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Abstract

Generative adversarial networks (GANs) have shown promising results when applied on partial
differential equations and financial time series generation. This thesis investigates if GANs can be used
to provide a strong approximation to the solution of stochastic differential equations (SDEs) of the Itō
type. Standard GANs are only able to approximate processes in conditional distribution, yielding a weak
approximation to the SDE. A novel GAN architecture is proposed that enables strong approximation,
called the constrained GAN. The discriminator of this GAN is informed with the random sample that
corresponds to the Brownian motion increment between two time steps. This way, the constrained
GAN does not only learn the conditional distribution, but the unique map from a random increment to
the next asset value along the path, conditional on the previous value. The architecture was tested on
geometric Brownian motion (GBM) and the Cox Ingersoll Ross (CIR) process in one dimension, where it
was conditioned on a range of time steps and previous values of the asset process. The constrained GAN
was shown to outperform discrete-time schemes in strong error on a discretisation with large time steps.
It also outperformed the standard conditional GAN when approximating the conditional distribution.
A method is proposed to extend the constrained GAN to general one-dimensional Itō SDEs, beyond
the SDEs tested in this work. In future work, the constrained GAN should be conditioned on the
SDE parameters as well, allowing it to learn an entire family of solutions at once. Furthermore, the
architecture could be extended to higher dimensions, including systems of SDEs, such as the Heston
model.

i





Acknowledgements

First and foremost, I would like to thank Prof. dr. ir. Cornelis W. Oosterlee for providing the
opportunity to carry out the research of my master thesis. I thank him for the detailed feedback he
gave on my work and for supporting me throughout the duration of the project. I thank Dr. ir. Lech
A. Grzelak for his critical reflections on my work and his input during our discussions, which provided
essential insights along the way. I thank Shuaiqiang Liu, MSc, for our detailed and fruitful discussions
about the subject matter, which helped me find my way in the rich body of literature related to this
work. I would like to thank all three for the cordial interaction during our weekly online discussions,
which I enjoyed very much.

I would also like to thank my friends from the faculty of EEMCS for our frequent moments of working
together on our theses - at appropriate distance due to the Covid-19 pandemic.

Finally, I would like to thank my family and friends for their unrelenting support.

iii





Contents

1 Introduction 1

2 Preliminaries 5
2.1 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Weak and strong solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Discrete-time approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Weak and strong convergence for discrete-time approximations . . . . . . . . . . . 8
2.1.4 SDEs under consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Universal approximation with neural networks . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Gradient descent and backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.6 Other types of NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Generative Adversarial Networks 15
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Theoretical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Optimisation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Optimality in the ideal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Connection with the JS-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Optimal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 Non-unicity of the optimal generator . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.7 Non-ideal case: finite parameter set for the discriminator . . . . . . . . . . . . . . 20
3.2.8 Including the effect of finite datasets . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.9 Concluding remarks on the theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Training GANs in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Perfect discriminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Vanishing generator gradient problem . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Mode collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Variations of the ‘Vanilla GAN’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Ideas for stabilising the training process. . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Conditional GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Other GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 GAN setup used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Algorithmic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Methodology 27
4.1 Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Discrete Approximations with GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Vanilla GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Conditional GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Weak approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Strong approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Constrained GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Constrained GAN as inverse map . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 General Case: Construction of the Constrained GAN . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Train on high quality discrete-time approximation . . . . . . . . . . . . . . . . . . 34

v



vi Contents

4.5 Data pre- and post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.1 Adaptedness of logreturns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Construction and Analysis of Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.1 Analysing the synthetic paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Practical Considerations for the CIR Process . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.1 Discrete-time schemes for the CIR process . . . . . . . . . . . . . . . . . . . . . . 38
4.7.2 Pre-processing step if the Feller condition is not satisfied . . . . . . . . . . . . . . 38

5 Comparing Probability Distributions 41
5.1 Empirical distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Combination of KS Statistic and 1-Wasserstein distance . . . . . . . . . . . . . . . . . . . 41

5.2.1 KS statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 1D Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Implementation for analysing the GAN output . . . . . . . . . . . . . . . . . . . . 42

5.3 Reference on Distributional Divergences and Distances . . . . . . . . . . . . . . . . . . . 43

6 Results 47
6.1 Approximating the Conditional Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Statistics using various test sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Autocorrelation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Constructing Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.1 Single-step GAN approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Analysis of the Constrained GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Discussion and Recommendations 57
7.1 Architecture and training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Data pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Comparison with stochastic collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Generality and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusion 61

Bibliography 63

A Appendix 69
A.1 Network Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 Discriminator Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3 Empirical validation of section 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.4 Additional Results on Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.4.1 GBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4.2 Single-step approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4.3 CIR process: Feller condition satisfied. . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.4 Single-step approximation - Feller condition satisfied. . . . . . . . . . . . . . . . . 74
A.4.5 CPU runtimes on single-step approximation . . . . . . . . . . . . . . . . . . . . . 75
A.4.6 Vanilla GAN fails to provide a strong approximation. . . . . . . . . . . . . . . . . 75
A.4.7 Strong error over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 Additional Results for Conditional GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.5.1 Interpolation capabilities on a single condition . . . . . . . . . . . . . . . . . . . . 77
A.5.2 Feller condition satisfied: autocorrelation structure. . . . . . . . . . . . . . . . . . 77
A.5.3 GBM and CIR process - vanilla vs constrained GAN. . . . . . . . . . . . . . . . . 78

A.6 Parameter sets and Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.6.1 SDE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.6.2 Conditional GAN: construction of training set . . . . . . . . . . . . . . . . . . . . 79
A.6.3 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.6.4 Effect of the Learning Rate Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.7 Further Extensions of the Constrained GAN . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.7.1 Karhunen-Loève expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents vii

A.7.2 Regularisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81





1
Introduction

Stochastic differential equations (SDEs) are prevalent in the modelling of stochastic dynamical systems
in engineering, physics, healthcare, and many more domains [1]. In finance, they are cornerstone in the
modelling of asset prices and interest rates, with applications in portfolio management and the pricing
of financial derivatives and related products [2]. In this work, we will exclusively consider SDEs of the
Itō type, e.g. of the form:

dSt = A(t, St)dt+B(t, St)dWt, (1.1)

starting at S0 and with underlying Brownian motion Wt. We will refer to a realisation of the
solution of equation 1.1 over time as a path. In general, the analytical solution to SDEs is not available,
which is why practitioners make extensive use of numerical approximations to simulate paths in a Monte
Carlo setting [2]. However, high-quality numerical approximation may be too costly in an online setting
for practical purposes. Meanwhile, in most practical applications, a continuous representation of the
path is not of interest, but rather the solution at specific times along the path. The goal in this work is
to let a neural network provide a high-quality approximation of paths corresponding to equation 1.1 on
a set of times {t0, t1, . . .}, but without computing the process on the intermediate time steps. Instead,
our goal is to let a neural network ‘predict’ the solution at time t + ∆t, given the solution at time t,
for large time steps ∆t. ‘Large’ here means large in comparison with typical values of ∆t when using a
discrete-time scheme.

Neural networks have become a popular tool in applied mathematics to approximate functions in
high dimensions, or which are otherwise intractable. They have been successfully applied on problems
involving partial differential equations (PDEs) [3, 4], time series generation [5–7], chaotic dynamical
systems [8], anomaly detection [9] and many more. In particular, generative adversarial networks
(GANs) have been shown to produce promising results when solving stochastic PDEs (SPDEs) [10],
learning conditional distributions for time series [11], or particle density problems where the GAN is
‘informed’ with the particle advection dynamics [12]. However, ‘informing’ a neural network with the
SDE dynamics is not straightforward, as its terms are not differentiable. This requires alternative
approaches to the ones used on PDEs. The contributions in this work are as follows. Firstly, a novel
GAN-based scheme is proposed, the constrained GAN, which approximates the strong solution to SDEs
on a time discretisation. Secondly, a method is proposed to extend this architecture to general one-
dimensional Itō SDEs. Thirdly, a framework is provided for understanding the map that the generator
provides and how it relates to the discriminator output.

Earlier work
Much work has been done on solving PDEs with neural networks. An example of early work dates
back to 1998, when in [13] it was proposed to minimise a cost function based on the PDE dynamics,
progressively improving Ansatz solutions created by neural networks. Much improvement has been made
since, as current neural networks can solve complicated high dimensional PDE problems, as appearing
in fluid dynamics, quantum mechanics, quantitative finance, and many more domains [3, 4, 14–17].
Recent work has shown promising results using GANs as well. In particular, Yang et al. [10] encode

1



2 1. Introduction

the dynamics of a stochastic PDE into a GAN. Xie et al. generate accurate smoke plumes by encoding
advection dynamics into separate discriminators. Stinis et al. [18] and Wu et al. [8] use similar
constraints with GANs to improve the accuracy of the network and convergence rates.
These networks rely on application of the PDE operator on outcomes generated with a neural network.
In the case of Itō SDEs, however, the Brownian motion term precludes differentiability of the dynamics.
In [19], a novel method is proposed to find the drift coefficients of SDEs, using generative modelling
to sample observations of the underlying process. The authors use a coordinate transformation and
Itō’s lemma to obtain a differentiable latent process z(t) for both the training data and generated
data. Analogous to (S)PDE solving, the derivatives of the latent process z(t) are matched between
the observed and generated data. A cost function is minimised to find the model parameters on which
the observed data were based. A similar moment-matching technique may be used to define a cost
function on Ansatz financial SDE solutions, as is done in PDE solving with neural networks. However,
the technique proposed in [19] only works for constant diffusion parameters B(t, St) = B, which is too
restrictive for the purposes in this work.

Instead of focusing directly on solving the SDE, one could treat the underlying stochastic process
of the SDE as a time series. If a training set is available, a neural network could be used to construct
samples that share the same conditional distribution. Wiese et al. [5] use a wave-net-based GAN
architecture, ‘QuantGAN’, to model financial time series and show promising results on synthetic time
series and real-world datasets. With this setup, the ‘next step’ on a path is predicted, based on a rolling
window of realisations from the past. The authors show that the QuantGAN accurately captures the
autocorrelation structure in the time series. Recently, a similar approach has been proposed by Ni et
al. in [11], called ‘Signature Wasserstein GAN’. This architecture uses a fully-connected network, for
which the authors define a loss function, based on the difference in the signature of synthetic paths and
reference paths [11]. Their work is similar in scope to the QuantGAN approach and shows the ability
to accurately capture the underlying autocorrelation structure and marginal density of financial time
series data. In [5], it is shown that the output of the neural network is adapted to the input sequence
{Zk} of i.i.d. N(0, 1) random variables, which means that it could find a weak solution to the SDE.
However, both approaches would provide no guarantees of finding a strong solution to the SDE, i.e.
path-wise approximation given the same Brownian motion on which the SDE is defined. Details about
the difference between weak and strong solutions will be further explored in chapters 2 and 4.

The works highlighted in [5] and [11] differ with ours in their objective to model general financial
time series, e.g. real-world stock market data, while in our work we focus specifically on SDEs. This
allows us to exploit the Markov property of SDEs. All information implied in the SDE, including the
autocorrelation structure, is contained in the transition distribution FSt+∆t|St between two time steps,
conditional on the current time t, time step ∆t and the previous value St.

Accurate sampling from this transition distribution is the central idea behind exact simulation
schemes for typical SDEs in finance, such as the technique introduced by Broadie and Kaya [20] for the
Heston model. The inverse of the transition distribution of the exact solution between two time steps
may be approximated using the stochastic collocation Monte Carlo (SCMC) method [21], which allows
one to efficiently sample from FSt+∆t|St . The SCMC method approximates the inverse distribution
with a polynomial expansion of inexpensive (e.g. normal) prior samples. The SCMC method can be
applied on challenging SDEs in finance, such as the SABR model [21]. However, the SCMC method
only provides an approximation of FSt+∆t|St given a single choice of St, t and ∆t. In [22], this is
addressed by combining the SCMC method with a neural network that predicts the collocation points
for the SCMC method, conditional on St, t, ∆t and the model parameters. This provides an almost
exact solution, in the sense that the any error would arise from the ability to approximate the exact
conditional distribution. In our work, the scope is similar, but the conditional distribution will be
approximated directly by a conditional GAN, instead of using the SCMC method.

To the best of our knowledge, no prior work has been done on approximating the conditional
transition distribution FSt+∆t|St with a GAN on SDE problems. Fu et al. [23] use a conditional GAN
to reconstruct time series models. The conditional GAN is able to sample from the target distributions
given several regimes of parameters. The authors use the conditional GAN to approximate time series
models such as AR, GARCH and real-world stock market data, by conditioning the GAN on a single
previous step. In our case, the same approach will be used, but this time the GAN is trained on the exact
solution to financial SDEs. We will not only condition on the previous values St, but also on the time
step ∆t. By repeated sampling from the conditional GAN approximation of the transition distribution
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given St and ∆t, a path of arbitrary length and with arbitrary time steps can be constructed. Another
key distinguishing feature in this work is that we will require the conditional GAN to provide a strong
approximation of the SDE, instead of matching the conditional distribution alone, as done in [23] for
time series.

Research goals and thesis outline
The first goal is obtain an accurate approximation of the transition distribution FSt+∆t|St implied by
the SDE for large time steps. This approximation will be provided by a conditional GAN, trained on
a dataset of samples from the exact solution to the SDE. The second challenge is to ensure that the
conditional GAN provides a strong approximation, i.e. one that approaches the exact strong solution
path-wise. Two SDEs are under consideration: geometric Brownian motion (GBM) and the Cox,
Ingersoll Ross (CIR) process. In all cases, the GAN will be trained, conditional on a range of previous
values St and time steps ∆t, with the SDE parameters held fixed. If the GAN were trained on the SDE
parameters as well, it would learn a family of solutions to the SDE. This is left for future work. In this
work, we explore the GAN’s ability to provide a path-wise approximation on a discretisation. The thesis
is structured as follows: in chapter 2, the necessary background will be provided about SDEs, discrete-
time approximations and neural networks. Chapter 3 shows in detail how GANs can approximate
any probability distribution, given only a training set of samples from the target distribution. In the
succeeding chapter 4, it will be shown how GANs can be used to provide a strong approximation to the
SDE on a discretisation of a time interval [0, T ]. The constrained GAN architecture will be introduced,
along with extensions beyond the SDEs considered in this thesis. Chapter 5 provides an overview of
modern non-parametric techniques for studying the quality of the GAN output. Then, in chapter 6,
the results are presented. Chapter 7 provides a reflection of the results, along with recommendations
for future work. Finally, chapter 8 concludes.





2
Preliminaries

This chapter explains the theoretical background required for the central themes in this thesis. It will
start with a detailed formulation of stochastic differential equations (SDEs), followed by a description
of the SDEs under consideration and their properties. In the second part, neural networks are
introduced and the key techniques that underlie them are briefly discussed.

2.1. Stochastic Differential Equations
Let (Ω,F , P ) be a probability space and Wt = [W1(t), . . . ,Wm(t)]T be an m-dimensional Brownian
motion, adapted to the natural filtration Ft := σ{Ws : s ≤ t}. In its most general form, a stochastic
differential equation (SDE) of the Itō type on Rn is then given as follows, following the definition
given in [24, ch.26]:

dSt = A(t,St)dt+B(t,St)dWt,

{St}t=0 = S0 ∈ Rn,
(2.1)

where {St}t≥0 is an adapted process, defined by the map St : Ω× R+ → Rn, (ω, t) 7→ St, for
(ω, t) ∈ Ω× R+. A(t,St) is a random vector on Rn and B(t,St) is a real-valued random matrix of
size n×m. A and B have random processes as their elements. Suppose that for each i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}, the maps (t, x) 7→ Ai(t, x) and (t, x) 7→ Bi,j(t, x) are Ft-measurable. A solution to
equation 2.1 is a continuous adapted process on Rn that satisfies the Itō integral form of the SDE [24]:

St = S0 +

∫ t

0

A(s,Ss)ds+

∫ t

0

B(s,Ss)dWs, ∀t ≥ 0 P−a.s. (2.2)

Thus, the solution to the SDE is a system of equations for each Sit := {St}i, Si0 := {S0}i, where W j
t

resembles the jth Brownian motion:

Sit = Si0 +

∫ t

0

Ai(s,Ss)ds+

m∑
j=1

∫ t

0

Bi,j(s,Ss)dW
j
s , ∀t ≥ 0 P−a.s. (2.3)

Note how this formulation links each Sit in the system of equations St through the matrix B(t, St). To
better understand the matrix B, consider the simple example of a process with correlated Brownian
motions, cf. for example [25, p.82], in which case the correlation structure between the standard
Brownian motions W j

t is stored in the matrix B.
Although this formulation may be insightful in the general case, the SDEs in this thesis will be set in
R with a single Brownian motion, i.e. m = n = 1. In this case, A(t, St) and B(t, St) are simply
Ft-adapted processes on R. Without loss of generality, we can define the stochastic integral running
from a time t to a time set in the future, t+ ∆t, for some increment ∆t ≥ 0. The stochastic integral
can then be written as shown in equation 2.4.

5
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St+∆t = St +

∫ t+∆t

t

A(s, Ss)ds+

∫ t+∆t

t

B(s, Ss)dWs P−a.s., (2.4)

with initial value St ∈ R. This formulation will be used as the ‘default’ formulation of the stochastic
integral in subsequent sections. The natural filtration is an important concept throughout the rest of
this work. Although we will write Ft = σ({Wt}), this is a shorthand for the following definition:

Definition 2.1 (Natural filtration). Given a probability space (Ω,F , P ) and standard Brownian
motion {Wt}t≥0, the natural filtration is defined as:

Ft := σ
(
{W−1

s (E) : ∀E ∈ B(R) and 0 ≤ s ≤ t}
)
, (2.5)

and where W−1
t denotes the pre-image of Wt.

2.1.1. Weak and strong solutions
One may now wonder what characterises the solution to an SDE. Here, the one-dimensional case is
discussed. For a treatment of the multi-dimensional case, see [24, p.568-571]. We had already
established that a solution should satisfy the stochastic integral in equation 2.4. We will distinguish
between a strong solution, in which case the solution is adapted to Ft and defined on the Brownian
motion {Wt}t≥0 from the previous section, and a weak solution, which only satisfies the stochastic
integral in distribution, but is potentially adapted to a different filtration and driven by a different
Brownian motion [1][26, p.262]. Suppose that the processes of interest are defined on a time interval
[0, T ], not affecting generality, since any bounded T may be chosen. The notions of weak and strong
solutions are more rigorously defined in the following definitions, adapted from [24], chapter 26.

Definition 2.2 (Weak solution). Let (Ω,F , P ) be a probability space and let S0 = x ∈ R. Let
{Wt}t∈[0,T ] be a standard Brownian motion adapted to Ft = σ({Wt}). A weak solution is then given
by the pair

(
{St}t∈[0,T ], {Wt}t∈[0,T ]

)
, which satisfies equation 2.4 between any two times on [0, T ].

{St}t∈[0,T ] is a continuous-time random process adapted to Ft.
If there exists a process {S̃t}t∈[0,T ], belonging to another weak solution, defined on (Ω̃, F̃ , P̃ ), such

that P̃ ◦ S̃t
−1

= P ◦ S−1
t , i.e. equality in law, then the solution is called weakly unique.

Definition 2.3 (Strong solution). Let (Ω,F , P ) be a probability space and let S0 = x ∈ R. Let
{Wt}t∈[0,T ] be the Brownian motion defined in the SDE formulation. A strong solution is then given
by the pair of continuous random processes

(
{St}t∈[0,T ], {Wt}t∈[0,T ]

)
related by the map:

φ : R× C([0, T ];R)→ C([0, T ];R), (2.6)

i.e. which maps (S0, {Ws}t∈[0,T ]) 7→ {St}t∈[0,T ], and which satisfies the following:

(i) The map (x,w) 7→ φ(x,w) is measurable with respect to B(R)⊗Ht, where (x,w) are dummy
variables for a realisation of S0 and a Brownian motion, Ht is the σ-algebra generated by all
possible Brownian motions up to time t, i.e. Ht := σ{πs : s ∈ [0, t]} and πs := C([0, T ];R)→ R
is a Brownian motion map w 7→ w(s).

(ii) The process {St}t∈[0,T ] = φ(S0, {Wt}t∈[0,T ]) satisfies equation 2.4 for all t ∈ [0, T ].

Remark 2.4. Note how different the concepts of weak and strong solutions are. Weak solutions may
even be defined on a different probability space than the one on which the SDE is defined, but only
have to satisfy the Itō integral given A(t, St) and B(t, St) and some Brownian motion on the
probability space.

In [24] it is shown that the map φ defining a strong solution is unique. The characterisation of a
strong solution as the map φ contains the adaptedness requirement to σ({Wt}) on which the SDE is
defined. Given this Brownian motion, for each realisation there is a unique process {St}, adapted to
σ({Wt}t∈[0,T ]). A useful concept for understanding the differences between the types of solutions is
given in the following definition, reproduced from [24].
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Definition 2.5 (Path-wise uniqueness). A solution to the SDE (weak or strong) is called
path-wise unique if for any two weak solutions ({St}t∈[0,T ], {Wt}t∈[0,T ]) and ({S̃t}t∈[0,T ], {W̃t}t∈[0,T ])
on the same probability space (Ω,F , P ), the paths are equal P -a. s.:

P
(
St = S̃t ∀t ∈ [0, T ]

)
= 1. (2.7)

Uniqueness of the strong solution implies that, if it exists, it is path-wise unique.

Remark 2.6. As noted in [24], we should be careful in our interpretation of the ‘uniqueness’ of the
strong solution. The map φ is unique, but individual realisations of the Brownian motion and the
resulting filtration are not, as they are random variables.

Example 2.7. Consider a trivial example: dSt = dWt and S0 = 0. Clearly, St = Wt satisfies the SDE.
Since it is adapted to Ft = σ({Wt}), it forms a strong solution. The map φ is the identity in this
trivial case. S′t = −Wt is a weak solution, since W ′t := −Wt is a Brownian motion and S′t is adapted
to σ({W ′t}). It is not a strong solution, as it is not path-wise unique to {St}, which immediately
follows from P (Wt = W ′t ) = 0. Both solutions are weakly unique, as they are equal in distribution.

A strong solution exists if S0 is independent of Ft and E[S2
0 ] <∞, sup

t∈[0,T ]

E[S2
t ] <∞ and if A(t, St) and

B(t, St) are K-Lipschitz for some K [2]. A weak solution exists if A(t, St), B(t, St) are bounded and
continuous and |B(t, St)| is always greater than some ε > 0 ∀t ∈ [0, T ] [2]. If a process is a strong
solution, it is also a weak solution [2, 24], as follows directly from the definitions.
The conditions stated for strong convergence are sufficient, but not necessary, as shown in [2] with an
example of an SDE that violates the Lipschitz conditions stated here, but strongly satisfies the Itō
integral. Some authors provide slightly different conditions, see for example [26], but an in-depth
discussion about these details is not relevant to this thesis. The key idea is that we can distinguish
between solutions to the SDE that only satisfy the Itō integral in distribution and those that hold
path-wise from the defining Brownian motion of the SDE. In chapter 4, weak and strong solutions will
be revisited on a discretisation of the interval [0, T ], on which the solution will be approximated by a
neural network and discrete-time schemes. In the next section, we discuss these discrete-time
approximation schemes, which will be used to construct a reference solution for comparison with the
neural network approximation.

2.1.2. Discrete-time approximations
In general, solving an SDE analytically is highly challenging and only possible in special cases [2]. A
way to approximate SDEs numerically is by approximating the stochastic integral in equation 2.4, cf.
[2, Ch.2]. Kloeden and Platen show [2, p.78] how a Taylor expansion in integral form can be
generalised to stochastic calculus by using Itō’s lemma in the expansion. Proceeding with the same
notation, and assuming that the processes A(t, St) and B(t, St) are respectively once and twice
differentiable w.r.t. St, the stochastic Taylor expansion of equation 2.4 is given by [2, p.79]:

St+∆t = St +A(t, St)

∫ t+∆t

t

ds+B(t, St)

∫ t+∆t

t

dWs +B(t, St)
∂B(t, St)

∂St

∫ t+∆t

t

∫ s

t

dWτdWs

+ R̄(t, St),

(2.8)

where R̄(t, St) is the remainder of the expansion, containing integrals of order higher than dt. Thus, if
we were to omit the remainder, we would arrive at an approximation of the stochastic integral up to
order dt. If the double integral over the Brownian motions in equation 2.8 is also omitted, one arrives
at the Euler-Maruyama scheme as approximation of the stochastic integral [2, 27], given by:

Ŝt+∆t ≈ St +A(t, St)∆t+B(t, St)∆Wt. (2.9)

Here, ∆Wt := Wt+∆t −Wt, i.e. a Brownian motion increment over the time step ∆t. If the double
integral over the Brownian motions in equation 2.8 is taken into account, omitting only the remainder
term, a more accurate approximation is obtained, called the Milstein scheme, cf. [2, 28], given in
equation 2.10. The term

∫ t+∆t

t

∫ s
t
dWτdWs is given by 1

2

(
∆W 2

t −∆t
)
[2].
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Ŝt+∆t ≈ St +A(t, St)∆t+B(t, St)∆Wt +
1

2
B(t, St)B

′(t, St)
(
∆W 2

t −∆t
)
, (2.10)

B′ denotes ∂B
∂St

. Note how the Euler and Milstein schemes emphasise the difference between stochastic
and deterministic calculus, as commented in [2, p.142]. The extra term in the Milstein scheme
captures the additional contribution to the differential operator, that arises from Itō’s lemma. The
remainder term could be further expanded, but gives rise to less tractable expressions that are harder
to simulate numerically [2], while the additional accuracy that this might give is not required in this
work. Therefore, in this thesis, the Euler and Milstein scheme are considered as numerical
approximations to the stochastic integral.

