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Abstract

In risk-management, one typically simulates many states of the market using models that are in line
with historical data, also known as real-world models. For example, new regulations require insurance
companies to value their position on a 1-year horizon. Insurance companies issue guarantees that need
to be valued according to market expectations, instead of historical data. By calibrating option pricing
models to market prices or equivalently, the implied volatility surface, one obtains market consistent val-
ues for these guarantees. Currently, it is common practice to assume that the parameters of these option
pricing models are constant, i.e. the calibrated parameters from time t = 0 are used, as the option prices
at t = 1 are unknown. However, empirical data shows that the parameters are not constant and depend
on the state of the market. In this research, we propose regression models that predict the calibrated
parameters, given a set of market variables such as the VIX index and risk-free interest rates. When
these market variables are included in the real-world simulation, one is able to predict the calibrated pa-
rameters and consequently the option prices which are in line with the simulated state of the market. By
performing a regression we are able to predict the out-of-sample implied volatility surfaces accurately.
Moreover, the impact on the Solvency Capital Requirement has been evaluated for different points in
time. The impact depends on the initial state of the market and varies from −46% to +52%.

Keywords: Option pricing, risk management, recalibration, implied volatility surface, Heston model.
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1
Introduction

The implied volatility surface holds essential information about prices of financial securities. This surface
quantifies the market value of European call and put options for a range of different strikes and maturi-
ties. It is common practice to derive market expectations from these option values, as they are frequently
traded and their pay-off depends on future states of the market. First, a model that describes the market
is established and its parameters are defined such that the implied volatility surface produced by the
model matches the one observed on the market as good as possible. This process is called calibration and
a calibrated model can be used to price exotic options, which are less frequently traded. When selling
options, it is crucial to accurately determine the model parameters, otherwise traders will make profits
at the expense of the writer of the option. A model that describes the implied volatility surface accurately
is called a risk-neutral model.

As mentioned before, the implied volatility surface quantifies the expectations of the market with
respect to a certain asset. When time progresses and new information about the asset is revealed, the
implied volatility surface will change accordingly. We therefore observe an implied volatility surface that
changes over time and depends on the state of the market. Consequently, the parameters of the risk-
neutral option price model require recalibration over time as well. This can be a cumbersome procedure,
as it typically involves a local optimizer, by which one only finds a local optimum which depends on the
initial values. In order to find the global optimum (or at least a close approximation), one can sample
many initial values or implement a global optimizer. Both solutions are time-consuming and therefore
undesirable.

Another issue with respect to recalibration of the implied volatility surface arises when one wishes to
evaluate option prices at time t > 0, which is common in risk-management applications. When assessing
the risk associated with, for example, a balance sheet, one typically simulates the market up to time
T using models that are in line with historical data, also known as a real-world measure. The value
of the balance sheet is evaluated in every simulated state of the market. Hereafter, the distribution of
the balance sheet at time T can be derived. When the balance sheet contains options or other products
that involve risk-neutral valuation, the risk-neutral measure at time T is required, which depends on
the implied volatility surface at time T. It is, however, very difficult to realistically simulate the evolu-
tion of the implied volatility surface, as it quantifies the market’s expectations, which depend on many
factors. Moreover, even if the implied volatility surface is realistically simulated, a calibration procedure
is still required for each simulated path, which leads to impractical computational times. To this end,
the parameters of the risk-neutral model are usually assumed to be constant and implied by the implied
volatility surface at t = 0. This assumption is not in line with historical observations. Indeed, it is highly
unlikely that the expectations of a stable market will coincide with the expectations of a market subjected
to a financial crisis. Consequently, as the implied volatility surface is a quantification of the future expec-
tations of the market, it is highly unlikely that these markets will have the same risk-neutral measure.
It would be more in line with historical observations to include a recalibration process in the real-world
simulation, such that the risk-neutral measure can be recalibrated along each simulated trajectory. This
way, one conditions the risk-neutral measure at time T on the simulated state of the market, instead of
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2 1. Introduction

today’s market.

Currently, there is not much literature available regarding this issue. For example, Bauer et al.
(2010) and Feng et al. (2017) do not even mention the recalibration process. The main explanation for the
lack of literature is that the recalibration process is in violation with the underlying assumptions of the
risk-neutral market. One of the main assumptions of the risk-neutral market is that all positions can be
hedged. Hence, one should be able to hedge a future position, using the parameters of the current implied
volatility surface. However, this is no longer true when the implied volatility surface is recalibrated after
every change in the market. So in terms of the theoretical option price dynamics, the recalibration pro-
cess is irrelevant. But in terms of the actual option price dynamics, the recalibration process does appear
to be relevant, according to historical data. For example, Ayache (2016) states that is important that one
hedges against changes of (theoretically) constant parameters, as one is not hedging against changes of
the underlying process, but against changes in the option price. Since the actual dynamics of the option
price are subjected to the recalibration of the risk-neutral measure, it appears to be more accurate to take
changes of theoretically constant parameters into account, even if this is in violation with the underlying
assumptions of the risk-neutral market.

This thesis is closely related to Singor et al. (2014), where a linear relationship between the VIX in-
dex and the parameters of the Heston model is proposed. By including the VIX index in the real-world
simulation, one is able to condition the Heston parameters on the simulated state of the market, without
the need of the implied volatility surface. The prediction of the implied volatility surface according to
the linear regression model, was already relatively accurate. However, other market variables and other
regression models were not considered. The main objective of this thesis will be therefore be to improve
this model by considering more market indices and regression models. These models aim at improving
the accuracy of the original model, while preserving the advantages. Moreover, we will implement the
models in the main application: risk-management.

This thesis can be separated into four parts. The first part consists of chapter 2, in which we will
discuss the basic properties of the real-world and risk-neutral markets. Moreover, we will stress the
importance of finding the relationship between these markets. The second part will be dedicated to
improving the model proposed in Singor et al. (2014), by including more market indices and regression
models. These models include popular machine learning approaches, which are becoming more and more
relevant. The theory and results of these models are discussed in chapter 3. Hereafter, we will discuss
the justification of violating the theoretical assumptions of the risk-neutral market. By means of a hedge
test, we will investigate whether it is more accurate to consider recalibrated parameters when evaluating
future option prices. Chapter 4 describes the theory behind this test and its results. The fourth and final
part consists of the regression models’ main application: risk-management. This will be the topic of
chapter 5. In chapter 6, we will finalize this thesis by pointing out the main findings of this research and
topics for future studies.



2
Real-world and risk-neutral markets

When dealing with financial models, it is crucial to define the appropriate measure that characterizes
the market. This measure does not only separate the possible from the impossible events, it also defines
the probability of possible events occurring. In general, we can distinguish two important measures: the
real-world and risk-neutral measure.

The real-world measure is a reflection of the actual market expectations and it is mostly used in risk
management. For instance, to determine the risk associated with a certain portfolio, the market can be
simulated under the real-world measure. Each trajectory will give rise to a different portfolio value and
by combining all simulated scenarios one is able to assess the portfolio’s sensitivity to changes in the
market.

When pricing a derivative, one needs to consider the risk-neutral measure, rather than the real-world
measure. A market characterized by the risk-neutral measure ignores individual risk preferences and
the expected return on all assets is equal to the risk-free rate. These assumptions are not necessarily
realistic, but they do allow for a market where the unique price of a derivative can be established.

In this chapter we will discuss some important concepts of the (risk-neutral) option market such as
the implied volatility surface, as well as different methodologies to price derivatives. Moreover, we will
explain the importance of finding the relationship between real-world and risk-neutral markets.

2.1. Mathematical notation and definitions
Throughout this thesis we will assume that the real-world market is defined on a finite horizon [0,T]
and characterized by the probability space (Ω,F ,P), with sample space Ω containing all possible outcome
elements ω. Moreover, F is a σ-algebra on Ω, which can be thought of as every possible combination of
outcome elements and P : F → [0,1] is the probability measure that maps these events into probabilities.
Finally, natural filtration {Ft, t ∈ [0,T]} can be thought of as all available information up to time t.

We will assume there exists a measure Q equivalent to P, meaning that these measures agree on
events with probability 0, but they may not agree on events with probability > 0. The measure Q is called
risk-neutral when the discounted expected value of every bounded self-financing portfolio1 under Q is
equal to its initial value,

Π0 = e−rTEQ [ΠT |F0] , (2.1)

with risk-free rate r and portfolio value Πt at time t. Throughout this thesis we will assume the risk-free
rate r to be constant, which justifies the discount factor in (2.1). Using this definition, one can prove
that under risk-neutral measure Q, the discounted price process of any (risky) asset is a martingale with
respect to the natural filtration. In other words, for the discounted price process S̃t = {e−rtSt, t ∈ [0,T]},
the following needs to hold

EQ
[
S̃t |Fs

]= S̃s ∀0≤ s ≤ t ≤ T. (2.2)
1A self-financing portfolio is defined as a portfolio without investments or withdrawals, besides the investment at t = 0.

3



4 2. Real-world and risk-neutral markets

In order to understand the necessity of the risk-neutral probability measure, we first need to introduce
the concept of arbitrage. Arbitrage refers to a portfolio with value Πt at time t and initial value Π0, such
that for some T > 0

P(ΠT ≥Π0)= 1 and P(ΠT >Π0)> 0. (2.3)

In other words, arbitrage is a situation where profit is possible, but loss is impossible. When arbitrage
exists in the market, we will assume traders to take advantage of this situation, until the market is free
of arbitrage. Hence, it is reasonable to assume an arbitrage-free market and therefore we need to be able
to establish arbitrage-free derivative values. These assumptions have led to the fundamental theorems
of asset pricing.

Theorem 1 (First Fundamental Theorem of Asset Pricing). If a market is characterized by a risk-neutral
measure Q, equivalent to the real-world measure P, then it is arbitrage-free.

This theorem states that if we want to price derivatives without creating arbitrage, we need to consider
a risk-neutral measure. In other words, we need a measure such that equation (2.1) holds.

Theorem 2 (Second Fundamental Theorem of Asset Pricing). Consider a risk-neutral market. The mar-
ket is complete2 if and only if the risk-neutral measure is unique.

Thus, by assuming a complete market, one obtains a unique risk-neutral measure Q, leading to unique
derivative prices. The proofs of these theorems are omitted in this thesis, but they are discussed in almost
every derivative pricing textbook, for example Duffie (1996).

Following the notation of Kenyon et al. (2015) we will introduce the observed real-world measure
A : F

′ → [0,1], defined on the observed space (Ω
′
,F

′
). This measure is defined according to historically

realized market observations, hence Ω
′ ⊆Ω and F

′ ⊆F . Consequently, A may not be equivalent to risk-
neutral measure Q. Since we are only able to develop a real-world measure based on past observations,
we will consider A as real-world measure throughout this thesis, unless otherwise specified.

2.2. Difference between the risk-neutral and real-world measure
Even though we use the risk-neutral measure to price derivatives, its assumptions regarding the dy-
namics of the underlying assets (such as risk-neutral drift) do not coincide with the empirical evidence
provided by the real-world market. To illustrate this difference, we will provide an example where the dy-
namics of a real-world stock index SP

t are modelled using a geometric Brownian motion under probability
measure P,

dSP
t =µSP

t dt+σSP
t dWP

t , SP(0)= S0, (2.4)

where µ and σ are respectively the expected return and volatility of the index and WP
t is a Wiener process

under the real-world measure P. Moreover, we assume a risk premium on this (risky) asset in addition
to the risk-free rate. Thus,

µ= r+µp, (2.5)

with µp > 0. Under these assumptions we can derive an analytical expression for the price process,

SP
t = S0e(µ− 1

2σ
2)t+σWP

t . (2.6)

The conditional expectation of the discounted price process under P is given by

EP
[
S̃t |Fs

]= EP [
e−rtSt |Fs

]
= e−rtEP

[
S0e(µ− 1

2σ
2)t+σWP

t |Fs

]
= e−rtS0e(µ− 1

2σ
2)tEP

[
eσWP

t |Fs

]
= S0e(µ−r− 1

2σ
2)te

1
2σ

2(t−s)+σWP
s

= e(µ−r)(t−s)e−rsS0e(µ− 1
2σ

2)s+σWP
s

= eµp(t−s)S̃s 6= S̃s ∀0≤ s < t ≤ T. (2.7)

2A market is considered to be complete if every risk position can be hedged and every security can be exchanged.



2.3. Black-Scholes implied volatility surface 5

We may conclude that the discounted price process is not a martingale, hence P is not a risk-neutral
measure. Using this measure to price derivatives would lead to arbitrage opportunities. So even though
this model reflects the expected real-world dynamics of the index, we cannot use it to price derivatives.
To this end, we will change from measure P to Q by applying Girsanov’s theorem:

dSQ
t = rSQ

t dt+σSQ
t dWQ

t , SQ(0)= S0. (2.8)

Note that we assume the initial values of the processes to be equal (since they are known). The measures
Q and P are equivalent due to the properties of Girsanov’s theorem. Moreover, the conditional expectation
can be written as

EQ
[
S̃t |Fs

]= EQ [
e−rtSt |Fs

]
= e−rtEQ [St |Fs ]

= S0e−rte(r− 1
2σ

2)tEQ
[
eσWQ

t |Fs

]
= S0e

1
2σ

2 te
1
2σ

2(t−s)+σWQ
s

= e−rsS0e(r− 1
2σ

2)s+σWQ
s

= S̃s ∀0≤ s ≤ t ≤ T. (2.9)

Hence, the discounted price process is a martingale, indicating the risk-neutrality of Q, leading to an
arbitrage-free pricing method according to the first fundamental theorem of asset pricing. The relation
between the real-world and risk-neutral measure might seem trivial in this case (change µ into r), but
this relation gets more complicated when more involved asset processes are assumed (we will describe
some of these processes in section 2.4). Extensive research has been performed investigating the relation
between Q and P, see for example de Vincent-Humphreys and Noss (2012). Contrary to the aforemen-
tioned research, this thesis will not directly focus on the relationship between the real-world and risk-
neutral probability density functions, but rather on the relationship between real-world indices and the
parameters of risk-neutral models. These risk-neutral models can be used to price a variety of different
derivatives, but we limit our research to stock index options3. In sections 2.3-2.5 we will discuss different
option pricing models and how to calibrate them.

Finally, most of our models will be characterized by measure Q, hence we will remove the superscripts
throughout this thesis for notational convenience.

2.3. Black-Scholes implied volatility surface
The model proposed in Black and Scholes (1973) plays an important role when it comes to option pricing.
In their model, Black and Scholes assume the underlying asset St to follow a Geometric Brownian Motion,

dSt = rStdt+σStdWt, S(0)= S0. (2.10)

With risk-free interest rate r, spot price of the underlying asset S0 and volatility σ. Using this model,
one is able to value options in closed form. For example, the price of a European option at time t for strike
price K and maturity T is given by

CBS(t,σ, r,St,K ,T)=ω[(StN (ωd1)−K e−r(T−t)N (ωd2)],

d1 = log( St
K )+(r− 1

2σ
2)(T−t)

σ
p

T−t
,

d2 = d1 −σ
p

T − t.

(2.11)

With the cumulative standard normal distribution N (·), ω = 1 for a call option and ω = −1 for a put
option. The Black-Scholes equation is widely used to convert (European) option prices to the Black-
Scholes implied volatility σimp, which we will simply refer to as implied volatility throughout this thesis.
The implied volatility is defined as the volatility for which the Black-Scholes price matches the market
price:

CMarket = CBS (
t,σimp, r,St,K ,T

)
, (2.12)

3A stock index option is a financial product which pay-off depends on the uncertain movement of one or multiple stock indices.



6 2. Real-world and risk-neutral markets

where CMarket is the option price on the market. By combining the implied volatilities of different strikes
and maturities we obtain the implied volatility surface. The volatility is assumed to be constant for
different strikes and maturities in the model of Black and Scholes, hence, the implied volatility surface
should be flat. However, on the market we observe implied volatility surfaces as in figure 2.1 and therefore
the Black-Scholes model fails to describe the market realistically. Thus, if we want to price other (exotic)
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Figure 2.1: Implied volatility surface S&P-500 options, March 30th 2012.

options in a fair way, we need to assume models able to describe these surfaces. There exists a wide range
of such models, of which we will give an overview in the next section.

2.4. Overview of option price models
In order to replicate the implied volatility surface observed on the market, one needs to assume a model
different from the Black-Scholes model. Usually, these models involve stochastic differential equations
(SDEs) to describe important underlying processes, such as asset price, asset volatility and interest rates.
Note that these processes are characterized by the risk-neutral measure, rather than the real-world mea-
sure.

In general, we can distinguish three different groups: local volatility models, stochastic volatility
models (possibly with jumps) and local-stochastic volatility models. In this section we will briefly describe
the assumptions, advantages and disadvantages of these models, complemented by some examples we
consider relevant for our research.

2.4.1. Local volatility models
Local volatility models assume a deterministic volatility function consistent with the observed market
volatilities. The underlying SDE is assumed to be

dSt =µ(t)Stdt+σLV(t,St)StdWt, S(0)= S0, (2.13)

with the deterministic local volatility function σLV(t,St).

In general, these models are able to describe the observed implied volatility surface perfectly, but
they are very unstable over time, meaning that the volatility function often needs recalibration, leading
to hedging strategies that perform worse than Black-Scholes hedging strategies4. In other words, even
4In chapter 4 we will discuss the details of hedging strategies
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though these models are perfectly capable of describing the current implied volatility surface, they fail
to capture information about the dynamics of the underlying asset. In this section we will review a few
examples of local volatility functions.

Dupire’s local volatility
The idea of local volatility functions was first considered in Dupire (1994). This research proposed a
volatility function consistent with observed option prices, that still allowed for hedging strategies and
pricing without arbitrage. Dupire’s local volatility function is based on the Fokker-Planck equation and it
incorporates the derivative of option prices observed on the market, both in maturity and strike direction:

σ2
LV (T,K)=

∂CMarket

∂t
1
2

K2 ∂
2CMarket

∂K2

. (2.14)

Dupire’s equation is among the most famous local volatility functions due to its direct link with the ob-
served market prices. This allows for a non-parametric structure, which greatly simplifies the calibration
procedure.

Mixture of densities
In Brigo and Mercurio (2002) a general class of analytically tractable models was proposed, based on a
given mixture of densities. They considered N diffusion processes following

dS i
t =µS i

tdt+vi(t,S i
t)dWt, i = 1, . . . , N, (2.15)

with initial conditions S i
0 equal to S0. By assuming some regularity conditions for vi(t,S i

t), they were
able to define the local volatility function as a weighted average of these processes

σLV(t,St)=
√√√√∑N

i=1λiv2
i (t,St)pi

t(St)∑N
i=1λiS2

t pi
t(St)

. (2.16)

The processes are characterized by their weights λi and density functions pi
t. In particular they con-

sidered a mixture of log-normal densities, where the option price can be seen as a weighted average of
Black-Scholes option prices.

Local volatility with stochastic parameters
In order to overcome the poor hedging performances of local volatility models, Alexander and Nogueira
(2004) constructed a general framework for parametric local volatility models that incorporates stochas-
ticity. By allowing the parameters of the local volatility model to evolve stochasticly over time, they were
able to adjust the Greeks (sensitivities to changes in the market), which improved the hedging strategies
of these models. In this thesis we will adopt a similar approach for parameters of a stochastic volatility
model.

2.4.2. Stochastic volatility models (with jumps)
Stochastic volatility models assume the volatility to be driven by a stochastic process, rather than a
deterministic function. These assumptions lead to a system of SDEs:

dSt =µS(t,St)dt+σS(t,vt)StdWS
t + JS(t,St,vt)dNt, S(0)= S0,

dvt =µv(t,vt)dt+σv(t,vt)dWv
t + Jv(t,St,vt)dNt, v(0)= v0,〈

dWS
t ,dWv

t
〉= ρdt.

(2.17)

The stochasticity in these models can come from the jump process Nt and/or the Wiener processes WS
t

and Wv
t .

In general, stochastic volatility models assume a more realistic underlying process than local volatil-
ity models, leading to improved hedging strategies, for example. However, they do not always succeed
in replicating the implied volatility surfaces observed on the market. One can reduce this problem by
introducing more complicated models. However, these models are still not perfect in terms of accuracy,
but they do increase computational complexity. In this section, we will briefly discuss the properties of a
few relevant stochastic volatility models.
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Heston model
A well-known stochastic volatility model is proposed in Heston (1993), which assumes

dSt = rStdt+p
vtStdWS

t , S(0)= S0,
dvt = κ(v̄−vt)dt+γpvtdWv

t , v(0)= v0,〈
dWS

t ,dWv
t
〉= ρdt.

(2.18)

The volatility follows a so-called CIR process (constructed in Cox et al. (1985)), which is a mean-reverting
process and prevents negative volatility. In this model, κ is the speed of mean reversion coefficient, i.e.
the coefficient that determines the rate at which vt is pulled back towards its long term mean v̄, γ is the
volatility of the volatility and ρ is the correlation between the Wiener processes WS

t and Wv
t . The Heston

model is known for its analytical tractability and its ability to reproduce most implied volatility surfaces.
However, the model has difficulties with short-term maturities.

Time-dependent Heston model
In Benhamou et al. (2010) a general framework is proposed for the Heston model with time-dependent pa-
rameters. By comparing the Heston model with time-dependent parameters to an equivalent perturbed
process, they were able to identify the characteristics of the model for any time-dependent (deterministic)
process of the parameters. The price for put and call options can be approximated by the price accord-
ing to the Black-Scholes equation plus an adjustment. The main disadvantage of this approach is the
presence of complicated integrals. An involved integration procedure is required, in order to approximate
these integrals, unless the parameters are assumed to follow a convenient, but unrealistic, function (for
example piecewise constant). This leads to a complex calibration procedure and higher approximation
errors.

Stochastic volatility with jumps
Besides pure diffusion models such as the Heston model, there also exists a wide range of jump-diffusion
models. One of the first models to include both stochastic volatility and jumps was proposed in Bates
(1996). The underlying asset is assumed to follow

dSt = (r−λµ̄)Stdt+p
vtStdWS

t + (eJ −1)StdNt, S(0)= S0,
dvt = κ(v̄−vt)dt+γpvtdWv

t , v(0)= v0,〈
dWS

t ,dWv
t
〉= ρdt.

(2.19)

Nt is a Poisson process with intensity λ and the jump amplitude is given by J. This model takes into ac-
count the fear of sudden jumps in the underlying asset, which should improve the accuracy of the model.
There are multiple variations within the jump-diffusion models, for example by introducing a jump pro-
cess in the volatility SDE. However increasing the number of jump processes in the model increases the
number of parameters as well, which complicates the calibration procedure.

2.4.3. Local-stochastic volatility models
Local-stochastic volatility models combine the previous two models by assuming a partly deterministic,
partly stochastic volatility function. The general SDE representation of these models is

dSt =µS(t,St)dt+σLV(t,St)σS(t,vt)dWS
t + JS(t,St,vt)dNt, S(0)= S0,

dvt =µv(t,vt)dt+σv(t,vt)dWv
t + Jv(t,St,vt)dNt, v(0)= v0,〈

dWS
t ,dWv

t
〉= ρdt.

(2.20)

These models are able to reproduce the current implied volatility surfaces as well as the future dynamics
of the underlying asset. However, they usually do not have closed-form solutions, making calibration and
evaluation even more challenging.

Heston model combined with Dupire’s equation
One of the first models exploiting the idea of combining local and stochastic volatility was proposed in
Jex et al. (1999). They assumed a combination of the Heston model and Dupire’s equation,

dSt = rStdt+√
X (t,St)

p
vtStdWS

t , S(0)= S0,
dvt = κ(v̄−vt)dt+γpvtdWv

t , v(0)= v0,〈
dWS

t ,dWv
t
〉= ρdt,

X (T,K)2 = σ2
LV(T,K)

E[v2
t |S(T)=K] ,

(2.21)
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where σ2
LV (K ,T) is defined as in equation (2.14). The aim of this model is to combine the advantages

of both the Heston and Dupire’s model. However, this approach does require evaluation of a conditional
expectation, which introduces additional computational complexity. Several studies have been dedicated
to the efficient evaluation of this conditional expectation, see for example van der Stoep et al. (2014). Even
though results continue to improve regarding this issue, the methods are still based on costly simulation
approaches, because there is no closed-form expression for the expectation.

Lipton’s universal volatility model
The model proposed in Lipton (2002) aims to improve accuracy even more by adding a jump component
to (2.21). Adding more degrees of freedom, naturally leads to improved results, but this comes at the cost
of a more involved model. Complexity plays an even bigger role in this model: it does not only suffer
from the problems of the previous model (calculation of the conditional expectation), it also adds more
complexity by adding jump parameters.

2.4.4. Choosing the optimal model
Every model described in this section has its advantages and disadvantages, giving rise to the difficult
decision of choosing the right one. To the end, there is always a trade-off between accuracy and com-
plexity: by assuming a highly accurate model one increases computational complexity, but by assuming
a rather simple model one loses the realistic representation. Moreover, one could question the applica-
bility of complex models. Most models improve the accuracy by allowing more degrees of freedom, which
naturally leads to improved in-sample results, but not necessarily to improved out-of-sample results.

With the above-mentioned considerations in mind, we decided upon the Heston model for our appli-
cation. The Heston model has a rather realistic representation of the market (by assuming stochastic
volatility) and due to its analytical tractability it remains fast to evaluate and calibrate. We acknowledge
that this is a highly problem-dependent decision, hence we do not claim the Heston model to be optimal
in general.

2.5. Calibration of the Heston model
Calibrating a model is equivalent to finding the set of parameters, such that the implied volatility pro-
duced by the model matches the implied volatility observed on the market as good as possible. In this
section we will explain in more detail how to perform this procedure applied to the Heston model.

Before a model can be calibrated, one has to be able to determine European option prices for different
maturities and strikes, given a set of parameters ΩHeston. During calibration, many option values have
to be evaluated for different parameter sets. Hence, a fast and robust pricing algorithm is desirable. Due
to its analytical tractability, a variety of fast pricing methods exist for the Heston model. Throughout
this thesis we will use the method constructed in Carr and Madan (1999), which determines the Fourier
transform of the option price and uses the fast Fourier transform to evaluate this expression. A detailed
overview of this pricing process can be found in appendix A.

After obtaining the option prices, it is possible to calibrate the Heston model by comparing the market
prices to the calculated prices. However, it is difficult to define a good loss function when comparing low
priced options to high priced options. It is much more stable, in fact, to compare the implied volatilities
observed on the market to the implied volatilities of the model. In other words, one needs to find the
volatility such that the price according to the Black-Scholes equation matches the price produced by the
model

CBS
(
t,σHeston, r,St,K ,T

)
= CHeston

(
t,ΩHeston

t ,St,K ,T
)
. (2.22)

Unfortunately, we cannot derive an analytical expression for σHeston from (2.22). Hence, we need to
extract σHeston numerically, for which we will use the well-known Newton-Raphson method. The Newton-
Raphson method is an iterative method that is able to find the roots of an equation f (σ) by applying the
following process: {

σ0 =σinit,
σi+1 =σi − f (σi)

f ′(σi)
. (2.23)
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If we define
f (σHeston)= CBS

(
t,σHeston, r,St,K ,T

)
−CHeston

(
t,ΩHeston

t ,St,K ,T
)
, (2.24)

f ′(σHeston) is given by

f ′(σHeston)= ∂CBS

∂σHeston = StN ′(d1)
p

T − t. (2.25)

With the standard normal density function N ′(·) and d1 defined as in (2.11). After defining σinit, we can
extract σHeston by applying (2.24) and (2.25) to (2.23). Note that f ′(σHeston) is strictly positive, leading to
fast convergence and a unique solution.

Finally, we need to minimize the difference between the implied volatilities produced by the model
and the implied volatilities observed on the market, by adjusting the model parameters. First, one needs
to identify the parameter search space. For the Heston parameters we assume:

ΩSearch =ΩSearch
κ ×ΩSearch

v0
×ΩSearch

v̄ ×ΩSearch
γ ×ΩSearch

ρ

= [0,10]× [0,1]× [0,1]× [0,2]× [−1,1]. (2.26)

After defining the search space, one way of finding the calibrated parameters at time t is by minimizing
the sum of squared errors:

ΩHeston
t = argmin

Ω∈ΩSearch

(∑
K

∑
T

(
σMarket(t,K ,T)−σHeston(t,Ω,K ,T)

)2
)

. (2.27)

This can be solved by, for example, the Levenberg-Marquardt least-squares algorithm. This algorithm
finds a local minimum, so it is best to sample different initial conditions, repeat the process and keep
the best results. The results will give, for each time-step t, the optimal parameters of the Heston model:
ΩHeston

t = {κt,v(0,t), v̄t,γt,ρt}.

2.6. Evolution of the Heston model parameters
In the previous section we described how to find the set of calibrated parameters for the Heston model.
In practice, it is very common to recalibrate these parameters after changes in the implied volatility sur-
face. Thus, with an ever-changing market, these parameters evolve over time, despite the fact that they
are assumed to be constant in the Heston model. The calibration procedure has been applied to monthly
implied volatility surfaces of the S&P-500 index, from January 2006 until February 2017 and the results
can be found in figure 2.2. During our calibration procedure we assumed κ to be constant; an unrestricted
κ led to unstable results and did not improve the accuracy. The other parameters, however, do not appear
to be constant over time, which gives rise to multiple issues.

One of these issues is of practical nature: as soon as the market and the accompanied implied volatil-
ity surface changes, the model requires recalibration, which can be a troublesome procedure. In order
to apply a (local) minimization algorithm, one needs to specify the initial parameter values. If chosen
properly, these initial values will lead to the global optimum. However, due to the non-linearity of the
minimization problem, it is more likely to end up in a local minimum, especially with an increasingly
complex model. In order to find the global optimum (or at least a close approximation) one can either
implement a global optimization algorithm or re-sample the initial conditions and keep the best results.
Both solutions can be time-consuming, which is undesirable.

The other issue is related to risk-management. Typically, one simulates many real-world paths to
assess the sensitivity to the market of a portfolio, balance sheet, etc. In many cases, a risk-neutral val-
uation is required nested inside these simulations, for example if the portfolio or balance sheet contains
options. Consequently, the future implied volatility surface for each trajectory needs to known, such
that the Heston parameters can be calibrated accordingly. It is, however, very complicated to simulate
the implied volatility surface, as it quantifies the market’s expectations, which depend on many factors.
Moreover, even if the implied volatility surface is modelled, one still needs to perform a costly calibration
procedure. Performing this calibration procedure in each of the, say, 10.000 simulated trajectories leads
to huge computational times. It is therefore common practice to assume constant parameters and by
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Figure 2.2: Evolution of the Heston model parameters

doing so, one ignores future implied volatility surfaces.

Figure 2.2 clearly shows that the parameters are time-dependent, which is in contrast with the as-
sumptions of the Heston model. Hence, it seems natural to adopt the time-dependent Heston model
discussed in section 2.4.2. This model does not assume constant parameters and therefore appears to
be more in line with historical observations. To remain arbitrage-free, this model must be calibrated
according to the implied volatility surface at t = 0. Consequently, one obtains a term structure in line
with today’s option market. However, the actual development of the market will not necessarily follow
this term structure and it will be adjusted as soon as the implied volatility surface changes, just like the
Heston parameters. Adopting the time-dependent Heston model will therefore not solve the aforemen-
tioned issues, as its parameters still depend on future implied volatility surfaces and will change over
time. Moreover, there is currently no risk-neutral model completely invariant to changes in the implied
volatility surface, hence the parameters of all risk-neutral models will change over time. This leads to
the conclusion that the issues caused by the dynamic behaviour of the implied volatility surface cannot be
solved by adopting a different risk-neutral model. Instead, this research aims at investigating the rela-
tionship between the Heston parameters and observable market indices. By including the market indices
in the real-world simulation, we will be able to directly forecast the set of Heston parameters within each
simulated trajectory. This way, one is able to condition the risk-neutral measure on the simulated state
of the market, without the need of a simulated implied volatility surface.

It is, however, important to stress the different assumptions with respect to the real-world and risk-
neutral market. Risk-neutral valuations will be performed under the Heston model, which assumes con-
stant parameters. However, in real-world simulations we will assume the Heston parameters to change
over time according to the simulated state of the market, similar to figure 2.2. One could argue that this
approach is invalid, since we are violating the assumptions of the risk-neutral market. To this end, we
will discuss a justification of this approach in chapter 4, by means of a hedge test.

2.7. Evolution of the implied volatility surface
The previous section discussed the dynamic behaviour of the Heston model parameters. This dynamic
behaviour is directly linked to the dynamic behaviour of the risk-neutral market, which is quantified by
the implied volatility surface. So in order to improve our understanding of the evolution of the Heston
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model parameters, we will review some research regarding the dynamics of the implied volatility surface
in this section.

Mixon (2002) investigated whether macroeconomic factors are able to explain changes in the implied
volatility surface. By applying principal component analysis to a variety of (observable) factors, they
concluded that most of the variation within the implied volatility surface of the S&P-500 index can be
explained by three unobservable factors5. Moreover, they investigated which market factors accounted
for most of the explanatory power. They concluded that a large proportion of the changes in the implied
volatility surface is caused by the path of the underlying index, both for long-term and short-term options.

Cont et al. (2003) proposed a method to jointly simulate the underlying asset and the implied volatil-
ity surface. First they performed a Karhunen-Loève decomposition6 on the implied volatility surface,
to obtain the factors describing this surface. Hereafter, they proposed a stochastic process to model the
evolution of these factors. By linking the processes of the implied volatility surface to the process of the
underlying asset, they were able to jointly simulate future trajectories of the underlying asset and the
accompanied implied volatility surface. This approach could be used to determine future expected option
prices. However, as we stated before in section 2.6, this methodology requires a calibration procedure for
every simulated trajectory, leading to high computational times.

