

Delft University of Technology

Formulation and integration of MDAO systems for collaborative design
A graph-based methodological approach
van Gent, Imco; La Rocca, Gianfranco

DOI
10.1016/j.ast.2019.04.039
Publication date
2019
Document Version
Final published version
Published in
Aerospace Science and Technology

Citation (APA)
van Gent, I., & La Rocca, G. (2019). Formulation and integration of MDAO systems for collaborative design:
A graph-based methodological approach. Aerospace Science and Technology, 90, 410-433.
https://doi.org/10.1016/j.ast.2019.04.039

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ast.2019.04.039
https://doi.org/10.1016/j.ast.2019.04.039

Aerospace Science and Technology 90 (2019) 410–433
Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Formulation and integration of MDAO systems for collaborative design:

A graph-based methodological approach

Imco van Gent ∗, Gianfranco La Rocca

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 December 2018
Received in revised form 27 February 2019
Accepted 21 April 2019
Available online 3 May 2019

Keywords:
MDO
MDAO
Graph theory
Collaborative design
Design tool

This paper proposes a novel methodology and its software implementation, called KADMOS (Knowledge-
and graph-based Agile Design for Multidisciplinary Optimization System), to increase the agility of design
teams in collaborative Multidisciplinary Design Analysis and Optimization (MDAO). Agility here refers
to the ease and flexibility to assemble, adjust and reconfigure MDAO computational systems. This is
a necessary feature to comply with the complex and iterative nature of the (aircraft) design process.
KADMOS has been developed on the notion that a formal specification of an MDAO system is required
before proceeding with integration of the executable workflow. A thorough formulation of the system
becomes essential when such system is built on the many contributions of large, heterogeneous design
teams. KADMOS can automate the generation of such formulations through a graph-based methodological
approach. The graph syntax and manipulation algorithms form the core content of this paper. First, a
simple MDAO benchmark problem is used to illustrate KADMOS’s working principles. Second, a wing
aerostructural design case is discussed to demonstrate KADMOS’s capabilities to enable collaborative
MDAO on large problems of industry-representative complexity. Next to its graph-theoretic foundation,
KADMOS makes use of two data schemas: one containing the parametric representation of the product
being designed and a second to store the achieved formulation of the MDAO system. The latter
enables the interchangeable use of different process integration and design optimization platforms to
automatically integrate the generated MDAO system formulation as an executable workflow. The proposed
approach has been estimated to be capable of halving the time typically required to set up and iteratively
reconfigure a complex MDAO system, while allowing discipline experts and system architects to maintain
constant oversight and control of the overall system and its components by means of human-readable
dynamic visualizations.

© 2019 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Past research indicates that Multidisciplinary Design Analysis
and Optimization (MDAO) can offer huge benefits in design with
estimated performance gains of 8-10% for innovative aircraft de-
sign and even 40-50% gains for designing radically new concepts
[8,55]. Despite the high potential gains, MDAO is not as widely
used in industry as one would expect. Both technical and non-
technical barriers [1,6,46,49,50] are hampering its full exploitation.

Fig. 1 illustrates the five main stages of a generic MDAO-based
development process, arranged in two main phases. On the left
side one has the formulation phase where the MDAO problem is de-
fined based on a set of design competences (i.e. a repository of dis-

* Corresponding author.
E-mail addresses: i.vangent@tudelft.nl (I. van Gent), g.larocca@tudelft.nl

(G. La Rocca).
https://doi.org/10.1016/j.ast.2019.04.039
1270-9638/© 2019 The Authors. Published by Elsevier Masson SAS. This is an open acce
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
ciplinary analysis tools). The outcome of this phase is the so-called
MDAO solution strategy: a complete and formal specification, al-
though inexecutable, of the formulated MDAO system. Different
strategies, referred in literature as MDAO architectures [38], can be
used to solve a given MDAO problem, where each strategy is based
on a different approach to coordinate the involved design com-
petences. Classic examples are the monolithic (thus including one
optimizer) architectures MultiDisciplinary Feasible (MDF) and Indi-
vidual Discipline Feasible (IDF) and the distributed (thus including
multiple optimizers) ones, such as Collaborative Optimization (CO)
[9] and Bi-Level Integrated System Synthesis (BLISS)-2000 [52]. In
this work, by the term MDAO strategy, we also address other forms
of multidisciplinary coordination systems without optimization,
such as single point design convergence schemes (hence the MDA
part of MDAO) and Design Of Experiments (DOE). The formulated
MDAO solution strategy, based on whichever of the aforemen-
tioned architectures, forms the blueprint of the workflow that will
ss article under the CC BY-NC-ND license

https://doi.org/10.1016/j.ast.2019.04.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:i.vangent@tudelft.nl
mailto:g.larocca@tudelft.nl
https://doi.org/10.1016/j.ast.2019.04.039
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2019.04.039&domain=pdf

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 411
Abbreviations

AMR Architecture-specific Mathematical Relation
BLISS Bi-Level Integrated System Synthesis
CDS Central Data Schema
CO Collaborative Optimization
CPACS Common Parameteric Aircraft Configuration Schema
CMDOWS Common MDO Workflow Schema
DOE Design Of Experiments
DVD Design Variable Dependent
DSM Design Structure Matrix
DVI Design Variable Independent
FDT Functional Dependency Table
FPG Fundamental Problem Graph
FT Fuel Tank
IDF Individual Discipline Feasible
I/O Input/Output

KADMOS Knowledge- and graph-based Agile Design for Mul-
tidisciplinary Optimization System

MDA Multidisciplinary Design Analysis
MDAO Multidisciplinary Design Analysis and Optimization
MDF MultiDisciplinary Feasible
MDG MDAO Data Graph
MDO Multidisciplinary Design Optimization
MPG MDAO Process Graph
MTO Maximum Take-Off
PIDO Process Integration and Design Optimization
PSN Process Step Number
QOI Quantity Of Interest
RCG Repository Connectivity Graph
XDSM eXtended Design Structure Matrix
XML eXtensible Mark-up Language
ZF Zero Fuel

Fig. 1. Overview of MDAO terminology for the MDAO-based development process used in this paper. The process is divided in two phases: formulation (left) and execution
(right). The application area of KADMOS within the overall MDAO system development process is indicated by the blue box. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)
be integrated and operated in the execution phase of the MDAO-
based development process, as illustrated in the right part of Fig. 1.

In practice, an implementation gap impairs a streamlined transi-
tion from the formulation to the execution phase and back. This
is due to the fact that the non-formal specification of the for-
mulated MDAO solution strategy needs to be translated into an
executable system by means of a process that is largely based on
manual operations. This translation of the MDAO blueprint into a
software-specific executable workflow is usually done through the
graphical user interface of a Process Integration and Design Opti-
mization (PIDO) platform such as ModelCenter Integrate [69], RCE
[65], Optimus [70], or a script-based interface, as in the case of
OpenMDAO [26,27,63]. As a consequence, the implementation gap
grows with the size of the MDAO system and the heterogeneity of
the design team. The latter is defined as the diversity of the team
measured by the amount of disciplinary domains, work locations,
software implementation methods and roles in the development
and utilization of the MDAO system.

Moreover, in a realistic design project multiple iterations of the
whole MDAO-based development process are generally performed.
Insight gained during or after an execution run will typically trig-
ger changes in the tool repository (e.g. addition, removal, replace-
ment), in the formulation of the MDAO problem (e.g. change of
objective, addition or removal of constraints and design variables),
or in the MDAO solution strategy (e.g. from a DOE architecture for
design space exploration to another for actual optimization). This
reconfiguration process of the MDAO system can be iterated un-
til a satisfactory design is found or the project deadline has been
reached. The time required for each iteration strongly depends on
the ease to adjust and reconfigure the MDAO system definition and
the ability to bridge the implementation gap.
In the industrial aircraft design context, both the size of typi-
cal MDAO problems and the need to leverage on distributed and
heterogeneous design teams severely frustrate any collaborative
MDAO ambition. In the words of Pate et al. [44] the formulation
of these problems has become increasingly complex as the number of
analysis tools and design variables included in typical studies has grown.
In this context the problem of determining a feasible data flow between
tools to produce a specified set of system-level outputs is combinatori-
ally challenging. Especially when complex and high-fidelity tools need to
be included, the cost and time requirements to integrate the MDAO sys-
tem can easily approach the cost and time requirements of creating any
of the discipline analyses themselves. A recent survey by Ciampa and
Nagel [10] on collaborative MDAO-oriented research projects per-
formed at the German Aerospace Center confirmed that 60-80% of
the overall project time was used just to achieve a first executable
data flow.

Next to the impact on process lead time, the current lack of
agility in the formulation and integration of MDAO systems hinders
both an efficient reuse of existing tools and the exploitation of new
ones, as for every MDAO problem (re-)formulation, the tools have
to be (re)integrated into a new workflow. Even when the same set
of tools needs to be coordinated according to a different MDAO
architecture, reshuffling the previously generated executable work-
flow is neither a trivial operation, nor fast (a notable exception
being an implementation in OpenMDAO V0 [25]).

This lack of (re)configuration agility versus the potential bene-
fits of the MDAO method with respect to existing design methods
is effectively summarized in Fig. 2 by Flager and Haymaker [18],
which is the result of a comparison study between the Boeing
legacy design method and an MDAO-based process for the de-
velopment of a hypersonic vehicle [8,55]. The main hurdle iden-

412 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 2. Comparison of legacy and MDAO design process metrics for the design of a
hypersonic vehicle [18].

tified for the MDAO approach was the long set-up time of the
MDAO workflow (14 weeks), which was more than double the time
necessary to deliver the first design using the legacy method (6
weeks), with the consequent risk associated to the late availabil-
ity of the first results. The potential of the MDAO-based process,
however, is also clear: once the set-up of the MDAO workflow
is complete, an enormous amount of iterations can be performed
(1000 vs. 2.5 for the legacy method), leaving much more time to
the interpretation of the results rather than the coordination of the
generated information.

The longer specification time required for the MDAO system
specification is due to the fact that the automation of the multi-
disciplinary analysis workflow (which is a necessary condition for
MDAO) is only possible if all the connections between the different
disciplinary analyses are created correctly, down to the smallest
detail. Without the right formalization for system specification in
the formulation phase, the creation of this automated workflow is
a complex and time-consuming trial-and-error process. In indus-
trial design situations, where deadlines are strict and risks need to
be minimized, the resulting postponement of the initial design, in
combination with the time-consuming detailed specification, poses
a major hurdle. As a consequence, implementations of large MDAO
systems in industry are scarce, generally tailor-made to a specific
application and too difficult to reconfigure.

The formalization and methodology presented in this paper en-
able an agile approach for the specification and manipulation of
MDAO systems of whatever size, to facilitate their transforma-
tion into executable workflows by means of any PIDO platform
of choice and thereby drastically narrowing the implementation
gap. Its software implementation, called KADMOS (Knowledge- and
graph-based Agile Design for Multidisciplinary Optimization Sys-
tem), offers MDAO system architects the ability to formulate large
and complex MDAO systems, based on a repository of tools pro-
vided by heterogeneous design teams. The specific KADMOS appli-
cation area within the overall MDAO-based development process
is indicated by the blue box in Fig. 1. This paper illustrates and
demonstrates KADMOS’s ability to support all stages of the MDAO
system formulation phase, from the definition of a design com-
petence repository, up to the generation of a complete system
formulation, ready to be translated into executable workflows.

This paper caters to a broad audience, reflecting the variety
of people’s roles involved in collaborative MDAO projects. Read-
ers unfamiliar with the MDAO field (e.g. disciplinary specialists),
or those who would like to have a deeper understanding of the
motivation for KADMOS’s development, should read the state of
the art in Sect. 2. A top-level description of KADMOS is provided
in Sections 3 and 4 and is of interest to any reader involved in col-
laborative MDAO. Readers specifically interested in the developed
graph syntax and conditions (e.g. integrators, collaborative frame-
Fig. 3. Schematic summary of the two main system composition approaches found
in literature.

work developers) should read Sections 5 and 6, while other readers
can safely skip those sections. A case study concerning the collab-
orative design of a passenger aircraft wing is presented in Sect. 7
and is relevant to readers (e.g. executives and aircraft manufactur-
ers) interested in evaluating the impact of the KADMOS package
on a collaborative MDAO project of realistic complexity.

2. State of the art

The composition, representation and manipulation of large,
complex engineering design systems has been under investigation
for several decades. This section describes the state of the art,
from which the functional requirements for KADMOS are derived
in Sect. 3.

2.1. System composition

The composition of the MDAO system, i.e. the way its differ-
ent elements are interconnected into a computational system, is
an unreported topic in most work. Though it might seem trivial,
depending on the approach, the assembly of all components can
be a cumbersome task for large MDAO systems, with a big im-
pact on the time spent in the formulation phase. This is especially
true when a large, heterogeneous design team is involved. A key
assumption affecting the system composition is whether variables
are related to a single component or shared and/or coupled to
multiple components. Two basic approaches for system composi-
tion can be found in literature: decentralized data and centralized
data mapping, both summarized in Fig. 3. While both approaches
would eventually result in the same MDAO system, the role and
responsibilities of system integrators and tools providers differ for
each composition method.

