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Abstract
The ever increasing presence of Machine Learn-
ing (ML) algorithms and Artificial Intelligence (AI)
agents in safety-critical and sensitive fields over the
past few years has spurred massive amounts of re-
search in Explainable Artificial Intelligence (XAI)
techniques (models). This new frontier of AI re-
search aims to resolve some of the fundamental is-
sues that accompany the usage of ML algorithms
in sensitive fields such as medicine or criminol-
ogy. For ML algorithm’s to be implemented and
used within fields such as medicine, it is not sim-
ply enough that they are proficient and effective
tool at solving their assigned task (such as clas-
sifying whether a patient has Covid-19 or not).
These ML techniques lack the ability to allow their
human counterparts the possibility of understand-
ing why they have made such a prediction, there-
fore not allowing the human supervisor a peak into
the black box. This black box problem is one
of the underlying difficulties that currently prevent
the widespread adoption of ML/AI algorithms into
these safety-critical fields. XAI techniques aim
to solve this very issue and in particular Model-
Agnostic XAI techniques aim to generate explana-
tions on the predictions of any ML or AI algorithm.
In this paper we will be exploring and investigating
the different Model-Agnostic XAI techniques and
looking into their individual advantages and dis-
advantages. After we’ve analyzed each individual
technique, we will take a more global view into the
different characteristics and how the XAI imple-
mentations compare to each other using different
metrics for comparison. Finally we will propose fu-
ture improvements and extensions that can be made
to the various investigated XAI techniques.

1 Introduction
In recent years, the explosion of popularity that the fields of
Machine Learning (ML) and Artificial Intelligence (AI) have
experienced has not gone unnoticed by regulatory forces. The
ever-increasing presence of ML and AI into practical appli-
cations in fields such as health services, counter-terrorism,
criminal justice, and credit/insurance risk assessment has
drawn the eye of public and government organizations to es-
tablish forms of transparency and accountability behind the
application of ML/AI systems into these often sensitive and
critical fields [1].

Unfortunately while ML/AI systems have come a long way
in their usefulness and application, most of algorithms behind
these systems exhibit black-box behavior, meaning that there
is a no transparency within the predictions made by ML/AI
system system’s [1]. This lack of explainability a behind the
system’s decision making process has discouraged organiza-
tions from the widespread practical adoption of ML/AI sys-
tems [1]. Without any explainability or transparency built
into these algorithms, there is no way for the users to de-
bug and take a peak into these black-box systems (hence the

name black-box). This lack of human oversight, can lead to
AI failures where critical functionalities within these systems
have unnoticed issues or biases that can lead to faulty deci-
sion making. One particular high-profile system failure was
Amazon’s recruitment AI having an unintended bias against
female candidates [2]. In order to account for the possibility
of AI systems having unintended bias’s or issues, it is imper-
ative to introduce an element of explainability to these sys-
tems, therefore allowing users to identify potential flaws and
errors in the AI’s judgment [2]. Beyond helping to account
for and fix critical system flaws, introducing explainability
will also result in an increased level of trust in these systems
as users are able to understand how a system arrived at a final
choice [2].

This is where eXplainable Artificial Intelligence (XAI)
techniques (or models) come in, which can be defined as
types of AIs that aim to introduce the attribute of explain-
ability into these black-box AI/ML algorithms. These XAI
techniques aim to eliminate the limitations of ML/AI sys-
tems mentioned previously, adding an element of explainabil-
ity into the processes of the AI/ML algorithms [2].

Organizations such as the Defence Advanced Research
Projects Agency (DARPA) in the US have even set up stan-
dalone research programs, to analyze and track XAI’s cur-
rent development and maturity level [3]. DARPA’s interest in
XAI technologies stem from the challenges that the Depart-
ment of Defense (DoD) faced when implementing ML tech-
niques into their autonomous systems [3]. The DoD found
that the best preforming ML systems, would be the ones most
opaque and most likely to exhibit black box behavior in their
operation [3]. This meant that extracting any explanation
from these ML systems would be impossible for any opera-
tor. While this might be acceptable for applications that aren’t
safety critical nor ethically complex, many of the promising
state-of-the-art ML applications within fields such as defense
or medicine require a form of accountability and transparency
behind their processes and reasoning [4].

One practical usage of ML algorithms that comes with the
requirement of a form of explainability before the full practi-
cal adoption of this technology is the usage of artificial neural
networks in brain-machine interfaces for performing medi-
cal tasks [5]. Interpretability and explainability are seen as
necessary requirements for this application as since this is a
medical application there are stringent restrictions as to who
is held accountable for each decision [5]. XAI techniques
aim to solve this issue by providing a form of transparency
through the use of explainable models, there allowing for a
degree of accountability even with the usage of an ML algo-
rithm since medical professionals will be able to oversee the
decision making process used by the ML algorithm [5].

This paper will be investigating and exploring the different
limitations, benefits, and advantages of various state-of-the-
art XAI techniques. For the initial two sections of the paper
we will introduce XAI techniques, what they are and their pri-
mary objectives, as well as what category of XAI techniques
we will target for investigation. After this initial introduction
into the relevant background information, the methodology
section will lay out the specifics behind how our paper will
investigate and compare the selected XAI techniques.



