values than Case 1𝑎, and Case 7𝑎 in Fig. 5.16c has a larger connector on the horizontal length and
the same element length on the vertical side as in Case 6𝑎. The compliance on both increases respect
to the first case. Moreover, the structure also changes to accommodate better the changes in the
connector’s size, which is an expected behaviour. The optimization with larger connectors has lower
compliance; it is a 1% increase in Case 1𝑎.

(a) Case 1𝑎 - J = 208.92 (b) Case 6𝑎 - J = 219.24 (c) Case 7𝑎 - J = 213.45

Figure 5.16: Different cases based on Case 1𝑎 with different connector’s sizes, one bigger, one smaller

As mentioned, the size of the connector of Case 7𝑎 (Fig. 5.17a) and in Case 7𝑏 (Fig. 5.17b) is the
same. The main difference is the voids. Comparing Case 7𝑎 and Case 7 𝑏, it can be observed that
the position of the cut and connector is similar in both cases. However, it is not the same due to the
voids. As mentioned before, the voids in Case 7𝑏 constrain the connector’s position to prevent one of
the voids from damaging the structure with a gap in it.
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(a) Case 7𝑎 - J = 213.45 (b) Case 7𝑏 - J = 217.35

Figure 5.17: Change of 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛, a case with and a case without voids from the previous comparison.

5.7.5. Influence of the starting position
The position of the cut lines and the connector’s position on the cut line are the optimized values.
Previously, it was observed that the starting positions do influence the final optimized layout due to
having different local optima. In this section, the influence of the starting position is observed.

In Case 8𝑎 in Fig. 5.18a and in Case 8𝑏 in Fig. 5.18b, the starting position of the cut line is changed
to a straight line. In these cases, only the starting position of the cut lines is changed, the starting
position of the connector has changed in terms of the coordinates, but it has not changed in terms of
𝑠𝑐𝑜𝑛, the starting point on the cut line.

As expected, the different starting position does affect the final optimized position. It can be ob-
served that compliance is higher in Case 8𝑏, this is due to the voids. A straight starting position gives
a lower optimized compliance on Case 8𝑎 than the reference case, Case 1𝑎, by a 1.5% and for Case
8𝑏 a 1.02% higher than Case 1𝑏.

(a) Case 8𝑎 - J = 205.85 (b) Case 8𝑏 - J = 217.33

Figure 5.18: Optimization of the cut lines with the connectors, with a starting position of a straight line.

In terms of the starting position of the connector in the cut lines, which until now was 𝑠𝑐𝑜𝑛 = 0.5,
which is in the middle of the cut lines, it is now shifted to 𝑠𝑐𝑜𝑛 = 0.7. This change is observed in Case
9𝑎 in Fig. 5.19a and Case 9𝑏 in Fig. 5.19b. Where the connector starts at a lower position on the
cut line. In Case 9𝑎, the trend observed previously is shown again, the optimizer tries to connect two
connectors to form a member of the structure to avoid the cut of the structure. Looking at Fig. 5.19b
and focusing on the lower connector, it seems like the optimizer is trying to position it outside the design
domain to avoid having the voids affect the structure. This is allowed as the connector is optimized on
the middle point, therefore, when 𝑠𝑐𝑜𝑛 = 0 for the bottom connector and 1 for the top connector, half of
the connector is outside the domain.
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(a) Case 9𝑎- J = 207.53 (b) Case 9𝑏 - J = 210.89

Figure 5.19: Optimization of the cut lines with the connectors, with a change of 𝑠𝑐𝑜𝑛.

5.7.6. Influence of the void’s dimensions
One of the influences observed in the previous cases is that the addition of the voids does influence the
final layout and compliance of the optimization. This influence was observed when comparing Case
1𝑎 and Case 1𝑏, shown in Fig. 5.10 and in other cases of the parameter study. In this section, the
influence and behaviour of the size of the voids are observed by how it influences the optimized layout.

(a) Case 10𝑏 - J = 213.14, void size = 1x1 element (b) Case 1𝑏 - J = 213.89, void size = 1x2 element

(c) Case 11𝑏 - J = 260.80, void size = 2x2 element (d) Case 12𝑏 - J = 236.76, void size = 2x3 element

Figure 5.20: Effect of varying the dimensions of the voids on the initial reference case, Case 1𝑏

Case 1𝑏 and three other cases are shown here. They all have the same starting parameters as in
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the reference case, Case 1𝑏. The only parameters modified in each case are 𝑎𝑣𝑜𝑖𝑑 and 𝑏𝑣𝑜𝑖𝑑, the width
and length of the voids. In this first case, Case 10𝑏 in Fig. 5.20a, the voids have a 1x1 (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑)
element size, which creates a small void. The second figure in Fig. 5.20 is Case 1𝑏, which has a void
size of 1x2 elements. In the third case, Case 11𝑏 in Fig. 5.20c, the void size is double (2x2 element
size) than in Case 10𝑏, and in the last case, Case 12𝑏 in Fig. 5.20d, the 𝑏𝑣𝑜𝑖𝑑 is increased by one
element, therefore, the voids have a size of 2x3 element. The size of the voids creates a constraint on
the optimization, meaning that when the void has larger dimensions, the area where the connector can
connect to the structure is limited.

In Case 11𝑏 and Case 12𝑏, the optimizer tries to connect the structure and create a structural
member with the connectors. This optimizer’s behaviour was also observed in previous cases on the
parameter study. As mentioned before, this could be due to the optimizer trying to create a structure
member and avoid the cut of the structure while maximizing the efficiency of the volume constraint.
Furthermore, in Case 11𝑏, it can be observed that two voids of the bottom two connectors are aligned
to avoid the voids weakening the structure. The overlapping of the voids is allowed as the voids do not
have a no-overlap constraint. If the voids overlap, the bolts could still be taken out.

In Appendix D, there are more cases where the influence of the size of the voids is observed by
changing their sizes and other parameters.

5.7.7. Avoiding spurious connections between connectors
The optimizer tends to connect the connectors to create a structure member, as was observed in
previous cases. One solution to avoid this can be to restrain the limits of the position of the connector
along the cut line. The new limits of 𝑠𝑐𝑜𝑛 will change from one to zero to a larger number than 𝑎𝑐𝑜𝑛,
which is the length of the connector from the midpoint to the top or bottom side. These limits will avoid
the connection.

The solution proposed is tested in Fig. 5.21. Case 1 in Fig. 5.21a is the same as Case 12𝑏 in Fig.
5.20d. This case was chosen due to the connection between the connectors. Then, a new optimization
was performed with the 𝑠𝑐𝑜𝑛 limits as 0.1 and 0.9. The result is shown in Fig. 5.21b. By implementing
the limits, the connectors are optimized to a different position, which was expected. The compliance
of the case with the limits is higher than in the case without the limits. These new limits also constrain
the connectors on the top and bottom cut lines, which does not allow the connectors to be placed on
the structure’s lower and upper members, which is one of the reasons why the compliance is higher as
these members have a significant influence on the structural stiffness.

(a) Case 1 - 236.7600 (b) Case 2 - 265.4862

Figure 5.21: Optimization with the constraint 𝑠𝑐𝑜𝑛 cannot be 0 or 1, new limits 0.9 and 0.1

Stacking the connectors has yet to be tested to determine whether it is beneficial. More research
will need to be done to observe the influence of this. The idea of the connection point is to divide the
connector in two and bolt it together. Another approach to the problem, when the connectors create
the member on the structure, is to weld the bottom and top of the connectors creating the structural
member. These parts must be welded in each part of the structure separately. It will not affect the
structure’s sustainability as the division line remains.
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Discussion

In Chapter 5, a few aspects were observed while solving different optimization problems. What the opti-
mizer tends to do and some limitations of the model were observed. Furthermore, some improvements
were identified.

Discussion of the different sets of results
In the first set of results, the structure was optimized simultaneously with a connector with two voids.
The main observation obtained is that the void’s size influences the structure’s shape, compliance and
the optimized position of the connector. In all the cases, the expected solution was obtained. The
expected result is for the optimizer to optimize the position of the connector and the structure to have
the connector on a member of the structure and the voids on a section where the density is zero to
minimize compliance and not to add extra material as it has the volume fraction constraint.

The second set of results optimized the structure and cut lines simultaneously. From these cases,
it was observed that the cut lines’ starting position influences the optimized position. Furthermore, as
in the previous set of results, the optimized position of the cut lines was expected to be on an area of
the optimized structure where the density is zero to avoid weakening the structure. The starting point
influences the final optimization due to the optimization having several local optima.

Long et al., 2018 state that local optimum in multi-material topology optimization easily occurs in the
SIMP method updated by the MMA algorithm. A local optimum solution is where the objective function
is minimized among feasible points. However, it is not guaranteed a lower objective value than all
other feasible points (Boyd and Vandenberghe, 2004). Having multiple local optima means that the
initial configurations may lead to different optimized designs, which is the case in these optimizations.
Having multiple local optima is a limitation of the problem due to not obtaining the global optima in
every optimization. In a global optimization, the global optimum solution, which is the true solution of
the optimization problem, is found. However, finding the global optimum compromises efficiency. In
the optimizations done in this research, as the aim is to develop the initial idea for the optimizations,
the global optima solution is not required.

The third set of results is the complete optimization, where the structure is optimized with the cut
lines and the connector, with the voids included. In these optimizations, some important requirements
for the bolts are considered, such as the space to insert, tighten and remove them. Three cases are
presented, two with a vertical cut and one with a horizontal cut. For the vertical cut, an observation
is that optimizer tries to place the connector as a structural member. This positioning could be due to
the optimizer trying to create a structure member and avoid the cut of the structure while maximizing
the efficiency of the volume constraint. These results also have the highest compliance from all the
previous cases due to the complete optimization. In the complete optimization, the cut lines and the
voids impose a zero density area on the four sides of the connector, the cut line on the top and bottom
sides, and the voids on the other sides. The voids on all sides make it more challenging to position the
connector.
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Discussion of the stopping criteria and parameter studies
Regarding the stopping criteria, with the first two sets of optimizations, one where a connector with its
voids is optimized and one where the cut lines are optimized, the stopping method used is the converg-
ing equation using the density. However, for the most complex optimizations, the full optimizations and
the cases for the parameter studies, a set number of iterations is used as the stopping method. This
stopping criterion is not the most accurate as each case might need a different iteration number, some
examples might need a higher and some lower. And in this case, the number of iterations was set
according to how complex the optimization was. With the starting number basing it on the optimization
of several connectors and cut lines without the voids. Another stopping criterion for the complete opti-
mization was tried and compared to the one with the set number of iterations. It was concluded that the
maximum number of iterations was more suitable for optimizations due to the results observed in the
graph for the compliance over the iteration number. The compliance can be equal in a few numbers
of iterations, but then it drops to a lower value. With this criterion, the optimization will stop at not the
lowest compliance.

In the parameter study, there are two reference cases, one with voids and one without and the
starting position is changed to observe the optimizer’s trends and behaviour. Several observations were
made, and some are already mentioned as they were already observed in the previous optimization
cases.

One of the main observations in the previous cases is that the initial position and parameters are
critical and affect the value of the local solution obtained. That is why there are no cases where the
final optimization is identical. Predicting how far from the global optima the local solution is challenging.

When optimizing, an observation made is that the outer connectors are optimized to be positioned
on the top and bottom members of the structure, these members contribute to the stiffness of the
structure. In all the results, the optimizer does what is expected, trying to optimize the structure and
place the connector on a solid part of the structure, the cut lines in a structural hole and the voids, when
possible, on a structural hole where the density is zero.

Another main observation is that in some cases, the optimizer chooses to position a connector
where is not the most beneficial position when looking at the optimized structure. This means the
expected result would have been at another angle or place. The reason for this positioning is due to
the shape of the cut line. As it is a straight line, in some cases, only some connectors and cut lines can
obtain the desired angles or positions due to the connectivity and the influence of the adjacent lines.
Changing the cut line definition to allow for more flexibility might reduce this problem.

The parameter study changed the void size to observe its influence on the final optimized result.
It was observed that the larger the area the void covers of the connector, the more difficult for the
optimizer to position. This difficulty can be due to reducing the area where the connector can connect
to the structure, weakening the connection point between the structure and the connector.

In some cases, the optimizer tries to combine connectors to create a limb on the structure and
minimize the cut line by maximizing the connection area between the connectors and the cut line. This
positioning is because the connector is on the cut line; therefore, if connectors are joined, the cut is
minimized. The connector’s positioning is always respecting the non-overlap constraint. The non-
overlap constraint avoids having the connectors overlap each other. Therefore, in these cases, the
connectors are aligned with each other, not over. The cut line also constrains the final positioning of
the connectors.

Limitations and improvements
As mentioned, one of the clear solutions the optimizer looks for is to create a limb or a member by
stacking two connectors together. One solution can be to limit the position of the connector on the cut
line, avoiding it being 0 or 1, so there is always a gap between the connectors. A case with new limits
on the 𝑠𝑐𝑜𝑛 was tried, and it was observed that by constraining the position of the connector on the
cut line, they were also influenced by being unable to position the connector on a limit. For example,
the connectors on the outer sides usually tend to be positioned on the outer members of the structure,
which usually is done by placing the connectors on the ends of the cut lines, which with the new limits,
is not possible. Another approach similar to this method to avoid the connectors stacking together is
limiting only the middle components. Another approach that can be taken, which allows the connectors
to stack together to create a structure member, is to weld those parts together. The idea is that the
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connector is divided into two separate parts and joined with a bolt. Therefore, if two connectors on the
same side are together, they can be welded on each separate part to be later connected by bolts. The
welding will not affect the product’s sustainability, as the part’s disassembly will not be affected. Further
investigation can be done to determine if the stacking of the connectors needs to be avoided or if they
can be welded.

This research aims to answer the research question of how a structure can be divided into different
parts by optimizing the position of the cut lines and the connection points simultaneously while opti-
mizing the structure using topology optimization. The approach presented has some limitations, there
are some assumptions and design decisions which may need to be more suitable for the optimizations.
For example, the void sizes on each side of the connectors are set to be the same size, this may not be
needed as the bolt can be inserted on one side, and that void should be larger than the bolt. However,
the other side might be adequate without such a large void. Another design decision made is to have a
single connector with a single bolt on each cut line. Different numbers of connectors on a cut line might
be more beneficial in some cases, or in others, a connector might not be needed on a cut line. Also,
it is set for each connector to have a single bolt, but multiple bolts can be used on a single connector.
This will also need to include multiple voids on them, two per bolt.

On the full optimization results, it was mentioned that a bolt connection is weaker than having an
entire structure. However, the connection’s strength depends on many factors, such as the connector
size, the bolts used and the type of connection points. For example, the bolt’s material, size, diam-
eter, and installation influence the connection point. The stiffness of a connection point is not only
determined by the stiffness of the bolt used. It is also determined by the stiffness of the connected
parts and the design of the connection points. These and more requirements are needed to model the
correct connection stiffness. To achieve the appropriate performance and stiffness of the connection
point, proper analysis, design, and selection of the bolted connection type are essential, as well as
consideration of the application and desired stiffness requirements.
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Conclusion

7.1. Conclusion
A new approach was presented in this research to answer the question of how a structure can be
divided into different parts by simultaneously optimizing the position of the cut lines and the connection
points while optimizing the structure using topology optimization. In the approach presented, the idea
is to divide the structure in two and have a connection point where both parts are joined by a bolt, which
is a non-destructive disassembly method. The approach taken uses level set functions to model the
cut of the structure, as well as the connectors and the voids. Then, they are converted into a density
field. A SIMP-motivated method is used to join all the different density fields into an equation for the
interpolated elasticity modulus and later optimized using the MMA (Method of Moving Asymptotes)
method.

Three final cases with the requirements of the bolts were presented, two with a vertical cut and
one with a horizontal cut. In these cases, the optimizer’s behaviour could be predicted by the observa-
tions made on the parameter studies, where the influence of the initial conditions was observed. The
optimization cases and parameter studies identified trends, limitations, and improvements.

This is a new approach where topology optimization and sustainability can be joined by designing
for disassembly using bolts as a non-destructive method. The research question is answered on a
simple approach, meaning that the main idea of optimizing a structure using topology optimization and
simultaneously dividing it and optimizing the connector’s position is done. However, there are some
limitations on the optimization, as some assumptions and design considerations are not accurate. For
example, the stiffness of the connector, which also affects the size of the components and voids, the
side of the voids being the same on each side of the connector, or having a single connector on each
cut line, which is not proven to be the most optimal solution.

In conclusion, this research introduces a solution to answer the research question presented in
the introduction. This approach gives the initial method for developing this idea, which needs further
research to obtain accurate results.

7.2. Future work
Recommendations for future work include the following:

• Use a different cut line shape for the optimization. Sometimes, the optimizations were constrained
and could not use the more optimal angle due to the cut line being a straight line. As they are
connected, they influence each other. Instead of using a straight line, a curved line could be
used. This can be achieved by changing the topology description function. This change can also
reduce the number of cut lines to one and have more connectors in each cut line.

• Optimize the number of cut lines and the 𝑦𝑐𝑢𝑡. In this research, the number of cut lines is a
user input, optimizing the number of cut lines and their positioning. This can be approached
by optimizing the 𝑦𝑐𝑢𝑡 of middle lines, as the outer ones need to be fixed at the edges of the
design domain to divide the structure entirely. A new variable must be introduced to optimize
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the number of cut lines, and the cut line’s position will depend on it. The number of variables is
discrete, making this suggestion challenging.

