
 
 

Delft University of Technology

An Efficient GPU-Accelerated Implementation of Genomic Short Read Mapping with
BWA-MEM

Houtgast, Ernst; Sima, Vlad; Bertels, Koen; Al-Ars, Zaid

DOI
10.1145/3039902.3039910
Publication date
2016
Document Version
Final published version
Published in
SIGARCH Computer Architecture News

Citation (APA)
Houtgast, E., Sima, V., Bertels, K., & Al-Ars, Z. (2016). An Efficient GPU-Accelerated Implementation of
Genomic Short Read Mapping with BWA-MEM. SIGARCH Computer Architecture News, 44(4), 38-43.
https://doi.org/10.1145/3039902.3039910

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3039902.3039910
https://doi.org/10.1145/3039902.3039910


An Efficient GPU-Accelerated Implementation
of Genomic Short Read Mapping with BWA-MEM
Ernst Joachim Houtgast1,2, Vlad-Mihai Sima2, Koen Bertels1 and Zaid Al-Ars1

1 Computer Engineering Lab, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
2 Bluebee, Laan van Zuid Hoorn 57, 2289 DC Rijswijk, The Netherlands

Corresponding author: ernst.houtgast@bluebee.com

ABSTRACT
Next Generation Sequencing techniques have resulted in an
exponential growth in the generation of genetics data, the
amount of which will soon rival, if not overtake, other Big
Data fields, such as astronomy and streaming video services.
To become useful, this data requires processing by a complex
pipeline of algorithms, taking multiple days even on large
clusters. The mapping stage of such genomics pipelines,
which maps the short reads onto a reference genome, takes
up a significant portion of execution time. BWA-MEM is
the de-facto industry-standard for the mapping stage.

Here, a GPU-accelerated implementation of BWA-MEM
is proposed. The Seed Extension phase, one of the three
main BWA-MEM algorithm phases that requires between
30%-50% of overall processing time, is offloaded onto the
GPU. A thorough design space analysis is presented for an
optimized mapping of this phase onto the GPU. The re-
sulting systolic-array based implementation obtains a two-
fold overall application-level speedup, which is the maximum
theoretically achievable speedup. Moreover, this speedup is
sustained for systems with up to twenty-two logical cores.
Based on the findings, a number of suggestions are made to
improve GPU architecture, resulting in potentially greatly
increased performance for bioinformatics-class algorithms.

1. INTRODUCTION
The introduction of Next Generation Sequencing (NGS)

techniques has resulted in drastic, ongoing, cost reduction of
genomic sequencing, which, in turn, has led to an enormous
growth in the amount of genetic DNA data that is being se-
quenced. High-throughput sequencing facilities are coming
online around the world as facilities worldwide embrace NGS
[2]. The amount of data being generated is projected to
rival, if not outright overtake, other key Big Data-fields,
such as astronomy and streaming video services [13].

NGS machines output so-called short reads, short frag-
ments of DNA of at most a few hundred base pairs (bp)
in length. This data requires extensive processing using a
genomics pipeline, which typically contain multiple stages
with a number of highly complex algorithms. In the case of
a DNA sequencing pipeline, first, the millions of short reads
generated are mapped onto a reference genome. Then, these
mapped reads are sorted and duplicates are marked or re-
moved. Finally, the aligned data is compared at several
positions with known possibilities, in order to determine the
most probable variant. Only then the data is ready for con-
sumption by the end-user, such as a clinician or researcher.

To appear in the International Symposium on Highly Efficient Acceler-
ators and Reconfigurable Technologies, July 2016, Hong Kong.

These variants, or mutations, are generally what is of inte-
rest, as such a mutation could give insight on which is the
most effective treatment to follow for the particular illness a
patient has. The mapping stage takes a significant portion
of processing time for a typical pipeline execution, around
30%-40%, depending on data set and platform.

A sequencing run on an Illumina HiSeq X, a state-of-the-
art NGS sequencer, produces data in the order of 450 GB.
For cancer data sets, this data requires multiple days of
processing, even on high performance computing clusters.
The extreme scale of data and processing requires enormous
computing capabilities to make the analysis feasible within
a realistic time frame. As heterogeneous computing holds
great potential to provide large advantages in speed and
efficiency, in this paper, we demonstrate the effectiveness
of GPU-based acceleration of BWA-MEM, the most widely
used tool for the mapping stage of genomics pipelines.