2 Background Information
2.1 General Overview on XAI Techniques
Research on explainable models isn’t a new field, it has been
active since the 1980s but the newfound popularity of ML/AI
practical applications has lead to a large variety of XAI tech-
niques being developed in recent years [2]. This recent uptick
in the amount of XAI techniques has resulted in the need for
the categorization of the various models, as well as clarifi-
cation as to what the goals of a general XAI technique are.
Our previous definition of what a XAI technique ("A type of
AI that aims to introduce explainability into an AI system")
is a bit vague and could benefit from further elaboration into
the terms used within the definition as well as what the main
objectives of any XAI technique are.

Before we establish what the main goals of an XAI tech-
nique consists of, we should clear up what the definition of
explainability in the scope of AI research is. While explain-
ability as a concept is relatively straightforward we will in this
paper use the nomenclature found in [6], where explainabil-
ity is defined as the ability of a system to provide the context
and reason for an AI system’s decision in such a manner that
it is understandable to a human. With explainability clearly
defined, we can move on to what XAI techniques main ob-
jectives are, which DARPA’s XAI initiative outlines as:

1. The technique should not to sacrifice performance when
introducing explainability into the ML models [6].

2. The technique should aim to not only produce accurate
explanations to the user, but it should convey these ex-
planations in a concise and clear manner that enables
end-users to understand the AI/ML models. [6]

These two goals outline the main objectives of XAI tech-
niques, and to combine these two objectives into one state-
ment, we can say that the primary function of any XAI im-
plementation is to increase the explainability of an AI/ML
system to the end user while not sacrificing performance to
obtain this objective [6]. Now that we have a clear definition
of what an XAI technique is, and what it’s main goals are we
can start to delve a bit deeper into the taxonomy of this field
and the different subcategories of XAI techniques.

2.2 Model-Agnostic/Specific XAI Models
As mentioned previously the sheer amount of ML/AI appli-
cations in the modern world has resulted in an equally mas-
sive amount of proposed XAI techniques and implementa-
tions. With this volume of research coming through in the last
few years, researchers have begun to classify these algorithms
into their different subcategories. Researchers have come to
a consensus that XAI techniques can currently be split into
two main sub-categories, model-agnostic and model-specific
techniques [1].

Model-specific techniques are a subsection of XAIs that
only function on a specific ML/AI model[1]. These imple-
mentations are limited to their individual targeted model, and
lack any form of model-flexability. However with this lim-
itation there is the significant advantage that model-specific
XAI techniques can focus singularly on their chosen model,

and optimize their explanation generation strategy off their
knowledge of the model’s internal structure [1].

The other subcategory, model-agnostic techniques are not
reliant upon the model that they are attempting to explain.
They operate on a black-box methodology regarding their in-
put model, only having access to the inputs and outputs of
the provided model [1]. This approach has the advantage of
being much more flexible into what models it can explain.
However, this does mean that model-agnostic techniques lack
the ability to gain insights from the model’s internal structure
as they treat each ML model as a black box function [1].

For our research paper, we will be focusing solely model-
agnostic XAI techniques, as they are more directly compara-
ble and by focusing on one category of XAI techniques we
ensure our paper is concise and has a clear focus.

3 Method
The primary research goal in this paper is to deliver a com-
prehensive study and analysis on various model-agnostic XAI
models and their characteristics. In the previous sections
we’ve outlined background information on XAI research and
the main goals of XAI implementations. In the next sec-
tion (4) we will take a deeper dive into the inner work-
ings of the individual techniques investigated and their ad-
vantages/disadvantages. Once we’ve investigated each tech-
nique, we will move onto a comparison between the vari-
ous XAI techniques where we will use a variety of metrics
and classifications to underscore the differences between the
studied techniques. After this comparison, the paper will fin-
ish with proposed future directions for improvements in the
individual XAI techniques studied with the goal to improve
and alleviate some of the limitations and disadvantages we’ve
discovered in our analysis. Concluding our paper we will
also propose possible future directions for research within
this field, in order to further evaluate the possible limitations
present in model-agnostic XAI techniques.

3.1 Related Work and Literature Search
For searching literature and relevant papers, we will use tools
such as Scopus (a scientific literature database) as well as
arXiv (an open-access database of pre and post print papers).

In our literature research phase we collected both general
model-agnostic XAI survey papers and the specific technique
proposal papers. The XAI proposal papers outline the ini-
tial implementation details that was proposed by the original
authors of the XAI technique as well the author’s evaluation
of the technique. Papers such as [7], [8], or [9] are exam-
ples of the original proposal papers for the XAI techniques
of LIME,SHAP and Anchors respectively. These papers will
be helpful in fully understanding the inner workings of each
XAI technique as well as useful in identifying potential ad-
vantages/disadvantages, it is important to note however that
these are not the only implementation papers gathered.

General XAI survey papers collected will be used for the
extraction of the comparison metrics that we will use at the
end of the paper to directly compare and contrast the investi-
gated techniques. Papers such as [1]. [4], [6] are examples of
papers that will be used to find what relevant metrics we can
use to compare the different XAI techniques.