• Optimize the number of connectors. Now, there is a single connector in each cut line; however,
it needs to be checked that the optimal number of connectors is over each cut line. This can be
done by optimizing the number of components in each cut line, which may lead to having different
numbers of components in each cut line. Moreover, in some cases having no component might
be the optimal solution. The number of connectors is a discrete number, which creates difficulty.

• Optimize the size of the connector and the voids, respectively. This can be done by optimizing
the size of the connector 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛. With this change, the minimum requirements for the
size of the voids can be stated and be changed as the connectors change. This can be done
by changing the values of 𝑎𝑣𝑜𝑖𝑑 and 𝑏𝑣𝑜𝑖𝑑 to be dependent on the values of 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛. This
can be beneficial as, depending on the connector’s size and the bolt used, the stiffness of the
connection point is different. It might be the case where different connectors’ sizes in a structure
can be the optimal solution.

• Cut the structure into more than two parts and not only on a vertical line. This recommendation
is similar to optimizing the x and y coordinates of the structure, focusing more on vertical and
horizontal cuts. The number of parts the structure is divided into could be a user input or an
optimized value.

• Changing the stopping criteria. The stopping criterion on the complete optimization is now set to
be a fixed iteration number. However, this might not be the most accurate stop criterion in some
cases.

• Model the problem in 3D. This paper only uses 2D modelling and a new axis must be added.
Therefore, the constraints and the design variables must be adapted to the new dimension. Mod-
elling the problem in 3D will be more challenging. For example, there will be more design require-
ments in the connection point, such as the bolt size and the type of connection. The cut lines need
to become a cut plane, and its position will require two coordinates. The cut plane will also have
an angle of rotation of the connector in the cut plane will be another variable introduced.

• The correct stiffness of the connection. As mentioned in the discussion chapter, the stiffness of a
connection point depends on many factors. To achieve the appropriate performance and stiffness
of the connection point, proper analysis, design, and selection of the bolted connection type are
essential, as well as consideration of the application and desired stiffness requirements.

• A different connection method. For this approach, bolts are chosen to be the connection method.
However, there are different non-destructive connection methods which can also be used. The
requirements for the different types of connections need to be considered to model them.
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A
Appendix

This appendix shows the initial challenge with the filtering, the method used to check the sensitivities
and examples with a bar to see how the optimizer works.

A.1. Filtering the optimization
The original code where the material interpolation scheme equation (𝐸𝑒) was obtained in Wang et al.,
2020 uses a sensitivity filter. Furthermore, when changing it to a density filter, the connector and the
structure do not connect. Furthermore, there was not a solid connection in the sensitivity filter either.
This can be appreciated in Fig. A.1b for the result with a sensitivity filter and Fig. A.1a for a result with
a density filter.

(a) Initial Eq. of 𝐸𝑒 with density filter (b) Initial Eq. of 𝐸𝑒 with sensitivity filter

Figure A.1: Difference between the filters

(a) Different fields for density, connector and void. Not connected
(b) Different fields for density, connector and void. With a connec-
tion

Figure A.2: Different fields comparison, with and without the connection
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In Fig. A.2a the different fields for the density (𝜌), connector (𝜂𝑒) and void (𝜁𝑒 ) can be seen. This
case is for the density filter. In the density field, it can be seen that there is no material in the area
where the connector is; therefore, when both fields are joined, there is a gap between the structure and
the connector. This needed to be fixed.

The approach taken to fix this error is to change the equation of 𝐸𝑒. The original equation also
creates an error in the finite element analysis due to the low values of 𝐸𝑒. A p-norm was added,
which takes the maximum value between the density and the connector field to avoid not having the
connection. A 𝐸𝑚𝑖𝑛 is also added with a low value, which avoids an error on the finite element analysis
by adding a minimum value to the field. In addition, the volume constraint is changed to the new
equation, which is similar to the 𝐸𝑒 equation.

Once this is changed, a new optimization is performed. Fig. A.3a shows the optimizations, and Fig.
A.2b shows the fields. The structure’s connection with the connector is visible comparing Fig. A.1a
and Fig. A.3a. As well as, if both figures of the fields, Fig. A.2a and Fig. A.2b, are compared, on the
density field, there is some density underneath the connector, and this creates a connection between
them.

(a) Changed Eq. of 𝐸𝑒 with density filter (b) Sensitivities of dV and dJ

Figure A.3: Optimized beam with the changed equation of 𝐸𝑒 and its sensitivity graph

Fig. A.3b shows the sensitivities on each element for the sensitivities of the objective function with
respect to density (dJ) and the sensitivities of the volume constraint with respect to density.

A.2. Checking the sensitivities
The sensitivities were checked by checking the derivatives using the forward finite difference method.
The forward finite difference is one type of finite difference method. The Finite Difference Method
(FDM) is one of the methods used to solve differential equations that are difficult or impossible to solve
analytically (LeVeque, 1998).

The equation for the forward finite difference method is:

𝑓′(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (A.1)

where 𝑓′(𝑥) is the derivative of a function f at a point x, and h is the perturbation for each variable.
After the equations are checked, optimization is done to check that it works visually.

A.2.1. Bar sensitivity checks
The MBB structure can have multiple solutions; therefore, some optimisations on the bar example were
checked to check that the optimizations and the sensitivities were working. The bar example uses the
MMB Beam structure with a different force, it is like a tensile beam. Comparing the boundary condition
of the beam in Fig. A.4a to the MBB beam in Fig. 5.1b, the force is changed. In the bar example, the
force is on the right side and in the x direction.
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(a) Boundary conditions of the bar example (b) Optimization where only the density is optimized

Figure A.4: The new boundary conditions and an optimized beam with the changed equation of 𝐸𝑒

The first case optimized in the bar example is the connection between the structure and the compo-
nent. This case is explained in Section. A.1. In this case, the position of the connector is not optimized.

The following cases show the optimization with the connector. As the aim is to check if the optimizer
does what it is meant to do, two different cases are tried. In the first case, a square connector is placed
in the upper half of the structure. The connector should move to the optimized bar to check that the
optimization works. A similar case as in the previous optimization with the fixed connector. In the
following case, to make it more challenging for the optimizer, a long connector is placed with a reduction
of the volume constraint to 0.3. This will lead to a thinner optimized bar. The expected position of the
connector is to be inside the thin bar. The starting position and optimised layout for both cases are
shown in Fig. A.7. The optimized position is what is expected in both cases.

(a) Case 1, optimization of a bar with a connector with a volume
constraint of 0.5

(b) Case 3, optimization with a connector with a lower volume con-
straint

Figure A.5: Bar example with the optimization of the connector

The next step in the optimizations, once the connector is optimized, is the addition of the voids.
Again, two different cases were done. In the first case, there is a single void inside the connector. This
void is a thin line which influences the component’s orientation. The initial and final positions can be
appreciated in Fig. A.6a. The expected positioning, the same as the one obtained, is to have the void
in the same direction as the bar. The second case is a connector with two voids. The connector size is
similar to the bar’s thickness. The final result in Fig. A.6b with the connector on the bar and the voids
on the sides is expected.
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(a) Case 4, optimization with the component and a void in the mid-
dle

(b) Case 5, optimization with the component two voids on each
side

Figure A.6: Bar example with the optimization of the connector and voids

The final trial is to optimize the structure with the cut lines. This is modelled the same as the voids, a
zero-density field. Two cases are also tried again. In these optimizations, one primary consideration is
that the only optimized values are the x position, and the y coordinate stays constant. This constrains
the optimization. Fig. A.7a, Case 6, shows the optimization with two cut lines, and Fig. A.7b, Case 7,
shows the optimization with three cut lines. In both optimizations, the bar is separated on the opposite
side of where the force is acting, and the cut lines position themselves on the division. This is also an
expected behaviour.

(a) Case 6, optimization with two cut lines (b) Case 7, optimization with three cut lines

Figure A.7: Bar example with the optimization of cut lines



B
Methodology, optimization problem and

sensitivities
The full optimisation is explained in Chapters 3 and 4. However, this chapter shows the optimization
problems and the sensitivity analysis of the intermediate optimizations.

B.1. Modelling, optimization problem and sensitivities of the con-
nectors

B.1.1. Material interpolation scheme
The initial elastic interpolation scheme from the paper Wang et al., 2020 is the following:

𝐸𝑒 = 𝐸(𝜌𝑒 , 𝜂𝑒) = 𝜌𝑝1𝑒 (1 − 𝜂𝑝2𝑒 )𝐸0 + 𝜂𝑝2𝑒 (1 − 𝜌𝑝1𝑒 )𝐸𝑐 (B.1)

However, equation B.1 was modified. One of the reasons for this modification is the change of the
density 𝜌𝑒, due to the filter used, and a q-norm is used to obtain the smooth maximum between the
density and the solid connector. 𝐸𝑚𝑖𝑛 and 𝜖 are also added to avoid undercut and errors on the finite
element analysis. This is shown in the Eq. 3.10

B.1.2. Optimization problem
To start the optimization problem, it is necessary to optimize the position of the connectors and the
topology of the structure, aiming to maximise the stiffness of the overall system. For this purpose, the
overall structure’s compliance is minimized.

𝐹𝑖𝑛𝑑 ∶ {𝜌 = (𝜌1, 𝜌2, ..., 𝜌𝑁𝑒)
c𝑐𝑜𝑛𝑘 = (c𝑐𝑜𝑛1 ,c𝑐𝑜𝑛2 , ...,c𝑐𝑜𝑛𝑁𝑐)

𝑚𝑖𝑛 ∶ 𝐽 = F𝑇U (B.2)

𝑆.𝑡.

⎧
⎪

⎨
⎪
⎩

KU = F
𝑔𝑣 = ∑

𝑁𝑒
𝑒=1 𝐸𝑒𝑉𝑒 − 𝑓1𝑉𝑜 ⩽ 0

𝑔𝑐 = ∑
𝑁𝑒
𝑒=1(1 − 𝜁𝑒)𝑉𝑒 − (𝑉𝑜 − ∑

𝑐=1
𝑁𝑐 𝑉𝑐) ⩽ 0

0 ⩽ 𝜌𝑒 ⩽ 1
𝑐𝑚𝑖𝑛 ⩽ c ⩽ 𝑐𝑚𝑎𝑥

(B.3)

where the objective function J can be further expressed as follows:

𝐽 = U𝑇KU =
𝑁𝑒
∑
𝑒=1

𝐸𝑒u𝑇𝑒k0u𝑒 (B.4)

This is explained in the section 4.1. However, as the optimization variables of the connector are
different, the changes are explained here. The term c introduced in B.2 is the geometric variables vector
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which consists of the horizontal and vertical coordinates and the rotation angle against the horizontal of
the connectors, c is: 𝑐𝑘 = {𝑥𝑐𝑜𝑛𝑘 , 𝑦𝑐𝑜𝑛𝑘 , 𝜃𝑐𝑜𝑛𝑘}, where 𝑘 = (1, 2, ..., 𝑁𝑐). Nc is the number of connectors.
𝑐𝑐𝑜𝑛𝑘 also has has a lower (𝑐𝑚𝑖𝑛) and upper (𝑐𝑚𝑎𝑥) bounds on the geometry design variable. All the
connectors are set to the same values.

B.1.3. Sensitivity analysis
This section introduces the sensitivity analysis for the different design variables and the constraints.

Sensitivity analysis of the objective function with respect to the element relative density vari-
able

The design sensitivities of the objective function with respect to the element relative density variable
𝜌𝑒 can be written using the adjoint method as follows:

𝛿𝐽
𝛿𝜌𝑒

= −𝛿𝐸𝑒𝛿𝜌𝑒
∗ u𝑇𝑒K𝑜u𝑒 (B.5)

The result of differentiating the equation 𝐸𝑒 (equation B.1) with respect to 𝜌𝑒 is equal to:

𝛿𝐸𝑒
𝛿𝜌𝑒

= Eo 𝑝1 𝜌𝑝1−1𝑒 ((Ec 𝜂𝑒𝑝2)
𝑞 + ( 𝜖 + Eo 𝜌𝑝1𝑒 )

𝑞)
1
𝑞−1 ( 𝜖 + Eo 𝜌𝑝1𝑒 )

𝑞−1
(B.6)

Sensitivity analysis of the objective function with respect to the geometric variable of connec-
tors

Assuming 𝑧𝑐𝑜𝑛𝑘 represents the design variable 𝑐𝑐𝑜𝑛𝑘 = {𝑥𝑐𝑜𝑛𝑘 , 𝑦𝑐𝑜𝑛𝑘 , 𝜃𝑐𝑘} for the 𝑘𝑡ℎ connector, and
each 𝑧𝑐𝑜𝑛𝑘 is a function of 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 . The design sensitivity analysis respect to 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 is calculated as :

𝛿𝐽
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

(B.7)

where:
𝛿𝐽
𝛿𝜂𝑒

= −𝛿𝐸𝑒𝛿𝜂𝑒
∗ u𝑇𝑒k0u𝑒 (B.8)

The result of differentiating the equation 𝐸𝑒 (equation B.1) with respect to 𝜂𝑒 is equal to:

𝛿𝐸𝑒
𝛿𝜂𝑒

= Ec 𝜂𝑒𝑝2−1 𝑝2 ((Ec 𝜂𝑒𝑝2)
𝑝 + ( 𝜖 + Eo 𝜌𝑝1𝑒 )

𝑝)
1
𝑝−1 (Ec 𝜂𝑒𝑝2)

𝑝−1 (B.9)

The derivative of 𝜂𝑒 respect to 𝜙𝑐𝑜𝑛𝑘 is obtained by differentiating in Eq. 3.9:

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

= −(1 − 𝜂𝑒)
𝛽𝑒𝑥𝑝(−𝛽𝜙𝑐𝑜𝑛𝑘)

(1 + 𝑒𝑥𝑝(−𝛽𝜙𝑐𝑜𝑛𝑘))
(B.10)

The equation
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

is derived from the equation for the topology description function in equation
3.8. They are calculated for each variable (𝑥, 𝑦 and 𝜃𝑐𝑘) as follows:
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𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

= 6(�̄�𝑎)
5 −𝑐𝑜𝑠𝜃𝑐𝑘

𝑎 + 6(�̄�𝑏)
5 𝑠𝑖𝑛𝜃𝑐𝑘

𝑏 (𝑧𝑐𝑜𝑛𝑘 = 𝑥𝑐𝑜𝑛𝑘)

𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

= 6(�̄�𝑎)
5 −𝑠𝑖𝑛𝜃𝑐𝑘

𝑎 + 6(�̄�𝑏)
5 𝑐𝑜𝑠𝜃𝑐𝑘

𝑏 (𝑧𝑐𝑜𝑛𝑘 = 𝑦𝑐𝑜𝑛𝑘)

𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

= 6(�̄�𝑎)
5 −𝑠𝑖𝑛𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑐𝑜𝑠𝜃𝑐𝑘(𝑦 − 𝑦𝑜)

𝑎

+6(�̄�𝑏)
5 −𝑐𝑜𝑠𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑠𝑖𝑛𝜃𝑐𝑘(𝑦 − 𝑦𝑜)

𝑏 (𝑧𝑐𝑜𝑛𝑘 = 𝜃𝑐𝑘)

(B.11)

The last term of equation is the gradient of 𝑧𝑐𝑜𝑛𝑘 with respect to 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 :

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

= 𝛿𝑥𝑐𝑜𝑛
𝛿𝑥𝑐𝑜𝑛𝑖𝑛

= 𝑐𝑥 ,
𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

= 𝛿𝑦𝑐𝑜𝑛
𝛿𝑦𝑐𝑜𝑛𝑖𝑛

= 𝑐𝑦 ,
𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

= 𝛿𝜃𝑐
𝛿𝜃𝑐𝑖𝑛

= 2𝜋 (B.12)

Sensitivity analysis of the volume constraint with respect to the element relative density vari-
able

This sensitivity analysis involves the constraints 𝑔𝑣 stated in equation B.3.
As well as previous ones, they need the derivative with respect to the design variables.
The constraint 𝑔𝑣 can be calculated by using the following formula:

𝑔𝑣 = (Emin + ((𝜖 + Veo 𝜌𝑒)
𝑝 + (Vec 𝜂𝑒)

𝑝)
1/𝑝
) (B.13)

Where 𝑉𝑒𝑜 is the element volume of the structure and 𝑉𝑒𝑐 is the element volume of the connectors.
The volume for 𝑔𝑣 is the entire structure. However, there is no penalisation as in the equation B.1.