Audrino and Colangelo (2010) proposed a slightly different approach to model the dynamics of the im-
plied volatility surface. This research assumed an initial regression function and aimed at updating the
residuals between the forecasted and observed implied volatility surfaces. The magnitude of the residu-
als were estimated by regression trees and a variety of different market indices. They concluded that the
magnitude of the residuals were mainly driven by strike, maturity and closing price of the underlying
index. Adding interest rates for several maturities slightly improved the accuracy, but adding even more
explanatory variables did not lead to significant improvements. In chapter 3 we will apply a comparable
model to the parameters of the Heston model, called gradient boosted regression trees.

One can think of the implied volatility surface as a quantification of the market’s expectations, as
option prices depend on the future state of the market. The above-mentioned researches show that these
expectations are linked to the current state of the market. For example, during a financial crisis the
expectations with respect to future states of the market will be relatively uncertain, leading to high
implied volatilities. This could explain the correlation between v0, v̄ and γ (see figure 2.2), as they are
all subjected to the same expectations. This is one of the most important features we will use in this
research, because it allows us to predict the values of the Heston parameters, conditioned on the state
of the market. Consequently, this allows us to condition risk-neutral valuations at time t > 0 on the
simulated state of the market, instead of today’s market.

5The first three principal components.
6The equivalent of principal component analysis for random surfaces.
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Predicting the Heston parameters

In this chapter we will describe the details of the VIX Heston model, as proposed in Singor et al. (2014),
which imposes constraints on the Heston model parameters. These constraints will give us multiple
advantages, some regarding the calibration and simulation purposes, at the cost of decreasing accuracy.
Moreover, we will propose multiple extensions of the VIX Heston model, which aim at increasing the
accuracy, while preserving the advantages of the original model. The models will be compared by the
accuracy of the forecasted Heston parameters and the accuracy of the accompanied implied volatility
surfaces.

3.1. VIX Heston model
In the previous chapter we stated the importance of linking the real-world to the risk-neutral measure
dynamics. This is not a new concept, as several studies already incorporate real-world indices in risk-
neutral market calibrations. In particular, the VIX index appears in multiple studies. The VIX index is a
volatility measure for the S&P-500 index, calculated by the Chicago Board Options Exchange (CBOE). It
represents the weighted average of the implied volatility smile with infinite strike range and one month
maturity. Further details regarding the VIX and its calculation can be found in CBOE (2015).

Attractive properties of the VIX index are its direct link to the implied volatility surface and its ability
to be incorporated in real-world simulations. Consequently, extracting information from the VIX index
has been the topic of multiple studies. For example, in Duan and Yeh (2012) a particle-filter based cal-
ibration method is proposed, which implements the S&P-500 index value and the VIX term structure
simultaneously.

In this section, we will focus on the methodology presented in Singor et al. (2014), where the devel-
opment of the Heston model parameters for the S&P-500 index options and the VIX index have been
analysed. In this paper, a correlation between the VIX index and the Heston parameters was found,
which is visually represented in figure 3.1. After analysis, it was concluded:

• The initial volatility pv0,t and the volatility of the volatility γt are highly correlated to the VIX
index, with a correlation coefficient of 0.99 and 0.76, respectively.

• The long term volatility
p

v̄t appears to be correlated to the VIX index trendline (estimated by a
Kalman filter) with a correlation coefficient of 0.74.

To this end, the following restrictions were imposed on the Heston model parameters:

ΩHeston
t (X )=



κt = κ, κ ∈R+,
v0,t = (

av0 ·VIXt +bv0

)2 , av0 ,bv0 ∈R,
v̄t = (

av̄ ·VIXfiltert +bv̄
)2 , av̄,bv̄ ∈R,

γt = aγ ·VIXt +bγ, aγ,bγ ∈R,
ρt = ρ, ρ ∈ [−1,1],

(3.1)

13
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Figure 3.1: Development Heston parameters and VIX index.

where both the mean reversion parameter κt and the correlation coefficient ρt are assumed to be constant
over time. The constant ρ assumption is justified by the fact that ρ displays a mean reverting pattern
and it can therefore be approximated by its long-term mean. The constant κ assumption is justified by
observations in Gauthier and Rivaille (2009). They argue that the effect on the implied volatility surface
of increasing κ is similar to decreasing γ. Thus, allowing κ to change over time, unnecessarily overcompli-
cates the model. Moreover, numerical experiments show that an unrestricted κ leads to unstable results.

One is able to calibrate the constraint parameters through a procedure similar to (2.27), by changing
the parameter set from ΩHeston

t to X = {κ,αv0 ,bv0 ,av̄,bv̄,aγ,bγ,ρ} and summing over all points in time:

X = argmin
XS∈XSearch

(∑
t

∑
K

∑
T

(
σMarket(t,K ,T)−σHeston(t,ΩHeston

t (XS),K ,T)
)2

)
, (3.2)

where the search space is defined as

XSearch = XSearch
κ × XSearch

av0
× XSearch

bv0
× XSearch

av̄ × XSearch
bv̄

× XSearch
aγ × XSearch

bγ × XSearch
ρ

= [0,10]×R×R×R×R×R×R× [−1,1]. (3.3)

By introducing additional parameters, the calibration procedure is no longer time-dependent. In other
words, only one optimization procedure is required for the entire data set. This is in contrast with the
procedure described in section 2.5, where each implied volatility surface is calibrated individually.

After the constraint parameters have been identified, this approach is able to deal with the challenges
discussed in section 2.6. The Heston parameters can be calibrated through (3.1) by observing the VIX in-
dex, instead of performing a costly optimization procedure. Moreover, the VIX index can be implemented
in real-world simulations, unlike the implied volatility surface. This way, one is able to recalibrate the
Heston parameters within each simulated trajectory.

The results in Singor et al. (2014) were promising, but also left room for improvement. The R-squared
error1 (R2) of the unrestricted model was 0.97, while the R2 error of the VIX Heston model turned out
to be 0.92. Moreover, the R2 errors of different out-of-sample tests varied from 0.83 to 0.88. Hence,
imposing the constraints of (3.1) led to a loss in accuracy. To this end, we will suggest some extensions
of the VIX Heston model throughout this chapter. The extended models aim at improving the accuracy,
while preserving the advantages of the original VIX Heston model.

3.2. New market indices
The VIX Heston model only considers the VIX index as explanatory variable, as it is highly correlated to
the Heston parameters. However, the explanatory power of other market features has not been tested.
1A statistical measure indicating how well the observed outcomes are replicated by the outcomes of the model, with 1 corresponding
to a perfect fit.
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Therefore, in order to improve prediction accuracy, several additional market factors will be included. The
main requirements for the new features are their ability to explain changes in the Heston parameters,
their observability in the market and their ability to be simulated.

SKEW index
Multiple studies have shown the relationship between the implied volatility surface skewness and the
Heston parameters, such as Janek et al. (2011) and Gauthier and Rivaille (2009). Gatheral (2006) even
derives an analytical approximation in terms of the parameters for both short-dated and long-dated skew-
ness. These results are also verified by our own numerical experiments. Figure 3.2 shows the relationship
between ρ and the skewness of the observed implied volatility, which in this case is equal to the slope
of the linear line connecting the implied volatility at 80% strike level and 120% strike level at one year
maturity. This appears to be a good explanatory variable for ρ. However, it is very difficult to directly
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Figure 3.2: ρ vs. skewness of the implied volatility surface.

simulate the implied volatility surface, since it reflects the market’s expectations, which depend on many
market features (as explained in the previous section). In conclusion, this feature cannot be considered
in the extended models, as it fails to meet one of the main requirements: it cannot be incorporated in
simulations.

Fortunately, the CBOE has other measures, besides the VIX index. One of these measures is called the
SKEW index. While the VIX index represents the market volatility, the SKEW index corresponds to the
market skewness. The SKEW index is an indicator for the probability of a large loss, as its calculations
involve out-of-the money S&P-500 options. Just like the VIX index, the SKEW index is observable on the
market (due to the calculations of the CBOE) and easier to simulate (since it is a single index). In other
words, it meets the requirements and can therefore be implemented in the extended models. We refer the
reader to CBOE (2010) for further details regarding the SKEW index.

Return
Hibbert et al. (2008) shows there is a negative relation between returns of the S&P-500 index and changes
in the implied volatility, which is directly linked to the Heston parameters. Hence, we expect there is a
relationship between the returns of the S&P-500 index and the parameters of the Heston model as well.
Moreover, one can imagine that the actual value of the S&P-500 index also has a relationship with the
Heston model parameters, which is for example discussed in Mixon (2002). Typically, when the asset
price is high, volatility is low and vice versa. This raises the belief that the S&P-500 index itself might
be able to predict (some of the) changes in the parameters as well.

Interest rates
Hamrita and Trifi (2011) examined the relationship between interest rates, exchange rates and stock
prices. They did not find a significant relationship between the exchange rates and the interest rates.
However, they did discover a significant relationship between interest rates and stock prices. We already
explained how the S&P-500 index might be related to the parameters of the Heston model. Following the
same reasoning, one can include the (risk-free) interest rates as explanatory variables. For completeness,
we will include the interest rates for several maturities: 3 months, 1 year and 2 years. These will be
referred to as r90, r360 and r720, respectively. Furthermore, we expect the term spread to reflect the future
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evolution of the market. The long-term interest rate is related to the long-term market expectations and
the short-term interest rate is an indicator of the current state of the market, hence their difference
reflects the expected evolution of the market. Thus, rd = r720 − r90 will also be considered as explanatory
variable.

3.3. Regression models
In the VIX Heston model, a linear relationship between the VIX index and the Heston parameters is
assumed. The main argument for this assumption is the high correlation between the index and param-
eters. However, different relationships were never explored. In this section we will discuss some other
regression models that estimate the Heston parameters, possibly in a non-linear approach.

A common issue with regression models that have too many degrees of freedom is overfitting, in which
case the model relies too heavily on the data set. When there is noise present in the observed data points
(or when data is scarce), the regression model will include these noise terms, which can lead to unstable
out-of-sample results. To prevent this phenomenon, we will adopt a K-fold cross-validation approach in
our optimization procedures. In this approach, the data set is split into k parts. Hereafter, a regression
is performed using only k−1 parts and the error is based on the kth part that was left out. This process
is repeated until each of the k sets has been left out and the validation error will be equal to the average
of all individual errors. This should prevent overfitting, as it only depends on out-of-sample errors.

3.3.1. Polynomial regression
A polynomial relationship seems to be the most logical extension of the VIX Heston model, as we do not
want to lose the linear relationship that seems to be present. The main idea of polynomial regression is
mapping the features into a polynomial feature space. For example, mapping two features into a second
degree polynomial:

φ2

([
x1
x2

])
=


x1
x2

x1x2
x2

1
x2

2

 . (3.4)

After mapping the features into the desired polynomial degree, one can perform a simple linear regres-
sion to find the optimal parameters.

A major problem when using multiple features and polynomial regression is the dimensionality. For
example, transforming eight features into a second degree polynomial, already gives a dimensionality of
44. It is very likely that not all transformed features will add explanatory power. To this end, we will sort
the features based on their correlation with the target variables (in this case the Heston parameters).
Hereafter, only the nfeats features with the highest correlation will be selected as explanatory variables.

To determine the optimal constraints for the polynomial regression, a two-stage calibration procedure
is required. The first stage is qualitative, rather than quantitative. The objective of this stage is to
identify:

• The market factors that predict the parameters best.
• The optimal polynomial degree.
• The optimal number of features used in the regression.

The optimization procedure follows a K-fold cross-validation approach as described above. The combina-
tion of market features, polynomial degree and number of components with the lowest cross-validation
error will be considered optimal.

After the optimal set-up has been identified, we obtain constraints for the Heston model parameters,
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similar to (3.1). In general, these constraints will be defined as

ΩHeston
t (XEx)=



κt = κ, κ ∈R+,

v0,t =
[
c{0,v0} +∑nfeats,v0

j=1 c{ j,v0} ·P{t,v0}( j)
]2

, c{i,v0} ∈R,

v̄t =
[
c{0,v̄} +∑nfeats,v̄

j=1 c{ j,v̄} ·P{t,v̄}( j)
]2

, c{i,v̄} ∈R,

γt = c{0,γ} +∑nfeats,γ
j=1 c{ j,γ} ·P{t,γ}( j), c{i,γ} ∈R,

ρt = ρ ρ ∈ [−1,1],

(3.5)

where P{t,p} denotes the jth component for parameter p at time t with weight c{ j,p}. In the first stage, the
regression components P{t,p} have already been identified for each parameter p. In the second stage, the
component weights c{ j,p} are optimized. The weights are considered optimal when the implied volatility
surfaces generated by the model match the surfaces observed on the market as good as possible. To this
end, we will perform a minimization procedure similar to (3.2),

XEx = argmin
XS∈XSearch

(∑
t

∑
K

∑
T

(
σMarket(t,K ,T)−σHeston(t,ΩHeston

t (XS),K ,T)
)2

)
. (3.6)

The search space XSearch depends on the components identified in the first stage. Similar to the un-
restricted calibration procedure discussed in section 2.5, we will use the Levenberg-Marquardt least-
squares algorithm to evaluate (3.6), with initial parameters based on the regression performed in the
first stage. After performing the calibration procedure, one obtains the optimal weights for each compo-
nent, which fully defines the characteristics of the model.

Finally, note that the VIX Heston model given in (3.1) is a special case of the current set-up. However,
the polynomial regression approach allows for more explanatory variables. Potentially, this could lead to
more accurate results, but it is a disadvantage from a computational point of view, as more parameters
are involved in the calibration procedure.

3.3.2. Multi-output support vector regression
The literature regarding regression models is vast. In the past few years the so-called machine learning
models have gained a lot of attention and popularity. These models are characterized by their ability to
’learn’ a regression function based on training data and update this function as soon as new data becomes
available. As the amount of available data is growing rapidly, these models are becoming more and more
relevant.

Support vector regression is one of these machine learning algorithms, which is well-known and used
in multiple studies predicting financial time-series, see for example Cao and Tay (2003) or Law and
Shawe-Taylor (2017). Its attractive properties include accurate predictions in small data sets and depen-
dence on only a few hyper parameters, making it relatively easy to identify the optimal set-up. The idea
behind this model was first introduced in Cortes and Vapnik (1995), applied to the classification problem.
Using the same principles, a regression based technique was proposed by Drucker et al. (1997).

In this section we will describe the intuition behind this approach, for more information regarding the
history and derivation of support vector regression we refer the reader to Smola and Schölkopf (2004).
Suppose we want to fit training samples {(x1, y1), . . . , (xN , yN )} to a function f of the form

f (x)=φ(x)T w+b, (3.7)

with weight vector w, bias term b and feature map φ(x), which can correspond to a polynomial function,
for example. Note that xi can be multi-dimensional (which in our case corresponds to multiple market
features), while yi ∈ R. In support vector regression, the goal is to define f such that each observed
training sample falls inside the so-called ε-tube. This is visualized in figure 3.3. Moreover, in order to
ensure robustness, we wish to create a flat model. In other words, this model aims at minimizing the size
of w, giving

minimize
w,b

1
2
‖w‖2,

subject to
{

yi −φ(xi)T w−b ≤ ε,
φ(xi)T w+b− yi ≤ ε, i ∈ {1, . . . , N}.

(3.8)
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Figure 3.3: ε-tube for a polynomial kernel, with ε= 0.1.

In some cases, however, this procedure does not yield a feasible solution. For example, when the data
contains too much noise and/or when ε is too small. Moreover, in terms of overfitting, it might be wise
to allow certain errors. To this end, we will introduce slack variables ξi and ξ∗i , which can be thought
of as the distance between yi and the ε-tube. This way, the minimization procedure will always yield a
solution. Of course, we wish to minimize the distance between the data set and the ε-tube, therefore we
obtain

minimize
w,b

1
2
‖w‖2 +C

N∑
i=1

(ξi +ξ∗i ),

subject to


yi −φ(xi)T w−b ≤ ε+ξi,
φ(xi)T w+b− yi ≤ ε+ξ∗i ,
ξi,ξ∗i ≥ 0,

i ∈ {1, . . . , N}.

(3.9)

with positive regularization parameter C ≥ 0, which corresponds to the importance of deviations from
the ε-tube. Models with large values of C will focus on minimizing these deviations, while ignoring the
flatness of w, resulting in more complex regression functions. Conversely, models with small values of C
will lead to ’simpler’ regression functions. One must find the optimal balance between the values of ε and
C to prevent overfitting.

By using Lagrange multipliers, it can be shown that this minimization procedure is equivalent to the
dual problem

maximize
α,α∗,b

− 1
2

N∑
i, j=1

(αi −α∗
i )(α j −α∗

j )φ(xi)Tφ(x j)−ε
N∑

i=1
(αi +α∗

i )+
N∑

i=1
yi(αi −α∗

i ),

subject to
{ ∑N

i=1(αi −α∗
i )= 0,

αi,α∗
i ∈ [0,C], i ∈ {1, . . . , N}.

(3.10)

Moreover, the prediction function can be written as follows

f (x)=
N∑

i=1
(αi −α∗

i )φ(xi)Tφ(x j)+b. (3.11)

A key feature of this approach is the presence of the kernel function φ(xi)Tφ(x j). This allows for mappings
with unknown φ(x), but known dot product, such as the radial basis or sigmoid function. Finally, using
the Karush-Kuhn-Tucker conditions, one is able to show that the coefficients corresponding to data-points
inside the ε-tube are 0. In other words, the solution only depends on the data-points that lie outside the
ε-tube, the so-called support vectors. Hence, the dimensionality of the solution does not depend on the
size of the data set, but on the number of support vectors.

In this thesis we will use a modified version of this algorithm proposed in Xu et al. (2013), called
multi-output least-squares support vector regression. This algorithm is an extension of the least-squares
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support vector regression, which aims at minimizing all errors, instead of only minimizing the errors out-
side the ε-tube. This leads to a faster optimization procedure2 and fewer hyper parameters, since ε does
not need to specified. Moreover, the multi-output extension takes correlation between target variables
into account. This might be beneficial, as the Heston parameters appear to be highly correlated. The
remainder of this section will discuss the specifics of this approach.

Notation
In the following description we will use a few different functions, in line with the notation of Xu et al.
(2013),

• For matrix A ∈Rn×n, define trace(A) as the sum of its diagonals,

trace(A)=
n∑

i=1
A(i, i). (3.12)

The notation A(c,d) refers to the element in the cth row and dth column of matrix A.
• For matrix A ∈Rk×l , define repmat(A, p, q) as the p× q block matrix, with each element equal to A.
• For matrices A1, . . . ,As ∈Rk×l define blockdiag(A1, . . . ,As) as the block diagonal matrix equal to A1,

. . . ,As on its diagonal blocks and 0 elsewhere.

Moreover, we define 1k = [1, . . . ,1]T ∈Rk and 1k×l = [1k, . . . ,1k]T ∈Rk×l . Similarly, we define 0k and 0k×l .

Now consider a set of training samples {(x1,y1), . . . , (xN ,yN )} similar to the regular support vector
regression, with the key difference that yi ∈ Rm. Analogously to the original support vector regression
we assume a feature mapping φ, which transforms the explanatory variables xi (in our case the market
features) into the desired feature space,

φ :Rn f 7→Φ, (3.13)

where n f denotes the number of explanatory variables and Φ⊆Rnφ corresponds to the feature space with
dimension nφ. Moreover, it is assumed that the weight vectors for every target variable can be written as
a combination of a shared term w0 and an individual term vi,

wi =w0 +vi, i ∈ {1, . . . ,m}, (3.14)

where w0,vi ∈ Rnφ for i ∈ {1, . . . ,m}. It is expected that the more the target variables are correlated, the
larger w0 will be compared to vi. Now consider the following matrices

V= [v1, . . . ,vm] ∈Rnφ×m,
W= [w0 +v1, . . . ,w0 +vm] ∈Rnφ×m,
b= [b1, . . . ,bm]T ∈Rm,
Ξ= [ξ1, . . . ,ξm] ∈RN×m,
Z= [φ(x1), . . . ,φ(xN )] ∈Rnφ×N ,
Y= [y1, . . . ,yN ]T ∈RN×m.

(3.15)

These correspond to the individual weight, total weight, bias, slack, feature and observation matrices,
respectively. Hence, the prediction function f can be written as

f (x)=φ(x)TW+b. (3.16)

Multi-output least-squares support vector regression
Similar to the original support vector regression, we wish to minimize the size of the weight vectors and
the error between prediction and observation, leading to

minimize
w0,V,b

J(w0,V,Ξ)= 1
2

wT
0 w0 + 1

2
λ1

m
trace(VTV)+ λ2

2
trace(ΞTΞ),

subject to Y=ZTW+repmat(bT , N,1)+Ξ.
(3.17)

2Support vector regression results in a convex quadratic system, while the least-squares approach corresponds to a convex linear
system.
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The Lagrangian function corresponding to this problem is equal to

L (w0,V,b,A)= J(w0,V,Ξ)− trace(AT (ZTW+repmat(bT , N,1)+Ξ−Y)), (3.18)

with
A= [α1, . . . ,αN ] ∈RN×m, (3.19)

the matrix of Lagrange multipliers. Following the Karush-Kuhn-Tucker conditions, we obtain

∂L
∂w0

⇒ w0 =∑m
i=1 Zαi,

∂L
∂V ⇒ V= m

λ1
ZA,

∂L
∂b ⇒ AT1N = 0N ,
∂L
∂Ξ ⇒ A=λ2Ξ,
∂L
∂A ⇒ ZTW+repmat(bT , N,1)+Ξ−Y= 0N×m.

(3.20)

From (3.20) we can derive the relation

w0 = λ1

m

m∑
i=1

vi, (3.21)

which is proportional to the average of all individual terms. Hence, (3.17) is trying to find the optimal
balance between the size of the individual weight vectors and the closeness of these vectors to their aver-
age. This way, the algorithm takes the correlation between different components into account.

Hereafter, from (3.20), one is able to eliminate W and Ξ, resulting in the following system of equations[
0Nm×m PT

P H

][
b
α

]
=

[
0m
y

]
, (3.22)

with 
P= blockdiag(1N , . . . ,1N ) ∈RNm×m,
H= repmat(ZTZ,m,m)+ 1

λ2
INm + m

λ1
blockdiag(ZTZ, . . . ,ZTZ) ∈RNm×Nm,

α= [αT
1 , . . . ,αT

N ] ∈RNm,
y= [yT

1 , . . . ,yT
N ] ∈RNm.

(3.23)

Xu et al. (2013) discussed the difficulties of solving this system, as the obtained matrix is not positive
definite. To this end, they propose to rewrite the system, leading to[

PTH−1P 0Nm×Nm
0m×m H

][
b

H−1Pb+α
]
=

[
PTH−1y

y

]
, (3.24)

This system can be solved by performing the following steps:

1. Solve η and ν from Hη=P and Hν= y.

2. Determine optimal solution:
{

b∗ = (PTη)−1ηTy,
α∗ = ν−ηb.

The systems in step 1 can be solved efficiently with, for example, Cholesky decompositions, as H is
positive definite. Finally, we can rewrite the regression function as

f (x)=φ(x)TW+b

= repmat

(
m∑

i=1

N∑
j=1

α∗
i, jφ(x)Tφ(xj)

)
+ m
λ1

N∑
j=1

α jφ(x)Tφ(xj)+b∗T . (3.25)

Again, similar to the original support vector regression, this function only depends on the dot product
φ(x)Tφ(xj). Thus, one only needs to specify φ(x)Tφ(xj), which allows for more involved kernel functions.
For more information regarding this approach and the difference between the regular support vector
regression, we refer the reader to Xu et al. (2013).
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3.3.3. Gradient boosted regression trees
In this section we will present another well-known machine learning algorithm: gradient boosted regres-
sion trees. As indicated by its name, this algorithm is based on regression trees. Before we will introduce
the concept of gradient boosted regression trees, we will first discuss the specifics of an individual regres-
sion tree.

Regression trees
A regression tree is an algorithm which aims at splitting a data set into two or more subsets. The process
of splitting is done in a most significant approach, based on the input variables. After splitting the data
set multiple times, one obtains the final subsets, called leafs in regression tree terminology. When a new
data point is observed, one must find its corresponding leaf, by propagating it through the predefined re-
gression tree. The prediction of this new observation is equal to the average over all previously observed
data-points belonging to that leaf. We will provide an example in order to visualize this process.

Suppose we want to predict v0 based on the VIX index and the long-term interest rate r720. Firstly,
this requires a training set containing samples of v0 with the corresponding VIX and r720. Based on this
training set, a regression tree is defined. A visualization of a possible tree can be found in figure 3.4.
Friedman (1979) discusses how the shape of these trees can be determined and its methodologies are still

v0 7→ 0.01

v0 7→ 0.02 v0 7→ 0.03

v0 7→ 0.04 v0 7→ 0.08

v0 7→ 0.15 v0 7→ 0.25

VIX< 30.0

r720 < 0.04

VIX< 10.0 VIX≥ 10.0

VIX< 20.0 VIX≥ 20.0

r720 ≥ 0.04

VIX≥ 30.0

VIX< 45.0 VIX≥ 45.0

r720 < 0.01 r720 ≥ 0.01

Figure 3.4: A possible realization of a regression tree, which predicts v0 based on the VIX index and long-term interest rate.

relevant.

The first step is to identify the splitting rule. In other words, one needs to determine which feature (in
this example VIX or r720) and what value is used to split the data set. Ideally, the split should improve
the accuracy as much as possible. To this end, Friedman (1979) proposes a mean squared error approach.
Suppose we are at node i, containing subset J of the entire data set. We can estimate a linear regressor
using all explanatory variables X j and target variables yj belonging to subset j ∈ J

f (X j)= AT X j +b, j ∈ J, (3.26)

with residuals
r j = yj − f (X j). (3.27)

If the data set is split into a left and right subset Jr and Jl , based on feature p, then the linear estimator
for both subsets can be redetermined by adjusting the component for feature p. We obtain

f p(X j)− f (X j)=
{

Al(p)X j(p)+bl , if j ∈ Jl ,
Ar(p)X j(p)+br, if j ∈ Jr. (3.28)

The goal of the splitting procedure is to minimize the residuals as much as possible. To this end, ex-
pression (3.28) is fitted to the residuals of (3.27) by a linear regressor. Feature p and associated splitting
value vp with the lowest squared error are considered optimal. For example, in case of the first node of
figure 3.4 we obtain p =VIX and vp = 30.0.

The next step is determining when to stop the splitting process. If the amount of leafs is equal to the
amount of data points, then one obtains a perfect fit on the training set. It is, however, questionable if
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this will lead to robust results, as we might be overfitting. There are several ways to prevent this. A naive
approach is to define a minimum amount of samples required for a split (nsplit), a minimum amount of
samples to become a leaf (nleaf) or a maximum depth (ndepth). However, Friedman (1979) argues that
this naive approach is suboptimal, as one only wishes to perform a split if it adds accuracy. Instead, he
proposes to first determine a full tree (according to the naive approach) and consequently remove nodes
that do not improve the model enough. In the gradient boosted regression trees model this is not as
important, since it only consists of shallow trees with low depth. Nevertheless, it is important to identify
the optimal nsplit, nleaf and ndepth.

Finally, the predictions for each leaf are simply defined as the average value of all training points
belonging to that leaf. Newly observed variables are propagated through the tree and their predictions
are equal to the value of the corresponding leaf. For example, the regression tree in figure 3.4 would
predict v0 = 0.03 in case of a data point with VIX= 25.0 and r720 = 0.02.

Gradient boosted regression trees
Regression trees are rarely used individually due to their limited structure: a single regression tree will
always return a step-function. Instead, most tree based approaches involve multiple regression trees.
The gradient boosted regression trees algorithm as proposed in Friedman (2001) is an example of such
an approach. The principles of gradient boosting can be applied to any regression model, but it is most
commonly used in combination with regression trees.

Again, we assume a training set of samples {(x1, y1), . . . , (xN , yN )}, which is used to determine regres-
sion function f (·). With gradient boosting one first estimates a shallow base learner f0(·). In case of
gradient boosted regression trees this corresponds to a tree with low depth. The residuals of this base
learner are defined as

r0,i = f0(xi)− yi, i ∈ {1, . . . , N}. (3.29)

Typically, the residuals of the base learner are large, as it is only a shallow representation of the data
set. Hereafter, this base learner is updated according to the gradient of the error function. For example,
if one assumes a squared error function, this gradient simply corresponds to the residuals of the base
learner. Hence, a new (shallow) regression tree is estimated on the data set {(x1, r0,1), . . . , (xN , r0,N )}.
This regression tree aims at predicting the residuals as defined in (3.29). The base learner is updated
according to the newly estimated regression tree f r

1 (·) and learning rate η

f1(xi)= f0(xi)+η f r
1 (xi), i ∈ {1, . . . , N}. (3.30)

This process can be repeated on the newly defined residuals. After nest repetitions the process stops and
we obtain

f (xi)= f0(xi)+η
nest∑
j=1

f r
j (xi), i ∈ {1, . . . , N}. (3.31)

For generalization purposes, Friedman (2002) suggests to use only a random part of the entire data set
at each iteration. By using only a random fraction s of the entire data set in the estimation of each indi-
vidual regression tree, one prevents overfitting and improves out-of-sample accuracy.

In conclusion, the regression trees require optimization of the hyper parameters nsplit, nleaf and ndepth.
Moreover, the gradient boosting approach demands optimization of nest, η and s, for optimal out-of-sample
accuracy. These hyper parameters will be estimated with a K-fold cross validation approach as discussed
at the start of this section. Finally, note that this algorithm is only able to estimate one variable at a time.
Therefore, each target variable (in our case the Heston parameters) requires an individual regressor.

3.4. Results
In this section we will present the results of the regression models proposed in section 3.3, using the
market features discussed in 3.2. We will compare the accuracy of all three regression models to the
original VIX Heston model discussed in section 3.1.
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3.4.1. Data
The data set will be split into two subsets: a training set and a test set. The training set will be used to
determine the optimal set-up of each model. The test set will assess the accuracy of each model and test
for overfitting.

The training set contains daily implied volatility surfaces of the S&P-500 European put and call
options from January 2006 until February 2014. Each implied volatility surface contains 5 different
strike levels (80%, 90%, 100%, 110% and 120% of S0) and maturities (0.25, 0.5, 1, 1.5 and 2 years). For
computational purposes, we will use monthly data to train the VIX Heston, polynomial regression and
multi-output least-squares support vector regression. The daily data set will be used to train the gradi-
ent boosted regression trees, as it is more difficult to train and therefore requires more samples. The test
set contains monthly implied volatility surfaces of the S&P-500 European options from March 2014 until
February 2017. This set will only be used to assess the accuracy of the trained regression models.

Finally, to assess the robustness of the approaches, the models will be applied to monthly implied
volatility surfaces of the FTSE-100 (United Kingdom) and STOXX-50 (Europe) as well. The training set
includes data from October 2010 until June 2015 and the test set contains data from July 2015 until
February 2017. We will not be able to accurately train the gradient boosted regression trees approach
for the UK and Europe data sets, as they only contain monthly data. Therefore, we will only apply the
gradient boosted regression trees to the US data set.

3.4.2. Optimal set-up
Before we are able to compare the different regression models, the optimal set-up for each approach
must be identified. These set-ups include the trained hyper parameters and the optimal market features
used to predict the Heston parameters. The optimal set-ups are identified according to the K-fold cross
validation methods discussed in section 3.3. In this section, we will discuss some key properties of each
model. The results below are based on the US data set. The results of the UK and Europe data set can
be found in appendix B.

VIX Heston
The proposed regression models will be compared to the VIX Heston model proposed in Singor et al.
(2014). Hence, we require the optimal regression coefficients of this model. These are estimated according
to (3.6), giving

ΩHeston
t (X )=



κt = 1.0,
v0,t = (0.0140+0.0090 ·VIXt)2 ,
v̄t = (

0.0957+0.0087 ·VIXfiltert

)2 ,
γt = 9.6479 ·10−5 +0.0270 ·VIXt,
ρt =−0.7294.

(3.32)

Polynomial regression
The optimal polynomial degree, number of features and market features are determined in the first
stage of the polynomial regression model. These are identified by a K-fold cross validation approach and
the results are presented in table 3.1. In this case, it appears that the polynomial regression model is

Parameter Market features Polynomial degree Number of features

v0 VIX 1 1
v̄ VIXfilter, r720 1 2
γ VIX 1 1

Table 3.1: Optimal set-up polynomial regression model.

almost similar to the VIX Heston model. The main difference lies in the prediction of v̄, which uses
r720 in addition to VIXfilter. Moreover, no degree higher than 1 is considered optimal. Hence, the linear
relationship found in Singor et al. (2014) appears to be optimal. The regression coefficients belonging to
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these features can be estimated with the calibration procedure described in section 3.3.1. This yields

ΩHeston
t (X )=



κt = 1.0,
v0,t = (0.0152+0.0089 ·VIXt)2 ,
v̄t = (

0.1461+0.0074 ·VIXfiltert −0.01394 · r720
)2 ,

γt = 0.0874+0.0231 ·VIXt,
ρt =−0.7398.

(3.33)

This model proposes a negative relationship between v̄ and r720, which is an intuitively appealing result.
Typically, when the implied volatility is high, the market is unstable. As a result, traders are willing to
accept lower risk-free rates. Conversely, low implied volatility indicates a stable market. Hence, traders
are more inclined to invest their money in risky assets, unless the risk-free rate is high enough.

Multi-output least-squares support vector regression
An attractive property of the multi-output least-squares support vector regression approach is the pres-
ence of only a few hyper parameters, as all Heston parameters are estimated simultaneously. The most
important input variables are the type of kernel and market features. The algorithm also depends on the
two regularization parameters, but these do not appear to be as important in this case.