2.1.3. Weak and strong convergence for discrete-time approximations
Now that methods have been established to approximate the stochastic integral, we need a way to
evaluate how well the stochastic integral is satisfied, in the same weak and strong sense that we saw in
the previous section. Recall that a sequence of random variables {Xn}n≥1 ∈ Rn converges weakly to a
random variable X ∈ Rn, if for all bounded Borel functions f on Rn we have, see for example [29, ch.
18]:

lim
n→∞

∫
f(x)dPn =

∫
f(x)dP, (2.11)

where {Pn}n≥1 is the sequence of probability measures associated with {Xn}n≥1. Equivalently, one
can say that Xn converges in distribution to X, i.e. Xn

d
= X [29]. Or, rewriting equation 2.11 in terms

of expectations: lim
n→∞

E [f(Xn)] = E [f(X)]. A weak solution can be evaluated by studying how well
the convergence in distribution is achieved, i.e. by considering the moments or other statistics. For
discrete-time schemes, the rate of weak and strong convergence can be expressed in terms of the time
step ∆t [2]. A discrete-time scheme is said to be weakly convergent with order β, if for functions f in
the class of real-valued polynomials, ∃ constants K and β ∈ (0,∞], such that:

ew :=
∣∣∣E [f(St+∆t)]− E

[
f
(
Ŝt+∆t

)]∣∣∣ ≤ K∆tβ , (2.12)

where Ŝ denotes the discrete-time approximation of the stochastic integral. ew is called the weak error.
The Euler and Milstein schemes are weakly convergent with order β = 1. Weak convergence only
compares the distribution of the discrete approximation to the exact solution at the time t+ ∆t. For
some applications, a discrete-time scheme should not only converge in distribution at a single time,
but converge to the strong solution path-wise, which is denoted by strong convergence [2]. This means
that discrete-time schemes will converge to strong solutions to the stochastic integral. A discrete-time
approximation of St+∆t converges in the strong sense if ∃ constants M̄ and γ̄ ∈ (0,∞] such that:

es := E
∣∣St+∆t − Ŝt+∆t

∣∣ ≤ M̄∆tγ̄ . (2.13)

es is called the strong error. The Euler scheme is strongly convergent with order γ̄ = 1
2 , while the

Milstein scheme achieves strong convergence of order 1 [2].

2.1.4. SDEs under consideration
Two SDEs are under consideration in this thesis: Geometric Brownian motion (GBM) (cf. for example
[30]), giving rise to the famous Black-Scholes equation for options, and the Cox Ingersoll Ross (CIR)
process [31], which is a model for interest rates. Of both SDEs, the distribution conditional on any
‘previous’ value is known analytically. The Itō SDEs for both processes are shown in equations 2.14
and 2.15, cf. [30] and [31], respectively.

GBM : dSt = µStdt+ σStdWt, (2.14)

CIR : dSt = κ(S̄ − St)dt+ γ
√
StdWt, (2.15)

where both processes start at some initial value S0 ∈ R. µ, σ, γ, κ and S̄ are constants.
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For GBM, application of Itō’s lemma on the process logSt allows one to immediately derive [30, p.
226]:

St+∆t = Ste
(µ− 1

2σ
2)∆t+σ(Wt+∆t−Wt)

d
= Ste

(µ− 1
2σ

2)∆t+σ
√

∆tZ ,
(2.16)

with Z ∼ N(0, 1). Thus, St follows a lognormal distribution.
In the case of the CIR process, one can show that St+∆t | St follows a scaled non-central
χ2-distribution with some non-centrality parameter ξ, degrees of freedom δ and scaling factor c̄ [31]:

St+∆t | St ∼ c̄ χ2(ξ, δ), (2.17)

where c̄, ξ and δ are related to the SDE parameters as shown in equations 2.18-2.20, cf. [31, p.392].

ξ(St,∆t) =
4κSte

−κ∆t

γ2 (1− e−κ∆t)
, (2.18)

δ =
4κS̄

γ2
, (2.19)

c̄(∆t) =
γ2

4κ

(
1− e−κ∆t

)
. (2.20)

Note that the availability of an exact solution is not required for providing a training set to the neural
network, as we could alternatively train on a discrete-time approximation of high accuracy. However,
using the exact solution allows the sampling of arbitrary amounts of data for any set of parameters at
low computational cost. Secondly, it allows easy comparison of the exact distribution to the output of
the neural network approximation that will be obtained, again for any set of parameters. If the SDE
were sufficiently complex that a Monte Carlo scheme would be required, for each parameter set, one
would have to first obtain a large enough batch of samples to construct an accurate reference solution.
This makes both SDEs attractive for the purposes in this thesis. GBM serves as a benchmark, being
one of the simplest SDEs in quantitative finance, while the CIR process is richer in complexity,
exhibiting near-singular behaviour around zero for choices of parameters such that δ < 2 [31], allowing
the process to ‘hit zero’. The condition δ ≥ 2 ensures that the process does not exhibit this
near-singular behaviour near zero, which is known as the Feller condition [32]. In future work, one
could consider employing richer models, such as the Heston [33] or SABR [34] models.

2.2. Artificial Neural Networks
This section explains the key techniques that underpin neural networks. In the subsequent chapter, a
specific algorithm involving neural networks is discussed, which forms the main tool for approximating
the stochastic integral in equation 2.8. This section motivates the use of neural networks and provides
the basic architecture behind them. Then, it is shown how the parameters in such networks are
updated if a loss function is provided, with a description of the algorithm used to find the optimal set
of parameters. Finally, modern alternatives to the feed-forward neural network are briefly discussed.

2.2.1. Architecture
A neural network is a set of weights, biases and activation functions, whose relations can be modelled
as a directed graph, cf. for example [35, ch.5], on which this section is based. Consider first a simple
case with a single ‘neuron’, as shown in figure 2.1a. Suppose that the neuron is connected with a set
of n inputs x1, . . . , xn. Each connection has its own weight vi for input i. Let us write the input and
weights as vectors x,v ∈ Rn. The neuron also has an activation function h(·) and bias c ∈ R. The
output of the neuron is then given by: h(vTx+ c). The activation function is typically chosen to be
some (piece-wise) differentiable, non-linear function on R, e.g. a sigmoid. More details about the
choice of these functions are given in a later section.
A feed-forward neural network or multi-layer perceptron is based on the artificial neuron, repeated
over multiple layers of neurons, as illustrated in figure 2.1b. A layer is a collection of nodes which have
an equal amount of connections with other nodes, shown as the vertically aligned nodes in the graph.
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The input nodes {Ii}ni=1 and output nodes {Oi}di=1 in figure 2.1b are themselves shown as layers.
Layers that are neither input nor output layers are called hidden layers, containing hidden neurons.
Each connection in the graph includes an independently variable weight. In each neuron, the basic
operation shown in figure 2.1a is performed. This architecture may be repeated many times, giving
rise to multiple hidden layers. The amount of hidden layers is referred to as the network depth, while
the amount of nodes in each layer is called the width. The outputs of each layer become the inputs to
the subsequent layer.

x1

x2

...
xn

N
h(vTx+ c)

(a) A single artificial neuron ‘N ’

... ...

...

I1

Im

H1

H2

Hk

O1

On

(b) Feed-forward NN with one hidden layer

Figure 2.1

Although the illustration in figure 2.1 is useful for conceptually understanding neural networks, for a
mathematical formulation we only require the weights, biases and activation functions. Suppose we
have a feed-forward NN with d hidden layers and mi ∈ {m0, . . . ,md+1} neurons in each layer, with m0

and md+1 the input and output dimensions of the network, respectively. Let Ai for i ∈ {1, . . . , d+ 1}
denote the operator Ai(x) := M ix+ ci, where M i ∈ Rmi×mi−1 and ci ∈ Rmi are respectively the
matrix of weights and the biases in layer i. Let us write the set of all parameters in the neural
network as θ ∈ Rν̄ , i.e. a vector with a concatenation of all parameters {M i, ci}d+1

i=1 , and ν̄ ∈ N. The
total amount of parameters is given by ν̄ =

∑d+1
i=1

[
mi(mi−1 + 1)

]
.

A feed-forward neural network with d hidden layers can then be written as the function
gθ : Rν̄ × Rm0 → Rmd+1 given in equation 2.21.

gθ(x) = Lmd+1 ◦ Ad+1 ◦ . . . ◦ Lm2 ◦ A2 ◦ Lm1 ◦ A1(x), (2.21)

where Lmi : Rmi → Rmi is the vector-valued activation function of the layer i with mi neurons, i.e.
Lmi(x) := [h(x1), h(x2), . . . , h(xmi)]. Note that in principle we could even vary the activation function
per layer, but here it is chosen to be the same function h all layers, which is common.

2.2.2. Universal approximation with neural networks
The expressive power in neural networks comes from the non-linear activation function in combination
with the hidden layer. It has been shown [36, 37] that the mapping achieved by neural networks with
a single hidden layer can approximate any measurable function with an arbitrary degree of accuracy,
as long as the width (i.e. nodes in the hidden layer) is large enough. This then automatically holds for
any bounded number of hidden layers, as the succeeding layers can approximate the identity function.
This theorem is known as the universal approximation theorem [36] and concerns itself with fixed
depth and arbitrary width.
The universal approximation theorem has been extended [38, 39] to the case of bounded width but
arbitrary depth. As is clear from the formulation of a feed-forward NN in the previous section, the
amount of parameters grows rapidly with both the width and depth. For practical purposes, it
becomes relevant whether one needs, say, millions of parameters in a single layer or only tens of
thousands to approximate the target function of interest. In [38], an extension is given to networks
with bounded width and arbitrary depth, for the activation function f(x) = max(x, 0), while [39]
extends this to any non-affine activation function which is continuously differentiable at least at one
point. How to balance depth versus width in general is still an open question [38], but modern deep
neural networks can reach tens to over one thousand layers, as shown for example in AlexNet (8
layers) [40], VGG (19 layers) [41], GoogLeNet (22 layers) [42] or 152 and even 1001 layers with
so-called ‘residual networks’ [43].
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The concept of universal approximation is stated for reference, to show the motivation behind using
neural networks as universal function approximators. NNs are able to learn arbitrary mappings from
an input to an output space. The algorithm used in this thesis to approximate the stochastic integral
requires additional background, as the Itō integral and the output of the neural network are random
variables. In the next chapter it is shown how the algorithm used in this thesis converges to the
distribution of the target, where neural networks appear as tools for approximating the functions
specified in the algorithm.

2.2.3. Gradient descent and backpropagation
Now we turn to the process of updating the weights and biases such that the neural network given in
equation 2.21 approximates any target function of interest. This section is based on [35, p.240-245].
First, we need some way to compare the output of the network gθ from equation 2.21 to the desired
target output. On an image classification problem, for example, this could be a Boolean vector y
where a 1 in index i means that the output belongs to the class i. Given a dataset x, the error of the
output could then for example be quantified as L(gθ(x),y) := ‖gθ(x)− y‖22, with ‖·‖2 the l2-norm.
The function L is called the loss function or cost function and quantifies the error between the target
solution and output of the network. From here, let us assume that we always have access to a loss
function L for a general problem, which may take more general forms than the l2 norm.
The weights and biases in the neural network should then be updated such that the loss function L is
minimised. Since there is no closed-form expression for the optimal choice of parameters θ in a neural
network, a technique called gradient descent is used to find the optimal parameter set numerically.
The idea is to update the weights such that they move in the direction of minima in the hypersurface
spanned by the loss function L, as a function of the NN weights θ. I.e, the weights are adjusted in the
direction of negative gradient, ‘downhill’. If this process is repeated iteratively, one can attempt to
approximate the minima in this loss surface. Thus, the weights at iteration k are updated as:

θ(k+1) = θ(k) − λ∇θkL, (2.22)

for some constant λ ∈ R, called the learning rate, which is a hyperparameter to regulate how much the
weights are updated each iteration. There are now two challenges: 1) it is unclear whether gradient
descent can find a unique global minimum and 2) obtaining the gradient. Both are now discussed.
It should be stressed that the loss function parameterised by the weights θ is a highly complex surface
in potentially thousands or billions of dimensions. This surface may be highly non-convex and replete
with local minima. This is why many adaptations of ‘standard’ gradient descent have been developed
to prevent convergence on local minima and to adapt the learning rate during the training process, cf.
[44] for an overview of modern methods. A central challenge is the choice of learning rate λ. Choosing
this parameter too small yields a slow ‘exploration’ of the loss surface, while a too high value may
cause the descent operation to ‘miss’ parts of the loss surface and oscillate around minima [45].
Ideally, the learning rate should be adaptive and sensitive to the curvature of the loss surface, which is
the central idea behind innovations to equation 2.22 [45].
Another consideration is that the entire dataset may be too large to be stored in memory [44]. To
overcome this problem, one could subdivide the training set into subsets and train successively on
each subset [44]. However, it would be required to iterate over all batches before updating the weights
of the network, which is inefficient. An alternative called stochastic gradient descent (SGD) has been
proposed [46]. In this case the loss function over the whole dataset is replaced by a Monte Carlo
estimate of the loss function, by sampling randomly chosen batches from the training set:

θ(k+1) = θ(k) − λ∇θkEx∼X [L(gθk(x),y)] , (2.23)

where X denotes a training set of examples that the neural network is approximating with desired
output y. This way, the cost of approximating the gradient becomes independent of the size of the
training set, but introduces the choice of how large the ‘batch’ of Monte Carlo samples from X should
be.
Now, finally, let us consider how the gradient of the loss function w.r.t the vector θ may actually be
obtained. This may seem daunting given the layered architecture and emerging complexity of the
neural network, but can be carried out efficiently by using how each layer depends on the previous
one. The formulation in equation 2.21 helps us here. Let us write the output at the ith layer as
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yi := Li ◦ Ai(yi−1), with i = 1, . . . , d+ 1. Suppose that the parameter θj is present in layer i. Let us
assume that L and h(·) are differentiable and write L̂ as the Monte Carlo estimate of L, computed
with SGD. The derivative of the loss function w.r.t. θj can then be found by using the chain rule, as:

∂L̂

∂θj
=

∂L̂

∂yd+1

∂yd+1

∂yd
· · · ∂yi

∂θj
. (2.24)

This technique is known as backpropagation, as the error is propagated ‘back’ from later layers into
earlier ones, introduced in [47] and is crucial to deep neural networks. Since we know the activation
functions and weights in each neural network, we do not need any finite differences or similar
techniques to approximate equation 2.24. Instead, it can be evaluated analytically, by using another
technique called automatic differentiation, cf. [48]. This technique stores the gradients of the output
with respect to the parameters at each node in the network as a graph, through which the gradient
∇θ can be computed analytically for each θj .

2.2.4. Adam
As introduced in the previous section, various methods for stochastic gradient descent have been
proposed [44] and covering all of them goes beyond the scope of this thesis. However, one particular
weight optimisation algorithm or optimiser appears to be highly popular and effective in modern deep
learning research, and will be discussed here. It is called ‘Adam’ or ‘Adaptive Moment Estimation’,
introduced by [49], in which the authors show that their method outperforms earlier optimisers on a
range of typical machine learning problems. Adam updates the weights not on the gradient itself, but
on moving average estimates of the first two moments of the gradient at iteration k: mk and vk. If we
let ûk := ∇θkL, these estimates can be written as follows [49]:

mk = β1mk−1 + (1− β1)ûk, (2.25)

vk = β2vk−1 + (1− β2)û2
k, (2.26)

where the ·2 operation denotes the element-wise square ûk � ûk and β1, β2 ∈ [0, 1) are
hyperparameters. Both these processes are initialised at 0 at k = 0, which makes the first iterations
biased towards zero. This is corrected by scaling the processes as m̂k := mk

(1−β1) and v̂k := vk
(1−β2) . A

small bias remains present due to non-stationarity of the moments, but this is mitigated by the
moving average nature of the process, which exponentially decays its dependency on values farther in
the ‘past’.
Based on these estimates, the weight update of the Adam optimiser is given by:

θk+1 = θk − η m̂k � (
√
v̂k + ε), (2.27)

where ‘�’ denotes element-wise division between vectors, η is a fixed ‘base’ learning rate and ε is some
very small value, e.g. chosen in [49] to be 10−8, to keep the update defined for initialisation at 0.
The authors of [49] compare the ratio m̂k �

√
v̂k to a ‘signal-to-noise ratio’ for the gradient, which can

be interpreted as follows: if the gradient is high, but additionally its second moment is high as well,
then the update tends to be small. This is desirable, as the uncertainty in the value of the gradient
would in that case be high. Alternatively, if the gradient is high compared to the second moment,
updates will be larger. In [50], Adam is compared with a ‘heavy ball with friction rolling downhill’,
where it is even cast into an ODE form to support the comparison. The relevant intuition is that
Adam is less sensitive to local minima than traditional optimisers, as it ‘shoots over’ them to proceed
to wider minima with smoother curvature.
Finally, the authors of [49] show in the seminal paper that the algorithm converges by proving that
the sum of past differences between the loss function evaluated at θ and the optimal choice of θ is of
order 1√

k
, i.e. decays towards zero with increasing k.

2.2.5. Activation functions
One of the key insights from the universal approximation theorem is that it holds for any
non-polynomial activation function [39], although in [36] it is already commented that this does not
imply that all activations work equally well. The optimal choice of activation function for general
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neural network approximations is to this date unclear [39], however, several choices are widely known
and shown to work well in practice. Four variants are discussed here: the logistic function, hyperbolic
tangent, ReLU [51] and LeakyReLU [52], as they are prevalent in modern architectures [35, 52, 53].
Sigmoids or ‘S-shaped’ curves, are a common choice in neural networks, the most notable example
being the logistic function and hyperbolic tangent. The logistic function is defined by:

h1(x) =
ex

1 + ex
. (2.28)

The hyperbolic tangent function is given by:

h2(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.29)

Both activation functions share similar properties, being non-monotone, everywhere differentiable
functions with an inflection point at 0 and saturating region at ±∞, i.e. both have a characteristic
‘S’-like shape. The tanh function is anti-symmetric about the horizontal axis, i.e.
tanh(x) = − tanh(−x), which may be desirable if there is a symmetry in the intermediate layer
outputs, although this is uncommon [35]. Sigmoids may also be used at the output of the network if it
is desirable that the output values remain between 0 and 1 or −1 and 1, respectively. A sigmoid is
commonly used in classification problems at the output [35] and also appears in the popular ‘DCGAN’
architecture [53], which generates images. A potential downside with these two activation functions is
that the saturating region may cause gradients that tend towards 0, which is especially problematic in
deeper networks [54].
The rectified linear unit (ReLU) proposed in [51] has the shape of a ‘hockeystick’ and is given in
equation 2.30, along with its similar ‘LeakyReLU’ sibling in equation 2.31, introduced in [52]. The
ReLU and LeakyReLU activations are respectively defined as:

h3(x) = max(x, 0), (2.30)
h4(x) = max(x, 0) + ζ min(x, 0), (2.31)

where ζ ∈ R is a hyperparameter, typically chosen to be 0.01 or 0.1. A potential advantage of using
the ReLU and LeakyReLU activation functions is that they do not saturate at +∞, always providing
a constant gradient if the function is ‘on’, i.e. not close to zero or equal to zero. However, the ReLU
activation provides its own challenges, as the gradient is zero for x < 0 and undefined for x = 0. A
gradient of 0 for a large set of input values may unintentionally prevent weights from updating. The
LeakyReLU has been proposed in [52] to overcome this first problem, always providing some
(although small) gradient in the region x < 0. There is, however, still the problem of both these
activations being non-differentiable at 0, which is resolved in deep learning implementations by using
a convention to cover this single point, e.g. h′3,4(0) := 0. In PyTorch, for example, the derivative at 0
is set at 0 [55]. This does not seem to provide problems in practice [52].
ReLU and LeakyReLU have been found to perform better than sigmoids in multiple applications
[51, 52, 56]. In [52], this is attributed to their lack of vanishing gradients and ability to create sparse
representations of the data in intermediate layer outputs, increasing their efficiency.

2.2.6. Other types of NNs
In addition to feed-forward neural networks, there are many types of neural networks that have been
proposed in deep learning literature over the past decades. Each serves different goals and has a
different architecture, but is based on the same principles that are covered in this chapter. Notable
examples of alternative architectures are the convolutional neural network (CNN) [57], residual
network (ResNet) [43] and the recurrent neural network (RNN) [58–60]. CNNs use multidimensional
arrays to perform convolution operations on input data, to extract high-level features from the data,
which can be used for applications such as image classification [57]. ResNets add the inputs from
previous layers to the output of succeeding layers. This prevents the gradient from decaying
exponentially in hidden layers and allows for arbitrarily deep networks [43]. Finally, recurrent neural
networks are a variation of feed-forward neural networks, which can be applied on sequences of
arbitrary length. The RNN maintains a hidden state, i.e. the output of one or more hidden layers,
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which is applied recursively back to the network, while still connected with the output layers of the
network. This way, the network can become sensitive to dependencies over time through the evolution
of the hidden state. Such networks and variants have become highly popular and used today for
time-varying datasets, such as speech recognition [61], machine translation [62] and many more.
This overview of possible NN architectures is by no means complete, but is intended to give an idea of
how other architectures may be used to replace feed-forward NNs for specific tasks, including the
problem set in this thesis.

Chapter Conclusion
This chapter has covered the necessary background behind the problem setting in this thesis. We
distinguished between solutions to the SDE that only satisfy the Itō integral in distribution from
solutions that satisfy the Itō integral path-wise. The stochastic integral can be approximated by
means of a stochastic Taylor expansion, which is the basis for discrete-time schemes. In this thesis, the
distribution of the exact solution to SDEs will be approximated by neural networks, where the
universal approximation property will be used to construct mappings from a prior input to the target
distribution. The next chapter will describe how neural networks can be used to approximate
arbitrary probability distributions.



3
Generative Adversarial Networks

The main tool used throughout the thesis is the Generative Adversarial Network (GAN). This chapter
describes the key properties of GANs, starting from a high-level overview, before proceeding to the
fundamental mathematics behind them. Subsequently it is shown how the parameterised nature of
neural networks affects the GAN. Limitations and variations of GANs are then presented, which are
compared to the needs in this work. Finally, the base algorithm used in this work is presented.

3.1. Introduction
Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. in 2014 [63].
The original paper demonstrated novel and impressive results for the popular MNIST, CIFAR-10 and
ImageNet datasets [63]. Follow-up research demonstrated that GANs perform well on higher resolution
images of humans and animals, artificial bedrooms [53], image-to-image translation [64] or even text-to-
image [65] generation. For an overview of several years of GAN research and a discussion of the many
variants up to 2019, see [66]. Most sources mention the increased sharpness in the output compared to
other deep generative models, such as variational autoencoders (VAEs).
Aside from images, GANs have also been applied on other problems, such as time series generation [23],
PDE solving [10], outlier detection [9], synthetic medical data [67], smoke plume simulations [12], music
generation [68] and many more. This wealth of applications is a tribute to the robustness of GANs
across problem domains. GANs are interesting to the purposes in this work, as they form a powerful
yet flexible tool for approximating complex probability distributions.

3.2. Theoretical Overview
This section is based on the original definition by Goodfellow et al. [63] and theoretical work on GANs
by Biau et al. [69]. GANs consist of two neural networks, a generator, G, and a discriminator, D.
The basic idea is as follows. The generator maps noise from an inexpensive prior to a potentially
highly complicated distribution in some target space, such as images of human faces. The discriminator
network alternatingly receives the output of the generator (‘fake’ sample) or a target sample (‘real’
sample). The inputs are labeled 0 or 1 for fake and real data, respectively. The discriminator is to
predict whether a target is real or fake and its output is a number between 0 and 1. At the same
time, the generator is to match the target data as closely as possible, ‘fooling the discriminator’. Both
networks are thus competing against each other and are jointly trained each iteration. This process
should lead the generator to produce samples that the discriminator cannot distinguish from real images.
If done well, these samples are not only indistinguishable by the discriminator, but also visually similar
to the target data as judged from human observers. A high-level overview of the training procedure is
illustrated in figure 3.1.
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Z G D

X

G(Z) D(·) ∈ [0, 1]

Figure 3.1: GAN schematic: a prior Z is mapped through G(Z). D is trained to determine if a real sample X and a fake
sample G(Z) are real or fake. Generally, D and G need not even be neural networks, but could also be other function

approximators.

