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SUMMARY

From the identification of the pathogens causing major human diseases, through the un-
derstanding of the most basic forms of life, and in the struggle to develop new antibiotics
to counter the increasing bacterial resistance to these widely used substances, research
on microbial growth and survival has rightfully seen a booming interest across the last
two centuries.

The guanosine tetraphosphate (ppGpp) signaling system is of particular significance
for these fields of research. It is a bacterial response to stress and starvation which
allows these organisms to activate the necessary genes to survive in these conditions. It
also plays a key role in modulating the abundance of various machineries necessary for
growth in order to maximize the rate at which bacteria are growing in different nutrient
conditions. In poorer nutrient conditions requiring more enzymes to import and digest
these nutrients into the same amount of essential building blocks for growth, production
of ppGpp is triggered in response to the lack of these building blocks. Higher ppGpp
concentrations lead to downregulation of the abundance of ribosomes, the machineries
operating growth, allowing larger abundance of enzymes producing the building blocks
from nutrients. Recent advances, by genetically modifying bacteria, allowed to finely
tune ppGpp concentrations independently of growth conditions. Using this approach,
we investigate the scope of the regulation operated by ppGpp: which proteins does it
influence in changing growth conditions and to what extent?

In Chapter 1, we review the current knowledge of the ppGpp signaling system, with a
focus on three points: results obtained in E. coli, the effect of this response on growth and
what is known about the consequences of artificially perturbing ppGpp concentrations.

In Chapter 2, we present novel quantifications of different proteins and other rele-
vant biomolecules in E. coli strains artificially modified to have higher or lower ppGpp
concentration than naturally found. These results allow us to identify which proteins are
regulated by ppGpp and why the right concentration of ppGpp is necessary for bacteria
to achieve optimal growth. We confirm the role of ppGpp in upregulating the proteins
related to the synthesis of new proteins: translation. We also show that, apart from
translation-related proteins, ppGpp is not responsible for consistently regulating other
groups of proteins, including some that do vary with growth rate variations caused by
change in nutrient source, which were suspected to be under ppGpp’s control.

In Chapter 3, we develop a simplified mathematical model of the ppGpp regulation
and the way it is affected by artificial perturbation. We group compounds responsible
for a common function, such as digesting nutrients into building blocks, assembling
these building blocks into new biomass, or acheminating these building blocks to be
assembled. With this mathematical model, we attempt to understand why slowing down
bacterial growth by artificially increasing ppGpp requires a lot more ppGpp than naturally
found. By doing so, we identify characteristics that a model seeking to explain ppGpp
perturbations should have. These conditions strengthened our understanding of the
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X SUMMARY

ppGpp system by refuting some of our intuitions and laying a foundation for future
models elucidating the missing pieces.

In the last Chapter 4, we present another story regarding how yeast can survive
one of the harshest stress. All known forms of life are based on interactions between
biomolecules happening in water. For this reason, removing all water is deadly to most
organisms. However, a few of them are able to survive while being completely desiccated.
Their lives are halted and they stop growing, but when placed in water again, they are
able to recover their usual functions. We studied the conditions that allow the yeast
Saccharomyces cerevisiae to do so. We found that yeast cells face two major challenges
in drying conditions: preservation of their cell membrane and of their ability to express
genes from their DNA.

With these different studies, we extend our knowledge of two different systems rele-
vant to growth and survival of microorganisms, which leads to potential new directions
for those who seek to investigate such systems and answer some of the questions that our
findings raise.



SAMENVATTING

Vanaf de identificatie van de ziekteverwekkers die belangrijke ziekten bij de mens veroor-
zaken, via het begrip van de meest fundamentele levensvormen, en de strijd om nieuwe
antibiotica te ontwikkelen om de toenemende bacteriéle resistentie tegen deze veelge-
bruikte stoffen tegen te gaan, heeft onderzoek naar microbiéle groei en overleving terecht
de afgelopen twee eeuwen een enorme belangstelling gekend.

Het guanosinetetrafosfaat (ppGpp) signaalsysteem is van bijzonder belang voor deze
onderzoeksgebieden. Het is een bacteriéle reactie op stress en honger, waardoor deze
organismen de noodzakelijke genen kunnen activeren om onder deze omstandigheden
te overleven. Het speelt ook een sleutelrol bij het moduleren van de overvloed aan ver-
schillende machines die nodig zijn voor groei, om de snelheid waarmee bacterién groeien
onder verschillende voedingsomstandigheden te maximaliseren. In armere voedingsom-
standigheden die meer enzymen vereisen om deze voedingsstoffen te importeren en te
verteren tot dezelfde hoeveelheid essentiéle bouwstenen voor groei, wordt de productie
van ppGpp geactiveerd als reactie op het ontbreken van deze bouwstenen. Hogere ppGpp-
concentraties leiden tot een neerwaartse regulatie van de overvloed aan ribosomen, de
machines die de groei verzorgen, waardoor een grotere overvloed aan enzymen moge-
lijk wordt die de bouwstenen uit voedingsstoffen produceren. Recente ontwikkelingen,
door bacterién genetisch te modificeren, hebben het mogelijk gemaakt om de ppGpp-
concentraties nauwkeurig af te stemmen, onafhankelijk van de groeiomstandigheden.
Met deze aanpak onderzoeken we de reikwijdte van de regulering van ppGpp: welke
eiwitten beinvloedt het in veranderende groeiomstandigheden en in welke mate?

In Hoofdstuk 1 bespreken we de huidige kennis van het ppGpp-signaleringssysteem,
met de nadruk op drie punten: resultaten verkregen in E. coli, het effect van deze reactie
op de groei en wat er bekend is over de gevolgen van het kunstmatig verstoren van
ppGpp-concentraties.

In Hoofdstuk 2 presenteren we nieuwe kwantificeringen van verschillende eiwitten
en andere relevante biomoleculen in E. coli-stammen die kunstmatig zijn gemodificeerd
om een hogere of lagere ppGpp-concentratie te hebben dan van nature voorkomt. Deze
resultaten stellen ons in staat te identificeren welke eiwitten worden gereguleerd door
ppGpp en waarom de juiste concentratie ppGpp nodig is voor bacterién om optimale
groei te bereiken. We bevestigen de rol van ppGpp bij het opreguleren van de eiwitten
die verband houden met de synthese van nieuwe eiwitten: translatie. We laten ook zien
dat ppGpp, afgezien van translatiegerelateerde eiwitten, niet verantwoordelijk is voor het
consistent reguleren van andere groepen eiwitten, waaronder enkele die wel variéren
met variaties in de groeisnelheid veroorzaakt door veranderingen in de voedingsbron,
waarvan werd vermoed dat ze onder de controle van ppGpp stonden.

In Hoofdstuk 3 ontwikkelen we een vereenvoudigd wiskundig model van de ppGpp-
regulatie en de manier waarop deze wordt beinvloed door kunstmatige verstoring. We
groeperen verbindingen die verantwoordelijk zijn voor een gemeenschappelijke func-
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tie, zoals het verteren van voedingsstoffen tot bouwstenen, het assembleren van deze
bouwstenen tot nieuwe biomassa, of het achemineren van deze bouwstenen om te as-
sembleren. Met dit wiskundige model proberen we te begrijpen waarom het vertragen
van de bacteriegroei door het kunstmatig verhogen van ppGpp veel meer ppGpp vereist
dan natuurlijk wordt aangetroffen. Door dit te doen identificeren we kenmerken die een
model dat ppGpp-verstoringen probeert te verklaren zou moeten hebben. Deze omstan-
digheden versterkten ons begrip van het ppGpp-systeem door enkele van onze intuities te
weerleggen en een basis te leggen voor toekomstige modellen die de ontbrekende stukken
ophelderen.

In het laatste Hoofdstuk 4 presenteren we nog een verhaal over hoe gist een van
de zwaarste stresssituaties kan overleven. Alle bekende levensvormen zijn gebaseerd
op interacties tussen biomoleculen die in water plaatsvinden. Om deze reden is het
verwijderen van al het water dodelijk voor de meeste organismen. Enkelen van hen
kunnen echter overleven terwijl ze volledig uitgedroogd zijn. Hun leven wordt stopgezet
en ze stoppen met groeien, maar wanneer ze weer in water worden geplaatst, kunnen
ze hun gebruikelijke functies herstellen. We hebben de omstandigheden bestudeerd die
de gist Saccharomyces cerevisiae daartoe in staat stellen. We ontdekten dat gistcellen bij
het drogen met twee grote uitdagingen worden geconfronteerd: het behoud van hun
celmembraan en van hun vermogen om genen uit hun DNA tot expressie te brengen.

Met deze verschillende onderzoeken breiden we onze kennis uit van twee verschil-
lende systemen die relevant zijn voor de groei en overleving van micro-organismen, wat
leidt tot potentiéle nieuwe richtingen voor degenen die dergelijke systemen willen onder-
zoeken en enkele van de vragen willen beantwoorden die onze bevindingen oproepen.
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Francois Jacob



The (p)ppGpp signaling system is a bacterial regulatory system involved in various impor-
tant aspects of bacterial physiology, from maximizing growth rate to virulence of pathogenic
bacteria. While (p)ppGpp synthesis triggers, the signal it responds to and its numerous
targets have been extensively studied, the global physiological changes it operates remain
poorly understood and the consequences of perturbing (p)ppGpp concentrations on growth
cannot be predicted by most attempts to model this signaling response. In this chapter,
we hope to provide the reader with relevant information about what is known about the
(p)ppGpp response, the effects of perturbing (p)ppGpp, and the questions remaining.

1.1.

Since the discovery of bacteria in the late 17th century by Van Leeuwenhoek, and the
proof of their involvement in major diseases by Louis Pasteur and Robert Koch in the
18th century, bacterial physiology has known a steadily growing interest. Understand-
ing how these microorganisms grow, survive and evolve is interesting as a fundamental
understanding of one of the earliest, simplest and most abundant forms of life. It often
allows us to derive some principles which are true for more complex organisms. This
knowledge is also key in the fight against bacterial diseases, including the most deadly
infectious disease: tuberculosis. Since their discovery in 1928, antibiotics have drastically
reduced casualties from bacterial infections. However, their use and abuse have pushed
bacteria to evolve and resist them, calling for the development of new antibiotics, which
is facilitated by bacterial physiology fundamental knowledge. Finally, bacteria are used
for the biosynthesis of molecules of interest for medicinal, industrial, or scientific ap-
plications. The development of such processes requires an extensive understanding of
bacterial metabolism, to develop new applications and ensure efficient processes.

In light of this brief descrip-
tion of non-exhaustive but major

interests in bacterial physiology, 0

any bacterial regulatory mecha- N

nism with implications in growth, (|? (|? </ | NH
antibiotic resistance, or having HO_Fl’_O_'T_O N —
analogous systems in more com- OH OH o} N NH;

plex organisms is particularly
valuable to study. The (p)ppGpp
signaling system gathers all these

characteristics. This might ex- ? o
plain, since its discovery in 1969 HO_T:O
[1], the booming interest in un- (I)
derstanding how the synthesis HO—P=0
of the two nucleotides ppGpp 6H

(Figure 1.1) and pppGpp is trig-
gered, what they regulate, and
the mechanisms behind it. The Figure 1.1: Chemical structure of guanosine

mechanism through which the tetraphosphate (ppGpp)-

(p)ppGpp response is activated,
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the triggers, and the signal have been has been extensively studied. While some tar-
gets repressed or activated by (p)ppGpp might still need to be discovered, numerous
important ones have been identified, and the molecular mechanisms described. The
system-level changes operated by (p)ppGpp, however, are not fully understood. Many
models describing the (p)ppGpp signaling system cannot explain the effect on growth
obtained when (p)ppGpp concentrations are perturbed, hinting towards an incomplete
view of the effect (p)ppGpp on growth.

In the next section 1.2, we review (p)ppGpp’s triggers, targets, and the mechanisms
through which this system operates. In the following section 1.3 we discuss what is known
and unknown about perturbing (p)ppGpp concentrations. Then, in the last section 1.4 of
this chapter, we briefly summarize the relevant knowledge we reviewed and introduce
the questions we attempt to answer in the coming chapters. In the next Chapter 2 we
present novel results delineating the scope of (p)ppGpp regulation by titrating (p)ppGpp
concentration. Then, in Chapter 3 we describe our attempts to model the (p)ppGpp
regulatory system, its perturbations and the resulting effects on growth. Finally, in Chapter

, we present a side story of how the budding yeast can survive desiccation.

1.2.

When subject to various stresses or facing starvation, bacteria synthesize guanosine tetra-
and pentaphosphate: (p)ppGpp. These signal molecules repress processes linked to fast
growth and upregulate others that are required to face stress and increase metabolic flux
to counter starvation. In this section, we review how ppGpp synthesis is triggered and the
different aspects of bacterial physiology regulated by (p)ppGpp before, in the next section

, discussing what is known about consequences of perturbing ppGpp concentrations
and the questions that this current knowledge raises. Throughout this outline, we focus
mainly on how the ppGpp  signaling system functions in Escherichia coli and the role it
plays during exponential growth and carbon limitation.

1.2.1.

While it seems that ppGpp systems appear in almost every bacterial species, enzymes
catalyzing synthesis and hydrolysis of (p)ppGpp vary across these species [?]. Apart
from a few exceptions, all of them belong to the same group of proteins: the RelA-SpoT
homolog (RSH) family (Figure 1.2). Though their properties may differ, these proteins
have a similar structure comprising two domains. The N-terminal domain (NTD) contains
the synthetase and the hydrolase domain. The synthetase domain catalyzes the addition
of a pyrophosphate group to GDP or GTP, which respectively generates of guanosine tetra-
(ppGpp) or pentaphosphate (pppGpp). The hydrolase domain catalyzes the opposite
reaction from (p)ppGpp to GDP/GTP. The remaining of RSH proteins is composed of a
C-terminal domain, whose function is not well established but speculated to regulate
the NTD. The activity of the synthetase and hydrolase domains may vary in different

n E. coli ppGpp is more abundant the pppGpp and has a higher regulatory activity



2P +GTP/GDP  (p)ppGpp

Active RelA

Dwelling

Ribosome
¥ Regulatory

‘ Regulatory ‘ SpoT

/N /X
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Figure 1.2: Non-native RSH proteins and truncated E. coli RSH can be used to perturb
pPPGpp concentrations. Simplified view the E. coli native RSH proteins as well as the non-native and
synthetic ones used in Chapters 2 and 3, with the different domains and their identified fonctions; as well as the
known mechanisms necessary to activate these proteins.