𝛿𝑔𝑣
𝛿𝜌𝑒

= Veo ((𝜖 + Veo 𝜌𝑒)
𝑝 + (Vec 𝜂𝑒)

𝑝)
1
𝑝−1 (𝜌𝑒 + Veo 𝜌𝑒)

𝑝−1 (B.14)

Sensitivity analysis of the volume constraint with respect to the geometric variable of the con-
nectors

As 𝑔𝑣 is also a function of 𝑥𝑐𝑜𝑛𝑘𝑖𝑛 , 𝑦𝑐𝑜𝑛𝑘𝑖𝑛 , 𝜃𝑐𝑜𝑛𝑘𝑖𝑛 . The gradient of 𝑔𝑣 due to the variables must also
be calculated. 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 can be 𝑥𝑖𝑛 , 𝑦𝑖𝑛 , 𝜃𝑐𝑘

𝛿𝑔𝑣
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

(B.15)

where:

𝛿𝑔𝑣
𝛿𝜂𝑒

= Vec ((𝜖 + Veo 𝜌𝑒)
𝑝 + (Vec 𝜂𝑒)

𝑝)
1
𝑝−1 (Vec 𝜂𝑒)

𝑝−1 (B.16)

and 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

and
𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

are calculated as mentioned previously in Eq. B.10, Eq. B.11 and

eq. B.12 simultaneously.
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Sensitivity analysis of the non-overlap constraint respect to the design variables

This sensitivity analysis involves the constraints 𝑔𝑐 stated in equation B.3. In terms of the non-
overlapping of connector constraint 𝑔𝑐, the sensitivity of the constraints with respect to 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 can be
calculated by the chain rule as follows:

The constraint 𝑔𝑐 is;

𝑔𝑐 =
𝑁𝑒
∑
𝑒=1
(1 − 𝜂𝑒)𝑉𝑒 − (𝑉𝑜 −

𝑐=1

∑
𝑁𝑐

𝑉𝑐) (B.17)

and its sensitivity is:

𝛿𝑔𝑐
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑐
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

(B.18)

where,

𝛿𝑔𝑐
𝛿𝜂𝑒

= −1 (B.19)

and where 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

and
𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

are the same as calculated previously on equations B.10,

B.11 and B.12 respectively.

B.2. Modelling, optimization problem and sensitivities of the con-
nectors with the voids

In this section, the changes to the optimization problem as well as the sensitivities due to the addition
of the two voids to the connector are shown.

B.2.1. Optimization problem
The position of the voids is not optimized, therefore, the optimization problem stays the same as in the
optimization of the connector found in section B.1.2.

B.2.2. Sensitivity analysis
They differ from the previous analysis due to the contribution of the voids, as when the connector is
optimised and moves, the voids also move.

Sensitivity analysis of the objective function respect to the element relative density variable

The design sensitivities of the objective function with respect to the element relative density variable
𝜌𝑒 can be written using Eq. B.5. Where the result of differentiating the equation 𝐸𝑒 (Eq. 3.13) with
respect to 𝜌𝑒 is equal to:

𝛿𝐸𝑒
𝛿𝜌𝑒

= Eo 𝑝1 𝜌𝑝1−1𝑒 𝜁𝑒𝑝3 ((Ec 𝜂𝑒𝑝2)
𝑞 + ( 𝜖 + Eo 𝜌𝑝1𝑒 )

𝑞)
1
𝑞−1 ( 𝜖 + Eo 𝜌𝑝1𝑒 )

𝑞−1
(B.20)

Sensitivity analysis of the objective function with respect to the geometric variable of connec-
tors

The two voids at each side of the solid also contribute to the optimization in sensitivities. Equation
B.7 has to be modified to add the contribution of the voids. The following equation shows how the
contribution is added.
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𝛿𝐽
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

( 𝛿𝐽𝛿𝜂𝑒
𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

+
2𝑘

∑
𝑡=2𝑘−1

𝛿𝐽
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑣𝑜𝑖𝑑𝑡

𝛿𝑧𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

) (B.21)

The first part is the same as previously calculated in Eq. B.7. The new part is the second part, the
summation of the contribution of the voids.

The first equation is the gradient of the objective function with respect to the voids field. This is
calculated as shown below.

𝛿𝐽
𝛿𝜁𝑒

= −𝛿𝐸𝑒𝛿𝜁𝑒
∗ u𝑇𝑒k0u𝑒 (B.22)

where:
𝛿𝐸𝑒
𝛿𝜁𝑒

= 𝑝3 𝜁𝑒𝑝3−1 (Emin + ((𝜖 + Eo 𝜌𝑝1𝑒 )
𝑞 + (Ec 𝜂𝑒𝑝2)

𝑞)
1/𝑞
) (B.23)

The second term on the contribution of the voids is the gradient of 𝜁𝑒 with respect to 𝜙𝑣𝑜𝑖𝑑𝑡 .

𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

= 𝜁𝑒
𝛽𝑒𝑥𝑝(−𝛽𝜙𝑣𝑜𝑖𝑑𝑡)

(1 + 𝑒𝑥𝑝(−𝛽𝜙𝑣𝑜𝑖𝑑𝑡))
(B.24)

The derivative of 𝜙𝑐𝑜𝑛𝑘 respect to 𝑧𝑣𝑜𝑖𝑑𝑡 is obtained by differentiating Eq. 3.8. The result of this
differentiation is the same as in equation B.11.

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑣𝑜𝑖𝑑𝑡

=
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

(B.25)

The equation of the differentiation of 𝑧𝑣𝑜𝑖𝑑𝑡 respect to 𝑧𝑐𝑜𝑛𝑘 . The equations for 𝑧𝑣𝑜𝑖𝑑𝑡 are shown in
Eq. 3.11.

𝛿𝑧𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑐𝑜𝑛𝑘

=
𝛿𝑥𝑣𝑜𝑖𝑑𝑡
𝛿𝑥𝑐𝑜𝑛𝑘

= 1,
𝛿𝑧𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑐𝑜𝑛𝑘

=
𝛿𝑦𝑣𝑜𝑖𝑑𝑡
𝛿𝑦𝑐𝑜𝑛𝑘

= 1,
𝛿𝑧𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑐𝑜𝑛𝑘

=
𝛿𝜃𝑣𝑜𝑖𝑑𝑡
𝛿𝜃𝑐𝑘

= 1 (B.26)

The last term is the differentiation, which is shown in Eq. B.12.

Sensitivity analysis of the volume constraint with respect to the relative density variables
The constraint 𝑔𝑣 can be calculated by using the following formula:

𝑔𝑣 = 𝜁𝑒 (Emin + ((𝜖 + Veo 𝜌𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1/𝑞
) (B.27)

The gradient with respect to the density is the following:

𝛿𝑔𝑣
𝛿𝜌𝑒

= Veo 𝜁𝑒 ((𝜖 + Veo 𝜌𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1
𝑞−1 (𝜌𝑒 + Veo 𝜌𝑒)

𝑞−1 (B.28)

Sensitivity analysis of the volume constraint with respect to the geometric variable of connec-
tors

This sensitivity analysis involves the constraints 𝑔𝑣 stated in B.3. As well as previous ones, they
need the derivative with respect to the design variables. As 𝑔𝑣 is also a function of 𝑥𝑐𝑜𝑛𝑘𝑖𝑛 , 𝑦𝑐𝑜𝑛𝑘𝑖𝑛 , 𝜃𝑐𝑘𝑖𝑛 .
The new equation with the voids contribution is needed for the gradient of 𝑔𝑣 due to the addition of the
voids. The new equation obtained is:

𝛿𝑔𝑣
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

(𝛿𝑔𝑣𝛿𝜂𝑒
𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

+
2𝑘

∑
𝑡=2𝑘−1

𝛿𝑔𝑣
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑣𝑜𝑖𝑑𝑡

𝛿𝑧𝑣𝑜𝑖𝑑𝑡
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

) (B.29)



58 B. Methodology, optimization problem and sensitivities

where:

𝛿𝑔𝑣
𝛿𝜂𝑒

= Vec 𝜁𝑒 ((𝜖 + Veo 𝜌𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1
𝑞−1 (Vec 𝜂𝑒)

𝑞−1 (B.30)

and 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

and
𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘𝑖𝑛

are calculated as mentioned previously in Eq. B.10, Eq. B.11 and

Eq.B.12
where the first term of the contribution of the void is calculated as:

𝛿𝑔𝑣
𝛿𝜁𝑒

= Emin + ((𝜖 + Veo 𝜌𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1/𝑞

(B.31)

The next terms have been calculated previously on equation B.24, B.25, B.26 and B.12.

Sensitivity analysis of the non-overlap constraint respect to the geometric variable of connec-
tors

This sensitivity analysis involves the constraints 𝑔𝑐 stated in equation B.3. As the addition of the
voids does not change the non-overlapping of connector constraint 𝑔𝑐, the sensitivity of the constraints
with respect to 𝑧𝑐𝑜𝑛𝑘𝑖𝑛 stays the same as in Eq. B.18.

B.3. Modelling, optimization problem and sensitivities of the cut
lines

This step shows how the cut lines are modelled and optimized. Here, there is no connector or voids.

B.3.1. Material interpolation scheme
In this part, the equation for 𝐸𝑒 is the same as in Eq. 3.19.

B.3.2. Optimization problem
Now, the x position of the cut line is optimized. This changes the optimization from the previous one
shown in Eq. B.3.

𝐹𝑖𝑛𝑑 ∶ {𝜌 = (𝜌1, 𝜌2, ..., 𝜌𝑁𝑒)𝑥𝑐𝑢𝑡 = (𝑥𝑐𝑢𝑡1 , 𝑥𝑐𝑢𝑡2 , ..., 𝑥𝑐𝑢𝑡𝑛𝑐+1)
𝑚𝑖𝑛 ∶ 𝐽 = 𝐹𝑇𝑈 (B.32)

where nc is the number of cut lines.

𝑆.𝑡.
⎧⎪
⎨⎪⎩

𝐾𝑈 = 𝐹
𝑔𝑣 = ∑

𝑁𝑒
𝑒=1 𝐸𝑒𝑉𝑒 − 𝑓1𝑉𝑜 ⩽ 0

0 < 𝜌𝑚𝑖𝑛 ⩽ 𝜌𝑒 ⩽ 1
𝑥𝑐𝑢𝑡𝑚𝑖𝑛 ⩽ 𝑥𝑐𝑢𝑡 ⩽ 𝑥𝑐𝑢𝑡𝑚𝑎𝑥

(B.33)

where the objective function J can be further expressed as in Eq. B.4:

B.3.3. Sensitivity analysis
In this part, the sensitivity analysis of the cut lines is done.

Sensitivity analysis of objective function respect to the element relative density variable

The design sensitivities of the objective function with respect to the element relative density variable
𝜌𝑒 is the same as in Eq. B.5. The result of differentiating the equation 𝐸𝑒 (Eq. 3.19) with respect to 𝜌𝑒
is equal the same as in Eq. 4.10.
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Sensitivity analysis of volume constraint respect to the element relative density variable

The result of differentiating the equation 𝑔𝑣 with respect to 𝜌𝑒 is equal to the one calculated on Eq.
4.41.

Sensitivity analysis of objective function respect to the cut line’s position
The equation of the derivative of 𝛿𝐽 over 𝑥𝑐𝑢𝑡𝑖𝑖𝑛 is:

𝛿𝐽
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑖

∑
𝑙=𝑖−1

𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.34)

.
The sensitivity on 𝑥𝑐𝑢𝑡𝑖 , where two lines have a common point, both cut lines’ contribution needs

to be added. For example, in Fig. 3.5, for 𝑥𝑐𝑢𝑡2 , the sensitivities of line one and line two need to be
added at point x2. This is added into Eq. B.34 with the summation ∑𝑖𝑙=𝑖−1. This means for the 𝑖𝑡ℎ 𝑥𝑐𝑢𝑡𝑖 ,
the contribution of the 𝑙 = 𝑖 − 1 and 𝑙 = 𝑖 are added, where l is the number of the cut line. For the
initial point, 𝑥𝑐𝑢𝑡1 and the last point, 𝑥𝑐𝑢𝑡𝑛𝑐 , the contribution is only a single line. The sensitivities of
the common x coordinate are not double; they are added as the sensitivities from a single line’s top or
bottom x coordinate are different. Both lines can have different values for a and 𝜃𝑐𝑘 . The derivatives of
𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

and 𝛿𝑎𝑐𝑜𝑛
𝛿𝑥𝑐𝑢𝑡𝑖

are different when l = 1 and 2, as one will be derived as a top cut value and the other
as a bottom cut value.

In Eq. B.34, the derivative of the objective function over the cut line field is:

𝛿𝐽
𝛿𝛾𝑒

= −𝛿𝐸𝑒𝛿𝛾𝑒
∗ u𝑇𝑒k0u𝑒 (B.35)

where:

𝛿𝐸𝑒
𝛿𝛾𝑒

= Eo 𝑝4 𝜌𝑝1𝑒 𝜁𝑒𝑝3 𝛾𝑒𝑝4−1 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1
𝑞−1 (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞−1 (B.36)

Sensitivity analysis of volume constraint respect to the cut line

As with the objective function, the sensitivities of both lines in the common point need to be added.

𝛿𝑔𝑣
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.37)

where:

𝛿𝑔𝑣
𝛿𝛾𝑒

= 𝜁𝑒 (𝛾𝑒 (𝜖 + Veo 𝜌𝑒))
𝑞−1 ((𝛾𝑒 (𝜖 + Veo 𝜌𝑒))

𝑞 + (Vec 𝜂𝑒)
𝑞)

1
𝑞−1 (𝜖 + Veo 𝜌𝑒) (B.38)

where in both cases,
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

is equal to:

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑖

∑
𝑙=𝑖−1

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑚𝑖𝑑𝑖

𝛿𝑥𝑐𝑢𝑡𝑚𝑖𝑑𝑖
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝜃𝑐𝑘

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑎𝑐𝑢𝑡𝑙

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

(B.39)

where:
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑚𝑖𝑑1

= 6( �̄�
𝑎𝑐𝑢𝑡𝑙

)
5 −𝑐𝑜𝑠𝜃𝑐𝑘

𝑎𝑐𝑢𝑡𝑙
+ 6( �̄�

𝑏𝑐𝑢𝑡
)
5 𝑠𝑖𝑛𝜃𝑐𝑘
𝑏𝑐𝑢𝑡

(B.40)

and
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𝛿𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑
𝛿𝑥𝑐𝑢𝑡𝑖

= 0.5 (𝑖 = 𝑙) (B.41)

This derivative of the mid-point is the same for the cut’s top and bottom x coordinates.
The topology description function with respect to the angle is:

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝜃𝑐𝑘

= 6(�̄�𝑎)
5 −𝑠𝑖𝑛𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑐𝑜𝑠𝜃𝑐𝑘(𝑦 − 𝑦𝑜)

𝑎

+6(�̄�𝑏)
5 −𝑐𝑜𝑠𝜃𝑐𝑘(𝑥 − 𝑥𝑜) + 𝑠𝑖𝑛𝜃𝑐𝑘(𝑦 − 𝑦𝑜)

𝑏

(B.42)

for 𝑎 = 𝑎𝑐𝑢𝑡𝑙 and 𝑏 = 𝑏𝑐𝑢𝑡
The angle in Eq.3.16 with respect to the top and bottom x coordinates of a single cut is:

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖

(𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖)2 + (𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖)2
(for 𝑖 = 𝑘)

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= −
𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖−1

(𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖−1)2 + (𝑥𝑐𝑢𝑡𝑖 − 𝑥𝑐𝑢𝑡𝑖−1)2
(for 𝑖 = 𝑘 + 1)

(B.43)

where k = l.
The first term of the last sum in Eq. B.39, is the length from the mid-point to the cut coordinates

𝑎𝑐𝑢𝑡𝑙 :
𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑎𝑐𝑢𝑡𝑙

= − 6 �̄�
6

𝑎7𝑐𝑢𝑡𝑙
(B.44)

The derivative of 𝑎𝑐𝑢𝑡𝑙 is different with respect to the top (𝑖 = 𝑙) and bottom (𝑖 = 𝑙 + 1) x cut line.

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

=
2𝑥𝑐𝑢𝑡𝑖 − 2𝑥𝑐𝑢𝑡𝑖+1

4√(𝑥𝑐𝑢𝑡𝑖 − 𝑥𝑐𝑢𝑡𝑖+1)
2 + (𝑦𝑐𝑢𝑡𝑖 − 𝑦𝑐𝑢𝑡𝑖+1)

2
(for 𝑖 = 𝑙)

𝛿𝑎𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

= −
2𝑥𝑐𝑢𝑡𝑖−1 − 2𝑥𝑐𝑢𝑡𝑖

4√(𝑥𝑐𝑢𝑡𝑖−1 − 𝑥𝑐𝑢𝑡𝑖)
2 + (𝑦𝑐𝑢𝑡𝑖−1 − 𝑦𝑐𝑢𝑡𝑖)

2
(for 𝑖 = 𝑙 + 1)

(B.45)

The last term is the derivative of the actual value with respect to the input one. The scaling factor:

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

= 𝑐𝑥 (B.46)

B.4. Modelling and sensitivities of the complete optimization, with
the cut lines, connectors and voids

The first optimization shown is the optimization of a cut line with a fixed connector. This means that the
connector will always be at the 𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑 and 𝑦𝑐𝑢𝑡𝑙𝑚𝑖𝑑 . The angle of the connector will be the same as
the angle of the cut.