A linear kernel is considered optimal in this approach, similar to the VIX Heston and polynomial re-
gression models. Moreover, the algorithm is most accurate when using the market features VIX, VIXfilter
and r720, which is similar to the polynomial regression model. The estimated regularization parameters
are equal to

λ1 = 10−8, λ2 = 10−10. (3.34)

Moreover, the Heston parameters κ and ρ are constant and equal to the mean of all previously observed
data points.

Gradient boosted regression trees
The gradient boosted regression trees algorithm contains many hyper parameters, as discussed in section
3.3. It is computationally demanding to simultaneously tune all these parameters. We therefore propose
a stage-wise approach.

First some initial nsplit, nleaf, ndepth, nest, η and s are defined. The optimal market features are iden-
tified according to the K-fold cross validation, using these initial estimates. Then, the optimal nsplit, nleaf,
ndepth are identified according to the previously optimized market features. Hereafter, nest is determined
in a similar way and finally s is estimated. This process has been repeated for different values of η, but
the final accuracy appears to be almost unaffected by the learning rate.

In terms of market features, this approach has similar results to the polynomial regression and multi-
output least-squares support vector regression, which can be seen in table 3.2. Despite the fact that this

Parameter Market features nsplit nleaf ndepth nest η s

v0 VIX, VIXfilter 5 1 3 140 0.1 0.3
v̄ VIXfilter, r720 2 2 1 310 0.05 0.05
γ VIX, VIXfilter, r720 28 2 2 790 0.05 0.1

Table 3.2: Optimal set-up gradient boosted regression trees.

approach does not predefine a linear/non-linear relationship between the Heston parameters and market
features, it still selects the VIX index and interest rates as most important. This indicates the robustness
of the selected market features.

Again, the Heston parameters κ and ρ are constant and equal to the mean of all previously observed
data points.
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3.4.3. Accuracy
In this section we will compare the previously described models in terms of accuracy. Ideally, the mod-
els produce implied volatility surfaces equal to the ones observed on the market. In reality, this will be
impossible due to limitations of the Heston model and errors in the Heston parameter predictions. To
this end, we will first perform an unrestricted calibration procedure for each time-step as described in
section 2.5. The unrestricted model can be thought of as optimal and its errors are caused by limitations
of the Heston model. Consequently, error differences between the regression models and the unrestricted
model are the result of suboptimal Heston parameter predictions.

As described in section 3.4.1, we have separated the data set in a training set and a test set. The
training set has identified the optimal set-ups, as discussed in section 3.4.2. In this section, these set-
ups are used to predict the implied volatility surfaces of the test set. The accuracy will be assessed
by comparing the predicted to the observed implied volatility surfaces, according to the following error
measures 

SSE(M)=∑
t

∑
K

∑
T

(
σMarket(t,K ,T)−σHeston(t,ΩHeston

t (M),K ,T)
)2 ,

MAE(M)= 1
Nσ

∑
t

∑
K

∑
T

∣∣σMarket(t,K ,T)−σHeston(t,ΩHeston
t (M),K ,T)

∣∣ ,

R2(M)= 1− SSE(M)∑
t

∑
K

∑
T

(
σMarket(t,K ,T)−σMarket

)2 ,

R2
Min(M)=min

t

{
R2(M)t : t ∈ [tmin, tmax]

}
,

(3.35)

whereΩHeston
t (M) is defined as the predicted parameter set of regression model M, Nσ is the total number

of observed implied volatilities and σMarket is the average of all observed implied volatilities. Moreover,
we will assess the models’ prediction accuracy with respect to the individual Heston parameters. For
parameter p we determine

MSEp(M)= 1
Np

∑
t

(
popt(t)− p(M, t)

)
, (3.36)

with popt(t) and p(M, t) defined as the parameter according to the unrestricted and regressions models at
time t, respectively. Moreover, Np denotes the total number of data points. The results of these models
are displayed in table 3.3.

Model SSE MAE R2 R2
Min MSEv0 MSEv̄ MSEγ

VIX Heston 0.2286 0.0124 0.8948 0.8159 1.374 ·10−5 3.008 ·10−4 0.0670
Polynomial Regression 0.2567 0.0139 0.8819 0.7573 1.282 ·10−5 1.034 ·10−4 0.0533

Multi-output SVR 0.1471 0.0105 0.9291 0.8404 1.802 ·10−6 7.164 ·10−5 0.0317
GB regression trees 0.2510 0.0135 0.8845 0.6913 4.425 ·10−6 1.747 ·10−4 0.0326

Unrestricted 0.0173 0.0034 0.9916 0.9811 - - -

Table 3.3: Out-of-sample accuracy of the regression models according to the error measures defined in (3.35) and (3.36).

The multi-output support vector regression appears to outperform the other regression models ac-
cording to all error measures. The multi-output distinguishes itself from the other approaches by taking
correlation between the parameters into account. This results in more accurate parameter predictions
and consequently in more accurate implied volatility surface predictions. The evolution of the predicted
parameters compared to the optimal parameters is represented in figure 3.5. Despite the increased ac-
curacy, the regression models still lose accuracy compared to the unrestricted model. On average, there
is an error of 0.003 between the implied volatility and the unrestricted Heston model. The multi-output
support vector regression has an average absolute error of 0.01. So on average we introduce an additional
error of 0.007, by implementing the regression model.

In terms of the implied volatility surface, the VIX Heston model is more accurate than polynomial
regression and gradient boosted regression trees. However, in terms of parameter predictions, it is the
worst performing model. This phenomenon can be explained the degrees of freedom in the Heston model.
For example, the effect of an underestimated v0 can be (partially) nullified by an overestimated v̄. This
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Figure 3.5: Unrestricted versus multi-output least-squares support vector regression predicted parameters over time.

way, one obtains more accurate implied volatility surface predictions, despite the more inaccurate Heston
parameter predictions. One could, however, question the robustness of this phenomenon: are the more
accurate predictions the result of a ’lucky’ guess or do they appear structurally over time? At this point
we can therefore not distinguish between the VIX Heston model, polynomial regression and gradient
boosted regression trees on the US data set.

The out-of-sample results of the UK and Europe data sets can be found in appendix B. Similar to the
US data set, the multi-output support vector regression approach is considered optimal in both the UK
and Europe data set. In the Europe data set, the VIX Heston model is superior to polynomial regression
in terms of implied volatility surface prediction, despite the fact that it is outperformed by the other
models in terms of parameter predictions. This indicates a more structural superiority of the VIX Heston
model over polynomial regression. However, as the differences between the models are relatively small,
it remains difficult to draw conclusions from these results.

Finally, we would like to discuss the predictions with respect to γ. In the US data set, it appears to
be quite difficult to make an accurate prediction of γ (see figure 3.5), as the out-of-sample correlation to
the VIX index is much lower than the in-sample correlation (0.86 in-sample versus 0.32 out-of-sample).
In the UK and Europe data sets, this phenomenon does not seem to be present and consequently the
predictions of γ are much more accurate (see figures B.1 and B.2). So there appears to be another, yet
unknown, factor driving γ in the US data set, which is absent in the UK and Europe data set.

In summary, we conclude that the multi-output support vector regression model predicts the Heston
parameters most accurately in all data sets. This also leads to the most accurate implied volatility surface
predictions in all data sets. In the UK and Europe data sets, error differences are small and it is difficult
to distinguish the models. However, based on the US data set, we recommend the multi-output support
vector regression, as it produces the most accurate predictions and is the most robust among different
data sets.

3.4.4. Improving the accuracy
The accuracy results in tables 3.3, B.1 and B.2 indicate that the parameter predictions of the regression
models are suboptimal. Indeed, the forecasted implied volatility surfaces do not match the ones observed
on the market as good as the unrestricted approach. Using these parameters when pricing options could
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lead to pricing errors and arbitrage opportunities. To this end, we wish to improve the accuracy of these
predictions by allowing stochastic errors, in addition to the previously discussed regression models. The
stochastic components can, for example, be analysed with the unscented Kalman filter. By doing so, one
obtains an accurate estimate of the Heston parameters, while decreasing calibration time. Moreover,
the solution no longer depends on the initial parameters, which removes the need for re-sampling initial
values to obtain the most accurate results. The details of the unscented Kalman filter and how it can
be combined with the regression models proposed in this chapter are discussed in appendix C. However,
note that it is difficult to implement this approach in risk-management applications, as it requires the
implied volatility surface.





4
Hedge test

In the previous chapter we discussed how to determine the risk-neutral measure (and the Heston param-
eters) conditioned on the market indices as seen on that specific date. By doing so, we implicitly assume
that the risk-neutral measure is time-dependent, since the market indices change over time. This as-
sumption, however, leads to a paradox; on one hand, we accept the Heston model and its assumptions,
including constant parameters. But on the other hand we desire to produce market consistent prices at
any point in time, hence we recalibrate the (constant) model parameters as soon as the observed implied
volatility surface changes. This raises the following question: ’Is it justified to assume a recalibrated
risk-neutral measure in (real-world) simulations, even when this is in conflict with the assumptions of
the underlying risk-neutral pricing model?’ This leads to an interesting and difficult discussion, one
which has been discussed from different point of views in the existing literature.

In Rebonato (2004) this topic is treated extensively throughout multiple chapters, mostly from a
trader’s point of view. In his argument, the input of a model should reproduce future implied volatil-
ity surfaces as similar as possible to the ones encountered in the market. In other words, the best models
and calibration methods are the ones that require as little future recalibration as possible. As true as this
statement might be, to this day there is no model completely invariant to changes in the implied volatility
surface, hence recalibration will always be required in order to remain market consistent and arbitrage-
free. Regarding the concept of arbitrage, Rebonato explains that it is often forgotten what arbitrage-free
prices guarantee in practice. He states:

"A constant-volatility model, a jump–diffusion model and a local-volatility model can all be
constructed to be arbitrage-free, yet they all predict very different present and future option
prices, and the trader who knew which one was the true model could make unlimited profits
at the expense of the users of the other (arbitrage-free) models."

He therefore recommends that today’s option prices should be accurately, but not perfectly, recovered,
even if this leads to a theoretical arbitrage. For example, a hedger1 is not necessarily interested in the
current option price, but in future option prices. A model that perfectly replicates today’s implied volatil-
ity surface, but fails at generating reliable future implied volatility surfaces (such as local-volatility mod-
els) will therefore not be useful to a hedger. Instead, the hedger prefers a model that more accurately
captures the dynamics of the implied volatility surface (and equivalently the option price), even if it fails
to capture the current implied volatility surface and leads to a theoretical arbitrage. This, however, does
require knowledge of the future state of the market, something of which we cannot be certain (unless the
market behaves similarly to historical observations).

Ayache (2015) has a more philosophical point of view. He argues that the constant parameters sub-
jected to recalibration cannot be described by stochastic differential equations, since these processes are
also parameter-dependent. The parameters of these newly defined processes are subjected to recalibra-
tion as well and should therefore be described by other stochastic processes. This leads to a never-ending

1The principle of hedging will be explained in section 4.1.
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loop of processes to describe newly introduced parameters. Instead, he claims that a regime-switching
model is perhaps the only solution to the recalibration problem, possibly with an infinite amount of
regimes. Regarding the difficulty of infinitely many regimes he says:

"The whole idea is to stop thinking that this infinity of regimes is progressively revealed over
time [...] and to start thinking that this infinity is virtually present from the beginning"

He therefore claims in Ayache (2016) that one should hedge against changes of all parameters, even when
the model assumes some of them to be constant. This out-of-model hedging (as Rebonato (2004) calls it)
is important because one is not hedging against changes in the underlying process but against changes
of the option price. However, with his philosophical point of view, he does not discuss how this regime-
switching model and the out-of-model hedges are implemented in practice.

A practical point of view regarding these out-of-model hedges is presented in Alexander et al. (2009).
They acknowledge that recalibration is "one of the main sources of model risk in option pricing models".
Using historical data and a Delta-Gamma hedge, they show that ignoring recalibration results in poor
hedging performances. To this end, they assumed the recalibrated parameters to follow stochastic pro-
cesses2, which efficiently improved the hedging performance. This way, they implicitly show that one
should consider a recalibrated risk-neutral measure, even when the assumption of dynamic parameters
is in violation with the underlying risk-neutral pricing model.

In summary, the aforementioned points of view all agree upon one thing: none of the existing option
models is able to fully capture the underlying process, because it is impossible to know the future state
of the market and therefore every model requires recalibration. Moreover, they all discuss the effect of
recalibration on hedging strategies and they argue that it is important to take recalibration into account
when creating a portfolio. Yet, they disagree on how to implement this in practice, to summarize

• Rebonato (2004) suggests risk-neutral pricing models and calibration methods that require as little
future recalibration as possible.

• Ayache (2015) thinks of the recalibration process as a regime-switching model, possibly with an
infinite amount of regimes and states that it is important to hedge against changes of the option
price, even if this violates the assumptions of the risk-neutral pricing model.

• Alexander et al. (2009) assumes that the parameters of the risk-neutral pricing method can be
described by stochastic differential equations. By exploiting correlations between the processes,
they propose an out-of-model hedge that takes changes of these parameters into account.

In this chapter, we will investigate the effect of different assumptions with regard to the risk-neutral
measure (such as recalibration) on certain hedging strategies. First, we will explain the basic idea of
hedging. Hereafter, we will discuss different market models and hedging strategies we will implement,
some of which are similar to Alexander et al. (2009). Finally, the strategies will be applied to historical
and simulated data and we will discuss the results and their implications.

4.1. Principles of hedging
The concept of hedging is important and it plays a crucial role in option pricing methods (and therefore
the risk-neutral measure). The idea of hedging is simple: we wish to create a portfolio without risk. In
practice, it can be quite challenging to create a truly risk-neutral portfolio, which we will show in this
chapter. But first, in order to illustrate the hedging principle, we will consider a simplified example.

In this example, we will assume an initial stock price S0 = 10. Furthermore, at time T = 1 the stock
has probability 0.6 to take value S(1)

1 = 12 and probability 0.4 to take value S(2)
1 = 6. Finally, assume the

existence of a European call option on the stock with unknown initial value C0, maturity T = 1 and strike
price K = 10. Consequently, the option price at time T = 1 is equal to its pay-off: C(1)

1 = 2 and C(2)
1 = 0.

Figure 4.1 visualizes this example in the form of a binary tree. Now, we wish to create a hedge portfolio
containing a long position in ∆ stocks and a short position in the option. In order to be risk-neutral, the
portfolio needs to attain the same value in both scenarios:

Π(1)
1 =Π(2)

1 ,

2which is in conflict with the discussion of Ayache (2015)
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S0 = 10
C0 =?

S(2)
1 = 6
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1 = 0

p2 = 0.4
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C(1)
1 = 2p1= 0.6

Figure 4.1: Binary tree describing the simplified market.

∆S(1)
1 −C(1)

1 =∆S(2)
1 −C(2)

1 ,

∆12−2=∆6,

∆= 1
3

. (4.1)

In both cases, the final value of the portfolio is equal to 2 and it is therefore risk-neutral. Now assume
there exists another risk-neutral asset in the market (for example a bank account or government bond)
with return r, while the hedge portfolio has return rΠ. If we assume the two returns are not equal, there
are two possibilities:

• r > rΠ: By taking a short position in the portfolio and a long position in the risk-neutral asset one
earns r− rΠ. Since both assets are free of risk, this leads to an arbitrage opportunity.

• r < rΠ: Similarly, a long position in the portfolio and a short position in the risk-neutral asset leads
to arbitrage.

Consequently, under the assumption of an arbitrage-free market, the portfolio has to grow with the risk-
neutral rate. If we assume r = 0.01, the initial value of the portfolio must be equal to

Π0 =Π1e−rt = 2e−0.01 = 1.98. (4.2)

This leads to the unique arbitrage-free option price

Π0 =∆S0 −C0,

1.98= 1
3

10−C0,

C0 = 1.35. (4.3)

Remember that we can also write the option price as the discounted expected pay-off under the risk-
neutral measure:

C0 = e−rtEQ [C1] ,

1.35= 2e−0.01q1 +0e−0.01q2,

q1 = 0.67⇒ q2 = 0.33. (4.4)

Note that
P= (p1, p2) 6= (q1, q2)=Q, (4.5)

which exactly illustrates the difference between the real-world and risk-neutral measure. For example,
suppose there are two traders: trader A owns a speculative portfolio (which is not hedged) and trader B
does not want to be subjected to risk and therefore hedges his portfolio. Trader A will be interested in
the real-world probabilities, since they will tell him something about the actual expectations of the stock
and therefore his portfolio. However, trader B does not care whether the stock moves up or down, since
his portfolio is protected against these movements. Thus, he will only be interested in the risk-neutral
probabilities to value the option and determine his hedging strategy.
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This example demonstrates the principles of hedging, but is by no means realistic. In reality, we
do not know the possible states of the world at T = 1, which complicates the hedging strategy. But
the main idea remains unchanged: we would like to create a risk-neutral portfolio using a number of
stocks (possibly combined with other financial instruments). In the next sections we will discuss different
hedging strategies based on this principle and how they are implemented under more realistic market
assumptions.

4.2. Hedging strategies
In the previous section we treated a simplified example to illustrate the principles of hedging. With
these principles in mind we will derive two different hedging strategies: Delta and Delta-Vega hedging.
The former hedges against random movements in the underlying asset price (similar to the simplified
example), while the latter hedges against changes in both asset price and volatility.

4.2.1. Delta hedging
The Delta hedging strategy aims at protecting the portfolio against changes of the underlying asset by
holding an amount of ∆ stocks (similar to the example in section 4.1). The portfolio is given by{

Πt =−Ct +∆Ct St +Bt,
Π0 = 0, (4.6)

where Bt denotes a bank account which grows with risk-free rate r. Now, similar to the simplified exam-
ple, we must define ∆Ct such that it protects the portfolio against changes in the underlying asset. Hence,
we require that

〈dΠt,dSt〉 = 0. (4.7)

The operator 〈·, ·〉 refers to the covariation between two processes. The most relevant properties of this
operator are discussed in appendix D.1. Following Bakshi et al. (1997), we can derive the so-called mini-
mized variance ∆Ct ,

0= 〈dΠt,dSt〉 ,

0=−〈dCt,dSt〉+∆Ct 〈dSt,dSt〉+〈dBt,dSt〉 ,
〈dCt,dSt〉 =∆Ct 〈dSt,dSt〉 ,

∆Ct =
〈dCt,dSt〉
〈dSt,dSt〉

. (4.8)

By assuming this strategy, one obtains a portfolio which has no covariation with the underlying asset. In
other words, changes of the underlying asset will have no direct or indirect (through correlations) effects
on the portfolio.

This strategy is intuitively appealing. Suppose a financial institution (the writer) sells a European
call option at time t = 0. The writer does not know in advance whether the stock value will rise or fall and
wishes to be protected against a possible loss. If the stock value falls, the final pay-off will equal zero and
the writer does not need any stocks to cover this loss (since there is no loss). On the other hand, if the
stock value rises, the writer possibly faces a major loss. By buying a number of stocks beforehand, the
writer will be able to cover this loss, since the previously bought stocks have risen in value as well. Thus,
the higher the probability of a positive pay-off, the more stocks the writer will buy to cover a possible loss.
Consequently, in case of a call option we expect ∆Ct to behave as follows

∆Ct ≈ 0, If the option is out-of-the-money3.
∆Ct ≈ 1, If the option is in-the-money4.
∆Ct ≈ 1

2 , If the option is at-the-money5.

In case of the European call option, this will lead to a buy-high sell-low strategy: we buy stocks when
the price rises (because higher stock value means higher probability of a positive pay-off) and sell stocks
when the price drops (lower stock value means lower probability of a positive pay-off). The losses induced
by this unfavourable strategy should (on average) be covered by the initial option price.
3A call/put option is called out-of-the-money when it has no pay-off according to the current market.
4A call/put option is called in-the-money when it has a positive pay-off according to the current market.
5Boundary between in-the-money and out-of-the-money.
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4.2.2. Delta-Vega hedging
In the previous section we treated the Delta hedging strategy, which hedges against changes of the un-
derlying asset. In practice, a portfolio is subjected to other risks as well. For example, the portfolio
value might change when the volatility increases/decreases. To this end, we will implement a Delta-Vega
strategy. Unlike the Delta-hedge, the Delta-Vega strategy hedges against changes in both asset price and
volatility. In general, the portfolio will be defined as,{

Πt =−Ct + ∆̄(1)
Ct

St + ∆̄(2)
Ct

C̃t +Bt,
Π0 = 0,

(4.9)

where C̃t represents the value of another option (called option B from this point onwards), which de-
pends on the same underlying market factors, but with different contract details (for example different
strike/maturity). The strategy is characterized by the so-called hedging ratios:

• The amount of stocks held at time t, ∆̄(1)
Ct

.
• The amount of options B held at time t, ∆̄(2)

Ct
.

The purpose of ∆̄(1)
Ct

is to remove all randomness associated with the asset price and the purpose of ∆̄(2)
Ct

is
to remove all randomness associated with the volatility that is not correlated with the asset price. Thus,
we require { 〈dΠt,dSt〉 = 0,〈

dΠt,dWv
t
〉= 0, (4.10)

where Wv
t is the Brownian motion independent from St, driving random changes in the volatility. By

substituting the portfolio as defined in (4.9) into the first condition, we can derive

0= 〈dΠt,dSt〉 ,

0=−〈dCt,dSt〉+ ∆̄(1)
Ct

〈dSt,dSt〉+ ∆̄(2)
Ct

〈
dC̃t,dSt

〉+〈dBt,dSt〉 ,

∆̄(1)
Ct

〈dSt,dSt〉 = 〈dCt,dSt〉− ∆̄(2)
Ct

〈
dC̃t,dSt

〉
,

∆̄(1)
Ct

= 〈dCt,dSt〉
〈dSt,dSt〉

− ∆̄(2)
Ct

〈
dC̃t,dSt

〉
〈dSt,dSt〉

. (4.11)

The definition of ∆̄(2)
Ct

can be derived from the second condition,

0= 〈
dΠt,dWv

t
〉

,

0=−〈
dCt,dWv

t
〉+ ∆̄(1)

Ct

〈
dSt,dWv

t
〉

,+∆̄(2)
Ct

〈
dC̃t,dWv

t
〉+〈

dBt,dWv
t
〉

,〈
dCt,dWv

t
〉= ∆̄(2)

Ct

〈
dC̃t,dWv

t
〉

,

∆̄(2)
Ct

=
〈
dCt,dWv

t
〉〈

dC̃t,dWv
t
〉 . (4.12)

In conclusion, the optimal strategy is given by
∆̄(2)

Ct
=

〈
dCt,dWv

t
〉〈

dC̃t,dWv
t
〉 ,

∆̄(1)
Ct

= 〈dCt,dSt〉
〈dSt,dSt〉

− ∆̄(2)
Ct

〈
dC̃t,dSt

〉
〈dSt,dSt〉

.
(4.13)

This strategy is intuitively similar to Delta hedging. If the volatility rises, we expect the asset price to
fluctuate more. These fluctuations will lead to higher Delta hedging costs, because our buy-high sell-
low strategy will be more pronounced. To this end, the writer will buy a certain amount of option B
beforehand. Option B is subjected to the same volatility as the hedged option, hence the value of option
B will increase if the volatility increases, which should cover the additional losses induced by the Delta
strategy. Similarly, the converse is true when volatility decreases. This way, one is indifferent to changes
in both asset price and volatility.
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4.3. Market models
In the previous sections we discussed the Delta and Delta-Vega hedging strategies. In this section we
will apply these strategies to different market environments. The dynamics of these markets are closely
related to the dynamics of the option price, which will influence the hedging strategies. To this end, we
need to derive the option price dynamics under the different market assumptions.

It is important to stress that we will simulate the market factors (such as asset price and volatil-
ity) under a real-world measure for every t ∈ [0,T], because we are interested in the actual development
of the market. These simulations will define the state of the market for every t ∈ [0,T], which include
stock value and volatility at time t, for example. Furthermore, depending on the state of the market,
the risk-neutral measure will be defined for every t ∈ [0,T]. Hereafter, we will be able to establish the
option prices and hedging strategies for each t ∈ [0,T] according to these risk-neutral measures. In order
to determine the hedging strategies, one needs to know the option price dynamics. These dynamics will,
just like the hedging strategy, be defined under the risk-neutral measure. Note that these dynamics do
not necessarily coincide with the actual option price dynamics.

This test will allow us to review certain features of the real-world and risk-neutral measure (such as
drift and volatility) and their effect on the hedging strategies. In other words, we will be able to inves-
tigate the hedging performances in case the option dynamics implied by the risk-neutral measure differ
from the actual option dynamics simulated by the real-world measure. For instance, in the simplified
example we showed the irrelevance of the real-world probabilities, but the possible (real-world) values of
St at time t = 1 did influence the hedging strategy. In the next sections we will discuss which real-world
features are important for hedging strategies and which features are not. But for now, we will ignore the
real-world measure and derive the hedging ratios under the risk-neutral measure.

4.3.1. Black-Scholes
Before determining the option price dynamics, one first needs to assume an appropriate model for the
underlying asset. First, we will consider the Black-Scholes model. Recall,

dSt = rStdt+σStdWS
t . (4.14)

We will assume this relation during the derivations of this section.

Option price dynamics
We can write the option value at time t as

CBS
t ≡ C(t,St,σ, r,K ,T). (4.15)

Applying Ito’s lemma will define the option price dynamics under the Black-Scholes model

dCBS
t = ∂C

∂t
dt+ ∂C

∂St
dSt + 1

2
∂2C
∂S2

t
〈dSt,dSt〉 . (4.16)

Substituting (4.14) into (4.16) leads to

dCBS
t = ∂C

∂t
dt+ ∂C

∂St

(
rStdt+σStdWS

t

)
+ 1

2
∂2C
∂S2

t
σ2S2

t dt

=
(
∂C
∂t

+ rSt
∂C
∂St

+ 1
2
σ2S2

t
∂2C
∂S2

t

)
dt+σSt

∂C
∂St

dWS
t . (4.17)

This shows that the option dynamics can be separated into two parts

• A deterministic part, associated with the dt term.
• A random part, associated with stochastic changes in the stock price, dWS

t .
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Delta hedging
In case of the Black-Scholes model, ∆Ct is defined as

∆CBS
t

=
〈
dCBS

t ,dSt
〉

〈dSt,dSt〉
=
σ2S2

t dt ∂C
∂St

σ2S2
t dt

= ∂C
∂St

, (4.18)

where we have used the covariation properties based on Ito’s calculus, as discussed in appendix D.1. This
will lead to the following portfolio dynamics

dΠt =−dCt +∆CBS
t

dSt +dBt

=−dCt + ∂C
∂St

dSt +dBt

=−
(
∂C
∂t

+ rSt
∂C
∂St

+ 1
2
σ2S2

t
∂2C
∂S2

t

)
dt−σSt

∂C
∂St

dWS
t + ∂C

∂St

(
rStdt+σStdWS

t

)
+ rBtdt

=
(
−∂C
∂t

− 1
2
σ2S2

t
∂2C
∂S2

t
+ rBt

)
dt. (4.19)

The portfolio dynamics only depend on the deterministic dt term. In other words, the Delta strategy
removes all randomness from the portfolio. Moreover, the portfolio has no dependence on ∂Ct

∂St
. Thus, a

Delta hedged portfolio is risk-free and does not depend on changes of the underlying asset price, if the
assumptions of the Black-Scholes model are not violated.

Delta-Vega hedging
Volatility is considered constant in the Black-Scholes framework, hence, theoretically it is redundant to
hedge against changes in volatility. However, historical data shows that the constant volatility assump-
tion is violated in general. The Black-Scholes Delta-Vega hedging strategy can be thought of as a way to
overcome the hedging errors caused by the constant volatility assumption.

Note that
〈
dCBS

t ,dWv
t
〉 = 0, due to the constant volatility assumption. Therefore, we will slightly

adjust the strategy by following Kurpiel and Roncalli (1998), which replaces the covariance operator by
∂C
∂σ

. Substituting the derivative operator in equation (4.13) gives
∆̄(2)

CBS
t

= ∂Ct
/
∂σ

∂C̃t
/
∂σ

,

∆̄(1)
CBS

t
= ∂Ct

∂St
− ∆̄(2)

CBS
t

∂C̃t

∂St
.

(4.20)

Option price sensitivities
In the above derivations, we have seen that the hedging ratios depend on the option price sensitivities
with respect to asset price and volatility. Thus, one needs to be able to determine those sensitivities
before implementing these strategies. Fortunately, under the Black-Scholes model, there are analytical
expression for these quantities, 

∂Ct
∂St

=N [d1] ,
∂Ct
∂σ

= StN
′ [d1]

p
T − t,

d1 =
log

(
St
K

)
+(

r+ 1
2σ

2)
(T−t)

σ
p

T−t
.

(4.21)

Here N [·] and N ′[·] are, respectively, the cumulative distribution and the probability density function of
the standard normal distribution.

4.3.2. Heston
Similar to the Black-Scholes derivation, we can consider the Heston model

dSt = rStdt+p
vtStdW1

t ,
dvt = κ(v̄−vt)dt+γpvtdW2

t ,〈
dW1

t ,dW2
t
〉= ρdt.

(4.22)
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Option price dynamics
The option value at time t can be expressed as

CHeston
t ≡ C(t,St,vt, r,ΩHeston,K ,T). (4.23)

Under the assumption of two independent Brownian motions WS
t and Wv

t , defined through{
W1

t =WS
t ,

W2
t = ρWS

t +
√

1−ρ2Wv
t ,

(4.24)

we can write the Heston option dynamics as

dCHeston
t =

(
∂C
∂t

+ rSt
∂C
∂St

+κ(v̄−vt)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
dt

+
(p

vtSt
∂C
∂St

+ργpvt
∂C
∂vt

)
dWS

t +γ
√

vt(1−ρ2)
∂C
∂vt

dWv
t . (4.25)

The derivation of these dynamics is similar to the derivation under the Black-Scholes model and is dis-
cussed in appendix D.2. Again, we can separate these dynamics into different parts

• A deterministic part, associated with the dt term.
• A random part, associated with stochastic changes in the stock price, dWS

t .
• A random part, associated with stochastic changes in the stock volatility, dWv

t .

Delta hedging
The correlation between asset price and volatility in the Heston model slightly changes the Delta hedging
procedure. Taking this correlation into account gives

∆CHeston
t

=
〈
dCHeston

t ,dSt
〉

〈dSt,dSt〉

=
vtS2

t
∂C
∂St

dt+ργvtSt
∂C
∂vt

dt

vtS2
t dt

= ∂C
∂St

+ργ 1
St

∂C
∂vt

. (4.26)

Now, we are able to derive the portfolio dynamics (the full derivation can be found in appendix D.3)

dΠt =−
(
∂C
∂t

+κ(v̄−vt − rργ)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

− rBt

)
dt

−γ
√

vt(1−ρ2)
∂C
∂vt

dWv
t . (4.27)

It follows that we are unable to remove all randomness from the portfolio, using just the stock as hedge
instrument. Although this portfolio is insensitive to changes in asset price, it is not protected against
changes in asset volatility. In order to remove all randomness, one needs to use an additional financial
instrument (for example, by implementing the Delta-Vega strategy).

Delta-Vega hedging
In the above derivation we have seen that the Delta strategy is unable to create a portfolio completely
free of randomness. In order to remove the randomness associated with volatility, we will implement the
Delta-Vega hedging strategy. In this case, the hedging ratios are given by

∆̄(2)
CHeston

t
=

〈
dCHeston

t ,dWv
t
〉〈

dC̃Heston
t ,dWv

t
〉

=
γ
√

vt(1−ρ2) ∂C
∂vt

dt

γ
√

vt(1−ρ2) ∂C̃
∂vt

dt
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= ∂C
/
∂vt

∂C̃
/
∂vt

, (4.28)

and

∆̄(1)
CHeston

t
=

〈
dCHeston

t ,dSt
〉

〈dSt,dSt〉
− ∆̄(2)

CHeston
t

〈
dC̃Heston

t ,dSt
〉

〈dSt,dSt〉

= ∂C
∂St

+ργ 1
St

∂C
∂vt

− ∆̄(2)
CHeston

t

(
∂C̃
∂St

+ργ 1
St

∂C̃
∂vt

)
= ∂C
∂St

− ∆̄(2)
CHeston

t

∂C̃
∂St

. (4.29)

Substituting these definitions in (4.22) gives

dΠt =
(
−∂C
∂t

− 1
2

vtS2
t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
−ργvtSt

∂2C
∂St∂vt

+ ∆̄(2)
CHeston

t

(
∂C
∂t

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
+ rBt

)
dt, (4.30)

which we prove in appendix D.4. Note that the random components have disappeared from the portfolio.
Hence, a Delta-Vega strategy fully hedges a portfolio, in case the market does not violate the Heston
model assumptions. Moreover, the deterministic and stochastic parts of the portfolio dynamics do not
contain any ∂Ct

∂St
or ∂Ct

∂vt
terms. Hence, the Delta-Vega strategy does not depend on the deterministic and

stochastic changes of the asset price and volatility, at least in terms of the first derivative.

Option price sensitivities
The Heston hedging strategies require sensitivities of the option price with respect to asset price and
volatility. But unlike the Black-Scholes model, they cannot be expressed analytically. Thus, we need to
approximate these sensitivities by adjusting the FFT algorithm. In appendix A we already explained how
one can approximate the option price using this algorithm. This approximation involves a finite sum of
differentiable components. Consequently, the derivative of this sum is equal to the sum of its derivatives,

∂Ct
∂St

≈ e−αk

π
ℜ

{∑N
j=1 e−iz j kψT

(
z j,Ωt

)
∆zα+1+iz j

St

}
,

∂Ct
∂vt

≈ e−αk

π
ℜ

{∑N
j=1 e−iz j kψT

(
z j,Ωt

)
∆z 1

γ2

(
1−e−D(T−t)

1−Ge−D(T−t)

)
(κ− iργ(z− (α+1)i)−D)

}
,

(4.31)

where the components are defined as in appendix A.