4 Model-Agnostic XAI Techniques
4.1 LIME
LIME or Local Interpretable Model-Agnostic Explanations
was initially proposed by Marco Tulio Ribeiro et al in 2016
[7]. It proposes an explanation system LIME whose goal is
to provide explanations for the decision of any ML model
in a localized setting[7]. This means that the explanations
provided by LIME would be on a local level, and therefore
apply only to individual predictions made by the ML model
being targeted. For example within a practical case where
an ML model predicts a medical diagnosis on the likelihood
of specific patient having the flu based off of their history of
symptoms, LIME presents key symptoms displayed by the
patient which LIME predicts were the leading factors be-
hind the ML models prediction. This is visualized in figure
1, where LIME takes the inputs/outputs for the ML model
(symptoms/prediction) and presents a visual explanation for
the prediction of the ML model. Within this example LIME
assigns positive (green) or negative (red) feature weights to
the input symptoms to provide an explanation to the end user.

Figure 1: LIME’s explanation for model’s diagnosis [7]

The inputs that LIME can accept and provide explanations
for are not limited to a textual form, and as can be seen in fig-
ure 2, LIME is capable of conforming to the input and output
data provided by a model to generate its explanations. Within
this example LIME is able to segregate and identify unique
portions of an image classification, and provide explanations
for the ML model’s prediction. LIME does not rely at all on
the target ML model treating it as a black box, which allows
LIME to be model-agnostic [7].

Figure 2: LIME’s explanation for Google Image Classifier [7]

The main algorithm behind LIME to generate it’s explana-
tions is a minimization problem as can be seen below [7].

ξ(x) = argmin
g∈G

L (f, g, πx) + Ω(g)

Based on an original input x, the algorithm aims to mini-
mize the loss function L (f, g, πx) which represents "how un-
faithful g is in approximating f in the locality defined by by
πx [7].

The local explanation model with this algorithm is repre-
sented by g and it determines the explanation behind the final

result of LIME[7]. Therefore by solving the minimization
problem, the LIME algorithm provides as accurate a local ex-
planation model g as possible which should result in a more
accurate local explanation model for the prediction of the tar-
get ML model f on the input x [7].

For training this local explanation model, LIME uses a per-
turbation strategy for optimization of the loss function. The
algorithm generates new instances x’ around the original in-
put point x within a range of πx [7]. This new data-set of
perturbed instances is then fed back into the local explana-
tion model g so that LIME can further improve the accuracy
of g within this local domain [7]. This algorithm results in a
locally faithful explanation model g that is limited to a local
area within the target ML model.

The Ω(g) term measures the general complexity behind
the explanation function and is included in the minimization
problem to ensure that the explainable models g are as simple
as possible [7]. Keeping these explanation simple increases
usability and interpretability for end-users[7].

Advantages of LIME
• Can take a multitude of data types, ranging from textual,

tabular to even image data as input, and generate expla-
nations for any ML model’s prediction behind it [7]

• LIME’s explanations for an ML model’s prediction are
optimized to be as simple as possible [7]

Disadvantages of LIME
• LIME only remains faithful in it’s predictions for an ML

model on a localized level [7]

• LIME doesn’t convey it limitations in regarding to local-
ity to end-users [10]

• Despite the best efforts of LIME’s developers to sim-
plify the explanations generated by this algorithm, the
interpretability of the final results is still mediocre for
non-expert users [10]

• LIME has consistency issues, often changing it’s expla-
nations completely despite minimal changes being made
to the input and output of the ML model [11]

• LIME is vulnerable to adversarial attacks that attempt to
modify the explanations provided by LIME [12]

4.2 Anchors
Anchors is another model-agnostic XAI technique that was
proposed by Ribeiro et al in 2018 [9]. The technique was
created with the aim of resolving some of the issues that are
present in the technique proposed by Ribeiro et al in 2016
LIME paper [7]. The first main problem that Anchors aimed
to iron out was the lack of a positive user response regarding
the interpretability of LIME’s results. Analysis into LIME’s
usability and clarity done in [10] has shown that users without
ML knowledge experienced difficulty in using LIME’s expla-
nations.The other issue present in LIME that Anchors aims to
fix was the lack of clarity regarding the locality where the ex-
planations generated by LIME would remain accurate [9].

Anchors attempt to provide explanations for any target ML
model by relying on a process of generating various anchors



to provide an explanation to the user. These anchors are de-
fined in the paper as explanations which "sufficiently anchors
the prediction locally such that changes to the rest of the fea-
ture values of the instance do not matter" [9]. In more con-
crete terms, these anchors can be viewed as a set of if-then
rules, which upon being full-filled, effectively guarantee the
classification of an prediction [9]. One practical application
of anchors can be seen in the figure 3 below, here we can see
that two if-then rules that check the applicants FICO credit
scores are generated by this technique to determine if the loan
will be classified as either good or bad.

Figure 3: Anchors generated from Tabular Data sets, If Rule (Left)
and Prediction(Right) [9]

Each Anchor A is only considered a viable anchor if it ful-
fills the requirements below [9]

ED(z|A)

[
1f(x)=f(z)

]
≥ τ,A(x) = 1

Within this formula to be considered an Anchor, A must
fulfil the condition A(x) = 1, which ensures that the anchor
correctly provides an explanation for the output of the ML
model with the initial input x [9].