Tosserams et al. [54] have a decentralized data mapping ap-
proach in their � language for problem partitioning. In their sys-
tem each component can be defined independently and it is the
responsibility of the component provider to define local and global

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 413
input variables. When the components are assembled, the system
integrator has to manually map the global inputs/outputs (I/O) of
all components, that is to identify which globally defined variables
are actually referring to the same value. A similar approach can
be found in object-oriented frameworks such as πMDO [39] and
OpenMDAO. In OpenMDAO the user can provide different naming
conventions for the same variable in each component and then
explicitly state that the components are actually referring to the
same variable by connecting them.

The decentralized data mapping approach leads to a high work-
load for the system integrator, proportional to the size of the
MDAO system. A clear advantage of this approach is the freedom
left to the various tool providers, as they can decide their own
variable names as they see fit. Hence, the MDAO system integra-
tor is assigned extra responsibilities, in exchange of a non-intrusive
approach towards the tool providers. Furthermore, as connections
are handcrafted by the integrator, a valid MDAO system can be in-
stantiated directly, without the need to fix problematic nodes or
connections post hoc.

In the centralized data mapping approach, a system-wide
naming convention is used to establish component connectivity.
Alexandrov and Lewis [3,4] use this method in their linguistic
approach called REMS; component providers define their I/O vari-
ables according to a shared dictionary of variable names, which
needs to be expanded with each new system component that in-
troduces new variables. The integrator is thus relieved of the map-
ping burden, at the expense of an extra management task for the
dictionary and a limited freedom in variable naming for the tool
providers. This approach can also be used in OpenMDAO by pro-
moting variable names to a common shared variable name within
the model, thereby automatically connecting these variables. Also
Hoogreef [31] uses the centralized data mapping approach in his
ontology-based MDAO-support framework InFoRMA, in which the
user builds and assembles the system using an interactive N2 chart
to add components and define couplings.

Another variant of the centralized approach would be to adopt
a Central Data Schema (CDS). The adoption of a CDS avoids the is-
sue of updating the dictionary (REMS) or list of promoted names
(OpenMDAO) for each MDAO system definition. Nagel et al. [43]
have proposed a standard XML-based schema for aircraft design,
called Common Parametric Aircraft Configuration Schema (CPACS)
[60]. In practice, CPACS provides an extensive predefined stan-
dard dictionary, which is meant to contain all the typical I/O data
of the analysis tools used in conceptual and preliminary aircraft
design.1 When using CPACS, each disciplinary tool in the MDAO
system takes a CPACS file instance as input and has to write its re-
sults to a new CPACS file. All data is then gathered by merging
the different complementary CPACS files. Thus, once all compo-
nent providers have “made the investment” of rendering their tool
CPACS-compatible, assembling even large executable MDAO sys-
tems becomes a relatively easy task for the integrator.

The CPACS definition has so far been used in multiple collabo-
rative projects on aircraft MDAO [24,35,41,42] and has proven its
value facilitating the assembly of large and distributed MDAO sys-
tems. Whereas CPACS is aircraft specific, a CDS would prove its
value in any other application domain, given a schema is made
available a priori. The approach is gaining momentum in the MDAO
community, with a similar type of schema under development in
the wind energy domain by Dykes et al. [14]. This schema also
uses file I/O to exchange data (YAML-based instead of XML), how-
ever, conceptually a CDS approach does not necessarily depend on

1 Any missing data in the schema can be temporarily stored under a “free” ele-
ment. If such data appear more often than a single project instance, the structure
under the free element can be suggested for adoption in the official schema.
file-based data exchange (e.g. a string-based naming convention or
Python dictionary).

Although schema-centered rerouting of the tool connections fa-
cilitates workflow assembly, it comes with two limitations. First,
one can easily loose oversight on the system’s connectivity. For ex-
ample, if a tool providing the values for certain CPACS data nodes
is removed, it is difficult to determine whether some other tool
is affected by the lack of those input data. Second, contrary to
the handcrafted connections in the decentralized approach, the
indirect component couplings of the schema-based approach can
easily lead to a system with problematic variables and connec-
tions. Hence, a dedicated formulation system is required to provide
system oversight, check for problematic variables and connections,
and fix them. This formulation system is proposed in this paper
and provides the missing link between the handcrafted decentral-
ized approach and the automatic centralized manner of composing
MDAO systems.

2.2. System representation

System representations are usually motivated by their intended
use, such as performing specific machine operations (e.g. partition-
ing) or providing a human-readable overview of the MDAO system.
Well-known human-readable representations are the N2 chart [34],
the Design Structure Matrix (DSM) [53] and the Functional Depen-
dency Table (FDT) [57]. The DSM approach, which only specifies
the data coupling between different components, was extended
by Lambe and Martins [33] into the eXtended Design Structure
Matrix (XDSM) to include also information concerning the pro-
cess to be executed. Today, the XDSM notation can be considered
a de-facto standard within the MDAO community for providing
human-readable overviews of MDAO workflows, independent from
any proprietary PIDO tool formalization. Since the readability of
an XDSM as a static document degrades with the size of the rep-
resented computational system, web-based dynamic XDSM visual-
ization tools have been developed by Gazaix et al. [19] and Aigner
et al. [2], with their respective developments of the XDSMjs [67]
package and VISTOMS [66].

All commercial PIDO platforms provide a graphical user inter-
face to assemble and display an executable MDAO workflow. In
the background these workflows are represented in a machine-
interpretable format, often based on XML or proprietary standards.
Object-oriented frameworks for MDAO have been described in sci-
entific literature that create machine-interpretable representations
of given computational systems by constructing programming ob-
jects [25,39]. This approach has the major advantage that a soft-
ware package can be created that contains an integrated collection
of methods to execute the MDAO system the best way possible
(e.g. using different optimization strategies or taking benefit from
parallel computing methods). The downside of this representation
is that it forces the user to employ the same platform for both
the formulation and the execution of the computational workflow.
However, most of these platforms are rather geared towards the
execution of the computational system and offer limited support
in the formulation phase. For example, they are not able to provide
adequate human-readable overviews of large and complex systems,
which is a deal breaker when formulating MDAO systems in a col-
laborative environment.

In other work, machine-interpretable representations of MDAO
systems are created by defining a language. Examples of these lin-
guistic representations are the χ [17], � [54] and REMS languages.
These languages allow an integrator to compose the MDAO system
in a relatively straightforward way (once familiar with the syn-
tax), so that algorithms built upon the language can perform sys-
tem manipulations, like problem decomposition and coordination.
A radically different representation of MDAO systems was investi-

414 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
gated by Hoogreef [31], who makes use of ontologies to model and
store MDAO systems in his InFoRMA platform. By representing the
MDAO system as a ‘meaningful’ (semantic) web of data, semantic
reasoning engines [7] are used in InFoRMA to assess and manipu-
late the system.

Pate et al. [44] realized that many of the MDAO system rep-
resentations can be brought back to the basic mathematical con-
struct of (directed) graphs. This is true for some languages such
as REMS and InFoRMA’s ontologies, but also for purely graphical
representations like the N2 chart and the DSM. Based on this re-
alization, Pate et al. defined a graph-based syntax to store and
manipulate MDAO systems. Three types of directed graphs are de-
fined in Pate et al.’s graph syntax that map one-on-one to the
three stages of the MDAO system development process illustrated
in Fig. 1. These are the maximal connectivity graph to represent
the tool repository, the Fundamental Problem Graph (FPG) to rep-
resent the statement of the MDAO problem, and the problem so-
lution graph to represent the MDAO solution strategy adopted to
solve the fundamental problem. These graph definitions and their
manipulation algorithms are mainly focused on the challenge of
finding possible combinations of design and analysis tools to solve
a given MDAO problem. Thus their main objective is the automatic
determination of the FPG, starting from the larger maximal con-
nectivity graph.

2.3. System manipulation

Apart from the (X)DSM visualizations, all of the representations
discussed in the previous section are machine-interpretable and
are set up to enable various forms of computerized manipulation
of the MDAO system. These manipulations are generally related
to the link between subsequent stages in the formulation phase
(Fig. 1) and aim at automating (part of) the work required to ad-
vance from one stage to the other.

The first link is between the tool repository and the MDAO
problem formulation. In general, automation in the first link in-
volves the creation of methods to 1) identify potential design vari-
ables, objective values and constraints, 2) mark them as such, 3)
find valid combinations of tools to analyze the problem and finally
4) to remove unnecessary functions (tools) and variables. The work
of Pate et al. [44] addressed in Sect. 2.2 focuses specifically on this
area. They offer a graph syntax and suggest algorithms to deter-
mine different possible MDAO problems based on a tool repository
definition. Also in the REMS language, the necessary manipula-
tions to achieve the MDAO system formulation are based on the
full graph of available functions and coupled variables.

The second link, between the MDAO problem and the MDAO
solution strategy, is more complex and handled in many different
ways in earlier work. In this link the MDAO problem has to be
decomposed to make it computationally tractable. This is gener-
ally achieved by means of partitioning and clustering methods. The
� language is an example of a manipulation language specifically
developed for system decomposition. Other system decomposition
methods are available in literature, based on DSM [28,47,58] and
FDT [5,40].

After decomposition, a solution strategy has to be imposed on
the MDAO problem to coordinate its execution. As anticipated in
the introduction, different MDAO architectures exist in literature,
each one providing a different recipe to coordinate the computa-
tional system. Martins and Lambe [38] have provided an extensive
review of the most commonly used, including both monolithic (e.g.
MDF, IDF), and distributed types (e.g. CO, BLISS-2000). The fact
that the same MDAO problem can be solved using different so-
lution strategies was one of the reasons to develop the MDAO
frameworks πMDO, OpenMDAO, and InFoRMA, so that different
architectures could be tested quickly on the same problem by au-
tomatically reconfiguring the executable workflow.

The third link between the MDAO solution strategy and the exe-
cutable workflow concerns with the implementation gap discussed
above. Past research frameworks have either tightly integrated the
executable workflow in the same formulation framework, as is the
case for πMDO and OpenMDAO, or worked on methods to estab-
lish an automated link to external PIDO platforms. The latter is
the case of InFoRMA, where a built-in mechanism parsing the sys-
tem knowledge base creates the matching executable workflow in
Optimus. � provides an export module to enable the creation of
executable workflows in MATLAB [68].

Despite these frameworks that can provide executable work-
flows based on different solution strategies, an implementation gap
is still experienced when performing collaborative MDAO within a
large, heterogeneous team, where different PIDO systems or com-
putational environments and optimization packages are at hand.
A framework like OpenMDAO offers excellent possibilities to set
up single-user executable MDAO workflows, but is limited in its
capability to support collaborative MDAO system formulation and
to execute workflows on a distributed server environment. Some
PIDO platforms available on the market allow the integration
of multilevel and distributed MDAO workflows through manual
“drag&drop” manipulations via their interface, but, at date, none
provides actual formulation capabilities [12,30].

3. Requirements for the KADMOS system

From the review of the state of the art it can be concluded
that while multiple solutions exist for the execution of even large
computational systems, there is lack of adequate support in the
formulation phase. Methods have been developed to specifically
address some of the stages in this phase, but no comprehensive
solutions addressing the whole MDAO system formulation in a
collaborative environment have been found. While some method-
ologies have been proven able to close the implementation gap by
means of dedicated interfaces with a PIDO tool, none provide the
flexibility to choose between different integration platforms. Sev-
eral graph-based representation and manipulation approaches have
been proposed by various authors, which have proven very effec-
tive within the limited scope of some of the formulation stages.
The KADMOS system presented in this paper aims at filling this
gap in the state of the art, by leveraging on the high potential of
graph-based representation and manipulation methods, to deliver
a neutral, open-source platform, specifically targeted to the devel-
opment of large, distributed and collaborative MDAO systems. To
this purpose, the following top-level requirements were set:

1. System composition: The system should be based on the CDS
approach for I/O data exchange.

2. System representation: The syntax should be based on the
graph-theoretic foundation for MDAO systems initiated by
Pate et al., but should also provide the human-readability of
XDSMs.

3. System manipulation: KADMOS should support automated
formulation of MDAO solution strategies for MDA, DOE and
MDO architectures. MDO-type architectures should include the
previously mentioned monolithic and distributed approaches,
at least including the MDF, IDF, CO and BLISS-2000 architec-
tures.

4. PIDO platform independence: The MDAO solution strategy
formulated with KADMOS should be portable to a range of
PIDO platforms, while maintaining complete independence
from them.

5. Controlled automation: The system should automate all the
repetitive, non-creative tasks necessary to advance from one

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 415

Da
Re

Fu

MD

Pr
MD
formulation stage to the other, while keeping the system ar-
chitect in control of all settings and strategic decisions that
require engineering judgment (e.g. to define the problem, to
pick the architecture).

6. Tool heterogeneity: The system should support a broad range
of design tool types ranging from simple mathematical re-
lations, to more complex surrogate model relations, up to
complex disciplinary tools to be executed as black boxes on
separate server domains because of intellectual property con-
straints.

7. Scalability: The system should be able to handle systems of
any size and complexity.

4. KADMOS graph types

The following graphs represent the fundamental means used in
KADMOS to store and manipulate the MDAO system throughout its
entire formulation process:

ta graphs
pository Connectivity Graph (RCG) Based on a repository of CDS-

compatible design and analysis tools, a graph can be cre-
ated that links all the I/O variables and represents the
tool repository.

ndamental Problem Graph (FPG) The FPG is an enriched (i.e. con-
taining additional attributes) subset (i.e. due to removal
of unnecessary functions and variables) of the RCG. It is
created by performing graph manipulations on an RCG to
define a graph that represents a valid (in terms of the
strict KADMOS graph conditions discussed in the next
sections) MDAO problem. This graph can then be used
to impose an MDAO architecture on it.