The following contributions are made: 1) an optimized
GPU-based implementation of the BWA-MEM Seed Exten-
sion phase, resulting in an overall application-level speedup
of up to 2x; 2) a thorough discussion of the design space ana-
lysis, providing key insight into the requirements of a highly
optimized implementation; and 3) recommendations to fur-
ther improve the GPU architecture that would allow even
higher performance for bioinformatics-class applications.

The remainder of this paper is organized as follows. In
Section 2, related work is discussed. In Section 3, back-
ground information is given on the BWA-MEM algorithm
and, in particular, on the Seed Extension phase. In Sec-
tion 4, the advantages and disadvantages of various imple-
mentation architectures are reviewed. In Section 5, the re-
sults are presented. Section 6 contains a discussion of the
results and recommendations are made to improve the GPU
architecture. Section 7 concludes the paper.

2. RELATED WORK
Numerous GPU-accelerated implementations of short read

mapping tools exist, notable examples include SOAPv3 [9]
and CUSHAW [10]. Similar to BWA-MEM and most other
state-of-the-art mapping tools, these consist of an Exact
Matching phase using the Burrows-Wheeler transform to
find exactly matching subsequences, followed by an Inexact
Matching phase. However, these implementations are lim-
ited in the flexibility of their Inexact Matching algorithm,
allowing only for a small number of mismatches (CUSHAW),
or by disallowing gaps in the alignment (SOAPv3).

Using a variant of the Smith-Waterman (SW) algorithm
[12] for its Inexact Matching, BWA-MEM does not impose
such limitations. For example, gaps do not influence per-
formance. The SW algorithm is a dynamic programming
technique able to find the optimal match between two sub-
sequences given a certain scoring scheme. Many accelera-

ACM SIGARCH Computer Architecture News 38 Vol. 44 No. 4 September 2016

Copyright held by author/owner (s).



Figure 1: BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read, likely mapping
locations on the reference are found by searching for seeds, exactly matching subsequences between the read
and the reference. These seeds are then extended in both directions using a Smith-Waterman-like approach
allowing for inexact matches. The best scoring alignment is selected.

ted implementations of this algorithm exist (e.g., [8], [11]).
However, all these implementations perform one complete
sequence matching per compute thread, making such an im-
plementation unsuitable for direct application onto BWA-
MEM, as it requires batching and sorting of larger groups
of work. Section 3.2 explains in more detail why such a
parallelization strategy is inapplicable for BWA-MEM.

To the authors’ knowledge, only a few accelerated imple-
mentations of BWA-MEM exist: two FPGA implementa-
tions of BWA-MEM on the Convey supercomputing plat-
form: one offloading the Seed Extension phase onto four
Xilinx Virtex-6 FPGAs [4] obtaining a 1.5x speedup, the
other accelerating multiple BWA-MEM phases [1] obtain-
ing a 2.6x speedup; and a GPU-accelerated implementation
of the Seed Extension phase [5], achieving a 1.6x speedup.
This work improves upon [5], obtaining far better results: a
two-fold speedup for a system with up to twenty-two logi-
cal cores is obtained, compared to an at most 1.6x speedup
for a system with up to four cores. Moreover, an NVIDIA
GeForce GTX 970 is used, compared to using a setup with
dual NVIDIA GeForce GTX TITAN X, equivalent to about
one-third of the GPU resources. Note that all these imple-
mentations are actual production-quality implementations.

3. BACKGROUND
There are a number of traits that bioinformatics-class

algorithms share, making them interesting, but neverthe-
less challenging candidates for acceleration efforts. The two
most important ones are outlined below:

Extreme-Scale Data Size: The data size that many
bioinformatics applications deal with are of an enormous
magnitude, for example illustrated in the case of NGS se-
quencing. A single human genome contains three billion
base pairs. A base is one out of four possible nucleotides
(A, C, G or T). Moreover, the sequencer also provides a
quality score for each base, which indicates the confidence
with which the nucleotide was read. Finally, as only short
fragments are sequenced and this data often contains errors,
it is common practice to read the genome multiple times, a
coverage of 30x or more being typical. This results in a
compressed output size of around 100 GB.