3.2.1. Formal definition
With the basic idea in mind, let us make the definition more rigorous, following the notation in [69].
Suppose we define a Borel set on Rn, denoted by E and define a measure ν on E which dominates
all succeeding probability measures in this section. Let Z ∈ Rm be the random vector that serves as
prior input to the generator. This variable is often denoted the ‘latent variable’. Let (X1, X2, . . . , XN )
denote a set of target data of size N , where Xi ∈ E ∀i. The generator and discriminator networks can
then be written as:

Gθ : Rm → E, (3.1)
Dα : E → [0, 1], (3.2)

where θ ∈ Θ ⊂ Rp and α ∈ Λ ⊂ Rq are the network parameter sets for some (typically very large)
p, q ∈ N. The dataset (Xi)

N
i=1 is sampled i.i.d. from the distribution of ‘real samples’ P ∗ with density

p∗ on E. Of course, in the general case, we do not know this density analytically, as we do for several
SDE problems. The generator gives rise to a distribution Pθ and associated density parameterised by
θ, say pθ, dominated by ν. We can write Gθ(Z)

d
= Pθ or Gθ(Z)

L
= pθdν, where ‘L=’ denotes equality in

law. In general, pθ and p∗ do not lie in the same space of measures, so we have that p∗ /∈ {pθ}θ∈Θ. This
is due to the limited parameterised nature of the generator. The idea is that the GAN will approximate
p∗ with pθ as closely as possible. The authors of [69] provide answers to how close the generator can
approximate the target density, which will be shown in a later section. First we need to understand the
loss function that the GAN attempts to minimise, then we will consider how well Gθ and Dα can find
this optimum theoretically.

3.2.2. Optimisation problem
The generator is to maximise the value of the ‘discriminator output given a fake image’, which is
equivalent to minimising 1 − D ◦ Gθ(Zj), while the discriminator tries to maximise the value of the
‘discriminator output given a real image AND (1 - discriminator output on fake image)’. The process
is similar to a two-player zero-sum game in game theory [63] with value function U(D,G). For more
on game-theoretic minimax problems, cf. [70, ch. 12] or [71, p. 302-303]. The two objectives can be
cast into the following joint optimisation problem, given dataset X and prior samples Z of sizes NX
and NZ [69]:

inf
θ∈Θ

sup
D∈D∞

U(D,Gθ) = inf
θ∈Θ

sup
D∈D∞

NX∏
i=1

D(Xi)

NZ∏
j=1

(1−D ◦Gθ(Zj))

 . (3.3)

Equivalently, taking the logarithm and using its convexity, the GAN value function V (D,G) is
defined as:

inf
θ∈Θ

sup
D∈D∞

V (D,Gθ) = inf
θ∈Θ

sup
D∈D∞

[ NX∑
i=1

logD(Xi) +

NZ∑
i=j

log (1−D ◦Gθ(Zj))
]
, (3.4)

where D∞ denotes the set of all discriminators, i.e. all Borel functions from Rn → [0, 1]. Note
that first we limit ourselves to the theoretical case where the discriminator has infinite capacity and is
not parameterised by α ∈ Λ. This is needed to find the theoretically optimal discriminator given any
generator. The generator is given in its parameterised form by θ ∈ Θ.
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The optimisation criterion can be cast into a loss function1. Let us distinguish between the continu-
ous version of the problem with continuous data x ∈ E, and the previously described empirical discrete
version with finite data (Xi)

N
i=1. For θ ∈ Θ and D ∈ D∞, we define a loss function L as:

L(θ,D) = EX∼P∗ [log(D(X))] + EZ∼PZ
[

log (1−D ◦Gθ(Z))
]

(3.5a)

L̂(θ,D) =
1

NX

NX∑
i=1

logD(Xi) +
1

NZ

NZ∑
i=1

log (1−D ◦Gθ(Zi)) . (3.5b)

Equation 3.5b represents the discrete version of equation 3.5a. Now let us define the optimal
generator given the optimal choice of discriminator as the neural network with parameters θ̂ such that:

sup
D∈D∞

L̂(θ̂, D) ≤ sup
D∈D∞

L̂(θ,D) ∀θ ∈ Θ. (3.6)

It is easy to see that the choice of θ̂ corresponds to the infimum in equation 3.4, i.e. the minimax
choice for the generator. Note that this representation is independent of the choice of the type of
network, or even a neural network at all. It could be any approximator defined by parameter sets θ and α.
As we will see, both D and G will not exactly reach their theoretical optima in practice. Approximation
errors arise from two independent sources: 1) the finite parameter set of the discriminator and 2) the
dataset real-world samples being finite and therefore not exactly representing P ∗.

3.2.3. Optimality in the ideal case
Let us first treat the theoretical case where the discrminator can take any Borel function on E and the
data samples are continuous variables x ∈ E. In this case we can write the densities described earlier
explicitly as p∗(x) = dP∗

dν (x) and pθ(x) = dPθ
dν (x). In practice ν will denote the Lebesgue measure

throughout this thesis.
First, a criterion for evaluating the loss L is that it does not diverge to −∞. This possibility arises

from the presence of logarithms of which the argument could become 0. Since D ∈ D∞, this is not
automatically excluded. The authors in [69] go around this by excluding such cases and considering the
sets they call ‘θ-admissible’. Here it will be defined similarly, following the authors:

Definition 3.1. A discriminator D ∈ D∞ is called θ-admissible if L(θ,D) > − ∞ ν−a.e.
The set D ′∞ denotes the set of discriminators that are θ-admissible.

With this in mind and in the continuous setting, the optimal choice of discriminator given a generator
Gθ is given by:

Theorem 3.2. There exists a θ-admissible optimal discriminator D ∈ D ′∞ that attains the value
arg sup
D∈D′∞

L(θ,D). This discriminator is given by:

D∗θ :=
p∗

p∗ + pθ
.

Proof. We can write the expectation in equation 3.5a explicitly, using dummy variable x, as:

L(θ,D) =

∫
X1

log
(
D(x)

)
p∗(x)dν(x) +

∫
X2

log
(
1−D(x)

)
pθ(x)dν(x). (3.7)

Here, X1 and X2 represent supp(P ∗) and supp(Pθ), respectively. The set X1 corresponds to all
possible observations of real data. The set X2 corresponds to the possible fake samples from Pθ. Now
consider a sample x′ ∈ X1 but x′ /∈ X2, i.e. an observation present in the ‘true data’ but not in the
space of possible generated data. Then we would have pθ(x′) = 0. Similarly, for a measurement y′ with
y′ ∈ X2 but y′ /∈ X1, we have p∗(y′) = 0. This step has been added in addition to the proof given by

1In practice, the loss function used is −L(θ,D), since neural network optimisation packages use gradient descent instead
of gradient ascent. This is shown in more detail later in this chapter.
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Biau et al. We can thus always2 integrate over the union of both sets: E ⊇X := X1 ∪X2. Using this,
both integrals can be combined:

sup
D∈D′∞

L(θ,D) = sup
D∈D′∞

∫
X

(
log(D(x))p∗(x) + log

(
1−D(x)

)
pθ(x)

)
dν(x)

≤
∫

X

sup
D∈D′∞

(
log(D(x))p∗(x) + log

(
1−D(x)

)
pθ(x)

)
dν(x)

= L(θ,D∗θ).

(3.8)

The first inequality is trivial, since for any continuous functional f(g(x)) on X and g(x) ∈ G , with
G some family of functions on X , we have that:

∫
X f(g(x))dx ≤

∫
X sup

g
f(g(x))dx. But then, taking

the supremum over g on both sides, the result follows:

sup
g

∫
X

f(g(x))dx ≤ sup
g

∫
X

sup
g
f(g(x))dx =

∫
X

sup
g
f(g(x))dx.

The last step in equation 3.8 follows from the fact that y 7→ α log(y) + β log(1− y) is maximised by
α

α+β for α, β ∈ R, as is easily shown with standard arguments (e.g. setting the derivative w.r.t. y to
zero). Since D is a continuous function on X by construction, the identity holds for the functional of
D(x) with coefficients p∗ and pθ as well. This proves the result, as D∗θ is the discriminator corresponding
to the supremum of L(θ,D).

Notice how for p∗ = pθ, the optimal discriminator equals 1/2, which is in line with intuition: the
discriminator flips a coin whether a sample is real or fake, showing it cannot distinguish between the
two distributions. This suggests that if the generator approximates pθ well near a data point x, the
discriminator should output a value close to D(x) = 1/2 at that data point. The authors of [69] go on
to prove uniqueness of the optimal discriminator in the continuous setting.

Theorem 3.3. The optimal discriminator D∗θ is unique.

The proof follows from a convexity argument involving the terms under the integrals in the loss
function. The reader is referred to [69, pp.5-6] for a full proof.

3.2.4. Connection with the JS-divergence
The uniqueness of D∗θ means that the loss function has a global minimum for D, which is also presented
in the original paper by Goodfellow et al. [63, p.5]. The minimiser can actually be expressed in a
distributional divergence known as the Jensen-Shannon divergence (JS-divergence), as introduced in
[72].

To that end, we first need to understand another divergence, know as the Kullback-Leibler divergence
(KL-divergence), cf. [73]. Suppose we have two probability distributions, P and Q, with absolutely
continuous probability measures, dominated by ν. The KL-divergence of Q from P is then defined as:

KL(P‖Q) =

∫
log

p(x)

q(x)
p(x)dν(x), (3.9)

where p(x) and q(x) are the densities associated with P and Q. It is common to write KL(p‖q),
which means the same as equation 3.9. The JS-divergence is defined in terms of the KL-divergence as
follows:

JS(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M),

where M :=
P +Q

2
.

(3.10)

Now the connection will be shown between discriminator optimality and the JS-divergence, using a
similar approach as [63] and [69].
2That is, if indeed D is θ-admissible for all x ∈ X .
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Theorem 3.4 (Connection with the JS-divergence). The following statements hold:

(i) L(θ,D∗θ) can be written as −2 log 2 + 2 JS(p∗‖pθ),

(ii) L(θ,D∗θ) is minimised if and only if p∗ = pθ.

Proof. From theorem 3.3 we know that the minimiser to equation 3.7 exists and is unique. If we plug
D∗θ into equation 3.7, we readily see the JS-divergence appear:

L(θ,D∗θ) =

∫
X1

log

(
p∗

p∗ + pθ

)
p∗dx+

∫
X2

log

(
pθ

p∗ + pθ

)
pθdx

= −2 log 2 +

∫
X1

log

(
2p∗

p∗ + pθ

)
p∗dx+

∫
X2

log

(
2pθ

p∗ + pθ

)
pθdx

= −2 log 2 + 2 JS(p∗‖pθ),

(3.11)

where in the last step, the symmetry of the JS-divergence has been used. Clearly, the minimum
would be attained if JS(p∗ || pθ) = 0, due to the non-negativity of the JS-divergence. In [72] it is shown
that the JS-divergence achieves 0 if and only if pθ = p∗. With that, the result follows and the minimum
value of L is −2 log 2.

3.2.5. Optimal generator
In general, it may not be possible to have pθ = p∗, since the parameterised generator may not be in
the space of p∗. However, given a parameter space Θ, the question is now whether there exists a θ ∈ Θ
such that the final expression in equation 3.11 is minimised over all possible θ’s. This will define the
optimal generator, with parameter set θ∗ ∈ Θ as:

L(θ∗, D∗θ) ≤ L(θ,D∗θ) ∀ θ ∈ Θ, (3.12)

i.e. the optimal generator given the optimal parameterised discriminator. Or equivalently, a gener-
ator with parameter set θ∗ that satisfies:

θ∗ = arg min
θ∈Θ

JS(pθ‖p∗) (3.13)

Biau et al. show [69, Theorem 2.2] that since {Pθ}θ∈Θ is compact for the metric
√
JS(·‖·), the

map p 7→ JS(p, p∗) is continuous and thus the minimum pθ∗ exists. Furthermore, Biau et al. go on
to show that the minimum pθ∗ is unique. After that, however, the authors assume that the generator
distribution Pθ is identifiable for each θ ∈ Θ, which allows them to conclude that θ∗ is itself also
unique. This assumption is in general violated when using neural networks, as will be shown in the
next subsection. Therefore, we should disregard the proofs for unicity of θ∗ given in [69]. The existence
of θ∗ and the uniqueness of pθ∗ , do however apply to our setting.

3.2.6. Non-unicity of the optimal generator
The model {Pθ}θ∈Θ is identifiable if Gθ(Z) 7→ Pθ is a bijection. Identifiability is thus violated if multiple
choices of θ can give the same output distribution Pθ. In general, this could occur arbitrarily often in
neural networks. For example: if ReLU activations max(x, 0) are used in intermediate network layers,
infinitely many θ in one layer can output 0, violating identifiability of that layer and consequently of
the entire network. Instead, the network could be restricted to bijective activation functions, such as
LeakyReLU activations. However, even with bijective activation functions, ambiguity may arise in the
model. Consider a layer with two neurons, θ1 and θ2, connected to a single input node with value
x and no bias or activation function. The output of the layer is given by y = (θ1 + θ2)x. Clearly,
for any input-output pair (x, y) there are infinitely many solutions to θ1 + θ2 = y

x , resulting again in
non-identifiability of the model. If x is a random input variable, this means that the same distribution
can be constructed with infinitely many choices of parameters. Therefore, although the map pθ∗ may
be unique, θ∗ itself is not. There could be many subsets of Θ that arrive at the same density pθ∗ . Still,
this is not an obstacle in this thesis, since the existence of θ∗ is enough for the network to satisfy our
needs of approximating the distribution p∗.
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3.2.7. Non-ideal case: finite parameter set for the discriminator
So far we have considered the case where the discriminator can attain any Borel function E → [0, 1].
In practice, however, the discriminator can only attain mappings within the capacity implied by its
parameter set α ∈ Rq. To stress this, it is written as Dα and the loss function will be written as
L(θ, α). But since in general for the parameterised form we have Dα /∈ D∞, the minimax solution may
be different than in the ideal case if D ∈ D∞. Goodfellow et al. [63] comment on this, mentioning that
if G and D have enough capacity, they should at least provide a reasonable estimate of pθ∗ , which is
found with stochastic gradient descent. Biau et al. [69] analyse this problem in more detail, but have
to make several assumptions about the structure of both G and D. The main results will be stated, but
the proof will be omitted, since it is rather technical and not informative to the rest of this chapter.

The key consequence of the parametric nature of Dα is that the corresponding optimal generator
changes. Suppose we call the parameter set corresponding to this new optimal generator θ̄, such that:

sup
α∈Λ

L(θ̄, α) ≤ sup
α∈Λ

L(θ, α) ∀θ ∈ Θ. (3.14)

Then it is important that pθ̄ approaches pθ for the new minimax choices of Gθ and Dα. The following
theorem shows that improving the discriminator also improves the generator output.

Theorem 3.5 (Improving Dα improves Gθ). Suppose that the following regularity assumptions hold:

(H0): There exists a positive constant t̄ ∈ (0, 1/2] such that:

min(D∗θ(x), 1−D∗θ(x)) ≥ t̄ ∀(x, θ) ∈ E ×Θ,

i.e. ‘D∗θ is some distance away from both 0 and 1’.

(Hε): There exists an ε ∈ (0, t) and a θ̄-admissible discriminator Dα, with α ∈ Λ such that:

‖Dα −D∗θ̄‖∞ ≤ ε,

i.e. ‘there is a discriminator that approaches D∗
θ̄
up to a constant ε’.

Then ∃ c > 0, a positive constant, which depends only on t, such that:

0 ≤ JS(pθ̄‖p∗)− JS(pθ∗‖p∗) ≤ cε2. (3.15)

Proof. See Biau et al., section 5 [69].

This implies that if the parameterised discriminator approaches D∗θ up to ε, the difference between
the JS-divergence in the parametric case and in the ideal case is bounded by a constant of O(ε2). This
result is important since it shows that letting Dα get closer to Dθ̄ actually results in getting pθ̄ closer
to pθ∗ . This bound scales with ε2. We should thus expect that as the class {Dα}α∈Λ becomes richer
(i.e. more layers, more neurons per layer), pθ̄ indeed approaches pθ∗ more closely. The assumptions
seem to be sufficiently mild for this idea to work in practice. H0 can be seen as a ‘softer’ version of
the admissible discriminator, excluding trivial cases 0 or 1, meaning that the discriminator always at
least puts some mass on real or fake data. The second requirement is also reasonable, as we know that
neural networks can serve as function approximators that can in theory be arbitrarily accurate as the
parameter set increases.

3.2.8. Including the effect of finite datasets
Finally, we should take into account that there is only finite training data available to find the optimal
generator and discriminator. In practice, the expectations in the loss function in equation 3.5a will be
replaced by the empirical estimates in equation 3.5b. This yet again affects the minimax solution of the
generator and discriminator, simply because the integrals in equation 3.7 have been replaced by their
sum approximations. All parameters now depend on the dataset used. To stress this, a ‘hat’ is used for
L̂(θ, α). Let us assume for simplicity that NX = NZ = N , i.e. the amount of target and ‘fake’ samples
available3:
3This is without loss of generality, since in the convergence theorem that follows the minimum of both sample sizes could
be taken towards infinity.
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L̂(θ, α) =
1

N

N∑
i=1

log(D(Xi)) +
1

N

N∑
i=1

(1−D ◦G(Zi)) . (3.16)

It is easy to see that equation 3.16 is unbiased for equation 3.5a. This time we write θ̂ for the
generator parameter set that achieves the infimum of the minimax problem given any discriminator,
i.e.:

sup
α∈Λ

L̂(θ̂, α) ≤ sup
α∈Λ

L̂(θ, α) ∀θ ∈ Θ. (3.17)

Intuitively, we expect that if N → ∞, the sums in equation 3.16 approach the expectations in
equation 3.5a and consequently, we recover all results from the previous paragraph.
Interestingly, Biau et al. extend their analysis to study this problem in more detail as well. They
provide a convergence theorem for the optimal generator in [69, section 4]. The proof involves a list of
assumptions and technical machinery beyond the scope of this thesis. The result is stated here:

Theorem 3.6 (Convergence theorem for GANs). Consider the following regularity assumptions:

(H0): the same assumption from theorem 3.5.

(H ′ε): ∃ε ∈ (0, t̄) for some positive constant t̄, such that ∀θ ∈ Θ, ∃D ∈ D , a θ-admissible
discriminator, such that ‖D −D∗θ‖∞ ≤ ε.

(H1
reg) : ∃b ∈ (0, 1/2), such that ∀α ∈ Λ : b ≤ Dα ≤ 1− b. Additionally, the map (x, α) 7→ Dα(x)

is part of C1 with uniformly bounded differential.

(H2
reg) : For any Z ∈ Rd, the map θ 7→ Gθ(Z) is part of C1, with uniformly bounded differential.

(H3
reg) : For any x ∈ E, the map θ 7→ pθ(x) is part of C1, with uniformly bounded differential.

If assumptions H0, H ′ε and H1,2,3
reg are satisfied, the following statement holds:

Eθ̂
[
JS(pθ̂‖p

∗)
]
− JS(pθ∗‖p∗) = O

(
ε2 +

1√
N

)
. (3.18)

Proof. See Bieau et al., section 4 [69].

The dependence on θ̂ is written in Eθ̂ of equation 3.18 to stress the fact that θ̂ is a random variable,
depending on the dataset {Xi}Ni=1 and {Zi}Ni=1. The result is interesting, since it shows that we approach
the result in equation 3.15 as N →∞. It is a ‘law of large numbers for GANs’. It implies that pθ̂ can
get nearly as close to p∗ as pθ∗ can, if we increase the sample size of our data.

The regularity assumptions mainly involve the continuity and uniform boundedness of the maps
θ 7→ Gθ, θ 7→ pθ, (x, α) 7→ Dα(x) and their first derivatives. I.e., if we change the parameters slightly,
the resulting change in the neural network and its first derivative are bounded and continuous. How
easy it is to satisfy these requirements depends on the choice of activation functions. For example,
LeakyReLU activations are not differentiable at 0, but they are piecewise differentiable and continuous
outside 0, while sigmoids are smooth on all of R. In the neural network implementation in standard
neural network libraries like PyTorch, non-differentiability of ReLU type activations is solved with a
heuristic at 0, which overcomes the differentiability problem during backpropagation steps. Therefore,
in practice the non-differentiability at 0 may not be a problem, not even for this type of activation. In
the remainder of this thesis, it will be assumed that we can approach the theoretical pθ∗ with stochastic
gradient descent by increasing the capacity of the networks and by increasing the sample size of the
training set, in the spirit of theorem 3.6. The theoretical work by Biau et al. has provided handles that
allow us to better understand what drives the convergence behaviour of GANs and where the ideal case
differs from practice.
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3.2.9. Concluding remarks on the theory
This section has provided a theoretical framework to understand why the generator and discriminator
should approach the target distribution p∗. Even though the optimal generator need not be unique,
this is not restrictive to our purposes, since the generator output is of interest, which does have a
unique optimum. If the optimal discriminator is replaced by a parameterised approximation, theorem
3.5 shows that as we improve this approximation, we still approach the theoretical optimal generator
output pθ∗ . With some assumptions about the smoothness of the networks in the space of parameters,
the minimax choices of G and D can be approached in the case of both finite network capacity and
finite sample size. These results show why we should expect the GAN to converge in distribution to a
distribution that resembles the target data and concludes the fundamental theory behind GANs. The
optimal discriminator can actually be approximated empirically, by using a kernel method to obtain an
approximation of pθ. This can be used to verify if the discriminator is indeed approaching the optimal
choice D∗ along the support of p∗ and pθ.

3.3. Training GANs in Practice
With the theoretical motivation behind GANs in mind, the question is now how we can use the loss
functions to jointly approximate the minimax solutions of Gθ and Dα. Since neural networks are used,
both Gθ and Dα should have their own loss function. The minimax problem can be cast into loss
functions LG for the generator and LD for the discriminator as follows, as shown in the original paper
by Goodfellow et al. [63]:

LD = −EX∼P∗ [log(Dα(X))]− EZ∼PZ
[

log (1−Dα ◦Gθ(Z))
]
, (3.19a)

LG = EZ∼PZ
[

log (1−Dα ◦Gθ(Z))
]
. (3.19b)

Equation 3.19a is simply a restatement of the original loss function with a minus sign in front of
it. This is arbitrary and depends on the choice of gradient ascent or descent. As in practice, neural
networks libraries use gradient descent, the negative version is chosen. To see this, recall how the
discriminator was to maximise the value function in equation 3.4, while the generator was to minimise
it. Equation 3.19b is the same expression without the minus sign and where samples only come from
the prior PZ , so the first term in the value function becomes 0.

A key practical consideration is that the networks should not be trained in succession, but alternat-
ingly. The minimax problem does not suggest this by itself, as we could theoretically first optimise the
discriminator and then concern ourselves with the generator. However, as is clear from the loss function
formulation, both networks need information about each other in order to be updated. Suppose the
generator was initialised and then held fixed, upon which we optimise the discriminator to convergence.
Recall that the optimal discriminator is defined only relative to the generator. Thus, if the generator is
updated, the discriminator becomes ‘outdated’ and should be updated again. Performing this iterated
operation in a single step is computationally infeasible, as mentioned in [74, p.3], which is why the
networks are trained in alternating steps.

3.3.1. Perfect discriminators
Arjovsky et al. have provided a technical paper on the practice of training GANs, supported by theoret-
ical results [75]. They explain how in general, the generator output lies on a low-dimensional manifold
in the target space, allowing the discriminator to distinguish regions of the generated data perfectly,
always labelling the real data 1 and fake data 0. In our much simpler 1D case, this would mean that
there are sets on the real line where the generator puts mass, but the target data has no mass, or
vice-versa, i.e.: the supports are disjoint. This would allow D to draw a decision boundary and rule out
a set of generator outputs as real data. Arjovsky et al. explain why this is problematic, since it lets the
discriminator gradient tend to zero, since a constant output has zero gradient. In the terminology of
the GAN theory section, this actually resembles a non-admissible discriminator, which was conveniently
ruled out. In practice, it does occur, as the argument shows. If the discriminator gradient is zero, it
disallows the generator from improving, which freezes the convergence process. If the discriminator was
optimised first while the generator does not yet resemble the distribution, this low-manifold problem
is more likely to occur. Training alternatingly allows both networks to improve with a lower chance of
giving rise to trivial solutions by the discriminator. However, outside of our simple 1D case, the man-
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ifold structure in multiple dimensions can be highly complex. This means that perfect discriminators
may arise at various stages during the training process. This is a current frontier of GAN research,
where literature focuses on alternate divergence metrics to overcome the problem. This point will be
explored further in a later section.

3.3.2. Vanishing generator gradient problem
Arjovsky et al. [75] show that the typical loss function of the generator provided in equation 3.19b
will have gradients that tend towards zero as the discriminator approaches D∗θ . This is an undesirable
property, since it could ‘freeze’ the training process before the generator has converged. Therefore,
Arjovsky et al. suggest an alternative loss function for the generator that was already in use by
practitioners at their time of writing:

L̃G = −EZ∼PZ
[

log (Dα ◦Gθ(Z))
]
. (3.20)

This loss gives rise to an equivalent optimisation problem, but does not suffer from the vanishing
gradient problem, as shown in [75]. However, this technique has its own problems, as Arjovsky et al.
continue to explain. They show on page 8 that the generator gradient becomes unstable as it can be
modelled by a Cauchy distribution with infinite mean and variance. This is a notorious problem in
GAN literature, as also featured in an extensive review paper on GANs by Hong et al. [66]. This is an
active line of GAN research. Still, preventing the gradients of the generator to vanish is an attractive
prospect, which is why the modified loss is used in this work as well. The training process will be
stabilised ‘manually’ with a learning rate schedule. Every nk iterations, the generator learning rate
will be additionally decreased by a factor cLR, e.g. around 1.1 to 1.5. See section 2.2.3 from the
Preliminaries for more background on the role of the learning rate.