RSH proteins, some even losing one of the two. Many bacterial species have only one
RSH protein responsible for hydrolysis and synthesis under different conditions. E. coli is
endowed with two RSH proteins that gave its name to the family: RelA and SpoT. These two
proteins have different synthesis and hydrolase activity and are responsible for (p)ppGpp
response under different conditions. SpoT possesses both the ability to synthesize and
hydrolyze (p)ppGpp, though its synthesis activity is decreased compared to other RSH
proteins. It is responsible for all the (p)ppGpp hydrolysis in E. coli, as RelA lacks hydrolytic
activity. SpoT responds to various nutrient stresses by reducing its hydrolytic activity
[2]. The mechanisms through which SpoT responds to other nutritional stresses remain
elusive. On the other hand, RelA responds specifically to amino acid starvation. Because of
its relevance for carbon-limited exponential growth, we focus in the following paragraphs
on RelA and go through what is known about the triggers for RelA-dependent (p)ppGpp
synthesis, the various proposed models to explain how these triggers coordinate, and
what (p)ppGpp is sensing through RelA at a system level.

While RelA on its own can synthesize (p)ppGpp, it can be activated to reach a much
higher activity. 50 years ago, and only four years after the discovery of (p)ppGpp, the
two main triggers for this activation were identified. In vitro experiment then showed
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that the following elements are necessary for full activation of RelA [4]: transfer RNAs
(tRNAs) deprived of amino acids and dwelling ribosomes waiting for the right acyl-tRNA
to resumes translation. Structural cryo-EM studies confirmed the interaction of RelA
with these two triggers [5—7] and resolved the structure of the formed complex. The
interpretation of this structure remains a debate with three competing views, which we
review, along with arguments in their favor, in the next paragraph.

Following the identification of the two RelA triggers, the molecular mechanism for the
activation of RelA remained unknown for almost three decades. Haseltine et al. [4]
proposed that RelA might bind to stalled ribosomes that have a deacyl-tRNA in their
acceptor site. Later, Wendrich et al. [8] confirmed the triggers and measured decreased
affinity of RelA for the ribosomes after synthesis of (p)ppGpp thus suggesting a hopping
mechanism where RelA binds to a ribosome, catalyzes (p)ppGpp synthesis, unbinds from
the ribosome, and hops onto another stalled ribosome, providing it finds one. Due to
another study [9] which claims that RelA enzymatic activity performs several cycles of
(p)ppGpp synthesis off the ribosome, an activation model was proposed [10]. In this
model, after being activated by the stalled ribosome, RelA is freed and stays in an active
conformation long enough to synthesize several (p)ppGpp molecules before it needs to
be re-activated. Recent cryo-EM studies [5—7] seem to indicate that RelA either binds
first to dwelling ribosomes with a vacant acceptor site and is locked by deacyl-tRNA or
forms a complex with deacyl-tRNA and then binds to a dwelling ribosome. The structure
found in these studies shows that, when bound to the ribosome, RelA adopts an open
conformation in which the C-terminal domain is separated from the enzymatically active
N-terminal domain. A very recent study [! 1] seems to indicate that this conformation is
stabilized by deacyl-tRNA and therefore proposes another model in which RelA is locked
onto the ribosome by deacyl-tRNA and stays active until translation resumes. However,
another recent study still defends the hopping mechanism, due to the link they find
between translation elongation rate and ppGpp [!2], which gives a system-level view of
what ppGpp is sensing and is reviewed in the next paragraph.

While a consensus still has to be found on the details of how dwelling ribosomes and
deacyl-tRNA articulate to activate RelA, a recent study elegantly identified the signal that
ppGpp is responding to through these triggers: a slow down in translation rate [ 2]. The
authors measured translation elongation rate and ppGpp levels in three different scenar-
ios: carbon-limited exponential growth, carbon downshift, and sub-lethal translation
inhibition. They found that in all three scenarios, ppGpp concentration follows the same
linear relationship with the inverse of translation elongation rate. They further identify
that this inverse relation is equivalent to the proportionality of ppGpp to the time spent
by ribosomes dwelling over the one spent translating. They hypothesize that this can
be explained through a hopping mechanism leading to ppGpp synthesis proportional
to the amount of dwelling ribosomes and predict that ppGpp breakdown is scaling with
the amount of translating ribosomes. There is, however, no biochemical or structural
evidence yet for this prediction. While further studies are necessary to explain the link be-
tween these system-level measurements and the precise mechanisms of RelA activation,
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Figure 1.3: Guanosine tetraphospate (ppGpp) acts as a feedforward loop on ribosomes
and a feedback one on amino acid synthesis enzymes while cyclic-AMP acts as a feed-
back loop on catabolic enzymes. Graphical summary of the role of signal molecules (p)ppGpp and
cAMP in balancing growth-relevant fluxes. The horizontal arrows indicate the fluxes from carbon and nitrogen
found in nutrients to new biomass. The red and purple arrows at the bottom indicate how the signalling system
is thought to operate, with the darker arrows showing the actual interactions and the dimmer ones the overall
effect on different fluxes.

it seems now clear that through interactions with dwelling ribosomes and deacyl-tRNA,
ppGpp acts as a reporter of a slowdown of the elongation rate, the translation flux per
ribosome.

1.2.2.

Among E. coli’s regulators with the longest list of targets [13], (p)ppGpp plays a role in
numerous key aspects of bacterial physiology from DNA replication to pathogenicity
and resistance to antibiotics. We focus in this introduction on the role of (p)ppGpp in
downregulating ribosome abundance, why this is relevant for steady state growth and
nutritional transitions, the mechanisms through which this repression occurs, and the
role of (p)ppGpp in activating amino acid biosynthetic genes. For other roles of (p)ppGpp
in bacterial physiology, we refer the reader to the following insightful reviews: [3, 10, 14].
Finally, we briefly introduce the regulator responsible for balancing carbon input and
amino acid biosynthesis, cyclic AMP, because of its implication in carbon limitation and
our interest in investigating how it coordinates with (p)ppGpp.

In the 1960s and early 1970s, it was shown that the fraction of bacterial mass constituted
of RNA increases with growth rate when bacterial cells are grown in media with carbon
sources of various qualities, supporting slower or faster growth rates. As ribosomes
constitute most of bacterial RNA, it was deduced that the number of ribosomes increases
with growth rate [15]. A decade later, it was shown that the amount of ribosomes follows
a linear relationship with growth rate. Concentration of (p)ppGpp, on the other hand,
anticorrelates with growth rate, and thus ribosome abundance [16]. When knocking
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out the two (p)ppGpp synthetases RelA and SpoT [!7], the ribosome content remains
constant as a function of growth rate, establishing the causal link between (p)ppGpp
and ribosomal downregulation at slower growth rate. These results were confirmed
and given an interpretation later with the development of high-throughput proteomics
and resource allocation theories [18-21]: as proteins constitute most of the bacterial
biomass, a large number of the translation machineries producing them is required to
support fast growth. When cells are provided with so-called poor nutrients, a greater
fraction of the proteome must be allocated to converting the nutrients into precursors.
The fraction of the proteome allocated to ribosomes must thus shrink and growth rate
decreases. This change happens through (p)ppGpp signaling, which acts as a feedforward
loop to equilibrate maximize metabolic and translational fluxes [12, 22, 23] to maximize
steady-state growth rate. See Figure 1.3 for a graphical representation of this regulatory
system. But how does (p)ppGpp respond when the nutritional conditions, and thus these
fluxes, suddenly change? In the next paragraph, we review what is known about (p) ppGpp
dynamics during nutrient transitions before explaining our understanding of these in the
next one.

When supplemented with higher quality nutrients or depleting a nutrient source in favor
of a poorer one, the (p)ppGpp signaling system reacts by respectively decreasing and
increasing (p)ppGpp concentration [25, 26]. These changes happen within seconds
and are accompanied by an important overshoot before reaching the new (p)ppGpp
concentration, as shown in Figure 1.4. When entering the starvation phase, (p)ppGpp
also shows a drastic change: a large spike in concentration [26]. In Figure 1.4 we also
show a schematic view of how growth rate varies during these transitions. During the
transition to a richer carbon source, growth rate displays a fast increase followed by a
slower one. During runout of a rich carbon source, growth rate sees a very drastic drop
to almost no growth before being re-established to its final value. Growth dynamics are
similar in the case of amino acid runout in a minimal media supplemented with glucose
and knocking out the main (p)ppGpp synthetase RelA resulted in a much slower adaption
[27], showing (p)ppGpp’s role in ensuring rapid adaptation to this transition. (p)ppGpp
is known to suppress ribosome expression but also to upregulate stress-response and
ribosome hibernation operon, which might be relevant to these transitions. In the next
paragraph, based on the known targets of (p)ppGpp we explain our understanding of the
(p)ppGpp dynamics: the reasons behind such responses and what it might be doing.

In the case of a carbon upshift, the metabolic flux likely increases quickly due to the
addition of a higher quality carbon source, which probably induces accumulation of
amino acid and as a consequence, very few ribosomes dwelling. This would explain very
low concentrations of (p)ppGpp after the shift, before they increase back to the value
found in fast steady growth once the new proteome allocation with higher ribosome con-
tent has been found [28]. When running out of a good carbon source, (p)ppGpp spiking
at high levels is likely due to a sudden drop in the metabolic flux causing amino acid
starvation. Once more resources are allocated to metabolizing the poorer carbon source
and the metabolic and translational fluxes re-equilibrated, the amino acid pool is likely
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Figure 1.4: During nutrient transitions (p)ppGpp sees drastic changes and likely plays
a key role because of its effect on ribosome abundance. Schematic view of the effect of nutrient
upshift and runout on growth rate and corresponding ppGpp concentration as well as ribosome abundance and
production. The timescale of the displayed behaviors displayed is of about 3 to 5 hours, while the first reaction
to the transition can be observed within seconds. These graph show simplified interpreted behaviors and are
built from data seen in various articles investigating these transitions [?4-27] as well as our understanding of
these phenomena. We refer the reader to the cited articles for precise data.

replenished. This is probably the cause of (p)ppGpp concentrations decreasing towards a
slightly higher concentration than the initial one before the shift. It is probably due to this
transient starvation following the nutrient downshift that growth is severely hampered
before being restored with a new lower growth rate as shown in Figure | .4 and measured
by Erickson et al. [28]. It is thus likely because (p)ppGpp is sensing the amino acid pool
rather than the quality of the nutrient source that (p)ppGpp concentrations overshoots
during these nutrient transitions. From an evolutionary point of view, this overshoot is
probably advantageous. Indeed, as depicted in Figure 1.4, it likely allows faster adaptation
towards the new optimal proteome allocation. The spike in (p)ppGpp concentration
appearing when facing nutritional challenges, by upregulating stress proteins and ribo-
some hibernation factors, might also promote long-term survival to allow bacteria to wait
for better conditions. In the next paragraph, we quickly review the mechanism through



1.3. 9

which (p)ppGpp is able to downregulate ribosomal operons and many others in E. coli.

The mechanisms through which (p)ppGpp downregulates transcription of ribosomal
operons vary across the bacterial kingdom. In Bacillus subtilis and many other bacteria,
synthesis of (p)ppGpp sequesters GTP and downregulates the GTP biosynthesis pathway
[29]. As GTP is required to initiate the transcription of ribosomal operons, the production
of (p)ppGpp indirectly downregulates these operons. A similar mechanism was thus
hypothesized for E. coli. It was later on found that rather than simply sequestering GTP,
(p)ppGpp also has a direct effect on the activity of RNA polymerase, together with the
protein DksA which strengthens the repressor effect of (p)ppGpp [30]. Two binding sites
of (p)ppGpp were later identified by structural studies [31-33].

Apart from its numerous repressive activities, (p)ppGpp is also involved in the activation
of amino acid biosynthetic genes [! 3]. While the precise mechanism remains to be found,
the latest studies seem to indicate a direct effect of (p)ppGpp on the transcription of these
genes. It seems that the (p)ppGpp response attempts to replenish the amino acid pool
by upregulating genes responsible for the synthesis of amino acids. Indeed, the lack of
amino acids can be due to a insufficient enzymes synthesizing them. However, it can
also be due to a insufficient carbon precursors, from which they are synthesized. When
the quality of the carbon source is decreased, fewer carbon precursors are produced for
the same amount of catabolic enzymes responsible for synthesizing these precursors.
Biosynthesis of amino acid is then limited due to a lack of these precursors rather than
insufficient biosynthetic enzymes. In this case, bacteria need to upregulate catabolic
genes, not amino acid biosynthesis ones as (p)ppGpp is doing. Another regulator, cyclic
AMP (cAMP), is involved in the regulation of the catabolic genes, responsible for carbon
metabolism. We briefly discuss the cAMP signaling in the next paragraph.

The metabolic flux leading to amino acid synthesis is in fact constituted of two fluxes: the
catabolic flux, importing carbon and metabolizing it into precursors such as «-ketoacids,
and the anabolic flux which imports nitrogen and synthesizes amino acids from these
precursors. Nutrient conditions can impose different constraints on these fluxes. The reg-
ulator cAMP ensures that these fluxes are balanced by sensing the carbon precursor pool
and repressing anabolic genes in favor of catabolic enzymes [20]. How cAMP is regulated
and how it coordinates with (p)ppGpp is too poorly understood. By perturbing (p)ppGpp,
we can force a sub-optimal translational flux, which will likely lead to the accumulation
or depletion of some precursors and might lead to insights on these questions.

1.3.

Varying nutritional conditions, apart from impacting ribosome number, operates
major changes in the bacterial proteome [37]. Which of these are operated by the global
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(top) ppGpp concentration results
adapted from Noga et al. [34] show-
ing divergence of ppGpp with regards
to growth rate between carbon source
quality limited and excess ppGpp con-
ditions, inspiring this study. Circles
show wild-type steady state ppGpp
concentration vs. growth rate in mini-
mal media supplemented with various
carbon sources. Blue squares corre-
spond to the same quantities measured
in a strain engineered with RelA*, the
catalytic domain of RelA, under con-
trol of a TetR-pTet system. This strain
is grown in minimal media + glucose,
which correspond in the wild-type to
the fastest growth rate shown with blue
circle. Each blue square corresponds
to a different concentration of inducer,
each yielding a different growth rate
and ppGpp concentration. This result
is reproduced and extended to more
conditions in Chapter 2 Figure 2. 1A.
(middle) RNA mass fraction results
adapted and combined from [35, 36]
displaying RNA mass fraction with re-
gards to growth rate. Circles show
wild-type bacteria growing in mini-
mal media supplemented with car-
bon sources of various qualities and
squares display excess ppGpp through
various inductions of a IPTG-inducible
RelA* strain growing in minimal me-
dia supplemented with glucose. Stars
symbols display depleted ppGpp in-
duced at different levels using a
strain with drosophila ppGpp hydro-
lase MESH1 under the control of the
IPTG-inducible Ptac promoter in three
carbon sources, each represented with
a different color.