B.4.1. Optimization of the cut line with fixed connector
As mentioned, the coordinates of the connector are:

𝑥𝑐𝑜𝑛𝑘 = 𝑥𝑐𝑢𝑡𝑙𝑚𝑖𝑑 =
𝑥𝑐𝑢𝑡𝑖 + 𝑥𝑐𝑢𝑡𝑖+1

2 , 𝑦𝑐𝑜𝑛𝑘 = 𝑦𝑐𝑢𝑡𝑙𝑚𝑖𝑑 =
𝑦𝑐𝑢𝑡𝑖 + 𝑦𝑐𝑢𝑡𝑖+1

2
𝜃𝑐𝑜𝑛𝑘 = 𝜃𝑐𝑘 = 𝑡𝑎𝑛−1(

𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖
𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖

)
(B.47)

for i = k.
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B.4.1.1 Optimization problem

As the connector in the cut line, the optimization problems do not change from Part 2 in section B.3.2.

B.4.1.2 Sensitivity Analysis

Here the sensitivity analysis is shown. It is not the same as in the previous one, as the contribution of
the fixed component needs to be added.

Sensitivity analysis of the objective function respect to the cut line

The new sensitivity of the cut line with respect to the objective function is the following:

𝛿𝐽
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝑖

∑
𝑙=𝑖−1

𝛿𝐽
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.48)

The previous equation, Eq. B.48, shows the connector’s contribution. This contribution is also
shown in Eq. B.49.

𝛿𝐽
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.49)

In Eq. B.49, the terms 𝛿𝐽
𝛿𝜂𝑒
, 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

and
𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

are the same as calculated in Eq.B.8 Eq.B.10 and

Eq. B.46 respectively.
However, in Eq. B.8, the term 𝛿𝐸𝑒

𝛿𝜂𝑒
is changed. This is because the material interpolation scheme is

changed to incorporate the cut line (𝛾𝑒) term. Therefore, the new differentiation is:

𝛿𝐸𝑒
𝛿𝜂𝑒

= Ec 𝜂𝑒𝑝2−1 𝑝2 𝜁𝑒𝑝3 ((Ec 𝜂𝑒𝑝2)
𝑞 + (𝜖 + Eo 𝜌𝑝1𝑒 𝛾𝑒𝑝4)

𝑞)
1
𝑞−1 (Ec 𝜂𝑒𝑝2)

𝑞−1 (B.50)

In Eq. B.49, the derivative of 𝜙𝑐𝑜𝑛𝑘 with respect to 𝑥𝑐𝑢𝑡 is the following function.

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑁𝑒
∑
𝑒=1

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛𝑘

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑘

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

(B.51)

𝜙𝑐𝑜𝑛𝑘 is a function of 𝜙𝑐𝑜𝑛𝑘(𝑥𝑐𝑜𝑛𝑘 , 𝑦𝑐𝑜𝑛𝑘 , 𝜃𝑐𝑘 , 𝑎𝑐𝑜𝑛𝑘 , 𝑏𝑐𝑜𝑛𝑘). Where 𝑎𝑐𝑜𝑛𝑘 and 𝑏𝑐𝑜𝑛𝑘 are constant, and
𝑦𝑐𝑜𝑛𝑘 = 𝑦𝑐𝑢𝑡𝑚𝑖𝑑 , which is also constant in every iteration of the optimization.

In Eq. B.51, the term
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛

is equal as in Eq. B.11 for 𝑧𝑐𝑜𝑛𝑘 = 𝑥𝑜. The term
𝛿𝑥𝑐𝑜𝑛
𝛿𝑥𝑐𝑢𝑡𝑖

is equal to Eq.

B.41 as 𝑥𝑐𝑜𝑛𝑘 = 𝑥𝑐𝑢𝑡𝑚𝑖𝑑 . The term
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑘

is equal as in Eq. B.11 for 𝑧𝑐𝑜𝑛𝑘 = 𝜃𝑐𝑘 . The last term,
𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

,
is the same as B.43, as 𝜃𝑐𝑜𝑛𝑘 = 𝜃𝑐𝑢𝑡 = 𝜃𝑐𝑘 .

Sensitivity analysis of the volume constraint with respect to the cut line
For the volume constraint, the contribution should also be added. The way it is added is the same as
with the objective function. The new equation for the sensitivities concerning the volume is:

𝛿𝑔𝑣
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝜙𝑐𝑢𝑡𝑙

𝛿𝜙𝑐𝑢𝑡𝑙
𝛿𝑥𝑖𝑐𝑢𝑡

𝛿𝑥𝑖𝑐𝑢𝑡
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑧𝑐𝑜𝑛𝑘

𝛿𝑧𝑐𝑜𝑛𝑘
𝛿𝑥𝑖𝑐𝑢𝑡

𝛿𝑖𝑐𝑢𝑡
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.52)

The first terms are the same as calculated in Eq B.37. And the contribution is:

𝛿𝑔𝑣
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.53)
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In Eq. B.53, the derivatives of 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

and
𝛿𝑥𝑐𝑢𝑡𝑖
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

are the same as in the Eq. B.48. The

derivative of the volume constraint with respect to term 𝛿𝑔𝑣
𝛿𝜂𝑒

is:

𝛿𝑔𝑣
𝛿𝜂𝑒

= Vec 𝜁𝑒 (Vec 𝜂𝑒)
𝑞−1 ((𝜖 + Veo 𝜌𝑒 𝛾𝑒)

𝑞 + (Vec 𝜂𝑒)
𝑞)

1
𝑞−1 (B.54)

B.4.2. Optimization of a cut line with movable a connector
Here, a cut line is optimized at the same time as the position of the connector on the cut line.

B.4.2.1 Sensitivity analysis

Sensitivity analysis of objective function respect to the cut line

The main equation of the 𝛿𝐽
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

stays the same as in Eq. B.48. However, now the 𝑥𝑐𝑜𝑛𝑘 is not
equal to the mid-point of the cut line, and now the 𝑦𝑐𝑜𝑛𝑘 is also optimized, therefore, has a contribution.
This makes the term

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

change. The new equation is:

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

=
𝑁𝑒
∑
𝑒=1

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛𝑘

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑦𝑐𝑜𝑛𝑘

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑘

𝛿𝜃𝑐𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

(B.55)

In Eq. B.55, the first two terms
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑦𝑐𝑜𝑛𝑘

and
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝜃𝑐𝑘

are equal as in Eq. B.11 for 𝑧𝑐𝑜𝑛𝑘 = 𝑥𝑜,
𝑧𝑐𝑜𝑛𝑘 = 𝑦𝑜 and 𝜃𝑐𝑘 = 𝑦𝑜 simultaneously. The other terms are the same as previously calculated in Eq.
B.51. The new terms in Eq. B.55 are:

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 1 − 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘)
𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘 + 1) (B.56)

And for the y values :

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 1 − 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘)
𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

= 𝑠𝑐𝑜𝑛𝑘 (for 𝑖 = 𝑘 + 1) (B.57)

Sensitivity analysis of volume constraint respect to the cut line

The main equation of the 𝛿𝑔𝑣
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

stays the same as in Eq. B.52. Due to the same reasoning as

in the previous section with the objective function, the term
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑢𝑡𝑖

change to the same term as in Eq.
B.55.

Sensitivity analysis of objective function respect to the connector

As the position of the connector on the cut line is optimized. A new sensitivity analysis for the 𝑠𝑐𝑜𝑛𝑘
is needed.

𝛿𝐽
𝛿𝑠𝑐𝑜𝑛𝑘

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

(B.58)

Where each term can be found in Eq. B.50 Eq. B.10. The term
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

is calculated:

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

=
𝑁𝑒
∑
𝑒=1

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑥𝑐𝑜𝑛𝑘

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

+
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑦𝑐𝑜𝑛𝑘

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

(B.59)
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and the derivative of 𝑥𝑐𝑜𝑛𝑘 respect to 𝑠𝑐𝑜𝑛𝑘 is equal to:

𝛿𝑥𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

= 𝑥𝑐𝑢𝑡𝑖+1 − 𝑥𝑐𝑢𝑡𝑖 (B.60)

for i = k
and the derivative of 𝑦𝑐𝑜𝑛𝑘 respect to 𝑠𝑐𝑜𝑛𝑘 is equal to:

𝛿𝑦𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

= 𝑦𝑐𝑢𝑡𝑖+1 − 𝑦𝑐𝑢𝑡𝑖 (B.61)

for i = k

Sensitivity analysis of volume constraint respect to the connector
here how the sensitivities of the position of volume constraint respect to the position of the connector

𝛿𝑔𝑣
𝛿𝑠𝑐𝑜𝑛𝑘

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑣
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

(B.62)

Where each term can be found in Eq. B.54 Eq. B.10 and Eq. B.55

B.4.3. Addition of the voids
The optimization problem and the equation of 𝐸𝑒 stay as in the previous optimization.

B.4.3.1 Continuation of the sensitivity analysis from main report

Here shows the continuity of the sensitivity analysis mentioned on 4.2.6. The previous sensitivity anal-
ysis is shown at 4.2.

Sensitivity analysis of the volume constraint with respect to the cut line

As well as with the objective function, the holes have contributed to the volume constraint.

𝛿𝑔𝑣
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝛾𝑒

𝛿𝛾𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

(B.63)

Where 𝛿𝛾𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

is the same as in Eq. 4.16, 𝛿𝜂𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

is the same as in Eq. 4.26 and 𝛿𝜁𝑒
𝛿𝑥𝑐𝑢𝑡𝑖𝑖𝑛

is the

same as in Eq. 4.30.
In Eq. B.63 all the sums, the terms 𝛿𝑔𝑣

𝛿𝛾𝑒
and 𝛿𝑔𝑣

𝛿𝜂𝑐𝑜𝑛
have already been calculated, 𝛿𝑔𝑣𝛿𝜂𝑒

is shown on

Eq. B.54. 𝛿𝑔𝑣𝛿𝛾𝑒
is shown on B.38. And 𝛿𝑔𝑣

𝛿𝜁𝑒
is the following:

𝛿𝑔𝑣
𝛿𝜁𝑒

= ((𝜖 + Veo 𝜌𝑒 , 𝛾𝑒)
𝑞 + (Vec 𝜂𝑒)

𝑞)
1/𝑞

(B.64)

Sensitivity analysis of the volume constraint with respect to the connector
The gradient of the volume constraint with respect to the connector’s position on the cut line is shown
here.

𝛿𝑔𝑣
𝛿𝑠𝑐𝑜𝑛𝑘

=
𝑁𝑒
∑
𝑒=1
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𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

+
𝑁𝑒
∑
𝑒=1

𝛿𝐽
𝛿𝜁𝑒

𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑠𝑐𝑜𝑛𝑘

(B.65)

The terms 𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

,
𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛𝑘

, 𝛿𝜁𝑒
𝛿𝜙𝑣𝑜𝑖𝑑𝑡

and
𝛿𝜙𝑣𝑜𝑖𝑑𝑡
𝛿𝑠𝑐𝑜𝑛𝑘

are the same as in Eq. 4.36. The derivative of the
volume constraint over 𝜂𝑒 is shown in Eq. B.54, and the derivative over 𝜁𝑒 is shown in Eq. B.64.
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Sensitivity analysis of the non-overlap constraint with respect to the connector

The non-overlap constraint does not affect the cut line, the density or the voids. Therefore, the
sensitivity analysis is only with the connector.

𝛿𝑔𝑐
𝛿𝑠𝑐𝑜𝑛

=
𝑁𝑒
∑
𝑒=1

𝛿𝑔𝑐
𝛿𝜂𝑒

𝛿𝜂𝑒
𝛿𝜙𝑐𝑜𝑛𝑘

𝛿𝜙𝑐𝑜𝑛𝑘
𝛿𝑠𝑐𝑜𝑛

(B.66)

The gradient of the non-overlap constraint with respect to 𝜂𝑒 is -1. The second term is found on Eq.
B.10, for 𝜙 = 𝜙𝑐𝑜𝑛. And the last term of the differentiation is equal to the one calculated in Eq. B.59.



C
Extra results

In this chapter, more examples of optimizations are shown for the two first steps. In the main part, the
final solutions are shown, here, the intermediate solutions and more other final solutions are shown.

C.1. Results for the optimization of the structure and the connec-
tor, with and without voids

First, the optimization is done only with a connector, followed by a connector with two voids.

C.1.1. Optimization of the structure with a single connector with no void
Different optimizations were performed in different conditions to prove that the optimization problems
gave a reasonable solution. Due to the optimization problem and the conditions, several final positions
could seem to give reasonable solutions for each initial condition. This is due to the optimization having
several local optima.

In the first case (Fig.C.1a), the connector is placed in the middle of the part. The initial position
is changed in the second case (Fig.C.1b). If both images are compared, one conclusion is that the
connector’s initial positioning influences the connector’s final positioning and the initial and final com-
pliance.

(a) Case 1- J = 223.14 (b) Case 2- J = 218.98 (c) Case 3- 223.31

Figure C.1: Optimization of the structure with a single connector

In Case 3 (Fig.C.1c) and Case 5 (Fig.C.2b), the size of the connector is changed. This also gives
different positioning of the connectors and different structures. Case 4 (Fig.C.2a) has a finer mesh,
100x60 elements. Finally, in Case 6 (Fig.C.2c) and Case 7 (Fig.C.2d), try the different initial connector
angles. One observation is that the optimizer optimizes the structure and looks to position the connector
in a place with a member of the structure to minimize compliance and not to add extra material as it
has the volume fraction constraint.
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(a) Case 4 - 58.7475 (b) Case 5- 231.3491

(c) Case 6 - 222.2608 (d) Case 7 - 224.4761

Figure C.2: Optimization with only the connector

Table E.1 shows the values that remain constant in optimization and the initial and final values for
the optimization. The number of cases matches those in Fig. C.1 and in Fig. C.2.

C.1.2. Optimization of the connector and two voids
Three cases are shown in the main report, two more cases were tried.

(a) Case 4 - 225.2292 (b) Case 5 - 85.6168

Figure C.3: Extra optimization of the connectors with voids

One with a different starting position (Case 4 in Fig. C.3a) and one with a finer mesh (Case 5 in Fig.
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C.3b). As mentioned in the main text, the results obtained are expected, and it was observed that the
starting position does influence the final layout.

C.2. Results for the optimization of the structure and the cut lines
These cases are more examples where the cut line is optimized.

C.2.1. A single cut line
The first step is to simultaneously optimize the position of a single-cut line and the structure. Optimizing
the cut line involves the optimization of the x coordinates of the top and bottom points, not the midpoints,
as in the connector optimization.

Table E.3 shows the starting and optimized values. This table corresponds to the cases shown
in Fig.C.4 and Fig. C.5. Most cut lines have a small thickness of one element (𝑏𝑐𝑢𝑡) due to the idea
that when something is cut, it is a thin line. However, this is an user input and can be changed as
desired. The vertical length 𝑎𝑐𝑢𝑡 is calculated with Eq. 3.17, using both points of the optimization. 𝜃𝑐𝑢𝑡
is calculated using Eq. 3.16.

Fig. C.4 shows two different cases for optimising the cut line. New starting values are tried to
observe how they influence the optimization results and if they influence the optimization process. In
these optimizations, the initial conditions are the number of elements in the y and x direction, the cut
line’s initial positioning and the cut line’s thickness. As mentioned, the angle 𝜃𝑐𝑢𝑡 and vertical direction
𝑎𝑐𝑢𝑡 depend on other values. The thickness of the cut line and the y coordinates are optimized.

The cut line is optimised in the first case (Fig. C.4a), and the starting point is at an angle. In the
second case (Fig. C.4b), the initial values for the y coordinates are the same, leading to a horizontal
cut.

In both cases, the optimizer looks to place the cut line into a position where the density is 0. More-
over, the compliance does not differ much between the cases. This is an expected result so as not to
influence the compliance of the structure, the cut line positions itself on an already existing area where
the density is zero.

(a) Case 1 - J = 222.56 (b) Case 2 - J = 222.46

Figure C.4: Optimization with a single cut line

The third case’s starting point is a vertical line (Fig. C.5a). In the optimized graph, the line doesn’t
look like a straight line, but this is due to the mesh. In the fourth case (Fig. C.5b), the starting position
is forced at the top, whereas in the previous optimizations, there is a limb. This affects the structure.
In the fifth case (Fig. C.5c), the thickness of the cut line is changed to half of the other values. Finally,
the number of elements increases in the sixth case (Fig. C.5d).
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(a) Case 3 - 221.0927 (b) Case 4 - 222.2679

(c) Case 5 - 224.2951 (d) Case 6 - 59.3146

Figure C.5: Optimization with a single cut line

In all the cases, the optimizer looks to place the cut line into a position where the density is 0.
Moreover, the compliance does not differ much between the cases, the most significant difference is in
Case 6, but this is due to the different number of elements.

C.2.2. Multiple cut lines
Here extra cases of how multiple cut lines are optimized are shown.

(a) Case 3 - 223.2710 (b) Case 4 - 220.9120

Figure C.6: Optimization with multiple cut lines, Cases 3 and Case 4
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From Case 3 (Fig. C.6a) to Case 4 in Fig. C.6b, the thickness of the cuts is altered. The thickness
has changed to half in Case 4 (Fig. C.6b). The cut line, however, does not look straight or continuous
due to the coarse mesh.

The number of cut lines can be changed from 1 to multiple ones. This is user input. Case 5 (Fig.
C.7a) has three cuts, while in the previous cases, there were only two. The number of elements is
changed in the last case, number 6 (Fig. C.7b).