The other part of the equation enforces a precision value τ
onto the anchor A within a neighbourhood of the initial input
x, which is indicated by all the values under D. Therefore this
part of the equation ensures that the Anchor A remains locally
faithful to the ML model f(x) within this domain distribution
D, meaning that it can accurately provide explanations for an
ML model as long as they fit within this neighbourhood of
inputs [9].

Similar to LIME, Anchors themselves are created using
a perturbation strategy from an the original input x [13].
However, since for each anchor A it is necessary to evaluate
it’s performance for all the neighbours or perturbations in D
around x, it is computationally unfeasible to check whether
anchor A meets the precision requirements for all perturba-
tions within Domain D [13]. To get around this issue the
authors formulated an complex candidate generation system
where a modified beam search algorithm and a Multi-Armed
Candidate algorithm are combined to generate the best set
of anchors A for the domain within a reasonable time-frame
[13].

The anchor generation algorithm also allows for the cal-
culation of the coverage of each anchor. Coverage can be
defined as the area where an anchor is able to provide an ac-
curate explanation [13]. This notion of measuring an anchor’s
coverage is critically important to this technique as it solves
of the main problems that were present in the previously ex-
plored technique of LIME. Since LIME only provides locally
faithful explanations, this presents an issue to the end-user as
they are unable to determine where LIME’s explanations will
remain accurate [7]. Anchors tackle this issue through the use

of coverage, which convey the area within which an anchor
will remain accurate.

This is visualized in figure 4, where we can see that the an-
chor model provides an area of coverage within the complex
binary classifier where it remains faithful, whilst LIME only
approximates the decision boundary of the classifier locally
and doesn’t provide any information on it’s locality.

Figure 4: Lime’s and Anchors Explanations [13]

Advantages of Anchors
• Anchor’s interpretability for users has been shown to be

better than other XAI techniques such as LIME [9]

• Anchor’s coverage variable allows for the clarification of
the space within which an anchor will provide accurate
explanations for an ML model’s prediction [9]

• Highly efficient due to the parallelizable nature of parts
of anchor’s calculation algorithm [13]

Disadvantages of Anchors
• Anchor’s suffers to similar issues faced by LIME, where

they are inconsistent in their explanations given small
perturbation to their input [14]

• The algorithm can run into the issue where potentially
conflicting anchors are created for the inputs [9]

• Rare predictions of an ML models classification may re-
sult in extremely complex anchors that provide low cov-
erage and may not generalize well [9]

• Initial setup must be configured properly to attain re-
spectable results [13]

4.3 SHAP
SHAP, or SHapley Additive explanations is a model agnos-
tic explainable XAI technique that was proposed by Scott
M. Lundberg in 2017[8]. The explanations generated from
SHAP rely on the calculation of Shapley values for an in-
dividual input x. These Shapley values are a concept that
emerged from game theory, and they allow for the calcula-
tion of specific feature weight and it’s importance within the
context of a ML model’s prediction [8]. Assigning a Shap-
ley value to each feature within an input allows the technique
to explain what features had the highest influence on the ML
model’s prediction, therefore providing an explanation to the
user as to what feature resulted in the ML model’s prediction
[8]. The formula that is used for calculating Shapley values is
provided below with the final result being the Shapley value
for feature i for the input x within model f [8].



ϕi(f, x) =
∑
z′⊆x′

|z′|! (M − |z′| − 1)!

M !
[fx (z

′)− fx (z
′\i)]

The Shapley value ϕi(f, x) is calculated by iterating
through all the possible subsets (z’) of the original feature
space x’ [8]. For each iteration, the formula calculates what
the difference does the inclusion of a feature i have on
the final output of the ML model’s prediction, denoted by
fx (z

′) − fx (z
′\i [8]. The complex multiplier before this

calculation within the iteration, accounts for the amount of
features within a subset, naturally for small sets of features,
the algorithm should account for individual features having a
greater impact on the prediction generated by an ML model,
and this factor is what allows the algorithm to account for
extremely small and large feature sets [8].

Shapley value calculation has been a well known math-
ematical concept within the field of game theory, and as a
byproduct Shapley Values have a few key beneficial proper-
ties that come alongside their inclusion in this algorithm [8].
The first and second property are less interesting and ensure
that Shapley values are accurate when matching the original
model f(x), and ensure that Shapley values do not change for
a feature, if another feature is missing in the input [8]. The
final property is the most interesting as it allows for consis-
tency behind the calculated Shapley Values, (therefore pos-
sibly solving some of the issues present in other XAI tech-
niques) [8].

Now that the calculation behind Shapley Values has been
explored, we can finally take a peak under how SHAP uses
these values. Each prediction of input x for a ML model f is
explained in SHAP through the calculation of all the Shap-
ley values of the input feature space. Once all the different
feature values are calculated, the differences they make in the
final outcome of the ML model can be easily portrayed to the
user using weights. One visualization of the effect of differ-
ent Shapley values can be seen in figure 5 where each fea-
ture’s Shapley value adjusts the expected outcome of an input
x, with the algorithm arriving at the final prediction point f(x)
when all the Shapley Values are added to it [8]. Each Shapley
value calculated aims to provide an explanation to the user
how a specific feature effected the final outcome of an ML
model.