(bottom) Translation elongation rate
with regards to growth rate for wild-
type bacteria growing in minimal me-
dia supplemented with various carbon
sources (circles) and IPTG-inducible
RelA* strain growin in minimal media
with glucose (blue squares) at various
inductions, results adapted and com-
bined from from [35, 36].
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regulator (p)ppGpp? Is (p)ppGpp fully or partially responsible for each of these changes?
These questions, very hard to tackle by only changing nutrient conditions, can be better
addressed through perturbation of the (p)ppGpp signaling system. One approach, dis-
cussed above in the case of growth rate control of ribosome abundance, is to knockout
RelA or both RelA and SpoT. While this approach led to major advances in the under-
standing of the (p)ppGpp response, its limits are that the resulting strains exhibit heavily
modified phenotype and it is often hard to determine if the differences with wild-type
are due to the direct effect of (p)ppGpp or to an indirect effect resulting from adaptation
to the perturbation. Another approach, which we focus on in this section, was used for
the first time in 1995 by Schreiber et al. [38]. It consists in inserting genetic constructs to
artificially increase or decrease (p)ppGpp concentrations. Concentrations of (p)ppGpp
can be increased by the (p)ppGpp synthetic domain of RelA, denoted RelA* in this thesis,
under the control of an inducible promoter. Because only the synthetic domain of RelA
is expressed, the activity does not depend on activators such as dwelling ribosomes and
transfer RNA, allowing to bring (p)ppGpp level above natural concentration. Oppositely,
expression of drosophilian SpoT homolog MESH]1, which only possesses a (p)ppGpp
hydrolase domain [39], has been proven to successfully decrease (p)ppGpp concentra-
tions [35, 40]. This approach revealed the effect of (p)ppGpp on cell size [40] and the
way membrane synthesis coordinates with growth rate [34]. It has also been used to
confirm the effect of (p)ppGpp on ribosome abundance [35], which we discuss in the next
paragraph, before reviewing the questions that arise from these results, and the ones yet
to be explored using such perturbations.

Arecent study [35] showed that excess and depleted ppGpp respectively lead to higher
and lower RNA mass fraction, thus ribosomal content, see Figure | .5B for detailed results.
In both cases, they found that the stronger they induced RelA* or MESH], the further from
wild-type ribosome abundance and the lower the growth rate. These results revealed the
optimal behavior of wild-type ribosome content. In the case of depleted (p)ppGpp, more
ribosomes are produced at the expense of metabolic enzymes, resulting in depletion
of the amino acid pool and slower growth. In the case of excess (p)ppGpp through
RelA* induction in minimal media supplemented with glucose, insufficient ribosomes
limits growth by decreasing total translational flux. The RNA mass fraction follows the
same linear relationship as under carbon limitation. The authors also measured the
translation elongation rate, which is the translational flux through one ribosome. This
flux slightly decreases following the same relationship both with carbon-limitation and
excess (p)ppGpp. While a decrease of translation elongation in excess ppGpp might seem
surprising at first as amino acids accumulate [4 ] due to slowed down growth, it can be
explained with either insufficient transfer RNA caused by (p)ppGpp inhibition, direct
repression of (p)ppGpp on translation, or a combination of both. This study confirmed
and clarified the key role of (p)ppGpp in optimizing ribosome abundance for maximal
steady-state growth rate.

(p)ppGpp perturbation has shown its potential to unravel new roles of the (p)ppGpp
signalling system as well as precise quantitative laws arising from this system. However,
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to this date, a broad study of the effects of perturbing (p)ppGpp concentrations on
the bacterial proteome in different conditions is still lacking. Titrating (p)ppGpp and
measuring proteins in an untargeted way in relations with (p)ppGpp concentrations
would likely allow us to identify the role it plays in correlating with growth rate some key
groups of proteins, such as the ones responsible for translation, catabolism and amino
acid synthesis. It would better delineate the extent of ppGpp regulation. Indeed, some
regulation have been attributed to (p)ppGpp from studies using nutritional differences or
(p)ppGpp knockouts, which leaves the possibility that these proteins are responding to
other signals affected by these.

Effect of artificially increasing ppGpp concentration [34] on growth was measured by
the Bokinsky lab [34]. In comparison with the anticorrelation of ppGpp with growth rate
under carbon limitation, slowing down growth with excess ppGpp in minimal media
supplemented with glucose required much higher concentrations of ppGpp, as shown
in Figure 1.5A. This result contrasts with results of RNA mass fraction and translation
elongation Figure 1.5B-C for which induction of RelA* follows the same relationship
with regards to growth rate, and is in that sense surprising. This preliminary result
calls for a more extensive study of the effect of various artificially perturbed (p)ppGpp
concentration on growth. In the next section, we summarize the state-of-the-art elements
we have reviewed and introduce the questions we will try to answer throughout this thesis,
which includes confirming and explaining the surprising result we just described.

1.4.

In the previous section, we reviewed the pre-existing knowledge relevant to this thesis.
Briefly, we identified that the main triggers for (p)ppGpp synthesis are dwelling ribosomes
and deacyl-tRNA, and that (p)ppGpp senses a slowdown in translation elongation rate
through these triggers. We also reviewed the main effects of (p)ppGpp: downregulation of
ribosome abundance and activation of genes responsible for amino acid biosynthesis.
Finally, we reviewed the recent experiments using artificially tuned (p)ppGpp concen-
trations. We explained how using such perturbation of the (p)ppGpp signaling system
revealed the optimality of ribosomal content in various conditions. Finally, we highlighted
a preliminary result that seems to indicate that forcing down growth by artificially increas-
ing ppGpp concentration requires much higher concentrations than the ones found in
natural slow-growing conditions.

In the coming Chapter 2, we identify the scope of (p)ppGpp regulation during steady
state growth. To do so, we titrate (p)ppGpp and measure the resulting nucleotide and
protein concentrations. This allows us to distinguish: within the proteins and group of
proteins that correlate with growth rate, which ones that are potentially regulated by
(p)ppGpp? With this knowledge we also attempt to explain the reasons behind effects of
perturbed (p)ppGpp concentrations on growth.

In Chapter 3, we investigate the reasons for the surprisingly high levels of ppGpp
required to slow down growth, which we confirmed in Chapter 2 by extensively mapping
the relationship between (p)ppGpp and growth rate when the ppGpp concentration
is perturbed. We answer the following question: can higher ribosome saturation in
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excess ppGpp explain this result by leading to faster growth for the same (p)ppGpp
concentration? We then investigate what else could lead to a faster growth rate for the
same (p)ppGpp concentration, using some of our other experimental results.

Finally, in Chapter 4 we investigate the necessary conditions for yeast to be able to
survive in a desiccated state. We study ways to increase the fraction of cells surviving the
process of freeze-drying. We also investigate why some desiccated cells are not able to
resume their replicative life after being rehydrated.

[1] M. Cashel and J. Gallant, Two compounds implicated in the function of the rc gene of
escherichia coli, Nature 221, 838 (1969).

[2] G.C. Atkinson, T. Tenson, and V. Hauryliuk, The rela/spot homolog (rsh) superfamily:
distribution and functional evolution of ppgpp synthetases and hydrolases across the
tree of life, PloS one 6, 23479 (2011).

[3

[l

K. Potrykus and M. Cashel, (p) ppgpp: still magical? Annu. Rev. Microbiol. 62, 35
(2008).

[4] W. A. Haseltine and R. Block, Synthesis of guanosine tetra-and pentaphosphate re-
quires the presence of a codon-specific, uncharged transfer ribonucleic acid in the
acceptor site of ribosomes, Proceedings of the National Academy of Sciences 70, 1564
(1973).

[5] A.B. Loveland, E. Bah, R. Madireddy, Y. Zhang, A. E Brilot, N. Grigorieff, and A. A.
Korostelev, Ribosome® rela structures reveal the mechanism of stringent response
activation, Elife 5, €17029 (2016).

[6] A.Brown,I.S. Ferndndez, Y. Gordiyenko, and V. Ramakrishnan, Ribosome-dependent
activation of stringent control, Nature 534, 277 (2016).

[7] S. Arenz, M. Abdelshahid, D. Sohmen, R. Payoe, A. L. Starosta, O. Berninghausen,
V. Hauryliuk, R. Beckmann, and D. N. Wilson, The stringent factor rela adopts an open
conformation on the ribosome to stimulate ppgpp synthesis, Nucleic acids research
44,6471 (2016).

[8] T.M. Wendrich, G. Blaha, D. N. Wilson, M. A. Marahiel, and K. H. Nierhaus, Dissection
of the mechanism for the stringent factor rela, Molecular cell 10, 779 (2002).

[9] B.P English, V. Hauryliuk, A. Sanamrad, S. Tankov, N. H. Dekker, and J. Elf, Single-
molecule investigations of the stringent response machinery in living bacterial cells,
Proceedings of the National Academy of Sciences 108, E365 (2011).

[10] V. Hauryliuk, G. C. Atkinson, K. S. Murakami, T. Tenson, and K. Gerdes, Recent
functional insights into the role of (p) ppgpp in bacterial physiology, Nature Reviews
Microbiology 13, 298 (2015).



14

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

H. Takada, M. Roghanian, J. Caballero-Montes, K. Van Nerom, S. Jimmy, P. Kudrin,
E Trebini, R. Murayama, G. Akanuma, A. Garcia-Pino, et al., Ribosome association
primes the stringent factor rel for trna-dependent locking in the a-site and activation
of (p) ppgpp synthesis, Nucleic acids research 49, 444 (2021).

C. Wu, R. Balakrishnan, N. Braniff, M. Mori, G. Manzanarez, Z. Zhang, and T. Hwa,
Cellular perception of growth rate and the mechanistic origin of bacterial growth law,
Proceedings of the National Academy of Sciences 119, €2201585119 (2022).

L. U. Magnusson, A. Farewell, and T. Nystrdom, ppgpp: a global regulator in es-
cherichia coli, Trends in microbiology 13, 236 (2005).

S. E. Irving, N. R. Choudhury, and R. M. Corrigan, The stringent response and physio-
logical roles of (pp) pgpp in bacteria, Nature Reviews Microbiology 19, 256 (2021).

P. P Dennis, Regulation of ribosomal and transfer ribonucleic acid synthesis in es-
cherichia coli b/r, Journal of Biological Chemistry 247, 2842 (1972).

J. Ryals, R. Little, and H. Bremer, Control of rrna and trna syntheses in escherichia
coli by guanosine tetraphosphate. Journal of bacteriology 151, 1261 (1982).

K. Potrykus, H. Murphy, N. Philippe, and M. Cashel, ppgpp is the major source of
growth rate control in e. coli, Environmental microbiology 13, 563 (2011).

D. Molenaar, R. Van Berlo, D. De Ridder, and B. Teusink, Shifts in growth strategies
reflect tradeoffs in cellular economics, Molecular systems biology 5, 323 (2009).

M. Scott, C. W. Gunderson, E. M. Mateescu, Z. Zhang, and T. Hwa, Interdependence of
cell growth and gene expression: origins and consequences, Science 330, 1099 (2010).

C. You, H. Okano, S. Hui, Z. Zhang, M. Kim, C. W. Gunderson, Y.-P. Wang, P. Lenz,
D.Yan, and T. Hwa, Coordination of bacterial proteome with metabolism by cyclic
amp signalling, Nature 500, 301 (2013).

S. Hui, J. M. Silverman, S. S. Chen, D. W. Erickson, M. Basan, J. Wang, T. Hwa, and
J. R. Williamson, Quantitative proteomic analysis reveals a simple strategy of global
resource allocation in bacteria, Molecular systems biology 11, 784 (2015).

M. Scott and T. Hwa, Shaping bacterial gene expression by physiological and proteome
allocation constraints, Nature Reviews Microbiology , 1 (2022).

G. Chure and J. Cremer, An optimal regulation of fluxes dictates microbial growth in
and out of steady-state, bioRxiv (2022).

Y. K. Kohanim, D. Levi, G. Jona, B. D. Towbin, A. Bren, and U. Alon, A bacterial growth
law out of steady state, Cell reports 23, 2891 (2018).

J. D. Friesen, N. Fiil, and K. Von Meyenburg, Synthesis and turnover of basal level
guanosine tetraphosphate in escherichia coli. Journal of Biological Chemistry 250,
304 (1975).



(26]

(27]

(28]

(29]

(30]

(31]

(34]

15

H. D. Murray, D. A. Schneider, and R. L. Gourse, Control of rrna expression by small
molecules is dynamic and nonredundant, Molecular cell 12, 125 (2003).

M. Zhu and X. Dai, Stringent response ensures the timely adaptation of bacterial
growth to nutrient downshift, Nature Communications 14, 467 (2023).

D. W. Erickson, S.J. Schink, V. Patsalo, J. R. Williamson, U. Gerland, and T. Hwa, A
global resource allocation strategy governs growth transition kinetics of escherichia
coli, Nature 551, 119 (2017).

L. Krdsny and R. L. Gourse, An alternative strategy for bacterial ribosome synthesis:
Bacillus subtilis rrna transcription regulation, The EMBO journal 23, 4473 (2004).

B. J. Paul, M. M. Barker, W. Ross, D. A. Schneider, C. Webb, J. W. Foster, and R. L.
Gourse, Dksa: a critical component of the transcription initiation machinery that
potentiates the regulation of rrna promoters by ppgpp and the initiating ntp, Cell 118,
311 (2004).

J.J. Lemke, P. Sanchez-Vazquez, H. L. Burgos, G. Hedberg, W. Ross, and R. L. Gourse,
Direct regulation of escherichia coli ribosomal protein promoters by the transcription
factors ppgpp and dksa, Proceedings of the National Academy of Sciences 108, 5712
(2011).

Y. Zuo, Y. Wang, and T. A. Steitz, The mechanism of e. coli rna polymerase regulation
by ppgpp is suggested by the structure of their complex, Molecular cell 50, 430 (2013).

W. Ross, C. E. Vrentas, P. Sanchez-Vazquez, T. Gaal, and R. L. Gourse, The magic
spot: a ppgpp binding site on e. coli rna polymerase responsible for regulation of
transcription initiation, Molecular cell 50, 420 (2013).

M. J. Noga, E Biike, N. J. van den Broek, N. C. Imholz, N. Scherer, E Yang, and
G. Bokinsky, Posttranslational control of plsb is sufficient to coordinate membrane
synthesis with growth in escherichia coli, MBio 11, e02703 (2020).