4.3.3. Dynamic Heston
In the previous chapters we have discussed the dynamic behaviour of the Heston parameters. This be-
haviour is caused by changes in option prices or equivalently, the implied volatility surface. Hence, in
order to simulate a market more in line with these historical observations, we assume the Heston param-
eters to follow certain stochastic processes. We have already seen that the Heston model parameters are
highly correlated with each other, therefore we will assume dv̄t = κv̄(v̄Mean − v̄t)dt+av̄ v̄t

(
ρ v̄dW2

t +
√

1−ρ2
v̄dW v̄

t

)
,

dγt = κγ(γMean −γt)dt+aγγt

(
ργdW2

t +
√

1−ρ2
γdWγ

t

)
,

(4.32)

where both parameters follow a mean-reverting path, W2
t is defined as in (D.5) and the Brownian motions

are all independent. Note that ρ v̄ and ργ indicate the correlation with vt, which we expect to be high,
based on historical observations. Consequently, vt, v̄t and γt will follow highly correlated paths.

These assumptions lead to the paradox we discussed at the beginning of this chapter. On one hand
we assume the Heston model to price options, which assumes v̄t and γt to be constant. However, accord-
ing to historical data v̄t and γt change over time, which influences the actual option price dynamics and
therefore the hedging performance.
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To deal with these kinds of problems, Alexander et al. (2009) proposed an out-of-model hedge adjust-
ment, which we will follow in this section. Out-of-model hedging refers to strategies that hedge against
changes of constant/deterministic parameters. One of the most well-known out-of-model hedges is the
Black-Scholes Delta-Vega hedge we discussed in section 4.3.1. From a theoretical point of view, out-of-
model hedging is redundant, because these parameters do not add additional randomness to the model.
However, in practice these parameters do not always behave as the model expects them to, as we have
seen in the previous chapters. Therefore, out-of-model hedging can be thought of as a way to overcome
the deficiencies of a model by violating some theoretical assumptions. Thus, the following derivations
will not be in accordance with the Heston model, but they can be thought of as the option price dynamics
under the assumption that v̄t and γt evolve stochastically.

Option price dynamics: dynamic Heston
Under these assumptions we can write the option price as

CDynamic
t ≡ C

(
t,St,vt, r, v̄t,γt,κ,ρ,K ,T

)
. (4.33)

Applying Ito’s lemma leads to

dCDynamic
t = ∂C

∂t
dt+ ∂C

∂St
dSt + ∂C

∂vt
dvt + ∂C

∂v̄t
dv̄t + ∂C

∂γt
dγt + 1

2

∑
pt

∑
qt

∂2C
∂pt∂qt

〈dpt,dqt〉 , (4.34)

with pt, qt ∈ {St,vt, v̄t,γt}. For notational purposes we will rewrite this expression as

dCDynamic
t = c1dt+ c2dWS

t + c3dWv
t + c4dW v̄

t + c5dWγ
t . (4.35)

By substituting (4.22) and (4.32) into (4.34), we obtain

c1 = ∂C
∂t + rSt

∂C
∂St

+κ(v̄t −vt) ∂C
∂vt

+κv̄(v̄Mean − v̄t) ∂C
∂v̄t

+κγ(γMean −γt) ∂C
∂γt

+ 1
2
∑

pt

∑
qt

∂2C
∂pt∂qt

〈dpt,dqt〉 ,

c2 =p
vtSt

∂C
∂St

+ργt
p

vt
∂C
∂vt

+ρρ v̄av̄ v̄t
∂C
∂v̄t

+ρργaγγt
∂C
∂γt

,

c3 = γt
√

vt(1−ρ2) ∂C
∂vt

+ρ v̄av̄ v̄t
√

1−ρ2 ∂C
∂v̄t

+ργaγγt
√

1−ρ2 ∂C
∂γt

,

c4 = av̄ v̄t

√
1−ρ2

v̄
∂C
∂v̄t

,

c5 = aγγt

√
1−ρ2

γ
∂C
∂γt

.

(4.36)

Note that the Heston option price dynamics can be derived as a special case of the dynamic Heston model,
when the mean reversion rate and volatility of v̄t and γt are zero.

Delta hedging
In case of the dynamic Heston model, we can define the ∆Ct as

∆CDyn
t

=
〈

dCDyn
t ,dSt

〉
〈dSt,dSt〉

= c2
p

vtStdt
vtS2

t dt

= c2p
vtSt

= ∂C
∂St

+ργ 1
St

∂C
∂vt

+ρρ v̄av̄ v̄t
1p

vtSt

∂C
∂v̄t

+ρργaγγt
1p

vtSt

∂C
∂γt

. (4.37)

Again, the Heston model strategy can be seen as a special case of the dynamic Heston model, if the
correlation or volatility of v̄t and γt is equal to zero. Implementing this strategy leads to the following
portfolio dynamics

dΠt =−dCt +∆CDyn
t

dSt +dBt



4.3. Market models 39

=−c1dt− c2dWS
t − c3dWv

t − c4dW v̄
t − c5dWγ

t + c2p
vtSt

(
rStdt+p

vtStdWS
t

)
+ rBtdt

=
(
−c1 + c2

rp
vt

+ rBt

)
dt− c3dWv

t − c4dW v̄
t − c5dWγ

t . (4.38)

Similar to the Heston model, we are only able to remove the randomness from the portfolio associated to
changes in St.

Delta-Vega hedging
We can define the Dynamic Heston Delta-Vega hedge ratios as

∆̄(2)
CDyn

t
=

〈
dCDyn

t ,dWv
t

〉
〈

dC̃Dyn
t ,dWv

t

〉
= c3dt

c̃3dt

= c3

c̃3
, (4.39)

and

∆̄(1)
CDyn

t
=

〈
dCDyn

t ,dSt

〉
〈dSt,dSt〉

− ∆̄(2)
CDyn

t

〈
dC̃Dyn

t ,dSt

〉
〈dSt,dSt〉

= c2p
vtSt

− c̃2c3p
vtSt c̃3

, (4.40)

where c̃2 and c̃3 are the coefficients related to option B and they are defined by (4.36). Substituting these
definitions results in the following portfolio dynamics

dΠt =−dCt + ∆̄(1)
CDyn

t
dSt + ∆̄(2)

CDyn
t

dC̃t +dBt

=−c1dt− c2dWS
t − c3dWv

t − c4dW v̄
t − c5dWγ

t +
(

c2p
vtSt

− c̃2c3p
vtSt c̃3

)(
rStdt+p

vtStdWS
t

)
c3

c̃3

(
c̃1dt+ c̃2dWS

t + c̃3dWv
t + c̃4dW v̄

t + c̃5dWγ
t

)
+ rBtdt

=
(
−c1 + c3

c̃3
c̃1 + c̃2rp

vt
− c̃2c3rp

vt c̃3
+ rBt

)
dt+

(
c3

c̃3
c̃4 − c4

)
dW v̄

t +
(

c3

c̃3
c̃5 − c5

)
dWγ

t . (4.41)

The only randomness left in this portfolio is associated with changes in v̄t and γt, but note that{
ρ v̄ ↑ 1⇒ c4, c̃4 ↓ 0,
ργ ↑ 1⇒ c5, c̃5 ↓ 0. (4.42)

So high correlation between vt, v̄t and γt will lead to less randomness in the Dynamic Heston Delta-Vega
portfolio. In the previous chapters we have already seen that the correlation between these parameters
is very high, hence we expect this strategy to work relatively well.

However, even when the correlations are equal to one, we do not expect a perfect hedge. This strat-
egy only takes stochastic changes into account and not deterministic changes. Recall the Heston Delta
portfolio dynamics from equation (4.27). Even with a correlation equal to one, this strategy still depends
deterministically on ∂Ct

∂vt
. Hence, its dynamics still depend on changes in volatility. This is contrast with

the Heston Delta-Vega portfolio dynamics given in equation (4.30), where all ∂Ct
∂St

and ∂Ct
∂vt

terms disap-
peared, both in the deterministic and stochastic parts. So, in order to be able to fully hedge against
changes of v̄t and γt, one needs to include two additional options, such that both the deterministic and
stochastic dependencies are removed, which we will show below.
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Full hedge dynamic Heston
In the above derivation we discussed the limited properties of the Delta-Vega hedge in a dynamic Heston
market: we can only protect the portfolio against the changes of v̄t and γt that are correlated with vt and
not against the deterministic and uncorrelated part. A full hedge in a dynamic Heston market requires
three options and the underlying asset,{

Πt =−Ct + ∆̃(1)
t St + ∆̃(2)

t C̃t + ∆̃(3)
t C̄t + ∆̃(4)

t Ĉt,
Π0 = 0.

(4.43)

In this case we require no covariation between all random processes, thus
〈dΠt,dSt〉 = 0,〈
dΠt,dWv

t
〉= 0,〈

dΠt,dW v̄
t
〉= 0,〈

dΠt,dWγ
t
〉= 0.

(4.44)

Substituting these conditions in (4.43) gives


〈dS,dS〉 〈dC2,dS〉 〈dC3,dS〉 〈dC4,dS〉

0 〈dC2,dWv〉 〈dC3,dWv〉 〈dC4,dWv〉
0

〈
dC2,dW v̄〉 〈

dC3,dW v̄〉 〈
dC4,dW v̄〉

0 〈dC2,dWγ〉 〈dC3,dWγ〉 〈dC4,dWγ〉



∆̃(1)

t
∆̃(2)

t
∆̃(3)

t
∆̃(4)

t

=


〈dC1,dS〉
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0 c̃3 c̄3 ĉ3
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By implementing this strategy, the portfolio is protected against stochastic and deterministic changes
of St, vt, v̄t, γt. This portfolio is quite complicated, containing positions in four different options, and
therefore it might not be practical in reality. Nevertheless, we will include it in our tests to assess the
impact of hedging against changes of v̄t and γt.

Option price sensitivities
Similar to the Heston model, we need to approximate the option price sensitivities by using the FFT
algorithm. In case of the dynamic hedging model, two additional sensitivities are required, namely the
sensitivities with respect to v̄t and γt. The approximation of these sensitivities is similar to the ones
already derived for the Heston model. However, the dependence of γt in the price approximation is rather
complicated, hence we propose a numerical approximation:

∂Ct
∂v̄t

≈ e−αk

π
ℜ

{∑N
j=1 e−iz j kψT

(
z j,Ωt

)
∆z κ

γ2
t

{
(T − t)(κ− iργtu−D)−2log

[
1−Ge−D(T−t)

1−G

]}}
,

∂Ct
∂γt

≈ C(t,St,vt,r,v̄t,γt+δγ,κ,ρ,K ,T)−C(t,St,vt,r,v̄t,γt−δγ,κ,ρ,K ,T)
2δγ

,
(4.46)

where δγ > 0 is a small constant. Moreover, the sensitivities with respect to asset price and volatility are
defined as in (4.31).
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4.4. Hedging in practice
In the previous sections we have derived some hedging strategies and option price dynamics for different
market environments. These derivations were all performed under the assumptions that the hedging
ratios are updated in continuous time. In practice, it is of course impossible to buy/sell the stocks/options
after every infinitesimal change in the market. A discretization is therefore required, in which we will
rebalance the hedge portfolio after every time-step ∆t. In this section we will only discuss how to imple-
ment the Delta-Vega strategy. A Delta strategy (or any other hedging strategy, for that matter) can be
implemented in a similar way.

First we will discretize the interval [0,T], where t = 0 and t = T respectively denote the starting point
and maturity of the option. We propose the following discretization

t0 = 0,
tN = T,
∆t = T

N−1 ,
ti+1 = ti +∆t, i ∈ {0, . . . , N −1}.

(4.47)

Initially, S0, v0 and the risk-neutral parameters are known. These parameters define the option values
and the hedging ratios, given by (4.9) in case of Delta-Vega hedging.

At time t = 0 the writer sells the option with value C0 and, after buying the necessary amount of
stocks/options according to the hedging strategy, there will be a certain amount of cash left. Thus, in case
of a Delta-Vega strategy, the initial bank account is given by

B0 = C0 − ∆̄(1)
C0

S0 − ∆̄(2)
C0

C̃0. (4.48)

Note that, by substituting this definition,
Π0 = 0. (4.49)

Now suppose we are at time ti, with i ∈ {0, . . . , N −1}, and we have adjusted the hedging ratios according
to the hedging strategy. The portfolio value is given by

Πi =−Ci + ∆̄(1)
Ci

Si + ∆̄(2)
Ci

C̃i +Bi. (4.50)

The hedging ratios will not be adjusted in the interval (ti, ti+1), hence the portfolio value before rebalanc-
ing at time ti+1 must be equal to

Πi+1 =−Ci+1 + ∆̄(1)
Ci

Si+1 + ∆̄(2)
Ci

C̃i+1 + er∆tBi. (4.51)

At time ti+1, we will rebalance the portfolio. In other words, we will buy/sell a certain amount of
stock/options, such that our portfolio agrees with hedging strategy. This will have an effect on the amount
of cash we are holding, thus

Bi+1 =
(
∆̄(1)

Ci
− ∆̄(1)

Ci+1

)
Si+1 +

(
∆̄(2)

Ci
− ∆̄(2)

Ci+1

)
C̃i+1 + er∆tBi. (4.52)

After rebalancing, the portfolio value can be expressed as

Πi+1 =−Ci+1 + ∆̄(1)
Ci+1

Si+1 + ∆̄(2)
Ci+1

C̃i+1 +Bi+1. (4.53)

Rebalancing does not have an effect on the total value of the portfolio, we are just reallocating our re-
sources from one asset to another. Hence, the expressions in equations (4.51) and (4.53) should be equal.
This concludes the hedging process at time ti+1 and it will be repeated at time ti+2, . . . , tN .

Ideally the portfolio value is equal to zero for every point in time, because the initial portfolio value
is equal to zero. Every deviation from zero will be thought of as a hedge error. Over the entire life of the
option we desire the mean and standard deviation of this error to be as close as possible to zero. To this
end, we introduce the following error measures for simulation j

E( j)
Mean = 1

N +1

N∑
i=0
Π

( j)
i
N T

, E( j)
Std =

√√√√ 1
N

N∑
i=0

(
Π

( j)
i
N T

−E( j)
Mean

)2
. (4.54)
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The overall hedging performance of the M simulations can be judged by{
ĒMean = 1

M
∑M

j=1 E( j)
Mean,

ĒStd = 1
M

∑M
j=1 E( j)

Std.
(4.55)

The hedge errors can be interpreted as follows

• The error mean indicates the hedge performance on average. A mean close to zero indicates
the strategy is performing well on average. A positive/negative mean indicates the strategy is
over/under-hedging on average.

• The standard deviation indicates how much the individual realisations deviate from the error mean.
Ideally we want a standard deviation equal to zero, which implies a stable strategy. A high standard
deviation can be caused by a misspecification in the hedging strategy (either wrong parameters or
the wrong strategy in general) or by rebalancing too infrequently, in which case ∆t needs to be
decreased.

In the current set-up, these error measures are random variables, as they follow from Monte Carlo simu-
lations. To this end, we will analyse the stability of the error measures across the simulated trajectories
by the standard error

SE(E)=

√
1

M−1

M∑
j=1

(
Ē−E( j)

)2

p
M

, (4.56)

with error measure E, its mean Ē and its simulated trajectories E( j).

Finally, we have summarized the procedure described in this section in algorithm 1, where the reali-
sations of St, vt and the risk-neutral parameters follow from historical data or simulations.

Algorithm 1 Delta-Vega Hedge

1: procedure DELTA-VEGA STRATEGY

2: Observe S0, v0 and the risk-neutral parameters at time t = 0.
3: Determine C0 and C̃0.
4: Calculate ∆̄(1)

C0
and ∆̄(2)

C0
using (4.13).

5: Determine the initial bank account B0 according to (4.48).
6: Set the initial portfolio value Π0 equal to zero.

7: for i ∈ {0, . . . , N −1} do
8: Observe Si+1, vi+1 and the risk-neutral parameters at time t = ti+1.
9: Determine Ci+1 and C̃i+1.

10: Calculate ∆̄(1)
Ci+1

and ∆̄(2)
Ci+1

using (4.13).
11: Update the bank account Bi+1 according to (4.52).
12: Calculate the new portfolio Πi+1 value using either (4.51) or (4.53).

13: Determine the hedge errors of this realization, E( j)
Mean and E( j)

Std, with (4.54).

4.5. Simulation results
In this section we will present the results of the hedging strategies in different market environments.
First, we will simulate the (real-world) market realizations according to the Black-Scholes, Heston and
dynamic Heston models. The simulation processes are explained in appendix E. Hereafter, the hedging
performance in these different markets will be assessed by applying the hedging strategies discussed in
the previous section (see algorithm 1).

In practice, a hedger is subjected to more risks than just changes in option price. One of these risks is
the so-called model risk: errors due to model misspecifications. In this section we investigate the impact
of several model misspecifications. To be more precise, we will discuss
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• The impact of misspecified parameters. For example, what happens if the volatility implied by the
risk-neutral market does not coincide with the realized volatility.

• The impact of using the wrong model altogether. For instance, what is the effect on the hedging
performance if one assumes the Heston model, but the market follows the dynamic Heston model.

Analysing the impact of these misspecifications will give us more insight in the hedging performance
of historical data. One can think of these tests as a way to understand why certain hedging strategies
succeed and others may fail.

4.5.1. General assumptions
In this section we assume the writer hedges a short position in a European call option with maturity
T = 1.0 and strike K = 50. Moreover, at the starting date of the option we assume{

S0 = 49, v0 = 0.05, v̄0 = 0.1, γ0 = 0.7,
κ= 1.0, ρ =−0.75, r = 0.01, σ= 0.215, (4.57)

with implied volatility σ, which depends on the Heston parameters. The option price C0 (according to
both the Black-Scholes formula and the Heston FFT algorithm) is equal to 4.0. In case of a Delta-Vega
hedge we will use an additional option depending on the same parameters, but with maturity T̃ = 2.0 and
strike K̃ = 50. This leads to an implied volatility σ̃ of 0.231 and option price C̃0 equal to 6.35.

4.5.2. Black-Scholes market
First, we will consider a market simulated with the real-world Black-Scholes model. We will apply the
Black-Scholes Delta strategy to the simulated paths with different ∆t to assess its hedging performance.
The simulation is performed under the real-world measure, thus

dSt =µdt+σStdWS
t , (4.58)

using σ as specified in (4.57) and µ= 0.1. Note that µ does not have to be equal to r, since the portfolio dy-
namics derived in (4.19) do not depend on the real-world drift. After all, we are hedging against changes
of the underlying asset, hence deterministic changes should not influence the performance. On the other
hand, the hedging strategy does depend on σ. It is therefore important that the implied volatility is equal
to the realized volatility. In terms of the simplified example of section 4.1, this is similar to changing the
possible outcomes of S1. An increased volatility would lead to more extreme asset values at T = 1, which
leads to a different hedging strategy and option value. By expecting a higher/lower volatility, we will pro-
tect ourselves more (less) against random movements of the asset price, which will lead to over-hedging
(under-hedging). Thus, in a well-specified model, the risk-neutral and real-world σ are equal.

The results after applying using M = 1000 simulations are presented in table 4.1.

Frequency6 ĒMean ĒStd

Once per week -0.008 (0.0078) 0.163 (0.0027)
Once per day 0.011 (0.0034) 0.079 (0.0013)
Ten times per day 0.000 (0.0012) 0.025 (0.0004)

Table 4.1: Black-Scholes Delta hedge errors. The standard errors of the estimates are given between the parentheses.

These results are in line with the portfolio dynamics derived in (4.19), where we showed that the
portfolio is hedged against changes of the asset price. In the Black-Scholes market, asset price is the
only dynamic variable, hence this portfolio is fully hedged. In this case, the mean hedge error is close to
zero. Moreover, by increasing the rebalance frequency, we decrease the standard deviation, but the mean
remains (mostly) unchanged. In other words, on average we will always have the same hedge error, but
increasing the number of rebalances will decrease the deviation from this average.

A visualisation of the strategy for two possible realizations is shown in figures 4.2 and 4.3. These
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Figure 4.2: Black-Scholes Delta strategy when St ends in-the-money.
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Figure 4.3: Black-Scholes Delta strategy when St ends out-of-the-money.

figures represent the expectations we discussed in the previous sections. When the probability of a posi-
tive pay-off is high, then the hedger should buy more stocks to cover a possible loss. In this case, a high
value of St coincides with a higher probability of a positive pay-off, hence high values of St lead to high
values of ∆t. Note that this relationship becomes more pronounced closer to maturity, because there is an
even lower probability that St decreases below K . Contrary, the probability of a positive pay-off decreases
when St has a low value. In that case, the hedger does not have to protected against a possible loss and
∆t will be low.

One of the reasons this test works well is because the realized and implied volatility are equal. In
practice, we do not know whether the volatility implied by the risk-neutral market is equal to volatility
realized during the life of the option. To test the impact of this model risk, we performed the same test as
before, but with risk-neutral/hedging volatility σimp different from the realized volatility σ. The results
can be found in table 4.2.

It is clear that a misspecified volatility can lead to serious hedging errors. The strategy aims at
protecting the portfolio from changes in asset price. By assuming a higher (lower) volatility, we will expect
more (less) volatile paths which lead to too much (little) protection against the actual movements of St, as
discussed above. This behaviour is reflected in the test results, where higher/lower volatility leads to an
over/under-hedged portfolio. In practice, we cannot choose the implied and realized volatility, but they are

6Based on 52 weeks and 252 trading days per year.
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Frequency ĒMean ĒStd

σimp = 0.8σ:
Once per week -0.418 (0.0087) 0.284 (0.0054)
Once per day -0.445 (0.0054) 0.264 (0.0040)
Ten times per day -0.449 (0.0035) 0.257 (0.0031)

σimp = 1.2σ:
Once per week 0.416 (0.0077) 0.292 (0.0045)
Once per day 0.417 (0.0041) 0.257 (0.0030)
Ten times per day 0.417 (0.0025) 0.251 (0.0024)

Table 4.2: Black-Scholes Delta hedge errors with misspecified σ. The standard errors of the estimates are given between the
parentheses.

defined by the market and not necessarily equal. Thus, hedging errors in practice are always subjected
to this model risk and this misspecification might explain why certain hedging strategies perform worse
than others.

4.5.3. Heston market
Now, we will assume a market which follows the dynamics of a real-world Heston model, which is sim-
ulated by the simulation scheme discussed in appendix E. Girsanov’s Theorem is able to transform the
real-world Heston stochastic differential equations to the risk-neutral Heston model. By doing so, one
can derive the following real-world Heston model

dSt =µStdt+p
vtStdW1

t , S(0)= S0,
dvt = κ∗(v̄∗−vt)dt+γpvtdW2

t , v(0)= v0,〈
dW1

t ,dW2
t
〉= ρdt.

(4.59)

Note that the real-world κ∗ and v̄∗ might differ from the risk-neutral κ and v̄. Similar to µ, we do not
expect these parameters to influence the hedging performance. Indeed, the Heston Delta-Vega portfolio
dynamics derived in equation (4.30) do not depend on κ and v̄7, because they only influence the determin-
istic behaviour of the volatility. So, without loss of generality, we will assume

κ∗, v̄∗ = κ, v̄. (4.60)

On the other hand, v0, γ and ρ are equal under the real-world and risk-neutral measure in a well-specified
model. Misspecifying these parameters will lead to over/under-hedged portfolios, similar to a misspecified
σ in the Black-Scholes model. Consequently, the Heston model is subjected to the same model risk as the
Black-Scholes models, namely the risk of misspecified risk-neutral parameters.

First, we will perform the Delta hedge strategy. We will apply the Black-Scholes and Heston strategies
in order to investigate the impact of assuming an incorrect model. In other words, what happens to the
hedge performance when the hedging strategy assumes Black-Scholes but the market follows Heston
dynamics. The results of the M = 1000 simulations are given in table 4.3.

On average, these strategies appear to perform relatively well, since the mean errors of both models
are close zero. However, the strategies are less stable, indicated by high standard deviations. Increasing
the rebalancing frequency slightly reduces the standard deviation, but it is not nearly as stable as Delta
hedging in the Black-Scholes market. In other words, a trader implementing this strategy in a Heston
market cannot rely on its performance. In some cases this strategy might over-hedge, while in other cases
the portfolio is under-hedged. This is of course an undesirable feature and demonstrates the need for the
Delta-Vega hedge. It is noteworthy, however, that the results of the Black-Scholes strategy are similar
to the Heston strategy. The standard deviation of the Black-Scholes hedging strategy is slightly higher
than in the Heston model, but the impact of a misspecified model is not nearly as big as the impact of
misspecified parameters. This indicates the robustness of the Black-Scholes model, despite its unrealistic
7The Heston Delta strategy does depend on κ and v̄, since it does not fully hedge against changes of volatility.
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Frequency ĒMean ĒStd

Black-Scholes:
Once per week 0.030 (0.0389) 0.665 (0.0105)
Once per day -0.087 (0.0399) 0.643 (0.0095)

Heston:
Once per week 0.014 (0.0332) 0.569 (0.0095)
Once per day -0.073 (0.0348) 0.543 (0.0089)

Table 4.3: Delta hedge errors for Black-Scholes and Heston. The standard errors of the estimates are given between the
parentheses.

assumptions.

In order to overcome the unreliable performance of the Delta hedge portfolio, we will implement the
Delta-Vega hedge strategy. In case of the Heston model, this strategy should remove all dependence on
changes in the underlying asset and volatility. Again, the Black-Scholes and Heston strategies are both
implemented, to assess the impact of model misspecification, the results are presented in table 4.4.

Frequency ĒMean ĒStd

Black-Scholes:
Once per week 0.018 (0.0173) 0.327 (0.0047)
Once per day -0.037 (0.0172) 0.305 (0.0039)

Heston:
Once per week 0.005 (0.0030) 0.095 (0.0026)
Once per day 0.000 (0.0014) 0.043 (0.0012)

Table 4.4: Delta-Vega hedge errors for Black-Scholes and Heston. The standard errors of the estimates are given between the
parentheses.

In this test, the Delta-Vega strategy clearly outperforms the Delta strategy, in terms of standard de-
viation. Both models produce much more stable results when taking changes of volatility into account,
especially the Heston model. In this case, the effect of assuming an incorrect model becomes more clear.
On average, the Black-Scholes model performs similar to the Heston model, but the individual realisa-
tions are less stable and this problem cannot be solved by increasing the rebalancing frequency. In other
words, assuming an incorrect model introduces additional risk which cannot be hedged, but is negligible
on average in the current set-up.

4.5.4. Dynamic Heston market
Finally, we will consider the dynamic Heston market, which is most in line with historical observations.
We will simulate this market by assuming v̄∗ and γ in (4.59) to be time-dependent and defined as in (4.32).
The performance of the Heston Delta-Vega, the dynamic Heston Delta-Vega and the dynamic Heston full
hedge strategies in this market will be compared. The dynamic Heston hedging strategies take changes
of v̄ and γ into account (at least to some extent), hence we expect them to outperform the original Heston
hedging strategies. The hedging strategies and simulation highly depend on the parameters of v̄ and
γ, which we need to define beforehand. Because there is a high correlation between vt and the Heston
parameters, we will assume {

κv̄ = 1.4, v̄Mean = 0.1, av̄ = 0.8, ρ v̄ = 0.9,
κγ = 2.1, γMean = 0.7, aγ = 1.0, ργ = 0.9. (4.61)

In reality, these parameters cannot be chosen, but they are implied by the market. By analysing his-
torical behaviour of v̄t and γt, one is able to estimate their SDE parameters. In this case, however, we
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will assume to know these parameters and use them when determining the hedging strategy. The perfor-
mances of this set-up based on M = 200 simulations are given in table 4.5.

Frequency ĒMean ĒStd

Delta-Vega Heston:
Once per week -0.339 (0.0207) 0.228 (0.0084)
Once per day -0.354 (0.0227) 0.210 (0.0080)

Delta-Vega dynamic Heston:
Once per week -0.204 (0.0097) 0.137 (0.0072)
Once per day -0.220 (0.0071) 0.114 (0.0047)

Full hedge dynamic Heston:
Once per week -0.044 (0.0040) 0.068 (0.0042)
Once per day -0.051 (0.0030) 0.045 (0.0022)

Table 4.5: Hedge errors for Heston and dynamic Heston in a dynamic Heston market. The standard errors of the estimates are
given between the parentheses.

These results show that it is beneficial to take parameter correlations into account when hedging,
both in terms of mean error and standard deviation. While still not perfect, the dynamic Heston Delta-
Vega is better able to remain risk-neutral on average and it deviates less from this average. The full
hedge performs even better with a mean approximately equal to zero and a standard deviation equal to
or lower than any of the previous strategies, despite the dynamic behaviour of the market.

The purpose of these hedging strategies is to replicate the value of an option. In case of the Heston
Delta-Vega hedge, only St and vt are allowed to change. By respecting the assumptions of the Heston
model, we are not fully able to replicate the option value in the future. On the other hand, by assuming
the dynamic Heston model, v̄t and γt are allowed to change as well. Hedging strategies considering this
dynamic behaviour, turn out to produce more accurate future option price estimates in the current set-
up. This indicates the importance of taking dynamic parameters into account when determining future
option prices, even when the assumptions of the underlying model are violated. But, do note that the
comparison is not completely fair, since we specifically assume a dynamic Heston market. It is therefore
no big surprise that a strategy taking these assumptions into account outperforms one that does not.
In order to assess their true performance, we will apply these strategies to historical data in the next
section.

4.6. Empirical results
In the previous section we have shown that it is beneficial for hedging portfolios to take changes of the He-
ston parameters into account. However, these observations are based on a controlled environment, where
we know the behaviour of all market variables. When hedging in practice, the underlying assumptions
are not always respected and the true parameters are unknown. To quantify the effect of these difficul-
ties, we will test the hedging strategies on historical data8 in this section. Three different strategies are
considered:

1. A Heston Delta-Vega strategy with hedging ratios described (4.28) and (4.29).
2. A dynamic Heston Delta-Vega strategy. Thus, the hedging ratios are calculated according to (4.39)

and (4.40).
3. A full dynamic Heston hedge where the hedging ratios are defined as in (4.45).

All hedging ratios will depend on the recalibrated risk-neutral parameters, hence v̄, γ and ρ will vary
over time, according to changes in the historically observed implied volatility surfaces. Moreover, the
dynamic Heston Delta-Vega hedge depends on the correlation and volatility of v̄ and γ, which we define

8The data set equals the daily data set discussed in 3.4.1.
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as follows 

ρ v̄ = ργ = 0.95,

av̄ =

√
1
N

∑−1
i=−N log

(
v̄ti+1

v̄ti

)2

∆t ,

aγ =

√
1
N

∑−1
i=−N log

(
γti+1
γti

)2

∆t .

(4.62)

It can be quite challenging to determine the correlation between the Brownian motions driving the pa-
rameters, hence we assume it to be equal for each time-interval. Moreover, the volatility estimator only
depends on past observations; the sum indices vary from −N to −1 with t−N =−1, where t0 = 0 indicates
the starting date of the option.

In this test we will hedge an at-the-money European call option with one year maturity on the S&P-
500 index. All hedging strategies will be subjected to daily rebalances which are based on the parameters
as seen on that date. The transaction costs will be excluded from this test, as we are interested in the
performance of the hedging strategies with respect to changes in v̄ and γ. Including transaction costs
would for example increase the costs of the full dynamic Heston hedging strategy, as it involves more fi-
nancial assets. This is would bias the results and we therefore exclude the transaction costs from this test.

The test will be repeated on a monthly basis from July 2006 until February 2013 and the performance
will be assessed by the mean error and mean squared error during the life of the option,

E( j)
Mean = 1

N +1

N∑
i=0
Π

( j)
i
N T

, E( j)
MSE = 1

N +1

N∑
i=0

(
Π

( j)
i
N T

)2
. (4.63)

The time intervals of the hedging portfolios will overlap in this set-up, since the test is repeated on a
monthly basis and the option maturity is one year. However, all strategies will depend on different initial
conditions and will therefore perform differently, despite the overlapping time-intervals. The results of
this test are graphically presented in figure 4.4. The hedging performances are similar to the simulation
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Figure 4.4: Mean error and Mean squared error for different hedging strategies performed on monthly historical data

results:

• The Heston Delta-Vega does not take changes of the parameters into account and appears to be the
most unstable method. This strategy has the most and highest error ’peaks’ and is therefore the
most unreliable.
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• The dynamic Heston Delta-Vega is still not perfect but appears to be more stable than the Heston
Delta-Vega, the error ’peaks’ happen less frequently and are less pronounced. The error can be
minimized by optimizing the correlation and volatility of v̄t and γt, but the optimization can only
be performed afterwards, which is not the objective of this test.

• The dynamic Heston full hedge is the most stable out of the three strategies. It does not have any
error ’peaks’ and outperforms the other two strategies in most cases. Moreover, this strategy does
not depend on additional parameters which can introduce an error if chosen poorly, such as in the
dynamic Heston Delta-Vega hedge.

We can conclude that respecting the assumptions of the underlying model (in this case the Heston model)
does not necessarily lead to more accurate future option prices. By taking recalibration of the parameters
into account we were able to replicate option values more accurately both in a controlled (simulation) and
uncontrolled (historical) environment.