3.3.3. Mode collapse
The final among key challenges described in GAN literature is that of ‘mode collapse’. It is described by
Hong et al. [66, p.18] as “many modes in the real data distribution are not represented in the generated
samples”. This is easy to imagine visually if the target distribution is some Gaussian mixture, where the
model only centers at one of the Gaussians. Mode collapse occurs often in practice in high-dimensional
problems [66, 74]. When classifying handwritten digits in the MNIST dataset, for example, mode
collapse could make the GAN output only 1’s instead of any number from 1-10, cf. [74, p.6]. This is
why this problem is central in GAN literature. The next section briefly discusses the main adaptations
that are suggested in GAN literature and compares them to the needs of the problem in this thesis.

3.4. Variations of the ‘Vanilla GAN’
Given the popularity of GANs, the body of literature covering them is substantially large. There are
many variants of GANs, that mainly focus on stabilising the training process and preventing the mode
collapse problem introduced in the previous section. Most of the work is focused on modifying the
loss functions for the generator and discriminator. The GAN introduced in the theoretical overview
based on the minimax value function will be referred to as the ‘vanilla GAN’. Here, the most notable
variations are discussed briefly.

3.4.1. Ideas for stabilising the training process
In [74], the authors introduce what they call ‘Unrolled GAN’, which introduces an additional loss
function based on future weight updates to the discriminator. This way, the gradient update to the
generator contains information about how the discriminator will respond to succeeding updates of the
generator. Including this information penalises trivial outputs on one mode, which, as the authors show
in their results, overcomes the mode collapse problem.
Another approach is to replace the loss function based on the JS-divergence by a different distributional
metric. In [76], the Wasserstein GAN is introduced, in which the loss function of both networks is based
on the Wasserstein distance, defined for two distributions P and Q as:

wp(P,Q) =

(
inf

γ∈Γ(P,Q)
E(X,Y )∼γ‖X − Y ‖p2

) 1
p

, (3.21)
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where Γ(P,Q) is the set of joint distributions of P and Q. As already briefly discussed in the previ-
ous section, the gradients produced by the vanilla GAN generator loss can be unstable. Arjovsky et al.
[75, 76] show how using the Wasserstein distance leads to stable and interpretable gradients, contrasting
with the KL- and JS-divergences, which tend to ‘max out’ quickly if the distributions are dissimilar, re-
sulting in zero gradient. They also explain how the wp metric is ‘weaker’ than the JS-divergence, which
allows the GAN to better capture the distribution as a whole rather than collapse onto one mode. The
details of these metrics will be discussed in chapter 5, where it is also explained how the Wasserstein
distance will be used in this thesis for analysing the output quality of the GAN, independent of whether
it is used in the GAN loss. Thus, the Wasserstein GAN would in theory both solve the stability and
mode collapse problems.

In [77], the authors link the problem of mode collapse to sharp discriminator gradients around data
from the target distribution P ∗. The ‘DRAGAN’ method is introduced, which adds a regularisation
term to the generator loss with the discriminator gradient:

ρ E(x,δ̃)

[
(‖∇xDα(x+ δ̃)‖2 − k)2

]
, (3.22)

where x ∼ P ∗, δ̃ ∼ N(0, C) and ρ is the regularisation parameter, δ̃ is an N(0, C) noise term with
diagonal matrix C, intended to escape local optima and k is an additional constant which the authors
set to 1, forcing the gradient to remain near 1. The idea of a gradient penalty has shown promising
application in the Wasserstein GAN, where Gulrajani et al. improved the Wasserstein GAN in [78] by
adding a gradient penalty to the original Wasserstein loss:

ρ Ex̂
[
(‖∇xDα(x̂)‖2 − 1)2

]
, (3.23)

where x̂ ∼ Px̂ is a random convex combination of a variate from Pθ and P ∗. The term forces the
gradient to stay near 1, which is required for the Wasserstein GAN to converge. The authors show that
this technique stabilises the training process. The details of the Wasserstein GAN are omitted as they
are beyond the scope of this section. At the end of this section, it will be shown why the vanilla GAN
will be sufficient for the purposes in this thesis.

3.4.2. Conditional GAN
At the end of the foundational paper by Goodfellow et al. [63], the authors suggest expanding the
GAN model to conditional distributions, i.e. including a class label Yi for each datapoint Xi to learn
P ∗(Xi | Yi). This idea has been elaborated and implemented by Mirza et al. [79], dubbed ‘conditional
GAN’ (CGAN). The authors modify the vanilla GAN value function into the form given in equation
3.24.

inf
θ∈Θ

sup
α∈Λ

[ N∑
i=1

logDα(Xi|Yi) +

N∑
i=1

log (1−Dα ◦Gθ(Zi|Yi))
]
, (3.24)

where all that has changed is the conditioning on data labels Yi. In practice, one would concatenate
the labels to the inputs to both G and D, so it is argued for example in [23] that technically the joint
distribution P (X,Y ) is used. However, through Bayes’ rule, we see that the joint density is proportional
to the conditional density, so the minimax solution should not change. We could repeat all the results
from the theoretical overview for the CGAN as well, obtaining the same results. The conditional GAN
will allow us to generate samples conditional on ∆t and St, or in general the SDE parameters as well.

3.4.3. Other GANs
GAN literature is rich in more ideas and variants, but a detailed description of all setups is beyond the
scope of this thesis. Different learning strategies may be proposed, such as evolutionary learning instead
of gradient descent [80], GANs may be combined with variational auto-encoders (VAEs) [81], combining
CGAN with a Laplacian pyramid [82], and many more. The discriminator may even be replaced entirely
by a distributional metric, but typical metrics such as KL-divergence and JS-divergence may be difficult
to compute explicitly. One suitable candidate is the maximum mean discrepancy (MMD) metric [83],
which is a distance metric for distributions that can be computed efficiently, even in high dimensions.
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3.4.4. GAN setup used in this thesis
For each GAN variation, there are arguments to be made why they should improve performance on a
typical problem setup. Researchers from Google Brain have performed an extensive comparison study
on seven prevalent GAN architectures [84]. They found that as computational budget increases, per-
formance of all methods was similar, while on a lower computational budget, a supposedly superior
algorithm may be outperformed by a ‘lesser’ GAN variant on the same problem. The researchers
pointed out how GANs had not been compared properly in previous work and prior researchers had
sometimes reported the minimum score achieved by their algorithm, which gives a distorted image of
the actual distribution of performance coming from a model. The trend described by Google Brain
researchers in [84] can be seen in existing literature as well. Papers comparing multiple architectures
sometimes give mixed results, improvements to the vanilla GAN are marginal or the vanilla GAN de-
feats the majority of proposed alternatives entirely. See for example, [77, fig.4-5], [78, fig.3],[80, fig. 4],
[8, fig.8]. The key lesson from the literature seems to be that years since the inception of GANs, there
is no ‘one-size-fits-all’ best choice among all the alternatives proposed, for every computational budget
and application, despite the impressive theoretical results on e.g. Wasserstein GANs.

Furthermore, the conditional GAN architecture itself may allow the GAN to distinguish between the
modes in the target distribution, mitigating the effect of mode collapse. If dimensions higher than one
are chosen in related subsequent works, it is advised to experiment with gradient penalties to stabilise
the training process, in the spirit of the analysis given in [77] and [75].

Activation functions were chosen to be of the ReLU type, to prevent the gradient from tending to
zero on values far away from the origin. This is relevant for the processes under consideration, which
may exhibit heavy tails that persist after normalisation steps. In order to prevent regions with zero
gradient that might hinder the training process, LeakyReLU activations are used, as they provide small
but non-zero gradients for negative values. The algorithm will be implemented in PyTorch [55].

3.5. Algorithmic Formulation
We are now ready to consider the training process in algorithmic form. It is written here as a concrete
overview of what is implemented in the results. The inputs to the generator and discriminator will
vary as the GAN is modified to the conditional GAN. The vanilla GAN algorithm is similar to the one
presented in [63].

Algorithm 1: GAN training process with number of epochs nE , batch size nB , number of
iterations nE ·nB , number of discriminator steps per generator step nD, discriminator learning
rate λD and generator learning rate λG. Random mini-batches are drawn to obtain a set of
real samples X.
for m ∈ {1, . . . , nE} do

Sample {X1, X2, . . . , XnB}
iid∼ P ∗

for n ∈ {1, . . . , nD} do
Sample {Z1, Z2, . . . , ZnB}

iid∼ PZ

LD =
1

nB

nB∑
i=1

[
logDα(Xi) + log (1−Dα ◦Gθ(Zi)))

]
Update the discriminator weights:
α← α− λD∇αLD

end

Sample {Z1, Z2, . . . , ZnB}
iid∼ PZ

LG = − 1

nB

nB∑
i=1

[
log (Dα ◦Gθ(Zi)))

]
Update the generator weights:
θ ← θ − λG∇θLG

end

Notice how the discriminator may be trained more than once per generator update (nD). This
may be advantageous, since the more the discriminator is updated for a fixed generator, the better
it approximates the optimal discriminator given the generator. The more the discriminator step is
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repeated, however, the more computationally costly the method becomes. In this work, this parameter
was set to nD = 2, which led to faster rates of convergence than nD = 1. Due to computational
considerations, it was not increased further. An overview of the architectures used in this work is
provided in the appendix.

Chapter Conclusion
This chapter has presented the theoretical foundations of GANs. The core result is that the GAN
loss function can be written in terms of a distributional metric, the Jensen-Shannon divergence. The
GAN can be shown to converge even if we take into account the parameterised nature of the generator
and discriminator and the fact that the training set is finite. Many GAN variants exist, but empirical
evidence shows no clear best alternative among the variants in the general case. The vanilla GAN and
conditional GAN will satisfy the needs in this work as a base architecture. In chapter 4, a modified
version of the conditional GAN is proposed, which is still based on the base principles outlined in this
chapter. If future work operates in higher dimensions, mode collapse should be a point of attention, in
which case an architecture with gradient penalty may be considered.



4
Methodology

This chapter presents our approach to approximate a strong solution to the SDE on a time
discretisation. First, the problem setting is discussed in detail. It is shown that vanilla GANs are
unable to provide a strong solution to the SDE in general. In this work, a modified GAN called
‘constrained GAN’ is proposed that overcomes this problem. If a GAN is adapted to the same natural
filtration and maps random increments in the same way as the strong solution, it can provide a strong
approximation, which is shown in this chapter. Various techniques are discussed to enforce this map on
the GAN on general SDE problems, all in the spirit of the constrained GAN architecture. Finally, it is
shown how paths are constructed using the GAN and how they are assessed. The next chapter will
show how various non-parametric techniques can be used to study the distribution of the GAN output.

4.1. Setting
Before we discuss the implementation of the GAN to approximate the SDE, we will first give a precise
description of the problem setting. General SDEs are defined as continuous-time processes, but this is
intractable when constructing a dataset of training examples for the GAN. Additionally, in the setting
of this work, we are interested in a single time step or several time steps in the future, as opposed to
the entire path. Thus, we are concerned with some discretisation of the time domain of interest, i.e.
the process at the times 0 = t0 < t1 < . . . < tk < . . . < tN = T . Suppose we are given a process {St}
with S0 = x ∈ R and a Brownian motion {Wt}, which together form the strong solution of equation
4.1 on [0, T ], adapted to the filtration Ft = σ({Wt}).

Stk = Stk−1
+

∫ tk

tk−1

A(s, Ss)ds+

∫ tk

tk−1

B(s, Ss)dWs P−a.s. (4.1)

On our discretisation, the strong solution of the SDE takes values ({Stk}, {Wtk}), as illustrated in
figure 4.1, where the blue line denotes a realisation of the strong solution. The process {Stk}Nk=0 is not
continuous, i.e. not defined anywhere else but on the discretisation points. The key consequence is
that the process ({Stk}, {Wtk}) for k = 0, . . . , N is not a strong solution, as it is not continuous. We
can no longer distinguish between Brownian motions that take values Wtk on our discretisation, but
may take different values on all other points on [0, T ]. Therefore, in this work, the notions of weak and
strong solutions are reintroduced on a discretisation, which we will need to formalise our
understanding of the approximation achieved by GANs, trained on a dataset of {Stk}.
On a discretisation of the time interval, we do not observe {Wt}, but {Wtk} for all k. Note that
{Wtk} is not a Brownian motion, since it is not continuous, but a realisation of {Wt} at each time tk.
The following will provide the terminology for accurately describing our setting with regard to weak
and strong solutions.

Definition 4.1 (Natural filtration (discrete case)). Given a discretisation {tk}Nk=0 of the interval
[0, T ] with T > 0, the discrete analog of the natural filtration is given by the σ-algebra generated by
the realisations of the Brownian motion {Wt} at each tk on the discretisation, i.e.:

Gk := σ({Wti : 0 ≤ i ≤ k}) ∀k ∈ {0, . . . , N}. (4.2)

27
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Remark 4.2. For all filtrations of a strong solution Ftk , we have Gk ⊆ Ftk ⊆ F . As tk − tk−1 → 0, Gk
will progressively grow to Ftk .

tk0
tk1

tk2
tk3

tk4

S0

∆t

t

S
t

Figure 4.1: A single realisation of a path, corresponding to the strong solution ({St}, {Wt}), shown as the solid line,
available up to time Stk0

. We are interested in extending the strong solution beyond Stk0
, i.e. the blue line. The

discrete strong solution is a subsampled version of the strong solution, given by ({Stk}, {Wtk}), shown as the red dots.
In the figure, ∆t := tk − tk−1 is held fixed.

Definition 4.3 (Discrete strong solution). Let ({St}, {Wt}) with S0 = x ∈ R be a strong solution
to the SDE on (Ω,F , P ). Given a discretisation {tk}Nk=0 of the interval [0, T ], a discrete strong solution
on the partition is defined as the pair

(
{Stk}, {Wtk −Wtk−1

}
)
that satisfies P -a. s. ∀k ∈ {1, . . . , N}:

Stk = (St)|t=k, (4.3)
Wtk −Wtk−1

= (Wt)|t=k − (Wt)|t=k−1. (4.4)

Clearly, {Stk} and {Wtk −Wtk−1
} are adapted to Gk ∀k ∈ {1, . . . , N}. A sequence of exactly simulated

points {Stk}Nk=0 is not a strong solution to the SDE, since it is not continuous. However, it is a
discrete strong solution, adapted to Gk. If we would say that we ‘approximate’ the strong solution
with a discrete strong solution, this statement would be unrelated to the accuracy of the
approximation {Stk}Nk=0, since by definition the strong solution is equal at every point tk. The
difference arises purely from the transition of a continuous random variable to a discrete one. We can
analogously define a weak solution.

Definition 4.4 (Discrete weak solution). Let (Ω′,F ′, P ′) be a probability space. Let ({S′t}, {W ′t})
be a weak solution to the SDE, where both processes are adapted to F ′t = σ({W ′t}) and S′0 = x ∈ R.
Given a discretisation {tk}Nk=0 of the interval [0, T ], a discrete weak solution on the partition is defined
as the pair

(
{S′tk}

N
k=1, {W ′tk −W

′
tk−1
}Nk=1

)
that satisfies P ′-a.s. ∀tk ∈ {tk}Nk=1:

S′tk = (S′t)|t=k, (4.5)
W ′tk −W

′
tk−1

= (W ′t )|t=k − (W ′t )|t=k−1 (4.6)

In analogy with the continuous version by Klenke, definition 26.12 [24], if there exists another discrete
weak solution on (Ω̃, F̃ , P̃ ), denoted by ({S̃tk}, {W̃tk}) that satisfies P̃ ◦ S̃−1

tk
= P ◦ S−1

tk
, St, i.e.

equality in distribution, it is called weakly unique.

Remark 4.5. A discrete weak solution need not be adapted to the filtration of the strong solution
Gk, analogous to the continuous case, where a weak solution need not be adapted to Ft. Instead, a
discrete weak solution is adapted to G′k := σ({W ′tk}

N
k=0). It does not even need to be defined on the

same probability space as the strong solution.

Let us test the introduced terminology on a simple example.
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Example 4.6 (Geometric Brownian motion). Consider the example of GBM, for which the
connection between {St} and {Wt} is known explicitly. Let {tk}Nk=0 be a discretisation of [0, T ].
Suppose that S0 = x ∈ R, then the strong solution between any two times r ≤ t on [0, T ] is given by:

St | Sr = Sre
(µ− 1

2σ
2)(t−r)+σ(Wt−Wr), (4.7)

while a discrete strong solution is given ∀k ∈ {1, . . . , N} by:

Stk | Stk−1
= Stk−1

e(µ− 1
2σ

2)(tk−tk−1)+σ(Wtk
−Wtk−1

). (4.8)

The process in equation 4.7 is adapted to the filtration Ft = σ({Wt}), while the process in equation 4.8
is adapted to Gk. Suppose the pair ({S′t}, {W ′t}) also satisfies equation 4.7, but this time W ′t = −Wt.
This pair forms a weak solution to the SDE, since it satisfies the SDE and is adapted to the filtration
σ({−Wt}). Since S′t

d
= St, it is weakly unique. However, the process is not a strong solution, as it is

not path-wise equal to the strong solution P -a. s. This holds analogously for the discrete variants.
If we were to construct a ‘dataset’ of the discrete strong solution {Stk}Nk=0, we would sample a
sequence of random increments {Wtk}Nk=0 by drawing N numbers Z ∼ N(0, 1) and multiplying them
with

√
tk − tk−1. Then the pair ({Stk}, {Wtk −Wtk−1

}) forms a discrete strong solution to the SDE,
where realisations of the Brownian motion increments {Wtk −Wtk−1

} have been sampled using the
process {Zk} of i.i.d. standard normal random variables.

Beyond this chapter, we will assume that our discretisation is equally spaced with step size ∆t = T
N ,

such that tk = k∆t ∀k ∈ {0, 1, . . . , N}. We could write each ‘next step’ of the process St on the
discretisation as St+∆t | St, in the same way as in [85], where paths are simulated for the Heston
model. By the Markov property of SDEs [24], each next step St+∆t | St is independent of Ft.
Therefore, on a discretisation with equal spacing and given an SDE and Brownian motion {Wt}, the
entire path on any bounded interval [0, T ] is defined by the starting point S0 and the next step
St+∆t | St, as illustrated in figure 4.1. In the remainder of this chapter, we will keep writing
Stk | Stk−1

to keep the results general for any discretistion.
In the results, paths will be shown as linearly interpolated line segments between the points, which is
only for illustration purposes. In the example of figure 4.1, we will attempt to let a neural network
approximate ‘next red dot given the previous red dot’, which is equal on the points {tk}Nk=1 to the
strong solution given by the blue line. In this work, by exact simulation we will refer to a method that
defines a discrete strong solution on all points of the discretisation (i.e. ‘construct the red dots’).

Remark 4.7 (Comparison with discrete-time schemes). Discrete-time approximation schemes
such as the Euler and Milstein schemes are also defined in the discrete setting. As we have seen in the
preliminaries, such schemes provide approximations to the process {St} on a discretisation by
truncating the stochastic Taylor expansion. They approximate the discrete strong solution at each
point on the discretisation, while the discrete strong solution is exactly equal to the strong solution on
the discretisation points. In exact simulation, we do not require any condition on the mesh of the
discretisation, while discrete-time schemes rely on ∆t→ 0 in order to recover the exact strong
solution. The method proposed in this work is to let a neural network ‘learn’ the map achieved by an
exact scheme between any two time steps. It resembles more closely an exact scheme than a
discrete-time scheme, while the Euler and Milstein schemes will act as a reference to assess the quality
of the generated approximation to the discrete strong solution.

4.2. Discrete Approximations with GANs
In this section, we discuss in what sense a GAN can approximate a weak or strong discrete solution to
the SDE. Let us assume in the rest of this chapter that the GAN introduced in chapter 3
approximates the distribution of the trained examples perfectly, i.e. Gθ(Z)

d
= Stk |Stk−1

for all tk−1, tk
and Stk−1

. This is useful for establishing a theoretical understanding of how a GAN approximates a
discrete solution. First, we study the ability of the GAN to sample from FStk |Stk−1

for a single step
and with fixed parameters. This forms the basis for a discrete approximation of the process {St}.
Clearly, modelling a single transition Stk |Stk−1

for a fixed Stk−1
is not sufficient for approximating a

discrete solution on the entire discretisation, either weak or strong, since it will not capture the
dependence of the process {St} on time or on Stk−1

, i.e. the autocorrelation structure. The
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approximation will be extended to Gθ(Z, tk, tk − tk−1, Stk−1
)
d
= Stk |Stk−1

for any tk−1, tk and Stk−1
on

some range of interest with the conditional GAN.

4.2.1. Vanilla GAN
A single step can be modelled using the ‘vanilla GAN’, as introduced in chapter 3, where the GAN is
trained on a dataset of samples with some stationary distribution. This will form a baseline result to
establish how well the GAN can approximate a target in distribution. The GAN is trained on a
dataset of exact variates corresponding to GBM or the CIR process. This is done by sampling from
the analytical formulation of the conditional distribution Stk | Stk−1

for fixed parameters, as follows,
repeating the equations from the preliminaries:

GBM : Stk | Stk−1
(ω) = Stk−1

e
(µ− 1

2σ
2)(tk−tk−1)+σ(Wtk−Wtk−1

)(ω) (4.9)

= Stk−1
e(µ− 1

2σ
2)(tk−tk−1)+σZk(ω)

√
tk−tk−1 (4.10)

CIR : Stk | Stk−1
(ω) ∼ c χ2(ξ, δ)(ω), (4.11)

for all ω ∈ Gk and k ∈ {1, . . . , N} and the i.i.d. sequence of N(0, 1) random variables {Zk}. The
default parameter sets of choice will be included in the appendix.
Note that in this setting, the GAN does not need to receive the starting value Stk−1

, nor the
remaining SDE parameters at its input, as they remain constant. The GAN ‘learns’ how to center and
scale the distribution purely from the dataset Stk | Stk−1

. In the next chapter, it is shown how two
probability distributions can be compared using techniques from non-parametric statistics.

4.2.2. Conditional GAN
In order to generalise beyond a single step, the GAN can be trained on samples Stk | Stk−1

with
varying tk−1, tk and Stk−1

, by using the conditional GAN introduced by Mirza et al. [79]. Let us
define C to be a set of conditional parameters. We can refer to the conditional parameters as ‘labels’
or ‘classes’, which is how they are introduced in [79], although in our case they may be chosen from a
continuum of possible choices. The training set now consists of tuples (Stk | Stk−1

, C), where C ∈ C is
a conditional parameter, e.g. Stk−1

, ∆t := tk − tk−1, or both. For example, suppose the GAN is to be
trained on two time steps, e.g. ∆t ∈ C := {0.5, 1} and further that tk−1 = 0 for simplicity. The
training set then consists of tuples {(S0.5 | S0, 0.5), (S1 | S0, 1)} and can be constructed by randomly
choosing between the classes n times uniformly, with n the desired training set size. Additional
parameters could be included as well, such as (µ, σ) for GBM. In principle, the GAN could learn the
distribution of an entire family of solutions to the SDE in this way. Training samples are obtained by
drawing from the exact distributions given in equations 4.9 and 4.11.
The generator input does not only consist of Z ∼ N(0, 1), but of the tuple (Z,C). The discriminator
alternatingly receives (Stk | Stk−1

, C) and (Gθ(Z,C), C) during training. During inference, the
generator is called with (Z,Ctest) on a test condition of interest. This way, we can assess the GAN
output on a cross-section of the hyperplane spanned by all combinations of conditions.
The set of condition labels C does not need to be discrete, but can be varied on a continuum as well.
One could construct an interval [a, b] ⊆ R to create a test set of N unique samples of C, uniformly
sampled from [a, b].

Remark 4.8. To model each step Stk | Stk−1
for the GBM and CIR problems, the conditional GAN

receives the conditional argument C = (Stk , tk − tk−1), but not tk. This is because in both the cases of
GBM and the CIR process, Stk | Stk−1

does not depend on tk, but only on the previous value Stk and
the time step ∆t := tk − tk−1. This holds for all Itō diffusions, cf. [1], i.e. where SDE coefficients
A(t, St) = A(St) and B(t, St) = B(St) do not depend on t. To extend to general SDEs, the conditional
GAN should also receive the current time tk as input.

A schematic overview of the conditional GAN generator is given in figure 4.2. The input conditions
are concatenated to the input of the neural network. If the dimension of the conditional parameter set
is d, the generator and discriminator receive a (d+ 1)-dimensional input. This problem is more
challenging than the vanilla GAN case, as the discriminator must now accurately assign a confidence
between 0 and 1 on a (d+ 1)-dimensional plane and consequently capture the dependence of the
distribution of Stk | Stk−1

on these variables.
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Figure 4.2: Schematic overview of the conditional GAN generator. The discriminator is defined analogously, but instead
of Zk it receives either Stk | Stk−1 or a generated solution G(Z, Stk−1 , tk − tk−1).