AO Data Graph (MDG) The MDAO solution strategy stage is repre-
sented by two graphs: a data and a process graph. The
MDG is the data graph that stores the data exchanged
by the executable blocks and the CDS nodes that are
required to solve the MDAO problem, according to the
selected architecture. The executable blocks in the MDG
include both the repository tools from the FPG and the
architecture elements, necessary to implement the MDAO
architecture at hand, such as convergers, optimizers, and
Architecture-specific Mathematical Relations (AMRs) (i.e.
consistency constraint function).

ocess graphs
AO Process Graph (MPG) This graph does not contain any data

node, but only the executable blocks from the MDG and
the specification of their execution sequence.

The general KADMOS graph syntax will be described in the
next section. The detailed description of the individual graphs is
provided in Sect. 6, supported by a small illustrative example.
KADMOS [61] is implemented as a Python package. All graphs are
subclasses of the DiGraph class from the NetworkX [29] package;
see the class diagram in Fig. 4.

Although there is a conceptual resemblance between KADMOS
graphs and those proposed by Pate et al, there are notable differ-
ences in the graph syntax, as well as in the scope and implemen-
tation of the entire MDAO support system. The most significant
difference with respect to Pate’s graph-based methodology con-
cerns the scope. Whereas Pate’s graph formulation is focused on
the transition between the first and second stage of the MDAO
development process, KADMOS has a broader scope including the
transitions to stages three and four. The inclusion of these addi-
tional stages required a more sophisticated definition of the syntax
and the graph-theoretic conditions the graphs have to satisfy. In
addition, KADMOS is based on the CDS approach for system com-
Fig. 4. Class diagram of the KADMOS package. N.B. BusinessProcessGraph
class is not discussed in this paper.

position, which further differentiates the syntax and conditions.
Finally, the KADMOS syntax covers both monolithic and distributed
MDO architectures, whereas the latter were not covered by Pate’s
approach.

5. KADMOS graph syntax and main graph classes

This section provides a formal definition of the graph syntax
adopted in KADMOS. The two main graph classes (Fig. 4) are de-
fined as well. The syntax follows the notation of Diestel [13] and
Pate et al. [44]. Key concepts of graph theory are briefly revis-
ited here for convenience, followed by the definition of nodes
(Sect. 5.1), edges (Sect. 5.2), and main graph classes (Sect. 5.3) used
in KADMOS.

A graph G is built using a set of vertices V (or nodes) and a set
of edges E (also called connections):

G = (V , E)

in which E ⊆ [V]2, meaning that the elements of E are two-
element subsets of V . All KADMOS graphs are a special type of
graphs, called directed graphs (or digraphs),2 where E contains a
set of ordered pairs to indicate the edge direction. The node v
would be connected to the node w with the edge e = (v, w). Every
edge in a digraph has an initial vertex init(e) and a terminal ver-
tex ter(e). The set of edges going out of v are denoted with E+(v)

and the total amount of edges going out of v is called the outde-
gree of the node and is denoted with δ+(v). Similarly, the set of
incoming edges are denoted as E−(v) and the indegree is denoted
with δ−(v).

An example digraph is shown in Fig. 5. This graph would be
defined with the two sets:

V = {a,b, c,d, e, f }
E = {(a,a), (a,d), (b,a), (b, e), (d,b), (d, c), (e,b)}

A loop in a digraph would be defined by an edge with init(e) =
ter(e). In KADMOS graphs these kind of loops are not allowed,
meaning that only simple digraphs are used. A looped pair is al-
lowed in simple digraphs. Looped pairs are defined as pairs of
nodes {v, w} for which there is an edge in both directions, hence
(E+(v) ⊃ e | ter(e) = w) ∧ (E−(v) ⊃ e | init(e) = w). See the pair

2 More specifically, most graphs are directed cyclic graphs, though acyclic graphs
are also possible and supported.

416 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433

fu

va
Fig. 5. Example of a directed graph illustrating some key concepts.

{b, e} in Fig. 5. The amount of such looped pairs of one node v
with respect to its neighbors is referred to as the circularity index:
cir(v). This is one of the fundamental KADMOS extensions to Pate’s
syntax.

A path Q = (V , E) from v0 to vk in graph G is a subgraph of
G (Q ⊆ G) with V = {v0, v1, ..., vk} and E = {(v0, v1), (v1, v2), ...,
(vk−1, vk)}. See as example the path with V = {e,b,a,d, c} in
Fig. 5. A cycle C is a path for which v0 = vk , e.g. the cycle with
V = {b,a,d,b} in Fig. 5.

In an acyclic directed graph the nodes can always be ordered
in such a way that one moves forward when following the edges.
This is called a topological ordering of the graph. Hence, if a di-
rected graph has the topological ordering of the vertices 〈v, w, . . .〉,
it means that for every edge in the graph the initial vertex also
comes before the terminal vertex in the ordering (e.g. if ∃(v, w) : v
comes before w in the ordering).

To combine graphs, a notation for the union of a set of sets
is required. If we define I to be a non-empty set such that for
each i ∈ I there is a corresponding set Ai , then the set of sets
A = {Ai | i ∈ I} is called an indexed family of sets with index i and
indexing set I [51]. The union of this family of sets can be denoted
in different ways:
⋃

i∈I

Ai =
⋃

A∈A
A = {x | x ∈ A for some A ∈ A}

Finally, the size of a set B is called the cardinality and is denoted
by |B|. A set difference is denoted as A \ B = {x ∈ A | x /∈ B}.

5.1. Node definitions

The definition of nodes in a KADMOS graph is done using at-
tributes. The different node attributes are listed in Table 1. The
attribute values are used throughout the whole package to inspect
and manipulate the graphs. The main attribute of a node is its cat-
egory, denoted as cat(v), which can have the two following values:

nction (v f): operators, also called executable blocks. Every possi-
ble operator is defined as a function node in KADMOS,
e.g. a mathematical expression, an analysis tool, an op-
timizer, a converger. The subset of function nodes in a
graph G is denoted by V f = {v ∈ V | cat(v) = function}.

riable (v v): elements from the CDS. These variable nodes can rep-
resent different variable types, such as scalars, vectors
and matrices. The subset of variable nodes in a graph G
is denoted by V v = {v ∈ V | cat(v) = variable}.

All nodes can get an instance specified. A node instance at-
tribute is used to allow multiple instances of a node that refer to
the same tool in the tool repository, or to the same element in the
CDS. A node instance is an integer value denoted by ins(v), where
the default instance value is zero. A practical example of the use
of node instances for a variable is the situation where two func-
tions (e.g. A and B) have the same variable b as output, but the
values written by those tools are required at different moments in
the MDAO system execution. In such a case, it could be required
that A first determines the value of b (ins(b) = 0) which is used
by some other tools, and B later overwrites this value (ins(b) = 1)
to be used by other tools in the MDAO system. Hence, the node
instances are required in the graph to be able to indicate which
functions are using and producing which node instance.

Another key attribute of both function and variable nodes is
the role they play in a certain graph. Two types of roles are de-
fined in KADMOS graphs: the problem role (denoted pr(v)) and the
architecture role (denoted ar(v)). The problem role is used in the
FPG to indicate special variables, such as design variables, con-
straints, objective, and quantities of interest (QOIs). The problem
role of a function in the FPG is related to its position within the
MDAO system and will be further explained in the next section.
The architecture roles are used in the MDG and MPG. These roles
indicate special variable and function nodes required by MDAO ar-
chitectures, such as initial guesses, copy variables, optimizers and
consistency constraint functions. A full list of architecture roles is
provided in Table 3 and is further discussed in Sect. 6.

An attribute specific for function nodes is the mode attribute,
denoted by mode(v). This attribute is used to indicate that the
same tool from the repository can be executed in different opera-
tional modes (e.g. an aerodynamic analysis tool can operate both
in viscous or inviscid mode), using different I/O branches in the
CDS. By using the keyword ‘mode’ the I/Os of the different func-
tion modes can be filtered automatically, as shown in Fig. 6. The
advantage of using the mode attribute is that a tool with multiple
execution modes can still be stored in the repository as one tool,
with only one mapping definition to the CDS.

Another function-node-specific attribute is the ordered set con-
taining the process step numbers (PSNs), denoted by psn(v). These
step numbers are integers used to specify the execution order of
the function nodes in a process graph (Fig. 7b). The process num-
bering adheres to the XDSM convention. A function node can have
multiple PSNs to allow for cycles. The maximum and minimum
PSNs present in a graph G are denoted by respectively maxpsn(G)

and minpsn(G).

5.2. Edge definitions

Two edge types are defined, called data and process edge and
belonging, respectively, to the two main graph classes DataGraph
and ProcessGraph.

5.2.1. Data edge (ed)
This edge represents the relation between a variable node and

a function node. All data edges in a graph are denoted by Ed =
{e ∈ E | cat(e) = data}. A data edge is always defined using one
variable node and one function node. If ter(ed) ∈ V f then the edge
is an input edge and, vice versa, if ter(ed) ∈ V v then the edge is an
output edge.

5.2.2. Process edge (ep)
This edge represents the relation between function nodes in a

process graph. The subset of process edges in graph G is E p =
{e ∈ E | cat(e) = process}. Just like function nodes, the process edge
can have a PSN attribute, denoted by psn(e). For process edges the
PSN is not an ordered set, but a single integer value, since each
process edge can only represent a single step (Fig. 7b).

5.3. Main graph classes definitions

The main KADMOS graph classes DataGraph and Process-
Graph (see class diagram in Fig. 4), are defined using the node
and edge definitions from the previous sections.

Any instance of the DataGraph class is a digraph D =
(V D , E D) complying to the following conditions:

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 417
Table 1
List of attributes for graph nodes and edges.

Attribute name Notation Valid for Typical values

category cat() V ∧ E function, variable, data, process
subcategory sct() V input, coupling, collision, hole, sink (see Table 2)
instance ins() V 0, 1, 2, 3
problem role pr() V design variable, objective, coupled, post-coupling
architecture role ar() V initial guesses, copies, optimizer (see Table 3)
mode mode() V f viscous, inviscid, 1, 2, 3, A, B, C
process step number psn() V f ∧ E p {0,7}, {1} for V f or 1,2,3,4,5 for E p

Fig. 6. Illustration of the use of the attribute mode. Tool A can operate in two modes, using/producing different I/O values (right). Tool A is stored in the repository as one
tool (center), requiring only one mapping to the CDS accounting for both modes (center, left).
Fig. 7. Example instances for each of the two main graph classes in KADMOS.

(1) |V f | + |V v | = |V D |
(2) |Ed| = |E D |

Where condition (1) states that all nodes belong to either the func-
tion or variable category and condition (2) that all edges should be
data edges, thus connecting function nodes with variable nodes, as
shown in Fig. 7a.

Instances of the ProcessGraph class are digraphs P =
(V P , E P) meeting the following conditions:
(1) |V f | = |V P |
(2) |E p| = |E P |
(3) ∀v ∈ V P : δ−(v) + δ+(v) ≥ 1
(4) minpsn(P) = 0
(5) ∀e ∈ E P : psn(e) ∈Z>

(6) ∀v ∈ V P : |psn(v)| > 0 ∧ ∀i ∈ psn(v) : i ∈Z≥
(7) ∀e ∈ E P : psn(e) ∈ psn(ter(e))
(8) ∀e ∈ E P : psn(init(e)) � x | x < psn(e)

Where conditions (1) and (2) mean that all nodes should be
function nodes and all edges should be process edges, respectively.
Condition (3) states that each node should be connected to at least
one edge and condition (4) enforces the process definition to start
at a PSN of zero. Conditions (5) and (6) ensure that all PSNs are
positive integers, and only nodes can have a PSN of zero. Finally,
conditions (7) and (8) enforce process continuity by demanding
the nodes around a process edge to have corresponding PSNs (e.g.
a process edge e with psn(e) = 4 should have an init(e) that con-
tains a PSN of 3 or lower and a ter(e) containing a PSN of 4). An
example of a process graph is shown in Fig. 7b.

5.4. Node subcategorization

A more refined subcategorization of all the nodes in a graph
can be defined based on their indegree, outdegree, and circular-
ity index. This categorization can be inferred automatically based
on these three properties. All possible subcategories, denoted by
sct(v), are listed in Table 2. The subcategories play an important
role in the different graph classes, as some subcategories are not
allowed in certain stages of the MDAO system, while others require
a specific treatment in the graph manipulation algorithms. For ex-
ample, the hole and collision node subcategories (also present in
the syntax by Pate et al. [44]), are generally considered problem-
atic and need to be removed or fixed. A crucial new subcategory in
the KADMOS syntax is introduced with the circular variable nodes,
which are related to the circularity index introduced in the pre-
vious subsection. These nodes require a specific treatment in the
data graphs, as will be discussed in Sections 6.2 and 7.