(a) Case 5 - 233.3603 (b) Case 6 - 59.3214

Figure C.7: Optimization with multiple cut lines, Case 5 and Case 6

C.3. Optimizing the structure with the cut lines, connectors and
voids

In this section, the optimizations with the connector, the voids and the cut lines are done. In the fol-
lowing optimizations, the structure starts to be fully divided. As in the previous optimizations, several
parameters are kept constant. These are shown in Table. 5.1.

C.3.1. Optimization of the cut line with a fixed connector

(a) Case 1 - J = 220.51 (b) Case 2 - J = 218.60

Figure C.8: Optimization with a fixed connector at the midpoint, Case 1 and 2

The methodology in Appendix B.4.1 explains how a cut line with a fixed component in the middle is
optimized. In this section, different cases are optimized. The numerical results of this section are found
in Table. E.5.
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There are four cases optimized here. The first case, in Fig.C.8a, shows the optimization with an
initial position of the component of a straight line. In Case 2 (Fig. C.8b), the initial position of the 𝑥𝑐𝑢𝑡
is changed. In Case 3 in Fig. C.9a, the value of 𝑎𝑐𝑜𝑛 is changed to a higher one, making the connector
larger. In the last case in Fig. C.9b, Case 4, the values of 𝑥𝑐𝑢𝑡 and 𝑦𝑐𝑢𝑡 are changed.

These cases were tried to observe how the cut line moves with the influence of the connector.

(a) Case 3 - J = 223.79 (b) Case 4 - J = 222.02

Figure C.9: Optimization with a fixed connector at the midpoint, Case 3 and 4

C.3.2. Optimization with movable connector
This section contains the results of optimising the connector and the cut line. The position of a single
cut line is optimized at the same time as a single connector’s position is optimized on the top of the
cut line. One requirement in this section is that the thickness of the connector (𝑏𝑐𝑜𝑚𝑝) must be larger
than the thickness of the cut line (𝑏𝑐𝑢𝑡). This is due to the component needing to connect both parts
of the structure. Twelve cases were performed to observe how the initial values affect the final results.
Different values are changed in each optimization to observe the impact of the user input values.

The component’s initial size is kept constant in the first three cases, and the cut line’s initial position
is changed. In the first case (Fig. C.10a), it can be observed that the connector has an equal vertical
length as the cut line in the starting position. However, when optimized, as the size of the cut line has
increased due to the final positioning of 𝑥𝑐𝑢𝑡, the value of 𝑎𝑐𝑢𝑡 has increased, and 𝑎𝑐𝑜𝑛 remains two as
this value is not optimized. In the second case (Fig. C.10b), the starting position of the cut is kept the
same as in the previous case. However, the y values have moved. In Case 3 (Fig. C.10c), the starting
𝑥𝑐𝑢𝑡 values of the cut are changed. This leads to a change in the starting value of the connector’s
angle. In these cases, the optimized position of the structure is expected, the cut line moves to position
the connector on a member of the optimized structure and looks to position the cut line on a hole to not
affect the structural stiffness and compliance by breaking the structure.

(a) Case 1 - J = 220.06 (b) Case 2 - J = 230.20 (c) Case 3 - J = 218.46

Figure C.10: Optimization of the cut line with the connector changing the cut line y coordinates.

In the next three cases, Case 4 (Fig. C.11a), Case 5 (Fig. C.11b) and Case 6 (Fig. C.11c), the
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size of the connector is changed, in Case 6, the connector’s thickness (𝑏𝑐𝑜𝑛) is three times higher than
the cut line, and in cases 5 and 6, the connector has the same thickness as the cut line. Comparing
cases 4 and 5, the connector has increased on the 𝑏𝑐𝑜𝑛 in Case 4 and 𝑎𝑐𝑜𝑛 in Case 5. As well as
the connector’s size, both have different 𝑦𝑐𝑢𝑡 coordinates. This leads to different positioning. Case 6
starting point is similar to the second case, the main difference is the y positioning of the cut, which
leads to different optimized results. In these three cases, the optimizer does what is expected, to place
the connector on the structure, where there is material and the cut line in the holes.

(a) Case 4 - J = 279.88 (b) Case 5 - J = 310.04 (c) Case 6 - J = 281.36

Figure C.11: Optimization of the cut line with the connector, the connector’s thickness is the same as the cut line

Case 7, in Fig. C.12a, shows the optimization with a different number of elements. In this case,
there are 180x60 elements. This change also changes the size of the component with respect to
the structure, as the component length is determined by the number of elements and the cut line is
scaled to the number of elements. Case 8 (Fig. C.12b) is the first image with a full structural cut. The
component is larger than in other cases to allow the structure to optimize around it. This case has the
highest compliance, this is due to the shape of the structure.

(a) Case 7 - J = 204.6239 (b) Case 8 - J = 346.89

Figure C.12: Optimization of the cut line with the connector, one case with a higher number of elements and another case with
a full division of the structure.

The last four cases, Case 9 (Fig. C.13a), Case 10 (Fig. C.13b), Case 11 (Fig. C.13c) and Case
12 (Fig. C.13d), the 𝐸𝑐 changes. In Case 9, the 𝐸𝑐 is changed to 0.7. This means that the component
now is 30% weaker than the structure. This time the component is supported by a higher number of
beams than in the other cases. In cases 10 and 11, the initial position is the same, however, they have
different Young’s modulus. The connector’s position is different in both cases, as well as the position
of the cut line, although they are similar. The main visual difference is on the top structural member.
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(a) Case 9 - J = 198.21 (b) Case 10 - J = 202.51

(c) Case 11 - J = 208.71 (d) Case 12 - J = 207.16

Figure C.13: Optimization of the cut line with the connector, cases with a lower 𝐸𝑐

Regarding optimized compliance, Case 10 has 202.51, and Case 11 has 208.71. Case 12 has the
same 𝐸𝑐 as in Case 1. However, the starting position is different; now, it tries to cut the bottom part of
the structure. In this case, the compliance is 207.16. Moreover, comparing both figures, they create a
small deviation of their closer structural member, meaning they are no longer straight. In these cases,
the optimizer places the connector and the cut line where it is expected.

The numerical solutions, as well as the starting design variables, are plotted in Table. E.6 and Table.
E.7. The results are divided into two tables to be easier to read.

C.3.3. Optimization with movable connector and voids
This section adds two voids on the connector’s side, one on each side. As in previous sections, a few
optimisations are performed to analyse the influence of the voids. In this section, nine different cases
were optimized.

These optimizations are more challenging to position on the structure. In the previous case, the
connectors could be placed on the structural members and, with the angle of the cut line, avoid dam-
aging the structure. However, with the addition of both voids, on all four sides of the connector, there
is a section with a 0 density, the cut line on the top and bottom sides, and the voids, one on each side.

The first case for this optimization, Fig. C.14a, is also the only optimization with the coarse mesh,
60x20 number of elements. One observation is that the optimizer tries to position the connector as
one of the structural members of the structure by placing one of the voids out of the design domain
and the other into a structural void. This is done by moving the cut line to a desired angle. This is the
optimiser’s expected behaviour: to place the cut line and the voids on a hole where density is zero and
place the connector connecting the structure to avoid its detachment.

Cases 2 (Fig. C.14b) and Case 3 (Fig. C.14c) have the connector’s exact positioning and element
size as in Case 1. However, as the structure has a finer mesh. The difference between both cases is
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the void size. With these examples, the conclusion that the size of the voids affects the final position is
obtained. The compliance is 198.89 for Case 2 and slightly higher for Case 3, with a value of 202.98.

(a) Case 1 - J = 224.79 (b) Case 2 - J = 198.89 (c) Case 3 - J = 202.98

Figure C.14: Optimization of the cut line with the connector and the voids cases 1 to 3

The horizontal dimension of the connector, 𝑏𝑐𝑜𝑛, and the initial position are changed in Case 4 (Fig.
C.15a). The initial position is changed to a horizontal line with different 𝑦𝑐𝑢𝑡 values. The optimizer
looks to position the connector on an angle and place it where the cut and the voids lie on the structural
gap, which is the expected solution. Case 5 (Fig. C.15b) has a different starting position and a larger
void side. In this case, the optimiser tried to connect the connector with a member of the structure by
the material between the cut line and the void. This case is similar to the previous one, with another
dimension and starting position.

(a) Case 4 - J = 206.5396 (b) Case 5 -J = 209.4513

Figure C.15: Optimization of the cut line with the connector and the voids, cases 4 and 5

The last four cases, Case 6 (Fig. C.16a), Case 7 (Fig. C.16b), Case 8 (Fig. C.16c), and Case 9
(Fig. C.16d), Young’s modulus of the component is lower (𝐸𝑐). Case 6 is similar to Case 2. The cut
line’s starting 𝑥𝑐𝑢𝑡 values and the 𝐸𝑐 = 0.8 are different. These changes affect the final optimization
as well as compliance. Case 2 has lower compliance, but it is only a 1% difference. Case 7 has a
𝐸𝑐 = 0.8, which is the same as in the previous case, Case 8 has a 𝐸𝑐 = 0.7 and Case 9 has a 𝐸𝑐 = 0.5.
In Case 9, the connector’s strength is half of the structure’s. In cases 7 and 8, the optimizer does what
is expected, however, in Case 9, the expected optimized position would have been similar to the one in
Case 8, however, this might have differed due to the change of the initial position and the connector’s
lower Young’s modulus.
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(a) Case 6 - J = 201.7132 (b) Case 7 -J = 206.7243

(c) Case 8 - J = 200.6405 (d) Case 9 - J = 214.4957

Figure C.16: Optimization of the cut line with the connector and the voids, with a lower value for 𝐸𝑐

Tables E.8 and E.9 show the initial and final numerical values for the figures found in Fig. C.14, Fig.
C.15, and Fig. C.16.
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Full parameters studies

In this chapter, the full parameter study is shown.

D.1. Optimization of multiple cut lines and connectors
This section optimises different cases with multiple cut lines and connectors. Fig. C.12b was the only
case previously where the entire structure was divided into two different parts joined by the optimization
of the connector. From now on, all the cases will fully divide the structure in two. There are multiple
starting points for the optimizations and multiple variables which can be changed.

This section aims to see how the variables, which determine the initial conditions and positioning,
change the final results. The approach taken in this section is to have a reference case (Case 1 in
Fig. D.1a) and start changing the variables, one per case, to observe what consequences have on the
optimized structure. There are seventeen cases optimized in this section. The numerical values are
in Table E.10, Table. E.11 and Table.E.12. These are divided into three different tables to be easier to
read.

Here the comparison of some optimization is shown. The first case in Fig. D.1a, is used as a
reference to observe how one change influences the optimization. The initial values for the first case
are 𝐸𝑐=1, there are three cut lines which will cut the whole structure, the values for 𝑦𝑐𝑢𝑡 = 0, 0.3, 0.7, 1.
The starting point of the connector on the cut line 𝑠𝑐𝑜𝑛 is 0.5, therefore, it will start in the middle of the
cut line. The connector’s size is 𝑎𝑐𝑜𝑛 = 6 x 𝑏𝑐𝑜𝑛 = 3 elements. The thickness of the cut line, 𝑏𝑐𝑢𝑡, is
set to 1 element.

(a) Case 1 - J = 208.92 (b) Case 2 - J = 224.40 (c) Case 3 - J = 210.07

Figure D.1: Optimization of the cut lines with the connectors, Initial case and two cases with lower 𝐸𝑐

In cases 2 and 3 (Fig. D.1), the value of 𝐸𝑐 has changed to a lower one, with a value of 0.8 in Case
2 (Fig. D.1b) and 0.5 in Case 3(Fig. D.1c). This means that now, the connector has a lower Young’s
modulus. As it can be appreciated, the different values of 𝐸𝑐 do affect the positioning of the connectors
and the cut lines. The final compliance is also affected. The first case has lower compliance, followed
by Case 3, then Case 2. The optimiser places the connectors on the outer cut lines in the top and bottom
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members of the structure and the middle connector connecting the structure in the middle. This is what
is expected to do as the outside part of the structure is the most important and affects compliance.

The initial position of the 𝑥𝑐𝑢𝑡 is changed in the fourth and fifth cases. In Case 4 (Fig. D.2b), the
initial position is shifted by adding ten elements in the x direction, and in Case 5 (Fig. D.2c), the initial
position is moved by subtracting ten elements in the x direction of the original case. Both changes
do have an impact on the positioning of the optimization. When it is shifted to the right, the optimized
values are also moved to the right, except for the bottom cut line and connector, which has a lower
value than the original case. When the initial positioning is moved to the left, the same happens, the
connector is shifted to the left. In both cases, the compliance increases with respect to Case 1. In Case
4, it increases a 6 %, and in Case 5 by a 9.4%. The starting compliance is also higher in both cases
than in Case 1. Here it can be observed in these cases that the connectors align with the members of
the structure.

(a) Case 1 - J = 208.92 (b) Case 4 - J = 202.22 (c) Case 5 - J = 222.71

Figure D.2: Optimization of the cut lines with the connectors, moving the 𝑥𝑐𝑢𝑡

In Case 6 (Fig. D.3b), the position of 𝑦𝑐𝑢𝑡 is modified. The modification is made on the top and
middle cut lines. The top line has a larger size, while the middle line is shorter. This change has a more
significant influence on the top structural member. In Case 7 (Fig. D.3c), the 𝑦𝑐𝑢𝑡 is also changed. This
time, the top and middle cut lines are shorter, and the bottom cut line is larger. The optimization also
changes, the shape of the optimized part does not change as in Case 6. Furthermore, the compliance
is lower than in Case 6 and Case 1. This is the second lower compliance in this section. Comparing
the three images in Fig. D.3, the compliance has improved, and Fig. D.3c has a complex design with
finer members.

(a) Case 1 - J = 208.92 (b) Case 6 - J = 228.69 (c) Case 7 - J = 205.36

Figure D.3: Optimization of the cut lines with the connectors, different starting values of 𝑦𝑐𝑢𝑡

Cases 8 (Fig. D.4b) and 9 (Fig. D.4c) show the optimization with a change in 𝑠𝑐𝑜𝑛, the starting
position of the connector in their respective cut lines. The optimized positions have changed if com-
pared to each other and Case 1. However, the structure of Case 8 and Case 1 are similar. Case 8
has the lowest compliance of all the different cases. Case 9 also has a lower compliance than Case 1
and higher than Cases 7 and 8. The influence of the starting positioning of the connectors and the cut
lines has led to lower compliance in Case 8. Looking at Case 9, it can be observed that the optimiser



D.1. Optimization of multiple cut lines and connectors 77

creates a member of the structure by aligning two connectors. As the optimizations are now, this will
not be a problem, however, the desired idea is to have two voids on the side, which will influence the
positioning, as well as the connectors will not have the same strength as the structure.

(a) Case 1 - J = 208.92 (b) Case 8 - J = 198.60 (c) Case 9 - J = 207.53

Figure D.4: Optimization of the cut lines with the connectors, different values for 𝑠𝑐𝑜𝑛

(a) Case 1 - J = 208.92 (b) Case 10 - J = 219.24 (c) Case 11 - J = 213.45

Figure D.5: Optimization of the cut lines with the connectors, changing the connector’s size

The connector sizes have changed in Cases 10 (Fig. D.5b) and 11 (Fig. D.5c). Case 10 has
smaller connectors in both horizontal and vertical values. However, Case 11 has a larger connector on
the horizontal length and the same element length on the vertical as in Case 10. The compliance on
both increases respect to the first case. Moreover, the structure also changes to accommodate better
the changes on the connector’s size. The optimization with larger connectors has lower compliance;
however, is still a 1% increase in Case 1.

(a) Case 1 - J = 208.92 (b) Case 12 - J = 220.60 (c) Case 13 - J = 204.87

Figure D.6: Optimization of the cut lines with the connectors, with different numbers of connectors and cut lines

The number of cut lines and connectors is increased by 1 in Case 12 (Fig. D.6b). The connector size
is also modified to fit the extra connector. The structure changes to accommodate the extra connector
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and cut line. The optimizer places all the connectors and tries to make connections between them. The
compliance is also higher than in other cases, this can be due to having smaller connectors and more
cut lines, which constrain the structure more. In Case 13 (Fig. D.6c), the number of connectors and
cut lines is lower; it only has two. This forces the optimizer not to have any solid connection between
in the middle, where the cut is, as well as positioning the cut lines at both outer sides. The compliance
is lower than in Case 1.

The number of elements has changed in Case 14 (Fig. D.7b). Now it has 180 on the x and 60 on
the y. The number of elements has the same x:y ratio as the previous one. Therefore, the structure
has the same proportions. As the length of the connectors is determined by element number, they are
smaller in this case. The 𝑥𝑐𝑢𝑡 position is the same as the input is not scaled to the number of elements.
Looking at the initial figure, the starting position in Case 14 has the same as in Case 10. However,
optimising the final positioning is not in the same place or has the same compliance. This can also
be affected due to the maximum allowed change for the cut line and connector position. As there are
more elements, the maximum change per iteration is smaller.

In Case 15 (Fig. D.7c), the starting position of the cuts and, therefore, the connectors are changed.
In the previous cases, they were shifted to both sides but kept the same initial angles and values of
𝑎𝑐𝑢𝑡. In this case, the starting position is a straight line in the middle of the structure. This leads to a
new optimized position with lower compliance of the structure.