Often, this huge amount of data coincides with an abun-
dance of parallelism. For example, in the case of BWA-
MEM, short reads can be mapped in parallel, as there exist
no dependencies between them.

Complex Multikernel Algorithms: Typical bioinfor-
matics algorithms do not consist of a single phase that domi-
nates execution time, but instead perform a number of time-
consuming steps. For example, BWA-MEM processing is
spread over three distinct stages, making acceleration of this

algorithm more challenging, as not only does it require the
adaptation of multiple separate algorithms, but also care has
to be taken to not shift the bottleneck to another part of the
application, limiting the benefit of any potential speedup as
per Amdahl’s law. This makes it quite difficult to obtain
larger performance gains.

3.1 The BWA-MEM Algorithm
The goal of the BWA-MEM algorithm is to find the best

mapping of a short read onto a reference genome [7]. To
achieve this, it makes use of the Seed-and-Extend paradigm
(refer to Figure 1), a two-step method consisting of an Exact
Matching phase and an Inexact Matching phase (for details,
see [1]). First, for each short read Seed Generation is per-
formed: exactly matching subsequences of the read and re-
ference called seeds are identified using a Burrows-Wheeler
Transform-based index. The BWT-method allows for effi-
cient string-lookup and forms the fundament of almost all
contemporary state-of-the-art mapping tools. A single short
read can have many such seed locations identified. Genera-
ted seeds that are found to be in close proximity of each
other on the reference genome are grouped into chains.

The Seed Generation phase is followed by a Seed Exten-
sion phase. Here, seeds found earlier on are extended using
an algorithm similar to the widely-used Smith-Waterman
algorithm, using a scoring system that awards matches and
penalizes mismatches, insertions and gaps. Typically, not
all seeds are extended. Instead, on average only one seed
per chain is extended. Out of all the extended seeds, the
highest scoring match is chosen as final alignment.

3.2 Seed Extension Phase
BWA-MEM contains three main computational phases:

Seed Generation, Seed Extension and Output Generation.
During Output Generation the best alignment is selected
and the output is written. Seed Extension typically requires
between 30%-50% of execution time [5]. As per Amdahl’s
law, the maximum obtainable speedup for only accelerating
this phase is thus limited to a two-fold speedup at best.

This paper focuses on GPU-based acceleration of the Seed
Extension phase, which consists of two main parts: an outer
loop that loops over all the seeds identified for the read
during Seed Generation, and an Inexact Matching kernel,
which performs the Smith-Waterman-like extension.

There are no dependencies between reads and thus reads
can be processed in parallel. For each read, the groups of
chains are processed iteratively, as the check for overlap be-
tween earlier found alignment regions introduces a depen-
dency in the program order. This dependency is the main
reason why typical Smith-Waterman GPU-implementations
are not applicable for the case of BWA-MEM: they ob-

ACM SIGARCH Computer Architecture News 39 Vol. 44 No. 4 September 2016



tain their speed by performing many Smith-Waterman align-
ments in parallel, which are batched and sorted together in
larger groups of approximately the same length for load ba-
lancing purposes. Due to the highly dynamic nature of the
Inexact Matching invocations, this is impractical to achieve
for BWA-MEM, and would at the very least require a major
algorithm overhaul, if at all possible.

3.3 Inexact Matching Kernel
The Inexact Matching algorithm is similar to the popular

Smith-Waterman dynamic programming algorithm, which
computes for a given scoring scheme the optimal alignment
between two subsequences by filling a similarity matrix, re-
sulting in a maximum score. Backtracking can be used to
obtain the actual path through the similarity matrix that
results in the optimal alignment. However, the algorithm is
computationally expensive, being of O(read × reference).
Therefore, most mapping tools use an initial Seeding-phase
to find likely mapping locations, and only then perform lo-
calized extension of these seeds.

