TUDelft

Exploring an Evolutionary Approach for Task
Generation in Meta-Learning with Neural
Processes

Kerem Yoner!
Supervisor(s): Joery Vries!, Matthijs Spaan’,
'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Kerem Yoner
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan , Joery Vries, Pradeep Murukannaiah

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Exploring an Evolutionary Approach for Task Generation in Meta-Learning with
Neural Processes

Kerem Yoner (5500761)
TU Delft, Netherlands

Abstract

This paper explores the application of evolutionary
algorithms to enhance task generation for Neural
Processes (NPs) in meta-learning. Meta-learning
aims to develop models capable of rapid adapta-
tion to new tasks with minimal data, a necessity in
fields where data collection is costly or difficult. By
integrating evolutionary strategies, we aim to en-
hance the efficiency and robustness of NPs. We
evaluate our approach using 1-D function regres-
sion problems, where Genetic Algorithm generates
diverse and challenging tasks. Our results show
that the evolutionary approach improves learning
efficiency and model performance, achieving lower
Root Mean Squared Error (RMSE) compared to
traditional methods.

1 Introduction

Meta-learning is an area of machine learning that focuses
on developing models capable of adapting to new tasks with
minimal data [Vettoruzzo er al., 2023]. This capability is cru-
cial in many real-world applications where collecting data is
costly or difficult. Traditional machine learning models often
require large amounts of data and long training phases, which
is not feasible in scenarios such as personalized healthcare,
robotics, and real-time language translation [Zou, 2023]. The
data, or more generally the curriculum, that the model is
trained on is crucial to model’s learning efficiency and its gen-
eralization capabilities [Vanschoren, 2018]. This research ad-
dresses this problem by exploring a curriculum strategy that
employs evolutionary algorithms to optimize task generation,
thereby improving the model’s learning efficiency and robust-
ness.

Neural Processes (NPs), introduced by [Garnelo et al.,
2018], offer a flexible approach to meta-learning by combin-
ing the strengths of neural networks and Gaussian processes.
NPs can learn distributions over functions, enabling them to
adapt to new tasks quickly. More recently, evolutionary algo-
rithms have been applied to reinforcement learning to create
adaptive environments that challenge and improve the learn-
ing agents [Green er al., 2019]. However, the application of
evolutionary algorithms to meta-learning tasks, specifically
using NPs, remains unexplored.

The primary focus of this research is to explore the integra-
tion of neural processes for meta-learning with evolutionary
algorithms for task generation. The key research question is:
How can evolutionary algorithms be utilized to optimize task
generation in neural processes for meta-learning?

2 Background

2.1 Model Description

NPs are a class of models that merge the capabilities of neural
networks and Gaussian processes to learn distributions over
functions, allowing for rapid adaptation to new tasks. The
architecture of NPs typically comprises the following com-
ponents:

1. Encoder: This component encodes the context points
(X¢, Y.) into latent representations. Given a set of con-
text points (z;,y;) fori = 1,..., N, the encoder out-
puts a set of representations r; = Encoder(x;, y;). These
representations are then aggregated to form a global la-
tent representation » = Aggregate(r1,..., N,).

2. Latent Variable Model: The latent variable model in-
fers a distribution over the latent variables z conditioned
on the aggregated context representation r. This dis-
tribution is denoted as ¢(z | r). The latent variable z
captures the underlying structure of the function being
modeled.

3. Decoder: The decoder uses the latent variables z to gen-
erate predictions for the target points X;. For each target
point z; € X, the decoder outputs a predictive distribu-
tion p(y: | x4, 2).

The training of NPs involves maximizing the Evidence
Lower Bound (ELBO), which balances the log-likelihood of
the observed data and the Kullback-Leibler (KL) divergence
between the approximate posterior ¢(z|r) and the prior p(z).
The ELBO for NPs is given by:

Ny
ELBO = Eq(z|r) [Z Ing(ytlxh Z)

t=1

— KL(q(z|r)[p(2))

where IV, is the number of target points.
By maximizing the ELBO, NPs effectively learn to encode
context information into latent variables that generalize well

to new target points, providing a powerful mechanism for
meta-learning across diverse tasks. [Garnelo et al., 2018] is
the main source of the model that is used.