(a) Case 1 - J = 208.92 (b) Case 14 - J = 207.29 (c) Case 15 - J = 205.85

Figure D.7: Optimization of the cut lines with the connectors, with different mesh and the straight line starting point

The thickness of the cut line has been one element in all the optimizations except in Case 16 (Fig.
D.8b). Here, the thickness is doubled, as can be seen in the figure. In all the cases until now, even on
the previous optimization cases, the 𝑟𝑚𝑖𝑛 has been maintained with the same value, 1.5. This value is
the most commonly used. But to see the influence on the optimization, the filter radius, which can affect
the size of the structural members, is changed to 2, this is in Case 17 (Fig. D.8c). This has changed
the optimized value and, as expected, has made the structure blurry.

(a) Case 1 - J = 208.92 (b) Case 16 - J = 206.99 (c) Case 17 - J = 207.89

Figure D.8: Optimization of the cut lines with the connectors, change in the 𝑏𝑐𝑢𝑡 and 𝑟𝑚𝑖𝑛

There were only 17 cases tried, and in most of them, only one variable changed per optimization.
However, these variables can be changed in multiple ways and obtain different results. For all the
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cases on each table, there are their corresponding figures. Table E.10 shows the numerical values for
Fig. D.1, Fig. D.2, and Fig. D.3, which shows the cases 1 to 6. Table. E.12 shows the numerical
values for the figures in Fig. D.3, Fig. D.4, Fig. D.5, Fig. D.6, Fig. D.7 and Fig. D.8, which shows
cases 13 to 17.

D.2. Optimization of multiple cut lines, connectors and voids
The voids are now added to the optimization. This makes the optimizations more challenging. In the
previous case, the connectors could be positioned on the structural members of the structure and, with
the cut line’s angle, avoid breaking the structure. However, with the addition of both voids, there is a
zero density area on the four sides of the connector, the cut line on the top and bottom sides, and the
voids on the other sides. Making it more challenging to position the connector with a higher dimension
of the voids.

This section is divided into two. Firstly, the voids’ size is kept constant, and their size changes in
the second part. As in the previous comparison, the reference case is the same as the previous one,
in Fig. D.1a, but voids are added in these comparisons. This allows the cases to be compared against
each other and with the cases without the voids.

D.2.1. Optimizations with the voids size constant
This section shows how the addition of the two holes affects the optimization. This is done by having
the same optimization cases as in the previous sections, however, this time with the voids. In this
part, the dimensions of the voids are kept constant. Not all the cases in the previous section are also
optimized here, only one case per variable changed. The size of the void has the following values:
𝑎𝑣𝑜𝑖𝑑 = 1 and 𝑏𝑣𝑜𝑖𝑑 = 2. In this comparison, there are twelve cases. As in the previous optimization,
each case on Table. E.13 and E.14, which show the numerical results for these cases, state what has
changed on each optimization. This modification is reversed back to the standard case at the end of
the optimization, therefore, from the standard to all cases, there is only one change.

In the first case, Fig D.9a, the final optimization is completely different than in the first case without
any holes. The higher compliance is due to the addition of the voids and the different positioning of the
connectors and cut lines on the structure. Although the structure is different in the second case, the
position of the cut and the connectors are similar to the second case in Fig. D.9b. The main reason
for the change is to try to place the voids, not to weaken the structure. This optimization is one where
the compliance is lower than the ones without holes. However, it is not one of the lowest on the void
optimization. In this case, the 𝐸𝑐 is modified to 0.8, making the connector weaker than the structure.
Here, it can be observed that the optimizer tries to join both connectors together to create the beam.
They are not overlapping due to the non-overlap constraint in Eq. 4.2.

(a) Case 1 - J = 213.89 (b) Case 2 - J = 221.17

Figure D.9: Optimization of the cut lines with the connectors and voids, Initial case and a case with lower 𝐸𝑐

In the third case, in Fig. D.10a, the initial 𝑥𝑐𝑢𝑡 position is shifted to the right, as in Case 4, in
Fig. D.10b. The optimized values are different. Also, if compared to the first case with the voids. The
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compliance is lower than in the first case of the voids but higher than without them due to their influence.

(a) Case 3 - J = 207.46 (b) Case 4- J = 202.22, From previous comparison

Figure D.10: Optimization of the cut lines with the connectors and voids, initial case, changed 𝑥𝑐𝑢𝑡 and Case 4 from the past
comparison

The bottom cut line is longer in the fourth case in Fig. D.11a, but the middle cut is shorter. In
this optimization, the final position is similar to the initial one. Furthermore, compared to Case 7 in
Fig. D.11b, the position of the previous case without holes is similar. It is not the same as if the case
without holes includes them, their structure will be disconnected, or it will have a void in the middle of
the structural member. This is why the optimizer slightly rotates or moves the connector and the cut
line to avoid this. Moreover, there is only a small increase of 2% in compliance.

(a) Case 4 - J = 209.51 (b) Case 7 - J = 205.36, From previous comparison

Figure D.11: Optimization of the cut lines with the connectors, with a change of 𝑦𝑐𝑜𝑛, with and without voids from the previous
comparison.

In the fifth case in Fig. D.12a, the starting point of the connector on the cut line is changed. It does
not start from the middle of the cut, it starts on lower. The compliance has increased by 6%, with final
compliance of 210.89. Looking at Fig. D.12a and focusing on the lower connector, it seems like the
optimizer is trying to position it outside the design domain to avoid having the voids affect the structure.

In the sixth case (Fig. D.13a), the size of the connector is changed. Now, it has a larger horizontal
length than the vertical one. Compared to the case without voids, which has the same change (Case 11,
also shown in Fig. D.13b), the position of the cut and connector looks the same. However, the values
are not the same if the numerical values are compared from Table E.14 and Table E.12. The final
optimizations are different, however, just by a small difference, which also affects the inside structure
of the beam. This is due to the voids on each side.
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(a) Case 5 - J = 210.89 (b) Case 6 - J = 228.69, From previous comparison

Figure D.12: Optimization of the cut lines with the connectors, with a change of 𝑠𝑐𝑜𝑛, with and without voids from the previous
comparison.

(a) Case 6 - J = 217.35 (b) Case 11 - J = 213.45, From previous comparison

Figure D.13: Optimization of the cut lines with the connectors, with a change of 𝑎𝑐𝑜𝑛 and 𝑏𝑐𝑜𝑛, a case with and a case without
voids from the previous comparison.

(a) Case 7 - J = 251.84 (b) Case 8 - J = 203.45

Figure D.14: Optimization of the cut lines with the connectors, a case with one more connector and a case with finer mesh

The number of connectors has increased in Case 7 in Fig. D.14a, and therefore, the number of
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voids. In this case, there is an extra connector and cut line, and as before, when the extra 𝑎𝑐𝑢𝑡 line with
its respective connector is added, the size of the connector is changed to a smaller one. However, the
size is not as small as in the optimization without the voids. This change influences the final position.
The main reason it is not as small is to have more area where the connector can be connected to the
structure. This case also has the highest final compliance of all these cases. This can be due to the
size of the connectors and the higher number of cut lines and connectors, making it more challenging
to place them.

In Case 8 in Fig. D.14b, the number of elements has changed to a finer mesh, with 180x60 elements.
As in previous cases, when the mesh is changed, the size of the connector is changed, and in this case,
the size of the voids is also changed. As now, the size of the void is smaller, it is easier to place due to
the positioning being less affected by the larger sizes of the voids. This case has the lowest compliance,
this can be due to the small influence of the voids.

(a) Case 9 - J = 217.33 (b) Case 15 - J = 205.85, from old comparison

Figure D.15: Optimization of the cut lines with the connectors, with a starting position of a straight line, a case with and a case
without voids from the previous comparison.

Case 9 starting point is changed to a straight line. The optimization result is similar to the one in
Case 5 (Fig. D.12a ). The shape of the cut as well as the position of the connectors on the cut line,
are similar, however, the main difference is the x position. In this case, the x position is smaller than in
Case 5. Due to this shift in the x direction, the internal structure and compliance have changed.

(a) Case 10 - J = 226.57 (b) Case 16 - J = 206.99, From last comparison

Figure D.16: Optimization of the cut lines with the connectors, a case with and a case without voids from the previous comparison

The last case to compare is Case 10. Here, the thickness of the cut line has been modified to double
the size of the other cases. In the optimization without the voids, the other sides could still be used to
connect the parts, however, as now on those sides there are voids, the area to be able to connect the
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connectors with the structure is smaller. Therefore, the optimizer has it more difficult to make those
connections, and there are holes inside the structural members on most of the connectors here.

D.2.2. Comparison with voids size changing
Now, in this section, the hole sizes are changed. Different cases are tried with different void sizes to
observe the influence. The connector’s size is kept constant in some cases, however, in others cases
was changed, as in the cases with higher and lower numbers of connectors, or the case less and when
𝑎𝑐𝑜𝑛 = 𝑎𝑣𝑜𝑖𝑑. There are 15 cases in this section. As in other optimizations found in this report, the
initial reference case has the same starting conditions for the optimizations as in Fig. D.9a.

Now, different voids sizes are tried in cases where the cut lines and connectors’ initial conditions
and positions are the same. In this first case, the voids have a 1x1 (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) element size, which
creates a small void. In the second case, the void size is double (2x2 element size), and in the third
case, the 𝑏𝑣𝑜𝑖𝑑 is increased by one element, the voids have a size of 2x3 element. These cases can
be appreciated in Fig. D.17. The size of the voids creates a constraint on the optimization, meaning
that when the void has larger dimensions, the area where the connector can connect to the structure
is limited.

(a) Case 1 - J = 213.14, with a void size = 1x1
element

(b) Case 2 - J = 260.80, void size = 2x2 ele-
ment

(c) Case 3 - J = 236.76, void size = 2x3 ele-
ment

Figure D.17: Effect of varying the dimensions of the voids on the initial reference case

In the second and third cases, the optimizer tries to connect the structure and create a structural
member with the connectors. This is also observed in one case in the previous optimization. This
could be due to the optimizer trying to create a structure member and avoid the cut of the structure
while maximising the efficiency of the volume constraint. The numerical results of this optimization can
be seen in Table. E.15

(a) Case 4 - J = 265.29, with a void size = 2x3
element

(b) Case 5 - J = 241.7989, void size = 2x2
element

(c) Case 2 - J = 221.17, from old comparison,
void size = 1x2 element

Figure D.18: Effect of varying the dimensions of the voids with a lower 𝐸𝑐 than the reference case

One of the design parameters affecting the connector is 𝐸𝑐, the Young’s modulus of the connector. In
these two cases, Case 4 (Fig. D.18a) and Case 5 (Fig. D.18b), the value for 𝐸𝑐 = 0.8. As before, larger
voids constrain the positioning of the connectors and cut lines, increasing compliance. Comparing
these two cases to the one mentioned above in Fig. D.19 with the case with the lower compliance in
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the previous comparison also shown in Fig. D.18c. Case 4 has a 16% higher compliance than Case 2
on the last comparison, and Case 5 has an increased compliance of 8%. In both cases, it can be seen
the trend the optimizer tends to do, having two connectors close to each other to create a limb.

Table. E.16 shows the numerical results of cases 4 and 5, corresponding to Fig. D.19.
In the following two cases, Case 6 in Fig. D.19a and Case 7 in Fig. D.19b, the starting point is a

straight line. This can also be compared to the ninth case of the previous optimization, Which is also
shown in Fig. D.19c, this is added for visual comparison. The final compliance is lower when the holes
are the smallest and higher when the voids are the highest. This can be due to the voids constraining
the connection area between the structure and the connector, weakening the connection point. It can
be observed that the optimized position of the cut lines and the connectors are similar. As expected,
the two connectors on the sides tend to go to the outer structural member and the middle one is placed
on a structural member in the middle of the structure.

(a) Case 6 - J = 238.27, void size = 2x2 element
(b) Case 7 - J = 242.97, void size = 2x3 ele-
ment

(c) Case 9 - J = 217.33, from old optimiza-
tion, void size = 1x2 element

Figure D.19: Effect of varying the dimensions of the voids with the starting position on a straight line

Another parameter to change is the number of connectors. Fig. D.20 shows three cases with an
extra cut line and connector than in the reference case (Fig. D.17a). In cases 8 (Fig. D.20a) and 9
(Fig. D.20a), the connectors are the same size as the previous cases, with dimensions of 𝑎𝑐𝑜𝑛 = 6
and 𝑏𝑐𝑜𝑛 = 3. By adding one more cut line, consequently, also a connector, and not changing the
connector’s size, the area occupied by the material due to the connector is larger. As in other cases,
the optimizer tries to create a structural member as support by positioning the connectors one after
another. In these two cases, three are in a row because the connector and the cut line have similar
vertical lengths, 𝑎𝑐𝑢𝑡. In Case 8, the voids have a size of 2x2, and in Case 9, the vertical direction 𝑎𝑣𝑜𝑖𝑑
has increased by one element.

To avoid this, the connector’s size was minimized in Case 10 (Fig. D.20c). In this case, the value
of 𝑎𝑐𝑜𝑛 = 𝑏𝑐𝑜𝑛 = 2. Furthermore, the optimizer tries again to create the connection between the
connectors, but this time only the lower two due to the size of the connector.

(a) Case 8 - J = 235.49, with a void size = 2x2 ele-
ment

(b) Case 9 - J = 767.23, void size = 3x2 ele-
ment

(c) Case 10 - J = 243.82, void size = 2x3
element

Figure D.20: Effect of varying the dimensions of the voids with four connectors and cut lines

Case nine has the highest compliance due to the structure, with a value of 767.23. The optimizer
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tried to join the connectors. However, their positioning created a weak structure that does not connect
to the outer structural members, which means that the structure is not connected to the top and bottom
members, weakening the structure. This is also due to the voids having a larger size, the optimization
of them is more difficult due to having less area where they can be connected to the structure, and by
connecting them, the area where the cut line breaks the structure is minimised. Table. E.18 shows
the numerical values of cases 8,9, and 10, corresponding to the cases in Fig. D.20. Which are the
optimizations with four cut lines and connectors.

Table. E.19 shows the numerical values of cases 11 and 12, corresponding to the cases in Fig.
D.21. These are the optimizations with five cut lines with their respective connectors.

(a) Case 11 - J = 239.37, void size = 1x1 element (b) Case 12 - J = 210.56, void size = 1x1 element

Figure D.21: Effect of varying the dimensions of the connector with five connectors and cut lines

In the next two cases, Case 11 (Fig. D.21a) and 12 (Fig. D.21b) , there are 5 cut lines and 5
connectors. In both cases, the connector size is reduced to give more space for them to move. As
the connector, the size of the voids is also reduced. By comparing both images, it can be guessed
that the first case has a more significant compliance by the structure due to the comparison of the
connectors and cut lines positioning, which in Case 11 breaks the structure in a few places. This is
because both cases have the same voids’ size, but the second case has a larger connector, making it
less constrained and having a larger area where the connector and the structure can connect. These
are the only cases in this comparison where the size of the voids stays constant. In these cases, the
relation of the size of the connector with respect to the voids is observed. Moreover, in Fig. D.21a,
connectors two and three are joined as in other cases, however, in this case, due to the angles, the
void of the third connector is over the second connector. This is not beneficial.

(a) Case 13 - J = 398.71, void size = 3x3 element (b) Case 14 - J = 344.19, void size = 1x3 element

Figure D.22: Optimization with the same initial variables, only the size of the voids change with 2 connectors
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The following two cases are the opposite of the previous five ones, now, the number of connectors
is reduced to only two cut lines, meaning two connectors. Case 13 in Fig. D.22a has a larger void size
than Case 14 in Fig. D.22a. The connector size is kept constant. As there are only two connectors,
the connector’s size was increased. In Case 13, the trend of the optimizer is observed again. Tries
to create a member or structural member by connecting the connectors. However, in Case 14, the
optimizer positions the connectors at opposite ends of the cut lines. This can be due to the position
of the cut lines and the connector trying to connect the top and bottom parts of the structure, which
are the most relevant for compliance. Case 13 has the highest compliance compared to Case 14, this
could be due to the position of the connectors.

From all the previous cases where there were cut lines, connectors and voids to optimize, It was
observed that the larger the area the void covers of the connector, the more difficult for the optimizer
to position. Leading to trying to optimize a case with the connectors and the voids having the same
vertical length in Fig. D.23. This means that the connector is more constrained, as now the only
connection it can make to the structure is on the top and bottom part of the connector, next to the cut
lines, as the other two sides are forced to be holes due to the voids. Looking at compliance, it is not
the highest obtained. But looking at Fig. D.23, the bottom connector is inside the lowermost member
of the structure and, with both connectors at the top, tries to join them to make some connection for the
top member of the structure.

Figure D.23: Optimization with the same initial variables, 𝑎𝑐𝑜𝑛 = 𝑎𝑣𝑜𝑖𝑑 - J = 324.4468



E
Numerical results

This section shows the numerical results of the figures found in 5 and C

E.1. Results for the optimization with a single connector with voids
and without voids

The results of the connection optimization are found in Fig. C.1 and Fig. C.2. In the table, 𝑥𝑐, 𝑦𝑐 and
𝜃𝑐 are the connector coordinates, Obj is the objective function. These values are shown at the initial
iteration and the final one. The number of elements (nelx and nely) are changed for higher resolution.