Figure 5: Shapley Values effects on the final outcome [8]

However this method of calculating the individual SHAP
values for each feature within an input x is computationally
unfeasible for complex models [8]. To bypass this issue the
authors of SHAP proposed an approximation implementation
called Kernel SHAP that combines the LIME algorithm with
the classical Shapley value calculation [8]. This approach al-
lows the approximation of Shapley values which decreases
the computational time of the algorithm therefore making it

possible to feasible calculate Shapley values for complex fea-
ture sets [8]. There are other approaches proposed within the
paper of implementing SHAP but those are model-specific
and for the rest of this paper each time we refer to SHAP we
are referring to the Kernel SHAP version.

Advantages of SHAP
• As a mathematically enforced concept Shapley values

have additional beneficial proprieties such as consis-
tency and accuracy [8]

• Within the proposal paper [8], evaluation done on SHAP
portrays that it evaluates feature weights in a way that
fits human intuition better than LIME

Disadvantages of SHAP
• Despite the application of approximation of Shapley

Values in Kernel SHAP, this XAI technique still is rela-
tively slow in it’s computational time [13]

• KernelSHAP doesn’t consider the interaction between
features when calculating weights [13]

• SHAP has been shown to be inconsistent and vulnerable
to adversarial attacks despite the mathematical proper-
ties of Shapley Values [12] [14]

4.4 Counterfactual Explanations
Unlike the previously investigated XAI techniques where
there is an attempt to generate a rule-set or numeric model to
explain an ML model, the next investigated techniques take
a more contrastive approach when generating their explana-
tions. One form of contrastive explanations is the idea of pro-
viding counterfactuals for a decision. Counterfactuals have
been shown to be an effective way of conveying explanations
for humans, and studies have indicated that in general hu-
mans prefer counterfactual arguments over other explanation
approaches such as case-based reasoning [15]. Within the
context of a ML model prediction, a counterfactual explana-
tion details the minimal possible change to the feature values
of an input that would change the classification made by the
ML algorithm [13].

Figure 6: Input x with two counterfactuals [15]

A visualisation of how a counterfactual is generated can be
seen in figure 6, where the ML model’s decision boundary is
denoted by the black line with an original input x (blue dot).
Two separate counterfactual argument are generated in this
example (red/green dots) and from the diagram it is clearly



visible that despite the small changes to the counterfactuals
generated, there final classification is different than that of
the original input. This example outlines the main goal of
any counterfactual generation algorithm: which is to change
an original input x as minimally as possible, so that it results
a change of classification by the ML model.

Wachter et al. proposes that a new counterfactual x’ can be
generated from an original input datapoint x by solving the
minimization algorithm below [16].

argmin
x′

max
λ

λ (fw (x′)− y′)
2
+ d (xi, x

′)

Here the first part of the equation calculates the distance
between the machine learning model’s classification of x’ and
the prediction y’ (the intended classification). The second
part of the equation calculates the distance between the new
counterfactual x’ and the original input [13]. Therefore by
solving the minimization problem in this equation, we can si-
multaneously ensure our new counterfactual x’ is close to the
predicted goal y’ and is as similar to the original input x as
possible. It is important to note that for generating counter-
factuals x’ we randomly initialize different values for it [16].

This XAI technique, is different than the others explored
previously, instead of relying upon a numeric or rule-set
model, counterfactual explanations leverage the nature of hu-
mans to use counterfactuals as explanations [16]. Due to this
nature, this does mean that counterfactuals are easier to com-
prehend and understand for end users in certain applications.
Since these algorithms aim to produce counterfactuals that
are as close to the input as possible, this creates easier to com-
prehend and understandable explanations for end users [17].

Advantages of Counterfactual Explanations
• Counterfactual Explanations can be efficiently generated

for a variety of ML models [16]

• Counterfactual Explanations are particularly useful for
explaining positive and negative decisions to users [16],
making this approach particularly interpretable for non-
expert users [17]

Disadvantages of Counterfactual Explanations
• Counterfactuals generation proposed by [16] is vulner-

able to manipulation and small perturbations result in
large changes to the counterfactuals generated [18]

• Counterfactual are not private, with [19] showing that
it is possible to execute ML model-extraction attacks
against current counterfactual generation methods [16]

4.5 Contrastive Explanations
Contrastive Explanations is a model-agnostic XAI technique
proposed by Dhurandhar et al in [20]. Contrastive Explana-
tions taps into another part of human nature regarding how
we naturally look at explanations. As opposed to generat-
ing counterfactuals to aid in explaining a ML model, con-
trastive explanations create sets of contrastive facts that can
explain a ML model’s prediction [20]. The explanations that
this method intends to produce can be stated in the form "An
input x is classified in class y because features fi, ..., fk are
present and because features fm, ..., fp are absent [20]".

Explanations that rely on certain aspects being present and
certain aspects being missing are extremely common in crit-
ical fields such as medicine already [20]. Within those fields
these contrastive characteristics are defined as Pertinent pos-
itives (PPs) and Pertinent Negatives (PNs) [20]. A Perti-
nent positive can be defined as a "factor whose presence is
minimally sufficient in justifying the final classification" [20]
meanwhile a Pertinent negative can be defined as a "factor
whose absence is necessary in asserting the final classifica-
tion" [20]. An example of this could be the diagnosis of a
patient with Covid-19, a patient with a cold and a cough has
the PPs that point towards either the flu or Covid-19. How-
ever if the patient does not exhibit a loss of taste, this means
they show the correct PN to diagnose them as to not be sick
with Covid.