418 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Table 2
Subcategory definition of graph nodes and references to example nodes.

cat sct δ− δ+ cir Fig. 7a

variable hole 0 0 0 a
supplied input 0 1 0 b
supplied shared input 0 >1 0 c
output 1 0 0 d
collision >1 0 0 e

coupling/
pure circular coupling

1 1
0 f
1 g

shared coupling/
shared circular coupling

1 >1
0 h
1 i

collided coupling/
collided circular coupling

>1 1
0 j
1 k

collided shared coupling/
collided shared circular coupling

>1 >1
0 –
≥1 –

function hole 0 0 0 A
source 0 >0 0 B
sink >0 0 0 C
complete >0 >0 ≥0 D

6. KADMOS graphs

The four graph types (RCG, the FPG, the MDG and MPG) intro-
duced in Sect. 4 (Fig. 4), are subclasses of the two main classes
discussed in the previous section. In this section we make use
of a simple analytical MDAO problem to clarify the determination
and use of these four graph classes: the Sellar problem [48]. This
problem can be described by the following tools, where the tools
indicated with D represent the actual disciplines, F the objective
function, and G the constraints:

D [mode=1] ⇒ y1 = c · (z2
1 + x1 + z2 − 0.2 · y2)

D [mode=2] ⇒ y2 = c · (√y1 + z1 + z2)

F ⇒ f = x2
1 + z2 + y1 + e−y2

G [mode=1] ⇒ g1 = y1

3.16
− 1

G [mode=2] ⇒ g2 = 1 − y2

24.0

To better illustrate the different KADMOS graphs we assume here
to start with a broader tool repository, where, next to D, F and G,
the following five fictitious tools are added:

A ⇒ b = f(a)

B ⇒ b = f(b); z1 = f(b); z2 = f(b)

C ⇒ c = f(b)

E ⇒ y1 = f(b, z1, z2); y2 = f(b, z1, z2)

H ⇒ x1 = f(x0)

Before the first graph in the KADMOS approach, the RCG, can be
created, the tools have to be made compatible to a single CDS and
stored in the tool repository, as illustrated in Figs. 8a and 8b.

6.1. Repository connectivity graph

The RCG is a specific type of data graph (see Sect. 5.3). The RCG
R = (V R , E R) can be built by combining the data graphs that rep-
resent individual functions. For each unique function/mode combi-
nation i ∈ Ir stored in the tool repository Ir = {1,2, . . . ,m} a data
graph can be constructed:

Di = (V D,i, E D,i)
Fig. 8. Extended Sellar problem tool repository.

Where the nodes are:

V D,i = v f ,i

⋃
V v,I,i

⋃
V v,O ,i

in which v f ,i represents the function node, V v,I,i are all the vari-
ables from the CDS based on the input file, and V v,O ,i contains all
the output file variables. The edges of Di are then:

E D,i = E−(v f ,i)
⋃

E+(v f ,i)

where:

E−(v f ,i) = {(v v , v f ,i) | v v ∈ V v,I,i}
E+(v f ,i) = {(v f ,i, v v) | v v ∈ V v,O ,i}
The data graph of the tool D[1] ([1] denotes mode(D) = 1) is
shown in Fig. 8c. The nodes and edges of the RCG can be writ-
ten as:

V R =
⋃

i∈Ir

V D,i

E R =
⋃

i∈Ir

E D,i

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 419
Fig. 9. RCG of the extended Sellar tool repository.

The RCG shown in Fig. 9 is automatically instantiated by KAD-
MOS based on the Sellar tool repository defined above. After in-
stantiation, the subcategory of the nodes (Table 2) can be deter-
mined to inspect the graph, leading to the identification of the four
main node subcategories for each variable node v , as illustrated in
Fig. 9 legend:

• input when δ−(v) = 0 ∧ δ+(v) > 0
• output when δ−(v) = 1 ∧ δ+(v) = 0
• coupled when δ−(v) = 1 ∧ δ+(v) ≥ 1 ∧ cir(v) = 0
• problematic for all other nodes

These main node subcategories will be further discussed in the
next section. Note that for all nodes in an RCG ins(v) = 0.

6.2. Fundamental problem graph

The FPG contains the definition of the fundamental MDAO
problem to be solved, thus it is a subset of the RCG, containing
only the tools that are strictly necessary to solve the optimiza-
tion problem at hand, plus extra information on the specific role
of the tools (which one is a coupled discipline, which the objective
function, etc.) and involved variables (which ones are design vari-
ables, which fixed parameters, etc.). The FPG is the starting point
to impose one of the MDAO architectures in the third stage of the
formulation phase.

The FPG has to meet stricter requirements than the RCG. In ad-
dition to the standard data graph conditions, an FPG F = (V F , E F)

has to meet the following extra conditions:

(1) ∀v ∈ V F , f : v ∈ V R, f ∨ v is merged based on ⊆ V R, f
(2) ∀v ∈ V F ,v : v ∈ V R,v if ins(v) = 0, else ∃w ∈ V R,v : w = v

except ins(w) �= ins(v) ∧ ins(w) = 0
(3) ∀v ∈ V F ,v : cir(v) = 0 ∧ δ−(v) + δ+(v) ≥ 1 ∧ δ−(v) ≤ 1
(4) ∀v ∈ V F , f : δ−(v) ≥ 0 ∧ δ+(v) > 0
(5) ∀v ∈ V F , f : pr(v) ∈ {uncoupled-DVI, uncoupled-DVD, coupled,

post-coupling}
(6) ∀v ∈ V F ,v : if pr(v) = design variable ⇒ δ−(v) = 0
(7) ∀v ∈ V F ,v : if pr(v) = QOI ⇒ δ−(v) = 1
(8) ∀v ∈ V F ,v : if pr(v) = objective ∨ constraint ⇒ δ+(v) = 0
(9) ∀v ∈ V F : ∃ path Q = (V Q , E Q) where v ∈ V Q ∧ V Q � w

where pr(w) ∈ {QOI, objective, constraint}

Where condition (1) states that function nodes have to be present
in the RCG already or can only be merged nodes based on func-
tion nodes from the RCG. Condition (2) states that all variables
should also be present in the RCG or can only be instances of RCG
variables. Condition (3) implies that the variables cannot be holes,
Algorithm 1. FPG composition process.

1. M: Anticipate whether the MDAO architecture to be imposed is of type
MDA, DOE or MDO.

2. M: Mark problem roles of variables based on the type of MDAO architec-
ture:

a: If architecture type = MDO or DOE, then mark design variables.
b: If architecture type = MDO, then mark objective.
c: If architecture type = MDO, then mark constraints.
d: Mark QOIs for all architecture types.

3. M: Solve problematic nodes based on conditions (3) and (4).
4. A: Check graph validity based on all conditions except condition (5).
5. M: Merge functions to compress graphs.
6. A: Assign problem roles of functions (condition (5)).
7. A: Specify execution sequence.
8. A: For distributed MDO architectures, specify the distribution of the cou-

pled functions.

Legend
A: automated step
M: manual step using scripting commands

collided, or circular. Condition (4) demands that all function nodes
are of subcategory ‘source’ or ‘complete’. Both conditions (3) and
(4) are related to the subcategories listed in Table 2. Condition (5)
states that all function nodes in the graph should have a prob-
lem role assigned (these roles will be further discussed later in
this section). Condition (6) stipulates that design variables should
be inputs, whereas QOIs can be couplings or outputs (condition
(7)), and objective and constraint nodes must be outputs (condi-
tion (8)). Finally, condition (9) demands that, for all nodes, at least
one path can be created that leads to a QOI, objective, or con-
straint. Hence, nodes not included in any of those paths can be
removed.

While the RCG can be defined by KADMOS in full automation,
on the sole basis of the tool repository, the FPG graph is defined on
the basis of the design team specification of the MDAO problem to
be solved (e.g. what is the objective? what are the constraints?).
Several support functions are provided by KADMOS to assist the
design team in the FPG composition process. A suggested semi-
automatic composition process for crafting the FPG is given in
Algorithm 1.

The FPG composition process for the Sellar problem is illus-
trated in Fig. 10. This process starts from the RCG in Fig. 9. The
anticipated architecture type (step 1) is MDO. In step 2 (refer to
Fig. 10a) x0, z1, and z2 are marked as design variables. In order to
make z1 and z2 valid design variables the incoming edges (B, z1)

and (B, z2) must be removed. The objective f and constraints g1
and g2 can directly be marked as such, since these are already of
the valid subcategory output. Finally, if the design team is inter-
ested in keeping track of the coupling variable y2, this has to be
defined as a QOI. Therefore, the preferred function to determine y2
has to be selected (between tool D and E). In this case, tool D is
selected, also for the variable y1, thus the edges (E, y1) and (E, y2)

are removed.
The only problematic nodes left in the graph (step 3) are tool

E and variable b. After the previous edge removal, tool E is now a
sink and can safely be removed from the graph. Node b expresses
a special case, in which a tool takes an initial value and then up-
dates that same value. Hence, the input and output point to the
same location of the schema. This is common practice for systems
using a CDS approach, when tools take initial guesses or update
the values (e.g. a wing geometry) stored in a schema file. This type
of node is made valid by splitting it in two instances using a KAD-
MOS method resulting in b (ins(b) = 0) and bi1 (ins(b) = 1). Hence,
this is the moment when node instances are created. The splitting
of nodes is a crucial operation, since not every collided or circu-
lar node in the data graph can be solved by just removing edges.
In realistic design cases, collisions and looped pairs are commonly
present, as will be further discussed in Sect. 7 case study. Fig. 10b

420 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 10. Sellar problem FPG composition.

depicts the FPG of the Sellar problem after the execution of the
previous steps.

In step 4 a KADMOS check method is executed which returns
a positive result. Then the team can merge functions that belong
together and that can be executed in sequence (i.e. without any
feedback coupling) or in parallel (i.e. without any coupling). Hence,
in step 5 the function sequence 〈A, B, C〉 is merged as one func-
tion ABC, and the set of parallel functions {G[1],G[2]} is merged as
G[1,2]. See Fig. 10c for the resulting graph. These function merg-
ers are useful to declutter the system (and maintain oversight) by
clustering more disciplines into fewer “macro-discipline” blocks.

Step 6 of the FPG composition process consists in the determi-
nation of the problem role of the various functions. The function
problem roles in an FPG belong to one of four main groups:
uncoupled-DVI, uncoupled-DVD, coupled, and post-coupling, where
the suffix of the two uncoupled types indicates whether the func-
tions are Design Variable Dependent (DVD) or Design Variable
Independent (DVI). The coupled functions are the set of functions
that are involved in cycles in the FPG. These cycles indicate that
a method is required to converge the system, since any order of
executing the tools will always require some feedback loop. The
single cycle present in the Sellar FPG is depicted in Fig. 10c. Hence,
tools D[1] and D[2] have the problem role ‘coupled’. The uncou-
pled functions are all the functions on an incoming path with
respect to the cycles, for example the function ABC on the path
{a,ABC, c,D[1]}. The default problem role for uncoupled functions
is uncoupled-DVI. However, if the FPG contains design variables,
then some of the uncoupled functions could also be DVD and
should be marked as such, see tool H in this example. This distinc-
tion is required later to correctly position the uncoupled functions
either outside (if DVI) or inside (if DVD) the main cycle handling
design variables (i.e. DOE or optimizer block). The post-coupling
functions are simply all the remaining functions. The problem roles
are shown in Fig. 10d.

In step 7 the description of the fundamental MDAO problem
is completed by specifying the sequence of the functions. The se-
quences for each problem role are determined automatically in
KADMOS. The uncoupled and post-coupling sequences are straight-
forward, since no cycles are present in those function sets. Any
sequence of functions that constitutes a topological order of the
nodes is valid, where for the uncoupled functions the most opti-
mal sequence is a sequence where the DVD functions are required
as late as possible, hence 〈ABC, H〉. The sequencing of the coupled
functions is more challenging as the amount of feedback variables
can depend on the sequence given. For this purpose, sequencing
algorithms have been implemented that search for the optimal
sequence by minimizing the amount of feedback couplings. How-
ever, for the Sellar problem both possible sequences have the same
amount of feedback variables, thus the sequence 〈D[1], D[2]〉 was
arbitrarily selected. The post-coupling sequence is set to 〈F, G[1,2]〉.

If a distributed MDO architecture needs to be implemented,
then the coupled functions in the FPG need to be grouped to in-
dicate how the system needs to be distributed. This grouping can
be determined automatically using partitioning algorithms, such as
the Metis partitioning algorithm [32] implemented in KADMOS.
In the small Sellar example, the two groups are simply the two
coupled functions. The other functions in the FPG will be grouped
automatically when the distributed MDO architecture is imposed,
as further discussed in Sect. 6.6. The FPG in Fig. 10d has been de-
fined with the MDO architecture types in mind, but it is possible
to use nearly the same FPG also for MDA and DOE by simply reas-
signing variable problem roles based on step 2 of Algorithm 1.

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 421
Table 3
Lists of possible architecture roles for function and variable nodes
in an MDG.