M. Zhu and X. Dai, Growth suppression by altered (p) ppgpp levels results from non-
optimal resource allocation in escherichia coli, Nucleic acids research 47, 4684 (2019).

X. Dai, M. Zhu, M. Warren, R. Balakrishnan, V. Patsalo, H. Okano, J. R. Williamson,
K. Fredrick, Y.-P. Wang, and T. Hwa, Reduction of translating ribosomes enables
escherichia coli to maintain elongation rates during slow growth, Nature microbiology
2,1 (2016).

M. Mori, Z. Zhang, A. Banaei-Esfahani, J.-B. Lalanne, H. Okano, B. C. Collins,
A. Schmidt, O. T. Schubert, D.-S. Lee, G.-W. Li, et al., From coarse to fine: the ab-
solute escherichia coli proteome under diverse growth conditions, Molecular systems
biology 17, €9536 (2021).

G. Schreiber, E. Z. Ron, and G. Glaser, ppgpp-mediated regulation of dna replication
and cell division in escherichia coli, Current microbiology 30, 27 (1995).




16

[39]

(40]

(41]

D. Sun, G. Lee, J. H. Lee, H.-Y. Kim, H.-W. Rhee, S.-Y. Park, K.-J. Kim, Y. Kim, B. Y.
Kim, J.-I. Hong, et al., A metazoan ortholog of spot hydrolyzes ppgpp and functions in
starvation responses, Nature structural & molecular biology 17, 1188 (2010).

E Biike, J. Grilli, M. C. Lagomarsino, G. Bokinsky, and S. J. Tans, ppgpp is a bacterial
cell size regulator, Current Biology 32, 870 (2022).

G. Bokinsky, E. E. Baidoo, S. Akella, H. Burd, D. Weaver, J. Alonso-Gutierrez, H. Garcia-
Martin, T. S. Lee, and J. D. Keasling, Hipa-triggered growth arrest and B-lactam
tolerance in escherichia coli are mediated by rela-dependent ppgpp synthesis, Journal
of bacteriology 195, 3173 (2013).



REGULATORY SCOPE OF THE MAGIC
SPOT DURING STEADY-STATE
GROWTH
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In the fields of observation chance favors only the prepared mind.

Louis Pasteur

I The nucleotide ppGpp was initially named "magic spot” due to its unidentified nature [1]; this name stayed in
use due to its unusual number of targets and global regulatory nature [2].
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18 2. REGULATORY SCOPE OF THE MAGIC SPOT DURING STEADY-STATE GROWTH

2.1. ABSTRACT

The ppGpp regulatory system, through the proof of its involvement in downregulating
ribosomal content and the discovery of the broad impact it has on the proteome, has seen
growing interest since its discovery. However, the changes it causes on the proteome during
steady-state growth have only been investigated through ppGpp synthase knockouts or nu-
tritional changes, making it impossible to precisely delineate the scope of ppGpp regulation.
By artificially titrating ppGpp and measuring nucleotide and protein concentrations, we
confirm the key role of ppGpp is downregulating most of proteins responsible for transla-
tion. We also show that most other proteins are not regulated by ppGpp, even though some
of them respond to growth rate. We identify the ones that do see ppGpp regulation. We find
that, while ppGpp has been shown necessary to express some amino acid pathways, the
concentration of these enzymes does not depend on ppGpp; and that the abundance of TCA
cycle enzymes anticorrelates with growth rate independently of ppGpp. While setting the
boundaries of ppGpp regulation, our results highlight the potential of titrating concentra-
tion of regulatory molecules, including the ones that regulate the proteins outside the reach

of ppGpp.

2.2. INTRODUCTION

Bacterial growth is amazingly adaptable. As a phylogenetic kingdom, bacteria are able
to grow using a wide variety of chemicals, from carbon dioxide to cellulosic biomass
to plastic. This is due to the incredible versatility of microbial catabolic pathways that
convert environmental nutrients into metabolic precursors to cellular biomass. Less
appreciated is the ability of cells to precisely tune the rest of the cell to match conditions.
The use of global approaches to study cellular physiology provides insight into bacterial
adaptations and metabolic flexibility and their consequences on the cellular growth rate.

Cellular growth is simply the production of biomass, which includes proteins, RNA,
DNA, and the cell envelope. As proteins contribute most to Escherichia coli biomass
(~ 50%), cellular growth is directly proportional to the rate at which proteins can be pro-
duced from amino acids. Environments lacking amino acids require the cell to produce
those from basic metabolites for growth. Cells do so by expressing amino acid biosyn-
thesis pathways. However, some nutrients are converted less efficiently into essential
metabolites. Cells respond to poor nutritional conditions by increasing the abundance of
catabolic proteins, which increases the overall rate at which essential metabolites are pro-
duced. These adaptations enable many bacteria to grow on a wide variety of substrates,
broadening their ecological versatility.

However, such adaptations come at a cost. Because cells have a limited bandwidth for
protein synthesis, increasing the abundance of catabolic and anabolic proteins reduces
the abundance of proteins dedicated to biomass synthesis. Conversely, nutrient-rich
environments decrease the need for catabolic and anabolic pathways, which liberates
protein synthesis bandwidth for biomass producing pathways. Hence, the overall rate
of biomass production (and thus growth) is faster in richer media because they require
fewer catabolic and anabolic proteins, and thus allow a higher abundance of ribosomes
[3-5].
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Understanding how E. coli allocates the fractions of the proteome among nutrient
processing, building block synthesis, and biomass production is a topic of intense study.
Much attention is focused upon guanosine tetraphosphate (ppGpp), an established
regulator of ribosome abundance. ppGpp has long been understood as a signal indicating
acute starvation and stress, during which it achieves high concentrations. However,
ppGpp is also present during steady-state growth in smaller amounts, even without stress
or starvation. So-called "basal" ppGpp concentrations vary inversely with steady-state
growth rate [6-8]. Studies in which the basal ppGpp concentration is artificially raised
or lowered using ppGpp synthesis and degradation enzymes demonstrated that these
perturbations strongly influence ribosome abundance [5, 9]. These studies further found
that any change in ribosome abundance decreases the growth rate. This result strongly
indicates that the concentration of ribosomes set by basal ppGpp is optimal for E. coli
growth.

Precisely how basal ppGpp is set by growth conditions via the enzymes RelA and SpoT
is poorly understood. The main ppGpp synthesis enzyme RelA specifically detects tRNA
that lacks an amino acid and ribosomes waiting for an acyl-tRNA to resume translation
[10]. ppGpp thus likely varies in response to the intracellular amino acid supply. In doing
so, ppGpp balances protein synthesis with the catabolic and anabolic pathways that
ultimately supply the ribosomes with amino acids. By tuning ribosome abundance in
response to nutrient availability [11], ppGpp establishes the first growth law [8] stipulating
that steady-state growth rate scales with ribosome abundance [5, 6, 8, 12].

Given the importance of ppGpp for optimizing resource allocation, identifying the
specific genes that respond to basal ppGpp is essential for understanding growth rate
maximization. The tight correlation between basal ppGpp concentrations and steady-
state growth rate complicates the identification of genes that are directly regulated by
basal ppGpp. This challenge is compounded because ppGpp is known to control rRNA
expression, and thus a major portion of the total cellular proteome. Previously, Traxler et al.
compared the transcriptome of wild-type and ppGpp-deficient strains to identify ppGpp-
induced genes [13]. This important study established the broad reach of ppGpp and
how various subsets of regulatory targets are activated by basal ppGpp or starvation-level
ppGpp: genes for amino acid biosynthesis, DNA and fatty acid synthesis, stress responses,
cell cycle regulation, and stationary phase adaptation are influenced by ppGpp. Given its
broad array of regulatory targets, it is possible that ppGpp plays additional roles beyond its
effect on ribosome content during steady-state growth. However, these experiments used
nutrient exhaustion to indirectly activate ppGpp synthesis, thus introducing confounding
factors in that some genes may be triggered by nutrient starvation. Furthermore, as
ribosomes comprise 25-50% of the cell biomass, ppGpp-driven variations in ribosome
abundance could indirectly affect proteome sectors that are not ppGpp regulated.

Here, we determine the contributions of incremental ppGpp variations on proteome
allocation by artificially perturbing ppGpp during steady-state growth. This approach
disentangles the effects of ppGpp from other influences such as nutrient and metabolic
conditions. We use untargeted proteomics to quantify the abundance of cellular pro-
teins in each condition explored. We obtain a global view of the influence of ppGpp
variations on proteome allocation in cellular growth or catabolic pathways. We find that
while ribosome abundance is highly sensitive to basal ppGpp, most sectors are either
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inconsistently affected by ppGpp, or appear surprisingly indifferent. We identify the
specific consequences of ppGpp dysregulation on the balance between translation and
catabolism. Our results better delineate the specific roles of ppGpp and other cellular
signals in adapting physiology to the environment.

2.3. RESULTS

2.3.1. NATURAL PPGPP LEVELS ARE OPTIMIZED TO MAXIMIZE GROWTH RATE
We first measured concentrations of basal ppGpp within batch cultures of wild-type
(WT) Escherichia coli NCM3722 during growth on minimal growth media. Nucleotide
concentrations were quantified using tandem liquid chromatography mass spectrometry
(LCMS). In four selected conditions, we synthetically titrated ppGpp by using an inducible
promoter (Ptet) to vary expression of either the catalytic domain of the ppGpp synthesis
enzyme RelA (RelA*) or the ppGpp hydrolase Mesh1. Growth was followed using regular
measurements of culture turbidity by an automated absorbance measurement system.
Samples were taken at 0.35 OD after growth rate stabilized (usually 3 to 5 hours after
inducing for RelA* and 5 to 8 for Mesh1).

Consistent with many long-standing studies, basal ppGpp concentrations correlate
inversely with growth rate (Figure 2.1A). As expected, expressing RelA* and Mesh1 re-
spectively increases and decreases ppGpp. It also decreases the growth rate progressively
with the magnitude of the ppGpp titration. This indicates that the naturally-occurring
basal ppGpp concentrations are optimized to maximize growth rate in each condition
examined.

PPGPP TITRATION EXERTS VARYING EFFECTS ON CAMP

We quantified the catabolism global regulator cAMP in parallel with ppGpp. In agreement
with previous observations, basal cAMP is also inversely correlated with growth rate
(Figure 2.1B), varying from a low concentration (~ 2pmol/OD) in glucose medium to
~ 22pmol/0D in glutamate medium. Synthetic ppGpp titrations exerted different effects
on basal cAMP depending upon the carbon source. Elevating ppGpp in glucose and
succinate medium did not significantly affect cAMP, while cAMP increased in glycerol
and decreased in acetate (p<0.05)2. The few measurements obtained suggest that ppGpp
depletion also decreases cAMP in glucose, succinate, and glycerol medium, while not
significantly affecting cAMP in acetate medium (p>0.05)3.

2.3.2. UNTARGETED PROTEOMICS IDENTIFIES PROTEIN SECTORS THAT

COVARY WITH GROWTH RATE
We quantified E. coli proteins during steady-state growth in three carbon sources (glucose,
succinate, and acetate) using the same untargeted LCMS method as den Ridder et al.
[14]. Very briefly, proteins we extracted from collected culture samples and digested into
peptides before being separated and analyzed with LCMS. Next, we quantified proteins
after inducing ppGpp overproduction and depletion in each media, obtaining 9 condi-

2Here, significance testing was performed by applying an unpaired t-test on all wild-type samples against the
two most extreme sets of technical replicates in terms of growth rate gathered.

3Significance is calculated in the same way as previously with the exception of succinate and glycerol for which
only one set of technical replicates was measured and thus used here.
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Figure 2.1: Artificially perturbing ppGpp concentrations reveals their optimality while
resulting in various effects on cAMP concentrations. (A) Results of ppGpp concentrations and
growth rates. (B) Results of cyclic-AMP concentrations as a function of growth rate in various carbon source
conditions and under excess (top) and depleted (bottom) ppGpp. Circles represent WT samples, stars represent
depleted ppGpp (Mesh1) and squares correspond to excess ppGpp (RelA*). Each color corresponds to a different
carbon source: blue for glucose, ochre for succinate, green for glycerol, and magenta for acetate.

tions. To identify proteins that correlate or anti-correlate with growth in the absence of
artificial ppGpp variation, we determined the concentration ratio of each protein between
glucose and acetate medium. The ratios were logarithmically plotted against statistical
significance p to obtain volcano plots. Among the 1185 proteins quantified, 211 show
a positive and statistically significant correlation with growth rate (p<0.05) whereas 107
show a negative correlation with growth rate (Figure 2.2). Due to limited data and our
focus on the global effects of ppGpp, we disregarded the significance criterion, unlike
most studies that focus on individual proteins. Instead, we set a threshold for growth
rate correlation (increasing or decreasing from acetate medium by at least 25%), which
leads to similar results: 277 proteins increase by at least 25% from acetate to glucose
medium (are positively correlated with growth rate), whereas 168 proteins decrease in
abundance by at least 25% (are negatively correlated with growth rate). Remarkably, the
majority of proteins (740, or 62% of all proteins quantified) vary by less than 25% across
the conditions sampled (are growth rate-insensitive).

PROTEINS INVOLVED IN TRANSLATION POSITIVELY CORRELATE WITH GROWTH RATE
To obtain a functional understanding of growth rate regulation, we classified proteins
according to function using an adapted version of Kyoto Encyclopedia of Genes and
Genomes (KEGG) [15]. By grouping proteins according to their functions into sectors,
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Figure 2.2: Only a minority of proteins see their level correlate with growth rate, of
which only some are regulated by ppGpp. Volcano plot of the variation in concentration from
glucose to acetate for all 1185 measured proteins: x-axis shows this variation in log scale while y-axis displays
the statistical significance of this change. Colors are relative to the classification described in section 2.3.3 and
Figure 2.8. White: no consistent influence of ppGpp. Blue: influenced by RelA* similarly as with decreased
growth rate. Green: influenced by MESH1 similarly as with increased growth rate. Yellow: RelA* influence
is consistent. Red: MESH1 influence is consistent. Thin vertical lines correspond to 20% decrease and 25%

increase from glucose to acetate.
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we estimate the proteome allocation into broad cellular functions such as translation,
catabolism, and anabolism. Liebermeister et al. [16] adapted this classification such that
each protein is assigned to a single sector for each of the three hierarchical levels. We use
intensity-based absolute quantification (iBAQ) spectral counting [17, 18] to estimate the
fraction of proteome mass represented by each protein. Summing spectral counts of all
proteins comprising a sector leads to an estimate of the sector mass. The mass of these
sectors in glucose medium is displayed per level in a graphical way in Figure 2.3.