4.7. Implications
Throughout this chapter we have demonstrated the effect of recalibration on hedging strategies. These
strategies all aim at replicating the value of an option, which is driven by different market factors. The
most important factors are asset price and volatility of the asset price, something which most risk-neutral
pricing methods acknowledge. In practice, however, an option price is also affected by recalibration of
(constant) parameters. By means of hedge tests, we have shown that the effect of recalibration is non-
negligible. Hedging strategies taking recalibration into account significantly outperform ones that do
not, both in simulation and empirical tests. This leads to the conclusion that recalibration is in fact an
important factor when determining future option prices.

We started this chapter by raising the question: ’Is it justified to assume a recalibrated risk-neutral
measure in (real-world) simulations, even when this is in conflict with the assumptions of the underlying
risk-neutral pricing model?’. Throughout this chapter we have discussed this issue with respect to the
Heston model.

In theory, only the asset price and volatility of the asset price are allowed to change according to the
Heston model. Hence, one can argue that the recalibration process with respect to v̄ and γ should not be
included in real-world simulations, as this violates the assumptions of the Heston model. Instead, v̄ and
γ should be constant and their values are implied by the implied volatility surface at t = 0. This leads to
a unique risk-neutral measure, one everyone agrees with. If one is interested in option prices at t > 0,
for example in case of risk-management, the unique risk-neutral measure can be used. This way, every-
one agrees on the risk associated with certain positions. From a regulatory point of view this might be
beneficial, as it is important that the risk assessment of regulatory frameworks is unique. However, this
approach does ignore the recalibration process. Indeed, it considers v̄ and γ to be constant, which is not in
line with historical observations. As we have shown throughout this chapter, ignoring the recalibration
process can lead to serious errors with respect to future option prices.

By implementing the regression models proposed in chapter 3, one is able to include the recalibration
process in a real-world simulation. This way, one obtains v̄ and γ calibrated to the simulated state of the
market. Intuitively this process can be explained as follows. If the market crashes, it is much more likely
to observe a high v̄ and γ, based on historical data. Conversely, if the market flourishes it is much more
likely to observe a low v̄ and γ. By implementing the recalibration process in a real-world simulation, one
creates this behaviour in the simulated states of the market. Assuming v̄ and γ are allowed to change
over time will lead to more accurate future option prices, according to the hedge tests presented in this
chapter. From a risk-management point of view this might be beneficial, as it is important to accurately
assess the risk associated with certain positions. However, one does lose the unique interpretability of
the risk-neutral measure. A key feature of the risk-neutral market is the fact that it is arbitrage-free
and everyone agrees upon the market prices. By subjecting the implied volatility surface to recalibration
one loses this uniqueness, as it becomes dependent on the underlying assumptions with respect to the
evolution of the risk-neutral parameters. This way, different risk-managers might come to different con-
clusions, based on their perspective of the market.
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In conclusion, it is difficult to give a decisive answer to the proposed research question, as it depends
on the point of view. If one wishes to assess the risk involved with certain positions in the most accu-
rate way, then the answer is yes, by violating the constant v̄ and γ assumption of the Heston model one
obtains more accurate future option prices, according to our simulation and empirical tests. However,
if the objective is to create a unique framework where everyone agrees upon the risk associated with
certain positions, then the answer is no, by implementing the recalibration process one subjects the im-
plied volatility surface to the modeller’s point of view and different practitioners might come to different
conclusions.



5
Impact test

In the previous chapters we have discussed several models that forecast the risk-neutral measure con-
ditioned on the (simulated) state of the market. The approaches have been tested in terms of prediction
accuracy and a hedge test. In this chapter, however, we will not discuss the justification of the proposed
methodologies. Instead, we will show the impact of these models in terms of risk management. More pre-
cisely, we will apply the models on an important quantity for insurers: the Solvency Capital Requirement.

On January 1 of 2016 the Solvency II directive came into effect with the purpose of reducing the
probability that an insurer is unable to pay outstanding claims to its policyholders. One of the most im-
portant regulatory measures was the introduction of the Solvency Capital Requirement (SCR). The SCR
is defined as the minimum amount of capital held by an insurer, such that it is able to pay its claims over
a one-year horizon with a 99.5% probability. The regulator demands that the insurer’s available capital
must be greater than or equal to the SCR, which stresses the importance of this quantity.

According to the directive, an insurer can either use the standard formula or an internal model to de-
termine the SCR. The standard formula assesses the insurer’s risk towards several events1 by applying
deterministic shocks to the balance sheet. The SCR is calculated by taking correlations between these
different risks into account. The standard formula is known to be relatively conservative and it generally
fails to give a realistic reflection of the insurer’s risk profile. An internal model, on the other hand, is
tailored to the characteristics of the insurer. Internal models usually involve Monte Carlo simulations
of the balance sheet at t = 1 and the SCR is defined as the 99.5% quantile of the loss function. Inter-
nal models are generally more accurate than the standard formula, however, it can be quite complicated
and expensive to develop an internal model that satisfies the strict guidelines of the regulator. Conse-
quently, most small to medium-sized insurance companies resort to the standard formula. Throughout
this chapter we will only discuss the impact of a risk-neutral measure with time-dependent parameters
on internal models, since the standard formula is fully defined and therefore unaffected by our models.
For more information regarding the similarities and dissimilarities between the standard formula and
internal models we refer the reader to Devineau and Loisel (2009).

As discussed above, the SCR highly depends on the current and future balance sheet of the insurer,
which consists of assets and liabilities. Among others, the liabilities depend on the fair value of outstand-
ing claims. These claims usually involve guarantees (also called embedded options), which are rights that
can generate a profit but never a loss to the policyholder. The value of these guarantees is defined under
the risk-neutral measure. In order to hedge against the risks involved with these claims, insurers often
acquire (complex) option portfolios that require risk-neutral valuation as well. It is therefore of vital im-
portance to correctly identify the risk-neutral measure when determining the SCR and this is where our
models come into play. The SCR does not only depend on the value of the balance sheet at t = 0, it also
depends on the distribution of the balance sheet value at t = 1. Hence, we need to define Q at time t = 0
as well as t = 1. The risk-neutral measure at t = 0 depends on the observed implied volatility surface and

1Such as changes in stock price, interest rate or mortality rate.
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is therefore well-defined. However, the definition of the risk-neutral measure at t = 1 is debatable. None
of the existing literature regarding the SCR mentions recalibration of the risk-neutral measure at t = 1
(see for example Bauer et al. (2010) or Feng et al. (2017)). But, as we have shown by means of a hedge
test, ignoring recalibration has a significant impact on future option prices. We will therefore study the
effect on the SCR of different assumptions regarding the risk-neutral measure at t = 1. We will compare
a risk-neutral measure with time-dependent parameters, as proposed in the chapter 3, to a risk-neutral
measure with constant parameters.

This chapter is structured as follows, first we will present the formal definition of the SCR. Hereafter
we will discuss different approaches to calculate the SCR. Finally, we will discuss the impact of time-
dependent versus constant parameters in terms of the SCR, based on historical data.

5.1. Solvency Capital Requirement
In this section we will present the formal definition of the Solvency Capital Requirement associated with
a certain contract, following the notation of Feng et al. (2017), supplemented with examples to visualize
the process.

5.1.1. Mathematical definition
Assume an insurer sells a policy with maturity T. We denote the policy’s net income over the interval
[0, t] by At and it is defined by the cash flows generated under the real-world market. The mathematical
definition is given by

At =
∫ t

0
eµ(t−s)cashflow(s,∆s)ds, (5.1)

where µ is the expected return and cashflow(s,∆s) denotes the generated cash flow over the interval [s,
s+∆s]. Similarly, we define the policy’s liabilities by L t and they are given by the discounted expected
cash flows under the risk-neutral measure over the interval [t,T]:

L t = EQt

[∫ T

t
e−r(s−t)cashflow(s,∆s)ds

∣∣∣∣Ft

]
, (5.2)

with risk-free rate r. Note that a positive/negative cash flow corresponds to an income/liability for the
insurer. Finally we define

Nt = At −L t, (5.3)

which can be thought of as the policy’s net value at time t. The Solvency Capital Requirement is defined
as the 99.5% Value-at-Risk (i.e. the 99.5% quantile) of the 1 year loss distribution under the real-world
measure,

SCR=VaR0.995
(
N0 − Ñ1

)
:= inf

{
x
∣∣A(

N0 − Ñ1 < x
)> 0.995

}
. (5.4)

Here, Ñ1 is defined as the discounted value of N1.

5.1.2. Example: Variable Annuities
A variable annuity is a well-known contract offered by insurers. With a variable annuity, the policyholder
typically pays a premium and chooses how this premium is invested (in stocks, bonds, money market,
etc.). In return, the policyholder receives a single or periodic payment from the insurer. The size of the
payments depends on the performance of the investment fund during the so-called accumulation phase.
The insurer also offers additional guarantees (or riders) in exchange for a fee, as an insurance against
unforeseen losses. There exist different types of guarantees, for instance

• Guaranteed Minimum Accumulation Benefit (GMAB) guarantees a minimum payout on expira-
tion of the annuity, for example the initial premium. If the fund value exceeds this amount, the
policyholder receives a payment equal to the fund value.

• With the Guaranteed Minimum Withdrawal Benefit (GMWB) a policyholder can annually with-
draw a certain percentage (usually around 7%) of the initial premium until the entire amount is
recovered. The policyholder can continue to make these withdrawals, even if the fund value has
been depleted.
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• Guaranteed Minimum Death Benefit (GMDB) offers a payout if the policyholder dies during the
lifetime of the variable annuity.

More information regarding different guarantees and how to price them can be found in Bauer et al.
(2008). Note that these guarantees can also be combined to meet the demands of the policyholder, which
can lead to complex products. It is therefore important for the insurer to identify the risks associated with
these products and to be protected against these risks by holding some reserves. These reserves should,
in case of lacking fund values, be able to pay the claims of policyholders and they must at least be equal to
the SCR of the offered products. This indicates the importance of the SCR: inaccurate estimations could
potentially lead to the default of an insurer during a financial crisis.

The remainder of this section will be dedicated to deriving the fund dynamics and SCR of two different
variable annuities: one with a GMAB rider and the other with a GMWB rider.

Guaranteed Minimum Accumulation Benefit
In this example we will assume the fund only contains stocks, but the derivation is similar when different
assets are combined. Denote the stock and fund value by St and Ft, respectively, and we define the initial
premium as G. Finally, we assume the payout at maturity T is at least equal to the initial premium, in
other words

PayoutT =max(FT ,G). (5.5)

The dynamics of the fund are very similar to the stock dynamics, except for the fee α which is deducted
from the fund, as payment to the insurer. This fee can be thought of as a dividend yield. According to
Milevsky and Salisbury (2001), we therefore obtain

dFt = dSt
Ft

St
e−αt, F0 =G. (5.6)

The specific dynamics depend on the assumptions regarding St. In this chapter we will assume the
Black-Scholes model under the observed real-world measure A, giving

dFA
t = (µ−α)FA

t dt+σFA
t dWA

t , F0 =G. (5.7)

Moreover, a risk-neutral Heston model will be implemented, leading to
dFt = (r−α)Ftdt+p

vtFtdWF
t , F0 =G,

dvt = κ(v̄−vt)dt+γpvtdWv
t ,〈

dWS
t ,dWv

t
〉= ρdt.

(5.8)

The income is generated by the accumulated fees, hence

At =
∫ t

0
αFA

s eµ(t−s)ds. (5.9)

The liabilities, on the other hand, depend on the final value of the fund:

• If FT ≥G: the policyholder receives FT and the insurer has no liabilities.
• If FT <G: the policyholder receives G and the liabilities of the insurer are equal to G−FT .

Moreover, the insurer continues to claim future fees, hence, according to (5.2) we can write the liabilities
as

L t = EQt

[
e−r(T−t) max(G−FT ,0)−

∫ T

t
e−r(s−t)αFsds

∣∣∣∣Ft

]
= e−r(T−t)EQt [max(G−FT ,0)|Ft]−EQt

[∫ T

t
e−r(s−t)αFsds

∣∣∣∣Ft

]
=Put(Ft,G)−

∫ T

t
e−r(s−t)αEQt [ Fs|Ft]ds

=Put(Ft,G)−
∫ T

t
e−r(s−t)αFte(r−α)(s−t)ds
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=Put(Ft,G)−αFt

∫ T

t
e−α(s−t)ds,

=Put(Ft,G)+Ft

(
e−α(T−t) −1

)
, (5.10)

where Put(Ft,G) denotes the value of a European put option on the fund at time t with strike price G and
dividend yield α. Now, we can substitute these definitions in (5.4) to obtain

SCR=VaR0.995
(
N0 − e−rN1

)
=VaR0.995

(
A0 −L0 − e−r(A1 −L1)

)
=VaR0.995

(
0−Put(F0,G)−F0

(
e−αT −1

)
− e−r

[∫ 1

0
αFseµ(1−s)ds−Put(F1,G)−F1

(
e−α(T−1) −1

)])
=VaR0.995

(
e−r

[
Put(F1,G)+F1

(
e−α(T−1) −1

)
−

∫ 1

0
αFseµ(1−s)ds

])
−Put(F0,G)−F0

(
e−αT −1

)
= e−rVaR0.995 (Put(F1,G)− g(F1,1))−Put(F0,G)+ g(F0,0). (5.11)

With

g(Ft, t)=
∫ t

0
αFseµ(t−s)ds+Ft

(
1− e−α(T−t)

)
, (5.12)

which can be thought of as the sum of realized and expected fees. In this case, the SCR depends on
the real-world distribution of F1, which determines g(F1,1) and influences the risk-neutral valuation
of Put(F1,G). The distributions of g(F1,1) and Put(F1,G) can be obtained by means of a Monte Carlo
simulation, which takes the following steps

• First, the net policy value N0 is determined, according to definition (5.3).
• Hereafter, the fund value Ft along with other explanatory variables are simulated according to the

real-world measure up to time t = 1.
• Then, the values of Put(F1,G) and g(F1,1) are evaluated for each trajectory. The value of g(F1,1)

can be obtained directly from the trajectory of Ft, but Put(F1,G) requires a risk-neutral valuation
for which the risk-neutral measure at time t = 1 is required.

• Finally, the simulated values are combined to construct the loss distribution. The SCR corresponds
to the 99.5% quantile of this distribution.

In order to clarify this process, we will discuss two possible scenarios of Ft, along with their income and
liabilities.

Consider a Black-Scholes real-world measure as defined in (5.7), with F0 = 1000 and α= 0.01. More-
over, assume that the VIX index follows (5.48), with VIX0 = 20.7. The process parameters are equal to
(5.49). At times t = 0 and t = 1, we will value the European put option according to the Heston model
defined in (5.8), with

v̄ = 0.08, γ= 0.55, r = 0.04, T = 5, G = 1000. (5.13)

Initially, we can determine the net policy value:

N0 =−Put(F0,G)+ g(F0,0)

=−Put(F0,G)+F0

(
1− e−αT

)
+

∫ 0

0
αFse−sµds

=−83.7, (5.14)

where the put option is priced according to the FFT algorithm described in appendix A.13. Hereafter, the
fund value and the other explanatory variables are simulated according to the real-world measure. Two
possible scenarios of the fund value and the accompanied VIX index can be found in figure 5.1.

Clearly, both scenarios will give different net policy values at t = 1,

N(i)
1 =−Put(F (i)

1 ,G)+ g(F (i)
1 ,1). (5.15)
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Figure 5.1: Possible scenarios of the fund value and VIX index over a 1-year horizon

The sum of realized and expected fees, g(F (i)
1 ,1), can be calculated directly from the trajectories,{

g(F (1)
1 ,1)= ∫ 1

0 αF (1)
s eµ(t−s)ds+F (1)

1
(
1− e−α(T−1))= 38.4,

g(F (2)
1 ,1)= ∫ 1

0 αF (2)
s eµ(t−s)ds+F (2)

1
(
1− e−α(T−1))= 60.2.

(5.16)

Fees are relative to the fund value, hence high fund values lead to higher realized and expected fees,
which explains the values of g(F (i)

1 ,1). The put option depends on the risk-neutral measure at time t = 1.
As discussed before, we can assume v̄ and γ to be either constant or dependent on the state of the market.
In case of constant parameters, the realized put values are equal to{

Put(F (1)
1 ,G)= 211.9,

Put(F (2)
1 ,G)= 75.9.

(5.17)

The fund value of the first scenario is much more likely to end up below the guarantee of G = 1000, as it is
already below this level. Consequently, the expected liabilities at t = 1 are much higher in this scenario.
The 1-year losses are now given by{

l(1) = N0 − e−rN(1)
1 = N0 + e−rPut(F (1)

1 ,G)− e−r g(F (1)
1 ,1)= 83.0,

l(2) = N0 − e−rN(2)
1 = N0 + e−rPut(F (2)

1 ,G)− e−r g(F (2)
1 ,1)=−68.6.

(5.18)

These examples show that increasing fund values lead to gains (or a negative loss in this case) and de-
creasing fund values lead to losses. Now, by generating many simulations, the distribution of l can be
derived and the SCR corresponds to the 99.5% quantile of this distribution.

If we assume a VIX-dependent v̄ and γ, then, according to the VIX Heston model discussed in chapter
3, we obtain  (v(1)

1 ,γ(1)
1 )= (0.067,0.703),

(v(2)
1 ,γ(2)

1 )= (0.059,0.294).
(5.19)

This affects the expected liabilities at t = 1 and consequently the losses become{
l(1) = 63.8,
l(2) =−84.5.

(5.20)

The difference between the two approaches is around 20% for these trajectories, which already indicates
the impact of different assumptions regarding the risk-neutral measure at t = 1.

Guaranteed Minimum Withdrawal Benefit
The fund dynamics of the GMWB rider are very similar to the GMAB dynamics, except for one key
feature: the GMWB allows for withdrawals during the lifetime of the product. We will model the with-
drawal behaviour according to the static model presented in Milevsky and Salisbury (2005). This model
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assumes maximum withdrawals from the policyholder until the initial premium has been recovered. This
behaviour corresponds to {

dFt = dSt
St

Fte−αt −wdt, F0 =G,
w = G

T .
(5.21)

Substituting this definition in a real-world Black-Scholes model gives

dFA
t = (µ−α)FA

t dt−wdt+σFA
t dWA

t , F0 =G. (5.22)

Or equivalently, for a risk-neutral Heston model,
dFt = (r−α)Ftdt−wdt+p

vtFtdWF
t , F0 =G,

dvt = κ(v̄−vt)dt+γpvtdWv
t ,〈

dWS
t ,dWv

t
〉= ρdt.

(5.23)

Due to withdrawals of the policyholder, it might occur that the fund is depleted before maturity. In that
case, the withdrawals are paid by the insurer instead of the fund. To this end, we will introduce two
different hitting times. The first hitting time corresponds to the first time the fund value hits zero under
the real-world measure

τ1 = inf{t : FA
t ≤ 0, t ≥ 0}. (5.24)

The second hitting time is similarly defined, but under the risk-neutral measure,

τ2 = inf{t : Ft ≤ 0, t ≥ 0}, (5.25)

where FA
t and Ft correspond to the fund value at time t under the real-world and risk-neutral measure,

respectively. Both hitting times play an important role in the evaluation of this product. There are a few
possible scenarios

• When τ1 ≥ t, the fund has not been depleted yet at time t and all withdrawals have been paid by
the fund. Moreover, the insurer can collect its fees and the income is equal to

At =
∫ t

0
αFA

s eµ(t−s)ds. (5.26)

• When τ1 < t, the fund has been depleted before time t and the withdrawals after τ1 have been paid
by the insurer, leading to the following income

At =
∫ τ1

0
αFA

s eµ(t−s)ds−
∫ t

τ1

weµ(t−s)ds. (5.27)

Combining these possibilities gives

At =
∫ τ1∧t

0
αFA

s eµ(t−s)ds−
∫ t

τ1∧t
weµ(t−s)ds, (5.28)

where τ1 ∧ t is defined as the minimum of τ1 and t. The liabilities can be defined in a similar way, by
distinguishing the following scenarios

• When τ1 < t, the fund has been depleted before time t and all future withdrawals must be paid by
the insurer. Hence, the liabilities are given by

L t =
∫ T

t
we−r(s−t)ds. (5.29)

• When τ1 ≥ t, the fund has not been depleted yet and some future liabilities are paid by the fund.
Furthermore, if τ2 ≥ T, all withdrawals are paid by the fund and there are no additional costs for
the insurer. However, if τ2 < T, some future withdrawals are paid by the insurer. Similar to the
income, we can describe this as

L t = EQt

[∫ T

τ2∧T
we−r(s−t)ds−

∫ τ2∧T

t
αFse−r(s−t)ds

∣∣∣∣Ft

]
. (5.30)
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We can rewrite these expressions into

L t =
∫ T

t
we−r(s−t)ds−1(τ1 > t)EQt

[∫ T

t
1(τ2 > s) (αFs +w) e−r(s−t)ds

∣∣∣∣Ft

]
= w

r

(
1− e−r(T−t)

)
−1(τ1 > t)EQt

[∫ T

t
1(τ2 > s) (αFs +w) e−r(s−t)ds

∣∣∣∣Ft

]
, (5.31)

where 1(·) is defined as the indicator function which is equal to 1 when its argument is true and 0
otherwise. Substituting these definitions in (5.4) will define the SCR for a variable annuity with the
Guaranteed Minimum Withdrawal Benefits rider. The calculation of the SCR requires, similar to the
GMAB case, a risk-neutral valuation. However, unlike the GMAB, this conditional expectation does not
have an analytical solution and one must resort to different methodologies for its evaluation. In the next
section we will discuss how to efficiently and accurately determine this conditional expectation.

5.2. Evaluating the conditional expectation
In the previous section we have discussed how to determine the SCR for different variable annuity riders.
Both variable annuity riders required a risk-neutral valuation at time t = 1, since the liabilities are by
definition conditional expectations under the risk-neutral measure. Often there is no analytical expres-
sion for L t, thus the evaluation of the conditional expectation requires an approximation. In this section
we will review two different methodologies that can approximate this conditional expectation: Nested
Monte Carlo simulation and the Least-Squares Monte Carlo method.

5.2.1. Nested Monte Carlo simulation
A common approach to evaluate expectations is the Monte Carlo method, which simulates many paths of
the random variables in question and evaluates the outcome for each trajectory i. For example, in order
to evaluate the expectation of a variable annuity with the GMWB rider at time t = 0, we need to evaluate

L(i)
0 =

∫ T

0
1(τ2 > s)

(
αF (i)

s +w
)

e−rsds. (5.32)

The expectation is approximated by the mean of all M simulated trajectories

EQ0

[∫ T

0
1(τ2 > s) (αFs +w) e−rsds

∣∣∣∣F0

]
≈ 1

M

M∑
i=1

L(i)
0 . (5.33)

This principle is applied in Nested Monte Carlo simulation as well, but with t > 0. The key difference
between Monte Carlo simulations at t = 0 and t > 0 are the initial values (such as the initial value of Ft).
In case of t = 0, the initial values can be observed and are therefore deterministic. But when t > 0, the
initial values are unknown and become random variables that require a (real-world) simulation. Conse-
quently, the Monte Carlo approximations as described above are nested within each simulated trajectory.
We therefore have to distinguish between outer (real-world) and inner (risk-neutral) simulations. The
outer simulations determine the initial values of the risk-neutral valuation at time t. The inner simula-
tions evaluate the conditional expectation, by means of a Monte Carlo simulation. A visualization of this
procedure can be found in figure 5.2.

This method is intuitively appealing, but does experience some drawbacks. The main issue of this
method is the computational complexity. Suppose an accurate estimation of the SCR requires 10.000
outer simulations and each simulation requires another 10.000 inner simulations to accurately estimate
the conditional expectation. This leads to a total of 10.000.000 inner simulations, which can be very time
consuming. Moreover, Bauer et al. (2010) shows that this approach is biased. To this end, a more efficient
and unbiased method called Least-Squares Monte Carlo was developed, which we will discuss in the next
section.

5.2.2. Least-Squares Monte Carlo method
The Least-Squares Monte Carlo method was first proposed by Longstaff and Schwartz (2001) for the
valuation of American options. However, Bauer et al. (2010) was the first to implement it in an SCR
context, to the best of our knowledge. The main purpose of the Least-Squares Monte Carlo algorithm is
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t = 0 t = 1 t = TReal-World Risk-Neutral

Figure 5.2: Schematic overview of Nested Monte Carlo simulation.

to reduce the number of inner simulations, possibly even to 1 path. The accuracy of the inner estimates
is drastically reduced by reducing the number of inner simulations, but by combining the results of all
outer simulations, the inner errors are cancelled out. Below, we will describe this process in detail.

The Least-Squares Monte Carlo algorithm can be separated into three phases. In the first phase,
regression variables are simulated. This phase is very similar to the Nested Monte Carlo approach,
but the number of inner simulations is drastically reduced. The conditional expectation, however, is still
approximated according to the inner simulations with (5.33), possibly containing a large error. This phase
is graphically presented in figure 5.3.

t = 0 t = 1 t = TReal-World Risk-Neutral

Figure 5.3: First phase of the Least-Squares Monte Carlo method.

In the second phase a regression function is constructed using the simulated conditional expectations
from the first phase. The conditional expectation is approximated by a number of basis functions φn(Ft,
Yt),

EQt [·|Ft]≈ f (Ft,Yt) :=
N∑

n=1
anφn(Ft,Yt), (5.34)

where Yt is defined as the vector of explanatory variables at time t, which are necessary to estimate the
conditional expectation besides the fund value Ft. The idea is to find the set of coefficients an and basis
functions φn, such that the conditional expectation is replicated as accurately as possible. For the basis
functions, we will first consider regular polynomials

φn(Ft,Yt)= Fn1
t

y∏
i=1

Yt(i)ni+1 . (5.35)
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With Yt(i), the ith component of the explanatory variables vector at time t and n j the degree of explana-
tory variable j. We will compare the performance of the regular polynomial to the Legendre polynomial,{

φn(Ft,Yt)=L (Ft,n1)
∏y

i=1 L (Yt,ni+1),
L (x,ni)= 1

2ni ni !
dni
dxni [(x2 −1)ni ]. (5.36)

The optimal coefficients â are defined such that the sum of squared errors is minimized

â = argmin
a∈Ry+1

{
M∑

i=1

(
L(i)

t −
N∑

n=1
anφn

(
F (i)

t ,Y (i)
t

))2}
, (5.37)

where L(i)
t is the Monte Carlo approximation of trajectory i, evaluated in the first phase. Since the model

is a linear combination of basis functions, we can determine these coefficients by

â = (X T X )−1X T Lt, (5.38)

with

X T =


φ1(F (1)

t ,Y (1)
t ) · · · φ1(F (M)

t ,Y (M)
t )

...
...

φN (F (1)
t ,Y (1)

t ) · · · φN (F (M)
t ,Y (M)

t )

 , Lt =


L(1)

t
...

L(M)
t

 . (5.39)

Besides finding the optimal coefficients, it is also crucial to correctly identify the optimal polynomial
degree. If the polynomial degree is too low, the regression might fail to capture the complexity of the
conditional expectation. On the other hand, the polynomial degree cannot be set too high due to large
errors in the Monte Carlo approximations. We have illustrated this principle in figure 5.4. In this figure
we have estimated a Black-Scholes put option for a range of asset values, using the Least-Squares Monte
Carlo approach with different polynomial degrees. The lower polynomial degrees seem to fail to capture
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Figure 5.4: Underfitting versus overfitting Least-Squares Monte Carlo for a Black-Scholes Put option with: Strike = 1000, T = 9,
r = 0.04, σ= 0.2, 500 outer points and 20 inner simulations per outer point.

the shape of the put option value and the higher polynomial degrees are too dependent on the errors of
the Monte Carlo approximation. Thus, one must test different degrees in order to find the optimal bal-
ance between underfitting and overfitting, with for example a trial-and-error procedure. In case of figure
5.4 this yields

f (Ft)= a1 +a2Ft +a3F2
t +a4F3

t +a5F4
t . (5.40)
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In the final phase, another real-world simulation is executed. But, contrary to the Nested Monte
Carlo approach, no inner simulations are required to approximate the conditional expectation. Instead,
the conditional expectation is approximated using f (Ft,Yt), which has been defined in the second phase
of the algorithm. We have visualized the final phase of the algorithm in figure 5.5.

t = 0 t = 1

L(i)
t = f (F(i)

t ,Y (i)
t )

Real-World

Figure 5.5: Final phase of Least-Squares Monte Carlo

Finally, it is important to optimize the resource allocation or, in other words, the ratio between outer
and inner simulations. If the number of total inner simulations is bounded by, say, 10.000, there are
many possibilities, some of which we have graphically presented in figure 5.6. Again, we have plotted
the Least-Square Monte Carlo estimation of a Black-Scholes put option for a range of asset values. The
regression function follows (5.40).

600 800 1000 1200 1400 1600 1800

Asset Value

0

20

40

60

80

100

120

140

160

180

O
p
ti

o
n
 V

a
lu

e

10 outer simulations and 1000 inner simulations

Real option price

Simulated option price

Predicted option price

600 800 1000 1200 1400 1600 1800

Asset Value

0

50

100

150

200

250

O
p
ti

o
n
 V

a
lu

e

100 outer simulations and 100 inner simulations

Real option price

Simulated option price

Predicted option price

600 800 1000 1200 1400 1600 1800

Asset Value

0

50

100

150

200

250

300

O
p
ti

o
n
 V

a
lu

e

1000 outer simulations and 10 inner simulations

Real option price

Simulated option price

Predicted option price

600 800 1000 1200 1400 1600 1800

Asset Value

0

100

200

300

400

500

600

O
p
ti

o
n
 V

a
lu

e

10000 outer simulations and 1 inner simulation

Real option price

Simulated option price

Predicted option price

Figure 5.6: Different resource allocations Least-Square Monte Carlo, for a Black-Scholes Put option, with Strike = 1000, T = 9,
r = 0.04 and σ= 0.2.

Note that,

• If we use 10.000 outer simulations and 1 inner simulation per outer simulation, there are huge
errors in the inner Monte Carlo approximations. However, this set-up will also give more regression
points able to nullify these errors.

• If 10 outer simulations are used then the number of inner simulations can be increased to 1.000 per
outer simulation. This will give fewer regression points, but each point will have a more accurate
inner Monte Carlo estimate.

In section 5.2.4 we will discuss some theoretical properties of the Least-Squares Monte Carlo algorithm
that can be used to identify the theoretical optimal set-up. Moreover, in appendix F, a numerical test will
be implemented to test these theoretical properties.
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5.2.3. Alternative approaches
Above, we have discussed two possible methodologies that evaluate conditional expectations at t > 0:
Nested Monte Carlo simulation and the Least-Squares Monte Carlo method. For completeness, we will
present some alternative approaches that have been proposed to determine the SCR.

Replicating portfolio
The guarantees of variable annuities are often very similar to options, as we have seen with the GMAB
rider and the European put option. To this end, Schrager (2008) suggests replicating portfolios to deter-
mine the liabilities of insurance products. The replicating portfolio consists of standard financial assets
and it should match the value of liabilities as good as possible2. A real-world Monte Carlo simulation is
performed and, for each trajectory, the value of the replicating portfolio is a predictor for L(i)

t .

The main advantages of this approach are its efficiency and interpretability. Unfortunately, many fea-
tures cannot be captured by standard financial assets, such as mortality rate and policyholder behaviour.
It is therefore impossible to take all risk-drivers into account, which greatly reduces the accuracy for
complex products.

Curve fitting
In Algorithmics (2011) an algorithm very similar to the Least-Squares Monte Carlo approach is discussed:
Curve Fitting. In the first phase of this approach, only a few outer scenarios are generated and each outer
scenario performs an accurate Monte Carlo simulation, with many inner scenarios. In the second phase,
similar to Least-Squares Monte Carlo method, a regression function is fitted using these scenarios and in
the final phase this function is used to determine the expected liabilities at t = 1. This procedure is very
similar to the top left plot in figure 5.6.

Just like the Least-Squares Monte Carlo algorithm, Curve Fitting is able to incorporate many risk-
drivers. However, complex products with many risk-drivers still require lots of outer scenarios and this
approach will behave like Nested Monte Carlo simulation in terms of efficiency. Moreover, this algorithm
is heavily dependent on the few outer scenarios generated in the first phase and it requires an expert
opinion to select appropriate scenarios. The Least-Squares Monte Carlo approach does not suffer from
these drawbacks, since it generates many outer scenarios.

Stochastic Grid Bundling Method
A modification of the least-squares method developed by Longstaff and Schwartz is proposed in Jain
and Oosterlee (2015). This approach is called the Stochastic Grid Bundling Method (SGBM) and it was
first implemented in an SCR environment by Feng et al. (2017). There are two key differences between
the Stochastic Grid Bundling Method and Least-Squares Monte Carlo. First of all, the Stochastic Grid
Bundling Method maps the domain into disjoint bundles and the regression is performed on each indi-
vidual bundle instead of the entire domain. The second difference lies in the regression function. The
regression of the Least-Squares Monte Carlo approach is based on the expected discounted liabilities, but
the regression of the Stochastic Grid Bundling Method aims at replicating the option value and relies on
the moments of the characteristic function. These adjustments should improve the accuracy compared to
the Least-Squares Monte Carlo algorithm, at the cost of a (slightly) more demanding procedure.

In this chapter we are evaluating the impact of time-dependent risk-neutral parameters and, apart
from prediction accuracy, we do not expect different outcomes between SGBM and Least-Squares Monte
Carlo. To this end, we will only implement the Least-Squares Monte Carlo approach, as it is easier to
interpret and more frequently used in the insurance business.