The Inexact Matching algorithm of BWA-MEM is slightly
different from regular Smith-Waterman. Firstly, since the
algorithm is used to extend a seed, the initial values used
in the similarity matrix are non-zero. Secondly, some addi-
tional outputs are generated, most importantly the location
of the maximum in the similarity matrix, and a global maxi-
mum with its location. Since each value in the similarity
matrix only depends on its top, left, and top-left neighbor,
the anti-diagonals of the similarity matrix can be computed
in parallel, thus making a systolic array a natural imple-
mentation approach. Each column of the similarity matrix
is processed in parallel by a Processing Element (PE) of
the systolic array, thus reducing the processing time from
O(read× reference) to O(read + reference). This results
in speedups of several orders of magnitude for longer read
and reference sequences. However, as BWA-MEM is typi-
cally used for shorter reads of at most a few hundred base
pairs, the observed speedup is more modest.

4. DESIGN SPACE EXPLORATION
As explained in Section 3.2, the BWA-MEM Seed Exten-

sion phase consists of two very distinct parts: the Inexact
Matching algorithm, which is implemented as a systolic ar-
ray, and the Seed Extension main loop, that loops over all
the chains of seeds. This outer loop performs the sequential
tasks of control and branch operations to effectuate the loop-
ing over all seeds, proper decoding of the sequence and refe-
rence from main memory, and writes the result back to me-
mory. In contrast, the Inexact Matching function is highly
computationally intensive and can use as many threads as
the systolic array has PEs. Thus, the implementation in [5]
on which this work is based makes a clear separation between
both functions and utilizes CUDA Dynamic Parallelism to
dynamically instantiate Inexact Matching kernels as needed.
A number of kernels were implemented, each optimized for
different matrix dimensions, and are called appropriately.
However, our tests show that CUDA Dynamic Parallelism
brings about a large initialization penalty, making it unsuit-
able to use at this scale, where even a single read can gene-
rate thousands of calls, resulting in millions of invocations
during a typical program execution. Therefore, the imple-
mentation here does not make use of Dynamic Parallelism,
and instead uses a large monolithic kernel.

4.1 GPU-Based Inexact Matching
The main challenge of the GPU-accelerated Seed Exten-

sion function is the implementation of the Smith-Waterman-
like Inexact Matching kernel. Typical GPU implementa-
tions of Smith-Waterman extract parallelism by performing
many sequence alignments in parallel. Here, parallelism is
extracted from an individual alignment by harnessing the
parallelism residing in the anti-diagonals of the similarity
matrix, through use of a systolic array (see Figure 2).

The warp is the basic unit of action on an NVIDIA GPU.
All threads in a warp perform the same operation, and
jobs are always scheduled onto one or more complete warps.
Therefore, two types of systolic array implementations were
considered. A ”wide” systolic array implementation, map-
ping each PE onto a separate thread and using as many
warps as needed, and a single warp implementation, using
only a single warp and processes the similarity matrix in
multiple passes. These approaches differ in their utilization
of Shared Memory (SM), a limited on-chip resource. The
amount of SM a thread block requires directly puts an upper
bound on the number of thread blocks that can be resident,
thus impacting performance.

As data flows through the systolic array, the PEs exchange
data with their neighbors to share results and perform their
computations. The ”wide” implementation uses SM to sim-
ulate the data exchange between PEs. After computation
of each antidiagonal, each PE passes its results to the next
PE in the array. Thus, the amount of SM required depends
on the length of the systolic array, which in turn depends
on the length of the read. Explicit synchronization between
warps is required after each step, which can be costly.

In contrast, the single warp implementation requires sto-
rage for the data produced at the ”border” of each pass,
which is fed back into the array during the next pass. There-
fore, the amount of SM required depends on the length of
the reference query. A large advantage of using a single
warp is that intra-warp shuffle instructions can be used,

Figure 2: Read symbols map onto the systolic array
of threads. Multiple passes are required to process
all read symbols. Data exchange between passes is
implemented using Shared Memory.

ACM SIGARCH Computer Architecture News 40 Vol. 44 No. 4 September 2016



which allow threads within one warp to directly access each
other’s registers. This eliminates the need for data exchange
through SM, saving a huge amount of bandwidth. In this
approach, only the first PE in the warp needs to read, and
the last PE needs to write temporary data. Another advan-
tage is that intra-thread synchronization within one warp
is cheaper. Compared to the ”wide” implementation, the
single-warp implementation has a secondary benefit as it
eliminates a large drawback of systolic arrays: the difficulty
of keeping all PEs busy. Depending on the similarity ma-
trix dimensions, many of the PEs can be idle much of the
time. With the single warp implementation, this inefficiency
is drastically reduced by skipping those parts of the matrix
where all the PEs of the pass would be idle.