Cases Const Initial Final
nelx nely a b 𝑥𝑐𝑜𝑛 𝑦𝑐𝑜𝑛 𝜃𝑐 Obj 𝑥𝑐𝑜𝑛 𝑦𝑐𝑜𝑛 𝜃𝑐 Obj Iter

1 60 20 3 2 30 10 0 1004.1994 18.1578 2.1446 -3.0036 223.1353 62
2 60 20 3 2 40 6 0 1001.7342 36.3733 2 -3.14097 218.9802 70
3 60 20 5 2 30 10 0 1001.7403 7.0199 0.8999 -3.1416 223.3185 52
4 100 60 5 2 30 10 0 293.9474 25.4412 8.003 1.9487 58.7475 150
5 60 20 5 5 20 8 0 948.6922 7.1811 5.0081 -3.1416 231.3491 155
6 60 20 3 2 20 8 2.5133 996.8572 27.4063 2.2422 3.0938 222.2608 47
7 60 20 3 6 20 8 2.5133 959.3068 21.7993 6.002 3.1416 224.4761 58

Table E.1: Initial and final conditions for the different connection optimisation cases.

The results of the connection optimization with the void are found in Fig. 5.3 and Fig. C.3.

Cases Constants Initial Final
nelx nely 𝑎𝑐𝑜𝑛 𝑏𝑐𝑜𝑛 𝑎𝑣𝑜𝑖𝑑 𝑏𝑣𝑜𝑖𝑑 𝑥𝑐𝑜𝑛 𝑦𝑐𝑜𝑛 𝜃𝑐 Obj 𝑥𝑐𝑜𝑛 𝑦𝑐𝑜𝑛 𝜃𝑐 Obj iter

1 60 20 3 2 1 1 30 10 0 1.01E+03 30 11.4998 0.0277 216.8760 57
2 60 20 3 2 2 1 30 10 0 1.01E+03 31 9.4826 0.053 218.3886 39
3 60 20 3 2 2 2 30 10 -2.8274 1.02E+03 31.0759 7.9818 -2.9236 218.5304 101
4 60 20 3 2 2 2 30 10 0 1.02E+03 34.4141 5.4622 -0.0983 225.2292 72
5 120 60 6 3 2 3 30 10 0 437.475 29.2611 21.2088 -1.0927 85.6168 111

Table E.2: Optimization of the connector with the voids

E.2. Results for the optimization of the cut line
A single cut line in Fig. C.4 and Fig. C.5.

Cases Const Initial Final
nelx nely 𝑦1 𝑦2 𝑏𝑐𝑢𝑡 𝑥1 𝑥2 𝜃𝑐𝑢𝑡 𝑎𝑐𝑢𝑡 Obj 𝑥1 𝑥2 𝜃𝑐𝑢𝑡 𝑎𝑐𝑢𝑡 Obj Iter

1 60 20 0.2 0.5 1 0.4 0.5 0.7854 4.2426 1039.4358 0.2706 0.5255 0.3834 8.0190 222.5602 52
2 60 20 0.5 0.5 1 0.4 0.5 0 3 10123.8387 0.3646 0.5345 0 4.0987 222.4654 52
3 60 20 0.2 0.5 1 0.5 0.5 1.5708 5 1044.1779 0.5194 0.5038 1.6644 5.002 221.0927 53
4 60 20 0 0.2 1 0.5 0.6 0.5880 3.6055 1084.6485 0.4423 0.7523 0.2118 9.5148 222.2679 73
5 60 20 0.2 0.5 0.5 0.2 0.5 0.7854 4.2426 1011.8951 0.7521 0.8759 0.6904 5.7105 224.2951 50
6 100 60 0.2 0.5 1 0.4 0.5 1.6037 10.2956 303.6871 0.3569 0.5115 0.8007 12.5381 59.3146 65

Table E.3: Initial and final conditions for single cut line cases 3 to 5.

87



88 E. Numerical results

Multiple cut lines in Fig. 5.4, Fig. C.6 and Fig. C.7.

Cases Constant values Initial Final
nelx nely y nº cuts 𝑏𝑐𝑢𝑡 𝑥𝑐𝑢𝑡 𝜃𝑐𝑢𝑡 𝑎𝑐𝑢𝑡 Obj 𝑥𝑐𝑢𝑡 𝜃𝑐𝑢𝑡 𝑎𝑐𝑢𝑡 Obj Iter

1 60 20
0.2
0.4
0.5

2 1
0.4
0.4
0.5

1.5708
0.3218

2
3.1623 1040.3708

0.7530
0.6747
0.3925

2.4365
2.9606

3.0859
5.5546 220.2029 80

2 60 20
0.2
0.4
0.5

2 1
0.6
0.3
0.4

2.9229
0.3218

9.2195
3.1623 1165.1967

0.6448
0.5814
0.4492

2.3316
2.3378

2.7614
1.3890 214.4796 123

3 60 20
0.5
0.7
0.8

2 1
0.5
0.3
0.4

2.8198
0.3218

6.3246
3.1623 1061.0082

0.3973
0.4704
0.3977

0.3669
2.9513

5.5748
5.2876 223.2710 74

4 60 20
0.5
0.7
0.8

2 0.5
0.5
0.3
0.4

2.8198
0.3218

6.3246
3.1623 1021.3343

0.6895
0.5516
0.7697

2.5742
0.1517

3.7211
6.6191 220.9120 106

5 60 20

0.3
0.5
0.7
0.8

3 1

0.5
0.3
0.4
0.6

2.8198
0.5880
0.1651

6.3246
33.6056
6.0828

1223.2730

0.5030
0.3093
0.3351
0.5987

2.7476
1.2020
0.1408

5.2106
2.1442
7.1243

233.3603 50

6 100 60
0.2
0.4
0.5

2 1
0.4
0.4
0.5

1.5708
0.5404

6
5.8310 305.9840

0.3700
0.3881
0.4918

1.5865
0.5247

6.0007
5.9889 59.3214 105

Table E.4: Initial and final conditions for multiple cut line cases

E.3. Results for the complete optimization, optimizing the struc-
ture, the cut line and connectors

This section shows the tables with the numerical results of the figures found on C.3.1 for the optimization
with the fixed component and in 5 and Cfor the other results.

E.3.1. Optimization of the cut line with a fixed connector
The results here correspond to the ones found in Fig. C.9

Cases 1 2 3 4
𝑎𝑐𝑜𝑛 2 2 2 3
𝑏𝑐𝑜𝑛 2 2 2 2

Initial Final Initial Final Initial Final Initial Final

x cut 30 29.0896 18 47.9994 18 24.01397 36 24.97496
30 41.4710 30 46.9459 24 24.22132 24 24.00112

𝑎𝑐𝑢𝑡 5 7.9577 6.7082 3.0459 4.2426 3.0018 7.8102 5.0237

𝑥𝑐𝑜𝑛 30 35.2803 24 47.4727 21 24.11765 30 24.48804

𝑦𝑐𝑜𝑛 9 9 7 7 7 7 9 9

𝜃𝑐 1.5708 0.6794 0.4636 1.7446 0.7854 1.5363 2.4469 1.6679

Compliance 1016.3665 220.5124 1027.0603 218.6014 1000.4325 223.7879 1021.8787 222.0232

Table E.5: Optimization of the cut line with a fixed connector

E.3.2. Optimization with movable connector
These results correspond to the figures found in section C.3.2.
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Cases 1 2 3 4 5 6
Nely 60 60 60 120 100 100
Nex 20 20 20 40 30 30
y 0.5 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0 0.7 0 0.7
Ec 1 1 1 1 1 1
𝑏𝑐𝑢𝑡 1 1 1 2 2 2
𝑎𝑐𝑜𝑛 2 2 2 3 3 3
𝑏𝑐𝑜𝑛 2 2 2 6 6 2

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡
30 31.3944 30 28.8237 36 40.1603 60 65.0712 60 58.0706 50 47
30 32.6852 30 29.9844 18 27.6291 50 50.0935 50 52.8798 50 46.0158

𝑎𝑐𝑢𝑡 2 2.1015 4 4.0419 9.8489 7.4335 7.8102 9.596 11.6297 10.816 10.5 10.5115

𝑥𝑐𝑜𝑛 30 31.8981 30 29.3548 27 40.159 55 56.1849 55 56.2227 50 46.8073

𝑦𝑐𝑜𝑛 12 12.4391 10 9.6604 10 6.0008 15 16.1196 10.5 7.4756 10.5 4.1121

𝜃𝑐 -1.5708 -1.2587 1.5708 1.4267 2.7234 2.5734 2.2655 2.4661 2.0152 1.8131 1.5708 1.6176

Compliance 1.01E+03 220.0624 1.01E+03 230.2093 1.03E+03 218.4678 2.69E+03 279.8842 2.73E+03 310.0459 2.95E+03 281.3673

Table E.6: Initial and final conditions for cut line and connector optimization, cases 1 to 6.

Cases 7 8 9 10 11 12
Nely 180 100 120 120 120 120
Nelx 60 30 40 40 40 40
y 0.3 0.5 0 1 0.3 0.7 0 0.5 0 0.5 0.5 1
Ec 1 1 0.7 0.7 0.5 0.5
𝑏𝑐𝑢𝑡 2 2 1 1 1 1
𝑎𝑐𝑜𝑛 6 9 6 7 5 5
𝑏𝑐𝑜𝑛 3 3 4 2 2 2

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡
54 51 60 62 60 62.4474 60 49.1565 60 49.4273 60 53.8285
126 125.5163 70 70 36 29.9043 36 32.4471 36 34.3395 36 42

𝑎𝑐𝑢𝑡 37.108 38.3297 18.6815 18.4391 14.4222 18.1319 15.6205 13.0308 15.6205 12.5264 15.6205 11.618

𝑥𝑐𝑜𝑛 90 96.9816 65 66 48 46.4999 48 44.7915 48 43.9408 48 45.6901

𝑦𝑐𝑜𝑛 27 29.1072 15 15 20 19.8407 10 5.2247 10 7.2727 30 33.7606

𝜃𝑐 0.245 0.237 1.2998 1.3521 2.5536 2.6846 2.4469 2.2668 2.4469 2.2171 2.4469 2.1049

Compliance 2.11E+03 204.6239 2.87E+03 346.894 1.03E+03 198.2104 1.06E+03 202.5111 1.11E+03 208.7176 1.15E+03 207.1672

Table E.7: Initial and final conditions for cut line and connector optimization, cases 7 to 12.

E.3.3. Optimization with movable connector and voids
These results correspond to the figures found in section C.3.3.

Cases 1 2 3 4 5
Nely 60 120 120 120 120
Nex 20 40 40 40 40
y 0.7 0.8 0.5 1 0.5 1 0.3 0.6 0 0.5
Ec 1 1 1 1 1
𝑏𝑐𝑢𝑡 1 1 1 1 1
𝑎𝑐𝑜𝑛 4 6 6 3 6
𝑏𝑐𝑜𝑛 2 2 2 6 2
𝑎𝑣𝑜𝑖𝑑 1 1 1 1 3
𝑏𝑣𝑜𝑖𝑑 1 1 2 3 3

Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡
42 25.8571 84 91 60 27.5385 60 47.8281 48 46
48 10.7957 96 95 72 20.8499 60 58.1012 72 72.0469

𝑎𝑐𝑢𝑡 5.831 9.0394 11.6619 10.198 11.6619 10.5444 6 7.8984 13.4164 14.3391

𝑥𝑐𝑜𝑛 45 23.265 90 93.1042 66 25.6032 60 53.8234 60 60.3089

𝑦𝑐𝑜𝑛 5 1.721 10 10.5208 10 5.787 18 19.0031 18 18.5922

𝜃𝑐 1.0304 2.5555 1.0304 1.3734 1.0304 1.8935 1.5708 0.8628 0.4636 0.4317

Compliance 1.00E+03 224.7988 1.03E+03 198.8901 1.05E+03 202.9831 1.03E+03 206.5396 1.04E+03 209.4513

Table E.8: Initial and final conditions for cut line and connector optimization with voids cases 1 to 5
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Cases 6 7 8 9
Nely 120 120 120 120
Nex 40 40 40 40
y 0 0.5 0 0.5 0.3 0.7 0 0.5
Ec 0.8 0.8 0.7 0.5
𝑏𝑐𝑢𝑡 1 1 1 1
𝑎𝑐𝑜𝑛 6 6 6 6
𝑏𝑐𝑜𝑛 2 4 4 4
𝑎𝑣𝑜𝑖𝑑 1 2 1 2
𝑏𝑣𝑜𝑖𝑑 1 2 1 2

Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡
60 59 60 49 60 58.5526 36 12.4311
84 81.8569 84 73 60 57.4726 60 12.0002

𝑎𝑐𝑢𝑡 15.6205 15.1858 15.6205 15.6205 8 8.0182 15.6205 10.0023

𝑥𝑐𝑜𝑛 72 68.1428 72 56.485 60 58.1206 48 12.2759

𝑦𝑐𝑜𝑛 10 8 10 6.2375 20 18.4 10 7.2031

𝜃𝑐 0.6947 0.7188 0.6947 0.6947 1.5708 1.6382 0.6947 1.5923

Compliance 1.06E+03 201.7132 1.06E+03 206.7343 1.02E+03 200.6405 1.09E+03 214.4957

Table E.9: Initial and final conditions for cut line and connector optimization with voids cases 6 to 9

E.3.4. Optimization of multiple cut lines and connectors

These results correspond to the figures found in section D.1.

Case 1 2 3 4 5 6
Changed Initial case Ec Ec 𝑥𝑐𝑢𝑡 in 𝑥𝑐𝑢𝑡 in y cut in
New value 0.8 0.5 [0.5 0.7 0.6 0.6]; [0.3 0.5 0.4 0.4]; 0 0.5 0.7 1

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 45 48 25.4078 48 43.4427 60 60.8708 36 12.1204 48 24
72 67.7533 72 53.7593 72 61.2487 84 85.3146 60 39.5822 72 66.9993
60 63.1875 60 67.3577 60 65 72 73 48 58.0605 60 69.3950
60 66.3920 60 70.4673 60 55.9590 72 57.5786 48 52.7372 60 49.5988

𝑎𝑐𝑢𝑡

13.4164 12.8619 13.4164 15.3932 13.4164 10.7361 13.4164 13.6152 13.4164 14.9846 15.6205 23.7115
10 8.3194 10 10.4990 10 8.2169 10 10.0952 10 12.2214 7.2111 4.1755
6 6.2103 6 6.1982 6 7.5123 6 9.7701 6 6.5639 6 11.5746

𝑥𝑐𝑜𝑛

60 52.2741 60 38.0524 60 51.8867 72 73.1822 48 24.5339 60 39.2616
66 65.4190 66 58.3359 66 62.4682 78 77.6184 54 47.9405 66 67.3196
60 65.1156 60 68.9588 60 58.4986 72 62.7366 48 54.6228 60 55.1499

𝑦𝑐𝑜𝑛

6 3.8363 6 5.3519 6 5.6906 6 6.0439 6 5.4243 10 7.0985
20 20.1802 20 17.3849 20 17.2013 20 21.9994 20 19.2373 24 21.0696
34 35.2203 34 34.1788 34 36.6293 34 35.9864 34 35.7495 34 36.6351

𝜃𝑐

0.4636 0.4853 0.4636 0.4004 0.4636 0.5930 0.4636 0.4564 0.4636 0.4120 0.6947 0.4354
2.2143 1.8488 2.2143 0.8664 2.2143 1.3405 2.2143 2.2268 2.2143 0.7136 2.5536 1.2798
1.5708 1.3098 1.5708 1.3172 1.5708 2.2165 1.5708 2.4803 1.5708 1.9883 1.5708 2.5966

Compliance 1019.8978 208.9213 1022.9430 224.4030 1031.1784 210.0731 1022.2576 202.2234 1016.9025 222.7127 1044.7862 228.6962

Table E.10: Cases 1 to 6 of the optimization of the cut lines and connectors
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Case 7 8 9 10 11 12
Changed y cut in s comp s comp ac and bc ac abd bc number of connectors
New value 0 0.3 0.5 1 0.3 0.7 ac= 4 bc= 2 ac= 4 bc = 6 4, adn ac= 5, bc= 3

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 54.8191 48 53.9864 48 58.2711 48 55.0037 48 29.2699 48 44.9054
72 46.6339 72 49.2697 72 60.4039 72 83.8333 72 35.0782 72 80.0016
60 60.4385 60 61.0355 60 71.2861 60 73.8038 60 72.5299 60 58.3782
60 62.6767 60 49.7947 60 63.5330 60 61.7191 60 71.6647 60 69.4732

72 74.4382

𝑎𝑐𝑢𝑡

13.4164 7.2629 13.4164 6.4469 13.4164 6.0941 13.4164 15.6137 13.4164 6.6659 13.4164 18.5455
7.2111 7.9776 10 9.9302 10 9.6750 10 9.4418 10 20.3632 7.2111 11.5279
10 10.0624 6 8.2212 6 7.1434 6 8.5153 6 6.0156 4 6.8392

8.4853 6.4933

𝑥𝑐𝑜𝑛

60 50.8667 55.2000 51.8011 64.8000 59.6946 60 63.0806 60 31.2962 60 62.9392
66 60.4381 68.4000 59.5940 63.6000 64.4867 66 75.1098 66 59.2542 66 69.1531
60 62.0262 60 53.5666 60 65.8689 60 64.6560 60 72.0295 60 61.4617