3 Methodology

The solution uses a NP model and utilizes an evolutionary
curriculum strategy to enhance meta-learning. The motiva-
tion for this approach is to leverage the adaptability and effi-
ciency of evolutionary algorithms to create diverse and chal-
lenging tasks, thereby improving the model’s learning poten-
tial and generalization capabilities.

1-D function regression is chosen as the meta-learning
problem, where the context and target points are sampled
from a Fourier function. Every data point represents a differ-
ent Fourier function, and the Fourier functions are parameter-
ized by the number of cosine waves they include, amplitude
of each wave, phase of each wave and the period.

y(z) = ap + Zai cos <27rix T¢i>

i=1

where:

* n is the number of cosine waves.

e a; are the amplitudes of each wave.
* ¢; are the phase shifts.

* T is the period.

* 1z is the input variable.

For comparison of the evolutionary approach, a baseline is
trained by randomly sampling Fourier functions from a range
of the mentioned parameters. The range of the parameters
that the Fourier functions are sampled from constitutes the
main task distribution. Model definition, amount of computa-
tion used for training and number of samples that the model
is trained on are kept constant between the baseline and the
evolutionary approach to make a fair comparison.

Main training loop for the evolutionary approach is given
by the below pseudo-code.

Algorithm 1 Training Loop with Evolutionary Approach

Initialize variables: train_till_eval, training_steps, best, losses
while training _steps ; total_training_samples do
dataloader < create new dataset
for each batch in dataloader do
if training _steps > total_training_samples then
| break
end
preprocess batch
if train_till_eval > eval_intervals and training_steps
0 then
| evaluate model reset train_till_eval
end
train model on batch update training_steps and
train_till_eval
if minimum loss improves then
| update best model
end
if any issue detected then
| break
end
if training _steps % evolution_interval == 0 and train-
ing_steps # 0 then
| apply evolutionary algorithm break
end

end

end

The set of tasks that the model is trained on is newly cre-
ated at constant intervals using the tasks generated by evolu-
tionary algorithm. New set of tasks that the model is trained
on consists of both randomly sampled Fourier functions and
Fourier functions generated by the evolutionary algorithm to
make sure the model isn’t trained for only a specific part of
the task distribution which is generated by the evolutionary
algorithm.

Basic Genetic Algorithm (GA) is used as the evolution-
ary algorithm [Kramer, 2017]. Each candidate is represented
with the parameters of a Fourier function. Fitness of each
candidate is calculated by the loss of the model on the con-
text and target points sampled from the Fourier function rep-
resented by the candidate. Below is the high-level overview
of genetic algorithm:

Algorithm 2 Evolutionary Algorithm

Input: pop_size, generations, n_range, period_range, ampli-
tude_range, phase_range, mutation rate, top_k, re-
tain_rate, rng, model, params

Qutput: best_individuals, best_fitness_log, best_fitnesses

initialize population initialize best_fitness_log

for each generation do

evaluate fitness of population

retain top performers
select parents based on fitness create next generation via
Crossover
apply mutations
update population

end

evaluate final population fitness

select topgindividuals
return best_individuals, best_fitness_log, best_fitnesses

Population is initialized by randomly sampling Fourier
functions with the given parameter ranges. Genetic operators
make sure that the new candidates are not out of the bounds
of the ranges given for the main task distribution.

For evaluation of the evolutionary approach and the base-
line, test points are sampled from the task distribution and the
performances are measured with the below metrics.

1. Root Mean Squared Error (RMSE): Measures the av-
erage magnitude of the error between predicted and ac-
tual values, penalizing larger errors more heavily. It is
calculated as:

where j; are the predicted values and y; are the actual
values.

2. Negative Log-Likelihood (NLL): Measures the log
likelihood of the target points given the predicted means
and standard deviations from the model. It is calculated
as follows:

. 1
1ng(ytarget‘ya U) = log W

The NLL is then the negative mean of these log likeli-
hoods:

202

1< X
NLL = — ﬁ z; log p(ytarget,i |yia Ui)
i=

where n is the number of target points, 1arge; are the ac-
tual target values, ¢ are the predicted means, and o are
the predicted standard deviations.

Using both RMSE and ECE provides a comprehensive
evaluation of the model’s accuracy and reliability.