For the two largest top level sectors of the adapted KEGG classification, we provide in
Figure 2.4-2.5 plots showing quantification of total proteome mass. Figure 2.4 displays
these results for the 3 sectors composing "Genetic Information Processing": “Folding,
Sorting, and Degradation,” "Translation," and "Transcription”. Of these 3 sectors, growth
rate most strongly affects the Translation sector, which varies from 20% to 30% of the total
proteome spectral counts from acetate to glucose medium. Of the Level 3 sectors within
the Translation sector, the Ribosome sector (13%-21%) and Translation Cofactor sector
(5.5-7.5%) are most sensitive to growth rate.

As sector-averaged trends obscure the responses of individual proteins, we use vol-
cano plots to depict how the abundance of each protein varies between acetate and
glucose. A volcano plot of the Translation sector reveals that the vast majority of proteins
increase in parallel with growth rate. Of the 54 ribosome proteins, all except 2 (stationary
phase-associated) increase with growth rate, by average of 55% from acetate to glucose
medium. All 13 proteins classified as translation cofactors increase with growth rate. This
is consistent with translation and growth rate increasing in parallel.

GLYCOLYSIS SECTOR ENZYMES EXHIBIT MIXED RESPONSES TO GROWTH RATE DEPENDING
UPON GLYCOLYSIS/GLUCONEOGENESIS CONDITIONS

Next, we looked at the total mass fraction of metabolic proteins through the Level 1
proteome sector "Metabolism” (Figure 2.5-2.6). Of the two most abundant Level 2 sec-
tors within the Metabolism sector (Central Carbon Metabolism and Biosynthesis), only
Central Carbon Metabolism increases with carbon limitation (Figure 2.5). To discern
trends within the Central Carbon Metabolism sector, we generated volcano plots for the
four Level 3 sectors that represent most of the Central Carbon Metabolism sector: "Gly-
colysis"/Gluconeogenesis, “Pentose phosphate pathway” and “Other central metabolic
enzymes”. The proteome fractions of these sectors only slightly vary. However, of the 40
proteins within the Glycolysis sector many are highly sensitive to growth rate. 9 proteins
highly expressed in acetate media perform roles in gluconeogenesis (e.g. PckA, PpsA,
FbaB). Conversely, the 11 proteins that increase in glucose medium specialize in glycolysis
(e.g. FbaA and PfkA). These observations are consistent with gluconeogenesis occurring
in acetate and succinate media, while growth on glucose requires glycolysis enzymes.
Thus, proteome allocation within the Glycolysis sector reflects a switch between glycolysis
and gluconeogenesis, while the total proteome allocation to the overall sector remains
stable.

TCA CYCLE SECTOR PROTEINS NEGATIVELY CORRELATE WITH GROWTH RATE

The Level 3 sector “TCA and anapleurotic enzymes” is the most growth rate-sensitive of
the sectors within Central Carbon Metabolism: it decreases from 14% of total proteome in
acetate to 6% in glucose medium (Figure 2.5). 14 out of 19 of its proteins decrease by more
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Figure 2.4: Ribosomes and translation cofactors are in large parts regulated by ppGpp.
Total proteome mass fraction and single proteins volcano plots for the three largest sectors constituting the
"Genetic Information Process" sector (left) as well the three largest ones composing its sub-sector "Translation"
(right). Colored frame corresponds to proteomap displayed in Figure 2.3 and depicts the hierarchical relation
between these sectors. Proteome mass plots follow the same colors and symbols as Figure 2.1: Circles represent
WT samples, stars represent depleted ppGpp (Mesh1) and squares correspond to excess ppGpp (RelA*). Each
color corresponds to a different carbon source: blue for glucose, ochre for succinate, and magenta for acetate.
Volcano plots follow the same conventions as Figure 2.2: each color corresponds to a different level of our
classification identifying basal ppGpp-regulated proteins.

than 20% from acetate to glucose medium. In particular, enzymes of the glyoxylate shunt
(AcnA, AcnB, GItA, Mdh) accumulate to 1% of the total proteome in acetate medium.
Neglecting the anapleurotic enzyme Ppc, which replenishes the TCA cycle during growth
on minimal medium, abundance of individual proteins within this sector decreases an
average of 40% from acetate to glucose media.

AMINO ACID BIOSYNTHESIS PATHWAYS POSITIVELY CORRELATE WITH GROWTH RATE

The “Biosynthesis” sector includes anabolic pathways for synthesis of amino acids, nu-
cleotides, cofactors, and membrane components. Oppositely to central carbon metabolism,
this sector increases as a fraction of proteome from 14 to 18% from acetate to glucose
media (Figure 2.6). 78 out of its 267 proteins increase by more than 20% with growth
rate, while only 12 decrease with growth rate, 3 of which are misclassified fatty acid
degradation enzymes. Of the 78 proteins that increase from acetate to glucose media,
47 are from amino acid biosynthesis pathways. They represent approximately 10% of
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total proteome. A volcano plot (Figure 2.6, bottom right) of proteins from the Level 3
“Amino acid metabolism” sector indicates that most enzymes within this sector increase
in parallel with growth rate, with the interesting exception of branched-chain amino acid
biosynthesis pathway enzymes. We speculate that correlated expression of biosynthesis
genes with growth rate reflects increasing demand for de novo amino acid biosynthesis to
supply translation.

ABUNDANT OUTER MEMBRANE CHANNEL PROTEINS VARY WITH GROWTH RATE

While most of the remaining Level 2 sectors did not vary substantially with growth rate,
several individual proteins that individually contribute more than 0.5% and comprise a
significant fraction of the proteome (total ~ 18%) do vary with growth rate. Three outer
membrane proteins (NmpC, OmpA, and OmpF) show contrasting trends (Figure 2.7): the
Omp family of proteins increase in parallel with growth rate, while NmpC decreases with
growth rate. Interestingly, the total proteome fraction of outer membrane proteins (Omp
proteins plus NmpC) vary only from 7.5% to 9.1%, suggesting a shift in outer channel
composition while maintaining abundance. As the specific roles of individual outer
membrane channels are unknown, the significance of these trends is unclear.
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2.3.3. SYNTHETIC PPGPP TITRATION REVEALS SCOPE OF TRANSCRIPTIONAL

REGULATION BY BASAL PPGPP

As basal ppGpp concentrations consistently vary inversely with growth rate, proteins
whose abundance varies with growth rate are potentially regulated by basal ppGpp, or by
other signals that correlate or anti-correlate with growth rate such as cAMP. To identify
proteins regulated specifically by basal ppGpp, we quantified proteins following synthetic
ppGpp titrations. A survey of Level 2 sectors indicates that synthetic ppGpp titrations exert
varying effects. For instance, the Translation sector as a whole is consistently repressed
by increased ppGpp and induced by depleted ppGpp (Figure 2.4), while the Biosynthesis
sector is not significantly changed by ppGpp titrations (Figure 2.6). Interestingly, the
effect of ppGpp titrations on the Central Carbon Metabolism sector changes between
growth media (Figure 2.5). The sector-average response to ppGpp titration may not reflect
the responses of individual proteins within the sector. Therefore, to identify proteins
whose expression is likely regulated by basal ppGpp, we applied several criteria (Figure
2.8):

¢ 1) Protein abundance correlates (or anti-correlates) with growth rate. Proteins
whose expression remains constant between growth conditions are apparently
insensitive to varying basal ppGpp (although this does not exclude all forms of
ppGpp regulation).

e 2) Increasing ppGpp with RelA must vary expression in a manner similar to basal
ppGpp. In other words, synthetically increasing ppGpp must vary protein abun-
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Figure 2.7: Outer membrane proteins show strong and contrasting responses to
nutritional conditions as well as ppGpp titration. Relative concentration of OmpA, OmpF
and NmpC. Rescaled by concentration obtained from wild-type sample in glucose minimal media. Colors
and symbols as in Figure 2.1

dance in the same manner as lowering growth rate through poorer nutritional
conditions. Applying this criteria excludes proteins whose abundance varies with
carbon source but are apparently insensitive to ppGpp such as many central carbon
metabolism enzymes or tRNA-aminoacyl synthetases.

¢ 3) Decreasing ppGpp with Mesh1 must vary protein abundance in a manner oppo-
site of increasing ppGpp. Applying this criteria excludes proteins that are sensitive
to growth rate, but apparently not sensitive to ppGpp. Proteins in this group include
methionine synthase MetE, which contributes between 1-2% of the total proteome.

¢ 4) Synthetic ppGpp titration causes consistent variation. Trends driven by RelA or
Mesh1 induction are clearly observed in all three conditions: these inductions lead
to similar changes in all three carbon sources. Applying this constraint excludes
proteins that become insensitive to ppGpp in specific carbon sources.

A total of 86 proteins meet all 4 criteria and are thus considered to be consistently
regulated by ppGpp. They represent 28.7% of total proteome in glucose to 19.2% in
acetate. 50 of these proteins are classified as “Translation” and represent both ribosomal
proteins and translation factors (e.g. TufA, FusA). A closer inspection reveals 5 additional
proteins with clear roles in translation but are listed as “Other Enzymes” or unclassified:
Tig, Tgt, TrmB, RimO, YhbY, for a total of 55 translation-related proteins. Interestingly,
10 ribosomal proteins do not meet this strict criteria. 7 of these are non-essential for
translation in some conditions (RplP [19], RpmC [20, 21], RpmF [22], RpmG, RpmH [23-
26], RpsT [27] and RpsU [28, 29]) and two are associated with stationary phase (Sra and
YkgM), which might explain their weaker dependance to basal ppGpp levels. The last
missed ribosomal protein, RpsR, shows a weaker depency to growth rate, thus not making
it through our filter for no evident biological reason. With this classification, we show
that ppGpp control alone determines the size of the “Translation” sector through its
repressive effect of ribosomes and translation cofactors. Apart from these two sub-sectors,
proteins within this sector are in majority not basal ppGpp-regulated: tRNA-aminoacyl
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Figure 2.8: A 5-filter classification allows identification of proteins regulated by basal
PPGPP. Representation, through examples of protein relative concentration, of the five filters used in our
classification and describe in section 2.3.3. Each line corresponds to one of the filters used to classify with on
the left two examples of proteins passing this filter and on the right an example of a protein passing all previous
filters but not the considered one. Frame colors correspond to the color of each of these proteins used in various
volcano plots found in this chapter. Plots show concentration rescaled by concentration in glucose minimal

media and with the same colors and symbols as Figure 2.1.
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synthetases, RNA helicases involved in ribosome biogenesis, and methyltransferases that
modify rRNA.

The remaining 31 proteins classified as basal ppGpp-regulated originate from several
sectors and collectively contribute less than 0.1% of the total proteome. 8 proteins
classified as “biosynthesis” are from amino acid pathways and include 6 proteins from
the arginine biosynthesis pathway. Only 5 out of 119 proteins from “Central Carbon
Metabolism” are classified as basal ppGpp-regulated. Two of these are from the TCA cycle
(citrate synthase GItA and stress-resistant aconitase AcnA) while another one (glucose-
1-phosphatase scavenging enzyme Agp) is misclassified as a Glycolysis enzyme. Four
proteins exhibit clear links to stress and detoxification: catalase enzymes KatG and KatE,
glutathione transferase GstB, and aldehyde reductase YahK. Of transcriptional regulation
proteins, only Crp and anti-sigma factor Rsd are basal ppGpp-regulated.

EXPRESSION OF AMINO ACID BIOSYNTHESIS ENZYMES PARADOXICALLY INCREASES WITH
BOTH GROWTH RATE AND SYNTHETIC PPGPP

E. coli strains unable to produce ppGpp (ArelA AspoT) are also auxotrophic for specific
amino acids (aspartic acid, glutamic acid, phenylalanine, histidine, isoleucine, leucine,
threonine, valine, and serine) [30], indicating multiple amino acid biosynthesis pathways
require activation by ppGpp for expression. The increased expression of amino acid
synthesis operons in parallel with growth rate (and thus lower basal ppGpp) is therefore
unexpected. Our results are consistent the role of ppGpp in inducing several amino
acid biosynthesis genes with the increased expression of at least 15 amino acid enzymes
by synthetically increasing ppGpp (Figure 2.6). Pathways that are paradoxically both
ppGpp-induced and growth rate-correlated synthesize the amino acids histidine, thre-
onine, and serine, which are also among the biosynthesis operons that require ppGpp
for induction (Figure 2.9). Interestingly, 12 proteins from the amino acid biosynthesis
sector are repressed by ppGpp, including the arginine biosynthesis pathway. Remarkably,
the methionine biosynthesis protein MetE, which is positively correlated with growth
rate, is repressed by both ppGpp accumulation and depletion. This indicates that MetE
is synchronized with growth rate regardless of ppGpp concentrations (Figure 2.9). This
result suggests that although a minimum concentration of basal ppGpp is required for
expression of several amino acid biosynthesis pathways, further variations above this min-
imum level do not change expression. Transcription of amino acid biosynthesis operons
are also feedback-regulated by their corresponding product: amino acids. Therefore, the
steady-state concentrations of amino acids might synchronize expression of biosynthesis
operons with translation demand, with some minimal concentration of ppGpp being
required to induce expression.

TCA CYCLE ENZYMES ARE NOT CONSISTENTLY AFFECTED BY SYNTHETIC PPGPP VARIATION
The inverse correlation between the Level 3 sector “TCA cycle and anapleurotic enzymes”
and growth rate might suggest that this sector is incrementally induced by basal ppGpp.
However, increasing ppGpp by RelA expression failed to increase expression in most cases,
with the notable exception of acetate medium (Figure 2.5). This indicates that expression
is unlikely to be directly adjusted by basal ppGpp. Many of the proteins are known to be
induced by the regulator cAMP, which also correlates negatively with growth rate (Figure
2.1). Therefore, TCA cycle enzymes are likely coordinated with growth by basal cAMP, not
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Figure 2.9: Different amino acid pathways all
correlate with growth rate but see different re-
sponses to ppGpp titration. Concentration of the
various amino acid synthesis enzymes showing clear and
distinct responses to ppGpp titration, rescaled by concen-
tration obtained from wild-type sample in glucose minimal
media. Same graphical standards as in Figure 2.1
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basal ppGpp.

However, Meshl expression consistently decreases expression of TCA cycle enzymes
(Figure 4). This suggests that increasing ribosome expression by depleting ppGpp may
indirectly decrease expression of TCA cycle enzymes. As growth rate in acetate medium
is highly sensitive to abundance of TCA cycle enzymes [31, 32], further reducing their
abundance by ppGpp depletion is likely decreasing growth rate. Disrupting the natural
balance between ribosomes and TCA cycle enzymes is likely responsible for reducing
growth rate in acetate medium.