Sampling methods
The first phase of the Least-Squares Monte Carlo algorithm uses real-world simulations as initial values
for the inner simulations. However, Cathcart (2012) shows that, even though this approach leads to an
accurate overall performance, it is slightly less accurate in the tails of the distribution. He proposes
sampling methods instead of real-world simulations. Compare, for example, sample points from a real-
world Heston simulation to the quasi-random Sobol sampling method (see Sobol and Levitan (1999)),
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Figure 5.7: Heston versus Sobol sample points.

which is shown in figure 5.7. The sample points of the Heston model are densely clustered, which can
be beneficial because it assigns more weight and thus more accuracy to realizations that are more likely
to occur. On the other hand, fewer points are assigned to the tails of the distribution, making it more
difficult to give an accurate tail prediction. Many important quantities in risk-management rely on the
tails, remember for example the SCR which depends on the 99.5% quantile of the loss distribution. It can
therefore be advantageous to redistribute the sampling points. The Sobol sampling method, for example,
maximizes the distance between points across the entire domain. This way, more points are assigned to
the tail of the distribution and its predictions should consequently be more accurate. It will, however,
result in less accurate estimates over the entire distribution, because the accuracy in other parts of the
domain is reduced. So, depending on the region of interest, one can decide upon different sampling
methods.

5.2.4. Error analysis
In this section we will discuss some theoretical properties of the Least-Squares Monte Carlo algorithm.
There are many degrees of freedom in this algorithm, as discussed in section 5.2.2. For example, the
type of basis function, sampling methods and resource allocation all influence the stability and accuracy
of this approach. To this end, we will discuss the theoretical properties of the different set-ups in this
section.

In general, we can think of the Monte Carlo observations as a combination of the optimal regression
function and an error term

Lt = X a∗+ε, (5.41)

where Lt and X are defined as in (5.39) and the optimal regression coefficients and vector of error terms
are denoted by a∗ and ε, respectively. The optimal regression coefficients are defined as

a∗ = argmin
a∈Ry+1

{
M∑

i=1

(
L∗

(
F (i)

t ,Y (i)
t

)
−

N∑
n=1

a∗
nφn

(
F (i)

t ,Y (i)
t

))2}
, (5.42)

where L∗
(
F (i)

t ,Y (i)
t

)
are defined as the true expected liabilities for explanatory variables

(
F (i)

t ,Y (i)
t

)
. More-

over, ε is assumed to have independent identically distributed terms with

E[ε]= 0, E[εεT ]=σ2
ε I. (5.43)

The objective of the algorithm is to minimize the distance between the optimal regression coefficients a∗
and the observed regression coefficients â as defined in (5.38),

â = (X T X )−1X T Lt

= (X T X )−1X T (
X a∗+ε)

= a∗+ (X T X )−1X Tε. (5.44)

2These portfolios are very similar to the hedging portfolio discussed in the previous chapter.
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Given X (which is in our case equal to the basis functions corresponding to set of explanatory variables
at t = 1), this â has a mean equal to a∗, as ε has mean 0. Moreover, the variance-covariance matrix is
equal to

Var(â)= E[ââT ]

= E
[
a∗+ (X T X )−1X Tε

(
(X T X )−1X Tε

)T
]

= E
[
(X T X )−1X TεεT X (X T X )−1

]
= (X T X )−1X TE

[
εεT

]
X (X T X )−1

= (X T X )−1X Tσ2
ε IX (X T X )−1

=σ2
ε (X T X )−1X T X (X T X )−1

=σ2
ε (X T X )−1. (5.45)

Hence, the variance of the estimate depends on the variance of the (inner) Monte Carlo estimates σ2
ε

and the matrix (X T X )−1, which depends on the sampling method and type of basis function. In Cathcart
(2012) it is argued that, ideally, the covariance between the regression coefficients equal 0, as this reduces
the variance of the final estimates. To this end, one might consider orthogonal polynomials, such as
the Legendre polynomial discussed in section 5.2.2. A polynomial sequence, φn(x) with n ∈ {0,1, . . . } is
considered orthogonal on interval [a,b] when

b∫
a

φn(x)φm(x)dx =
{

0 if m 6= n,
cn if m = n, (5.46)

with constant cn. Hence, if the explanatory variables are evenly spaced across [a,b] and the number
of outer samples converges to infinity, then (X T X )−1 will converge to a diagonal matrix. The Legendre
polynomial is orthogonal on the interval [−1,1]. By transforming the features

x 7→ 2
x− xmin

xmax − xmin
−1, (5.47)

the Legendre basis functions should estimate an â with lower covariance between its components than
the regular polynomial, as long as the explanatory variables are evenly spaced across the domain. This
also implies that Sobol sampling should result in more stable predictions than real-world simulation
sampling, as it is more evenly spaced across the domain, which can be seen in figure 5.7.

Finally, there is the trade-off between inner and outer samples. Increasing the number of inner
samples results in a lower inner Monte Carlo variance σ2

ε , but increasing the number of outer samples
results in lower (co)variance between the regression coefficients through (X T X )−1. In Broadie et al. (2015)
a theoretical analysis of this problem is presented. In this analysis they show that the asymptotic bias
is unaffected by the resource allocation, but the asymptotic variance is minimized when the maximum
amount of outer samples and only a single inner sample is used. Hence, in terms of the mean-squared
error (which can be decomposed into a bias and variance term), it is theoretically optimal to maximize
the amount of outer samples.

5.3. Impact analysis
In the previous section we have presented many algorithms capable of calculating the SCR. For a num-
ber of reasons discussed in section 5.2.3, we will implement the Least-Squares Monte Carlo method.
The main purpose of this test is to show the impact on the SCR of different assumptions regarding the
risk-neutral measure at t = 1. We will compare a risk-neutral measure with constant parameters, which
we will refer to as the original risk-neutral measure, to a risk-neutral measure with time-dependent pa-
rameters as defined in chapter 3, which will be referred to as the time-dependent risk-neutral measure.
In this section, the parameters of the time-dependent risk-neutral measure will follow the VIX Heston
model. The test will be performed on two different variable annuities: Guaranteed Minimum Accumula-
tion Benefit and Guaranteed Minimum Withdrawal Benefit.
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In this section, we will compare three scenarios. Each scenario will have different initial values
and consequently the initial expected liabilities, L0, will differ as well. In this part we will assume a
no-arbitrage fee, i.e. a fee for which L0 is equal to zero. The general contract details of the variable
annuities can be found in table 5.1 and the initial values of the different scenarios accompanied with the
fair premiums are presented in table 5.2.

Parameter Value

F0 1000
G 1000
w 7%
TGMAB 10
TGMWB 14.28
r 0.04

Table 5.1: General contract details of the GMAB and GMWB riders.

Parameter Scenario 1 Scenario 2 Scenario 3

v0 0.04 0.01 0.27
v̄0 0.08 0.025 0.24
γ0 0.55 0.05 1.4
αGMAB 0.0174 0.0057 0.0345
αGMWB 0.0137 0.0041 0.0284

Table 5.2: Initial values and fair premiums of the GMAB and GMWB riders.

5.3.1. Implementation
The implementation of a risk-neutral measure with constant versus time-dependent parameters is very
similar in the Least-Squares algorithm, but does differ on some key aspects, which we will discuss below.

First phase
The first phase starts with generating sample points of the explanatory variables at t = 1. These sample
points can either be generated by a real-world simulation or a sampling method, as we have discussed in
section 5.2.2. We will briefly review the implementation of both approaches.

In our test we will assume the fund value to follow a Geometric Brownian Motion with initial value
F0 = 1000, so in case of the GMAB and GMWB riders, the fund value will follow (5.7) and (5.22), respec-
tively. The VIX index will be modelled simultaneously, following a mean-reverting path{

dvixt = κvix(vixMean −vixt)+γvixvixλvix
t

(
ρvixdWS

t +
√

1−ρ2
vixdWvix

t

)
,

VIX = 100 ·vix.
(5.48)

The process parameters are estimated with the Generalized Method of Moments (see Hansen (1982)),

σ= 0.21, µ= 0.05, κvix = 4.964, vixMean = 0.207, γvix = 1.859, λvix = 1.271. (5.49)

Moreover, we set ρvix =−0.75, which is in line with observations of the risk-neutral market. The stochas-
tic differential equations will be discretized by the Milstein scheme. For each simulated trajectory i, the
parameters of the original risk-neutral measure at time t = 1 are defined as

F (i),Q
1 = F (i),A

1 ,

v(i)
1 =

(
0.0140+0.0090 ·VIX(i)

1

)2
,

v̄(i)
1 = v̄0,
γ(i)

1 = γ0.

(5.50)
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The time-dependent risk-neutral measure will follow the VIX Heston model derived in chapter 3,

F (i),Q
1 = F (i),A

1 ,

v(i)
1 =

(
0.0140+0.0090 ·VIX(i)

1

)2
,

v̄(i)
1 =

(
0.0957+0.0087 ·VIX(i)

filter1

)2
,

γ(i)
1 = 9.6479 ·10−5 +0.0270 ·VIX(i).

(5.51)

The VIX filter component is as defined in section 3.2. By simulating many paths, one obtains a sample
set of explanatory variables at t = 1, consistent with the real-world measure.

In case of Sobol sampling, we do not need to generate real-world trajectories. Instead, we generate
sample points using a predefined algorithm, which is, in case of Sobol sampling, available in many soft-
ware packages. We will, however, slightly adjust the algorithm. Due to correlations, it is unlikely to
simultaneously obtain a high VIX index and a high fund value. Therefore, we will split the domain into
several bundles and assign points to those more likely to occur. In doing so, we ensure that the grid still
contains over 99.9% of the real-world simulations, but the accuracy is increased in the regions of interest,
for example the tail of the distribution. In case of the GMAB and GMWB riders, the sample points are
distributed as in figure 5.8.
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Figure 5.8: Adjusted Sobol sampling for VIX index and fund value.

The time-dependent risk-neutral measure also requires the VIX trend component, besides the fund
value and VIX index. The trend is highly correlated to the VIX index and it is therefore disadvantageous
to generate a 3-dimensional Sobol sample space, as we would lose the correlation structure. To this end,
we will first generate a 2-dimensional Sobol sample space, similar to figure 5.8. The trend component
will then be sampled according to the VIX index. Based on simulated data we have defined upper and
lower boundaries, such that 99.9% of the trend component is captured within the intervals between those
boundaries,

lfilter = 3+0.4 ·VIX, ufilter = 16+VIX. (5.52)

Finally, each sample point in figure 5.8 will be assigned a 1-dimensional Sobol sample space between the
upper and lower boundary of (5.52). This way, we obtain a 3-dimensional sample space where the VIX
is realistically correlated to its trend component. A visualization of the VIX index sampled according to
figure 5.8 and its accompanied VIXfilter sample points is given in figure 5.9. Again, the parameters of the
risk-neutral measure at time t = 1 are given by (5.50) and (5.51).

The risk-neutral simulation at t = 1 is similar for both risk-neutral measures, apart from the different
parameters, as they both follow the Heston model (see (5.8) and (5.23)). The simulation scheme for the
Heston model is described in appendix E.

During this phase, Simpson’s rule will be used to approximate the integral expressions presented in
section 5.1.2, ∫ t1

t0

h(t, ·)dt ≈ ∆t
3

N/2∑
j=1

[
h(t2 j−2, ·)+4h(t2 j−1, ·)+h(t2 j, ·)

]
, (5.53)

with ti = t0 + i∆t and ∆t = t1−t0
N .
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Figure 5.9: VIX and the accompanied VIXfilter sample points.

Second phase
In the second phase of the algorithm a regression is performed in the form of basis functions and their
weights. The basis functions will depend on the explanatory variables at t = 1 and these will differ for the
two risk-neutral measures. The original risk-neutral measure only requires two explanatory variables,
the fund value and volatility at time t = 1. All other parameters do not change and will therefore not be
able to explain differences between outcomes. The time-dependent measure will require two additional
explanatory variables, v̄ and γ. These parameters are allowed to change in the real-world simulation
and might therefore be able to explain different outcomes of the risk-neutral valuation at time t = 1. For
example, in case of a regular polynomial basis function, the basis functions will have the following shape{

φn,original = Fn1
1 vn2

1 ,
φn,time-dependent = Fn1

1 vn2
1 v̄n3

1 γ
n4
1 . (5.54)

Final phase
The final phase starts with a real-world simulation identical to the one described in the first phase.
Hereafter, the loss function can be evaluated,

l(i) = N0 − e−rN(i)
1

= A0 −L0 − e−r(A(i)
1 −L(i)

1 )

= e−rL(i)
1 − e−r A(i)

1 −L0, (5.55)

where L t and At are defined as in section 5.1.2. Moreover, L(i)
1 is obtained from the regression function

constructed in the second phase, A(i)
1 is evaluated by the Simpson’s rule applied to the real-world tra-

jectory and L0 is estimated with a risk-neutral Monte Carlo simulation at t = 0. From these simulated
losses we will be able to derive its distribution and with it, the 99.5% quantile necessary to determine the
SCR.

5.3.2. Set-up Least-Squares Monte Carlo method
As described in section 5.2.2, the Least-Squares Monte Carlo method has some degrees of freedom, such
as the type of basis function, resource allocation and sampling method. In this chapter, we wish to assess
the impact on the SCR as accurately as possible. To this end, we wish to optimize the accuracy of the
Least-Squares Monte Carlo method. Appendix F describes the analyses we performed to determine the
optimal set-up for this test. A brief overview of this set-up can be found in table 5.3. Note that these
findings are in line with the analyses of section 5.2.4, except for the type of basis function which did not
appear to have a significant impact on the accuracy.

5.3.3. Guaranteed Minimum Accumulation benefit
After testing the optimal set-up of the Least-Squares Monte Carlo algorithm, we are able to assess the
impact of assuming time-dependent risk-neutral parameters at t = 1. For 100.000 real-world simulations,
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Feature Optimal set-up

Basis function Regular polynomial
Polynomial degree 4
Sampling method Sobol sampling (see figure 5.8)
Outer simulations original Q 200.000
Inner simulations original Q 1
Outer simulations time-dependent Q 500.000
Inner simulations time-dependent Q 1

Table 5.3: Optimal set-up LSMC algorithm.

the loss function as defined in (5.55) is evaluated and from these trajectories we are able to construct a
probability density function. This process is repeated for three different scenarios, whose specifics can
be found in table 5.1. The scenarios represent three different initial markets, corresponding to a low,
average and high implied volatility surface level. The premium fees α are defined such that the expected
liabilities are 0 at t = 0. Hence, the loss function of all three scenarios only depends on the realized
income and expected liabilities at t = 1. In figure 5.10 we have graphically represented the impact on the
probability density function of the loss distribution for the different scenarios. Moreover, the Solvency
Capital Requirements associated with these distributions can be found in table 5.4.
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Figure 5.10: Probability density functions of the 1-year loss distribution for a variable annuity with the GMAB rider, under the
original and time-dependent risk-neutral measure. Scenario 1 = average initial volatility, Scenario 2 = low initial volatility,

Scenario 3 = high initial volatility.

Original Time-dependent

Scenario 1 170.1 195.5
Scenario 2 166.9 237.5
Scenario 3 178.8 150.8

Table 5.4: Solvency Capital Requirement of the scenarios for the original and time-dependent risk-neutral measure.

The impact on the probability density functions and the Solvency Capital Requirements is substantial
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and we wish to highlight a few noteworthy features.

The loss distribution under the original risk-neutral measure appears to be centred around 0, inde-
pendent of the initial conditions. The 1-year loss is defined as the difference between the policy value at
t = 0 and t = 1. On average, the policy value will not change significantly if the risk-neutral parameters
stay the same. Therefore, the loss distribution must be centred around 0, as long as the initial risk-
neutral parameters do not change. The loss distribution under the time-dependent risk-neutral measure,
on the other hand, heavily depends on the risk-neutral parameters at t = 0. Consider scenario 2 for
example. Initially, the volatility, v̄ and γ are relatively low, resulting in low initial expected liabilities.
However, according to the mean-reverting VIX index, these parameters are more likely to increase over
time and with them, the expected liabilities. Consequently, the 1-year losses are much higher compared
to those under the original risk-neutral measure, which still assumes the relatively low initial parame-
ters at t = 1. In figure 5.10, this effect is clearly visible where the loss function is shifted to the right.
Conversely, the 1-year losses under the time-dependent risk-neutral measure in scenario 3 are much
lower, as the expected liabilities are more likely to decrease. In conclusion, when the initial volatility is
low (high), we can expect a higher (lower) SCR under the time-dependent risk-neutral measure.

Besides the shifted mean, the loss distribution under the time-dependent risk-neutral measure also
tends to have heavier tails, which is especially visible in scenario 1. This is caused by the fact that
v̄ and γ depend on the state of the market, which results in more extreme losses (or gains). If, for
example, the market crashes, v̄ and γ are likely to increase. This will generate even higher expected
liabilities, resulting in even higher losses. However, if the market flourishes, v̄ and γ tend to be much
lower, leading to lower expected liabilities and lower losses (or higher gains). This feature is present in
all scenarios of figure 5.10, but is best visible in scenario 1, where the probability of an extreme loss as
well as the probability of an extreme gain are higher under the time-dependent risk-neutral measure.
Consequently, the SCRs under the two risk-neutral measures are not necessarily equal, not even when
the initial conditions are equal to the average market conditions (such as in scenario 1).

Historical analysis
Finally, in order to give a more broad overview of the impact, we will determine the SCR of a variable
annuity with the GMAB rider for multiple points in time. The contract details presented in table 5.1
will remain unchanged, but the initial parameters will depend on historical data. For computational
purposes, α is assumed to be constant and equal to 0.01. In this test we will compare four different
risk-neutral measures

1. A time-dependent risk-neutral measure where all parameters depend on the simulated state of the
market.

2. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral
parameters are equal to the parameters as observed on t = 0. This measure is equivalent to the
original risk-neutral measure we have previously defined.

3. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral
parameters are equal to the parameters as observed on t = 1. We will refer to this measure as the
future risk-neutral measure.

4. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral pa-
rameters are equal to the realized regression model predictions at t = 1 of figure 3.5. This measure
is different from the time-dependent risk-neutral measure, as it depends on the realized state VIX,
instead of the simulated VIX. We will refer to this measure as the future VIX risk-neutral measure.

So far, we have applied the first two risk-neutral measures in our analyses. The latter two can only be ap-
plied on historical data (otherwise, the observed parameters at t = 1 are undefined) and are merely added
for explanatory purposes. Ideally, the SCR under the future and the future VIX risk-neutral measures
is equal. The difference between these measures is caused by prediction errors of the regression model.
Hence, the difference between the SCRs under these measures will be an indication of the accuracy of the
regression models.

In figure 5.11 the results under the different risk-neutral measures are displayed. The difference
between the original and time-dependent risk-neutral measure is also summarized in table 5.5.
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Figure 5.11: SCR over time under the different risk-neutral measures.

Value %

Mean absolute difference 41.1 28.7%
Maximum absolute difference 85.3 52.0%

Table 5.5: Difference in SCR between original and time-dependent risk-neutral measure.

The impact on the SCR is significant, with a maximum absolute difference of over 50%. Moreover, the
difference appears to be structural over time, with a mean absolute difference of almost 30%. The results
in figure 5.11 also contain some stylized facts we have already seen in figure 5.10 and we will discuss
them by distinguishing different time periods:

• 2005-2007: The volatility in these years was relatively low and this translates to a somewhat higher
SCR under the original measure and an even higher SCR under the time-dependent measure,
similar to scenario 2. The SCR under the future measure is rising, due to higher expected liabilities
at t = 1, indicating that more volatile times are coming.

• Early 2008: The market has not crashed yet, but volatility is starting to increase, resulting in
a smaller difference between the time-dependent and original measures, which is comparable to
scenario 1. The future measure, however, takes the fact that the market will crash into account.
Hence, the SCR is the highest under the future measure.

• Late 2008-2012: During these years, several spikes occurred in the implied volatility surface, which
will increase the initial liabilities and therefore the expected loss will decrease, analogously to
scenario 3. This results in lower SCRs during this period. Moreover, note that the SCRs under
the future risk-neutral measure are lowest during these highly volatile periods, since this measure
depends on the realized market at t = 1, which has returned to its less volatile state. Consequently,
the expected liabilities at t = 1 and the SCR are the lowest under the future risk-neutral measure.

• 2013-2017: This period is comparable to 2005-2007, apart from the fact that the volatility is ap-
proximately constant throughout these years. This translates into an almost equal SCR prediction
under the original and future risk-neutral measures.

Moreover, the difference between the future and future VIX measures is small. This means that the ex-
pected liabilities at t = 1 are almost equal under both measures, indicating the accuracy of the regression
model, at least for the realized states of the market. Under the assumption that the simulated markets
behave similar to historical observations, this means that expected liabilities at t = 1 under the time-
dependent measure will be in line with the simulated states of the market.

Finally, we wish to highlight an interesting feature. In figure 5.12 we have plotted the difference
between the SCR under the original and time-dependent risk-neutral measures and the development
of v̄ over time. The impact of assuming time-dependent risk-neutral parameters at t = 1 appears to be
proportional to v̄. This indicates an almost linear relationship between the initial parameters and the
impact on the SCR. The only difference between the two approaches is the definition of the risk-neutral
measure at time t = 1, resulting in different expected liabilities at t = 1. All other components are equal
in both approaches. Hence, the difference between the SCRs is exactly equal to the discounted difference
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between the 99.5% quantiles of the expected liabilities at t = 1, which can be found in the right image of
figure 5.12.
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Figure 5.12: Difference between the SCR under the original and time-dependent risk-neutral measure versus v̄.

At t = 1, the original risk-neutral measure determines the expected liabilities with the initial v̄ and γ.
Consequently, the expected liabilities at t = 1 heavily depend on the initial parameters, which is clearly
visible in figure 5.12. On the other hand, the expected liabilities under the time-dependent measure
are approximately independent of the initial parameters, because v̄ and γ will converge to their long
term mean, according to the mean-reverting VIX-index. Therefore, the 99.5% quantile of the expected
liabilities’ distribution at t = 1 is almost constant over time, under the time-dependent risk-neutral mea-
sure. The difference between these quantiles, or equivalently the impact on the SCR, will therefore be
proportional to the initial parameters.

5.3.4. Guaranteed Minimal Withdrawal Benefit
Similar to the GMAB rider, we will assess the impact on the SCR of the different assumptions regarding
the risk-neutral measure at t = 1. Again, we will distinguish three cases that correspond to different
initial states of the market. The general contract details of this variable annuity and the three different
initial market conditions can be found in tables 5.1 and 5.2, respectively. Applying the Least-Squares
Monte Carlo approach to the different scenarios resulted in the distributions as shown in figure 5.13.
Table 5.6 contains the corresponding Solvency Capital Requirements.

Original Time-dependent

Scenario 1 189.0 196.2
Scenario 2 192.1 213.3
Scenario 3 190.9 178.8

Table 5.6: Solvency Capital Requirement of the scenarios for the original and time-dependent risk-neutral measure.

The results of these tests are very similar to the GMAB case; the distributions under the original
risk-neutral measure are centred around 0 and the time-dependent distributions are shifted, depending
on the initial conditions. Moreover, the tails of the time-dependent distributions are heavier, due to de-
pendence between the market and the risk-neutral parameters, as explained in section 5.3.3. The effects
are, however, less pronounced than the effects on a variable annuity with the GMAB rider. Possibly, be-
cause some liabilities have already been deducted from the fund. Nevertheless, these results show that
recalibration has a structural effect on different insurance products, when determining the SCR.

Historical analysis
We finalize our analysis by evaluating the SCR over time, based on historical data. The general contract
details in table 5.1 are the same for each point in time, but the initial market conditions will change,
depending on the historical implied volatility surfaces. Again, we will assume a constant fee α equal to
0.01 for each point in time. The results are summarized in table 5.7 and figures 5.14 and 5.15.
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Figure 5.13: Probability density functions of the 1-year loss distribution for a variable annuity with the GMWB rider, under the
original and time-dependent risk-neutral measure. Scenario 1 = average initial volatility, Scenario 2 = low initial volatility,

Scenario 3 = high initial volatility.
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Figure 5.14: SCR and expected liabilities under the original and time-dependent risk-neutral measure.
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Figure 5.15: Difference between the SCR under the original and time-dependent risk-neutral measure versus v̄.

The development of the Solvency Capital Requirement of the GMWB rider is comparable to the GMAB
rider, but the effect is less pronounced, which is in line with our previous observations. Again, the 99.5%
quantiles of the expected liabilities at t = 1 are proportional to the risk-neutral parameters in case of the
original risk-neutral measure and almost constant in case of the time-dependent risk-neutral measure.
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Value %

Mean absolute difference 13.5 7.6%
Maximum absolute difference 29.5 20.5%

Table 5.7: Difference in SCR between original and time-dependent risk-neutral measure.

Hence, the impact on the SCR is dependent on v̄, similar to the GMAB rider.



6
Conclusion and outlook

6.1. Summary and conclusion
Throughout this thesis we have investigated the predictability of the Heston parameters and the effect of
implementing the recalibration process in risk-management applications. After introducing the theoret-
ical assumptions of the risk-neutral and real-world measure, we explained the importance of predicting
the Heston parameters. The advantages are twofold. First of all, it simplifies the calibration proce-
dure. Secondly, the regression models provide a way to implement the recalibration process in real-world
simulations. Currently, it is common to assume constant Heston parameters throughout real-world sim-
ulations, however this is not in line with historical observations. By implementing the regression models,
one is able to condition the Heston parameters on the simulated state of the market.

In chapter 3 we discussed the VIX Heston model. As the VIX index is highly correlated to the Heston
parameters, a linear model was proposed to predict the Heston parameters. This model leads to calibra-
tion and simulation advantages, but suffers from accuracy loss. To this end several regression models
were proposed, aimed at preserving the advantages of the VIX Heston model, while increasing prediction
accuracy. It turned out to be difficult to significantly improve the VIX Heston model, as the linear model
was already relatively accurate. However, the multi-output support vector regression approach appeared
to be the most robust methodology throughout the different data sets. The multi-output support vector
regression approach distinguishes itself from the other models by taking correlation between the Hes-
ton parameters into account, which is an important feature in this case, as the Heston parameters are
highly correlated to each other. The other models (polynomial regression and gradient boosted regression
trees) did improve the accuracy on a parameter level. However, this did not lead to improved implied
volatility surface predictions, due to the degrees of freedom in the Heston model: misspecifications in
one parameter can be (partially) nullified by misspecification in another parameter. One can argue that
this is an undesirable feature, in which case the polynomial regression and gradient boosted regression
trees are preferred over the VIX Heston model. Finally, all regression models selected the VIX index and
risk-free interest rates as explanatory variables. This indicates the robustness of these features, as each
regression model assumes a different relationship between the market variables and Heston parameters.

Chapter 4 aims at answering the research question ’Is it justified to assume a recalibrated risk-neutral
measure in (real-world) simulations, even when this is in conflict with the assumptions of the underlying
risk-neutral pricing model?’ The Heston model assumes constant v̄ and γ, hence recalibration of these
parameters in a real-world simulation is in violation with the theoretical assumptions. To this end, we
proposed a hedge test where different hedging strategies were compared: a strategy that does not take
changes of v̄ and γ into account and two strategies that do take changes of v̄ and γ into account. The
latter produced the most accurate future option prices in simulation as well as empirical tests. This led
to the conclusion that it is justified to recalibrate the Heston parameters if one is interested in the most
accurate future option prices. However, the underlying assumptions cannot be violated if one is inter-
ested in uniqueness of the risk assessment (for example in a regulatory framework), as the recalibration
process is subjected to the modeller’s point of view, while the implied volatility surface is unique.
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The implementation of the VIX Heston model in a real-world simulation is discussed in chapter 5.
In this chapter, the impact of implementing the recalibration process is assessed in terms of the Sol-
vency Capital Requirement. An essential part of the Solvency Capital Requirement is the risk-neutral
valuation of the expected liabilities at t = 1, which requires the risk-neutral parameters at t = 1. One
can assume the risk-neutral parameters to be constant and implied by the implied volatility surface at
t = 0. However, by implementing the regression models one is able to recalibrate the Heston parameters
at t = 1, conditioned on the simulated state of the market. We assessed the Solvency Capital Require-
ment according to the Least-Squares Monte Carlo algorithm of two different insurance products: GMAB
and GMWB. The two different approaches (constant and recalibrated parameters) did not result in the
same Solvency Capital Requirement. Based on historical data, the mean absolute difference between the
approaches was 28.7% and 7.6% for the GMAB and GMWB riders, respectively.

6.2. Future research
There are still many topics that require future research. In what follows, we present a list of possible
topics.

In figure 3.5 it can be seen that the out-of-sample accuracy of γ in the US data set is low. The in-
sample correlation between the VIX index and γ is 0.86, but the out-of-sample correlation is only 0.32. It
might therefore be relevant to investigate the cause of this phenomenon and adjust the regression model
accordingly, such that prediction accuracy with respect to γ is improved.

During our research we did not find any accurate predictor for ρ, despite its pronounced relation-
ship with the implied volatility surface (see figure 3.2). Hence, we assumed a constant ρ throughout
our research, which is justified by its mean reverting behaviour. However, the implied volatility surface
predictions will become more accurate, if one is able to accurately predict ρ.

So far, we have investigated three different regression models. Of course, this is only a small fraction
of all available models. The development of these models, especially machine learning algorithms, is an
active field of research. In future research it can therefore be advantageous to investigate the accuracy
of other regression models, for example neural networks.

This research is limited to the Heston model and it is unclear whether the parameters of other models
are as predictable as the Heston parameters. Future research could focus on the predictability of param-
eters of different risk-neutral models.

The current impact in chapter 5 test is somewhat simplified. These simplifications must be removed, if
one wishes to perform a realistic risk-assessment. For example, the asset price follows a geometric Brow-
nian motion, which is unable to capture all characteristics of the market. Moreover, the recalibration
process is modelled by the VIX Heston model. In chapter 3 we showed that this model is outperformed
by the multi-output support vector regression in terms of accuracy. Hence, in order to develop a more
accurate risk-assessment, we recommend a real-world simulation that includes the risk-free rates, such
that the multi-output support vector regression can be implemented.

Finally, we recommend investigating the implementation of the recalibration process in multi-horizon
applications. In chapter 5 we only focused on the expected liabilities at t = 1. In some risk-management
applications, one is interested in multiple future dates. Under the assumption of constant parameters,
one can simulate a single set of risk-neutral scenarios. This set can then be used to define the regression
functions at all future dates, for example with the Least-Square Monte Carlo method. This approach does
not work in case of recalibrated parameters, as the risk-neutral measure is adjusted at every time-step.
Hence, separate risk-neutral scenario sets are required for each date of interest, which is computationally
more demanding. To this end, it is important that an efficient approach is developed that can efficiently
deal with multi-horizon applications.
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A
Pricing under the Heston model: FFT

method

When calibrating the Heston model, one needs to price many options with different strikes and matu-
rities. Hence, an efficient pricing method is desirable. To this end we will implement the FFT method
proposed in Carr and Madan (1999). In this section we will give a brief overview of the method. Further
details and analysis can be found in Carr and Madan (1999).

Fourier transform of an option price
This method operates in log space, so let k denote the log of strike price K . Furthermore, let CT (k) be the
value of a call option with maturity T and strike price ek . Moreover, let qT (s) be the risk-neutral density
of the log price sT . Finally, define the characteristic function φT (u) of this risk-neutral density by:

φT (u)≡
∫ ∞

−∞
eiusqT (s)ds. (A.1)

The value of an option is equal to the discounted value of the expected pay-off. For a European call option,
this is equivalent to

CT (k)≡
∫ ∞

k
e−rT (es − ek)qT (s)ds. (A.2)

Note that CT (k) is not square-integrable: CT (k) → S0 as k →−∞. To this end we will modify CT (k) into
a square-integrable function:

cT (k)≡ eαkCT (k), α> 0. (A.3)

It is expected that cT (k) is square-integrable for a range of positive values of α. The proper choice of α
will be discussed later in this section. Now that we have a square-integrable function, we can consider
its Fourier transform by

ψT (z)=
∫ ∞

−∞
eizk cT (k)dk. (A.4)

If we are able to develop an expression for ψT (z), we can use it to determine the price of a call option by
using the inverse transform:

CT (k)= e−αk

π
ℜ

{∫ ∞

0
e−izkψT (z)dz

}
. (A.5)

We can obtain an analytical expression for ψT (z) by using its definition:

ψT (z)=
∫ ∞

−∞
eizk cT (k)dk

=
∫ ∞

−∞
eizk

∫ ∞

k
eαk e−rT (es − ek)qT (s)dsdk

=
∫ ∞

−∞
e−rT qT (s)

∫ s

−∞

(
es+k(α+iz) − ek(1+α+iz)

)
dkds
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=
∫ ∞

−∞
e−rT qT (s)

(
es(1+α+iz)

α+ iz
− es(1+α+iz)

1+α+ iz

)
ds

= e−rT

α2 +α− z2 + i(2α+1)z

∫ ∞

−∞
qT (s)ei(z−i(α+1))sds

= e−rTφT [z− (α+1)i]
α2 +α− z2 + i(2α+1)z

. (A.6)

Now, by substituting (A.6) into (A.5), we obtain an integral expression for the value of a European call
option. In the next section we will describe the numerical scheme to evaluate this expression. Note
that for α = 0 there is a singularity when z = 0, which justifies the modification of CT (k) by exp(αk) or
something similar. It is possible to derive an upper bound for α by looking at the characteristic function,
but in practice we experienced that α= 1 leads to stable results.
Finally, we still have the (model-dependent) characteristic function φT (u). In log space, this function is
known for the Heston model, given its initial conditions (log[S0] ,v0):

φT (u; log[S0] ,v0)= exp
(
iu log[S0]+ iur(T − t0)+ v0

γ2

(
1−e−D(T−t0)

1−Ge−D(T−t0)

)
(κ− iργu−D)

)
exp

(
κv̄
γ2

{
(T − t0)(κ− iργu−D)−2log

[
1−Ge−D(T−t0)

1−G

]})
,

(A.7)

with

D =
√

(κ− iργu)2 + (u2 + iu)γ2, (A.8)

G = κ− iργu−D
κ− iργu+D

. (A.9)

Applying the fast Fourier transform
In the previous section we deducted a pricing formula for a European call option (see equation (A.5)).
Even though we derived an analytical expression for ψT (k), we still need to integrate over an infinite
domain. There is no analytical expression for this integral, hence we need to discretize the domain into
N points:

CT (k)≈ ĈT (k)= e−αk

π
ℜ

{
N∑

j=1
e−iz j kψT (z j)∆z

}
. (A.10)

With the distance between two discretized points ∆z and z j =∆z( j−1). We are mainly interested in the
log strike values k near 0, hence we will apply a linear spacing with size λ:

kp =−b+λ(p−1), p = 1, . . . , N. (A.11)

Where b = 1
2λN, this leads to log strikes values ranging from −b to b. Substituting (A.11) into (A.10)

gives us
ĈT (kp)= e−αkp

π
ℜ

{∑N
j=1 e−iz j[−b+λ(p−1)]ψT (z j)∆z

}
= e−αkp

π
ℜ

{∑N
j=1 e−iλ∆z( j−1)(p−1)eibz jψT (z j)∆z

}
, for p = 1, . . . , N.