4.2.3. Weak approximation
If the conditional GAN generator, trained on (Stk | Stk−1

, tk,∆t := tk − tk−1), approximates its target
distribution Stk | Stk−1

perfectly, we have:

Gθ(Zk, Stk , tk,∆t)
d
= Stk | Stk−1

. (4.12)

If we sample the sequence {Zk}, with Zk
i.i.d.∼ N(0, 1), then we can construct a path by iterative

application of equation 4.12 for k ∈ {1, . . . , N}. However, the key problem is that we do not know
whether the GAN output will provide a path-wise approximation to the strong solution, as it is only
guaranteed to be equal in distribution at each time tk to the discrete strong solution. Let us call the
generator output Ŝtk , then we have Ŝtk | Ŝtk−1

d
= Stk | Stk−1

. Since a strong solution exists, there is
also a path-wise unique weak solution, which is weakly unique, cf. the result due to Yamada and
Watanabe, given as theorem 26.18 in [24]. This means that there might be another S′tk for which the
generator satisfies equation 4.12, but is adapted to a different filtration than Stk . The conditional
GAN learns the conditional distribution FSt+∆t|St , but we have no information about the filtration or
Brownian motion to which it is adapted. Thus, convergence in distribution to the strong solution
limits us to the class of discrete weak solutions in general.

4.2.4. Strong approximation
From the analysis so far, we conclude that a standard GAN architecture is not guaranteed to provide
a discrete strong solution to the SDE. However, if we could somehow guarantee that the GAN output
is adapted to Gk and shares the same connection with the Brownian motion as the strong solution, we
do recover a discrete strong solution, which is shown in this section. For this relation to hold, the
GAN should be related to an event ω ∈ Gk as (ω, tk,∆t, Ŝtk−1

) 7→ Ŝtk(ω), cf. the derivation of theorem
7.1.2 in [1] by Øksendal for Itō diffusions. For each ω ∈ Gk, the GAN output must equal the discrete
strong solution P -a. s. to represent a strong solution.
As we will be computing moments of the output of the generator, the output must be integrable. To
this end, we show that the generator output is in Lp, where we will follow the approach by Wiese et
al. [5]. The result is shown in theorem 4.9.

Theorem 4.9 (The generator output is in Lp). Given a conditional GAN generator, which takes
as input tk ∈ [0, T ], ∆t := tk − tk−1 ∈ [0, T ] and Stk−1

∈ [a, b] ⊆ R, defined by:

Gθ : Ω× [0, T ]× [0, T ]× [a, b]→ R,
(ω, tk,∆t, x) 7→ Gθ(Z(ω), tk,∆t, Stk−1

),
(4.13)

where S0 = x ∈ R. Then the generator output is in Lp(R) ∀k ∈ {0, 1, . . . , N}.

Proof. Feed-forward neural networks with ReLU-type activations, as used in this work, are
Lipshitz-continuous [86, 87]. From here, we will reproduce the proof by Wiese et al. [5]. Recall that
for a Lipschitz-continous function f : Rm → Rn for m,n ∈ N, there exists a K > 0 such that
‖f(x)− f(y)‖ ≤ K‖x− y‖ for all x, y ∈ Rm, where ‖·‖ is the L1-norm. If y = 0, we have
‖f(x)− f(0)‖ ≤ K‖x‖. Consequentially, using the triangle inequality, one can show that:
‖f(x)‖ ≤ K‖x‖+ ‖f(0)‖.
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Let us write Z := (Z, tk,∆t, Stk−1
). Let us first assume that Stk−1

∈ Lp(R). Since Z is a Gaussian
random random variable on (Ω,F , P ), it is in Lp. Since tk and ∆t are constants on a bounded
interval, Z ∈ Lp(R4). Now we apply the triangle inequality:

E [‖Gθ(Z)‖p] ≤ E [(K‖Z‖+ ‖Gθ(0))
p
]

=

p∑
j=0

(
p

j

)
LjE

[
‖Z‖j

]
‖Gθ(0)‖p−j <∞,

(4.14)

where the last step follows from Newton’s binomial expansion. K is the Lipschitz constant of the
conditional GAN generator and 0 is the vector (0, 0, 0, 0). Finally, we assumed that Stk−1

∈ Lp(R). At
time zero, we have, S0 = x ∈ R, which is in Lp. Since Ŝtk and Ŝtk−1

are related recursively, by
induction it follows that Ŝtk | Ŝtk−1

∈ Lp(R) ∀k.

We now have the following: the distribution of the conditional GAN output Ŝtk | Ŝtk−1
equals

FSt+∆t|St , i.e. we assume that the GAN ‘perfectly’ approximates the target distribution. We also have
that Ŝtk | Ŝtk−1

is in Lp, which will allow us to compute moments of the generator output. If we
assume that Ŝtk | Ŝtk−1

is adapted to Gk and corresponds to the same Brownian motion increments as
the strong solution for each ω ∈ Gk, then the generator provides a discrete strong solution, which is
shown in theorem 4.12, for which we first consider lemma 4.10.

Lemma 4.10 (Constructing adapted increments). Fix a probability space (Ω,F , P ). Let
({St}, {Wt}) and ({Stk}, {Wtk −Wtk−1

}) for all k ∈ {1, . . . , N} be respectively a strong solution and
discrete strong solution of an SDE adapted to the natural filtrations Ft = σ({Wt}) and
Gk = σ({Wtk}). Let F−1

Wk
denote the inverse distribution of the Brownian motion increment

Wtk −Wtk−1
and FSk|Sk−1

denote the CDF of Stk | Stk−1
. Then ∀ω ∈ Gk, the Brownian motion

increment between times tk and tk−1 is uniquely given by:(
Wtk −Wtk−1

)
(ω) = F−1

Wk

(
FSk|Sk−1

(
(Stk | Stk−1

)(ω)
))
. (4.15)

Proof. Since the process {St} contains continuous random variables for any SDE, the joint density of
St, Sr at times r ≤ t, denoted by f(St,Sr) and the marginal density fSr are non-zero P -a.s. Then so is
the density fSt|Sr =

f(St,Sr)

fSr
. Consequently, the CDF FSt|Sr is a bijection, as it is strictly increasing

and non-zero P -a.s. Since this holds for all r, t ∈ [0, T ], it also holds for tk and tk−1. Furthermore,
since Wtk −Wtk−1

∼ N(0, tk − tk−1), its CDF FWk
is a bijection and its inverse distribution exists.

Thus, for every realisation of Stk | Stk−1
, there is a unique realisation of the N(0, tk − tk−1) random

variable found by equation 4.15. The final requirement is to show that this N(0, tk − tk−1) random
variable coincides with the Brownian motion increment between tk and tk−1. This follows from
uniqueness of the strong solution in the continuous case, i.e. every pair (S0, {Wt}) maps uniquely to
the process {St}. As this holds for all times, it also holds on our discretisation. Thus, every starting
point and increment (Sk−1,Wtk −Wtk−1

) map uniquely to a realisation Stk | Stk−1
. Therefore, the

realisation of the random variable given by equation 4.15 must coincide with Wtk −Wtk−1
. By

adaptedness of {Stk} to Gk, equality holds for every event ω ∈ Gk.

Remark 4.11. Lemma 4.10 tells us that, given the distribution of the transition Stk | Stk−1
, we can

sample a corresponding Brownian motion increment. Dividing by
√
tk − tk−1, we obtain a sequence of

standard normal random variables, say {Zk}, which is also adapted to Gk. For every realisation of
Wtk −Wtk−1

, there is a unique realisation of Zk. This will be used to create an Euler and Milstein
approximation of the CIR process, so that we can compare exactly simulated paths using equation
4.11 with the discrete-time approximation path-wise.

Theorem 4.12 (Discrete strong solution with conditional GAN). Let ({Stk}, {Wtk −Wtk−1
})

be a discrete strong solution on (Ω,F , P ), adapted to the natural filtration Gk. Let
Ŝtk | Ŝtk−1

d
= Stk | Stk−1

denote the output of a trained generator given Ŝtk−1
. If the generator output

is adapted to Gk and if Ŝtk | Ŝtk−1
and Stk | Stk−1

are related by(
Wtk −Wtk−1

)
(ω) = F−1

Wk

(
FStk |Stk−1

(
Ŝtk | Ŝtk−1

)
(ω)
)
, then the pair ({Ŝtk}, {Wtk −Wtk−1

}) is a
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discrete strong solution to the SDE, i.e. Stk | Stk−1
(ω) = Ŝtk | Ŝtk−1

(ω) P -a. s. for all ω ∈ Gk. F−1
Wk

is
the inverse distribution of Wtk −Wtk−1

.

Proof. By lemma 4.10, for every sample
(
Ŝtk | Ŝtk−1

)
(ω) ∼ FStk |Stk−1

, there is a unique

corresponding Brownian motion increment
(
Wtk −Wtk−1

)
(ω). Since we assumed that the generator

output is adapted to Gk, this Brownian motion increment is also adapted to Gk. Now, by uniqueness
of the strong solution, for each

(
Wtk −Wtk−1

)
(ω), there is a unique

(
Stk | Stk−1

)
(ω). As this holds

for all k ∈ {1, . . . , N} and ω ∈ Gk, by uniqueness of the strong solution, we must have(
Stk | Stk−1

)
(ω) =

(
Ŝtk | Ŝtk−1

)
(ω) P -a. s.

Theorem 4.12 shows that a perfect generator finds a discrete strong solution if it is adapted to Gk and
if it is related to the same Brownian motion increment as the discrete strong solution for every event
ω ∈ Gk. In other words, the generator would learn the same map as the exact simulation scheme, as
opposed to learning any map that corresponds in distribution. However, the adaptedness and
connection with Wtk −Wtk−1

were included as an assumption. In order to enforce these properties, we
need a different architecture than the vanilla conditional GAN. This architecture is presented in the
following section.

4.3. Constrained GAN
‘Constrained GAN’ is a variant of the conditional GAN that forces path-wise equality to the strong
solution via the discriminator. The key idea behind the constrained GAN is to train the GAN on
pairs of ({Stk |Stk−1

}, {Wtk −Wtk−1
}) instead of only {Stk |Stk−1

}. This would force the GAN to
understand not only the distribution of Stk |Stk−1

, but also how each realisation of Stk |Stk−1
relates to

the Brownian motion increment. This is equivalent, up to a scaling factor
√
tk − tk−1, to training on

pairs ({Stk |Stk−1
}, {Zk}), where {Zk} is a sequence of i.i.d. N(0, 1) random variables, adapted to the

same filtration Gk as {Wtk}. This way, the constrained GAN learns both how to sample from the
correct distribution and how to correctly map the Brownian motion increment to the next value along
the path. This notion is further explained in the following paragraph.

4.3.1. Constrained GAN as inverse map
Consider again figure 4.1, where the red dots form a discrete strong solution to the SDE. Due to the
Markov property of SDEs, we could sample an entire path given a starting point Stk0

and a means to
sample from the conditional distribution FSk|Sk−1

. The conditional distribution contains all the
information in the SDE between times tk and tk−1. We can interpret ‘satisfying the SDE’ as ‘following
the distribution FSk|Sk−1

’. This is analogous to finding a discrete weak solution. A strong solution
adds an additional constraint on how the output should correspond to the Brownian motion increment.
Sampling the next value along the path is equivalent to sampling from the inverse distribution of
FSk|Sk−1

. All of this is summarised in equation 4.16, where we let ({Stk |Stk−1
}, {Wtk −Wtk−1

}) be a
discrete strong solution and S̃tk | S̃tk−1

denote a sample from a discrete weak solution.

S̃tk | S̃tk−1

d
= (Stk | Stk−1

)(ω) = F−1
Sk|Sk−1

(
FWk

((
Wtk −Wtk−1

)
(ω)
))
. (4.16)

As we discussed earlier, a standard GAN is only able to recover the first equality, as it only receives
information about the conditional distribution. The idea behind the constrained GAN is to learn the
following map instead:

(Stk | Stk−1
)(ω) = F−1

Sk|Sk−1

(
FWk

((
Wtk −Wtk−1

)
(ω)
))
, (4.17)

or equivalently using an i.i.d. sequence of Gk-adapted standard normal random variates {Zk}:

(Stk | Stk−1
)(ω) = F−1

Sk|Sk−1
(FZ (Zk(ω))) . (4.18)

Clearly, if the generator learned this map, its output would be adapted to Gk. The generator
architecture remains unchanged, given by:

Gθ(Zk(ω), tk, tk − tk−1, Stk−1
)→ Ŝtk | Ŝtk−1

(ω). (4.19)
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To achieve this, the GAN must be trained on exactly those {Zk} that correspond to the discrete
strong solution training set, i.e. {Stk |Stk−1

}. The only practical consideration is how the samples
{Zk} are obtained. In the GBM case, they are already available, since exact simulation involves
constructing the process {Zk} as shown in equation 4.9. In case of the CIR process, the GAN could be
trained on ‘reconstructed Brownian motion increments’ from training data {Stk |Stk−1

} using lemma
4.10 and remark 4.11:

Zk(ω) = F−1
Z

(
FSk|Sk−1

(
(Stk | Stk−1

)(ω)
))
. (4.20)

In section 4.4, various techniques will be discussed to extend this technique to the general case,
without ever using the conditional distribution FSk|Sk−1

, which allows extensions to SDEs beyond
those considered in this work. The architecture of the constrained GAN is shown in the schematic of
figure 4.3. Note how the generator has not changed, but only the discriminator, as it now receives the
additional input Zk.

Zk G D

(Stk | Stk−1
, Zk)

(Ŝtk | Ŝtk−1
, Zk) D(·) ∈ [0, 1]

Figure 4.3: Schematic overview of the constrained GAN. The increment Zk is ‘re-used’ as input to the GAN. Pairs
(Ŝtk | Ŝtk−1 , Zk) and (Stk | Stk−1 , Zk) are supplied to the discriminator.

The inclusion of the input Zk allows the discriminator to ‘observe’ how the generator maps Zk to its
output and compare this with the pair (Zk, Sk | Sk−1) by the exact scheme. This will force the
generator to resemble the map that the exact scheme makes from Zk to the output Stk | Stk−1

.

4.4. General Case: Construction of the Constrained GAN
The construction of the constrained GAN has already been discussed for the examples of GBM and
the CIR process, which are the SDEs under consideration in this thesis. However, in order to extend
the constrained GAN beyond examples where the conditional CDF is available explicitly, we need
methods that work for general SDEs. Three methods are proposed for constructing the constrained
GAN architecture in the general case. The first is to invoke a discrete-time scheme on a very small
partition to obtain pairs of {Stk | Stk−1

}, {Wtk −Wtk−1
} on our discretisation. The second option is to

use a single-step discrete-time scheme to enforce adaptedness via regularisation of the generator loss
function. Thirdly, one could use Karhunen-Loève expansion of the Brownian motion. The first and
most straightforward extension is presented here, while the remaining two are included in the
appendix.

4.4.1. Train on high quality discrete-time approximation
A way to obtain the Gk-adapted sequence {Zk} for general problems is by constructing the training
set through a high-quality discrete-time approximation, instead of using exact simulation. We use the
fact that discrete-time schemes such as the Euler and Milstein schemes converge path-wise to the
strong solution. Suppose the time of interest is tk and the starting point is tk−1 ∈ [0, tk). The interval
[tk−1, tk] is discretised with a very large number of points n, e.g. O(106) with time step δt := tk−tk−1

n .
If, for example, a Milstein scheme is used on this interval, it will produce a high-quality approximation
of the stochastic integral at time tk. The goal of the GAN is then to sample the path from tk−1 to tk
in a single step of size tk − tk−1 � δt (or several steps, each much larger than δt). This setting is
illustrated in figure 4.4. In the example of the Milstein scheme, the approximation to the discrete
strong solution Ŝtk | Stk−1

for each k ∈ {1, . . . , N} is defined by:
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Ŝtk = Stk−1
+

n−1∑
j=0

[
A(τj , Ŝτj )δt+B(τj , Ŝτj )

√
δtUj+1 +

1

2
δtB(τj , Ŝτj )B

′(τj , Ŝτj )
(
U2
j+1 − 1

) ]
, (4.21)

where τj are the times on the fine grid, i.e. τj = τj−1 + jδt and Uj
iid∼ N(0, 1). The approximation of

the corresponding Brownian motion increment between times tk−1 and tk is given by:

Ŵtk − Ŵtk−1
=

n∑
j=1

√
δtUj . (4.22)

To connect this increment to the sequence Zk as input to the GAN, we will use the following lemma.

Lemma 4.13 (Fine grid to coarse grid). Let {τj}nj=0 form a discretisation of [tk−1, tk], such that
τj − τj−1 =: δt ∀j ∈ {1, . . . , n}. Let Ŵtk − Ŵk−1 be a realisation of a Brownian motion increment,
given by Ŵtk − Ŵtk−1

=
∑n
j=1

√
δtUj, where {Uj}nj=1 is a sequence of i.i.d. N(0, 1) random variables.

Then, for every realisation of the increment Ŵtk − Ŵtk−1
, there exists a unique realisation of

Z ∼ N(0, 1), given by:

Z =

√
δt√

tk − tk−1

n∑
j=1

Uj P -a. s. (4.23)

Proof. Since Ŵtk − Ŵtk−1
is a continuous random variable, for every realisation of the sequence

{Uj}nj=1, there is a unique realisation of Ŵtk − Ŵtk−1
. At the same time, we have√

tk − tk−1Z ∼ N(0, tk − tk−1), if Z ∼ N(0, 1), which is also a continuous random variable. Since the
map Z 7→

√
tk − tk−1Z is a bijection, for every realisation of Ŵtk − Ŵtk−1

, there exists a unique
realisation of Z = 1√

tk−tk−1
(Ŵtk − Ŵtk−1

) P -a. s. Combining this with the definition of the increment

Ŵtk − Ŵtk−1
=
∑n
j=1

√
δtUj yields equation 4.23.

tk−1 tk

t

Ŝ
t

Figure 4.4: Illustration of the extension for general one-dimensional SDEs. This time, the blue solid lines are obtained
using a high-quality discrete-time approximation, on which the constrained GAN is trained. The random increment

between Zk times tk−1 and tk can be obtained using lemma 4.13.

Thus, we can recover the Gk-adapted process {Zk} as follows, for all k ∈ {1, . . . , N}:

Zk =

√
δt√

tk − tk−1

n∑
j=1

Uj , (4.24)

i.e. Zk is the standard normal variate that we would use to sample the Brownian motion increment
Ŵtk − Ŵtk−1

as
√
tk − tk−1Zk. The constrained GAN would be trained on pairs ({Ŝtk | Ŝtk−1

}, {Ztk}).
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This allows the GAN to be trained on samples with varying Stk−1
and tk, similar to the setting in this

thesis, but this time the exact distribution FSk|Sk−1
was never used. Thus, even if FSk|Sk−1

is not
available, the constrained GAN is able to learn an approximation of it via the dataset obtained with
the Milstein scheme (or similar discrete-time scheme).
The great advantage of this technique is the ability to parallellise the computation: equation 4.21
allows one to compute many samples at once for each time step, forming the training set. One could
define various starting points Stk−1

and tk − tk−1 as conditional input to the GAN using a single
training set of paths and steps.

4.5. Data pre- and post-processing
The GAN could be trained directly on the process {Stk} and learn a range of distributions starting at
different values of Stk−1

. However, in this work the data is first pre-processed by computing the
logreturns, which is also done in the related work by [5]. The logreturns are computed as follows:

Rtk := log

(
Stk | Stk−1

Stk−1

+ ε

)
, (4.25)

for some ε, chosen very small, e.g. 10−8 to avoid division by zero (this could form a problem for the
CIR process if the Feller condition is not satisfied, and Stk can get arbitrarily close to zero). The
generator is trained to sample the next step of the process {Rtk}. During inference, the reverse
post-processing operation is performed:

Ŝtk | Stk−1
= Stk−1

eGθ(Z,Stk−1
,C), (4.26)

where a hat is used to stress the conditional GAN approximation and C ∈ C is some (empty in the
vanilla GAN case) tuple of conditional parameters, e.g. including tk, tk − tk−1 and possibly more
parameters. If the GAN predicts a single time step, the ‘previous’ value came from the discrete strong
solution, which is why it does not have a hat. If the GAN is applied iteratively, we should replace
Stk−1

in equation 4.26 by Ŝtk−1
.

The motivation for using logreturns is two-fold. Firstly, paths are constructed by iteratively
computing Stk | Stk−1

. By using logreturns, the relative increment based on the previous value is
computed. This way, the next step is automatically centered near the previous value. This makes the
GAN scale-invariant to the asset price under consideration, only considering how the next relative
increment follows from the previous one. If this were not the case, a conditional GAN would have to
learn how to center the distribution very accurately for a theoretically unbounded range of
[(Stk)(0), . . . , (Stk)(K)], if the training set consists of K samples and (Stk)(i) denotes the i’th order
statistic of the target data at time tk. It is assumed that a previous value Stk−1

is always available.
This is not restrictive in the context of asset paths, since the process {Stk} is adapted and has a
known starting point S0. In [5], the dataset is standardised after pre-processing and the neural
network is trained on the logreturns, without transforming back to the process itself. Our work differs
in that we are interested in the conditional distribution itself at each time step, while the goal in [5] is
to reproduce the autocorrelation structure of time series models and real stock market data. Since this
work is set in the context of SDEs, the autocorrelation structure is contained entirely in between two
time steps, due to the Markov property of SDEs. We do transform back and require a reverse
transformation that does not violate adaptedness by including the moments from the dataset.
Secondly, neural networks have been shown to work best if the inputs to the network are centered
around zero and have equal variance, cf. LeCun et al. [88]. To this end, the input data is typically
standardised. On common problems, such as image classification, this is straightforward: one could
force the data to have zero mean and unit variance by standardising the pixel values in each colour
channel, see for example [51]. However, in our case, we also need to transform back from the process
Rtk to Stk . If we were to include the first two moments of the training set in the reverse
transformation, we would ‘build in’ information from the training set into the network, which is
undesirable. On image problems, this would not be a problem, as pixel values always vary on a finite
range, so a scaling factor could be included into the model without loss of generality. In our case, the
logreturns allow us to exclusively use the previous asset value Stk−1

in the reverse operation, which
satisfies the adaptedness requirement of the process {Stk}.
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It should be noted that the GBM problem is simplified to shifting and scaling the normal distribution
after the logreturns transformation, although the GAN must still accurately adjust the mean and
variance for each ∆t. In the case of the CIR process, the logreturns are not trivial, especially if the
Feller condition is not satisfied, as we will see in the results.

4.5.1. Adaptedness of logreturns
Since the GAN will be trained on the logreturns instead of the process itself, we should ensure
ourselves that the theory discussed in this chapter still holds for the logreturns process. In the
derivation of theorem 7.1.2 in [1] due to Øksendal, the strong solution is defined as a map
ϕ : (ω, tk−1, tk, Stk−1

) 7→ Stk(ω). The process {Stk} is still Gk-measurable after a bounded Borel
function g(ω, x) is applied [1], i.e. if the map defining the strong solution changes from ϕ to g ◦ ϕ.
Since we have bounded the logreturns from below by log(ε) and can arbitrarily bound the training
data from above, e.g. by assigning a maximum, the map g(ω, x) = log

(
Stk (ω)

x + ε
)
is a bounded Borel

function on Ω× [log(ε), Smax], since its pre-image is in B(R), ensuring that the logreturns of the
process Stk are still Gk-measurable.

4.6. Construction and Analysis of Paths
Assume for now that we have access to a trained conditional GAN, which was trained on
(tk,∆t := tk − tk−1, Stk−1

). As noted in remark 4.8, in the case of Itō diffusions, which includes a large
range of financial SDEs, we can omit the inclusion of tk, as the transition from one value along the
path to the next is only dependent on Stk−1

and ∆t. The conditional GAN will be used to construct
synthetic paths, which will be compared with a reference of the strong solution and the Euler and
Milstein schemes. Suppose, without loss of generality, that we set the problem on a discretisation
{tk}Nk=0 of [0, T ] with equal spacing, tk = k∆t := k TN and t0 = 0. Each output Stk becomes the next
input to the GAN at time tk+1. This recursive application of the GAN is used to construct a path, as
shown in equation 4.27, where the value of the synthetic path is given at time k∆t.

Stk+1
= Stk exp(Gθ(Zk, tk,∆t, Stk), (4.27)

where {Zk}Nk=1 is a sequence of i.i.d. N(0, 1) samples. Note that ∆t may be varied to construct paths
with different time steps (or ∆t may even be varied on a single path during inference). The Euler and
Milstein schemes provide approximations to the discrete strong solution of varying accuracy, which
can be used to ‘benchmark’ the paths generated by the GAN.
The same random sequence {Zk}ni=1 is used for all sampling techniques: the GAN, exact scheme,
Euler scheme and Milstein scheme to construct paths. This chapter has already covered how this
sequence may be obtained in various situations. Note the importance of using the same Zk in all
schemes at each tk, otherwise each path would be adapted to its own filtration and we could only
compare them in distribution. Realisations of paths could be plotted together for all four sampling
techniques discussed here in a single figure.