OUTER MEMBRANE PORINS RESPOND INCONSISTENTLY TO PPGPP TITRATION

Outer membrane porins mediate permeability of the outer membrane. While the roles
of individual porins are unclear, they represent a considerable fraction of the proteome
mass. We consider four porins, NmpC, OmpA, OmpC, and OmpE that occupy nearly
10% of the total cellular proteome. OmpC and OmpF are classified under the Level
3 sector “Transport” (within Metabolism), while NmpC and OmpA are not classified.
NmpC abundance decreases from acetate to glucose (from 7% to 4%), and is consistently
repressed by ppGpp depletion, but is not consistently induced by ppGpp overproduction
(Figure 2.6). The Omp proteins considered here consistently increase with growth rate
(OmpA increases from 1% to 2% of total proteome), but show inconsistent responses to
ppGpp variation. For instance, OmpA is consistently induced by ppGpp overproduction,
while OmpC is consistently induced by ppGpp depletion. As the specific roles of these
porins are not entirely clear (and regulation is highly complex), it is difficult to understand
the role of ppGpp in varying the abundance of these porins. However, none of these
proteins exhibit behaviours that are consistent with regulation by basal ppGpp alone.

2.3.4. IN CONTRAST WITH EXCESS PPGPP, CONSEQUENCES OF PPGPP
DEPLETION ARE CONDITION DEPENDENT

Any change in basal ppGpp decreases the growth rate. The proteome response to ppGpp
perturbations provides insight into why basal ppGpp concentrations are optimal. ppGpp
concentrations above basal exert clear effects on ribosomal protein abundance, consistent
with well-established inhibition of ribosomal RNA transcription. This inhibition decreases
ribosome abundance, thus decreasing the translation rate. In contrast, the specific effects
of depleting ppGpp below basal concentrations are less clear (aside from increasing
Translation sector proteins). While increasing ribosome abundance over the optimum
level is likely to divert resources away from other cellular functions, it is not clear which
specific resource becomes depleted by the expression of excess ribosomes. We therefore
analysed ppGpp depletion conditions to identify the specific cellular functions that
become growth-limiting when ppGpp is artificially depleted.

PPGPP DEPLETION LIMITS GROWTH BY REDUCING EXPRESSION OF CONDITION-DEPENDENT
CATABOLIC ENZYMES

The three conditions examined use different pathways for the initial steps of carbon
catabolism. We therefore examined the effects of artificial ppGpp titration on those spe-
cific pathways. Acetate uptake pathways (AckA, ActP, Acs) are not affected by ppGpp
depletion (Figure 2.10). Instead, ppGpp depletion reduces expression of TCA and glyoxy-
late cycle enzymes. Cells in acetate medium rely upon the glyoxylate shunt in particular:
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expression of enzymes AceA and AceB increase over 8 and 3-fold respectively compared
to glucose medium. Depleting ppGpp with Mesh1 decreases AceB expression by 25%. Ad-
ditional TCA cycle enzymes upregulated in acetate medium are also decreased by ppGpp
depletion, including aconitase AcnB, oxyglutarate dehydrogenase (SucAB), succinyl-CoA
synthase SucCD, and succinate dehydrogenase complex proteins SdAhABCD. This suggests
decreased growth due to ppGpp depletion in acetate medium might come from insuffi-
cient glyoxylate shunt and/or TCA cycle proteins rather than less proteins responsible
for acetate uptake. Interestingly, in glucose medium ppGpp depletion does not affect
abundance of these enzymes.

The first step of succinate catabolism is mediated by the succinate dehydrogenase
complex (SdhABCD), which oxidizes succinate to malate and produces NADH which
is oxidized by cytochrome b. ppGpp depletion reduces expression of SdAhABCD by ap-
proximately 30% (Figure 2.10). This repression of SAhABCD expression provides a clear
suggestion as to how ppGpp depletion can slow growth in succinate medium. Interest-
ingly, CpxP, a transcriptional regulator associated with cell envelope stress, increases by
3-fold during ppGpp depletion, but only in succinate medium. As ppGpp is not known to
regulate CpxP, membrane stress may be a downstream consequence of ppGpp depletion
in succinate medium.

Interestingly, enzymes repressed by ppGpp depletion in acetate and succinate medium
are only slightly repressed in glucose medium. Thus, ppGpp depletion in glucose medium
is unlikely to reduce growth rate by reducing expression of TCA cycle enzymes. ppGpp
depletion also minimally affects expression of enzymes within the Glycolysis sector. How-
ever, the glucose transporter PtsG, which is minimally expressed in acetate and succinate
medium, increases by 4-fold in glucose medium (Figure 2.10). ppGpp depletion does not
affect PtsG expression in acetate or succinate medium, but reduces expression in glucose
medium by 25%. PtsG titration has been used to vary growth rate in glucose medium
[33]. Thus, ppGpp depletion likely reduce growth rate in glucose medium by reducing
expression of PtsG.

PPGPP DEPLETION ACTIVATES INDIVIDUAL AMINO ACID SYNTHESIS PATHWAYS IN A
CONDITION-DEPENDENT MANNER
The clear regulation of translational proteins highlights the link between translation and
ppGpp. The best-understood enzyme responsible for maintaining ppGpp concentrations
is the ppGpp synthase RelA, which becomes active in response to binding of deacyl-tRNA
to ribosomes. While the processes that balance ppGpp synthesis and degradation to arrive
at optimal basal ppGpp levels are poorly understood (largely because the ppGpp hydrolase
enzyme, SpoT, is difficult to study), the abundance of amino acids likely plays a role in
determining RelA activity and thus basal ppGpp. Depleting basal ppGpp and inducing
excess ribosome expression might be expected to deplete amino acid pools, which should
in turn increase expression of amino acid pathways as a response. Therefore to further
identify consequences of metabolic limitation by ppGpp depletion, we looked for specific
amino acid pathways that become upregulated following mild ppGpp depletion by Mesh1
expression. Interestingly, the overall abundance of Level 3 sector “Amino acid metabolism”
is not affected by ppGpp depletion. However, individual proteins within the sector are
induced by Meshl1 expression, in a carbon source dependent manner.

ppGpp depletion in acetate medium increases expression of valine/isoleucine syn-
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Figure 2.11: A single and different amino acid synthesis pathway is increased by de-
pleted in each of the conditions investigated. Relative concentrations of amino acid synthesis
enzymes belonging to pathways that respond the ppGpp depletion in a specific condition. Concentrations are
rescaled by the concentration in glucose medium. Same graphical conventions as Figure 2.1
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thesis genes IlvD, IIVE, IlvG, and IlvM (Figure 2.11), which are co-transcribed from a
single operon. In both succinate and glucose media, ppGpp depletion slightly decreases
expression of these genes, indicating that the increased expression is specific to ppGpp
depletion in acetate medium. Thus, we predict that isoleucine or valine limit translation
(and thus growth) when ppGpp is depleted in acetate medium. Similarly, in succinate
medium ppGpp depletion increases expression of methionine synthesis genes MetB and
MetL, as well as the methionine ABC transport proteins MetQ, MetI, and MetN. However
the methionine synthesis gene MetE moves against this trend by decreasing. Finally,
ppGpp deletion in glucose medium considerably increases expression of the arginine
biosynthesis operon by 40% on average. Whether ppGpp depletion triggers starvation
of specific amino acids can be verified using ribosomal pausing assays to determine
translation pauses at corresponding codons in ppGpp-depleted conditions [34].

PPGPP TITRATION PERTURBS NUCLEOTIDE AND ACETYL-COA CONCENTRATIONS

To determine the metabolic consequences of synthetic ppGpp titration, we quantified
purine nucleoside phosphates and acetyl-CoA. As previously reported, concentrations of
ATP and GTP changed very little between the three media tested. However, incrementally
increasing ppGpp increased ATP and GTP at first, while further increasing ppGpp sharply
decreased ATP and GTP (Figure 2.12). In acetate increasing ppGpp seems to only decrease
nucleoside triphosphate (NTP) concentration. Increasing ppGpp does not perturb the
ATP charging ratio, which remains close to its normal value of 0.95. In contrast, the effects
of depleting ppGpp with Mesh1 on nucleotide pools appears to depend upon the carbon
source. With glucose and glycerol, depleted ppGpp increases GTP and ATP, while in
acetate, depleted ppGpp decreases ATP and GTP and slightly decreases the ATP charging
ratio (0.95 to 0.9).

The effects of synthetic ppGpp titration on acetyl-CoA are striking and consistent.
Synthetically increasing ppGpp causes acetyl-CoA to accumulate in all conditions tested,
whereas synthetic ppGpp depletion consistently depletes acetyl-CoA. As acetyl-CoA is a
precursor of cellular building blocks such as amino acids and fatty acids, its depletion
likely has profound consequences on downstream metabolism and cellular physiology.
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Figure 2.12: Excess and depleted ppGpp respectively accumulates and depletes acetyl-
CoA, while effect on ATP and GTP depends on the titration magnitude and on the
condition respectively. Concentrations of ATE, GTP and acetyl-CoA in various nutrient conditions for
wild-type as well as RelA* (top) and Mesh1 (bottom). Colors and symbols are the same as in Figure 2.1.

2.4. DISCUSSION

In this Chapter, we go beyond Ref. [13], which established the broad reach of ppGpp using
nutrient exhaustion to indirectly activate ppGpp synthesis. Manipulating ppGpp directly
and setting criteria to identify genes that respond to basal-level ppGpp, we distinguish
direct ppGpp regulation from indirect effects that follow from redistributing limited
proteome resources or perturbing other global regulators such as cAMP with a set of
criteria.

We find that proteins most directly related to translation (ribosomal proteins and
translation cofactors) are highly sensitive to incremental variations in ppGpp. Surprisingly,
many other proteins are insensitive to both ppGpp titration and growth rate. Furthermore,
only a minority of proteins whose abundances are highly sensitive to growth rate meet our
criteria, responding to both basal ppGpp and synthetically-titrated ppGpp in a consistent
manner. The rest of these proteins are likely coordinated with growth in response to
other signals such as cAMP. This work thus advances our understanding of basal ppGpp
regulation by establishing boundaries to its reach.

What about the genes that are known to be directly activated and repressed by ppGpp?
Our approach identified some genes thought to be regulated by ppGpp that do not
match the expected trends of a ppGpp-controlled target. Many amino acid biosynthesis
pathways require ppGpp for expression; however, their expression increases while basal
ppGpp decreases with increasing growth rate. Expression of these pathways clearly
cannot be titrated between growth conditions by ppGpp. It might be activated by a very
low threshold of ppGpp concentration below the ppGpp concentration measured in
glucose minimal medium. Increased expression of amino acid synthesis pathways with
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higher growth rate may arise from stronger feedback regulation due to higher demand.
This observation highlights that, in steady-state growth, most genes are not regulated
by ppGpp alone. Instead, ppGpp acts in combination with additional signals such as
starvation of a particular amino acid.

Our work highlights specific protein sectors that are balanced against the translation
sector in the conditions we examined. Broadly speaking, decreased expression of the
translation sector in succinate and acetate medium is a tradeoff required for expression of
TCA cycle enzymes to increase. Disrupting this tradeoff by artificially decreasing ppGpp
increases the translation sector, depleting the TCA cycle enzymes. This likely starves
the cell of metabolites, as indicated by reduced acetyl-CoA, which in turn may trigger
starvation of individual amino acids. This chain of events could be further tested with
ribosomal pausing assays.

Our work also reveals some of the metabolic consequences of non-optimal ppGpp
regulation leading to slower growth. Excess ppGpp is straightforward to understand at
a detailed level: inhibition of ribosome synthesis by ppGpp reduces the abundance of
ribosomes decreasing the overall rate of protein synthesis. As a consequence, the cell
possesses a higher catabolic capacity than normal. Cells cannot channel this catabolic
output into protein synthesis due to limited ribosome abundance, as indicated by the
accumulation of acetyl-CoA in cells with excess ppGpp.

In contrast with excess ppGpp, the consequences of depleted ppGpp on the catabolic
sector are not immediately clear. ppGpp depletion effects are obscured on the sector level
because ppGpp depletion does not consistently deplete specific catabolic enzymes in
every growth media. Instead, ppGpp depletion reduces expression of catabolic enzymes
that are upregulated in response to the specific carbon source. For acetate and succinate
media, expression of TCA and glyoxylate cycle enzymes are reduced by ppGpp depletion.
Expression of these enzymes is barely affected in glucose medium while expression of the
glucose importer PtsG, which is expressed in glucose but not in acetate or succinate, is
specifically reduced during ppGpp depletion in glucose medium.

How does reducing ppGpp lower TCA cycle enzymes expression while those are not
directly regulated by ppGpp? We note that ppGpp depletion reduces cAMP levels in
three out of four investigated media (glucose, succinate and glycerol; p<0.05), which is
a plausible explanation for why TCA cycle enzymes (and expression of PtsG in glucose
medium) are expressed at lower levels. The reduction in cAMP concentrations is very
surprising, as one would expect that excess ribosomes should deplete essential metabo-
lites, as we showed for acetyl-CoA. Unfortunately, regulation of cAMP by AMP cyclase and
cAMP hydrolase is poorly understood. Depleting ppGpp may cause specific metabolites
monitored by the cAMP system to accumulate, “fooling” the system into thinking that
conditions are better than they are.

Alternatively, ppGpp may affect expression via indirect mechanisms arising from its
direct influence over a large fraction of the proteome. This so-called “passive” regula-
tion has been speculated about [35, 36] and observed when a useless protein is strongly
overexpressed [3]. It is a consequence of limited resources, such as RNA polymerases or
ribosomes, available to transcribe genes and translate proteins: when more of them are
busy synthesizing some proteins (here, ribosomal ones) become limiting to the produc-
tion of others.
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2.5. METHODS

STRAINS

All strains are created using WT strain NCM3722, referred as WT. The RelA* inducible
strain, is the same strain described in Noga et al. 2020 [37]: pSC101-kanR-TetR-RelA*-
mVenus. The Mesh1 inducible strain was constructed for this study and has the following
genome p15A-kanR-TetR-Mesh1-YFP. To check whether the effect on growth of inducing
this gene construct comes from the production of Mesh1 and its effect of ppGpp we also
constructed p15A-kanR-TetR-YFP, which showed very minor to no effect on growth at the
highest induction level used in this study and in the most sensitive condition to ppGpp
depletion (acetate). Half of this induction concentration with the Mesh1 inducible strain
in the same conditions induced lower growth rate than any condition investigated in our
study.