To implement the Smith-Waterman algorithm, each CUDA
thread performs the pseudo code as shown in Algorithm 1:
each pass, the warp of threads is assigned a new part of
the read symbols to process. Then, all the calculations are
performed for this subsection of the similarity matrix. Each
cycle, each thread reads its left neighbor’s results, this way
implementing the systolic array behavior.

4.2 Implementation Architecture
Due to the above reasons, the single-warp systolic array

design is implemented. To maximize occupancy, Shared Me-
mory and register usage was carefully balanced. The register
count was fixed to use 64 registers per thread. The maxi-
mum number of storage between passes was chosen such to
ensure that one thread block uses 2 kB of Shared Memory.
Hence, up to 32 thread blocks can be resident per multipro-
cessor. Analysis performed with the NVIDIA Visual Profiler
shows that the performance is mostly limited by latency of
arithmetic and memory instructions. The memory subsys-
tem is not very much utilized, as the Shared Memory band-
width is only 158 GB/s and the device memory bandwidth
is less than 5 GB/s. The GPU caching is effective, as de-
vice memory bandwidth is substantially lower than overall
unified cache bandwidth.

Our approach is limited by the fact that the latest NVIDIA
GPU architectures (Compute Capability 5.0) can have up to
2048 resident threads active per multiprocessor, but only 32
blocks. For optimal occupancy, thread blocks with at least
64 threads should be used, whereas here only 32 threads
are used per block. Hence, occupancy is limited to at most
50%. In practice, up to about 35% occupancy is realized.
Earlier Compute Capability versions were even more restric-
tive, only allowing 16 resident blocks per multiprocessor for
Compute Capability 3.0+, or just 8 resident blocks per mul-
tiprocessor for earlier architectures. This would have a di-
rect impact on the efficiency of this implementation.

Algorithm 1 Systolic Array CUDA Thread Pseudo Code

1: for (each pass) do
2: Load current read symbol
3: for (each reference symbol + warp size) do
4: if (active) then
5: Load left neighbor values
6: Perform Seed Extension cell computations
7: end if
8: end for
9: end for

4.3 BWA-MEM Optimizations
A number of optimizations has been implemented, result-

ing in much better performance as compared to the GPU-
based implementation in [5]:

Single Monolithic Kernel: Although in theory Dy-
namic Parallelism should help improve occupancy by low-
ering resource requirements, the incurred performance over-
head makes it unfeasible to use when it needs to instantiate
kernels dynamically on such an extremely large scale.

Memory Subsystem Optimizations: GPUs contain
specialized memory subsystems. The reference and input
data are placed inside read-only texture memory to take
advantage of locality. Constants are used for parameters
such as scoring variables to reduce register count.

Truncated Reference Length: Analysis of the Seed
Extension algorithm shows that it is unnecessary to process
the part of the similarity matrix where the reference is much
longer than the read, given that this would imply numerous
gaps or insertions, and thus a low score. The highest score
will be found in the upper part of the similarity matrix.

5. EXPERIMENTAL RESULTS
The optimized GPU implementation described here was

tested on a system with an Intel Core i7-4790 (3.6 GHz,
eight logical cores), SpeedStep and Hyper-Threading en-
abled, containing 16 GB of DDR3 memory, and an NVIDIA
GeForce GTX 970 with 1664 CUDA cores and 4 GB of on-
board RAM. CUDA version 7.5 was utilized. Results for
the GPU implementation described in [5] were obtained on
a system with an Intel Core i7-4790 (4.0 GHz, eight logical
cores), SpeedStep and Hyper-Threading enabled, contain-
ing 32 GB of DDR3 memory, and two NVIDIA GeForce
GTX TITAN X cards, with 3,072 CUDA cores each. The
FPGA results were obtained on a system with an Intel Core
i7-4790 (3.6 GHz, eight logical cores), SpeedStep and Hyper-
Threading enabled, containing 16 GB of RAM and a server-
grade Alpha Data ADM-PCIE-7V3 card with a Xilinx Virtex-
7 XC7VX690T-2 and 16 GB of on-board RAM, programmed
with six Seed Extension modules at 160 MHz [6].