66 72.8935

𝑦𝑐𝑜𝑛

6 5.7944 3.6000 5.5597 8.4000 8.0094 6 3.3619 6 4.1865 6 6.1660
16 19.9998 16.8000 26.0398 23.2000 18.0029 20 25.9165 20 22.3284 16 16.0136
30 34.1874 31.6000 35.9734 36.4000 36.3846 34 37.0837 34 34.9415 24 22.2233

34 36.2666

𝜃𝑐

0.4636 2.1694 0.4636 1.9453 0.4636 1.3949 0.4636 0.3944 0.4636 1.1200 0.4636 0.3295
2.5536 0.5252 2.2143 0.9367 2.2143 0.9735 2.2143 2.1307 2.2143 0.4037 2.5536 2.7872
1.5708 1.4593 1.5708 2.3235 1.5708 2.1444 1.5708 2.3597 1.5708 1.6428 1.5708 0.6247

0.7854 1.1785
Compliance 1030.2305 205.3602 1001.7480 198.6023 1050.8965 207.5314 1066.0353 219.2404 1021.2192 213.4569 1048.3769 220.6015

Table E.11: Cases 7 to 12 of the optimization of the cut lines and connectors

Case 13 14 15 16 17
Changed number of connectors number of elements startign values of x b cut r min
New value 2, 180x60 all at 0.5 2 2

Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 48 72 71 60 47.9982 48 47.1965 48 18.7965
72 66 108 107 60 44.6618 72 60.0085 72 23.6556
60 58 90 93.3288 60 62.7382 60 67 60 94.8720

90 93 60 58.5223 60 60.3036 60 70.3843

𝑎𝑐𝑢𝑡

15.6205 13.4536 20.1246 20.1246 6 6.2276 13.4164 8.7771 13.4164 6.4733
11.6619 10.7703 15 13.8103 8 12.0702 10 8.7304 10 36.4958

9 9.0015 6 6.3595 6 6.8710 6 13.6350

𝑥𝑐𝑜𝑛

60 53.6058 90 85.4000 60 46.4767 60 50.8940 60 20.1150
66 60.2245 99 100.5119 60 53.7524 66 62.8784 66 63.8654

90 93.1067 60 60.8537 60 63.3700 60 74.9131

𝑦𝑐𝑜𝑛

10 6.2287 9 7.2000 6 5.4723 6 3.4632 6 3.2562
30 34.4387 30 29.3900 20 20.0464 20 18.5678 20 21.0338

51 54.1602 34 33.3641 34 34.5051 34 37.7807

𝜃𝑐

0.6947 0.8380 0.4636 0.4636 1.5708 1.8420 0.4636 0.7527 0.4636 1.1860
2.1112 1.9513 2.2143 2.0886 1.5708 0.7245 2.2143 1.1588 2.2143 0.2210

1.5708 1.5891 1.5708 1.9086 1.5708 2.0798 1.5708 2.6859

Compliance 1079.3000 204.8703 1068.3708 207.2928 1000.7167 204.8578 1035.4539 206.9902 1019.8978 207.8931

Table E.12: Cases 13 to 17 of the optimization of the cut lines and connectors

E.3.5. Optimization of multiple cut lines, connectors and voids

E.3.5.1 Comparison with voids size constant

These results correspond to the figures found in section D.2.1.
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Case nº 1 2 3 4 5
Changed Ec 𝑥𝑐𝑢𝑡 𝑦𝑐𝑢𝑡 𝑠𝑐𝑜𝑛
New value 0.8 [0.5 0.7 0.6 0.6] [0 0.3 0.5 1] 0.7

Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 41.4320 48 35.7362 60 75.3547 48 47.9006 48 47.6426
72 25.8244 72 54.9222 84 72.8171 72 62.7211 72 57.2045
60 74.1543 60 72.0952 72 91.5406 60 65.9593 60 88.7088
60 71.1130 60 79.4539 72 89.8489 60 63 60 85.0338

𝑎𝑐𝑢𝑡

13.4164 9.8438 13.4164 11.3149 13.4164 6.1327 13.4164 9.5348 13.4164 7.6719
10 25.4547 10 11.7357 10 12.3143 7.21110255 4.3153 10 17.6672
6 6.1897 6 7.0383 6 6.0594 10 10.1089 6 6.2751

𝑥𝑐𝑜𝑛

60 36.9939 60 42.5833 72 74.1453 60 54.3829 64.8 52.7292
66 58.1798 66 68.6804 78 84.8276 66 65.9586 63.6 77.5277
60 72.3874 60 76.0995 72 90.3578 60 63.7573 60 85.0338

𝑦𝑐𝑜𝑛

6 3.4123 6 4.2825 6 5.7191 6 5.2487 8.4000 6.3836
20 22.7115 20 24.8184 20 22.2634 16 19.9984 23.2000 22.3215
34 34.9716 34 34.5299 34 36.3897 30 34.8818 36.4000 39.9999

𝜃𝑐

0.4636 2.4861 0.4636 0.5589 0.4636 1.7792 0.4636 0.6806 0.4636 0.8980
2.2143 0.3197 2.2143 0.7501 2.2143 0.7071 2.5536 1.1862 2.2143 0.4699
1.5708 1.8190 1.5708 1.0207 1.5708 1.7109 1.5708 1.7177 1.5708 1.8680

Compliance 1034.1928 213.8994 1037.9617 221.1734 1032.0130 207.4672 1044.2011 209.5139 1068.6214 210.8979

Table E.13: Initial and final conditions for multiple cut lines and connectors optimization with voids cases 1 to 5

Case nº 6 7 8 9 10
Changed connector’s size number of connectors number of elements 𝑥𝑐𝑢𝑡 𝑏𝑐𝑢𝑡
New value 𝑏𝑐𝑜𝑛= 6, 𝑎𝑐𝑜𝑛=4 4 180x60 straight line at middle 2

Initial Final Initial Final Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 22.8143 48 71.6370 72 87 60 30.0941 48 15.0814
72 31.2539 72 72.5273 108 94.1086 60 40.1332 72 30.7094
60 80.8931 60 90.5693 90 95.2844 60 74.2022 60 83.8105
60 79.4263 60 64.1625 90 91 60 67.9260 60 83.3374

72 56.3471

𝑎𝑐𝑢𝑡

13.4164 7.3353 13.4164 6.0165 20.1246 9.6764 6 7.8228 13.4164 9.8519
10 26.0771 7.2111 9.8680 15 12.0144 8 18.8195 10 27.7296
6 6.0447 4 13.7960 9 9.2515 6 6.7711 6 6.0047

8.4853 7.1603

𝑥𝑐𝑜𝑛

60 26.2524 60 72.1882 90 89.1780 60 35.8145 60 22.4759
66 58.9825 66 82.3887 99 94.5391 60 60.6648 66 64.0791
60 79.8271 60 68.7562 90 92.2493 60 71.5461 60 83.5203

66 60.2217

𝑦𝑐𝑜𝑛

6 4.8885 6 7.4286 9 5.5149 6 6.8378 6 5.6779
20 20.9376 16 16.3726 30 26.7874 20 21.6423 20 22.0547
34 36.7209 24 26.6083 51 54.7512 34 33.0784 34 35.3600

34 34.0508

𝜃𝑐

0.4636 0.9579 0.4636 1.4967 0.4636 1.1947 1.5708 0.8741 0.4636 0.6548
2.2143 0.3118 2.5536 0.4174 2.2143 1.5218 1.5708 0.4391 2.2143 0.2927
1.5708 1.6924 1.5708 2.8474 1.5708 1.8045 1.5708 2.0527 1.5708 1.6102

0.7854 2.1481
Compliance 1039.1565 217.3544 1047.9121 251.8419 1077.0316 203.4504 1018.0440 217.3388 1051.7760 226.5758

Table E.14: Initial and final conditions for multiple cut lines and connectors optimization with voids cases 6 to 10

E.3.5.2 2. Comparison with voids size changing

These results correspond to the figures found in section D.2.2.
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Case number 1 2 3
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 1x1 2x2 2x3

Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 52.7261 48 40.9408 48 39
72 61.9697 72 55.0388 72 73
60 61.2295 60 71 60 63.4996
60 59.5364 60 47.1524 60 49.5811

𝑎𝑐𝑢𝑡
13.4164 7.5737 13.4164 9.2568 13.4164 18.0278

10 8.0086 10 11.3000 10 9.3040
6 6.0594 6 13.3483 6 9.1887

𝑥𝑐𝑜𝑛
60 57.0170 60 50.4591 60 50.3457
66 61.6542 66 65.5199 66 63.5431
60 60.1572 60 64.3972 60 54.8482

𝑦𝑐𝑜𝑛
6 5.5704 6 8.1018 6 4.0043
20 18.8201 20 22.5065 20 27.9269
34 35.6000 34 31.3225 34 35.4589

𝜃𝑐
0.4636 0.9144 0.4636 0.7052 0.4636 0.3393
2.2143 1.6170 2.2143 0.7866 2.2143 2.1066
1.5708 1.7110 1.5708 2.6754 1.5708 2.4301

Compliance 1026.2863 213.1418 1052.4973 260.8097 1064.5106 236.7600

Table E.15: Optimization with the same initial variables, only the size of the voids change



94 E. Numerical results

Case number 4 5
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 2x3 2x2

Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 34.5954 48 36.0740
72 71.8386 72 49.9645
60 75.6495 60 77.1810
60 52.8979 60 80.3242

𝑎𝑐𝑢𝑡
13.4164 19.5644 13.4164 9.1780

10 8.2238 10 15.7856
6 12.8611 6 6.2024

𝑥𝑐𝑜𝑛
60 46.0893 60 44.9198
66 73.0072 66 72.1442
60 73.3743 60 79.1551

𝑦𝑐𝑜𝑛
6 3.7034 6 7.6419
20 16.9062 20 25.0390
34 29.2000 34 35.5366

𝜃𝑐
0.4636 0.3117 0.4636 0.7125
2.2143 1.3370 2.2143 0.5315
1.5708 2.6562 1.5708 1.3146

Compliance 1069.2610 265.2923 1056.8651 241.7989

Table E.16: Optimization with the same initial variables, only the size of the voids change and both cases have lower Ec
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Case number 6 7
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 2x2 2x3

Initial Final Initial Final

𝑥𝑐𝑢𝑡

60 55.6720 60 19.8576
60 55.7687 60 18.6293
60 83.8734 60 63.9852
60 80.7306 60 59.0239

𝑎𝑐𝑢𝑡
6 6.0002 6 6.0314
8 16.1700 8 24.0477
6 6.2024 6 6.4926

𝑥𝑐𝑜𝑛
60 55.7231 60 19.1154
60 73.9375 60 35.7289
60 81.9995 60 61.1686

𝑦𝑐𝑜𝑛
6 6.3393 6 7.2513
20 22.3435 20 18.0322
34 35.1550 34 34.8126

𝜃𝑐
1.5708 1.5627 1.5708 1.6728
1.5708 0.5175 1.5708 0.3391
1.5708 1.8269 1.5708 1.9628

Compliance 1045.2787 238.0788 1060.5686 242.9772

Table E.17: Optimization with the same initial variables, only the size of the voids change and starting on a straight line
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Case number 8 9 10
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 2x2 2x3 2x2

Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 34.0842 48 13.3298 48 45.9476
72 31.6038 72 63 72 61.3143
60 78.8697 60 57.0052 60 76.3074
60 51.6818 60 56.6189 60 71.2531
72 55.6190 72 50.4699 72 72.4625

𝑎𝑐𝑢𝑡

13.4164 6.1269 13.4164 25.5496 13.4164 9.7485
7.2111 23.9691 7.2111 4.9985 7.2111 8.4970

4 14.1702 4 4.0047 4 4.7314
8.4853 6.3147 8.4853 6.7419 8.4853 6.0304

𝑥𝑐𝑜𝑛

60 32.8558 60 23.6292 60 55.7093
66 71.9870 66 62.9997 66 76.3073
60 61.8027 60 56.9350 60 71.5554
66 53.5297 66 53.7731 66 72.0530

𝑦𝑐𝑜𝑛

6 5.9428 6 2.4882 6 7.6230
16 18.8351 16 12.0004 16 20
24 25.0219 24 21.4522 24 27.5215
34 33.6322 34 33.5537 34 35.9372

𝜃𝑐

0.4636 1.7746 0.4636 0.2371 0.4636 0.6630
2.5536 0.1677 2.5536 2.2139 2.5536 0.4901
1.5708 2.8554 1.5708 1.6190 1.5708 2.1343
0.7854 1.2538 0.7854 2.0443 0.7854 1.4704

Compliance 1045.9485 235.4993 1105.73963 767.2398 1089.1732 243.8263

Table E.18: Optimization with the same initial variables, only the size of the voids change with 4 connectors
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Case number 11 12
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 1x1 1x1

Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 64.7304 48 48.2452
72 49.1832 72 62.7819
60 43.8134 60 55.0512
60 62.3402 60 60.0544
72 58.7125 72 70.3512
60 40.0025 60 62.6359

𝑎𝑐𝑢𝑡

12.6491 8.7424 12.6491 8.2963
7.2111 4.8176 7.2111 5.5625

4 10.0901 4 4.7179
7.2111 4.3920 7.2111 6.5197
7.2111 10.1743 7.2111 5.5571

𝑥𝑐𝑜𝑛

60 57.8200 60 53.7612
66 49.1823 66 59.7208
60 62.3401 60 57.0493
66 60.6599 66 64.6616
66 51.4448 66 63.3427

𝑦𝑐𝑜𝑛

4 3.5558 4 3.0356
12 8.0013 12 11.1677
20 24 20 19.1950
28 27.7054 28 27.5795
36 35.1075 36 39.2672

𝜃𝑐

0.3218 2.6664 0.3218 0.5031
2.5536 2.1620 2.5536 2.3391
1.5708 0.4076 1.5708 1.0119
0.5880 1.9965 0.5880 0.6605
2.5536 2.7375 2.5536 2.3381

Compliance 1073.4392 239.3779 1049.5337 210.5689

Table E.19: Optimization with the same initial variables, only the size of the voids change with 5 connectors



98 E. Numerical results

Case number 13 14
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑)

Initial Final Initial Final

𝑥𝑐𝑢𝑡
48 89.8950 48 14.1429
72 91.1778 72 75.8531
60 87.1074 60 86.2304

𝑎𝑐𝑢𝑡
15.6205 10.0206 15.6205 32.4351
11.6619 10.2050 11.6619 11.2660

𝑥𝑐𝑜𝑛
60 91.0792 60 28.6019
66 88.2037 66 83.4315

𝑦𝑐𝑜𝑛
10 18.4630 10 4.6860
30 34.6132 30 34.6057

𝜃𝑐
0.6947 1.5067 0.6947 0.3134
2.1112 1.7716 2.1112 1.0922

Compliance 1177.6721 398.7080 1104.0854 344.1965

Table E.20: Optimization with the same initial variables, only the size of the voids change with 2 connectors

Case number 15
void size (𝑎𝑣𝑜𝑖𝑑 x 𝑏𝑣𝑜𝑖𝑑) 2x2

Initial Final

𝑥𝑐𝑢𝑡

48 51.6950
72 52.9867
60 43
60 42.3210

𝑎𝑐𝑢𝑡
13.4164 6.0347

10 9.4304
6 6.0096

𝑥𝑐𝑜𝑛
60 51.9199
66 52.9818
60 42.7278

𝑦𝑐𝑜𝑛
6 2.0895
20 12.0078
34 32.8117

𝜃𝑐
0.4636 1.4636
2.2143 2.1288
1.5708 1.6273

Compliance 1182.8097 324.4468

Table E.21: Optimization with the same initial variables, 𝑎𝑐𝑜𝑛 = 𝑎𝑣𝑜𝑖𝑑
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Case 1 2 3
Initial Final Initial Final Initial Final

𝑥𝑐𝑢𝑡

48 26 48 18.8651 16 15.5701
72 51.9657 72 55.7311 24 20.1167
60 72.4123 60 51.1854 20 25.2251
60 77.3270 60 54.2754 20 9.4629

𝑎𝑐𝑢𝑡
13.416 14.3023 13.4164 19.3849 18.4391 18.1430
10 12.9814 10 8.3166 24.0832 24.1355
6 6.4837 6 6.1957 18.0001 19.6498

𝑥𝑐𝑜𝑛
60 35.9463 60 33.9486 20 18.4850
66 68.0209 66 52.4263 22 24.2762
60 75.1725 60 53.1451 20 17.6480

𝑦𝑐𝑜𝑛
6 4.5966 6 4.9097 17.9999 23.0803
20 24.5636 20 23.6320 60 75.0837
34 34.7395 34 35.6105 102 101.3058

𝜃𝑐
0.4636 0.4329 0.4636 0.3147 1.3521 1.4452
2.2143 0.6640 2.2143 1.8476 1.6539 1.4648
1.5708 1.1821 1.5708 1.3188 1.5708 1.9835

Compliance 1095.7352 242.8818 1125.374 315.5179 1092.1605 224.9645

Table E.22: Table showing the results for the optimization with the bolt requirements

In table E.22, the last case is the values of the horizontal cut.