GROWTH MEDIA AND CONDITIONS

Bacterial cultures are grown in MOPS minimal media using 15N isotope NH4Cl as nitro-
gen source and 2% carbon source: glucose, succinate, glycerol, aspartate or glutamate.
These last two carbon sources, containing nitrogen, are also 15N isotopes. Cultures were
inoculated directly from a single colony of the desired strain from a LB agar plate in a
250mL flask containing 25mL of the desired medium, which was brought to 20mL when
setting up the growth monitoring setup.

GROWTH RATE MONITORING

Optical density at 600nm is monitored every 5sec to 1min using an automated growth
measurement setup. Briefly, liquid culture is constantly pumped through a flow-through
cuvette measured for optical density at frequent intervals and subsequently pumped back
into the flask. Growth rate is extracted by smoothing OD measurements with a 5 minute
wide gaussian filter on OD measurements and taking median of the time derivative of the
neperian logarithm on a one hour window.

PPGPP TITRATION

To measure ppGpp concentrations at steady state, bacteria are directly induced in a 250mL
flask containing 25mL of minimal media with the desired carbon source. For natural
ppGpp levels, WT bacteria is simply grown up to 0.350D and three technical replicate
samples are taken as described in the paragraph below. For titrated ppGpp concentrations,
the strains described in this sections are grown. These strains see a very strong evolutive
disadvantage due to their low growth rate which can lead to the apparition of titration-
resistant mutants. To ensure the selection of the desired strains, a concentration of
25pg/mlL kanamycin is added to the media. We induce ppGpp titration when reaching
0.050D to 0.080D, depending on the strength of the induction. Steady state is considered
reached when growth rate, stays within 10% variation for 30 minutes, which happened in
around 3-5 hours for RelA* induction and 5-8 hours for Mesh1. Samples are then taken as
described below at ODg as close as possible to 0.35, always between 0.3 and 0.4. Growth
was subsequently monitored for 3 hours after sampling. When a decrease or an increase
in growth rate superior to 10% was measured after sampling, samples were discarded as
the first one means the culture did not reach steady state and the second one is likely
caused by selected mutants.
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LCMS NUCLEOTIDE AND METABOLITE MEASUREMENTS

To measure nucleotide concentrations, three technical replicates were sampled by pipet-
ting 1mL or 2.5mL (for lower ppGpp concentrations) of 0.350D culture onto a wet filter
under vacuum. The filter is immediately quenched upside down in 1mL ice-cold 2M
formic acid. Immediately after filtering, a known concentration of the nucleotides of
interest is added to the quenching solution. After 30 minutes in this solution, the filter
is thoroughly washed and discarded. 25uL. ammonium hydroxyde is added to the col-
lected quenching solution in a 1mL tube which is frozen at —80°C, which is kept at least
overnight and up to one month. To measure nucleotides and metabolites, a sample is first
thawed on ice the sonicated in ice-cold water for 10 minutes. Solid phase extraction was
performed to purify nucleotides and get rid of other compounds that might cause matrix
effects on the compounds of interest by altering the chromatographic separation or sup-
pressing their ionization. To do so, during sonication, an Oasis Wax SPE cartridge 30mg
30pm is prepared by, first, flowing through three times 1mL methanol, then, three times
1mL 4.5 pH 50mM ammonium acetate. Sample is then applied on cartridge and slowly
flowed through. Cartridge was washed with first 1mL 4.5 pH 50mM ammonium acetate
then 1ImL methanol and left to dry under vacuum for 5 minutes. Sample was eluted very
slowly from cartridge into eppendorf tube with 200pL 5:3:1:1 MeOH:ACN:H20:NH4O0H.
The obtained sampled was concentrate using a vacuum centrifuge after addition of 10uL
of 5% trehalose for stabilization during drying. Once dried, the sample pellet was redi-
luted in 20uL 5:3:2 MeOH:ACN:H20. The obtained sample was analyzed with Agilent
triple quad mass spectrometer and ZIC-cHILIC column. For the first minute we main-
tained 90% mobile phase B 11.25mM ammonium acetate, 3.75mM acetic acid and 2mM
acetylacetone in 80% ACN and 10% mobile phase A 3.75mM ammonium acetate, 1.25mM
acetic acid and 2mM acetylacetone in water. Then we applied a gradient towards reaching
80% mobile phase A at 15 minutes. We maintained this concentration for one minute
before applying a new gradient towards 100% mobile phase B between 16 and 18 minutes.
We maintained this concentration until 22.5 minutes to flush out remaining compounds.
Measuring low concentrations of ppGpp required to optimize peak height. In that pur-
pose, the method described here above and used in this study was slightly adapted from
the one developed and successfully used to measure nucleotides in Noga et al. 2020 [37].

NUCLEOTIDE AND METABOLITES DATA ANALYSIS

For each compound, 14N and 15N peaks were obtained, corresponding to standard
concentration added and biological sample respectively. Concentrations in pmol/ODgg
were obtained by multiplying ratio of the 15N over 14N peak areas area by the added
concentration of compound and dividing by ODggg at sampling. The latter being obtained
by average between the last ODgg¢ point measured before sampling and the first one after
sampling. From this calculation was obtained the concentration for each sample. Samples
for which no peak above a certain threshold depending on the compound was measured
were not used for this compound. When at least two technical replicates passed the
threshold, the mean and standard deviation was extracted from the replicates estimated
concentrations.
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UNTARGETED PROTEOMICS MEASUREMENTS

To measure relative protein concentration, we performed untargeted proteomics method
similarly as den Ridder et al. [14]. Briefly, 20mL of 20% of ice-cold Trichloroacetic acid
was added to 20mL of 0.350D culture. Content of the culture flask was transferred to a
50mL falcon tube and centrifuged 10 minutes at 1000g at 4°C. Supernatent was discarded
and cell pellets were frozen at —80°C. Cells were lyzed with bead beating, proteins were
precipitated in TCA before being reduced in DTT, alkylated in IAA and digested with
trypsin. Samples were labelled using TMT10plex reagents and analyzed by a QE plus
Orbitrap mass spectrometer. For more details on this procedure, we refer the reader to
den Ridder et al. [14].

SPECTRAL COUNTING UNTARGETED PROTEOMICS

To obtain absolute quantification of proteome mass fraction for each measured protein
in each condition from our untargeted proteomics data, we used iBAQ spectral counting
[17, 18]. To obtain absolute protein abundance estimations, we divided for each identified
protein in each condition the number of counts by the number of theoretically observable
peptides, which we obtained using the Matlab bioinformatics toolbox function cleave.m,
selecting the ones with a mass comprised between 800 and 2400 Da. We thus ignored
missed cleavages. We multiplied iBAQ absolute protein abundances by the mass of the
considered protein and divided by the sum of these products over all proteins to obtain
proteome mass fraction estimates.
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TITRATING PPGPP REVEALS ITS
LIMITED CONTROL OVER RESOURCE
ALLOCATION

Milan LACASSIN, Yaroslav BLANTER, Gregory BOKINSKY

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John von Neumann to Enrico Fermi, reported by Freeman Dyson[1]
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3.1. ABSTRACT

Since the discovery of the ppGpp signaling system, many attempts have been made to design
a model explaining its role in maximizing bacterial growth rate in various nutrient condi-
tions. However, these models often focus on subsets of the available relevant data or rely
on empiric optimality of growth rate rather than the mechanisms through which ppGpp
operates. None of these models have been applied to recent results of the impact of artificial
ppGpp concentrations on ribosome content and growth rate. In this chapter, we start with
the simplest bacterial growth model and add the necessary components upon this basic ar-
chitecture to explain more results. In particular, we investigate the reasons for the observed
divergence of artificially increased ppGpp concentration with the ones found in carbon
limitation. After showing that this cannot be explained by a higher acyl-tRNA saturation of
ribosomes, we demonstrate mathematically that a model of the ppGpp signaling system
can not explain the effect of excess ppGpp on growth and ribosome content if it considers
that ribosome abundance depends on ppGpp concentration only. We investigate whether
expressing ribosome production as proportional to the RNA polymerase concentration,
activated by nucleoside tri-phosphates and competitively inhibited by ppGpp could explain
such result. We find that defining ribosome production in such a way does not give rise to
the expected ribosome abundance, even in the natural case, highlighting the importance
of a better understanding of the factors contributing to ribosome production. Finally, we
provide results concerning other regulators and processes known or suspected to impact
ribosome production. We found that most of these factors show no evidence that they could
counteract the effect of excess ppGpp on ribosomes, with the exception of RNA polymerase
availability and passive regulation which might arise from the lack of upregulation of
catabolic proteins in excess ppGpp, in comparison with carbon limitation.

3.2. INTRODUCTION

PPGPP: A KEY REGULATOR IN BALANCING METABOLISM AND RIBOSOMES

The ppGpp regulatory system is a bacterial signalling system known to respond to various
nutrient starvations and bacterial stresses. Apart from its role during starvation and
stress, ppGpp also has a key role during steady-state growth: it downregulates some
processes linked to growth, such as the production of ribosomes [2, 3], and upregulates
processes involved in nutrient uptake and amino acid synthesis. By doing so in response
to insufficient amino acid pool, ppGpp is thought to find the balance between growth
(operated mostly by ribosomes) and the supply in amino acids [5], necessary to sustain
the first process. For so-called high quality carbon sources, low amount of ppGpp is
present, leading to large ribosome abundance to sustain fast growth. In poorer quality
carbon, which requires more enzymes to lead to the same production of amino acids,
more ppGpp is present, which downregulates ribosome content in favor of more enzymes
responsible for import and digestion of carbon. This feedback maximizes the growth rate
in various nutrient conditions. For a more detailed review of the way ppGpp is triggered
and its effects, we refer the reader to Chapter 1.
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Figure 3.1: The ppGpp regulatory system acts on key actors of the growth process.
Schematic view of the actors of bacterial growth and the role of ppGpp. A series of metabolic enzymes import
and digest nutrients, in the form of a carbon and nitrogen source, into amino acid and bind them to the
cognate transfer RNA (tRNA). The aminoacyl-tRNA are utilized by ribosomes to produce new proteins, the
main component of bacterial biomass, thereby making these tRNAs available to be bound to amino acids again.
In E. coli, ppGpp production is activated by deacyl-tRNA and dwelling ribosomes. ppGpp downregulates the
production of new tRNAs and ribosomes.

PPGPP PERTURBATIONS: FROM KNOCKOUTS TO ALTERING CONCENTRATION

The first identifications of ppGpp’s functions, like its control of ribosomal content, have
been made through knocking out the ppGpp synthetases RelA and/or SpoT. Recent studies
used a different approach by expressing various levels of either the catalytic domain of
the ppGpp synthetase RelA or the ppGpp hydrolase MESH1. This approach allows to
finely increase or decrease the ppGpp concentration to identify quantitative relationships
between ppGpp concentration, growth rate and other relevant compounds independently
from nutritional effects. This enabled investigations of the effect of ppGpp on cell size
[4], the relationship between ribosomal content and growth rate in non-optimal ppGpp
conditions [5], or the role ppGpp plays in ensuring timely adaptation to sudden amino
acid starvation [6]. Finally, this approach allowed us to obtain results that better delineate
the scope of ppGpp regulation on the proteome (Chapter 2).

LARGE AMOUNTS OF PPGPP SEEM TO BE NECESSARY TO FORCE DOWN GROWTH

Recent work investigating the coordination of phospholipid flux with growth [7], by mea-
suring growth rate and ppGpp concentration, obtained a result which indicates that
forcing down growth rate by inducing excess of ppGpp requires much higher concentra-
tions of ppGpp than the ones found in the natural case. This is surprising as it clashes
with the idea that ppGpp sets the ribosome abundance which is the main growth rate
contributor. Indeed, following this idea ppGpp and growth rate should follow a single
relationship when ribosomes are sufficiently supplied (which should be the case in excess
ppGpp). This called for a mapping of ppGpp concentrations in relation with growth rate to
better understand the effect of altering ppGpp levels and test whether this phenomenon
can be observed in other conditions.
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In Chapter 2, we used the same method as Noga et al. [7] and mapped the relationship
between artificially titrated ppGpp concentrations and growth rate in various minimal
media supplemented with different carbon sources. By doing so, we confirmed that, re-
gardless of the condition, much larger concentrations are required to force down growth
by artificially increasing ppGpp than the ones found in wild type bacteria growing at the
same rate (Figure 3.2A). Throughout the current chapter, we propose a model attempting
to explain this puzzling feature of the experimental data to which we refer to as "diver-
gence of excess ppGpp with the carbon line". Can higher ribosome saturation explain
divergence of excess ppGpp and the carbon line? Can NTPs activation of ribosomes
counteract the effect of ppGpp on ribosomes to yield faster growth in excess ppGpp? Can
other regulators or processes influence ribosome content differently in excess ppGpp
and carbon limitation? What are the quantitative laws that dictate ppGpp production
and its effects on growth? Before investigating these questions with our model, we briefly
review existing ppGpp-signaling models focusing on the impact on growth rate, as well as
relevant experimental data we based our model on.

EXISTING PPGPP SIGNALING MODELS OFTEN RELY ON GROWTH OPTIMALITY OR PREDICTED
PARAMETERS AND HAVE NOT YET BEEN APPLIED TO PPGPP PERTURBATIONS

Based on their experiments that beautifully show that ppGpp responds to a slowdown
in translation elongation rate, Wu et al. [8] built a model using this empirical observa-
tion for ppGpp synthesis. In turn, ppGpp not only downregulates the production of
ribosomes but also inactivates ribosomes. Growth rate is then obtained as a product of
the elongation rate and the active ribosome abundance. While this model is one of the
most comprehensive models of ppGpp regulation and explain many results (ribosome
abundance, ppGpp concentration, elongation rate and growth rate), it relies on the direct
inactivation of ribosomes by basal ppGpp (which lacks sufficient evidence). Attempting to
bridge the obtained relation between elongation rate and ppGpp production using known
triggers, the authors had to introduce a predicted term, for which there is no experimental
confirmation to date. Finally, this model has not been applied to ppGpp perturbations.

Erickson et al. [9] proposed another interesting model that considers the tradeoff
between metabolism and ribosome content as governed by ppGpp. In turn, ppGpp
influences the abundance of ribosomes and metabolic proteins able to metabolize a
specific substrate. However, this model primarily focuses on explaining nutrient transition
results and relies on optimal growth rather than explicating the way ppGpp is produced
and acts on ribosome and metabolic enzyme abundance. This limits its applicability to
explaining the effects of perturbing ppGpp concentrations on steady growth.