4.6.1. Analysing the synthetic paths
Although the GAN output will be compared to discrete-time schemes, we should emphasise how it is
based on very different principles than the Euler and Milstein schemes, as pointed out earlier in this
chapter. The conditional GAN will depend very differently on the time step ∆t than the discrete-time
schemes do. Any error in the GAN approximation will be solely due to the GAN’s ability to sample
from FStk |Stk−1

. In the ideal case, the quality of the GAN approximation would not depend on ∆t at
all. Therefore, smaller time steps do not automatically translate into a more accurate approximation,
as they do for the Euler and Milstein schemes.
Nevertheless, the literature on discrete-time schemes does provide useful concepts for comparing paths,
i.e. the weak (ew) and strong (es) errors introduced in the preliminaries. They are restated here:

ew =
∣∣∣E (f(Stk+∆t))− E

(
f(Ŝtk+∆t)

)∣∣∣ , (4.28)

es = E
∣∣Stk+∆t − Ŝtk+∆t

∣∣, (4.29)
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where f is a real-valued polynomial function. Recall how we defined error bounds on the discrete-time
approximation in the preliminaries. These bounds, as a function of ∆t, gave rise to varying orders of
convergence for discrete-time schemes. However, since the GAN is a very different type of
approximation, these need not apply to the GAN. With this in mind, we could still use the concepts
weak and strong error to compare the paths obtained with the GAN to the exact solution and the
approximation obtained with the Euler and Milstein schemes.
Both discrete-time schemes and the GAN approximation have in common that they construct paths
recursively. Therefore, an additional benchmark could be defined that is sensitive to how the error
accumulates over time. Since all schemes are defined recursively, it is challenging to make general
statements about how this error evolves with k for fixed ∆t. Still, this error can be measured
empirically, using the concept of weak and strong errors, but with varying amount of steps k instead
of varying ∆t. We will refer to these errors as the weak error over time and strong error over time.

4.7. Practical Considerations for the CIR Process
There are two practical considerations to be taken into account for the CIR process: 1) discrete-time
schemes could give rise to negative values, which are problematic when computing the square root in
equation 2.15; 2) if the Feller condition is not satisfied, the process {St} jumps between orders of
magnitude, due to the presence of a near-atom of probability mass around zero. The process could
jump from e.g. 10−6 to 0.1 in a single time step and could hit zero infinitely often on a bounded time
interval [89].

4.7.1. Discrete-time schemes for the CIR process
The Euler scheme will be replaced by what we will refer to as the (partially) ‘truncated’ Euler scheme,
as mentioned e.g. in [90]. In the case of the CIR process it is given ∀k ∈ {0, . . . , N − 1} by:

Ŝtk+1
= Ŝtk + κ(S̄ − Ŝtk)∆t+ γ

√
Ŝ+
tk

√
∆tZk, (4.30)

where Ŝt0 = St0 and Ŝ+
tk

:= max(Ŝtk , 0). Zk ∼ N(0, 1). Note that the truncated Euler scheme may still
produce negative paths, in which case the term with the Brownian motion equals zero at step k + 1.
A modified version of the Milstein scheme can be defined as well. In [91], such a Milstein-type scheme
is proposed specifically for the CIR process, which will be implemented as a reference to the CIR
process. This truncated Milstein scheme is given by:

Ŝtk+1
=

(max

(
1

2
γ
√

∆t,

√
max

(
1

2
γ
√

∆t, Ŝtk

)
+

1

2
γ
√

∆tZk

))2

+

(
κS̄ − 1

4
γ2 − κŜtk

)
∆t

+

,

(4.31)
with Ŝt0 = St0 and (·)+ := max(·, 0). The one-step order of convergence of this scheme depends on the
previous value Stk , time step ∆t and degrees of freedom parameter δ [91]. However, the authors of [91]
show that the scheme converges in Lp with order 1

2p min(1, δ).

4.7.2. Pre-processing step if the Feller condition is not satisfied
If the Feller condition is not satisfied, the logreturns can get arbitrarily close to log(ε) and − log(ε).
Although it is possible to re-normalise the logreturns by a factor log(ε), a very small interval around
0, say (0, q], would become a very large interval in the space of logreturns. The GAN would attempt
to approximate the conditional distribution of the returns on this large region. However, in practice,
we are most likely not interested in the difference between values very close to zero e.g. 10−6 versus
10−8 or smaller. In the space of logreturns, an interval [log 10−8, log 10−6] gives rise to a large interval
compared to [10−8, 10−6]. In practice, however, we are not interested in precise differences of order
10−6 and below. If these quantiles are very close, the difference at the output is benign. Therefore, by
using logreturns if the Feller condition is not satisfied, capacity of the neural network would be
‘wasted’ on very small differences in quantiles, which are not of interest. We will use a different scaling
technique if the Feller condition is not satisfied, defined by the pre-processing step in equation 4.32
and post-processing step in equation 4.33.
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Rtk :=
Stk | Stk−1

S̄
− 1, (4.32)

Ŝtk | Stk−1
=
∣∣(Rtk + 1)S̄

∣∣ . (4.33)

This scaling technique centres the distribution around 0 and provides a Gk-measurable output for all
k, as desired, on which the GAN is trained. The absolute value ensures that the process {Ŝt} remains
positive. This was preferred over using a ReLU activation at the output of the generator, as it results
in zero gradients on (−∞, 0), which could negatively impact the training process.

Chapter Conclusion
It has been shown how GANs can be used to obtain weak and strong approximations of SDEs on a
discretisation in time. A conditional GAN learns how to sample from the conditional distribution
between two points on a path. In general, this yields a discrete weak solution. A modified GAN is
required to enforce path-wise equality to the strong solution of the SDE. It was shown how this
technique can be applied on GBM and the CIR process and further extended to general problems.
The GAN will be used to construct synthetic paths, which are compared with paths obtained by exact
simulation and the Euler and Milstein schemes. The next chapter outlines the methods used to
compare probability distributions, which will be used in the results to study the distribution of the
output generated by the GAN.





5
Comparing Probability Distributions

This chapter describes how non-parametric estimators can be used to compare two distributions. This
is required for evaluating the weak approximation to the SDE by a GAN. First, the key techniques
that will be used in the results section to report on the accuracy of the GAN output are discussed. In
the second part of this chapter, an overview is given of several classes of divergence measures and
distances. This is intended to provide the necessary background behind the choice of statistics and
implementation of the GAN. Recommendations are provided on which statistics to use if the problem
is set in higher dimensions.

5.1. Empirical distribution functions
A useful statistic for analysing the GAN output is the well-known empirical cumulative distribution
function (ECDF), cf. [92]. Suppose we have a set of observations {Xi}ni=1, with Xi ∈X ⊆ R ∀ i, then
the ECDF is given by:

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}(x). (5.1)

It is easy to show that if a random variable X follows the distribution measure P with cumulative
distribution function (CDF) F (x) := P (X ≤ x), then F̂n is unbiased for F and F̂n

p→ F as n→∞
[92]. This estimator is also very easy to implement and can be plotted together with the exact CDF.
In this thesis, the statistic is used for visually comparing the ECDF of the GAN output and exact
CDF of the target distribution.

5.2. Combination of KS Statistic and 1-Wasserstein distance
In order to quantify the quality of the GAN output, two statistics are used: the KS-statistic and the
Wasserstein distance. These statistics are chosen among alternatives, as they allow for a plug-in
estimator in 1D and measure different features of the output distribution. For a qualitative
comparison of various distributional statistics and reasons why the KS-statistic and Wasserstein
distance are preferred in the context of this work, see section 5.3.

5.2.1. KS statistic
The Kolmogorov-Smirnov (KS) statistic is known in probability theory from the Kolmorov-Smirnov
test between a CDF and its empirical estimate F̂X [93]. Suppose we observe n observations {Xi}ni=1 of
a random variable X with CDF FX(x). The 2-sided 1-sample KS statistic is defined as, cf. Simard et
al. [94]:

un = max
i∈{1,...,n}

∣∣∣F̂X(Xi)− FX(Xi)
∣∣∣ . (5.2)

Let X(i) denote the order statistics of the observed random variates. The KS statistic is implemented
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efficiently in the SciPy stats package [95] as follows:

u+ =

[
1

n
,

2

n
, . . . , 1

]
−
[
FX(X(1)), FX(X(2)), . . . , FX(X(n))

]
, (5.3a)

u− =
[
FX(X(1)), FX(X(2)), . . . , FX(X(n))

]
−
[
0,

1

n
, . . . ,

n− 1

n

]
, (5.3b)

un = max(u+, u−). (5.3c)

The implementation considers the case of the ECDF being greater (u+) or less than (u−) the exact
CDF and finds the maximum difference. Now, un is itself a random variable and has a distribution
that is often referred to as the ‘KS distribution’ [94]. Its limiting distribution is given by Feller in [96].
Note how the preceding describes a one-sided test, i.e. there is a reference CDF available. In our case,
this is possible, since we have the exact solution of the SDEs under consideration at our disposal. If
this is not possible, one should consider the two-sided KS-statistic where both terms in equation 5.2
are ECDFs. The distribution of un is implemented in SciPy’s stats package as kstwobign [95]. It can
be used to compute a p-value given a single observation of un, corresponding to a vector with sample
size n. If the p-value is above typical choices of a critical region α (e.g. α = 0.05), we cannot reject the
hypothesis that the output samples are distributed like the reference distribution.

5.2.2. 1D Wasserstein distance
In the one-dimensional setting, the p-Wasserstein distance between the distributions P and Q is given
by [97, 98]:

w1(P,Q) =

(∫ 1

0

|P−1(y)−Q−1(y)|pdy
) 1
p

. (5.4)

In practice, setting p = 1 is most common [99], which will also be chosen in this work. P and Q can
be approximated by their ECDF estimates Pn and Qn. Note how the Wasserstein distance compares
the quantiles of both distributions along their support.
Suppose we observe a random variable X ∼ P and another random variable Y ∼ Q. If both KS and
Wasserstein distance are used simultaneously, both the quantiles P−1(·), Q−1(·) of a realisation are
compared as well as the values of the distribution function, say, P (·), Q(·). Note, however, the abuse
of notation by conflating the probability measure with the distribution function, which is common in
literature, but the difference should be clear from the context. In a plot of P (x) and Q(x) versus
x ∈ supp(P ), the KS-statistic compares ‘vertical differences’ between P and Q, while the Wasserstein
distance compares ‘horizontal’ differences, i.e. quantiles. This interpretation follows the discussion in
[97] on the Wasserstein distance. This makes both statistics sensitive to different types of
perturbations from the reference distribution.

5.2.3. Implementation for analysing the GAN output
Suppose the exact variates follow the distribution P ∗ with CDF F ∗, which is known analytically.
Suppose that the GAN produces an output distribution Pθ, which is not available in closed form.
However, we can observe the ECDF, say F̂θ associated with a finite set of output samples of size n.
Since we have a plug-in estimator for both the KS-statistic and the Wasserstein distance, computation
of both statistics is straightforward. However, it is not clear how to interpret the numbers coming out
of both statistics without some reference. To this end, a vector of samples of size n is drawn from the
exact distribution as well, say {X}ni=1, with Xi ∼ P ∗. Let F̂ ∗ denote the ECDF based on the vector of
samples X. The statistics on an output vector from the GAN can then be compared with an equally
sized reference vector X. The statistics themselves will be random variables, as they depend on the
particular realisations of the random input samples. Therefore, the KS-statistic and Wasserstein
distance are computed 100 times and the mean will be reported for both the GAN output and the
reference.
In addition to a single test set, we can measure the GAN output with a more informative, yet
computationally intensive benchmark. In order to get a more complete view on how the statistics
change with varying test size N , we can compute the KS-statistic and Wasserstein distance for various
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N , say N ∈ {102, 103, 104, 105} and plot the resulting value of both statistics versus N . This avoids
‘cherry-picking’ a test sample size, on which the GAN performs as well as the exact variates. In such a
benchmark, the methods considered in this thesis for approximating the stochastic integral St+∆t can
be compared in a single figure. This can be done as follows: draw two reference vectors X and Y i.i.d.
from P ∗, sample the GAN output XG ∼ Pθ, compute XMil with a Milstein scheme and XEul with an
Euler scheme. The discrete-time schemes are computed using a single step of size ∆t. This way, the
weak approximation by the GAN is compared to exact simulation of the SDE and two discrete
schemes in a single benchmark. The experiment is repeated for each N ∈ {102, 103, 104, 105} and
repeated 10 times to construct a confidence interval. The KS-statistic and Wasserstein distance of the
exact variates should decrease indefinitely as N increases, since exact simulation yields outputs that
can get arbitrarily close to P ∗. This is not the case for the GAN output or the discrete-time schemes,
for which the statistics will converge to their limiting non-zero values. They are not zero, since the
distribution from which they are sampled is not equal to P ∗, which is only the case if exact simulation
is used.

5.3. Reference on Distributional Divergences and Distances
Various measures1 of similarity between probability distributions are discussed here. These methods
are not only useful for analysing the weak approximation by the GAN, but also form the central
component of the optimisation objectives in generative models, as we saw in the chapter on theory
behind GANs, or can be seen in the loss function of Variational Autoencoders (VAEs) cf. [100]. Two
key classes of distributional similarity measures are presented: f -divergences and integral probability
metrics [101].

f -divergences
f -divergences are a general class of distributional similarity measures defined for two absolutely
continuous probability distributions P and Q, dominated by some measure ν on X ⊆ R. It is more
convenient to write them in terms of the densities p = dP

dν and q = dQ
dν . The f -divergence is then

defined as, cf. [102]:

ϕf (P ‖ Q) =

∫
X

q(x)f

(
p(x)

q(x)

)
dν(x), (5.5)

with f : (0,∞)→ R a convex function. Notable examples from this class are the KL divergence for
f(y) = y log(y), JS-divergence, for f(y) = 1

2

[
(y + 1) log

(
2
y+1

)
+ y log y

]
and total variation distance,

for f(y) = 1
2 |y − 1| [102]. These identities can be easily verified by plugging in f(y) into equation 5.5

with y = p
q .

KL and JS divergences
Let us consider two f -divergences more closely, which appear in the chapter on the theory behind
GANs. The Kullback-Leibler divergence (KL divergence) or ‘KL information’ of a distribution Q from
P on X is defined as [73]:

KL(P ||Q) =

∫
X
p(x) log

p(x)

q(x)
dν(x). (5.6)

In [101] and [102], the KL-divergence is defined to equal +∞ if P 6� Q, extending to potentially
disjoint densities. This would be important if the KL divergence were used to compare two vectors of
data with potentially disjoint support. It can be shown that KL(P‖Q) ≥ 0, with equality if and only
if P = Q [73]. Note that the KL divergence is unbounded from above and approaches +∞, if q(x)
approaches zero. Also note that this divergence is not a distance, as it is not symmetric, i.e.
KL(P‖Q) 6= KL(Q‖P ).
Another divergence is the Jensen-Shannon divergence (JS divergence), which is based on the KL
divergence. It is defined as follows [72]:

1Here, ‘measure’ means ‘a way to quantify performance’. The meaning should further be clear from context in which it
appears.
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JS(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M), (5.7)

where M = P+Q
2 . This divergence is symmetric and can be cast into a distance metric by taking the

square root. Note how this divergence is bounded from above by 2 log(2) and ‘clips’ to this value
instead of +∞ if the distributions are not absolutely continuous. In [75, Theorem 2.3], it is shown by
Arjovsky et al. that both KL divergence and JS divergence clip to their maximum values, if the
manifolds of the GAN output and dataset do not perfectly align. This is an undesirable property
when using the divergence for studying the output of the GAN, since there are many cases where the
two output distributions will be disjoint.
The KL- and JS-divergences do not have a plug-in estimator and are difficult to approximate
efficiently, although several non-parametric methods have been proposed, cf. [102, 103], convergence of
these methods is slow with respect to the sample size.

Integral Probability Metrics
A different class of distributional similarity measures is the integral probability metric (IPM).
Consider the same setting as in the previous paragraph and let F be a family of real-valued and
bounded functions on X . The general definition of an IPM is then given by [101]:

IF = sup
f∈F

∣∣∣∣∫
X
fdP −

∫
X
fdQ

∣∣∣∣ . (5.8)

Just as we could vary f for the f -divergence and obtain different kinds of divergences, we can vary the
class of functions F to obtain metrics with different properties. The most popular IPMs used in
generative modelling are the Wasserstein distance and maximum mean discrepancy.

Wasserstein Distance
A common IPM is the Wasserstein distance. In this case, F = {f : f is 1-Lipschitz}, where the
Wasserstein distance arises as the dual form of the IPM formulation under the Kantorovic metric [101,
p.2]. The Wasserstein distance is defined between distributions P and Q under the p-norm as [97]:

wp(P,Q) =

(
inf

ψ∈Γ(P,Q)
E(X,Y )∼ψ‖X − Y ‖p2

) 1
p

, (5.9)

where Γ(P,Q) is the set of joint distributions of P and Q. Note how the L2-norm is chosen here to
compare samples X and Y , but this could more generally include any distance. In the 1D setting
considered in this work, the 1-Wasserstein distance between a distribution P and Q reduces to∫ 1

0

|P−1(y)−Q−1(y)|dy, which can be approximated using the empirical distribution functions Pn

and Qn of P and Q [97, 98]. This makes the Wasserstein distance available in closed form in the 1D
setting. In higher-dimensional problems, the distance is not available in closed form and one typically
has to rely on more expensive numerical schemes [98]. One could resort to techniques such as ‘sliced
Wasserstein distances’, where 1D projections of P and Q onto their marginals are considered, as
reported in [98, 104].
The Wasserstein distance allows for an interesting interpretation, which is why it is also referred to as
the ‘Earth Mover Distance’ [101]. It represents a quantity of mass transported along the distance
between the variates X and Y , weighted with the optimal joint density ψ [97]. ψ can be interpreted as
the weighting function that minimises the ‘cost’ of moving the mass from X to Y or vice-versa. This
problem is known as the ‘optimal transport problem’, cf. [105]. This topic itself is beyond the scope of
this thesis, but what we can take away from the Wasserstein distance is that it measures the optimal
way of weighting differences between the variates themselves, i.e ‘horizontally’ [97]. To see this,
consider the horizontal axis in the 1D case. Then the Wasserstein distance is the distance between
points on the support, weighted by joint density ψ.
Arjovsky et al. [76, p.5] show that if the GAN output Gθ is continuous in the parameter set θ, then so
is the Wasserstein distance. Arjovsky et al. also show that the same is not true for the KL- and
JS-divergences. This property, along with the presence of a closed-form estimator, make the
Wasserstein distance suitable for analysing the GAN output in this work.
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Maximum Mean Discrepancy
Suppose that we now restrict ourselves to F = {f : ‖f‖Hk

≤ 1}, with Hk a so-called ‘reproducing
kernel Hilbert space’ (RKHS) on X with kernel function k(·, ·). Without getting into technical details,
a RKHS is a Hilbert space defined by a specific type of kernel, called the ‘Mercer kernel’ [97] and the
condition ‖f‖Hk

≤ 1. The maximum mean discrepancy (MMD) between distributions P and Q is
then defined as [106]:

MMD(F , P,Q) = sup
‖f‖Hk

≤1

(∫
X
fdP −

∫
X
fdQ

)
. (5.10)

If k is ‘characteristic’ for H , a property which will not be discussed here as it is beyond the scope of
the section, MMD = 0 ⇐⇒ P = Q. A Gaussian is an example of such a kernel. What makes the
MMD attractive is that it has an unbiased plug-in estimator, regardless of the dimension of X [106]. If
we draw two n-dimensional vectors X ∼ P and Y ∼ Q, then:

MMDn(X,Y ) =
1

n(n− 1)

∑
i6=j

[
k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Xj , Yi)

]
. (5.11)

In [97, p.7], the MMD is described as “an extremely smoothed Wasserstein distance”, where the
authors refer to the presence of a kernel with the term ‘smoothed’. The MMD depends strongly on
the choice of kernel, which is often chosen to be a Gaussian radial basis function, since it satisfies the
‘characteristic’ property [97, 106] and is easy to implement. In our 1D case, the Wasserstein distance
would be a more parsimonious choice, as we do not have to concern ourselves with the choice of
kernel. In the RHKS, it is not easy to compare the GAN output variates with the exact distribution.
Additionally, applying a kernel may distort the distribution of the output. For example, if the Feller
condition is not satisfied for the CIR process, this would be particularly pronounced around 0, where
the kernel would put mass on negative values. Still, the MMD is presented here as an alternative in
case the problem setting is extended to higher dimensions. The MMD would then be attractive, as the
kernel evaluations could be performed efficiently, while most other methods become intractable.

Chapter Conclusion
This chapter has provided an overview of the statistics that will be used to evaluate the weak
approximation to the SDE by a GAN. A finite test set is constructed with reference samples to
compare to the GAN output. This setup can be validated by drawing test sets of varying size to avoid
misinterpreting the statistics. Secondly, a reference of non-parametrics techniques has been provided,
including two families of common distributional divergences and distances. This included discussions
that were too much in detail in the preceding chapters, but are relevant to understand the design
choices and background behind the techniques used in this thesis.





6
Results

Our goal is to approximate the strong solution on a discretisation {tk}Nk=1 of [0, T ] using a GAN, as
described in chapter 4. The output of a trained conditional GAN will form an approximation to the
conditional distribution of the process {St} between two time steps t and t+ ∆t, i.e. the transition
distribution FSt+∆t|St . The constrained GAN architecture will ensure that the map Z 7→ G(Z, St,∆t)
approximates the discrete strong solution. We will first test the GAN’s ability to sample from
FSt+∆t|St . Then, we will study synthetic paths obtained by repeated sampling from this distribution.
Finally, we study the map Z 7→ G(Z, St,∆t) explicitly for both the vanilla GAN and the constrained
GAN. Unless stated otherwise, the results in this chapter are set in the case where the Feller condition
is violated, as it forms the most challenging case among the SDEs under consideration. The results for
the GBM problem and the CIR process with the Feller condition satisfied are included in the
appendix.

6.1. Approximating the Conditional Distribution
A conditional GAN, as explained in sections 3.4.2 and 4.2.2, is trained on a dataset of 100,000 triplets(
(St+∆t | St), St,∆t)

)
, over 20,000 iterations. The constrained GAN is trained on quartets(

(St+∆t | St), St,∆t, Z)
)
, where Z is obtained through the technique explained in lemma 4.10 and

remark 4.11. It corresponds to the Brownian motion increment between the time steps t and t+ ∆t
and is related to the training samples as shown in equation 6.1.

Z = F−1
Z

(
FSt+∆t|St (St+∆t | St)

)
, (6.1)

where F−1
Z is the quantile function of the N(0, 1) distribution. In this case, FSt+∆t|St resembles the

non-central χ2-distribution. We choose the parameters of the CIR process as κ = 0.1, S̄ = 0.1 and
γ = 0.3, such that the degrees of freedom parameter becomes δ ≈ 0.44, i.e. well below 2, such that the
distribution becomes near-degenerate around 0. A list of the choices of parameters on all problems is
included in the appendix. St ranged from 10−4 to 0.9 and ∆t ranged from 0.05 to 2. The GAN is
trained to sample from the solution a single time step ahead, while varying the previous value St and
time step ∆t to ‘teach’ the conditional GAN how the conditional distribution changes with St and ∆t.
This is done for both the vanilla conditional GAN and the constrained conditional GAN using the
same training process. This includes identical choices of random seed initialisation, ensuring that the
datasets on which the GANs are trained are identical. The generator and discriminator networks were
also identical for both GAN architectures, consisting of 4 hidden layers with 200 hidden neurons. This
architecture is similar in size to the related work by [23], where the authors use 3 hidden layers with
several hundreds of neurons. Our choice of architecture was found to be sufficient to approximate the
distribution, while feasible within the constraints of the hardware and time available. A detailed
description of the generator and discriminator networks is included in the appendix, along with details
about the training process.
From now on, let us refer more compactly to the vanilla conditional GAN and constrained conditional
GAN as ‘vanilla GAN’ and ‘constrained GAN’, since all results will include the conditional GAN
architecture from now.

47
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The ECDF of the GAN approximation to FSt+∆t|St after a single time step is shown in figure 6.1, for
particular choices of ∆t and St fixed at 0.1. Both GANs are able to adapt the shape of the output
distribution in accordance with the input parameters. Note how we need to specify a test set (St,∆t)
to study the GAN’s approximation of FSt+∆t|St . The KS-statistic and Wasserstein distance at the test
condition (St,∆t) = (0.1, 1) are shown in table 6.1 on a test set of 2,000 exact samples. These exact
samples were drawn from the non-central χ2-distribution using the corresponding parameters. The
constrained GAN outperforms the vanilla GAN in approximating FSt+∆t|St , which is clear by visually
comparing the figures and statistics in the table.
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Figure 6.1: ECDF plots of the conditional GAN output on the CIR process conditional on (St,∆t), with St held fixed at
0.1. The constrained GAN appears to improve the weak approximation as well if both networks are trained on equal

settings.

Table 6.1: Conditional GAN results on the GBM problem and the CIR process, both for the vanilla GAN and the
constrained GAN. The test conditions were ∆t = 1 and (St,∆t) = (0.1, 1) for GBM and CIR process, respectively. The
statistics are computed using 2,000 generated samples and are compared with an equally sized set of reference samples,

e.g. ‘KS stat.’ versus ‘KS stat. ref.’

KS stat. p-value KS stat. ref. Wass. dist. Wass. dist. ref.