4 Experimental Setup

The hyperparameters and configurations used are detailed in
this section. The implementation relies on JAX, Flax, Optax,

((Yrarger — 9)* >) and configurations for the training loop.
exp | ——————

and NetKet libraries. The model architecture is a NP with the
following components:

Component Details
Embedding MLP([64, 64], Leaky ReL.U,
LayerNorm)
Projection Posterior NonLinearMVN
Output Model ResBlock(MLP([128, 128],
Leaky ReLU, LayerNorm)), Dense(2)
Aggregator MeanAggregator

Table 1: Model Architecture

Parameters for the GA are given in the table below. The
parameter choice for the GA is done by doing multiple tri-
als with different parameters which ensures the generation of
high fitness candidates through generations.

Parameter Value
Population Size 75
Generations 10

Mutation Rate 0.20
Top k Selection 75
Retain Rate 0.35

Table 2: Evolutionary Algorithm Hyperparameters

Below table gives the parameter ranges for the Fourier
functions in the main task distribution. Fourier functions are
sampled uniformly over the ranges for these parameters.

Parameter Range

n (number of terms) 3 to 6
Period 0.05t02.0
Amplitude 0.1 to 10.0
Phase 00tom

Table 3: Ranges for Fourier Function Parameters

Below table gives the hyper-parameters used for the model

Parameter Value
Test Resolution 512
Posterior MC Samples 1

Batch Size 64
KL-Divergence Penalty 1x1074
Target Samples 32
Context Samples 64
Optimizer AdamW

(learning rate 1 x 1073,
weight decay 1 x 10~%)
Training Steps 64000
Evolution Interval 512
Tasks by Evolution Proportion 0.3

Table 4: Model and Training Hyperparameters

5 Results and Discussion

Plots are created by aggregating the results of five experi-
ments ran with different seeds. Red lines on the plots of
the evolutionary approach represents the points at the training
where a new set of tasks generated with the GA is introduced.

5.1 Analysis of Training Losses

Training Loss

—— Training Loss

Loss

FTECITE CRRRRON | Lt Ao Mtertr
L Al L

o 10000 20000 30000 40000 50000 60000
Training Steps.

Figure 1: Training Loss for the Baseline Model

Training Loss

—— Training Loss
|

Loss.

0 10000 20000 30000 40000
Training Steps

Figure 2: Training Loss for the Evolutionary Model

Training loss curve for the evolutionary approach, com-
pared to baseline, have spikes right after the introduction of
the new set of training tasks, and stabilizes after some amount
of training steps. This is explained by the fact that the new set
of tasks introduced includes tasks that the model had already
higher loss at that step of the training. It supports that the
GA algorithm works as intended, to generate tasks that the
model is currently not performing well. However, the spikes
are not consistent due to using also the randomly sampled
tasks along with the GA generated tasks. Moreover, the tasks
that the GA generates depends on the current parameters of
the model, which may result in the average difficulty of the
new set of tasks differing at different points.

5.2 Analysis of Test Errors

Looking at the curves for the test performances, we see sim-
ilar spikes at the points of introduction of new set of tasks.
This can be explained by the fact that the model is trained

RMSE
8.00

—— RMSE Mean

7.50 4

7.25
7.00 W

RMSE

6.25 1

T T T T T T T
0 10000 20000 30000 40000 50000 60000
Evaluation Points

Figure 3: Test RMSE for the Baseline Model

RMSE

—— RMSE Mean

1
1
1
1
1
1
7.50 1 :
1
1
|
|

7.25

7.00

RMSE

6.751

6.50

6.00

i
]
]
]
]
]
]
]
]
]
I
I
I
]
]
I
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
1
X

T T T T T T
0000 20000 30000 40000 50000 60000
Evaluation Points

Figure 4: Test RMSE for the Evolutionary Model

on data points that are focused on a specific part of the task
distribution, which are generated by GA.

Comparing the test performances of the baseline and the
evolutionary approach, evolutionary approach is able to out-
perform the baseline in the RMSE metric. RMSE for the evo-
lutionary approach does not follow a trend that is as stable as
the baseline; however, the downward trend starts earlier than
the baseline. Also, at the end of the training, RMSE is lower
10% lower compared to the baseline. Given the fact that both
models are trained with same amount of samples and compu-
tation, it shows that the evolutionary approach increased the
sample efficiency in the learning process.