The original paper proposed an XAI technique called con-
trastive explanations method (CEM) [20], which aims to iden-
tify both the PPs and PNs within a ML classifier. However
this method only works within neural networks so for our pa-
per we had to investigate another model-agnostic contrastive
explanations method but an a visualisation from the original
paper is still useful for portraying PPs and PNs [20]. Within
Figure 7 we can see how CEM highlights the necessary PPs
for identifying the figure as 3/7 indicated by the cyan color,
and we can see what PNs are missing for a classification of 5
or 9 [20].

Figure 7: PPs and PNs identification for image classification [20]

After the original paper proposed these contrastive expla-
nations, a model-agnostic method was created by Dhurand-
har et al [21]. This paper proposed a new method MACEM
or model-agnostic contrastive explanations method, with this
new technique, we can feed any black box machine learning
classifier into this technique and obtain an assortment of PPs
and PNs [21].

Advantages of Contrastive Explanations
• PPs and PNs align nicely with natural human explana-

tion techniques within sensitive fields such as medicine
[20], therefore improving the techniques interpretability

Disadvantages of Contrastive Explanations
• A local scoped XAI method, only able to provide PPs

and PNs for individuals predictions as opposed to a
global level [21]

• Computation of PPs and PNs may not be computa-
tionally efficient for model-agnostic methods such as
MACEM [22]



5 Comparison
Within the comparison section of this report we will be com-
paring the investigated XAI techniques using a list of rele-
vant metrics that will be outlined and explained in section
5.1. The metrics themselves aren’t simply a different mea-
sure of the performance of the XAI technique within a spe-
cific task, some of the metrics such as the Scope, or method
approach are a categorization of the individual XAI technique
within a taxonomy rather than a direct comparison metric.
Since the topic of the report calls for a detailed comparison
between the XAI models, we thought it would be pertinent to
include metrics that classify the investigated XAI techniques
into their own separate categories. Further details surround-
ing each metric used are outlined in the section below.

5.1 Comparison Metrics Used
Local/Global Scope: Global Scope XAI techniques gener-
ate an explanation for a ML model on a global scale, creating
an explainable model that encompasses the entire ML model
being targeted [1]. Alternatively, XAI techniques can choose
to focus on explaining individual predictions made by ML
models, therefore focusing their attention on explaining the
narrow area where this prediction occurred within the ML
model (Local scope) [1]. Both approaches have their own
advantages and disadvantages and come with their own dif-
ficulties. It is often assumed that the local scoped methods
are computationally simpler to compute and generate more
precise explanation but are limited in the area they cover [1].

Method Approaches (Perturbation and Contrastive):
XAI techniques generally conform to using one of two ap-
proaches for generating an explanation for a ML model, ei-
ther they use a perturbation or contrastive approach [1]. For
the perturbation approach, the main strategy is to generate
feature-based explanations that are created through the per-
turbation of an initial input’s various features [1]. These
strategies observe what the effect these small changes to the
feature cause in the final prediction made by the target ML
model [1]. Once they know the contribution of each feature,
they base their explanations off this behavior [1]. On the other
hand, the contrastive approach generates their explanations
by focusing instead on providing as similar an instance to the
initial input, but with the important detail that these newly
generated instance results in the ML model classifying it dif-
ferently [1]. These explanations are counterfactual in nature
and aim to provide a contrastive look into how a classifica-
tion may shift based off the minimal amount of changes to
the initial input [1].

Consistency: Defined as the degree of change in explana-
tions generated by the XAI techniques for similar ML model
predictions [24]. Similar predictions should ideally result in
the XAI technique providing consistent explanations between
different runs, having a XAI technique give different explana-
tions on similar outputs is an ongoing issue that many popular
XAI techniques such as LIME/SHAP/Anchors struggle with
[14]. Consistent XAI techniques provide similar explanations
for alike predictions while inconsistent XAI techniques differ
in their explanations drastically even when a similar predic-
tion is provided [24]. Consistency is often referred to also as
the stability or robustness of an XAI technique [14], [11]

Resistance to Adversarial Attacks (RAA): Relating
heavily to the previously mentioned metric of consistency, the
resistance to an adversarial attack is measure of how resistant
an XAI technique is to an adversary attempting to modify
the explanation given by a XAI technique through the slight
perturbation of the input data [12]. Many of the investigated
methods have been shown to be easily fooled into modifying
their explanation despite minimal changes to the input [12]
(Scale: None, Low, Medium, High). Techniques that haven’t
had their RAAs investigated will be marked with a ?.

Time: The computational run time that an XAI technique
will require to generate an explanation for a ML model’s pre-
diction [24]. For normal algorithms, such a comparison met-
ric is fairly straightforward but with the amount of differences
between the investigated XAI models, comparing their com-
putational time is nearly impossible and we will be relying
on comparison survey’s or direct comparison’s between the
techniques in the implementation papers to classify them into
3 categories: Low, Medium or High[24].