(A.12)

With the approximation written in this form, we can apply the fast Fourier transform. The fast Fourier
transform is an algorithm that is able to efficiently compute sums of the form

w(k)=
N∑

j=1
e−i 2π

N ( j−1)(k−1)x( j), for k = 1, · · · , N, (A.13)

with N = 2m, for some constant m. The algorithm was proposed in James W. Cooley and Tukey (1965)
and it reduces the complexity from O(N2) to O(N log2[N]), by using recurrences in the exponent. For
details regarding this algorithm we refer the reader to James W. Cooley and Tukey (1965). From (A.13)
we observe the constraint

λ∆z = 2π
N

. (A.14)

Hence, refining the integration approximation grid (by decreasing ∆z) leads to a larger log strike spacing.
This means there is a possibility that no strike price close to the desired strike price is calculated, which
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could lead to large errors. To this end, we will use Simpson’s weighting rule in our summation weight,
allowing us to increase ∆z (which decreases λ) without losing accuracy. Applying Simpson’s weighting
rule results into

ĈT (kp)= e−αkp

π
ℜ

{
N∑

j=1
e−i 2π

N ( j−1)(p−1)eibz jψT (z j)
∆z
3

(
3+ (−1) j −δ j−1

)}
, for p = 1, . . . , N. (A.15)

with δ0 = 1 and δi = 0 otherwise. The summation for each p in (A.15) is efficiently computed using the
fast Fourier transform. Finally, if one wants to determine the price for a specific strike k∗ = log(K∗),
an interpolation on the calculated kp is needed. A cubic-spline interpolation turned out to be highly
accurate, after performing numerical experiments.

Error Analysis
In this section we will present an analysis regarding the error of the approximation (which can also be
found in Carr and Madan (1999)), complemented by our findings regarding the optimal parameters.
The first part of the error is caused by imposing an upper-bound on the infinite integral. By summing up
to zN we neglect the upper tail of the integral. To analyse the behaviour of this error we note that the
modulus of φt is bounded by E[Sα+1

T ]. Hence, we know

|ψT (z)|2 ≤ E[Sα+1
T ]

(α2 +α− z2)2 + (2α+1)2z2 ≤ A
z4 , (A.16)

for some constant A. Equivalently

|ψT (z)| ≤
p

A
z2 . (A.17)

It follows that the upper tail of the integral is bound by∫ ∞

a
|ψT (z)| <

p
A

a
. (A.18)

By using this bound we can ensure the truncation error of the approximation to be smaller than ε, by
setting

zN = a > exp(−αk)
p

A
πε

. (A.19)

The second part of the error is caused by discretizing the integral domain. We used Simpson’s rule for de-
termining the weight of each discretized part. It is well-known that the error of Simpson’s rule is O(N−4).
Thus, by doubling the number of points, we decrease this part of the error by a factor of 16.

After numerical experiments, we decided upon the following parameters. For strike levels near S0
we noticed convergence when using N = 214 and ∆z = 0.1. This automatically leads to zN = 213 and
λ≈ 3.8·10−3. Options far out of the money (strike levels at 50% of S0) with short maturities (T = 3 months)
required more points to be accurate, namely N = 216, resulting in zN = 215 and λ ≈ 9.6 ·10−4. However,
increasing N comes at the cost of computational time, hence we only increase N when necessary.





B
Regression model results: UK and Europe

B.1. Optimal set-up
B.1.1. VIX Heston
UK

ΩHeston
t (X )=



κt = 1.0,
v0,t = (−0.0014+0.0096 ·VFTSEt)2 ,
v̄t = (

0.0590+0.0110 ·VFTSEfiltert

)2 ,
γt = 0.2556+0.0206 ·VFTSEt,
ρt =−0.6858.

(B.1)

Europe

ΩHeston
t (X )=



κt = 1.0,
v0,t = (0.0013+0.0094 ·VIXt)2 ,
v̄t = (

0.0518+0.0100 ·VIXfiltert

)2 ,
γt = 0.0571+0.0252 ·VIXt,
ρt =−0.6471.

(B.2)

B.1.2. Polynomial regression
UK

ΩHeston
t (X )=



κt = 1.0,
v0,t = (−0.0014+0.0096 ·VFTSEt)2 ,
v̄t = (

0.0590+0.0110 ·VFTSEfiltert

)2 ,
γt = 0.2556+0.0206 ·VFTSEt,
ρt =−0.6858.

(B.3)

Europe

ΩHeston
t (X )=



κt = 1.0,
v0,t = (0.0015+0.0094 ·VFTSEt)2 ,
v̄t = (

0.0530+0.0098 ·VFTSEfiltert +0.0094 · r720
)2 ,

γt = 0.0543+0.0254 ·VFTSEt,
ρt =−0.6454.

(B.4)

B.1.3. Multi-output support vector regression
UK
Explanatory variables: VFTSE, VFTSEfilter, r720

λ1 = 10−8, λ2 = 10−10. (B.5)
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Europe
Explanatory variables: VSTOXX, VSTOXXfilter

λ1 = 10−8, λ2 = 10−10. (B.6)

B.2. Accuracy results
UK

Model SSE MAE R2 R2
Min MSEv0 MSEv̄ MSEγ

VIX Heston 0.0577 0.0093 0.9340 0.7401 3.723 ·10−5 7.155 ·10−5 0.0039
Polynomial Regression 0.0577 0.0093 0.9340 0.7401 3.723 ·10−5 7.155 ·10−5 0.0039

Multi-output SVR 0.0547 0.0091 0.9374 0.7413 2.483 ·10−4 8.273 ·10−5 0.0023

Unrestricted 0.0126 0.0045 0.9855 0.9690 - - -

Table B.1: UK Out-of-sample accuracy of the regression models according to the error measures defined in (3.35) and (3.36).
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Figure B.1: Unrestricted versus multi-output least-squares support vector regression predicted parameters over time of the UK
data set.

Europe

Model SSE MAE R2 R2
Min MSEv0 MSEv̄ MSEγ

VIX Heston 0.0433 0.0078 0.9389 0.7693 4.231 ·10−5 1.064 ·10−4 0.0073
Polynomial Regression 0.0446 0.0082 0.9371 0.7293 4.217 ·10−5 6.807 ·10−5 0.0076

Multi-output SVR 0.0376 0.0074 0.9469 0.7859 2.067 ·10−5 1.345 ·10−4 0.0038

Unrestricted 0.0154 0.0051 0.9779 0.9190 - - -

Table B.2: Europe Out-of-sample accuracy of the regression models according to the error measures defined in (3.35) and (3.36).
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Figure B.2: Unrestricted versus multi-output least-squares support vector regression predicted parameters over time of the
Europe data set.





C
Improved calibration procedure

In chapter 3 we proposed several approaches to predict the Heston parameters, given a set of market
features. Unfortunately, these predictions did not always coincide with the optimal parameters of the
unrestricted model (see for example figure 3.5). When valuing derivatives, these suboptimal parameters
can lead to pricing errors and arbitrage opportunities. To this end, we aim to improve the accuracy of
these predictions, by allowing the parameters to be driven by a stochastic component, in addition to the
previous estimations. These stochastic components can be thought of as prediction errors. After identify-
ing the stochastic processes describing these errors, we will be able to update the parameter predictions
according to the observed implied volatility surface.

In this chapter, the dynamics of the Heston parameters will be represented by stochastic differential
equations (SDEs). In general, parameter p will follow

dpt =µp(t, pt)dt+σp(t, pt)dW p
t . (C.1)

The drift term µp(t, pt) and volatility component σp(t, pt) can be any bounded time-dependent dynamic
process. For example, the drift term can coincide with one of the prediction models proposed in chapter
3 and the volatility component can correspond to the prediction error. Moreover, we assume a correlation
between parameter p and q: 〈

dW p
t ,dW q

t
〉=Γ{p,q}dt. (C.2)

The objective of this chapter is to identify the hidden state of the market (quantified by the Heston
parameters) given some measurement (in our case the implied volatility surface). One of the most famous
methods that solves these kinds of problems is the Kalman filter. The Kalman filter is known for its ability
to combine historical data with knowledge of the system in an optimal recursive approach. However,
the Kalman filter assumes a linear relation between the hidden state and observed measurement, an
assumption which is violated in most applications. To this end, several extensions of the Kalman filter
have been introduced, dealing with non-linear relations. In this chapter we will consider the unscented
Kalman filter (proposed in Wan and van der Merwe (2000)), which is able to deal with non-linear relations
and is known for its speed and accuracy. For example, Chen et al. (2016) used the unscented Kalman filter
to calibrate the parameters of the SABR model, where they assumed mean reverting SDEs to describe the
parameters. This way, they were able to efficiently estimate the parameters and give a six minute forecast
of the out-of-the-money implied volatility surface. We will adopt a similar approach for the regression
models proposed in chapter 3. Throughout this chapter, we will describe the mathematical details of the
unscented Kalman filter and explain how it is combined with the regression models. Finally, we will
discuss the results of the model, by comparing it to a benchmark model.

C.1. Unscented Kalman filter
The unscented Kalman filter is a method that is able to filter (hidden) state variables from a (noisy) mea-
surement. The state variables are driven by dynamic stochastic processes and the measured variable
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depends on the state variables. In general, the link between state variables Ωtk and observed measure-
ments σtk at time tk can be represented as follows,{

Ωtk = f (Ωtk−1 , tk−1,atk−1 )+wtk−1 ,
σtk = h(tk,Ωtk ,atk )+vtk . (C.3)

With state function f (·), measurement function h(·) and auxiliary input atk . Moreover, the random com-
ponent wtk−1 and measurement noise vtk are assumed to be Gaussian distributed.

This model is analysed by recursively updating the parameters in a two-stage procedure, a forecast
step and a measurement-update step. The forecast step samples different parameter sets (based on the
previous state variables and covariance), in order to capture the true mean and covariance of the state
variables. The samples are called sigma points and they provide a prior estimate of the parameters,
covariance and measurement. The measurement-update step establishes a posterior prediction of the
state variables by adding the Kalman gain (which depends on the observed measurement) to the prior
estimate. The details of this process are discussed in this section.

C.1.1. Sigma points
A crucial step of the unscented Kalman filter is identifying the sample set of state variables, also called
sigma points. Assume that the parameter set Ωk−1|k−1 and covariance matrix Pk−1|k−1 of time-step k−1
are known. In order to analyse the behaviour of the parameters at time-step k, a set of sigma points and
their associated weights are defined recursively:(

Ωk−1|k−1,Wk−1

)
=

{(
Ω

j
k−1|k−1,W j

k−1

)∣∣∣ j = 0, . . . ,2n
}

, (C.4)

where n is the number of parameters. The sigma points are defined as follows,
Ω0

k−1|k−1 =Ωk−1|k−1,
Ω

j
k−1|k−1 =Ω0

k−1|k−1 +
p

n+λ(√
Pk−1|k−1

)
j , j = 1, . . . ,n,

Ω
j+n
k−1|k−1 =Ω0

k−1|k−1 −
p

n+λ(√
Pk−1|k−1

)
j , j = 1, . . . ,n.

(C.5)

With λ>−n, a predefined constant and
(√

Pk−1|k−1
)

j, the jth row of matrix
√

Pk−1|k−1. The square root
in equation (C.5) denotes the Cholesky square root. The Cholesky square root of a matrix is defined as
the lower-triangular matrix A that satisfies

A :=
√

Pk−1|k−1 ⇔ Pk−1|k−1 = AAT . (C.6)

This operator is uniquely defined for positive definite matrices1. However, covariance matrices are only
positive semi-definite2, thus the Cholesky square root is only defined when the covariance matrix is of
full rank. When the covariance matrix is not positive definite (usually due to numerical errors), one can
perform the transformation

Pk−1|k−1 → Pk−1|k−1 +εI, with ε= 10−15 +
∣∣∣∣min

i
λi

∣∣∣∣ , (C.7)

with identity matrix I and eigenvalues λi. The transformed matrix has only positive eigenvalues and is
symmetric (because the untransformed matrix is symmetric), hence it is a positive definite matrix. The
transformed matrix is not equal to the true covariance matrix and this introduces an additional error.
However, if the lowest eigenvalue is close to zero (which it generally is), this error is negligible. Finally,
the associated weights of the sigma points are defined through W0

k−1 = λ

λ+n
,

W j
k−1 = 1

2(λ+n) , j = 1, . . . ,2n,
(C.8)

such that
∑2n

j=0 W j
k−1 = 1.

1a symmetric matrix with solely positive eigenvalues
2a symmetric matrix with solely non-negative eigenvalues
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For notational purposes we will define a function Ψ(·) that simulates the process of equations (C.4)-
(C.8) and returns the sigma points with their associated weights:(

Ωk−1|k−1,Wk−1

)
=Ψ(Ωk−1|k−1,Pk−1|k−1,n,λ). (C.9)

C.1.2. Forecast step
In the forecast step, a prior parameter set is estimated using the results of the previous time step and
information about the system. First an initial state needs to be assumed, with known mean µ0 = E[Ω0]
and covariance P0|0 =E

[(
Ω0 −µ0

)(
Ω0 −µ0

)T
]
. The sigma points and their associated weights at time-step

k are defined recursively, as discussed in section C.1.1,(
Ωk−1|k−1,Wk−1

)
=Ψ(Ωk−1|k−1,Pk−1|k−1,n,λ). (C.10)

Evaluating (C.10), results in a set of sigma points defined at time-step k−1. To obtain a prediction of the
sigma points at time-step k, we propagate them through the state function f (·) as defined in (C.3),

Ω
j
k|k−1 = f

(
Ω

j
k−1|k−1, tk−1,atk−1

)
, j = 0, . . . ,2n. (C.11)

The prior estimate of the parameter set is equal to the weighted average of the propagated sigma points,

Ω̂k|k−1 =
2n∑
j=0

W j
k−1Ω

j
k|k−1. (C.12)

Similarly, we define the prior covariance matrix as

P̂k|k−1 =
2n∑
j=0

W j
k−1

(
Ω

j
k|k−1 − Ω̂k|k−1

)(
Ω

j
k|k−1 − Ω̂k|k−1

)T +Σwtk−1
, (C.13)

where Σwtk−1
is defined as the variance-covariance matrix of wtk−1 , the stochastic component of the state

process. Using these prior estimates, we are able to update the sigma points,(
Ωk|k−1,Wk

)
=Ψ(Ω̂k|k−1, P̂k|k−1,n,λ). (C.14)

Applying the updated sigma points to the measurement function h(·) leads to the prior measurement
estimate, {

σ
j
k|k−1 = h

(
Ω

j
k|k−1, tk,atk

)
, j = 0, . . . ,2n,

σ̂k|k−1 =∑2n
j=0 W j

kσ
j
k|k−1.

(C.15)

C.1.3. Measurement-update step
So far, the random components of (C.3) have not been included in the estimates. The purpose of the
measurement-update step is to identify these random components, conditioned on the observed measure-
ment σObs

k . The estimates are then updated accordingly. The magnitude of the update depends on the
so-called Kalman gain

Kk = P̂Ω,σ
k|k−1

(
P̂σ

k|k−1

)−1
, (C.16)

with the covariance between measurements P̂σ
k|k−1 and the covariance between the parameter set and

measurements P̂Ω,σ
k|k−1, P̂σ

k|k−1 =∑2n
j=0 W j

k

(
σ

j
k|k−1 − σ̂k|k−1

)(
σ

j
k|k−1 − σ̂k|k−1

)T +Σvtk
,

P̂Ω,σ
k|k−1 =∑2n

j=0 W j
k

(
Ω

j
k|k−1 − Ω̂k|k−1

)(
σ

j
k|k−1 − σ̂k|k−1

)T
.

(C.17)

Where Σvtk
is defined as the variance-covariance matrix of the measurement noise vtk . Finally, the

posterior estimates are given by
Ωk|k = Ω̂k|k−1 +Kk

(
σObs

k − σ̂k|k−1
)
,

σk|k = h
(
Ωk|k, tk,atk

)
,

Pk|k = P̂k|k−1 −KkP̂σ
k|k−1KT

k .
(C.18)

The process of forecasting and updating the parameter set is repeated until the final time-step has been
reached.
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C.1.4. Interval constrained parameters
We know that the Heston model parameters are only defined on certain intervals: v0, v̄ and γ are always
non-negative, while |ρ| is always less than or equal to one. However, if we apply the algorithm described
above, we cannot impose any interval constraints on the parameters. In other words, it might occur that
a value outside of its domain is assigned to one or more of the Heston model parameters. To this end,
we need to adjust both forecast and measurement-update step. Teixeira et al. (2010) discusses multi-
ple strategies to handle interval constraints on the parameters of an unscented Kalman filter. These
strategies transform the sigma points, the posterior estimates or both. We decided upon a strategy that
enforces the sigma points as well as the posterior estimates to be interval constrained. In this section we
will give a brief description of the necessary adjustments, which are based on Teixeira et al. (2010).

In the forecast step it suffices to restrict the sigma points, since the prior estimates are weighted
averages of the sigma points. However, we do not want to change the procedure when all constraints are
satisfied. Thus, the sigma points are redefined as follows,

Ω0
k−1|k−1 =Ωk−1|k−1,

Ω
j
k−1|k−1 =Ω0

k−1|k−1 +θ
j
k−1

(√
Pk−1|k−1

)
j , j = 1, . . . ,n,

Ω
j+n
k−1|k−1 =Ω0

k−1|k−1 −θ
j+n
k−1

(√
Pk−1|k−1

)
j , j = 1, . . . ,n,

(C.19)

where, for parameters p = 1, . . . ,n and sigma points j = 1, . . . ,2n,

θ
j
k−1 = min

p∈{1,...,n}
(Θk−1( j, p)), (C.20)

Θk−1( j, p)=


p

n+λ if Hk−1( j, p)= 0,
min

(p
n+λ, up−Ωk−1|k−1(p)

Hk−1( j,p)

)
if Hk−1( j, p)> 0,

min
(p

n+λ, lp−Ωk−1|k−1(p)
Hk−1( j,p)

)
if Hk−1( j, p)< 0,

(C.21)

Hk−1( j, p)=
{ ∗√Pk−1|k−1( j, p) if 1≤ j ≤ n,

− ∗√Pk−1|k−1( j, p) if n+1≤ j ≤ 2n.
(C.22)

With up and lp defined as the upper and lower bound for parameter p, respectively. The notation A(c,d)
refers to the element in the cth row and dth column of matrix A. The weights associated to the sigma
points are adjusted as well: {

W0
k−1 = bk−1,

W j
k−1 = ak−1θ

j
k−1 +bk−1, j = 1, . . . ,2n.,

(C.23)

with 
ak−1 = 2λ−1

2(λ+n)
(∑2n

j=1 θ
j
k−1−(2n+1)

p
λ+n

) ,

bk−1 = 1
2(λ+n) − 2λ−1

2
p
λ+n

(∑2n
j=1 θ

j
k−1−(2n+1)

p
λ+n

) .
(C.24)

For notational purposes we will refer to this procedure asΨIC
(
Ωk−1|k−1,Pk−1|k−1,n,λ,u, l

)
. An example of

the transformation procedure is graphically represented in figure C.1. Note that if the constraints are sat-
isfied before the transformation, then ΨIC(·) ≡Ψ(·). However, if the constraints are violated, then ΨIC(·)
transforms the sigma points such that the constraints are satisfied. Moreover, the weights are trans-
formed along with the sigma points, such that the transformed covariance reflects the true covariance.
In conclusion, substituting ΨIC(·) for Ψ(·) in equations (C.10) and (C.14), enforces interval constraints
during the forecast step with minimal adjustments.

If the market is going through severe changes, the Heston parameters might fall outside their domain
after the measurement-update step. To this end, we need to add a transformation for each parameter p:

Ωk|k(p)→


lp if lp >Ωk|k(p),
Ωk|k(p) if lp ≤Ωk|k(p)≤ up,
up if up <Ωk|k(p).

(C.25)

Adding this transformation after equation (C.18) will ensure the interval constraints are not violated
during the measurement-update step.
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Figure C.1: An example of transformed sigma points, where x = [0.5,3], P = I2×2, x1 ∈ [0,∞), x2 ∈ (−∞,3.5] and λ= 0. The dashed
lines represent the constraints.

C.2. State-space representation Heston model
The Heston model needs to be written in state-space form, like equation (C.3), before the unscented
Kalman filter can be applied. To this end, we will derive the state-space representation of the Heston
model in this section.

In this case, the hidden state is represented by the Heston parameters and they depend on the ob-
served implied volatility surface. In section 2.5 we already described how the implied volatility surface
can be obtained, given a set of Heston parameters, which is equivalent to the measurement function.
Thus,

h(tk,Ωtk ,atk )=σHeston
(
tk,ΩHeston

tk
,K ,T

)
. (C.26)

The state function f (·), as defined in (C.3), is directly linked to the parameter dynamics given in (C.1). In
general, there does not exist a closed-form solution of these SDEs, hence the state function is discretized,

f (ΩHeston
tk−1

, tk−1,atk−1 ) =ΩHeston
tk−1

+µ(tk−1,ΩHeston
tk−1

) · (tk − tk−1),
wtk−1 =

√
ΣΩtk−1

Zwtk−1
,

Σwtk−1
=ΣΩtk−1

,
(C.27)

where µ(tk−1) is the vector consisting of the drift terms for all parameters, as defined in (C.1). Moreover,
ΣΩtk−1

is the variance-covariance matrix of the parameters at time-step tk−1 and Zwtk−1
is a vector with

independent standard normal distributed components. Again, the
p· operator denotes the Cholesky

square root. The components of the variance-covariance matrix for parameters p and q are given by

ΣΩtk−1
(p, q)=Cov

[
ptk ; qtk |ptk−1 , qtk−1

]
=Cov

[
ptk−1 +µp(tk−1, ptk−1 ) · (tk − tk−1)+

∫ tk

tk−1

σp(s, ps)dW p
s ;

qtk−1 +µq(tk−1, qtk−1 ) · (tk − tk−1)+
∫ tk

tk−1

σq(s, qs)dW q
s

∣∣∣∣ ptk−1 , qtk−1

]
=Cov

[∫ tk

tk−1

σp(s, ps)dW p
s ;

∫ tk

tk−1

σq(s, qs)dW q
s

∣∣∣∣ ptk−1 , qtk−1

]
≈Cov

[
σp(tk−1, ptk−1 )Np(0, tk − tk−1);σq(tk−1, qtk−1 )Nq(0, tk − tk−1)

∣∣ ptk−1 , qtk−1

]
=σp(tk−1, ptk−1 )σq(tk−1, qtk−1 )Cov[Np(0, tk − tk−1);Nq(0, tk − tk−1)]

=σp(tk−1, ptk−1 )σq(tk−1, qtk−1 )Γ{p.q}(tk − tk−1), (C.28)

where σp(t, pt) is defined as in (C.1) and Γ{p.q} represents the correlation between parameters p and q.
The variance of parameter p can be retrieved by substituting ptk−1 = qtk−1 into (C.28). Finally, we assume



92 C. Improved calibration procedure

the measurement noise to be

vtk =
√
Σσtk

Zvtk
,

Σvtk
=Σσtk

=


p
δ 0 · · · 0

0
p
δ 0 · · ·

...
. . .

. . .
0 · · · 0

p
δ

 .
(C.29)

With (constant) noise term δ and standard normal distributed vector Zvtk
with independent components.

In summary, the state-space representation of the Heston model is defined as

ΩHeston
tk

=ΩHeston
tk−1

+µ(tk−1,ΩHeston
tk−1

) · (tk − tk−1)+
√
ΣΩtk−1

Zwtk−1
,

σMarket
tk

=σHeston
(
tk,ΩHeston

tk
,K ,T

)
+

√
Σσtk

Zvtk
.

(C.30)

This representation is analysed as described in algorithm 2.

Algorithm 2 Calibrating the Heston parameters with an Unscented Kalman Filter

1: procedure UNSCENTED KALMAN FILTER

2: Define initial mean µ0, parameter set Ω0|0 and correlation matrix P0|0.

3: for k ∈ {1, . . . , N} do
4: Evaluate ΨIC

(
Ωk−1|k−1,Pk−1|k−1,n,λ,u, l

)
, as defined in (C.19)-(C.24), to determine the sigma

points and their associated weights.
5: Propagate the sigma points through state function f (·), as defined in (C.27).
6: Determine the prior parameter set Ωk|k−1 and covariance Pk|k−1 with (C.12) and (C.13).
7: Update the sigma points according to the prior estimates with ΨIC

(
Ωk|k−1,Pk|k−1,n,λ,u, l

)
.

8: Determine the prior measurement following (C.15), with h(·) as defined in (C.26).
9: Evaluate the Kalman gain through (C.16).

10: Obtain the posterior estimates Ωk|k, Pk|k with (C.18).
11: Transform the parameter setΩk|k with (C.25), such that the boundary constraints are satisfied.
12: Determine the posterior measurement estimate σk|k by substituting the transformed

parameter set Ωk|k in (C.18).

C.3. Calibrating auxiliary parameters
The approach described in the previous sections contains many auxiliary parameters that require cali-
bration beforehand, for example λ, δ and Γp,q for each parameter combination p and q. The calibration
procedure is similar to the VIX Heston model calibration. Fixing the auxiliary parameters fully defines
the Heston model parameters, ΩHeston

k|k (Xaux), for each step k. Thus, one can find the optimal auxiliary
parameters by performing a minimization procedure,

Xaux = argmin
XSearch

(∑
k

∑
K

∑
T

(
σMarket(tk,K ,T)−σHeston(tk,ΩHeston

k|k (XSearch),K ,T)
)2

)
. (C.31)

Again, we use the Levenberg-Marquardt least-squares algorithm to find the (local) optimum. In this
application, it can be difficult for the algorithm to find a ’good’ local optimum, due to a highly oscillating
error function. However, sampling many initial values still leads to a good approximation of the global
optimum, as is described in, for example, Gavin (2017).

C.4. Results
In this section we will present results of the unscented Kalman filter approach, in terms of accuracy and
calibration time. We will distinguish two models: models using the regression functions presented in
chapter 3 and a model that does not utilize any of the regression models. The latter serves as a bench-
mark model: it shows whether adding market information will improve the accuracy. Finally, we will
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discuss the advantages of this approach, in terms of calibration time.

Throughout this entire chapter we will assume ∆t = 1 month, for computational purposes. Moreover,
the data set is separated into a training and test set, as discussed in section 3.4.1. The training set is
used to perform the calibration procedure described in section C.3 and the test set is used to evaluate the
accuracy of the models.

C.4.1. Benchmark model
Recall the general SDE representation for parameter p

dpt =µp(t, pt)dt+σp(t, pt)dW p
t . (C.32)

Throughout the entire analysis we will assume for each parameter

σp(t, pt)=αp pt, (C.33)

with αp the constant volatility of parameter p. Moreover, the benchmark model assumes a mean revert-
ing drift component,

µp(t, pt)= κp(p̄− pt). (C.34)

This mean reverting process is in line with historical observations, as all parameters appear to be evolving
around a certain long term mean. Using these assumptions, we can represent the stochastic processes as

dv0,t = κv0 (v̄0 −v0,t)dt+αv0 v0,tdWv0
t ,

dv̄t = κv̄( ¯̄v− v̄t)dt+αv̄ v̄tdW v̄
t ,

dγt = κγ(γ̄−γt)dt+αγγtdWγ
t ,

dρt = κρ(ρ̄−ρt)dt+αρρtdWρ
t .

(C.35)

A drawback of this approach is that it results in many auxiliary parameters that require calibration be-
forehand. However, the auxiliary parameters only require one calibration procedure for the entire data
set, as described in section C.3. The results of this calibration procedure can be found in appendix C.4.5.

C.4.2. Hybrid model
In the previous section we discussed a model where the Heston parameters are assumed to follow a mean
reverting path. This model does not depend on any market data other than the implied volatility surface.
In this section, we propose a hybrid model, which implements the results of section 3 into the unscented
Kalman filter. This way, we derive relevant information from both the implied volatility surface and the
market indices3. In this section we will make the following assumptions:

• The deterministic increments of v0,t, v̄t, γt are equal to the increments of the regression models
proposed in chapter 3.

• The correlation coefficient ρ follows a mean reverting path.
• All parameters are driven by a stochastic noise term equal to (C.33).

This translates to
Regression model Unscented Kalman filter

v∗0,t = fv0 (t, ·) → dv0,t = dv∗0,t +αv0 v0,tdWv0
t ,

v̄∗t = f v̄(t, ·) → dv̄t = dv̄∗t +αv̄ v̄tdW v̄
t ,

γ∗t = fγ(t, ·) → dγt = dγ∗t +αγγtdWγ
t ,

ρ∗t = ρ̄ → dρt = κρ(ρ̄−ρt)dt+αρρtdWρ
t ,

(C.36)

where fp(t, ·) is defined as the regression model for parameter p at time t. We will test this approach for
all regression models proposed in chapter 3. After discretization, we define the deterministic increments
for parameter p as

dp∗
tk
= fp(tk, ·)− fp(tk−1, ·). (C.37)

3In this case, the relevant market features include the VIX index and the long-term mean r720.
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The auxiliary parameters are calibrated as described in section C.3 and the optimal auxiliary parameters
of the benchmark model are estimated as

αv0 = 0.0031, αv̄ = 8.668 ·10−5, αγ = 0.0051, αρ = 0.0051, κv0 = 0.1369,
κv̄ = 0.1153, κγ = 0.1765, κρ = 0.0204, v̄0 = 0.0517, ¯̄v = 0.1043,
γ̄= 0.6786, ρ̄ =−0.7495, Γv0,v̄ = 0.9981, Γv0,γ = 0.9609, Γv0,ρ =−0.08,
Γv̄,γ = 0.9331, Γv̄,ρ = 0.02, Γγ,ρ = 0.22, λ= 1.0932, δ= 2.1224 ·10−8.

(C.38)

The optimal auxiliary parameters of the hybrid model are estimated as
αv0 = 4.205 ·10−10, αv̄ = 2.381 ·10−8, αγ = 5.905 ·10−5, αρ = 1.696 ·10−6, κρ = 0.0147,
ρ̄ =−0.7495, Γv0,v̄ = 0.9981, Γv0,γ = 0.9119, Γv0,ρ = 0.0000, Γv̄,γ = 0.9345,
Γv̄,ρ = 0.0000, Γγ,ρ = 0.0000, λ= 1.2008, δ= 1.000 ·10−14.

(C.39)

The noise terms of the hybrid model are significantly smaller than the noise terms of the benchmark
model. This can be explained by the more accurate drift terms, which are based on the regression models
instead of a mean reverting process. The other hyper parameters are, as expected, comparable to the
benchmark model.

C.4.3. Accuracy
After identifying the optimal set-up for both the benchmark and hybrid models, one is able to estimate
the Heston parameters and the accompanied implied volatility surfaces of the test set. Using the error
measures defined in (3.35) and (3.36) we will assess the performance of the benchmark model and com-
pare it to the hybrid models, which are based on the regression functions established in chapter 3. The
results of the US data set can be found in table C.1 and figure C.2. The results of the Europe and UK
data sets can be found in section C.4.5.

Model SSE MAE R2 MSEv0 MSEv̄ MSEγ MSEρ

Benchmark 0.0491 0.0057 0.9763 5.598 ·10−5 1.187 ·10−4 0.0119 0.0022
VIX Heston 0.0198 0.0034 0.9905 1.207 ·10−6 5.053 ·10−6 0.0012 7.003 ·10−4

Polynomial Regression 0.0192 0.0034 0.9907 1.409 ·10−6 5.940 ·10−6 0.0012 6.923 ·10−4

Multi-output SVR 0.0186 0.0034 0.9911 1.503 ·10−6 8.054 ·10−6 0.0014 6.914 ·10−4

GB regression trees 0.0189 0.0034 0.9909 7.549 ·10−7 6.462 ·10−6 0.0010 6.954 ·10−4

Unrestricted 0.0173 0.0034 0.9916 - - - -

Table C.1: Out-of-sample accuracy of the unscented Kalman filter according to the error measures defined in (3.35) and (3.36).

The accuracy of the hybrid models is comparable to the unrestricted model, as the mean absolute
error and sum of squared errors are almost equal. Moreover, it seems that adding market information,
by implementing the regression models, leads to improved performance. In every data set4, the bench-
mark model is outperformed by all hybrid models in terms of accuracy. The benchmark model assumes
mean reverting drift terms, hence all prior estimates will predict convergence to the long term mean,
which does not always coincide with the actual market development. Consequently, the prior errors of
this model will be relatively large, making it more difficult to make an accurate posterior estimation. The
hybrid models, however, do incorporate development of the market. This leads to more accurate prior and
posterior predictions.