Existing functions and AMRs New functions in MDG

uncoupled-DVI coordinator
uncoupled-DVD optimizer
coupled converger
post- coupling DOE

Surrogate Model (SM)

New variable nodes in MDG

final design variable DOE input samples
final output coupling copy
final coupling design variable copy
DOE output samples coupling weight
initial guess design variable SM approximate
initial guess coupling variable

6.3. MDAO data graph

The MDG, together with the MPG in the next section, belongs
to the last set of graphs produced by KADMOS to enable the third
stage of the formulation phase. The MDG is constructed automati-
cally by a KADMOS graph manipulation algorithm that embeds the
previously generated FPG into an MDAO solution strategy of choice.
The MDG MD = (V MD , E MD) has to meet the following conditions:

(1) V F ⊂ V MD

(2) ∃!v ∈ V MD : ar(v) = coordinator ⇒ v = COOR
(3) ∀v ∈ V MD : ∃ cycle C = (V C , EC) where v ∧ COOR ∈ V C
(4) ∀v ∈ V MD , f ∩ V F , f : ar(v) ∈ {1st col. Table 3}
(5) ∀v ∈ V MD , f \ V F , f : if (∃w ∈ V F , f where w = v except ins(w)

�= ins(v)) ∨ (v is an AMR), then ar(v) ∈ {1st col. Table 3}, else
ar(v) ∈ {2nd col. Table 3}

(6) ∀v ∈ V MD ,v \ V F ,v : (ar(v) ∈ {3rd and 4th col. Table 3}) ∨ (∃w ∈
V F , f where w = v except ins(w) �= ins(v)) ∨ (v ∈ {ter(e) | e ∈
E+(AMR))}

Condition (1) states that all nodes from the FPG are also present
in the MDG. Condition (2) implies that a single coordinator node
should be added. This node provides the system-level inputs and
collects system-level outputs. Condition (3) demands that all nodes
in the graph are on a cycle that includes the coordinator node.
Conditions (4)-(6) concern the architecture roles of the graph
nodes. All nodes from the FPG, their instances, and AMRs get an
architecture role from the same set as the problem roles in con-
dition (4). All new function nodes also have an architecture role
(condition (5)). New variables generally get architecture roles as-
signed, except when they are added as instances or to serve as
outputs of AMRs by the algorithm that imposes the MDAO archi-
tecture (condition (6)).

Based on the Sellar problem FPG given in Fig. 10d, KADMOS can
impose any MDO architecture. Here, as an example, we illustrate
the implementation of the MDF architecture, with a Gauss-Seidel
convergence scheme, which requires the addition of a converger
block to drive the MDA convergence cycle, see Algorithm 2 and
Fig. 11a.

Multiple algorithms are available in KADMOS to automatically
determine the reconfigured data connections necessary to solve
the optimization problem based on various MDO architectures.
Hence, the same FPG in Fig. 10d can be used to impose IDF, to
reconfigure the MDF with a Jacobi convergence schema, or even to
apply distributed architectures such as BLISS-2000 or CO. The re-
configuration with CO for the Sellar case is discussed in Sect. 6.6.
Other architecture types (i.e. without optimization) would require
small adjustments of the FPG, for example, a DOE strategy would
be based on design variables, but instead of objective and con-
Algorithm 2. MDG algorithm for MDF with Gauss-Seidel convergence scheme (Refer
to Fig. 11a for the final graph and Fig. 11c for the XDSM).

1. Check FPG based on graph conditions.
2. Copy the FPG as a starting point for the MDG.
3. Add coordinator block (COOR).
4. Add and connect the converger block (CONV) to the coupled functions.

a: Remove feedback coupling between coupled functions ⇒ edge (y2, D[1])
in the FPG.

b: Connect feedback coupling to the converger ⇒ edge (y2, CONV) in the
MDG.

c: Add and connect a copy variable for each feedback coupling ⇒ node yc
2

and its edges.
d: Add initial guess of the copy variable and connect it to the COOR and

CONV blocks ⇒ node yc0
2 and its edges.

e: Add final coupling value variables between the coupled functions and the
coordinator ⇒ node y∗

2 and its edges.
5. Add and connect optimizer (OPT):

a: Connect design variables as output of the Optimizer ⇒ edges (OPT, x0),
(OPT, z1), and (OPT, z2).

b: Add initial guess for the design variables and connect them to the coordi-
nator (COOR) and optimizer (OPT) blocks ⇒ e.g. node x0

0 and its edges.
c: Connect the objective and constraint variables from the post-coupling

functions as input to the optimizer ⇒ edges (f , OPT), (g1, OPT), (g2, OPT).
d: Add final objective and constraint value variables between the post-

coupling functions and the coordinator ⇒ e.g. node f ∗ and its edges.
6. Connect any remaining input nodes to the coordinator ⇒ edge (COOR, a).
7. Check MDG based on all conditions.

straint variables, it can only have QOIs. How these different archi-
tectures can be used will be shown in the case study in Sect. 7.

6.4. MDAO process graph

The MPG is the only process type graph discussed in this paper.
This graph defines the process steps that are required to solve the
MDAO problem based on the selected architecture, hence it con-
tains the execution sequence of all the blocks in the architecture,
including the necessary iteration cycles, their nesting, etc. An MPG
is always based on an MDG. The MPG M P = (V M P , E M P) should
meet the following additional conditions with respect to the Pro-
cessGraph class defined in Sect. 5.3:

(1) V M P = V MD , f
(2) ∃!v ∈ V M P : psn(v) = minpsn(M P) ⇒ v = COOR
(3) ∃!v ∈ V M P : psn(v) = maxpsn(M P) ⇒ v = COOR
(4) ∀v ∈ V M P : ∃ cycle C = (V C , EC) where v ∧ COOR ∈ V C
(5) ∃ cycle C = (V C , EC) ∈ M P for which {psn(e) | e ∈ EC } =

[1, maxpsn(V C)]

Where condition (1) states that each function node from the
MDG should also be present in the MPG. Conditions (2) and (3)
ensure that the process only starts and ends at the coordinator
node. Condition (4) demands that all nodes are part of a cycle that
contains the coordinator and condition (5) ensures that there is
at least one cycle with continuously increasing step numbers. The
MPG corresponding to the earlier discussed MDG is automatically
determined by the KADMOS algorithm provided in Algorithm 3.

6.5. XDSM visualization of KADMOS graphs

In order to offer a convenient visualization of the assembled
MDAO system, KADMOS provides a method to combine the MDG
and MPG into a single representation based on the XDSM. To do
that, KADMOS actually defines the XDSM graph as the union of
the data and process graphs:

XDSM = MD ∪ M P

The result is shown in the example in Fig. 11c. This XDSM is au-
tomatically created using the Python graph objects MDG and MPG

422 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 11. MDAO graphs and XDSM view of the Sellar problem using the MDF archi-
tecture with a Gauss-Seidel convergence scheme.

and a graph-based extension of the LATEX-based XDSM writer [64]
by Lambe and Martins [33]. The same method can also be used
to solely visualize data graphs, which would result in ‘XDSM data
flow’ visualizations. Without process information, such an XDSM
would be equivalent to an N2 chart.
Algorithm 3. MPG algorithm for MDF with Gauss-Seidel convergence scheme (see
Fig. 11b for the final graph and Fig. 11c for the XDSM).

1. Check MDG based on graph conditions.
2. Start with an empty directed graph object of the MdaoProcessGraph

class.
3. Add the function nodes from the MDG.
4. Set PSN to 0 and assign PSN = 0 to COOR block.
5. Add a process from the COOR block to the OPT block via the uncoupled-DVI

functions ⇒ edges (COOR, ABC){1} and (ABC, OPT){2} and the corresponding
PSNs on the nodes.

6. Add a process from the OPT block to the CONV block via the uncoupled-DVD
functions ⇒ edges (OPT, H){3}, (H, CONV){4} and node PSNs.

7. Add an iterative process from the CONV block through the coupled functions
back to the CONV block ⇒ edges (CONV, D[1]){5}, (D[1], D[2]){6}, and (D[2],
CONV){7}.

8. Add a process from the CONV block to the OPT block via the post-coupling
functions ⇒ e.g. edges (CONV, F){8} and (F, OPT){9}.

9. Add a process from the OPT block back to the COOR block ⇒ edge (OPT,
COOR){10}.

Of the two graphs that describe an XDSM, the MDG will grow
in size more quickly as the MDAO system becomes larger and
more complex. Since the growing amount of off-diagonal infor-
mation to be displayed would affect the readability of the XDSM
visualization, KADMOS can be set to visualize just the number of
connections, rather than the full list of exchanged I/O data. Hence
instead of ‘4: x1, z1, z2’ as shown in Fig. 11c, KADMOS would only
state ‘4: 3 connections’. This concise notation will be used in the
case study (Sect. 7).

As discussed in the introduction, the formulation of an MDAO
system in large, collaborative design projects can be severely im-
paired by a lack of proper visualizations. Debugging, documenting,
exchanging information and, even more, maintaining oversight of
the whole systems would easily become impossible, thereby com-
promising the success of the very MDAO initiative. The graph-
based formalization provided by KADMOS appears to be a key
enabler to such visualization, even beyond the KADMOS native
XDSM generation ability. As discussed later in this paper (Sect. 6.7),
its compact, structured and rigorous syntax provided the oppor-
tunity to develop an advanced dynamic visualization tool, called
VISTOMS, able to interactively display in the browser XDSMs of
any size (as well as other type of useful visualizations) and in-
spect any single exchanged data, by toggling and expanding ev-
ery XDSM block. Details on VISTOMS are provided by Aigner et
al. [2].

6.6. Reconfiguration of the MDAO system: collaborative optimization

One of the motivations for describing the different stages of
MDAO systems using a graph syntax, is that the system can be
reconfigured very easily. In Fig. 11 the monolithic MDF architec-
ture has been implemented on the FPG shown in Fig. 10d, but
a radically different strategy for solving the same MDAO prob-
lem could also be used, such as the distributed CO architecture.
MDF and CO are just two of the standard MDAO architectures cur-
rently available in KADMOS, but new ones can be defined, possibly
requiring the addition of new FPG graph manipulation methods.
When CO was added to KADMOS, for example, its algorithms were
built using a combination of the methods previously developed
for monolithic architectures and newly developed methods, spe-
cific for distributed architectures (e.g. determination of global and
local design variables and constraints, addition of new AMRs, etc.).
With a growing library of MDAO architectures, the amount of ba-
sic graph manipulation methods included in KADMOS also grows,
making it easier to add new architectures (or variations of archi-
tectures) to the package.

The basic steps of the MDG creation for CO are summarized in
Algorithm 4. The combination of MDG and MPG for the CO strategy

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 423
Fig. 12. Automatically generated XDSM of the CO architecture imposed on the FPG shown in Fig. 10d.
is depicted in Fig. 12. Multiple concepts from the KADMOS graph
syntax come forward in this small example. For example, many in-
stances and copies of variables are created, especially for the global
design variables z1 and z2, as these are used by functions in all
three optimization cycles. In addition, also a function instance is
created for the function H (see: Hi1 in the sub-OPT-0 cycle), which
is done in this case to keep the suboptimization cycle independent
of the functions in the main Sys-OPT cycle. The algorithm also adds
the AMRs J0 and J1, which are the consistency constraint/objec-
tive functions that are part of the CO formulation. Also note that
all functions within the optimization cycles now have the archi-
tecture role ‘uncoupled-DVD’ functions, since the distribution of
D[1] and D[2] through separate optimization cycles means that
no convergence cycle is required within any optimizations, mak-
ing the categories ‘coupled’ and ‘post-coupling’ irrelevant in this
situation.

The implementation of other monolithic and distributed archi-
tectures will be further discussed in Sect. 7.

6.7. Storage and exchange of MDAO solution strategy formulations:
CMDOWS

With the automatic determination of the MDG and MPG, the
formulation phase of the MDAO solution strategy is completed. The
entire process discussed so far is summarized in the top rows of
Fig. 13. At this point, to bridge the implementation gap, a solu-
tion is required to translate KADMOS’s neutral representation of
the MDAO system into an executable workflow. Since all the graphs
generated by KADMOS are stored as inexecutable Python objects,
Algorithm 4. MDG algorithm for CO (Refer to Fig. 12 for the corresponding XDSM).

1-3. Same as steps 1-3 in Algorithm 2.
4. Analyze the distribution of the whole system based on the provided dis-

tribution (step 8 in Algorithm 1) of the coupled functions in the FPG:
a: Identify global objective variable ⇒ f .
b: Identify global and local constraint variables ⇒ global: -, local: g1 with

D[1] and g2 with D[2] group.
c: Identify global and local design variables ⇒ global: z1, z2, local: x0 with

D[1] group.
d: Determine function grouping: for each function, assess whether it belongs

to the system-level and/or to one of the disciplinary groups.
⇒ system-level: ABC, H, F; D[1] group: H, D[1], G[1]; D[2] group: D[2],
G[2].

5. Split functions that occur multiple times in the function grouping ⇒ Hi1.
6. Start loop for each subsystem group:

a: Localize the disciplinary group by introducing copies of design variables
and couplings ⇒ e.g. zc

1.
b: Add the consistency objective function AMR ⇒ J0, J1.
c: If disciplinary group contains cycles: add converger (similar to step 4 in

Algorithm 2) ⇒ N/A.
d: Add and connect optimizer (similar to step 5 in Algorithm 2) ⇒ Sub-OPT-0

and Sub-OPT-1.
7. Add and connect system-level optimizer (similar to step 5 in Algorithm 2)

⇒ Sys-OPT.
8-9. Same as steps 6-7 in Algorithm 2.

considered options were to have KADMOS translate them in the
proprietary format of some PIDO tool of choice or to provide an
Application Programming Interface (API). These options were how-
ever discarded in favor of full platform independence.