BWA-MEM version 0.7.8 was used with publicly available
data sets for single-ended alignment (150bp-se-small-indel)
and pair-ended alignment (150bp-pe-large-indel) from the
Genome Comparison & Analytic Testing (GCAT) frame-
work [3]. These contain about eight million reads of 150
base pairs, about 1.2 billion base pairs in total. Reads were
aligned against the reference human genome (UCSC HG19).

5.1 Performance Results
Performance results are summarized in Table 1, given as

execution time in seconds as well as in throughput in mil-
lions of base pairs per second. This facilitates cross-data set
and cross-platform comparisons. To distinguish the GPU
implementations, the implementation from [5] is referred to
as GPU-accelerated, and the implementation proposed here
is called GPU-optimized. These two implementations are
compared to the FPGA-implementation from [6], which uses
the server-grade Alpha Data add-in card. The time for the
Seed Extension phase is omitted for the GPU-accelerated
implementation, as the number reported there is not di-
rectly comparable, as it only includes the Inexact Matching
computation time, and not the time required to process the
outer loop. Moreover, the GPU-optimized implementation
described here processes almost all reads, whereas the GPU-

ACM SIGARCH Computer Architecture News 41 Vol. 44 No. 4 September 2016



Table 1: Execution time and speedup for the synthetic GCAT alignment quality benchmark

Seed Extension Phase Overall Application

Test Platform Execution Time Speedup Execution Time Speedup Throughput

Single-Ended Software-Only 237 s - 552 s - 2.2 Mbp/s

Data FPGA-Accelerated [6] 129 s 1.8x 272 s 2.0x 4.5 Mbp/s

GPU-Optimized 144 s 1.6x 278 s 2.0x 4.3 Mbp/s

Software-Only [5] 218 s - 510 s - 2.4 Mbp/s

GPU-Accelerated [5] N/A N/A 422 s 1.2x 2.9 Mbp/s

Pair-Ended Software-Only 246 s - 572 s - 2.1 Mbp/s

Data FPGA-Accelerated [6] 130 s 1.9x 289 s 2.0x 4.1 Mbp/s

GPU-Optimized 141 s 1.7x 293 s 2.0x 4.1 Mbp/s

accelerated implementation is only able to process about
99.5% of all reads, leaving the most time-consuming reads
for the host CPU. The results for the two software-only plat-
forms differ slightly, as their clock frequency is slightly differ-
ent (4.0 GHz vs 3.6 GHz). Both the GPU-optimized imple-
mentation and the FPGA-accelerated implementation are
able to reach a 2x speedup, compared to software-only exe-
cution. The GPU-accelerated implementation only reaches
a 1.2x speedup. The results for the GPU-optimized im-
plementation are much better than for the GPU-accelerated
implementation, even though a GPU-subsystem is used with
only about 31% of the computational resources.

Note that we deliberately refrain from making a direct
comparison between BWA-MEM and other read mapping
tools, as in this field, strict reproducibility is critical, making
performance of other tools irrelevant.

5.2 Scalability Analysis
Besides overall performance, scalability of the implemen-

tations is also important: the number of CPU cores a system
can have for which the system is still accelerated with maxi-
mum speedup. This is estimated by considering the time re-
quired by the accelerator for the Seed Extension phase and
regarding this as a lower bound to overall execution time.
Assuming overall execution time scales linearly in processor
core count, which for BWA-MEM is not unreasonable, the
maximum number of logical CPU cores that can be effec-
tively accelerated is thus determined. The results are sum-
marized in Table 2. Results are also included for further
optimized implementations that include certain straightfor-
ward improvements to scalability behavior, such as further
decomposition and pipelining of the data preprocessing step
that prepares the data for the GPU or FPGA, indicated as
FPGA-opt and GPU-opt in the table.

The scalability results are also visually depicted in Fig-
ure 3, showing speedup compared to a host system with
the same number of cores. The increased speedup when us-
ing eight threads may be caused by Hyper-Threading, which
makes Seed Extension a larger part of overall execution time
due to being the least memory-intensive phase, thus bene-
fitting the least from Hyper-Threading.