5.3 Analysis of Test Errors

CEE metric for the evolutionary approach does not differ sig-
nificantly compared to the baseline. We see a similar stability
difference, which can be explained by the same reasons pre-
viously mentioned for the stability of training and test perfor-
mances.

NLL
4.50
—— NLL Mean
4.25 A
4.00
3.75
4 350
=z
325
3.00
2.75
2,50 — T T T T T T
0 10000 20000 30000 40000 50000 60000
Evaluation Points
Figure 5: Test NLL for the Baseline Model
NLL
450 : : :
—— NLLMean | i
v v 1 1 1
i 1 1 1
4.25 ' ' '
1 | |
1 | |
1 1 1
1 1 1
4.00 ! ! !
1 1 1
1 1 1
1 1 1
3.75 ! ! !
1 1
| 1
|
4 350
=

O A

]
]
]
]
]
]
]
i
]
]
I
I
1
1
I
i
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
i
i
1

T T T T T T
0000 20000 30000 40000 50000 60000

Evaluation Points

Figure 6: Test NLL for the Evolutionary Model

6 Conclusion and Future Work

In this paper, we explored the integration of Neural Processes
(NPs) for meta-learning with an evolutionary algorithm-
based curriculum strategy for task generation. Our find-
ings demonstrate that the evolutionary approach enhances the
model’s learning efficiency compared to a baseline that em-
ploys random task sampling. The evolutionary curriculum
strategy led to a more effective adaptation to new tasks, as
evidenced by the lower RMSE in the evolutionary approach.

Future work can build upon this foundation by exploring
several avenues: Future work can extend this foundation by
exploring:

* Diverse Task Distributions: Apply the approach to
more complex, high-dimensional tasks and real-world
datasets.

¢ Advanced Evolutionary Strategies: Investigate so-
phisticated evolutionary strategies like multi-objective
optimization and co-evolutionary algorithms.

* Hybrid Approaches: Combine evolutionary algorithms
with other meta-learning techniques, such as reinforce-

ment learning and generative models.

* Theoretical Analysis: Conduct a deeper theoretical
analysis of the convergence properties and performance
guarantees of the evolutionary curriculum strategy. For
example, out-of-task distribution performance can be
measured.

7 Responsible Research

No unethical practices were involved in this study. All data
used in our experiments were synthetically generated, ensur-
ing no privacy or consent issues. For reproducibility pur-
poses, detailed descriptions of our methods, datasets, and
code are provided to allow other researchers to replicate and
validate our findings.!

References

[Garnelo et al., 2018] Marta Garnelo, Dan Rosenbaum,
Chris J Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, and Yee Whye Teh. Neural processes. arXiv
preprint arXiv:1807.01622, 2018.

[Green er al., 2019] Michael Cerny Green, Benjamin
Sergent, Pushyami Shandilya, and Vibhor Kumar.
Evolutionarily-curated curriculum learning for deep
reinforcement learning agents, 2019.

[Kramer, 2017] Oliver Kramer. Genetic Algorithms, pages
11-19. Springer International Publishing, Cham, 2017.

[Vanschoren, 2018] Joaquin Vanschoren. Meta-learning: A
survey, 2018.

[Vettoruzzo et al., 2023] Anna Vettoruzzo, = Mohamed-
Rafik Bouguelia, Joaquin Vanschoren, Thorsteinn
Rognvaldsson, and KC Santosh. Advances and challenges
in meta-learning: A technical review, 2023.

[Zou, 2023] Lan Zou, editor. Meta-learning: Theory, Algo-
rithms and Applications. Elsevier and MICCAI Society
book series. Academic Press, an imprint of Elsevier, 2023.

! Github Repository:
meta-learning-evolution

https://github.com/keremoner/

https://github.com/keremoner/meta-learning-evolution
https://github.com/keremoner/meta-learning-evolution

	Introduction
	Background
	Model Description

	Methodology
	Experimental Setup
	Results and Discussion
	Analysis of Training Losses
	Analysis of Test Errors
	Analysis of Test Errors

	Conclusion and Future Work
	Responsible Research