Tailoring KADMOS functionality to a single PIDO platform, or
committing to the development and maintenance of multiple

424 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 13. Overview of the formulation phase supported by KADMOS and bridged im-
plementation gap through the CMDOWS file.

translators (or an API) for a range of platforms seemed inconve-
nient.3 Instead, a more lean solution was devised with the defi-
nition of a neutral data exchange format to export the generated
MDAO systems formulations, leaving the translator development
responsibility to the PIDO system users or to the PIDO develop-
ers themselves. This approach was actually actively supported by
two prominent PIDO platform developers, namely Noesis and the
German Aerospace Center, who saw in the neutral data exchange
schema a potential solution to the flexibility demand of their cus-
tomers, as well as a means to deliver more easily custom solutions
to their advanced users.

This led to the development of the Common MDO Workflow
Schema (CMDOWS). CMDOWS [59] is an XML-based, open-source
format that is currently proposed as the “CPACS counterpart” for
MDAO system specifications storage. CMDOWS is not only used to
export the final output of KADMOS, but also to store the definition
of the MDAO system at any stage of its development. Hence, the
earlier stages of the MDAO system formulation represented by the
RCG and FPG can also be stored as a CMDOWS file. Thus, although
the primary objective of CMDOWS is to enable links with PIDO
tools, it actually allows other MDAO support applications that can
contribute to the MDAO system formulation phase to connect to
KADMOS.

Indeed, in the collaborative MDAO project AGILE [11], multi-
ple platforms are combined in a broader MDAO framework [21]: a
business process integration platform to facilitate the design team
in the specification of the optimization problem and MDAO archi-

3 N.B. The API option was considered inconvenient as it is a too programming-
intensive solution for a research-based software development with its application
in a domain dominated by users with an engineering background rather than an IT
background.
tecture, various online design tool and surrogate model reposito-
ries to collect design competence definitions, but also visualization
tools, such as the aforementioned VISTOMS. It is through the latter
that KADMOS can provide the necessary human-readable represen-
tations of the MDAO system, so needed by the design team to stay
in control of their complex formulations.

At the moment CMDOWS translators have been developed for
the PIDO platforms Optimus [20], RCE [65], and OpenMDAO [63]
using the OpenLEGO package [62] of De Vries [56], largely proving
the KADMOS capability to close the implementation gap (Fig. 13),
while remaining PIDO platform independent. Developments and
case studies in the AGILE project [22] have shown that these trans-
lators can actually be created with a relatively small effort, thanks
to the conceptual similarities between the CMDOWS data structure
and the proprietary encoding used by the above-mentioned PIDO
tools. Examples of automatically generated executable workflows
for the Sellar solution strategy are shown in Fig. 14. The full de-
scription of the CMDOWS format is outside the scope of this paper,
but detailed info is given by Van Gent et al. [23].

7. Case study: aerostructural wing design optimization

In the previous section the simple Sellar problem was used as a
means to explain the KADMOS functionality, its graph syntax and
definitions. However, the real KADMOS value stands in its abil-
ity to support the formulation and reconfiguration of large scale
(in terms of amount of tools and the size of the design team in-
volved) MDAO systems, of realistic complexity and relevance for
the industry. This is the goal of the aerostructural wing design
optimization case study presented in this section. This test case
uses a multidisciplinary, distributed tool repository constituted by
a mix of proprietary design tools, mostly working as black boxes
(i.e. aerodynamic solver, weight estimation tool, etc.), which have
been linked together using the CDS approach. The aircraft config-
uration considered in this case study is a conventional passenger
jet used in one of the AGILE project design campaigns. In this case
study it is assumed that an MDAO integrator is creating a script
for the design team to formulate and reconfigure the MDAO solu-
tion strategy using KADMOS methods. These reconfigurations are
representative of a typical MDAO process, where an initial design
point is determined first through a multidisciplinary convergence
study, then design space exploration is performed using a DOE to
assess the sensitivity of the design to some parameters of interest,
to finally set up the actual optimization problem.

7.1. Tool repository

The collection of tools available in the database is summarized
in Table 4. This includes twelve disciplinary tools developed by dif-
ferent experts, some of which featuring multiple execution modes,
thus representing a truly heterogeneous repository. All tools have
been made compatible with the CDS standard CPACS. As long as
this compatibility is respected, any extra tool can be added to
the repository in a straightforward manner. After the database has
been imported, an RCG is created by KADMOS containing 2,909
nodes and 12,068 edges. By taking advantage of the mode attribute
(see Fig. 6) the twelve tools in the database lead to 25 function
nodes in KADMOS. Due to the sheer amount of nodes and edges,
the obtained RCG cannot be visualized as a graph because of ob-
vious readability issues. The XDSM data flow with summarized
connections can be used instead, as depicted in Fig. 15, although
limited to a subset of the database.

7.2. Initial design point (design convergence study)

In a realistic design project the team would not directly jump to
setting up the aerostructural optimization that they have in mind.

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 425
Fig. 14. Executable workflows created with two different workflow execution platforms, starting from the same CMDOWS file. A screenshot of the workflow generated with
a third platform, RCE, is provided in Fig. 16c.
Rather, the tools need to be tested first and a converged initial de-
sign point is required to start any optimization study. As discussed
in Sect. 3, a design convergence study is one of the possible MDAO
architectures supported by KADMOS. Following the algorithm sug-
gested in Sect. 6.2, the steps leading to the generation of the FPG
are given here below, while the generated graph is depicted in
Fig. 16a:

1. Select the MDAO architecture type MDA
2. The design team is interested in the mass balance of the air-

craft and marks the QOIs:
mMTO: Maximum Take-Off (MTO) mass determined by func-
tion MaCal.
mwing: Wing mass determined by function EMWET, using
loads from Q3D[FLC].
mfuel: Fuel mass determined by function SMFA using lift-to-
drag ratio from Q3D[VDE].
mZF: Zero-Fuel (ZF) mass by MaCal.
3a. All functions that do not provide any QOI and that are not
coupled to tools providing them are automatically removed. In
this case functions such as PHALANX, PROTEUS, OBJ, CNSTRNT,
Q3D[APM] are removed from the RCG.

3b. For the initial geometry, the HANGAR function with mode AG-
ILE_AC_wing is selected. The other HANGAR mode and the
INITIATOR function are both removed.

3c. The HANGAR and SCAM functions still cause collisions, since
both write to the same wing geometry elements. At this stage,
the HANGAR tool is selected and SCAM is removed.

4. Graph is found to be valid by KADMOS on all necessary FPG
conditions (see Sect. 6.2).

5a. Q3D[VDE] and SMFA are merged sequentially as function
node.

5b. Q3D[FLC] and EMWET are merged sequentially as function
node.

6-7. Function problem roles and order are set as shown in Fig. 16a.

426
I.van

G
ent,G

.La
Rocca

/Aerospace
Science

and
Technology

90
(2019)

410–433

nn. = connection, inp. = input, outp. = output].
Fig. 15. Automatically generated XDSM data flow (N2 chart) visualization of a subset of the RCG (not all tool modes are shown to maintain readability) [co

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 427
Table 4
Tool repository.

Tool name Description Execution method Modes Mode description

HANGAR Tool loads CPACS file with aircraft geometry.
Used to have distinction between tool set-
tings and aircraft design in XDSM.

local AGILE AC Conventional aircraft design created in
the AGILE project

AGILE AC wing Adjusted wing of the AGILE conventional
aircraft design to meet case study set-up.

INITIATOR [16] Tool initiates an aircraft design based on
top-level aircraft requirements.

local main –

SCAM Simplified CPACS Aircraft Morphing. Adjust
aircraft geometry in different ways

. local λ Wing taper morph
� Wing sweep morph
� Wing dihedral morph
cr Wing root chord morph
b Wing length morph
ξ Wing spar position change

GACA Geometrical Analysis of CPACS Aircraft com-
ponents.

local Swing Determination wing reference area
V FT Determination wing fuel tank volume

Q3D [37] Quasi-3D Aerodynamic solver. remote VDE Viscous Drag Estimation
FLC Flight Load Case (vortex lattice method)
APM Aeroperformance Map

EMWET [15] Wing mass estimation tool. remote main –

SMFA Simplified Mission Fuel Analysis: Breguet’s
range equation.

remote main –

PHALANX [45] Flight dynamics toolbox. remote Full Lookup Full = full dynamic model
Full Simple Simple = empirical engine deck
Symm. Lookup Symm. = only longitudinal dynamics
Symm. Simple Lookup = external engine deck

PROTEUS [36] Aeroelastic wing analysis tool. remote main –

MaCal Mass Calculation tool for maximum take-off
mass and zero-fuel mass.

remote main –

OBJ Normalized objective function. script main fMTOM = mMTO/mMTO,ref

CNSTRNT Constraint value analysis. scripts WL (wing loading) cWL = (mMTO/Swing) − WLref
FTV (fuel tank vol.) cFT = mfuel/(ρfuel · ηFT) − V FT
Imposing the MDA with a Gauss-Seidel convergence scheme ar-
chitecture on this FPG results in the solution strategy shown in
Fig. 16b. Exporting these results to a CMDOWS file and parsing it
in RCE provides the team with the executable workflow shown in
Fig. 16c.

7.3. Design space exploration (DOE)

All the stages of the MDAO development process shown in
Fig. 1 were covered by the MDA convergence study discussed in
the previous section. At this point an iteration is triggered to
reconfigure the MDAO system such to perform design space ex-
ploration through DOE. The following steps have to be taken to
reconfigure the previously generated FPG:

1. Change to MDAO architecture type DOE.
2. QOIs remain and the following design variables are selected:

b and cr : wing span and root chord length
λ1 and λ2: taper ratios of two wing segments
�1 and �2: wing sweep of two wing segments
ξFS and ξRS: wing front and rear spar loc.
�: dihedral of the wing
C f : Friction coefficient
The SCAM tool is added, because of its ability to adjust some
design variables, which are not explicitly stated in CPACS.

3. Collisions are now caused by HANGAR and SCAM writing to
the same wing elements. Furthermore, SCAM introduces cir-
cular variables as it has the wing geometry entries as input
and output. The collided and circular variables are fixed by
creating variable instances.

4. Graph validity is checked against all necessary FPG conditions
(see Sect. 6.2).

5. The five modes of the SCAM function are merged into one
function node.

6-7. Function problem roles and order are set as shown in Fig. 17a.

The obtained FPG is shown in Fig. 17a. Two key concepts of
the KADMOS graph syntax are used at step 3 of FPG creation pro-
cess: the circularity index and instances. Initially, some of the wing
definition nodes in the FPG are problematic (in a similar fashion
as node b in Fig. 10a). This is because the HANGAR function pro-
vides a full initial wing definition that is then used and changed by
the SCAM function. Fifteen values are changed by SCAM to adjust
the wing based on top-level parameters and these fifteen values
are initially of the subcategory ‘collided shared coupling’ with a
circularity index of one. These collisions cannot be solved by sim-
ply removing connections, since the wing definition is supposed to
be updated by SCAM and the initial geometry should come from
HANGAR. Therefore, KADMOS automatically solves the collision by
creating two instances of these variables, one instance before the
SCAM function and one after. In this way, the collision is solved
while the two instances still refer to the same position in the CDS,
as is required.

The generated XDSM for the DOE solution strategy is shown
in Fig. 17b. The Jacobi scheme was selected to test the effect of
parallelizing all three disciplinary groups. The graph manipulation

428 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 16. Automatically generated XDSM visualizations of the KADMOS graphs (a, b)
and RCE workflow for the first MDA convergence study.

algorithm in KADMOS is able to position and connect the nested
iterative elements (i.e. DOE and CONV) such that each design point
to be analyzed is converged within the DOE block. Additional data
elements that are required for the design variables and QOIs are
also added and connected, for example, the new vector with sam-
ples for the design variables (e.g. bs) at PSN 2 and the vectors
with final values of the QOIs (e.g. m∗

MTO) at PSN 9. Again, the im-
plementation gap is bridged by storing the solution strategy in a
CMDOWS file and parsing it as an executable workflow, with any
of the aforementioned PIDO platforms.

7.4. MDO study

Based on the interpretation of the design space exploration, the
design team can now formulate an MDO problem. Let’s assume the
previous DOE study showed that the QOIs were not sensitive to
changes of dihedral angle (�) and taper ratio (λ1, λ2); then these
variables can be excluded from the MDO problem formulation. The
FPG that needs to be defined is based on the following problem
definition:

minimize: fMTOM = mMTO

mMTO,ref

with respect to: b, cr,�1,�2, ξFS, ξRS, C f

subject to: cWL = mMTO

Swing
− WLref ≤ 0

cFT = mfuel

ρfuel · ηFT
− V FT ≤ 0

Hence, the Maximum Take-Off Mass (MTOM) needs to be mini-
mized for a given mission by changing the geometry of the wing,
while satisfying a constraint on the wing loading (cWL) and making
sure that the fuel tank can carry the required fuel for the mission
(cFT). The FPG is again based on the previous FPG and is created
by performing the following operations in a KADMOS script:

1. Select the MDAO architecture type MDO.
2. Design and QOIs remain from the previous FPG, except �, λ1

and λ2, and the following objective and constraints are se-
lected:
fMTOM: output of function OBJ, hence this function from the
RCG is added to the FPG
cWL: output of function CNSTRNT
cFT: output of function CNSTRNT
In addition, the mode V FT of the GACA tool is added, since
the fuel tank volume is required for the constraint calcula-
tion.

5. The GACA modes are merged into one block as well as the
two CNSTRNT modes.

6-7. Function problem roles and order are set as shown in
Fig. 17a.