Interpretability: A degree of measurement of how well
the explanation provided by a XAI technique can be under-
stood by a human without any ML experience [6]. Can also
be referred to as the Comprehensibility or Functional Under-
standing of a system [6]. (Scale: Low, Medium, High)

Model Privacy Despite the main focus of this paper being
around AI that provide explanations behind an ML model’s
prediction, some XAI techniques have been engineered with
the aim to provide a degree of privacy behind the ML model’s
internal workings [25]. There is often a trade-off between a
techniques ability to provide explains and it’s ability to con-
ceal a ML model’s inner workings [25]. This design focus
isn’t present in most of the techniques investigated in this pa-
per, save for counterfactual generation [16] but even within
this technique further evaluation shows this this supposed ad-
vantage isn’t present [19] (Scale: None, Present)

Table 1: Comparison between the investigated XAI techniques

XAI Technique Scope Approach Consistency RAA Time Interpretability Privacy
LIME (2016) [7] Local Perturbation Inconsistent [23] None [12] Medium [7] Medium [7] None
Anchors (2018) [9] Local Perturbation Inconsistent [14] ? Medium [9] High [9] None
SHAP (2017) [8] Local Perturbation Inconsistent [11] None [12] High [13] Medium [8] None
Counterfactual
Explanations (2017) [16] Local Contrastive Inconsistent [18] None [18] Low [16] High [17] None [19]

Contrastive
Explanations (2019) [21] Local Contrastive ? ? High [22] High [20] None



6 Conclusion and Future Work
6.1 Future Improvements for XAI Techniques
Regarding future improvements for the techniques, after the
comparison was finished a few general improvement points
across the spectrum of investigated techniques were identi-
fied. The first main issue identified is the lack of consis-
tency/robustness present throughout many of the current XAI
implementations. Out of 5 models investigated, 4 were found
to be inconsistent [12] [14] [18]. This a major predicament
for XAI techniques, as having explanations that vary mas-
sively between similar predictions is unacceptable for the us-
age of XAI in any critical field. For any future work into the
explored XAI methods in this investigation, we would pro-
pose that authors include an evaluation section in their pro-
posal paper detailing the consistency/robustness of the new
XAI technique, as well as include possible countermeasures
to deal with the issue of consistency.

Another general problem present within 3 out of 5 tech-
niques investigated, is the lack of any resistance to adver-
sarial attacks, which relates to the previously explored issue
of consistency in XAI techniques but with a more nefari-
ous twist. Adversarial attacks against XAI methods aim to
change the explanation provided through slight perturbations
to the input data [10]. Currently, the amount of research done
into performing adversarial attacks against XAI methods [12]
[18] has not been matched by researchers attempting to guard
against such attacks. In future research on the explored XAI
models, there should be an evaluation section into how resis-
tant a XAI technology is against attacks as well as what steps
can be taken to increase the XAI model’s resistance.

Focusing on more specific future improvements to individ-
ual XAI techniques, LIME suffers with an overestimation of
it’s interpretability by the original proposal authors[7]. Var-
ious studies done on the usability of LIME has shown that
non-expert users had difficulty interpreting and understand-
ing the explanations provided by LIME [10]. Therefore for
any future additions to the LIME XAI model a more thorough
and complete user evaluation study should be conducted. An-
other issue present is the lack of any indication for the local-
ity of the model generated by LIME, and future extensions of
LIME should conduct more research into an indication of the
area covered by LIME’s explainable model.

SHAP suffers to a similar problem as LIME since it also
has been shown to have a low level of interpretability in prac-
tical applications for non-expert users [26]. A more accurate
investigation into the usability of SHAP should considered
for future research. Model-Agnostic SHAP implementations
has one of the worst computational times out of all the inves-
tigated techniques [13], more research should be conducted
into if it is possible to optimize this run time.

The final perturbation XAI technique explored Anchors
shows no specific major issues besides the general issues de-
scribed in the first two paragraphs. Minor problems such as
conflicting anchors being generated or too specific anchors
are easily fixable with minor modification to the existing
implementation[13], the improvements for the future of this
technique we mainly propose is to deal with the issue of con-
sistency and a lack of resistance to adversarial attacks.

One unique case for future improvements was found in
Counterfactual Explanations, where one of the listed ma-
jor advantages of this XAI approach was that it was privacy
focused and it wouldn’t expose the inner workings of the ML
model it was explaining [13]. This turned out to be untrue
as shown in [19] where researchers discovered Counterfac-
tuals can in fact be used to extract ML models. Further re-
search into how to prevent such scenarios should be consid-
ered, since being privacy focused can be one of the main ad-
vantages of a Counterfactual XAI approach. Excluding this
issue other problems to be tackled include the inconsistency
of the method and its lack of resistance to attacks.

The final technique explored Contrastive Explanations is
also the technique with the least amount of research done into
it’s advantages/disadvantages. There was lack of papers de-
tailing anything regarding it’s resistance, complexity or con-
sistency, and with the only paper [24] mentioning the consis-
tency of the CEM. Therefore further research directions for
this technique would include more exploration into it’s per-
formance, time complexity and it’s robustness.