Vanilla GAN 6.5E-02 0.00 1.9E-02 4.7E-03 3.5E-03
Constrained GAN 2.8E-02 0.10 2.0E-02 3.7E-03 3.7E-03

The p-value of the KS-statistic shows that the KS-statistic is is high for both GAN approximations
compared to the test set. However, the constrained GAN output has identical Wasserstein distance as
the equally sized test set. Although these results seem contradictory, it can be explained by the
near-atom near zero and the fact that the KS-statistic and Wasserstein distance measure different
features of both distributions. The KS-statistic measures the largest absolute difference between the
ECDF and CDF in figure 6.1. Around 0, the slope in the ECDF is very high, which leads to a large
difference between CDF and ECDF if there is a small difference in probability mass assigned to a
quantile, even though the quantiles may be very close. This makes the KS-statistic highly sensitive
due to the near-singular behaviour around the origin. This does not hold for the Wasserstein distance,
since in 1D it is sensitive to differences between the quantiles of both distributions. Therefore, the
Wasserstein distance is more informative if the Feller condition is not satisfied, as the KS-statistic
becomes highly sensitive to small differences in the quantiles near zero. The Wasserstein distance
suggests that both distributions are very close. In case the Feller condition was satisfied and on the
GBM problem, both the KS-statistic and Wasserstein distance were similar to the test set for the
constrained GAN. These results are included in the appendix. The constrained GAN outperformed
the vanilla GAN in all cases when approximating the conditional distribution.

6.1.1. Statistics using various test sizes
We study the effect of the size of the test set on the KS-statistic and Wasserstein distance, as it is not
clear a priori what would be an appropriate test size to compare the exact variates with the GAN
output. In figure 6.2, the KS-statistic and Wasserstein distance corresponding to the constrained
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GAN are plotted for the test condition (St,∆t) = (0.10, 0.33) as a function of the size of the test set,
using the setting introduced in section 5.2.3. A single vector of exact samples is drawn for each choice
of test size, which is used to compute the statistics on the GAN output, truncated Euler and Milstein
schemes and another i.i.d. drawn batch of exact samples. This way, we avoid having to choose a
particular test size, while still being able to distinguish between the quality of the different
approximations. At ∆t = 0.33, the constrained GAN outperforms the truncated Milstein scheme in
terms of the Wasserstein distance, but not in terms of the KS-statistic. If ∆t is increased further, the
constrained GAN outperforms both the truncated Euler and Milstein schemes on both statistics. This
shows that if the time step is large enough, in this case around ∆t > 0.33, the GAN outperforms
discrete-time schemes on a single-step approximation. This is unsurprising, since discrete-time
schemes rely on the time step being small enough to remain accurate, however, it allows us to
establish a baseline for the quality of the approximation in distribution. We could make similar plots
for the vanilla GAN, which outperforms the truncated Milstein scheme around ∆t > 0.5. The lower
the time step at which the GAN improves on a single-step Milstein approximation, the better the
GAN output approximates the conditional distribution. Our results again confirm that the
approximation due to the constrained GAN is more accurate than the vanilla GAN.
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Figure 6.2: Constrained GAN: KS-statistic and Wasserstein distance versus the size of the test set for ∆t = 0.33 and
St = 0.1, if we approximate FSt+∆t|St with the GAN and truncated Euler and Milstein schemes. The mean is reported

based on 20 experiments. The standard deviation is shown as the shaded bands.

6.1.2. Autocorrelation structure
To test if the GAN is indeed able to capture the autocorrelation structure between St+∆t and St,
1,000 samples are drawn from the non-central χ2-distribution given S0 = 0.1 and ∆t = 1. Then, we
sample 1,000 exact samples St+∆t | St, using the exact conditional distribution once more. The same
1,000 realisations of St are given as conditional input to the vanilla and constrained GAN. Further
still, we use equation 6.1 to find the 1,000 realisations of Z that we should provide as input to the
GAN to compare the output ‘point-by-point’. If the GAN provided a path-wise approximation, not
only would the autocorrelation structure be the same, but the output would completely overlap with
the 1,000 exactly drawn variates conditional on the batch St. In figure 6.3, a scatter plot is shown of
St+∆t versus St. We see that the shape of the ‘cloud’ of points is similar, which suggests the
autocorrelation structure is similar. Furthermore, we see that the exact samples and GAN
approximation indeed overlap on most samples, which suggests that the GAN learns the map
Z 7→ (St+∆t | St) correctly and provides a path-wise approximation. As explained in section 4.2.4, this
allows the GAN to approximate the discrete strong solution on any discretisation. The only limiting
factor would be the range of (St,∆t) on which the GAN is trained. If the Feller condition is satisfied,
we find similar results, although this time, the vanilla GAN does not provide a path-wise
approximation, as shown in the appendix. On the GBM problem, the autocorrelation structure is
completely captured by the logreturns transformation, as the post-processing step scales the
logreturns with St. Therefore, we do not need to perform this test for GBM.
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Figure 6.3: Plot of St+∆t | St versus St to test if the autocorrelation structure of the GAN output matches that of
variates obtained through exact simulation.

6.1.3. Training process
Finally, we can compare the KS-statistic and Wasserstein distance during the training phase for both
the vanilla and constrained GAN, using a test condition of (St,∆t) = (0.1, 1). The statistics are
computed on a test set of equal size to the training set, i.e. 100,000 samples. The result is plotted in
figure 6.4 against the training iterations. The constrained GAN achieves a lower value on both
statistics, while the variance in the statistics during training appears to be lower, suggesting a more
stable training process. Similar results were found if the Feller condition was satisfied and on the
GBM problem, of which the results are included in the appendix.
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Figure 6.4: KS-statistic and Wasserstein distance on a test set of 100,000 samples during the training phase, both for
the vanilla GAN and constrained GAN. The test condition was (St,∆t) = (0.1, 1).

Summarising, both GANs are indeed able to approximate the distribution FSt+∆t|St on a range of
different parameters St and ∆t, although the constrained GAN provides a more accurate
approximation. Similar behaviour was found when repeating the experiments on the GBM problem
and the case if the Feller condition is satisfied. Section 6.3 will explore the map Z to the GAN output
in more detail, which may explain why the constrained GAN does not only guarantee a strong
approximation, but also provides a more accurate approximation in distribution. We verified that the
autocorrelation structure obtained with the vanilla GAN and constrained GAN is similar to that of a
set of exactly sampled variates, which is required for constructing paths using our method. The
outputs using both GAN architectures even correspond point by point in the plane St+∆t, St of figure
6.3, which suggests that both GANs approximate the exact solution path-wise on the discretisation.
In section 6.3, we will show that this does not hold in general for the vanilla GAN, but only for the
constrained GAN, as shown in chapter 4.

6.2. Constructing Paths
Synthetic paths are constructed with the GAN by iteratively sampling from FSt+∆t|St . We fix a time
interval of interest [0, T ] and divide it into a discretisation tk = k∆t = kT/n, for k = {0, 1, . . . , n}.
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First, paths constructed with the vanilla GAN and constrained GAN are compared on the same
partition {tk}nk=0, where we let n run from 40 to 1, or equivalently, letting ∆t run from 0.05 to 2. This
way, we compare a fine discretisation to an increasingly coarser one. We will compare the weak and
strong errors of the synthetic paths at time T = 2 with those of the truncated Euler and Milstein
schemes. Between every two time steps, we sample a corresponding normal increment Z using
equation 6.1, which is used as input to the GAN and the Euler and Milstein schemes.
The weak and strong errors versus ∆t are shown in figure 6.5 for the vanilla GAN and figure 6.6 for
the constrained GAN. The truncated Milstein scheme did not achieve a lower weak or strong error
than the truncated Euler scheme on this problem, which is why it is not shown in the figures. If the
Feller condition was satisfied, it did provide a more accurate approximation, cf. the appendix. Two
different starting points S0 are chosen. If S0 = S̄, the truncated Euler scheme achieves a very low
weak error, as the mean of each Ŝt+∆t equals 0. This is not the case if S0 6= S̄, in which case the weak
error is higher, as is indeed visible in figures 6.5a and 6.6a.
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Figure 6.5: Vanilla GAN: weak and strong errors at time T = 2, compared with the truncated Euler scheme and exact
scheme for various ∆t and two different starting points S0.
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Figure 6.6: Constrained GAN: weak and strong errors at time T = 2, compared with the truncated Euler scheme and
exact scheme for various ∆t and two different starting points S0.

Both GANs achieve a lower strong error than the truncated Euler scheme if ∆t ≥ 0.1, but the vanilla
GAN has a considerably higher weak error than the constrained GAN on the same time steps. This
can be explained by the fact that the constrained GAN provides a better approximation of FSt+∆t|St .
This is in agreement with the result in figure 6.1, where the approximation of the conditional
distribution at e.g. ∆t = 2 is visibly better in case of the constrained GAN. The weak and strong
errors of both GANs at the lower values of ∆t are high compared to values at large ∆t. This may
seem counterintuitive, since the opposite is true for discrete-time schemes. However, as stressed in
chapter 4, the GAN approximation is based on different principles than the Euler and Milstein
schemes. Any weak error will arise from failure of the GAN to perfectly approximate FSt+∆t|St , while
any strong error arises from failure to perfectly reconstruct the map Z to St+∆t | St.
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Non-monotonicity in the dependence of the errors on ∆t is explained by the fact that the GAN
achieved a better approximation on some conditional inputs than others, as is visible in figure 6.1. It
is not clear a priori on which conditional classes the GAN will converge best, although ideally it
converges equally well for all conditional inputs. There are two reasons why the weak and strong
errors on small time steps are relatively high. Firstly, the GAN is repeated more times at lower values
of ∆t, compounding any error that arises on a single time step. Secondly, the approximation of
FSt+∆t|St turned out to be less accurate on lower values of ∆t. On low values of ∆t, the variance of
the distribution FSt+∆t|St is low compared to high values of ∆t. As explained in [88], the weight
updates in a neural network are proportional to the variance of the input samples, which effectively
‘underprioritises’ samples with lower ∆t during training and thus explains our observation. This could
be resolved either by choosing the range of ∆t less far apart in practical applications or by choosing a
pre-processing technique that scales each training point differently for each ∆t. The current
pre-processing step scales each data point with S̄ or involves the logreturns in case of GBM and if the
Feller condition is satisfied. If the Feller condition is satisfied and on the GBM problem, similar
results were found, which are included in the appendix.

6.2.1. Single-step GAN approximation
The previous experiment tested for which ∆t the paths obtained with the GAN outperformed the
truncated Euler and Milstein schemes, if they are defined on the same discretisation. This time, we
will let the GAN approximate the strong solution at T = 1 using a single time step, while we
construct paths with the Euler and Milstein schemes on a discretisation with n = 10 and n = 40 steps.
This second experiment tests the accuracy of a single-step approximation with a GAN, compared to
both discrete-time schemes on a finer discretisation.
Since the GAN approximates the solution using a single time step T , we need to ensure that the
sample Z we provide as input to the GAN corresponds to Brownian motion increments on the finer
discretisation {tk}nk=0. Without this step, we could not compare the output path-wise with the
solution on the finer discretisation. To this end, we use lemma 4.13 from chapter 4, as follows:

Z =

√
∆t√
T

n∑
k=1

Uk, (6.2)

where Uk ∼ N(0, 1) are the random variates used on the finer discretisation {tk}nk=0 by the truncated
Euler and Milstein scheme. These Uk are in turn found using equation 6.1. This way, we can compare
path-wise approximation on both the coarse discretisation (i.e. single step) with the finer Euler and
Milstein discretisation and compute the weak and strong error at T for both of them.
The results for the truncated Milstein scheme have again been left out, as it did not achieve lower
weak and strong errors on the time steps under consideration. If the Feller condition is satisfied, it
does outperform the truncated Euler scheme in strong error, which is shown in the appendix. We will
only consider the constrained GAN in this experiment, as we have already found that it outperforms
the vanilla GAN in weak and strong error in the previous section. 100,000 paths were generated this
way. One of the paths obtained on both experiments is plotted in figure A.5. Note how both the
truncated Euler scheme and GAN approximate the exact simulation scheme path-wise at T .

Table 6.2: Weak and strong error at T = 1 of the GAN on a single time step and the truncated Euler scheme after 10 or
40 steps.

Euler GAN Euler GAN

n = 10 n = 40

Weak error 6.0E-05 6.1E-04 5.0E-07 5.9E-04
Strong error 7.8E-03 1.4E-03 4.0E-03 1.5E-03

In table 6.2, the weak and strong errors over all 100,000 paths at final time are shown for both choices
of the amount of steps. Since the Euler scheme is of strong order 1

2 , we indeed see that the strong
error in the Euler scheme is a factor two smaller, while the strong error in the GAN remains
unchanged. The weak error in the Euler scheme is much lower than that of the GAN. Since S0 = S̄,
the Euler scheme updates are highly accurate in mean at each step, while the GAN does not have the
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Figure 6.7: Example of paths obtained with the single-step approximation by the constrained GAN and multiple steps
with the truncated Euler scheme and exact scheme, setting S0 = 0.1.

mean reversion ‘built-in’. This is even more pronounced if 40 time steps are used, making the mean
reverting behaviour even more accurate. If we repeat the experiment with S0 = 0.01 on 40 time steps
for example, the weak error by the Euler scheme was found to be 3.3× 10−5, two orders of magnitude
higher, but still an order lower than that of the GAN. Thus, the GAN shown here is favourable only if
the strong error is more important than the weak error. Similar results were found on the GBM
problem and if the Feller condition was satisfied. In particular, on the GBM problem, the GAN even
outperformed the Milstein scheme at 10 steps and the Euler scheme at 40 steps in terms of the strong
error, while in weak error, it did not do better at 5 steps or more. Further results are included in the
appendix. However, this problem was far more challenging than the experiment of figures 6.5 and 6.6
and less in the spirit of large time steps, although the weak error should still be improved. The results
on single-step approximation show that lemma 4.13 can be used to connect a fine grid to a coarse grid
and that the GAN output still provides a path-wise approximation. The fact that the GAN
outperforms the Euler scheme in strong error in figures 6.5 and 6.6 serves as a proof of concept of the
technique proposed in this thesis. In the next section, we will see what enables the constrained GAN
to find this approximation and how this is not the case for the vanilla GAN in general. We will
explore the map from Z to the generator output in more detail and verify the theory behind the
constrained GAN, introduced in chapter 4.

6.3. Analysis of the Constrained GAN
In this section we investigate what distinguishes the constrained GAN from the vanilla GAN. Recall
that the vanilla GAN provides the approximation Ŝt+∆t | Ŝt

d
≈ St+∆t | St, which does not necessarily

equal the exact strong solution path-wise, i.e. having equality of the paths P -almost surely. In our
setting, both the vanilla GAN and constrained GAN are adapted to Gk = σ({Zk}), since both receive
the input Zk at each time step tk. What distinguishes them is the map they represent from Z to the
approximation Ŝt+∆t | Ŝt. As we will see, a large range of maps could correspond to an approximation
of FSt+∆t|St , while these maps themselves may be very different than the map corresponding to the
discrete strong solution. The discrete strong solution corresponds to a unique map with input Z,
which the constrained GAN is trained to find, while the vanilla GAN is trained to find any map from
Z that approximates FSt+∆t|St in distribution.
By plotting the output of the GAN against the input Z ∼ N(0, 1), given some St and ∆t, we can
visualise the map that the GAN represents. We will do this both for the vanilla GAN and the
constrained GAN. In figure 6.8, the process Rt (i.e. (St+∆t | St)/S̄ − 1) obtained with exact
simulation is plotted against Z, which is found by using equation 6.1. The GAN output is shown after
providing this same Z as input. This tests if the map corresponding to the exact simulation scheme
coincides with the map that the GAN has learned.
In this case, both the vanilla GAN and constrained GAN output are in close agreement with the exact
variates, which indicates that both find an approximation to the discrete strong solution. This is in
agreement with the fact that the GAN output in figure 6.3 largely overlaps with the exactly sampled
points for both GANs. It also agrees with the fact that the strong error in figures 6.5 and 6.6 is lower
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than that of the truncated Euler scheme. If this was not the case, the GAN would not approximate
the discrete strong solution path-wise. In this case, the only difference between both GANs is that the
approximation of the map in the Rt, Z-plane is more accurate for the constrained GAN. The weak
approximation found the vanilla GAN coincides with the strong solution in this example. However,
this was found only to be a special case for the vanilla GAN.
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Figure 6.8: CIR-process if the Feller condition is not satisfied: vanilla GAN and constrained GAN in the Rt, Z-plane,
along with exact samples.

For the constrained GAN, a path-wise approximation was found on all settings on which it was tested.
However, this was not the case for the vanilla GAN. To illustrate this, another example of the
Rt, Z-plane is shown in figure 6.9, which was found after training a vanilla GAN and constrained
GAN on the CIR process with the Feller condition satisfied. It reveals why approximating FSt+∆t|St
does not imply approximating the strong solution path-wise on the discretisation, as it does not
coincide with the map in the Rt, Z-plane by the exactly sampled variates. If we created a scatter plot
similar to figure 6.3, the point-clouds would have a similar shape, but the points would not overlap.
The strong error would be much higher than that of the truncated Euler scheme if we created paths
with this GAN and the single step-approximation in figure A.5 would not coincide with the exact
solution at time T . Examples like this were numerous when training vanilla GANs on the GBM
problem and if the Feller condition was satisfied. These examples are included in the appendix. In all
cases, the constrained GAN did manage to provide a path-wise approximation.
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Figure 6.9: Example of an approximation in distribution by the vanilla GAN, which is not a path-wise approximation.
A histogram is shown of the samples corresponding to figure 6.9a. The constrained GAN does represent a path-wise

approximation. In this example, (St,∆t) = (0.1, 1)

One may now wonder what enables the constrained GAN to provide the strong approximation, while
the vanilla GAN frequently fails to do so in the general case. As explained in chapter 4, the
discriminator is ‘informed’ with the variate Z that corresponds to the sample St+∆t | St it receives.
The discriminator input is given by (Rt, St,∆t, Z) instead of only (Rt, St,∆t). Recall that
(St+∆t | St) and Z - and therefore Rt and Z - are coupled using equation 6.1. Had we chosen any Z,
the discriminator would only receive i.i.d. noise and would not benefit from the additional input. We
can study how the discriminator enforces the correct map from Z to Rt by studying its output. The
discriminator input is defined on a 4D plane, spanned by (Rt, St,∆t, Z). If we fix St and ∆t, we
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obtain the Rt, Z-plane. We can then plot the discriminator output on this plane. Thus, we could
‘overlay’ the output of the trained discriminator on the result of figure 6.8. The result for the choice
(St,∆t) = (0.1, 1) is shown in figure 6.10.
In the results so far, we observed how the approximation in distribution itself was also more accurate
if the constrained GAN was used.
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Figure 6.10: Output of the constrained GAN discriminator corresponding to figure 6.8 on the Rt, Z-plane, along with
the samples from figure 6.8. St = 0.1 and ∆t = 1.0.

Recall that the discriminator output is a number between 0 and 1, representing the ‘score’ that the
discriminator assigns to each input it receives. The closer the value is to 1, the more the discriminator
considers the input as a sample from the ‘real’, i.e. exact dataset. The contrary holds for scores close
to 0. Thus, if the generator output resembles the exact samples well, the discriminator should assign a
score close to 0.5, i.e. it cannot distinguish between the real and generated samples. In figure 6.10, a
‘band’ of values close to 0.5 is clearly visible. The exact variates and constrained GAN output lie
within this band, i.e. the discriminator is unable to distinguish between them. This band implicitly
contains all the information about the map from Z to Rt given St and ∆t. This discriminator
confidence surface, along with the constrained generator output, resembles the minimax solution that
the generator and discriminator find during the training phase. Note how the constrained GAN
discriminator would rule out a map by the vanilla GAN like the one shown in figure 6.9a, which would
lie outside the band. The discriminator puts a ‘constraint’ on which maps by the generator it allows,
hence the name of the constrained GAN.
This property also explains why the constrained GAN converges faster and produces more accurate
approximations of the conditional distribution, as the discriminator has an additional dimension to
guide the generator to find the correct map from Z to the exact solution. It rules out maps that are
‘inefficient’, such as the one shown in figure 6.9 by the vanilla GAN and directs the generator to the
unique map corresponding to F−1

Z ◦ FSt+∆t|St . In figure 6.10, some of the output samples of the vanilla
GAN lie outside the band. However, the vanilla GAN discriminator does not observe this band,
making it harder for the vanilla GAN generator to further improve than the constrained GAN
generator.
In all results obtained using the constrained GAN, a similar band was visible. A band remains visible
for any choice of St and ∆t. The discriminator confidence has been included in the appendix on
several more examples, for GBM and if the Feller condition is satisfied. The results confirm the ideas
proposed in chapter 4, where we presented the constrained GAN as an approximation to the unique
map from Z to St+∆t | St.
Note that in figure 6.10, we viewed a 2D cross-section of the 4D input hyper plane (Rt, St,∆t, Z) that
defines the discriminator input. In reality, the band visible in the discriminator output of figure 6.10 is
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a 4D region in the space (Rt, St,∆t, Z). The shape of the band changes for every combination of
St,∆t, which allows the GAN to learn the distribution FSt+∆t|St for a large range of choices ∆t and St.

Chapter Conclusion
The vanilla GAN and constrained GAN both provide an approximation to the conditional distribution
FSt+∆t|St , however, in all the results we found that the constrained GAN provides a more accurate
approximation. The constrained GAN provided a path-wise approximation in all results, while the
constrained GAN only did so if the Feller condition was not satisfied. If paths are constructed on a
discretisation with large time steps, the strong errors of the constrained GAN are lower than those of
the Euler and Milstein schemes. On a single-step approximation, the GAN output outperformed
discrete-time schemes in terms of the strong error, but not the weak error on all problems the GAN
was trained on. The GAN approximation of the conditional distribution should be further improved
to improve the weak error. Overall, the results validated the theory proposed in chapter 4 and serve
as a proof of concept for the constrained GAN.



7
Discussion and Recommendations

This chapter reflects on the contributions in this thesis and presents an outlook for future work and
applications. The design choices in this work are discussed, along with the limitations and generality
of the results presented.

7.1. Architecture and training process
The GANs used to generate the results in chapter 6 were sufficient for testing the ideas shown in chapter
4 and for comparing the vanilla GAN to the constrained GAN. We found that the common problem
of mode collapse did not occur in our results. This could be due to the fact that the conditional
distributions are unimodal, while the conditional GAN is able to make sharp distinctions between the
different conditional inputs, cf. for example figure 6.1. The vanishing gradient problem was resolved
by using the modified generator loss function proposed in [75], explained in section 3.3.2. In case of
the vanilla GAN, we also found that the generator gradients did not ‘explode’ as sometimes occurs in
practice, cf. section 3.3.

When training the constrained GAN, the generator gradients increased sharply on some of the
experiments, although this did not have a noticeable effect on the KS-statistic and Wasserstein distance
during training. Furthermore, both the vanilla GAN and constrained GAN oscillated around the target
distribution during training, arising from the adversarial nature of the training process. The training
phase was stabilised by defining a learning rate schedule, which divided the learning rate η of the Adam
optimiser by a constant factor 1.05 every 500 iterations. After studying the code used by the authors
of the related work in [11], which is publicly available, it was found that they also use this technique.

Although the architecture used to generate the results in chapter 6 was sufficient for comparing the
vanilla GAN and constrained GAN on our problem setting, other GAN variants may be explored to test
if they provide more accurate approximations of the conditional distribution, by further enhancing the
training process. Additionally, increasing the network capacity and size of the training set could further
improve the approximation of the conditional target distribution, at the cost of higher computational
requirements.

7.2. Data pre-processing
The use of logreturns and scaling with S̄ if the Feller condition was not satisfied was found to sub-
stantially improve the approximation of the conditional distribution. However, we found that the
approximation of the conditional distribution on lower values of ∆t was of lower quality than on higher
values of ∆t. We attributed this to the fact that inputs with low variance are ‘underprioritised’ com-
pared to inputs with high variance, cf. [88]. An alternative scaling technique may be considered, which
applies a different analogue of standardisation for each condition ∆t. However, one should ensure that
the GAN is still able to distinguish between samples based on their conditional input, as it should be
able infer the conditional mean and variance of the output from the training set. The transformation
should also not include information about future time steps, violating the adaptedness requirement.
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7.3. Comparison with stochastic collocation
Alternative methods are available to sample from the conditional distribution FSt+∆t|St , as briefly in-
troduced in chapter 1. The stochastic collocation Monte Carlo method (SCMC) [21] allows efficient
sampling from arbitrary conditional distributions. However, for each change in conditional parameters,
model parameters and time step, one would require a new collocation fit. A new method was proposed
very recently that overcomes this problem. The ‘7-League scheme’, introduced in [22], combines the
SCMC scheme with a neural network. It uses a neural network to learn the collocation points, condi-
tional on the time t, time step ∆t, previous realisation St and the SDE parameters. Since a standard
feed-forward neural network is used, it eliminates the difficulties encountered when training GANs and
gives rise to a better interpretable training process. During inference, our method is simpler in setup,
as it only requires a trained generator and standard normal variate, while the 7-League scheme requires
additional computations for constructing the collocation fit and interpolation, in addition to inference
with the neural network to find the collocation points. Additionally, when constructing the training set
for our method, CDF inversions can be avoided if a high-quality discrete-time approximation is used as
the training set. In this case, the random increments Z needed for the constrained GAN become directly
available, as shown in section 4.4.1. However, the authors of [22] propose a way to ‘compress’ the set
of inferred collocation points with the neural network into a matrix. As this matrix also includes the
time dimension, it contains all the information needed for constructing paths. Interpolation between
the values in this matrix allows for an efficient inference stage, while our method always requires the
neural network during inference at each time step. It should be explored if similar improvements to the
inference stage can be applied to make sampling with our scheme more efficient.