8. The coupled functions are distributed in two groups, as indi-
cated in Fig. 17a.

On this FPG different MDO architectures can be imposed, with
the resulting XDSMs for IDF and BLISS-2000 shown in Fig. 18
and Fig. 19. Of these two architectures, the distributed BLISS-2000
(Fig. 19) renders the idea of the extensive analysis and manipu-
lation of the FPG necessary for the automatic formulation of a
complex solution strategy. As for the previous cases, the formu-
lated MDAO solution strategies can be stored as CMDOWS files
and instantiated as executable workflows in a PIDO platform of
choice. Other possible MDAO system reconfigurations, which could
become interesting after the first MDO study, might include the
replacement of some tool in the repository, a modification of
the objective function or the addition of extra constraints, or a
change in the MDO strategy. All of them could be easily accom-
modated and implemented in very short time (given a CPACS
compatible tool repository): minutes instead of hours or even
days, as would be required with the conventional manual ap-
proach.

This case study demonstrated how the KADMOS syntax and
algorithms can enable a design team to quickly formulate and

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 429
Fig. 17. Automatically generated XDSM visualizations of the KADMOS graphs for the development of the design space exploration system. Note that the FPG is also used for
the MDO strategies, be it with small changes as indicated.
reconfigure an MDAO system, starting from a CDS-based repos-
itory of design tools. KADMOS has also been extensively tested
as core component in the broader collaborative MDAO framework
[21] developed in the AGILE project, as discussed by Van Gent
et al. [22]. Based on the AGILE collaborative design campaigns,
expert MDAO users estimated an overall time reduction of 50%
achievable by setting up the tool repository and deploying KAD-
MOS.

8. Summary and conclusions

8.1. Graph-based methodological approach

In this paper, a novel graph-based methodological approach
and its software implementation, called KADMOS, are proposed
to enable the formulation and integration of large collaborative
MDAO systems. Starting from a distributed repository of disci-
plinary tools, whose I/O have been previously mapped on a com-
mon data schema, KADMOS can automatically generate a directed
graph called Repository Connectivity Graph (RCG) and run pre-
liminary checks to identify possible issues in the repository con-
nectivity. Then, based on the user specification of some quantity
of interests (i.e. quantities to be evaluated as objectives and con-
straints, or simply to be monitored), KADMOS automatically trans-
forms the RCG into the Fundamental Problem Graph (FPG). The
FPG is a subset of the RCG, including only the tools and inputs
strictly necessary to produce the selected quantities of interest.
At this point, the user can intervene again and select a solution
strategy, among those currently supported by KADMOS (i.e. mul-
tidisciplinary convergence study, DOE or various monolithic and
distributed MDO architectures), to apply on the previously defined
fundamental problem. Thus KADMOS automatically transforms the
FPG into a new set of two plots, the MDAO Data Graph (MDG) and

430 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
Fig. 18. XDSM of the combined MDG+MPG for the IDF architecture.
the MDAO Process Graph (MPG), which, together, realize the com-
plete formulation of the MDAO system.

8.2. Formulation time reduction

As result of all these automatic graph manipulations and trans-
formations, KADMOS can reduce the whole formalization process
from weeks to minutes, for MDAO systems of any size, including
tools of different level of fidelity, ranging from simple equations
to high fidelity tools or their surrogate models. Even considering
the time investment required to make the disciplinary tools com-
patible with the adopted common data schema, the overall time
saving in the formulation process has been estimated in the order
of 50%.

8.3. Extended design agility

Furthermore, the step-by-step formulation approach imple-
mented in KADMOS, dramatically increases the agility of the de-
sign team in the application of collaborative MDAO. After the
execution of a multidisciplinary convergence study, for example,
designers can easily set up a DOE study and evaluate the sensi-
tivity of the results to certain parameters. This information can
then be used to formulate an optimization problem that includes
as design variables only the parameters resulting as most effec-
tive in the DOE. After that, also the burden to embed the problem
into one of the various and diverse MDO architectures is totally
eliminated, because KADMOS can manipulate the same FPG into
any MDO architecture in just minutes. If preliminary results of
the optimization suggest the use of a more convenient architec-
ture, changes will be effortlessly. Also if constraints and/or design
variables need to be added or removed, or different objectives se-
lected, or different disciplinary tools be involved (as far as compli-
ant to the common data schema), KADMOS provides the necessary
agility to easily adjust any of the aforementioned, thus supporting
the typical iterative nature of the design process.

8.4. System oversight through visualizations

The benefits of KADMOS are not limited to the reduction in
formulation time and design agility augmentation. Since KADMOS
stores all generated graphs by means of the standardized storage
format CMDOWS, the VISTOMS package (co-developed with KAD-
MOS and CMDOWS-compatible) can be used at any stage of the
formalization process to generate the necessary visualizations (e.g.
toggle-able XDSMs) to report the status of the MDAO system in
its development, to ease debugging and, most of all, to guarantee
discipline experts and MDAO architects the required oversight to
manage distributed computational systems of any size.

8.5. Closure of the implementation gap

Last but not least, the formulations produced by KADMOS
(stored as CMDOWS files), while totally PIDO platform neutral
in nature, lend themselves to a direct translation into executable
workflows. Three translators have been developed so far, to enable
the automatic integration of the solution strategies formulated by
KADMOS in the open-source platforms OpenMDAO and RCE and
the commercial platform Optimus, thus demonstrating the ability
of the proposed approach to close the implementation gap that
usually impairs the transition from the formulation to the execu-
tion phase of MDAO systems.

8.6. Originality

Although the graph-based methodological approach proposed
in this paper takes inspiration from the work of Pate et al., it dras-
tically extends its scope, to address all the stages of the MDAO sys-
tem formulation process. To this purpose, the graph syntax had to
be largely extended and refined with respect to Pate’s, by includ-
ing new concepts such as the circularity index, variable instances,
modes, problem roles and architecture roles. These concepts were
also required to support the assembly of distributed optimization
architectures (e.g. CO and BLISS-2000 variants), which is another
original aspect of the presented work.

While several KADMOS capabilities match those offered by
Hoogreef’s InFoRMA system, the theoretical basis drastically differs
from Hoogreef’s use of semantic webs to represent MDAO systems.
Furthermore, the use of the CMDOWS to store the various graphs,
allows KADMOS to benefit from the VISTOMS visualizations and
offers the flexibility to select among different PIDO platforms for
workflow integration.

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 431
Fig. 19. Automatically generated XDSM visualization in three parts of the KADMOS graphs for the BLISS-2000 solution strategy imposed on the FPG shown in Fig. 17a.

432 I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433
8.7. Outlook

Having achieved the necessary targets in terms of formula-
tion process time reduction, increased agility, continuous system
oversight and implementation gap reduction, the next planned
KADMOS advancement concerns the use of machine learning tech-
niques to advise the user on the most suitable MDAO architecture
to solve the optimization problem at hand, on the basis of the
main features of such problem. In a first step the advice will be
provided before starting the optimization, and later, dynamically,
based on the info gathered during optimization.

Declaration of Competing Interest

The authors declare that there are no known conflicts of in-
terest associated with this publication and that the only source of
financial support has come from the European Union, which has
not influenced the outcome of the work.

Acknowledgements

The research presented in this paper has been performed
in the framework of the AGILE (Aircraft 3rd Generation MDO
for Innovative Collaboration of Heterogeneous Teams of Experts)
project—awarded with the ICAS (International Council of the Aero-
nautical Sciences) Award for Innovation in Aeronautics—and has re-
ceived funding from the European Union Horizon 2020 Programme
(H2020-MG-2014-2015) under grant agreement n◦ 636202. The
authors are grateful to the partners of the AGILE consortium for
their contributions and feedback.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .ast .2019 .04 .039.

References

[1] J. Agte, O. De Weck, J. Sobieski, P. Arendsen, A. Morris, M. Spieck, MDO: assess-
ment and direction for advancement - an opinion of one international group,
Struct. Multidiscip. Optim. 40 (1–6) (2010) 17–33.

[2] B. Aigner, I. van Gent, G. La Rocca, E. Stumpf, L.L.M. Veldhuis, Graph-based al-
gorithms and data-driven documents for formulation and visualization of large
MDO systems, CEAS Aeronaut. J. (2018).

[3] N.M. Alexandrov, R.M. Lewis, Reconfigurability in MDO problem synthesis,
part 1, in: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, vol. 4307, AIAA Paper, 2004.

[4] N.M. Alexandrov, R.M. Lewis, Reconfigurability in MDO problem synthesis, part
2, in: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Op-
timization Conference, vol. 4307, AIAA Paper, 2004.

[5] J. Allison, M. Kokkolaras, P. Papalambros, Optimal partitioning and coordination
decisions in decomposition-based design optimization, J. Mech. Des. 131 (8)
(2009) 081008.

[6] R. Belie, Non-technical barriers to multidisciplinary optimisation in the
aerospace industry, in: 9th AIAA/ISSMO Symposium of Multidisciplinary Anal-
ysis and Optimisation, 2002, pp. 4–6.

[7] T. Berners-Lee, J. Hendler, O. Lassila, et al., The semantic web, Sci. Am. 284 (5)
(2001) 28–37.

[8] K.G. Bowcutt, A perspective on the future of aerospace vehicle design, in: 12th
AIAA International Space Planes and Hypersonic Systems and Technologies,
AIAA Paper, Norfolk, VA, 2003, pp. 2003–6957.

[9] R.D. Braun, Collaborative Optimization: an Architecture for Large-Scale Dis-
tributed Design, PhD thesis, Stanford University, 1996.

[10] P.D. Ciampa, B. Nagel, Towards the 3rd generation MDO collaboration envi-
ronment, in: 30th Congress of the International Council of the Aeronautical
Sciences, 2016.

[11] P.D. Ciampa, B. Nagel, The AGILE paradigm: the next generation of collabo-
rative MDO, in: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, 2017.

[12] P.D. Ciampa, E.H. Baalbergen, R. Lombardi, A collaborative architecture sup-
porting AGILE design of complex aeronautics products, in: 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2017.
[13] R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, 2010.
[14] K. Dykes, P. Rethore, F. Zahle, K. Merz, IEA Wind Task 37 Final Proposal Wind

Energy Systems Engineering: Integrated RD&D, Tech. rep., International Energy
Agency, 2015.

[15] A. Elham, Adjoint quasi-three-dimensional aerodynamic solver for multi-
fidelity wing aerodynamic shape optimization, Aerosp. Sci. Technol. 41 (2015)
241–249.

[16] R. Elmendorp, R. Vos, G. La Rocca, A conceptual design and analysis method
for conventional and unconventional airplanes, in: ICAS 2014: Proceedings of
the 29th Congress of the International Council of the Aeronautical Sciences, St.
Petersburg, Russia, 7–12 September 2014, International Council of Aeronautical
Sciences, 2014.

[17] L. Etman, M. Kokkolaras, A. Hofkamp, P.Y. Papalambros, J. Rooda, Coordination
specification in distributed optimal design of multilevel systems using the χ
language, Struct. Multidiscip. Optim. 29 (3) (2005) 198–212.

[18] F. Flager, J. Haymaker, A comparison of multidisciplinary design, analysis and
optimization processes in the building construction and aerospace industries,
in: 24th International Conference on Information Technology in Construction,
2007, pp. 625–630.

[19] A. Gazaix, F. Gallard, V. Gachelin, T. Druot, S. Grihon, V. Ambert, D. Guénot,
R. Lafage, C. Vanaret, B. Pauwels, et al., Towards the industrialization of new
MDO methodologies and tools for aircraft design, in: 18th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, 2017, p. 3149.

[20] I. van Gent, R. Lombardi, G. La Rocca, R. d’Ippolito, A fully automated chain
from MDAO problem formulation to workflow execution, in: EUROGEN 2017,
2017.

[21] I. van Gent, B. Aigner, B. Beijer, J. Jepsen, G. La Rocca, Knowledge architecture
supporting the next generation of MDO in the AGILE paradigm, Prog. Aerosp.
Sci. (2019), accepted for publication.

[22] I. van Gent, B. Aigner, B. Beijer, G. La Rocca, A critical look at design automation
solutions for collaborative MDO in the AGILE paradigm, in: 19th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2018.

[23] I. van Gent, G. La Rocca, M.F.M. Hoogreef, CMDOWS: a proposed new standard
to store and exchange MDO systems, CEAS Aeronaut. J. (2018).

[24] S. Görtz, C. Ilic, A. Schuster, J. Jepsen, M. Leitner, M. Schulze, J. Scherer, M.
Petsch, R. Becker, S. Zur, Multi-level MDO of a long-range transport aircraft
using a distributed analysis framework, in: 18th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, 2017, p. 4326.

[25] J. Gray, K.T. Moore, T.A. Hearn, B.A. Naylor, A standard platform for testing and
comparison of MDAO architectures, in: 8th AIAA Multidisciplinary Design Op-
timization Specialist Conference (MDO), Honolulu, 2012, pp. 1586–1611.

[26] J. Gray, T.A. Hearn, K.T. Moore, J.T. Hwang, J.R.R.A. Martins, A. Ning, Automatic
evaluation of multidisciplinary derivatives using a graph-based problem for-
mulation in OpenMDAO, in: 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Atlanta, GA, 2014.