6.2 Future Research Directions
Beyond the specific future research directions for improve-
ments to XAI techniques, we will also propose future general
directions for research within the field of XAI models. Within
our research we noticed there is a definite lack in the amount
of direct comparison and survey papers between the current
state-of-the-art XAI models when compared to the amount of
implementation papers. This leads to significant difficulty for
the direct comparison of XAI techniques against each other
due to this lack of surveys. The creation of this paper ran into
these very issues as certain metrics we would have liked to
include were simply unattainable due to the sparsity of gen-
eral surveys or comparisons with the XAI field. While many
of the proposal papers do include some evaluation between
the new technique proposed and a few others, this is often
a very narrow range of compared models and there are few
reliable large-scale XAI surveys. For further research within
this field, more analysis and focus should be put onto the cre-
ation of large scale surveys of XAI techniques that contain
user evaluation studies, complexity/run-time analysis, practi-
cal application evaluation, and adversarial resistance testing.

6.3 Conclusion
For this paper, we have performed a detailed analysis and
investigation into the selected 5 Model-Agnostic XAI tech-
niques. After the short introduction to what XAI techniques
are and their goals, the paper went into a detailed look into
the individual XAI technique’s inner workings and function
as well as their inherent advantages/disadvantages. Once all 5
techniques were evaluated and investigated the paper moved
onto the comparison section of the report. Here we listed the
techniques against a table of metrics and compared the tech-
niques amongst themselves. From this we gathered poten-
tial points for future improvements and for future research in
the field. The main contributions of this paper is the detailed
analysis into the advantages/disadvantages of each technique,
as well as the future points of improvements and research di-
rections for the XAI field outlined in the final section.



7 Responsible Research
The next two section will detail the two main requirements of
responsible research which are: maintaining the Scientific In-
tegrity of a paper (Proper source gathering and usage), and
Reproducability (allowing for the replication of the results
found within the paper)

7.1 Scientific Integrity
This paper is primarily a research-centered document with
no experiment being conducted over the course of the re-
search, therefore this means that all the information gathered
and collected for analysis within this paper has been gathered
from external sources and papers. This reliance upon external
sources and paper for information required us to approach the
process of our literature gathering and review with the utmost
care to uphold the standard of scientific integrity within this
paper.

Therefore even before we started gathering data and
sources for our investigation into model-agnostic XAI tech-
niques, the selection of the proper databases where we con-
duct our search was critical. In the end, and after the sugges-
tion of our supervisor, we settled on using both Scopus and
arXiv as our primary databases where we will gather pertinent
research papers. Scopus is an academic database containing
thousands of academic papers, and can be deemed as good
database for reliable peer-reviewed scientific articles and pa-
pers. The other database used, arXiv, is an pre/post print re-
search paper database that is owned by Cornell University.
While not being fully peer-reviewed, the fast moving nature
of XAI research meant that many of the useful papers we used
in our research were located on this database. Both databases
were identified as reliable sources for our research and were
the primary locations where we gathered papers that we have
used in the in the final investigation. The one notable ex-
clusion from this data-set was an extremely useful book titled
"Interpretable Machine Learning" that was determined during
literature analysis as being a reliable source for information
for this report.

After selecting two reliable databases where we gathered
selected research papers, the literature review process for-
mally began. After an initial set of papers were received by us
from the supervisor, we then curated and extended this set of
papers from sources we’ve gathered on Scopus/arXiv. This
set of papers then underwent additional review by our su-
pervisor, who determined whether they are pertinent to our
investigation and reliable enough to include in our research.
Finalizing our literature review, we got approval from our su-
pervisor on the final used set of papers, as well as possible
suggestion for additional sources.

This stringent process of literature review improved the sci-
entific integrity of our paper since most of the sources used in
this review came from reliable databases and were approved
by our supervisor for inclusion in our final paper.

Beyond the literature review of portion of our paper, to
ensure our paper had proper scientific integrity, we decided
against the usage of singular survey papers when creating our
comparison tables and sections of our model-agnostic XAI
technique investigation. While it might have been easier to
simply use a singular survey’s final results to determine most

of our classification and comparison of XAI techniques, do-
ing so puts too much exposure for our scientific integrity on
the reliability of a singular source. Therefore for many of the
identified metrics within our paper, we used different papers
and sources to back up claims such as a XAI technique be-
ing labeled inconsistent. This therefore increases our overall
scientific integrity since we did not rely overly on one or two
sources for the comparison of the XAI techniques.

Concluding, in order to ensure scientific integrity is held
up within this paper, we decided to undergo a strict litera-
ture review process, to ensure that the sources gathered and
used within this paper originate from accurate and reliable
sources. We also focused on the variety of the papers we used
as sources throughout the paper, ensuring that no one paper
becomes the be-all end-all of our research.

7.2 Reproducability
To ensure that our paper has the factor of reproducability,
we’ve included citations for each of the sources used at the
end of research paper ( reference style being used was IEEE).
All the sources that were referenced within the paper, as well
as the sources where we used figures from, can be found in
the references section at the end of the report. This allows for
the easy retrieval of the sources we’ve used within our paper,
and therefore many of the details we’ve uncovered in our re-
port are easily viewable within the cited sources. Since this
paper focuses around further research and analysis based off
of other research papers, not much else must be accounted for
to ensure the reproducability of our research. The inclusion
of the sources within the report, and the consistent citation
of where our information originated from is enough to ensure
that any future research is able to reproduce our findings in
this report.
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