Table 2: Scalability Analysis of the Implementations

Execution Time

Platform Seed Ext. Overall Utilization Scalability

FPGA 129 s 272 s 47% 16.8 cores
FPGA-opt 83 s 272 s 31% 26.1 cores
GPU 144 s 278 s 52% 15.4 cores
GPU-opt 101 s 282 s 36% 22.3 cores

6. DISCUSSION
This section presents lessons learned during the implemen-

tation work, and gives some recommendations to improve
GPU architecture for bioinformatics-class problems.

6.1 Lessons Learned
The abundance of parallelism in BWA-MEM, and many

bioinformatics-class algorithms in general, makes them in-
teresting candidates for GPU-based acceleration. However,
the complexity of these algorithms, with execution time
distributed over multiple distinct phases, makes obtaining
large overall application-level performance gains far from
straightforward. Bottlenecks quickly shift towards the non-
accelerated parts of the program.

For BWA-MEM Seed Extension, the existence of an outer
loop dynamically calling Inexact Matching functions makes
it ill-suited to apply typical Smith-Waterman acceleration
methods. Therefore, a systolic array approach was used to
accelerate the algorithm instead. To avoid large temporary
storage requirements for data transfer between systolic array
PEs, only a single warp was used, allowing the use of intra-
warp shuffle. This greatly reduces Shared Memory band-
width requirements. However, it puts an upper limit on the
achievable occupancy, as only 32 threads are instantiated
per thread block, whereas optimal occupancy can only be
obtained with at least 64 threads per thread block.

Dynamic parallelism, as used in [5], seems like a valid
approach given the two distinct parts of the Seed Extension
algorithm. However, in practice, it brings about a large
overhead. This shows the importance of testing a wide range
of implementations, and not just choosing the approach that
in theory should be the best.

6.2 Recommended Architecture Optimizations
The lessons learned during implementation of the GPU-

based Seed Extension phase have given key insights in the
requirements of bioinformatics-class algorithms. Therefore,
here follow a number of suggestions to GPU architecture
that could greatly improve performance for such algorithms:

Reduced Dynamic Parallelism Overhead: Reduced
Dynamic Parallelism overhead could make this into a valid
approach to reduce register and Shared Memory pressure,
thus improving occupancy.

Increased Resident Blocks per Multiprocessor: The
present limit of 32 resident blocks per multiprocessor limits
the maximum obtainable occupancy for single warp thread
blocks. Raising this limit to 64 resident blocks per multipro-
cessor could result in an up to 100% boost to performance, as
this limitation is the major obstacle to higher performance in

ACM SIGARCH Computer Architecture News 42 Vol. 44 No. 4 September 2016



Figure 3: Estimated application-level speedup compared to software-only execution on a system with identical
number of CPU cores. The GPU-Optimized implementation is able to sustain a two-fold speedup for systems
with up to twenty-two CPU cores, greatly exceeding the results of the GPU-Accelerated implementation,
which uses dual NVIDIA GeForce GTX TITAN X compared to the single GeForce GTX 970 here.

this work. Not only the implementation here would benefit,
but also other Smith-Waterman implementations, a staple
algorithm in bioinformatics. In general, this would improve
any implementation that relies on the intra-warp shuffle ca-
pability and are thus limited to a single warp.

Native Low Precision Data Formats: Many problems
in bioinformatics do not require high precision for their cal-
culations. For example, the maximum value of entries in
the Smith-Waterman similarity matrix can be easily deter-
mined based on the scoring parameters and length of both
sequences. In many instances, even eight bits of precision is
sufficient. The current native 32-bits of precision minimum
results in wasted register and Shared Memory space, unless
tricks are performed that require additional instructions.

7. CONCLUSIONS
In this paper, a GPU-accelerated implementation is de-

scribed of the BWA-MEM genomic mapping algorithm. The
Seed Extension phase is one of the three main BWA-MEM
program phases, which requires between 30%-50% of overall
execution time. Offloading this phase onto the GPU pro-
vides an up to twofold speedup in overall application-level
performance. Analysis shows that this implementation is
able to sustain this maximum speedup for a system with at
most twenty-two logical cores. This can save days of pro-
cessing time on the enormous real-world data sets that are
typical of NGS sequencing.