7.4. Generality and extensions
The choice of SDEs under consideration allowed us to use the analytical conditional distribution
FSt+∆t|St , making the link between each St+∆t | St and normal increment Z available explicitly, using
equation 6.1. This allowed convenient construction of a training set for the constrained GAN. However,
as shown in section 4.4, any knowledge of the distribution FSt+∆t|St is not required for the constrained
GAN in practice. The most straightforward extension is to create a discrete-time approximation on a
very fine discretisation and to reuse the same normal increments to find the input Z to the constrained
GAN on large time steps. This still allows the GAN to find the map Z to St+∆t | St in the space
((St+∆t | St), St,∆t, Z). The training procedure of the constrained GAN would further be identical,
while the only consideration is to provide a rich enough range of St and ∆t to let the GAN learn the
conditional distribution for sufficiently many ‘previous values’ St and time steps.

Secondly, GBM and the CIR process are Itō diffusions, not generalised Itō diffusions that make
up general Itō SDEs. This allowed us to leave out dependence of the conditional distribution on the
current time t, as the stochastic integral only depended on the time step ∆t and the process St on the
time interval. In general, the constrained GAN should learn the dependence of FSt+∆|St on time and
should thus receive the additional input t. The discriminator would receive ((St+∆t | St), St, t,∆t, Z),
i.e. it would take values on a five-dimensional space instead of a four-dimensional space. This additional
dimension makes generalised Itō diffusions more challenging for the GAN to approximate. However,
the constrained GAN algorithm would remain unchanged.

Furthermore, the GAN was trained on datasets of GBM and the CIR process using fixed SDE
parameters µ, σ, κ, S̄ and γ. The architecture should be further extended to learn the entire family of
solutions of the SDE, as is done in [22]. In this case, the generator would be trained to find a map in the
space ((St+∆t | St), St, t,∆t, Z, C), with C the set of SDE parameters. The condition vector C would
be added as conditional input to the generator and discriminator networks. The setup proposed in this
work would further remain unchanged, although a larger training set and additional network capacity
may be required. This would be particularly relevant for a range of volatility parameters γ of the CIR
process, which gives rise to highly non-linear changes in the conditional distribution. In future work,
the constrained GAN should be extended to this case of learning families of SDEs, which would allow
a single GAN to provide synthetic paths for any desired range of parameters.

This work has been set in 1D, with a single Brownian motion, which simplified the analysis of the
GAN output and the construction of a training and test set. However, the use of methods like neural
networks becomes more relevant in the high-dimensional setting, as alternative techniques become less
tractable due to the curse of dimensionality. The technique proposed in section 4.4.1 automatically
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extends to higher dimensions if the Brownian motions are uncorrelated. In this case, the dimension of
the input to the generator, Z, increases, but each entry of this vector Z can be found in the same way
as in the 1D case, using section 4.4.1. If the Brownian motions are correlated, one could write them as
a system of uncorrelated Brownian motions, using Cholesky decomposition of their matrix C, as shown
e.g. in [107]. This gives rise to a system of equations based on a triangular matrix, from which the
corresponding vector of i.i.d. N(0, 1) variates Z can still can be found and included in the training set
for the constrained GAN. Future work could extend to systems of SDEs in this way, such as the Heston
model.

Finally, in this work we considered Itō SDEs, which allowed us to use the Markov property. However,
more general classes of SDEs could be defined, e.g. those based on fractional Brownian motions [108],
which have non-Markovian dynamics. This means that the conditional distribution would no longer be
dependent on St, t,∆t, but the entire history of the path up to time t. In this case, the method should
be further extended by providing the history of the generated process {Ŝt} and the sequence {Zk} up
to the current time. An architecture similar to those proposed in [5] or [11] could be used, conditioning
on a ‘rolling window’ of previous values of both processes, but this time in the spirit of the constrained
GAN, where {Zk} is linked to the process {St} during training.

7.5. Outlook
Since the constrained GAN was found to outperform the vanilla GAN under identical conditions, the
architecture may be used to improve current applications of GANs for sampling from inverse distri-
butions, outside of the realm of SDEs. The map between the prior Z and some conditional target
distribution X may be obtained through inexpensive inversion with F−1

Z and the empirical conditional
distribution of the training set.

In the context of SDEs, the constrained GAN proposed in this work has been shown to approximate
the strong solution on a discretisation. It could serve as a starting point for future applications of
GANs on SDE problems. However, the method should be extended to the full parameter sets of the
SDEs under consideration and systems of SDEs. Successful extension would lead to efficient sampling
of synthetic paths, with potential application on pricing path-dependent derivatives, such as Bermudan
options (cf. [109]) and similar applications on a time discretisation that require Monte Carlo simulation
of asset paths.





8
Conclusion

In this thesis, a number of novel insights regarding GANs has been presented, in the context of financial
SDEs. A new GAN algorithm was proposed, the constrained GAN, which is based on the conditional
GAN architecture. It informs the discriminator with the map between the generator input and the
target distribution of interest. This led to a more accurate approximation of the conditional target
distribution and a more efficient training process on the SDE problems in this work. The link between
prior and target distribution was obtained by CDF inversions of the inexpensive prior on the target
distribution. An extension was proposed that eliminates the need for CDF inversions on SDE problems
by using an accurate discrete-time approximation as training set. It was shown how the constrained
GAN architecture allowed for strong approximation of two one-dimensional Itō SDEs on a time discreti-
sation. This is not possible with traditional GANs, as they only learn an approximation in distribution.
The constrained GAN links the prior input of the generator to the Brownian motion increment between
two time steps, which enables the path-wise approximation. It was shown that the constrained GAN
discriminator rules out maps by the generator that do not coincide with the conditional inverse dis-
tribution of the exact strong solution. This revealed how the generator learns the map from the prior
input to the conditional target distribution. Paths obtained with the constrained GAN outperformed
discrete-time schemes on large time steps in terms of the strong error. However, the constrained GAN
was trained on one-dimensional SDE problems with fixed parameters. In order to extend to general
applications and state-of-the-art alternatives to GANs, the method should be extended to general SDE
parameter sets and systems of SDEs, such as the Heston model. The ideas presented in this work serve
as a starting point for such extensions to path-wise approximation of general Itō SDEs. Successful
extension could give rise to applications in finance, such as the pricing of path-dependent securities and
similar applications that require strong approximation with Monte Carlo simulation on large time steps.
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A.1. Network Architecture
The architectures of the feed-forward neural networks of the generator and discriminator are shown
below. In the vanilla unconditional architecture, c = 0, while in the conditional GAN architecture,
c equals the amount of conditional parameters. If the discriminator is informed with Z, i.e. the
constrained GAN, the discriminator input is further increased by 1 for the input Z. The batch size
was set to 1, 000. The GAN was trained for a fixed amount of 200 epochs. An additional learning rate
schedule was created to stabilise GAN training. The learning rate of the generator was decreased by a
factor nLR = 1.05 every nLR = 500 iterations.

Table A.1: Generator

Optimiser Adam
η = 1× 10−4, β1 = 0.5, β2 = 0.999

Layer Nodes Activation

Input layer 1+c LeakyReLU, negative slope=0.1
Hidden 1 200 LeakyReLU, negative slope=0.1
Hidden 2 200 LeakyReLU, negative slope=0.1
Hidden 3 200 LeakyReLU, negative slope=0.1
Hidden 4 200 LeakyReLU, negative slope=0.1
Output layer 1 None

Table A.2: Discriminator

Optimiser Adam
η = 5× 10−4, β1 = 0.5, β2 = 0.999

Layer Neurons Activation

Input layer 1+c LeakyReLU, negative slope=0.1
Hidden 1 200 LeakyReLU, negative slope=0.1
Hidden 2 200 LeakyReLU, negative slope=0.1
Hidden 3 200 LeakyReLU, negative slope=0.1
Hidden 4 200 LeakyReLU, negative slope=0.1
Output layer 1 Sigmoid

The learning rate for the discriminator was set to 5× that of the generator learning rate, which
was found to lead to faster convergence in first several epochs and better approximation of the optimal
discriminator from theorem 3.2.
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A.2. Discriminator Output
The discriminator output is shown for the GANs used to create the results for GBM and the CIR process
if the Feller condition was satisfied. In both cases, one can see how the discriminator has identified the
map from Z to a return Rt by the ‘band’ that is visible.
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Figure A.1: Example for GBM: output of the constrained GAN discriminator on the Rt, Z-plane, along with samples
from the constrained and vanilla GAN. ∆t = 1.0. The discriminator forms a ‘band’ around the exact samples. In this

example, the vanilla GAN output coincides with a strong approximation.
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Figure A.2: Example for CIR process with Feller condition satisfied: output of the constrained GAN discriminator on
the Rt, Z-plane, along with samples from the constrained and vanilla GAN. St = 0.1,∆t = 1.0. Again, the discriminator
forms a ‘band’ around the exact samples. This time, the vanilla GAN does not coincide with a strong approximation. It

has learned a different map, which would have been ruled out by the constrained GAN discriminator.

A.3. Empirical validation of section 4.4.1
The technique proposed for extension in section 4.4.1 is tested using the following setup: a matrix of
100×10,000 N(0, 1) samples was drawn, representing Brownian motion increments on a fine grid of
10,000 steps. These increments are used in a discrete-time approximation of 10,000 time steps of the
interval [0, 1]. For GBM, this was a Milstein scheme and for the CIR process it was the truncated Euler
scheme. A random vector Z of size 100 was constructed using the increments on the fine grid, as shown
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in lemma 4.13, which was provided as input to the GAN. It was also used to find corresponding exact
variates. For the CIR process, this was done as F−1

ST |S0
(FZ(Z)). In all cases, the results in the plane

((ST | S0), Z) overlap, which validates the theory empirically.
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Figure A.3: Empirical validation of lemma 4.13 and the theory presented in chapter 4. A discrete-time scheme was run
on 10,000 time steps on the interval [0, 1]. The Z found using lemma 4.13 was provided as input to the GAN and used

to sample corresponding exact variates. All results coincide.
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A.4. Additional Results on Paths
100,000 paths were constructed using the vanilla GAN and constrained GAN. The results for GBM and
the CIR process if the Feller condition is satisfied are shown.

A.4.1. GBM
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Figure A.4: GBM: Weak and strong errors at time T = 2 of paths constructed using the vanilla GAN and constrained
GAN, compared with the Euler scheme, Milstein scheme and exact scheme. S0 = 1, ∆t = 0.05, i.e. 40 steps between 0

and 2.

A.4.2. Single-step approximation
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Figure A.5: Example of paths obtained with the single-step approximation on the time interval [0, 1] with the
constrained GAN and multiple steps with the Euler, Milstein and exact schemes, setting S0 = 1. The technique from

lemma 4.13 is used to find the increment Z as input to the GAN.

Table A.3: Single-step approximation on the time interval [0, 1]. The weak and strong errors are compared to those of
the Euler and Milstein schemes using n ∈ {5, 10, 40} steps to cross the same interval.

n = 5 n = 10 n = 40

Error Weak Strong Weak Strong Weak Strong

Euler 3.3E-04 1.0E-02 1.3E-04 7.4E-03 3.9E-05 3.7E-03
Milstein 2.6E-04 1.7E-03 1.3E-04 8.6E-04 3.4E-05 2.2E-04
GAN 5.0E-04 7.0E-04 4.9E-04 6.9E-04 4.9E-04 6.9E-04
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A.4.3. CIR process: Feller condition satisfied
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Figure A.6: Vanilla GAN: weak and strong errors at time T = 2 of paths constructed, for various ∆t, compared with the
truncated Euler, Milstein and exact schemes. Two starting values are chosen. The large strong error in both cases is due

to the fact that in this case, the vanilla GAN fails to provide a path-wise approximation to the strong solution.
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Figure A.7: Constrained GAN: weak and strong errors at time T = 2 of paths constructed, for various ∆t, compared
with the truncated Euler, Milstein and exact schemes. Two starting values are chosen: one equal to S̄, in which case the
discrete-time schemes perform well as they have the mean reversion ‘built-in’ and one greater than S̄, in which case the

GAN performs better.

A.4.4. Single-step approximation - Feller condition satisfied
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Figure A.8: Example of paths obtained with the single-step approximation on the time interval [0, 1] by the constrained
GAN and multiple steps with the Euler, Milstein and exact schemes, setting S0 = 1. The technique from lemma 4.13 is

used to find the increment Z as input to the GAN.
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Table A.4: Single-step approximation on the time interval [0, 1] with the constrained GAN, corresponding to figure A.8.
The weak and strong errors are compared to those of the truncated Euler and Milstein schemes using n ∈ {5, 10, 40}

steps to cross the same interval.

n = 5 n = 10 n = 40

Error Weak Strong Weak Strong Weak Strong

Euler 1.7E-05 1.2E-03 8.9E-06 8.5E-04 2.3E-06 4.3E-04
Milstein 7.1E-07 2.6E-04 9.1E-07 1.3E-04 3.3E-07 3.2E-05
GAN 6.4E-05 7.1E-04 6.7E-05 7.2E-04 7.3E-05 7.2E-04

A.4.5. CPU runtimes on single-step approximation

Table A.5: CPU runtimes to construct 100,000 paths on the interval [0, 1] using discrete-time schemes on varying steps,
versus the GAN on a single step if the Feller condition is not satisfied. The results were run on an AMD Ryzen 5 3600
processor @3.5GHz. Note that this does not take into account GPU parallellisation, which would make inference with

the GAN much faster.

n Euler Milstein GAN (single step)

5 7.0E-03 8.0E-03 3.1E-01
10 1.4E-02 1.5E-02 3.1E-01
40 7.7E-02 9.7E-02 3.5E-01

A.4.6. Vanilla GAN fails to provide a strong approximation
Two examples are shown of the failure of the vanilla GAN to provide a strong approximation. In one
case, it learns the map with opposite sign of Z, which is equal in distribution, but clearly not path-wise.
It is translated into ‘mirrored paths’. The second example shows a strange map in the Rt, Z-plane, that
is close in conditional distribution, but again not path-wise.
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Figure A.9: GBM: Example of the failure of the vanilla GAN to provide a strong approximation.
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Figure A.10: CIR process: Example of the failure of the vanilla GAN to provide a strong approximation.
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A.4.7. Strong error over time
This time, we test the constrained GAN by sampling iteratively for 100 steps, keeping ∆t fixed and
varying n. The results indicate that the output remains stable after repeated application of the algo-
rithm. For GBM, paths are discounted with exp(−µn∆t), as the process grows exponentially over time.
At large time steps, the truncated Milstein scheme underperforms compared to the truncated Euler
scheme. The truncated Milstein scheme does not perform well if the Feller condition is not satisfied.
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Figure A.11: GBM: strong error over time for discounted synthetic paths obtained with the adapted CGAN on the
GBM problem. Various time steps ∆t are shown.
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Figure A.12: Strong error over time of paths obtained with the constrained GAN on the CIR process if the Feller
condition is satisfied. Various time steps ∆t are shown.
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Figure A.13: Strong error over time of paths obtained with the constrained GAN on the CIR process if the Feller
condition is not satisfied. Various time steps ∆t are shown.
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A.5. Additional Results for Conditional GAN
This appendix shows the results using a conditional GAN, both for the vanilla and constrained GAN.
First, we show that the conditional GAN is able to interpolate between the conditions it was trained
on. Then, the conditional GAN is trained on both St and ∆t.

A.5.1. Interpolation capabilities on a single condition
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Figure A.14: ECDF plots of the vanilla conditional GAN output. The distribution corresponds to the CIR process with
the Feller condition satisfied. Left: GAN trained on St ∈ {0.1, 0.2} and right: GAN trained on ∆t ∈ {1, 2}. The Feller
condition was satisfied in both cases. Although trained on only two unique inputs, the conditional GAN can interpolate

between the two conditions. The exact CDF is given in black.

Table A.6: KS statistic and Wasserstein distance on test condition half-way between the two training conditions,
corresponding to the settings in figure A.14.

Parameter KS stat. p-value KS stat. ref. Wass. dist. Wass. dist. ref.

St = 0.15 2.1E-02 0.41 1.9E-02 1.6E-03 1.5E-03
t = 1.5 2.1E-02 0.42 1.9E-02 1.5E-03 1.4E-03

A.5.2. Feller condition satisfied: autocorrelation structure
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Figure A.15: CIR process with the Feller condition satisfied: scatter plot of St+∆t | St versus St. This plot reveals that
the autocorrelation structures of the GAN output and reference samples are similar. This time, the vanilla GAN did not

manage to provide a path-wise approximation.
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Figure A.16: ECDF plots of the conditional GAN output on the GBM problem for various choices of ∆t.
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Figure A.17: ECDF plots of the conditional GAN output on the CIR process with the Feller condition satisfied, for
various choices of ∆t. St was held fixed at 0.1.

A.5.3. GBM and CIR process - vanilla vs constrained GAN

Table A.7: Conditional GAN results on the GBM problem and the CIR process, both for the vanilla conditional GAN
and the constrained conditional GAN. The test conditions were ∆t = 1 and (St,∆t) = (0.1, 1) for GBM and CIR

process, respectively. The statistics are computed using 2,000 generated samples and are compared with an equally sized
set of reference samples, repeated 100 times. The average of the 100 repetitions is reported in the table. If the Feller

condition was not satisfied, the samples were scaled with S̄. Otherwise, the logreturns transformation was used.

Vanilla conditional GAN

SDE KS stat. p-value KS stat. ref. Wass. dist. Wass. dist. ref.

GBM 2.4E-02 0.29 1.7E-02 9.9E-03 8.3E-03
CIR, Feller cond. satisfied 2.3E-02 0.33 1.9E-02 1.3E-03 1.2E-03
CIR, Feller cond. not satisfied 6.5E-02 0.00 1.9E-02 4.7E-03 3.5E-03

Constrained conditional GAN

SDE KS stat. p-value KS stat. ref. Wass. dist. Wass. dist. ref.

GBM 2.0E-02 0.46 1.7E-02 8.4E-03 8.3E-03
CIR, Feller cond. satisfied 2.1E-02 0.45 2.0E-02 1.3E-03 1.2E-03
CIR, Feller cond. not satisfied 2.8E-02 0.10 2.0E-02 3.7E-03 3.7E-03
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A.6. Parameter sets and Training Phase
A.6.1. SDE parameters
The default parameters for the SDEs considered are given in table A.8.

Table A.8: Parameter sets used during the experiments for weak convergence.

Process Parameter Value

∆t 1

GBM µ 0.05
σ 0.2
S0 1

CIR, Feller cond. satisfied κ 0.1
S̄ 0.1
γ 0.1
S0 0.1

CIR, Feller cond. not satisfied κ 0.1
S̄ 0.1
γ 0.3
S0 0.1

A.6.2. Conditional GAN: construction of training set
In the GBM case, the conditional GAN was trained only on ∆t, as the logreturns transformation
remove dependence on St. For the CIR process (or general Itō diffusions), two vectors [∆t1, . . . ,∆tm]
and [S1

t , . . . , S
n
t ] are defined, which form the possible outcomes of the training set. The space of

training conditions is then given by C = [∆t1, . . . ,∆tm] × [S1
t , . . . , S

n
t ]. A training set was made of

tuples ((St+∆t′ | S′t),∆t′, S′t), with (∆t′, S′t) ∈ C and where St+∆t′ | S′t is sampled from the exact
distribution FSt+∆t′ |S′t . The experiments were run for m = n = 100, 000. [∆t1, . . . ,∆tm] was chosen
to range from 0.05 to 2, while [S1

t , . . . , S
n
t ] contained values between 0.01 and 0.5 on the CIR process

if the Feller condition was satisfied. If the Feller condition was not satisfied, the vector of previous
samples ranged from 10−4 to 0.9. Both vectors were randomly shuffled and then concatenated to
represent a random sample from their Cartesian product C. The vectors of ∆t and St were constructed
by repeating a vector of 8 and 10 samples m/8 and n/10 times, respectively. E.g., for ∆t, the vector
[0.05, 0.1, 0.2, 0.4, 0.5, 0.67, 1, 2] was repeated 12,500 times and then randomly shuffled uniformly. It was
found that letting samples recur many times in this way improved results over defining a continuous
range of parameters.

A.6.3. Training process
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Figure A.18: GBM: KS-statistic and Wasserstein distance, and loss function values during the training process. The
statistics were computed on the test condition ∆t = 1.
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Figure A.19: CIR, Feller condition satisfied: KS-statistic and Wasserstein distance, and loss function values during
the training process. The statistics were computed on the test condition (St,∆t) = (0.1, 1). The large values in the
generator loss function coincided with large generator gradients, although there is no visibly harmful effect on the

training process.
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Figure A.20: CIR, Feller condition not satisfied: KS-statistic and Wasserstein distance, and loss function values
during the training process. The statistics were computed on the test condition (St,∆t) = (0.1, 1).

A.6.4. Effect of the Learning Rate Schedule
A learning rate schedule was used that divides the base learning rate of Adam by a factor 1.05 every 500
iterations. This means that updates to the generator become exponentially smaller, gradually freezing
the training process. In figure A.21, the effect of applying this schedule is shown compared to not
applying it. Applying the learning rate schedule stabilises the training process for both GANs. If we
would train even longer, e.g. 100,000 steps, we would need to modify this choice of learning rate factor
accordingly.
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Figure A.21: Effect of the LR schedule during training process using 40,000 iterations. The KS-statistic and Wasserstein
distance are shown during the training process.
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A.7. Further Extensions of the Constrained GAN
This appendix provides the additional ideas for extending the constrained GAN to general problems,
in addition to the alternative of training on a high-quality discrete-time approximation.

A.7.1. Karhunen-Loève expansion
A very different method involves the explicit construction of the Brownian motion through a Fourier
series expansion. This technique is called Karhunen Loève expansion, cf. for example [2, p.57]. On a
bounded time interval 0 ≤ t ≤ T , a standard Brownian motion can be constructed as follows, for any
event ω ∈ Ω:

Wt(ω) =

∞∑
j=1

Zj(ω)ψj(t) ∀ t ∈ [0, T ], (A.1)

≈
K∑
j=1

Zj(ω)ψj(t), (A.2)

ψj(t) :=
2
√

2T

π(2j + 1)
sin

(
(2j + 1)πt

2T

)
, (A.3)

where Zj
iid∼ N(0, 1) ∀i ∈ N ∪ {0}. By truncating this sum to some K, e.g. at O(103) terms, one

obtains an approximation to the Brownian motion that is continuous and can be discretised over an
arbitrary partition. A high-quality approximation to the strong solution adapted to Ft = σ({Wt})
could be obtained by numerically integrating the stochastic integral with respect to equation A.1 on an
arbitrarily fine partition. The GAN is then modified as follows: instead of a single random variable Z as
input, it receives the K random variables {Zj}K−1

j=0 that appear in equation A.2. The discriminator also
receives these K inputs, which ensures the output remains adapted and that the generator learns the
map Z to St+∆t | St. This means that the GAN takes e.g. O(103) variables as input. The GAN would
be conditioned on t ∈ [0, T ] and trained on the dataset (t, St, (St+∆t | St)(ω),Z(ω)), where Z(ω) ∈ RK
contains the Zj(ω) used in the expansion and (St+∆t | St) (ω) are obtained via numerical integration.
The generator is then defined by:(

Ŝt+∆t | Ŝt
)

(ω) = Gθ(Z(ω), t,∆t, St). (A.4)

Again, the central method is to enforce path-wise equality via the discriminator, which alternatingly
receives

(
(St+∆t | St) (ω),Z(ω)

)
and

((
Ŝt+∆t | St

)
(ω),Z(ω)

)
. However, this method requires more

computational overhead due to the size of the input, although O(103) inputs is not large compared
to other applications of GANs, such as image generation [53]. The methodology is again the same:
construct a training set with an expensive numerical scheme to allow the GAN to sample a large time
step ahead once it has been trained.

A.7.2. Regularisation
Another way to enforce adaptedness and correspondence of {Ŝtk | Ŝtk−1

} and {Wtk − Wtk−1
} is to

combine an exact simulation scheme with a discrete-time scheme such as the Milstein scheme. In
contrast to the previous example of using the Milstein approximation as a dataset, we could use a
discrete-time scheme on a single small time step as regularisation term in the generator loss function.
If we again use the example of the Milstein scheme, the regularisation term between times t and t+ δt
would become:

LMilstein = EZ∼PZ

∣∣∣∣Gθ(Z, t, δt, St)− St −A(t, St)δt−B(t, St)
√
δtZ − 1

2
δtB(t, St)B

′ (Z2 − 1
)∣∣∣∣ . (A.5)

δt should be chosen as small as possible, or the regularisation term would bias the GAN to the
Milstein scheme, however, it must still be part of the range of time conditions, or the generator would
not have observed training examples based on δt. The key idea is that the regularisation term ‘penalises’
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the generator if it uses Z differently than prescribed by the Milstein scheme. Since the Milstein scheme
approximates a strong solution, it is adapted to Gk. In example 4.6, where we found that the vanilla
GAN may produce ‘mirrored’ versions of the paths of the strong solution, the regularisation term would
force the GAN to choose the correct sign of Z. Note that δt may remain fixed, while the rest of the
GAN is trained on a much larger range ∆t ∈ (0, T ].
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