[27] J. Gray, J.T. Hwang, J.R.R.A. Martins, K.T. Moore, B.A. Naylor, OpenMDAO: An
open-source framework for multidisciplinary design, analysis, and optimiza-
tion, Struct. Multidiscip. Optim. 59 (4) (2019) 1075–1104.

[28] M.D. Guenov, S.G. Barker, Application of axiomatic design and design structure
matrix to the decomposition of engineering systems, Syst. Eng. 8 (1) (2005)
29–40.

[29] A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics,
and function using NetworkX, in: 7th Python in Science Conference, SciPy2008,
Pasadena, CA, USA, 2008, pp. 11–15.

[30] M.F.M. Hoogreef, G. La Rocca, An MDO advisory system supported by
knowledge-based technologies, in: 16th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Dallas, Texas, 22–26 June 2015, AIAA 2015-2945,
American Institute of Aeronautics and Astronautics (AIAA), 2015.

[31] M.F.M. Hoogreef, Advise, Formalize and Integrate MDO Architectures - a
Methodology and Implementation, PhD thesis, Delft University of Technology,
2017.

[32] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1999) 359–392.

[33] A.B. Lambe, J.R.R.A. Martins, Extensions to the design structure matrix for the
description of multidisciplinary design, analysis, and optimization processes,
Struct. Multidiscip. Optim. 46 (2) (2012) 273–284.

[34] R. Lano, The N2 Chart, Tech. rep., TRW, 1977.
[35] T. Lefebvre, N. Bartoli, S. Dubreuil, M. Panzeri, R. Lombardi, P. Della Vecchia,

F. Nicolosi, P.D. Ciampa, K. Anisimov, A. Savelyev, Methodological enhance-
ments in MDO process investigated in the AGILE European project, in: 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2017.

[36] T. Macquart, N. Werter, R. De Breuker, Aeroelastic tailoring of blended com-
posite structures using lamination parameters, in: 57th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, 2016, p. 1966.

[37] J. Mariens, A. Elham, M.J.L. van Tooren, Quasi-three-dimensional aerodynamic
solver for multidisciplinary design optimization of lifting surfaces, J. Aircr.
51 (2) (2014) 547–558.

[38] J.R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: a survey
of architectures, AIAA J. 51 (9) (2013) 2049–2075, https://doi .org /10 .2514 /1.
J051895.

https://doi.org/10.1016/j.ast.2019.04.039
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4167746532303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4167746532303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4167746532303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4169676E657232303138s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4169676E657232303138s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4169676E657232303138s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303441s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303441s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303441s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303442s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303442s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6578616E64726F763230303442s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6C69736F6E32303039s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6C69736F6E32303039s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib416C6C69736F6E32303039s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib42656C696532303032s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib42656C696532303032s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib42656C696532303032s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4265726E65727332303031s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4265726E65727332303031s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib426F776375747432303033s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib426F776375747432303033s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib426F776375747432303033s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib427261756E31393936s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib427261756E31393936s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031365F49434153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031365F49434153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031365F49434153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031375F4147494C45706172616469676Ds1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031375F4147494C45706172616469676Ds1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D7061323031375F4147494C45706172616469676Ds1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D706132303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D706132303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4369616D706132303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4469657374656C32303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib44796B657332303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib44796B657332303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib44796B657332303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C68616D3230313542s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C68616D3230313542s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C68616D3230313542s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C6D656E646F727032303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C6D656E646F727032303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C6D656E646F727032303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C6D656E646F727032303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib456C6D656E646F727032303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib45746D616E32303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib45746D616E32303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib45746D616E32303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib466C6167657232303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib466C6167657232303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib466C6167657232303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib466C6167657232303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47617A61697832303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47617A61697832303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47617A61697832303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47617A61697832303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031375F4F7074696D7573s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031375F4F7074696D7573s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031375F4F7074696D7573s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F50494153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F50494153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F50494153s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F414941415F575036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F414941415F575036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F414941415F575036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F434D444F5753s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib47656E74323031385F434D444F5753s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib476F72747A32303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib476F72747A32303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib476F72747A32303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib476F72747A32303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303139s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303139s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4772617932303139s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4775656E6F7632303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4775656E6F7632303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4775656E6F7632303035s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4861676265726732303038s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4861676265726732303038s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4861676265726732303038s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F67726565663230313541s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F67726565663230313541s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F67726565663230313541s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F67726565663230313541s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F677265656632303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F677265656632303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib486F6F677265656632303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4B61727970697331393939s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4B61727970697331393939s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C616D626532303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C616D626532303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C616D626532303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C616E6F31393737s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C6566656276726532303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C6566656276726532303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C6566656276726532303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4C6566656276726532303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6163717561727432303136s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6163717561727432303136s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6163717561727432303136s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617269656E7332303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617269656E7332303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617269656E7332303134s1
https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J051895

I. van Gent, G. La Rocca / Aerospace Science and Technology 90 (2019) 410–433 433
[39] J.R.R.A. Martins, C. Marriage, An object-oriented framework for multidisci-
plinary design optimization, in: 3rd AIAA Multidisciplinary Design Optimiza-
tion Specialist Conference, Waikiki, Hawaii, USA, 2007.

[40] N.F. Michelena, P.Y. Papalambros, A hypergraph framework for optimal model-
based decomposition of design problems, Comput. Optim. Appl. 8 (2) (1997)
173–196.

[41] E. Moerland, R.G. Becker, B. Nagel, Collaborative understanding of disciplinary
correlations using a low-fidelity physics-based aerospace toolkit, CEAS Aero-
naut. J. 6 (3) (2015) 441–454.

[42] E. Moerland, T. Pfeiffer, D. Böhnke, J. Jepsen, S. Freund, C. Liersch, G.P. Chioz-
zotto, C. Klein, J. Scherer, Y.J. Hasan, On the design of a strut-braced wing
configuration in a collaborative design environment, in: 18th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, 2017.

[43] B. Nagel, D. Böhnke, V. Gollnick, P. Schmollgruber, A. Rizzi, G. La Rocca, J.J.
Alonso, Communication in aircraft design: can we establish a common lan-
guage? in: 28th International Congress of the Aeronautical Sciences, Brisbane,
2012.

[44] D.J. Pate, J. Gray, B.J. German, A graph theoretic approach to problem formula-
tion for multidisciplinary design analysis and optimization, Struct. Multidiscip.
Optim. 49 (5) (2014) 743–760.

[45] T. Pfeiffer, B. Nagel, D. Böhnke, A. Rizzi, M. Voskuijl, Implementation of a het-
erogeneous, variable-fidelity framework for flight mechanics analysis in prelim-
inary aircraft design, in: 60. Deutscher Luft- und Raumfahrtkongress, 2011.

[46] P. Piperni, A. DeBlois, R. Henderson, Development of a multilevel
multidisciplinary-optimization capability for an industrial environment,
AIAA J. 51 (10) (2013) 2335–2352.

[47] J. Rogers, DEMAID/GAA - enhanced design manager’s aid for intelligent decom-
position (genetic algorithms), in: 6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Sept 1996, pp. 4–6.

[48] R.S. Sellar, S.M. Batill, J.E. Renaud, Response Surface Based, Concurrent Sub-
space Optimization for Multidisciplinary System Design, AIAA paper 714:1996,
1996.

[49] S. Shahpar, Challenges to overcome for routine usage of automatic optimisation
in the propulsion industry, Aeronaut. J. 115 (1172) (2011) 615.

[50] T.W. Simpson, J.R.R.A. Martins, Multidisciplinary design optimization for com-
plex engineered systems: report from a national science foundation workshop,
J. Mech. Des. 133 (10) (2011) 101002.

[51] D. Smith, M. Eggen, R. St Andre, A Transition to Advanced Mathematics, Nelson
Education, 2014.
[52] J. Sobieski, J.S. Agte, R.R. Sandusky, Bilevel integrated system synthesis, AIAA J.
38 (1) (2000) 164–172.

[53] D.V. Steward, The design structure system: a method for managing the design
of complex systems, IEEE Trans. Eng. Manag. (3) (1981) 71–74.

[54] S. Tosserams, A. Hofkamp, L. Etman, J. Rooda, A specification language for
problem partitioning in decomposition-based design optimization, Struct. Mul-
tidiscip. Optim. 42 (5) (2010) 707–723.

[55] J.H. Vandenbrande, T.A. Grandine, T. Hogan, The search for the perfect
body: shape control for multidisciplinary design optimization, in: 44th AIAA
Aerospace Science Meeting and Exhibit, Reno, NV, 2006-928, 2006.

[56] D. de Vries, Towards the Industrialization of MDAO, Master’s thesis, Delft Uni-
versity of Technology, 2017.

[57] T.C. Wagner, P.Y. Papalambros, General framework for decomposition analysis
in optimal design, in: ASME Design Engineering, vol. 65-2, 1993, pp. 315–325.

[58] T. Wilschut, P.L. Etman, J.J. Rooda, I. Adan, Multi-level flow-based Markov clus-
tering for design structure matrices, J. Mech. Des. (2017).

Software references (All web links were accessed on 7-4-2019)

Open-source packages
[59] CMDOWS: cmdows -repo .agile -project .eu.
[60] CPACS: github .com /DLR-LY /CPACS.
[61] KADMOS: kadmos -repo .agile -project .eu.
[62] OpenLEGO: github .com /daniel -de -vries /OpenLEGO.
[63] OpenMDAO: github .com /OpenMDAO /OpenMDAO.
[64] pyXDSM: github .com /mdolab /pyXDSM.
[65] RCE: rcenvironment .de.
[66] VISTOMS: mdo -system -interface .agile -project .eu.
[67] XDSMjs: github .com /OneraHub /XDSMjs.

Commercial packages
[68] MATLAB: mathworks .com /products /matlab .html.
[69] ModelCentre: phoenix -int .com /product /modelcenter-integrate.
[70] Optimus: noesissolutions .com /our-products /optimus.

http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617274696E7332303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617274696E7332303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D617274696E7332303037s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D696368656C656E6131393937s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D696368656C656E6131393937s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D696368656C656E6131393937s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303135s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4D6F65726C616E6432303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4E6167656C32303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4E6167656C32303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4E6167656C32303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib4E6167656C32303132s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5061746532303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5061746532303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5061746532303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib506665696666657232303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib506665696666657232303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib506665696666657232303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib50697065726E6932303133s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib50697065726E6932303133s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib50697065726E6932303133s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib526F676572733139393641s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib526F676572733139393641s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib526F676572733139393641s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53656C6C617231393936s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53656C6C617231393936s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53656C6C617231393936s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5368616870617232303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5368616870617232303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53696D70736F6E32303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53696D70736F6E32303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib53696D70736F6E32303131s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib536D69746832303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib536D69746832303134s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib536F626965736B6932303030s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib536F626965736B6932303030s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5374657761726431393831s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5374657761726431393831s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib546F73736572616D7332303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib546F73736572616D7332303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib546F73736572616D7332303130s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib56616E64656E6272616E646532303036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib56616E64656E6272616E646532303036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib56616E64656E6272616E646532303036s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib567269657332303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib567269657332303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5761676E657231393933s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib5761676E657231393933s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib57696C736368757432303137s1
http://refhub.elsevier.com/S1270-9638(18)32694-4/bib57696C736368757432303137s1
http://cmdows-repo.agile-project.eu
http://github.com/DLR-LY/CPACS
http://kadmos-repo.agile-project.eu
http://github.com/daniel-de-vries/OpenLEGO
http://github.com/OpenMDAO/OpenMDAO
http://github.com/mdolab/pyXDSM
http://rcenvironment.de
http://mdo-system-interface.agile-project.eu
http://github.com/OneraHub/XDSMjs
http://mathworks.com/products/matlab.html
http://phoenix-int.com/product/modelcenter-integrate
http://noesissolutions.com/our-products/optimus

	Formulation and integration of MDAO systems for collaborative design: A graph-based methodological approach
	1 Introduction
	2 State of the art
	2.1 System composition
	2.2 System representation
	2.3 System manipulation

	3 Requirements for the KADMOS system
	4 KADMOS graph types
	5 KADMOS graph syntax and main graph classes
	5.1 Node deﬁnitions
	5.2 Edge deﬁnitions
	5.2.1 Data edge (ed)
	5.2.2 Process edge (ep)

	5.3 Main graph classes deﬁnitions
	5.4 Node subcategorization

	6 KADMOS graphs
	6.1 Repository connectivity graph
	6.2 Fundamental problem graph
	6.3 MDAO data graph
	6.4 MDAO process graph
	6.5 XDSM visualization of KADMOS graphs
	6.6 Reconﬁguration of the MDAO system: collaborative optimization
	6.7 Storage and exchange of MDAO solution strategy formulations: CMDOWS

	7 Case study: aerostructural wing design optimization
	7.1 Tool repository
	7.2 Initial design point (design convergence study)
	7.3 Design space exploration (DOE)
	7.4 MDO study

	8 Summary and conclusions
	8.1 Graph-based methodological approach
	8.2 Formulation time reduction
	8.3 Extended design agility
	8.4 System oversight through visualizations
	8.5 Closure of the implementation gap
	8.6 Originality
	8.7 Outlook

	Acknowledgements
	Appendix A Supplementary material
	References
	Software references (All web links were accessed on 7-4-2019)
	Open-source packages
	Commercial packages