The robustness of this approach is noteworthy. Not only in terms of different data sets, but also in
terms of different regression models. The unscented Kalman filter produces accurate estimates for all
hybrid models in all data sets, despite differences in the regression models. We can conclude that small
errors in the prior predictions (regression models) have little to no effect on the posterior estimates, as
these differences are thought of as noise and nullified by the Kalman gain, which depends on the observed
implied volatility surface.

4US, UK and Europe
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Figure C.2: Development of the Heston parameters according to the unrestricted model and the hybrid unscented Kalman filter.

Finally, this approach appears to be insusceptible for overfitting: the in-sample accuracy is compara-
ble to the out-of-sample accuracy. This phenomenon is caused by two key features of the hybrid model.
First of all, the use of regression models, with fairly accurate out-of-sample predictions (see chapter 3),
improve the accuracy in-sample as well as out-of-sample. Moreover, the posterior predictions use the
observed implied volatility surface, which contains all the information required for calibration, as the
Heston parameters are defined according to this surface. However, the unscented Kalman filter is not
powerful enough to rely solely on the implied volatility surface, which is indicated by the results of the
benchmark model.

C.4.4. Calibration time
The unscented Kalman filter approach calibrates over 3 times faster than the Levenberg-Marquardt
minimizer in the current set-up. In the current model, we estimate four Heston parameters and we
assume κ to be constant. One can imagine that the calibration time increases (decreases), when more
(fewer) parameters are estimated. To this end, we will explore the relation between calibration time
and the number of calibrated parameters. In this test we will calibrate x parameters according to the
unscented Kalman filter approach and the Levenberg-Marquardt minimizer, with x ∈ {1, . . . ,5}. The other
parameters are fixed. The calibration times of the US data set are graphically presented in figure C.3.

By increasing the number of parameters, one increases the size of the search space of the Levenberg-
Marquardt minimizer. Consequently, more function evaluations are required to find the optimum, which
increases calibration time. As the number of parameters grows, this effect becomes even more pro-
nounced, since the size of the search space increases exponentially. This explains the non-linear be-
haviour of the Levenberg-Marquardt algorithm in figure C.3.

On the other hand, the calibration time of the unscented Kalman filter approach increases linearly
with the number of calibrated parameters. Adding one parameter leads to two additional sigma points,
resulting in a linear behaviour, as can be seen in figure C.3. Moreover, the loss of accuracy is negligible for
all models. Thus, we can conclude that the unscented Kalman filter approach is not only faster than the
Levenberg-Marquardt minimizer, its efficiency is even more pronounced in complex models (with more
parameters).
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Figure C.3: Calibration times for different number of US Heston parameters with the unscented Kalman filter approach and
Levenberg-Marquardt minimizer.

C.4.5. Results Europe and UK Data sets
UK
The optimal auxiliary parameters of the hybrid model are estimated as

αv0 = 5.287 ·10−7, αv̄ = 2.708 ·10−7, αγ = 6.939 ·10−5, αρ = 2.976 ·10−5, κρ = 0.0471,
ρ̄ =−0.6400, Γv0,v̄ = 0.9577, Γv0,γ = 0.9091, Γv0,ρ = 0.2000, Γv̄,γ = 0.9316,
Γv̄,ρ =−0.1000, Γγ,ρ =−0.1000, λ= 1.1956, δ= 1.160 ·10−13.

(C.40)

The regression results of this set-up are presented in table C.2 and figure C.4.

Model SSE MAE R2 MSEv0 MSEv̄ MSEγ MSEρ

VIX Heston 0.0137 0.0046 0.9843 1.506 ·10−6 5.086 ·10−6 8.875 ·10−4 2.898 ·10−4

Polynomial Regression 0.0137 0.0046 0.9843 1.506 ·10−6 5.086 ·10−6 8.875 ·10−4 2.898 ·10−4

Multi-output SVR 0.0135 0.0046 0.9846 1.423 ·10−6 5.296 ·10−6 9.006 ·10−4 2.810 ·10−4

Unrestricted 0.0126 0.0045 0.9854 - - - -

Table C.2: UK out-of-sample accuracy of the unscented Kalman filter according to the error measures defined in (3.35) and (3.36).

Europe
The optimal auxiliary parameters of the hybrid model are estimated as

αv0 = 5.287 ·10−7, αv̄ = 2.708 ·10−7, αγ = 6.939 ·10−5, αρ = 2.976 ·10−5, κρ = 0.0471,
ρ̄ =−0.6400, Γv0,v̄ = 0.9577, Γv0,γ = 0.9091, Γv0,ρ = 0.2000, Γv̄,γ = 0.9316,
Γv̄,ρ =−0.1000, Γγ,ρ =−0.1000, λ= 1.1956, δ= 1.150 ·10−13.

(C.41)

The regression results of this set-up are presented in table C.3 and figure C.5.

Model SSE MAE R2 MSEv0 MSEv̄ MSEγ MSEρ

VIX Heston 0.0176 0.0053 0.9752 1.534 ·10−6 9.245 ·10−6 0.0018 5.189 ·10−4

Polynomial Regression 0.0176 0.0053 0.9752 1.341 ·10−6 7.867 ·10−6 0.0016 4.828 ·10−4

Multi-output SVR 0.0160 0.0051 0.9775 1.142 ·10−6 8.934 ·10−6 0.0015 4.671 ·10−4

Unrestricted 0.0154 0.0051 0.9779 - - - -

Table C.3: Europe out-of-sample accuracy of the unscented Kalman filter according to the error measures defined in (3.35) and
(3.36).
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Figure C.4: Development of the UK Heston parameters according to the unrestricted model and the hybrid unscented Kalman
filter.
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Figure C.5: Development of the Europe Heston parameters according to the unrestricted model and the hybrid unscented Kalman
filter.





D
Hedging ratios

D.1. Covariation
Formally, the covariance of two processes X t and Yt is defined as

〈X ,Y 〉t = lim
||P||→0

Pn∑
k=1

(X tk − X tk−1 )(Ytk −Ytk−1 ). (D.1)

Where P is the partition of interval [0, t] and Pn is the number of elements in this partition. Hence,

||P||→ 0⇒ Pn →∞. (D.2)

This operator has the following properties

• 〈cX ,Y 〉t = c〈X ,Y 〉t, for constant c and processes X t and Yt.

• 〈X +Z,Y 〉t = 〈X ,Y 〉t +〈Z,Y 〉t, for processes X t, Yt and Zt.

• 〈dW1
t ,dW1

t 〉 = dt, for Brownian motion W1
t .

• 〈dW1
t ,dW2

t 〉 = ρdt, for Brownian motions W1
t and W2

t with correlation ρ.

• 〈dW1
t ,dt〉 = 0, for Brownian motion W1

t .

The first two properties can be easily derived from the operator’s definition and latter three properties
follow from the definition of the Brownian motion.

D.2. Option price dynamics
We can apply Ito’s lemma to define the Heston option price dynamics:

dCHeston
t = ∂C

∂t
dt+ ∂C

∂St
dSt + ∂C

∂vt
dvt + 1

2
∂2C
∂S2

t
〈dSt,dSt〉+ 1

2
∂2C
∂v2

t
〈dvt,dvt〉+ ∂2C

∂St∂vt
〈dSt,dvt〉 . (D.3)

Now we can substitute (4.22) into (D.3), to obtain

= ∂C
∂t

dt+ ∂C
∂St

(
rStdt+p

vtStdW1
t
)+ ∂C

∂vt

(
κ(v̄−vt)dt+γpvtdW2

t
)+ 1

2
∂2C
∂S2

t
vtS2

t dt

+ 1
2
∂2C
∂v2

t
γ2vtdt+ ∂2C

∂St∂vt
ργvtStdt

=
(
∂C
∂t

+ rSt
∂C
∂St

+κ(v̄−vt)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
dt

+p
vtSt

∂C
∂St

dW1
t +γpvt

∂C
∂vt

dW2
t . (D.4)
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We can slightly rewrite this expression by assuming two independent Brownian motions WS
t and Wv

t
defined through {

W1
t =WS

t ,
W2

t = ρWS
t +

√
1−ρ2Wv

t .
(D.5)

Substituting this dependence structure in (D.4) gives the option price dynamics under the Heston model

dCHeston
t =

(
∂C
∂t

+ rSt
∂C
∂St

+κ(v̄−vt)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
dt

+
(p

vtSt
∂C
∂St

+ργpvt
∂C
∂vt

)
dWS

t +γ
√

vt(1−ρ2)
∂C
∂vt

dWv
t . (D.6)

D.3. Delta hedge portfolio dynamics
Using the option price dynamics given in (4.25) and the definition of ∆t given by (4.26), we can derive the
Heston Delta hedge portfolio dynamics

dΠt =−dCt +∆CHeston
t

dSt +dBt

=−dCt +
(
∂C
∂St

+ργ 1
St

∂C
∂vt

)
dSt +dBt

=−
(
∂C
∂t

+ rSt
∂C
∂St

+κ(v̄−vt)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
dt

−
(p

vtSt
∂C
∂St

+ργpvt
∂C
∂vt

)
dWS

t −γ
√

vt(1−ρ2)
∂C
∂vt

dWv
t

+
(
∂C
∂St

+ργ 1
St

∂C
∂vt

)(
rStdt+p

vtStdWS
t

)
+ rBtdt

=−
(
∂C
∂t

+κ(v̄−vt − rργ)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

− rBt

)
dt

−γ
√

vt(1−ρ2)
∂C
∂vt

dWv
t .

(D.7)

D.4. Delta-Vega hedge portfolio dynamics
For notational purposes we first define

b1(Ct)= ∂C
∂t

+ rSt
∂C
∂St

+κ(v̄−vt)
∂C
∂vt

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

, (D.8)

b2(Ct)=p
vtSt

∂C
∂St

+ργpvt
∂C
∂vt

, (D.9)

b3(Ct)= γ
√

vt(1−ρ2)
∂C
∂vt

. (D.10)

Note that
dCt = b1(Ct)dt+b2(Ct)dWS

t +b3(Ct)dWv
t . (D.11)

Now, by substituting the definitions we can derive

dΠt =−dCt + ∆̄(1)
CHeston

t
dSt + ∆̄(2)

CHeston
t

dC̃t +dBt

=−dCt +
(
∂C
∂St

− ∆̄(2)
CHeston

t

∂C̃
∂St

)
dSt + ∆̄(2)

CHeston
t

dC̃t +dBt

=−b1(Ct)dt−b2(Ct)dWS
t −b3(Ct)dWv

t +
(
∂C
∂St

− ∆̄(2)
CHeston

t

∂C̃
∂St

)(
rStdt+p

vtStdWS
t

)
+ ∆̄(2)

CHeston
t

[
b1(C̃t)dt+b2(C̃t)dWS

t +b3(C̃t)dWv
t

]
+ rBtdt. (D.12)
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First, we collect the dt terms

b4(Ct, C̃t) :=−b1(Ct)+ ∆̄(2)
CHeston

t
b1(C̃t)+ rSt

∂C
∂St

− rSt∆̄
(2)
CHeston

t

∂C̃
∂St

+ rBt

=−∂C
∂t

− rSt
∂C
∂St

−κ(v̄−vt)
∂C
∂vt

− 1
2

vtS2
t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
−ργvtSt

∂2C
∂St∂vt

+ ∆̄(2)
CHeston

t

(
∂C̃
∂t

+ rSt
∂C̃
∂St

+κ(v̄−vt)
∂C̃
∂vt

+ 1
2

vtS2
t
∂2C̃
∂S2

t
+ 1

2
γ2vt

∂2C̃
∂v2

t
+ργvtSt

∂2C̃
∂St∂vt

)

+ rSt
∂C
∂St

− rSt∆̄
(2)
CHeston

t

∂C̃
∂St

+ rBt

=−∂C
∂t

− 1
2

vtS2
t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
−ργvtSt

∂2C
∂St∂vt

+κ(v̄−vt)

− ∂C
∂vt

+
∂C
∂vt

∂C̃
∂vt

∂C̃
∂vt


+ ∆̄(2)

CHeston
t

(
∂C
∂t

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
+ rBt

=−∂C
∂t

− 1
2

vtS2
t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
−ργvtSt

∂2C
∂St∂vt

+ ∆̄(2)
CHeston

t

(
∂C
∂t

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
+ rBt. (D.13)

Similarly, we can collect the dWS
t terms

b5(Ct, C̃t) :=−b2(Ct)+ ∆̄(2)
CHeston

t
b2(C̃t)+p

vtSt
∂Ct

∂St
−p

vtSt∆̄
(2)
CHeston

t

∂C̃t

∂St

=−pvtSt
∂C
∂St

−ργpvt
∂C
∂vt

+
∂C
∂vt

∂C̃
∂vt

(p
vtSt

∂C̃
∂St

+ργpvt
∂C̃
∂vt

)
+p

vtSt
∂Ct

∂St
−p

vtSt

∂C
∂vt

∂C̃
∂vt

∂C̃t

∂St

= 0. (D.14)

Finally, we collect the dWv
t terms

b6(Ct, C̃t) :=−b3(Ct)+ ∆̄(2)
CHeston

t
b3(C̃t)

=−γ
√

vt(1−ρ2)
∂C
∂vt

+
∂C
∂vt

∂C̃
∂vt

γ

√
vt(1−ρ2)

∂C̃
∂vt

= 0. (D.15)

Thus, we can conclude that

dΠt = b4(Ct, C̃t)dt

=
(
−∂C
∂t

− 1
2

vtS2
t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
−ργvtSt

∂2C
∂St∂vt

+ ∆̄(2)
CHeston

t

(
∂C
∂t

+ 1
2

vtS2
t
∂2C
∂S2

t
+ 1

2
γ2vt

∂2C
∂v2

t
+ργvtSt

∂2C
∂St∂vt

)
+ rBt

)
dt. (D.16)





E
Simulation Procedures

In this chapter we will describe the simulation procedures to generate Black-Scholes, Heston and dynamic
Heston markets. The markets will be simulated for interval [0,T], which will be discretize into N time-
intervals of size ∆t, hence

N = T
∆t

. (E.1)

E.1. Black-Scholes
The Black-Scholes asset dynamics can be expressed analytically,

St = S0e(µ− 1
2σ

2)t+σWS
t . (E.2)

Hence, simulating the Black-Scholes market is equivalent to generating Brownian motion paths dis-
tributed as

WS
t ∼N (0, t). (E.3)

Here N (a,b) is a normal distribution with mean a and variance b.

E.2. Heston
In this section we will follow the Quadratic Exponential scheme proposed in Andersen (2008) (see page
19 with γ1 = 0.5, γ2 = 0.5). First we will rewrite the Heston dynamics{

dX t = (r− 1
2 vt)dt+p

vt

(
ρdWv

t +
√

1−ρ2dWS
t

)
,

dvt = κ(v̄−vt)dt+γpvtdWv
t .

(E.4)

With X t = log(St). The integral expression is given by
X t+∆t = X t +

t+∆t∫
t

(r− 1
2 vs)ds+ρ

t+∆t∫
t

p
vtdWv

t +
√

1−ρ2
t+∆t∫

t

p
vsdWS

s ,

vt+∆t = vt +
t+∆t∫

t
κ(v̄−vs)ds+γ

t+∆t∫
t

p
vsdWv

s .
(E.5)

By performing an Euler discretization one is able to evaluate these expressions. But too large values of
∆t might produce negative values for vt, which is impossible. However, as proven in Cox et al. (1985), vt
follows a non-central chi squared distribution defined as

vt+∆t ∼ c∆tχ
2(d,λ(t,vt)),

c∆t = γ2

4κ (1− e−κ∆t),
d = 4κv̄

γ2 ,

λ(t,vt)= 4κe−κ∆t

γ2(1−e−κ∆t) vt.

(E.6)
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With χ2(d,λ(t,vt)) the non-central chi-squared distribution with d degrees of freedom and non-centrality
λ(t,vt). To prevent negative values of vt we will draw vt+∆t from this distribution. Now, given vt and
vt+∆t, we can derive

vt+∆t = vt +
t+∆t∫
t

κ(v̄−vs)ds+γ
t+∆t∫
t

p
vsdWv

s

⇔,
t+∆t∫
t

p
vsdWv

s = 1
γ

vt+∆t −vt −
t+∆t∫
t

κ(v̄−vs)ds

 . (E.7)

By discretizing we can approximate this expression,

t+∆t∫
t

p
vsdWv

s ≈ 1
γ

(
vt+∆t −vt −κ

(
v̄− vt +vt+∆t

2

)
∆t

)
. (E.8)

Substituting this in the integral expression for X t and discretizing gives

X t+∆t ≈ X t +
t+∆t∫
t

(r− 1
2

vs)ds+ ρ

γ

(
vt+∆t −vt −κ

(
v̄− vt +vt+∆t

2

)
∆t

)
+

√
1−ρ2

t+∆t∫
t

p
vsdWS

s

≈ X t +
(
r− vt +vt+∆t

4

)
∆t+ ρ

γ

(
vt+∆t −vt −κ

(
v̄− vt +vt+∆t

2

)
∆t

)
+

√
vt +vt+∆t

2
∆t(1−ρ2)ZS . (E.9)

With independent standard normal distributed random variable ZS . In conclusion, given vt and St, one
can generate vt+∆t and St+∆t as follows,

Algorithm 3 Simulating a Heston market

1: procedure HESTON SIMULATION

2: Define S0 and v0.
3: Set X0 = log(S0).

4: for i ∈ {0, . . . , N −1} do
5: Draw vt+∆t from c∆tχ

2(d,λ(t,vt)) as defined in (E.6).
6: Draw ZS from an independent standard normal distribution.
7: Calculate X t+∆t according to (E.9).
8: Set St+∆t = eX t+∆t .

E.3. Dynamic Heston
We can rewrite the dynamic Heston model as follows

dX t = (r− 1
2 vt)dt+p

vt

(
ρdWv

t +
√

1−ρ2dWS
t

)
,

dvt = κ(v̄t −vt)dt+γt
p

vtdWv
t ,

dv̄t = κv̄(v̄Mean − v̄t)dt+av̄ v̄t

(
ρ v̄dWv

t +
√

1−ρ2
v̄dW v̄

t

)
,

dγt = κγ(γMean −γt)dt+aγγt

(
ργdWv

t +
√

1−ρ2
γdWγ

t

)
.

(E.10)

Note that we can still generate vt and St similar to the previous section, only with time-dependent
parameters. The difficulty lies in simulating v̄t and γt, such that they are correlated to vt. First, we will
discretize the processes

vt+∆t ≈ vt +κ
(
v̄t − vt+vt∆t

2
)
∆t+γt

√
vt+vt∆t

2 ∆tZv,

v̄t+∆t ≈ v̄t +κ(v̄Mean − v̄t)∆t+av̄ρ v̄ v̄t
p
∆tZv +av̄ v̄t

√
∆t(1−ρ2

v̄)Z
v̄,

γt+∆t ≈ γt +κ(γMean −γt)∆t+aγργγt
p
∆tZv +aγγt

√
∆t(1−ρ2

γ)Zγ.

(E.11)
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Where Zv, Z v̄ and Zγ are independent standard normal distributed random variables. Now we are able
to derive an approximation for Zv, given vt+∆t,

p
∆tZv ≈ 1

γt

√
vt+vt+∆t

2

(
vt+∆t −vt −κ

(
v̄t − vt +vt+∆t

2

)
∆t

)
. (E.12)

This approximation can be substituted in (E.11), which ensures the correlation between vt, v̄t and γt. In
summary, the following steps must be taken to simulate a dynamic Heston market,

Algorithm 4 Simulating a dynamic Heston Market

1: procedure DYNAMIC HESTON SIMULATION

2: Define S0, v0, v̄0 and γ0.
3: Set X0 = log(S0).

4: for i ∈ {0, . . . , N −1} do
5: Draw vt+∆t from c∆tχ

2(d,λ(t,vt)) as defined in (E.6).
6: Draw ZS , Z v̄, Zγ from independent standard normal distributions.
7: Calculate X t+∆t according to (E.9).
8: Set St+∆t = eX t+∆t .
9: Determine Zv according to (E.12).

10: Calculate v̄t+∆t and γt+∆t using (E.11).





F
Accuracy Least-Squares Monte Carlo

F.1. Guaranteed Minimal Accumulation Benefit
The GMAB rider has an analytical solution, as we have shown in (5.10), which makes it a perfect test
case for the Least-Squares Monte Carlo method. We will determine the expected liabilities according to
the FFT algorithm described in appendix A and compare it to the Least-Squares Monte Carlo approach
discussed throughout this chapter. By doing so, the accuracy of the Least-Squares Monte Carlo method
can be assessed. In addition, we will be able to identify the algorithm’s optimal set-up, which depends on
the resource allocation, sampling method and type of basis function. The accuracy will be evaluated by
four error measures, 

EMean = 1
M

M∑
i=1

∣∣∣l(i)
pred − l(i)

real

∣∣∣ ,

EStd = 1p
M−1

√
M∑

i=1

(
l(i)
pred − l(i)

real

)2
,

E99.5 = l[99.5]
pred − l[99.5]

real ,

Etail = 1
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(F.1)

where l(i) indicates the loss of trajectory i and l[ j] the loss of the j% quantile. These error measures can
be thought of as

• EMean and EStd: The mean absolute error and standard deviation, to test the stability across the
entire distribution.

• E99.5: Error on the 99.5% quantile, to test the error associated with the SCR.
• Etail: The mean absolute error of the tail, to test the stability in the tail of the distribution.

In order to optimize the Least-Squares Monte Carlo algorithm, we will compare different set-ups:

• Regular polynomial basis functions (P) versus Legendre polynomial basis functions (L).
• Real-world sampling (Rw) versus Sobol sampling (So).
• Different resource allocations, where the total number of inner simulations is bounded. In case of

the original risk-neutral measure, the total number of inner simulations is bounded by 200.000.
To achieve similar accuracy, the time-dependent measure requires more sample points due to more
volatile outcomes. Hence, we bound the number of inner simulations by 500.000 for the time-
dependent risk-neutral measure. We will test different numbers of outer samples (R) and inner
samples per outer sample (N), such that the total number of inner simulations does not exceed
these bounds.

A few possible combinations and their errors are displayed in table F.1 for the original risk-neutral mea-
sure and table F.2 for the time-dependent risk-neutral measure. The contract details are given in table
5.1 and the initial market values follow scenario 1 of table 5.2. Moreover, all tests are performed with a
fourth degree polynomial, which appeared to be optimal in all cases. The results of the other scenarios
can be found in section F.1.1.
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Set-up EMean EStd E99.5 Etail

L, So, R1, N1 0.9021 1.3215 -0.6004 0.6986
P, So, R1, N1 0.9021 1.3215 -0.6004 0.6986
L, Rw, R1, N1 0.8293 1.2192 3.5665 3.3367
P, Rw, R1, N1 0.8293 1.2192 3.5670 3.3370
L, So, R2, N2 1.7631 1.6940 1.2448 1.0234
P, So, R2, N2 1.7631 1.6940 1.2448 1.0234
L, Rw, R2, N2 1.6793 2.4735 -1.2260 0.8201
P, Rw, R2, N2 1.6793 2.4735 -1.2260 0.8201

Table F.1: Results of LSMC for different set-ups: Original risk-neutral measure GMAB. R1 = 200.000 outer samples, N1 = 1 inner
sample, R2 = 20.000 outer samples and N2 = 10 inner samples.

Set-up EMean EStd E99.5 Etail

L, So, R1, N1 1.1742 1.0822 -0.0309 0.4627
P, So, R1, N1 1.0573 1.1014 0.0292 0.3168
L, Rw, R1, N1 2.1364 4.3668 3.6342 4.1385
P, Rw, R1, N1 2.0986 4.4141 4.2426 4.7362
L, So, R2, N2 1.2769 2.0972 1.3171 0.8684
P, So, R2, N2 1.2565 2.0915 1.3509 0.8639
L, Rw, R2, N2 1.5674 5.0697 -2.0135 2.5386
P, Rw, R2, N2 1.5411 5.0699 -1.9694 2.4902

Table F.2: Results of LSMC for different set-ups: Time-dependent risk-neutral measure GMAB. R1 = 200.000 outer samples,
N1 = 1 inner sample, R2 = 20.000 outer samples and N2 = 10 inner samples.

The results appear to be inconclusive: different set-ups are considered optimal according to different
error measures. Moreover, the different scenarios do not seem to agree on the optimal set-up. Therefore,
the most robust set-up in terms of tail accuracy will be considered optimal.

First of all, there does not appear to be an optimal performing basis function according to this test.
In theory, the Legendre polynomial should outperform the regular polynomial, due to its orthogonality.
However, in case of the original risk-neutral measure, the difference of the basis functions is negligible.
In case of the time-dependent measure, the results vary between the different scenarios. In some set-ups,
the Legendre polynomial is more accurate, while it is outperformed by the regular polynomial in other
set-ups. Since there is no clear optimal basis function, we will consider the regular polynomial in future
analyses, as it is computationally more efficient to evaluate.

In the tail, Sobol sampling is more stable than real-world simulation sampling in this test, which is
especially visible in the time-dependent risk-neutral measure results. This behaviour was expected, as
described in section 5.2.3 and according to the findings of Cathcart (2012). Moreover, in some cases Sobol
sampling even outperforms real-world simulation sampling in terms of overall accuracy. This is possibly
the result of lower covariance between the least-squares regression parameters, as described in section
5.2.4.

Finally, according to this test it appears to be advantageous to sample as many outer points as possi-
ble. By sampling many outer points, the dependence on the inner errors is reduced, which produces the
most stable solution, see for example figure 5.6. This is in line with the findings of Broadie et al. (2015),
as discussed in section 5.2.4.
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F.1.1. Accuracy results scenarios 2 and 3
Scenario 2

Set-up EMean EStd E99.5 Etail

L, So, R1, N1 1.3481 1.8438 1.0507 0.8955
P, So, R1, N1 1.3481 1.8438 1.0507 0.8955
L, Rw, R1, N1 1.2843 1.7203 4.3514 4.7482
P, Rw, R1, N1 1.2843 1.7203 4.3514 4.7482
L, So, R2, N2 1.1902 1.0300 0.8742 0.9167
P, So, R2, N2 1.1902 1.0300 0.8742 0.9167
L, Rw, R2, N2 1.2924 1.6475 -0.0033 0.4624
P, Rw, R2, N2 1.2924 1.6475 -0.0033 0.4624

Table F.3: Results of LSMC for different set-ups scenario 2: Original risk-neutral measure GMAB. R1 = 200.000 outer samples,
N1 = 1 inner sample, R2 = 20.000 outer samples and N2 = 10 inner samples.

Set-up EMean EStd E99.5 Etail

L, So, R1, N1 1.2733 1.0714 -0.3997 0.8292
P, So, R1, N1 1.1393 1.0828 -0.2637 0.6802
L, Rw, R1, N1 1.6458 2.9598 -0.4833 0.5713
P, Rw, R1, N1 2.0853 2.9501 -1.2389 1.2006
L, So, R2, N2 1.2365 1.9761 1.0927 0.8840
P, So, R2, N2 1.2159 1.9712 1.1271 0.8773
L, Rw, R2, N2 2.0585 5.5933 5.2360 4.9830
P, Rw, R2, N2 2.0623 5.5944 5.2243 4.9695

Table F.4: Results of LSMC for different set-ups scenario 2: Time-dependent risk-neutral measure GMAB. R1 = 200.000 outer
samples, N1 = 1 inner sample, R2 = 20.000 outer samples and N2 = 10 inner samples.

Scenario 3

Set-up EMean EStd E99.5 Etail

L, So, R1, N1 1.8241 1.9000 -0.3290 0.5360
P, So, R1, N1 1.8241 1.9000 -0.3290 0.5360
L, Rw, R1, N1 1.3040 1.9162 0.7978 0.4726
P, Rw, R1, N1 1.3040 1.9162 0.7978 0.4726
L, So, R2, N2 1.8929 1.7394 0.0261 0.1476
P, So, R2, N2 1.8929 1.7394 0.0261 0.1476
L, Rw, R2, N2 1.4651 3.2432 1.1996 1.0515
P, Rw, R2, N2 1.4651 3.2432 1.1996 1.0515

Table F.5: Results of LSMC for different set-ups scenario 3: Original risk-neutral measure GMAB. R1 = 200.000 outer samples,
N1 = 1 inner sample, R2 = 20.000 outer samples and N2 = 10 inner samples.
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Set-up EMean EStd E99.5 Etail

L, So, R1, N1 0.9397 1.1332 -0.5277 0.5396
P, So, R1, N1 0.8781 1.1603 -0.3215 0.4111
L, Rw, R1, N1 1.6104 2.9706 -5.4341 5.1993
P, Rw, R1, N1 1.7128 2.9754 -5.9395 5.6953
L, So, R2, N2 0.9842 2.4713 -0.0184 0.5111
P, So, R2, N2 0.9707 2.4640 0.0235 0.5127
L, Rw, R2, N2 1.8073 7.4200 1.6028 1.6835
P, Rw, R2, N2 1.8055 7.4216 1.6233 1.7093

Table F.6: Results of LSMC for different set-ups scenario 3: Time-dependent risk-neutral measure GMAB. R1 = 200.000 outer
samples, N1 = 1 inner sample, R2 = 20.000 outer samples and N2 = 10 inner samples.

F.2. Guaranteed Minimum Withdrawal Benefit
It is more difficult to assess the accuracy of the Least-Squares Monte Carlo approximation in case of a
variable annuity with the GMWB rider, as there is no analytical solution available. To this end, we will
only test the stability of the algorithm on a certain set of quantiles. First, we will obtain the loss distri-
bution according to the Least-Squares Monte Carlo algorithm, which uses the optimal set-up identified
in section 5.3.3. From this distribution, the set of quantiles and the associated parameters (such as fund
value and volatility at t = 1) can be determined. Hereafter, the true liabilities corresponding to these pa-
rameter sets will be evaluated according to a Monte Carlo approximation with 100.000 simulations. If the
method is stable, we expect the Monte Carlo evaluations to be approximately equal to the Least-Squares
Monte Carlo predictions. Table F.7 summarizes the results of this analysis.

Quantile Original: LSMC Original: MC Time-dependent: LSMC Time-dependent: MC

0.5% -193.3 -190.5 (0.5450) -211.5 -212.8 (0.3604)
10.0% -99.3 -98.9 (0.5345) -118.7 -120.3 (0.4494)
25.0% -60.9 -59.4 (0.5779) -78.5 -77.9 (0.4400)
50.0% -16.0 -13.7 (0.5638) -29.5 -29.1 (0.4534)
75.0% 33.8 35.6 (0.5469) 25.6 26.5 (0.5460)
90.0% 81.9 82.2 (0.5558) 79.7 78.5 (0.5079)
99.0% 174.0 172.2 (0.5939) 180.5 180.4 (0.5249)

99.25% 183.6 181.9 (0.6369) 190.3 186.4 (0.7396)
99.5% 196.7 196.1 (0.5477) 204.2 204.9 (0.4637)

99.75% 220.8 221.0 (0.5277) 228.2 228.3 (0.4802)

Table F.7: Stability analysis of a variable annuity with the GMWB rider for different risk-neutral measures. The standard errors
of the estimates are given between the parentheses.

Based on these results we can assume that the approach is stable, since no major errors appear on any
of the quantiles, especially at the upper-tail, which contains additional regression points. Moreover, sim-
ilar results were achieved for the other scenarios (see tables F.8 and F.9), which indicates the robustness
of the Least-Squares Monte Carlo approach.
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F.2.1. Accuracy results scenarios 2 and 3

Quantile Original: LSMC Original: MC Time-dependent: LSMC Time-dependent: MC

0.5% -69.4 -72.2 (0.0867) -61.3 -61.1 (0.2560)
10.0% -42.9 -42.2 (0.1288) -19.1 -18.5 (0.2734)
25.0% -27.5 -25.7 (0.1774) 2.4 4.1 (0.3292)
50.0% -1.1 0.2 (0.2436) 32.7 32.8 (0.3645)
75.0% 37.2 36.0 (0.2871) 71.6 71.3 (0.4488)
90.0% 81.0 79.9 (0.3502) 114.1 112.6 (0.5083)
99.0% 174.7 175.6 (0.4164) 200.0 199.5 (0.6469)

99.25% 184.9 185.7 (0.4252) 209.7 209.3 (0.5076)
99.5% 199.9 202.3 (0.3733) 222.0 221.4 (0.4768)

99.75% 223.2 225.3 (0.3750) 243.1 242.8 (0.5795)

Table F.8: Stability analysis of a variable annuity with the GMWB rider for different risk-neutral measures of scenario 2. The
standard errors of the estimates are given between the parentheses.

Quantile Original: LSMC Original: MC Time-dependent :LSMC Time-dependent: MC

0.5% -328.0 -319.2 (1.2513) -399.3 -399.4 (0.5559)
10.0% -163.4 -164.4 (1.0581) -241.7 -245.9 (0.5781)
25.0% -101.1 -101.7 (0.9776) -176.3 -179.1 (0.5525)
50.0% -37.1 -36.0 (0.9223) -102.4 -102.6 (0.5781)
75.0% 25.3 27.4 (0.8601) -26.4 -26.0 (0.8252)
90.0% 80.1 82.7 (0.7918) 42.1 43.9 (0.6536)
99.0% 176.2 178.8 (0.6942) 160.2 163.3 (0.5424)

99.25% 185.0 188.0 (0.6974) 171.7 173.9 (0.7486)
99.5% 198.7 201.3 (0.6752) 187.2 186.5 (0.5418)

99.75% 220.8 223.1 (0.6664) 212.8 212.0 (0.5349)

Table F.9: Stability analysis of a variable annuity with the GMWB rider for different risk-neutral measures of scenario 3. The
standard errors of the estimates are given between the parentheses.
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