The implementation presented here greatly exceeds the
performance of the GPU implementation of [5], offering a
higher speedup of 2x for systems with up to twenty-two
cores, compared to 1.6x for systems with up to four cores,
even while at the same time using a GPU-subsystem that
only provides about 31% of the computational capabilities.

Although the work here focuses on BWA-MEM, a widely
used genomic mapping tool, the approach used is valid for
many similar Seed-and-Extend-based bioinformatics algo-
rithms. Moreover, based on the insights obtained, a number
of optimizations to GPU architecture are suggested: reduced
Dynamic Parallelism overhead, increased number of resident
blocks per multiprocessor, and native low precision data for-
mats. These should greatly improve GPU performance for
bioinformatics-class problems.

8. REFERENCES
[1] N Ahmed, V Sima, EJ Houtgast, KLM Bertels, and Z Al-Ars.

Heterogeneous Hardware/Software Acceleration of the BWA-
MEM DNA Alignment Algorithm. In Proc. of the IEEE/ACM
Intl. Conf. on Computer-Aided Design, ICCAD, 2015.

[2] James Hadfield and Nick Loman. Next Generation Genomics:
World Map of High-throughput Sequencers.
http://omicsmaps.com, 2016. Accessed: 2016-01-13.

[3] Gareth Highnam, Jason J Wang, Dean Kusler, Justin Zook,
Vinaya Vijayan, Nir Leibovich, and David Mittelman. An
Analytical Framework for Optimizing Variant Discovery from
Personal Genomes. Nature comm., 6, 2015.

[4] EJ Houtgast, V Sima, KLM Bertels, and Z Al-Ars. An FPGA-
Based Systolic Array to Accelerate the BWA-MEM Genomic
Mapping Algorithm. In Intl. Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation, 2015.

[5] EJ Houtgast, V Sima, KLM Bertels, and Z Al-Ars.
GPU-Accelerated BWA-MEM Genomic Mapping Algorithm
Using Adaptive Load Balancing. In Architecture of Computing
Systems–ARCS, pages 130–142. Springer, 2016.

[6] EJ Houtgast, V Sima, G Marchiori, KLM Bertels, and Z Al-Ars.
Power-Efficient Accelerated Genomic Short Read Mapping on
Heterogeneous Computing Platforms. In Proc. 24th IEEE
International Symposium on Field-Programmable Custom
Computing Machines, Washington DC, USA, May 2016.

[7] Heng Li. Aligning Sequence Reads, Clone Sequences and
Assembly Contigs with BWA-MEM. arXiv preprint
arXiv:1303.3997, 2013.

[8] Lukasz Ligowski and Witold Rudnicki. An efficient
implementation of Smith Waterman algorithm on GPU using
CUDA, for massively parallel scanning of sequence databases.
In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–8. IEEE, 2009.

[9] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo,
Siu-Ming Yiu, Yingrui Li, Bingqiang Wang, Chang Yu,
Xiaowen Chu, Kaiyong Zhao, and R. Li. SOAP3: Ultra-Fast
GPU-Based Parallel Alignment Tool for Short Reads.
Bioinformatics, 28(6):878–879, 2012.

[10] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell.
CUSHAW: a CUDA compatible short read aligner to large
genomes based on the Burrows-Wheeler transform.
Bioinformatics, 28(14):1830–1837, 2012.

[11] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt.
CUDASW++ 3.0: Accelerating Smith-Waterman Protein
Database Search by Coupling CPU and GPU SIMD
Instructions. BMC bioinformatics, 14(1):117, 2013.

[12] TF Smith and MS Waterman. Identification of Common
Molecular Subsequences. Journal of molecular biology,
147(1):195–197, 1981.

[13] ZD Stephens, SY Lee, F Faghri, RH Campbell, C Zhai,
MJ Efron, R Iyer, MC Schatz, S Sinha, and GE Robinson. Big
Data: Astronomical or Genomical? PLoS Biology, 13(7), 2015.

ACM SIGARCH Computer Architecture News 43 Vol. 44 No. 4 September 2016