Another recent model by Chure et al. [10] also investigates the effect ppGpp has on
the metabolic-ribosomal tradeoff. It considers ppGpp as proportional to the ratio of
deacyl- to acyl-tRNA. Using this framework it considers three scenarios: fixed ribosomal
production, optimized translation rate, optimized growth rate. By deriving the ribosome
production as a function of ppGpp that corresponds to each of these scenarios it shows
that the latter (optimized growth) is consistent with many experimental observations.
However, rather than expliciting the mechanisms of ppGpp production and its action on
ribosomes, it relies on mathematical solutions leading to a specific behavior, once again
limiting its application to understand the divergence of excess ppGpp with the carbon
line.
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Finally, the model proposed by Bosdriesz et al. [11] is, to our knowledge, one of the
only models to explicitly model ppGpp production and its effect on ribosome abundance
based on the current understanding of the mechanisms involved: it considers ppGpp
production as a constant production by SpoT plus a RelA production activated by ribo-
somes bound to uncharged tRNA. Effect of ppGpp on ribosome production is modelled
as a competitive inhibition. This model successfully predicts key experimental results
of ribosome abundance and nutritional shifts. Unfortunately, this model has not been
applied to relevant results with artificially perturbed ppGpp concentrations, which came
later. While starting with a simpler model, we inspired ourselves from these models and
re-used some of their elements.

THE METABOLIC-RIBOSOMAL TRADEOFF MODEL: A GOOD STARTING POINT

Kohanim et al. [12] developed a simple model to explain a sudden increase in growth rate
when switching to a more abundant carbon source. This model considers the presence
of sub-saturated ribosomes that can quickly utilize the more abundant nutrient. This
model does not include the ppGpp signaling system. Instead, it is built on an empirical
optimal allocation that maximizes the growth rate. Due to the simplicity of the model,
this might allow us to add the necessary features to explain how this optimal allocation
is found through ppGpp, and to do it in a way that facilitates making predictions for
ppGpp perturbations. Additionally, this model is designed to describe the saturation of
ribosomes by substrates and predicted the presence of subsaturated ribosomes in poor
nutrient conditions. This prediction sparked our interest and we thus set out to explore
whether having subsaturated ribosomes could explain why higher levels of ppGpp are
required to artificially hamper growth than the ones found in the natural case. Indeed, one
could speculate that, oppositely to limiting the quality of the carbon supply, excess ppGpp
keeps a higher ribosomal saturation than carbon limitation. This could lead to the higher
growth rates observed in excess ppGpp for the same level of ppGpp (Figure 3.2 for details
of this data). Based on these reasons, we start in the next section 3.3 with an adapted
version of this model and include the necessary elements to explicitly incorporate the
ppGpp regulatory system and its perturbations. Before doing so, we briefly describe
experimental data we seek to reproduce and based our model on.

PERTURBING PPGPP LEVELS AWAY FROM THEIR NATURAL OPTIMUM INHIBITS GROWTH
The first result we hope to reproduce with our model is ppGpp concentration results ob-
tained in Chapter 2. As mentioned earlier we want to explain perturbations of the ppGpp
concentrations and how they impact growth. We found (Figure 3.2A), in accordance with
previous results [13], that limiting carbon source quality increases ppGpp concentration,
along with slower growth (gray dashed line in Figure 3.2A). We also induced ppGpp per-
turbations: both excess and depleted ppGpp had a negative impact on growth (dark and
light colored dashed line respectively in Figure 3.2A), revealing the optimal behavior of
WT ppGpp concentrations. We hope, by explaining with our model these concentrations,
to gain understanding on how optimal growth is achieved by ppGpp.

PPGPP PERTURBATION IMPACTS RIBOSOME CONTENT

The second and key result we seek to reproduce is the so called first growth law which
stipulates that ribosome content scales with bacterial steady-state growth rate for wild-
type E. coli in minimal media supplemented with carbon sources of increasing quality
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(supporting increasingly fast growth). This result has been for a long time attributed to
down-regulation of ribosomes by ppGpp. Adding to this, Zhu et al. [5] more recently
showed that perturbing ppGpp concentration affects ribosomal allocation in the following
way: excess ppGpp leads to insufficient ribosomes and, oppositely, depleted ppGpp leads
to excess ribosomes, both hampering growth. The ribosome content can be estimated
through RNA:protein ratio as most of bacterial RNA is ribosomal and most of cellular
mass is made of proteins. Relevant data of such ratio, obtained by Zhu et al. and Dai et al.
[5, 14] is compiled in Figure 3.2B.

TRNA CONTENT SHOWS A ROUGHLY CONSTANT RATIO TO TOTAL RNA

Amino acids are bound to specific transfer RNA (tRNA) which are used by ribosomes
to recognize amino acids and assemble them into proteins. The tRNAs are freed in
the process and therefore act as a carrier cycle delivering amino acids to ribosomes, as
depicted in Figure 3.1. Deacyl-tRNA have been reported to activate ppGpp synthesis,
together with dwelling ribosomes waiting for the right acyl-tRNA to resume translation
[15]. Implementation of the tRNA carrier cycle in a model might thus allow a better
description of the way amino acids contribute to translation and growth and enable
a mechanistic description of the way ppGpp synthesis is triggered. To do so in a way
that respects experimental evidence, we are interested in how the tRNA pool varies with
growth rate. Measurements of the fraction of RNA which is tRNA in carbon-limited
cultures have been long available and we provide such results, obtained by Rosset et al.
[16] in Figure 3.2C. These measurements show that, except at low growth rates, WT E. coli
displays a rather constant tRNA to total RNA ratio; unfortunately such measurements of
tRNA acylation are difficult to implement, and have not been performed during ppGpp
titration.

TRANSLATION RATE DECREASES BOTH WITH CARBON LIMITATION AND EXCESS PPGPP
Finally, because we are interested in ribosomal saturation we also include in our bench-
mark data regarding the rate at which individual ribosomes are translating proteins: the
translation elongation rate. Dai et al. [14] measured this rate for carbon limitation and
excess ppGpp and kindly made their data available. These measurements show that
both when inducing carbon limitation and excess ppGpp, the translation elongation rate
decreases towards about two third of its maximum value at null growth rate (Figure 3.2D).
In section 3.3.4, we compare these results to the one obtained through our model.
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Figure 3.2: Benchmark of experimental results to validate ppGpp regulation model
including ppGpp perturbations. (A) ppGpp concentration versus growth rate results. Circles represent
wild-type E. coli in minimal media with various carbon sources, squares represent excess ppGpp through
induction of a gene construct expressing the catalytic domain of the ppGpp synthetase RelA and stars represent
depleted ppGpp through induction of the ppGpp hydrolase MESH1. Each color represents a carbon source:
acetate in magenta, glycerol in green, succinate in ochre and glucose in blue. For more details on how this data
was obtained, we refer the reader to Chapter 2. (B) RNA:protein ratio depending on growth rate. Colors and
markers similarly as previous plot. Adapted from Zhu et al. and Dai et al. [5, 14]. (C) tRNA:RNA ratio in carbon
limited wild-type E. coli cultures. Digitalized and adapted from Rosset et al. [16]. (D) Translation elongation rate
measurements in carbon-limited cultures and under excess ppGpp. Adapted from Dai et al [14].
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3.3. RESULTS

In this section 3.3 we start with a simple model inspired by the one proposed by Kohanim
etal. [12] and describing the tradeoff between metabolic enzymes and ribosome abun-
dance. After solving this simple model and comparing its prediction to experimental
RNA:protein ratio data in the first part of this section 3.3.1, we incremently add model
features to attempt to explain more experimental evidence on growth in various carbon
conditions and when ppGpp concentrations are perturbed. Firstly, in the second part
of this section 3.3.2, in order to better describe the way amino acid are delivered to ribo-
somes and to facilitate the implementation of the ppGpp signaling system later on, we
add the entity reponsible for providing amino acids to ribosomes: tRNA. We then explore
how this addition changes the previously obtained predictions. Next, we implement the
ppGpp regulatory system in the third part of this section 3.3.3 and attempt to explain both
the existing RNA:protein data and the ppGpp concentrations we obtained in Chapter 2.
In the next part of this section, 3.3.4, we explore the conditions a model needs to satisfy
to explain both of these results. Then, in part 3.3.5, we develop a model of ribosome
production including the activation by NTPs. Finally in the last part 3.3.6, we investigate
through our experimental results obtained in Chapter 3, other regulators or processes
that might influence ribosome production.

3.3.1. TRADEOFF MODEL EXPLAINS RIBOSOME CONTENT SCALING WITH
GROWTH RATE

ADAPTING TRADEOFF MODEL TO QUANTITATIVELY APPROACH EXPERIMENTAL RESULTS

As we seek to build a model that quantitatively reproduces the measured data, we slightly
adapted the qualitative model used by Kohanim et al. by adding scaling parameters
allowing the ribosomal mass fraction to vary in the range [0; R;;,4x] instead of [0;1]. We
present here the adapted version and refer the reader to Ref. [12] for the version of
the model they developed. A schematic view of our version of the model is presented in
FigRCtradeoffA In this model, bacterial growth is envisioned in a highly simplified manner
that consists of two steps: nutrients are metabolized into a single precursor entity defined
by its mass fraction' x, which is consumed by the growth process occurring at rate u. The
time derivative of this precursor therefore has a production term y and a consumption
term . This precursor, like other entities in this model, is also diluting through growth,
adding a —ux term. The precursor dynamics are thus described as follows:

dx _ 31

Pra AR @G.D
The metabolic process is driven by catabolic enzymes grouped into a metabolic sector
represented by its mass fraction M. These enzymes metabolize nutrients at the rate y
proportional to M and the nutrient quality n. The nutrient quality describes the resource
efficiency of each nutrient source, namely how much of this nutrient can be metabolized
per unit of time and per metabolic enzyme. Additionally, for stability of the model and
in order to better describe the metabolic process, the activity of metabolic enzymes is
feedback inhibited by the precursor x, bringing the Michaelis-Menten multiplicative term

For complete description of the definition through mass fraction see section 3.7.1.
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Figure 3.3: Minimal tradeoff model displays ribosomal allocation optimum scaling
with growth rate in increasing nutrient quality (A) Schematic view of minimal model inspired by
Kohanim et al. [12], adapted and described in section 3.3.1. (B-C) Predictions of this model for RNA:protein ratio
in comparison corresponding experimental data. Model predicitions are obtained using two different parameter
sets: (C) parameters equivalent to the ones found by Kohanim et al. with subsaturation of ribosomes k2/k; =1,
(B) parameters with high ribosomal saturation k2/k; = 0.01. Grey line represents model prediction for optimal
RNA:protein ratio following a nutrient quality n scan. Optimal RNA:protein ratio is obtained from optimal
ribosome mass fraction R* through R/P = R*/ (1 - R*). Dark colored lines represent insufficient ribosomes
R < R* and light colored lines represent excess ribosomes R > R*. Each color correspond to one carbon as in
previous FigBenchmark to which is attributed a nutrient quality n. Experimental data points are displayed in
the same way as in FigBenchmark.
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k1
x+k;

. This leads to the following metabolic rate:

ky

_— 3.2
x+k; 3.2)

Y =Y maxM
Based on observation that mass fractions of metabolic and ribosomal proteome sectors
sum a to a constant value [17], this model assumes that the metabolic sector mass fraction
M and the ribosome mass fraction R follow the relationship:

M=Ruax—R, 3.3)

where the parameter Ry, is the maximal ribosome content when no resources are allo-
cated to metabolism or, in other words, the total mass fraction of metabolic and ribosomal
sectors”. This equation describes the tradeoff between allocating newly made resources to
metabolism to produce precursors or to ribosomes for growth. While growth is composed
of various processes such as transcription, translation and membrane synthesis, a large
fraction of the biomass is made of proteins [18] and production of other components
strongly rely on proteins. Therefore, growth is here considered as the translational flux
only and other processes are neglected. Because ribosomes are responsible for translation,
the growth rate scales with the mass fraction of ribosomes R. The precusor x is considered
as a substrate of the ribosomes necessary for them to drive growth, which is described by
the Michaelis-Menten type term x+—x,Q This term describes how the translation rate per
ribosomes decreases when precursor supply is insufficient. This leads to the following
equation for growth rate:
X

. 4
X+ ko G4

1= fmaxR
SOLVING TRADEOFF MODEL TO FIND OPTIMAL RIBOSOME ABUNDANCE
Kohanim et al. used an analytical solution of the model but for consistency with the
following presented models we use numerical solving to obtain u depending on R. At
various nutrient qualities n, we scanned values of R and computed the corresponding
growth rate by numerically solving the time derivatives of (x; R; M) equal to zero. For
each nutrient quality, we found one optimal ribosomal mass fraction R* yielding the
maximum growth rate for the value of n. To this value corresponds the optimal metabolic
allocation M* = R, — R*. To describe the way the mass fractions of these two sectors
evolve towards a new optimum, we introduce similarly as Kohanim et al. the dynamic
equations ddif = uM* — uM and % = uR* — uR. These dynamic equations, by using
a production term proportional to growth and the optimal allocation in competition
with dilution through growth, consistently find the optimal allocation at steady state. To
summarize, the obtained model can be described with the following equations:

k
%=Y—H—#x 1/=n}fm,mM—x+1,Cl
4R = uR* — uR With:  {p=pmaRsg 35
dd_]\f:lJ(Rmax_R*)_lJM M =Rpax— R

2Kohanim et al. used the equation M = 1 — R, which is qualitatively similar but does not allow to quantitatively
reproduce experimental data.
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which leads, by taking all time derivatives equal to zero, to the following steady-state
equations describing steady growth:

1

*

= TR

X =
R=

M = Ryax — R* . (3.6)

k
Y = Y max (Rmax - R*) X+_lkl

— *x X
K= HmaxR™ 56

ADAPTED TRADEOFE MODEL DISPLAYS INCREASING OPTIMAL RIBOSOME CONTENT

With this model the authors of Kohanim et al. were able to reproduce the sudden jump
in growth rate after a shift in nutrient abundance at the conditions that k; < ky, which
they interpreted as ribosome subsaturation as y < f;aR* in most conditions. They
also predicted an increasing optimal ribosomal allocation R* with increasing nutrient
quality. We are interested in repoducing ribosome content measurements as we seek to
explain how ppGpp is able find the optimal ribosome abundance. Ribosome abundance
has been inferred through RNA:protein ratio [5, 14], in wild-type E. coli and in strains
with artificially perturbed ppGpp levels. We assumed the vast majority of the biomass to
be made of proteins and ribosomal RNA, as has been shown to be the case [9]. In other
words, writing P the protein mass fraction, we have: R + P = 1. Therefore we can obtain

the RNA:protein with:
R R

P (1-R)
For each value of nutrient quality n, we get one curve of R/p with a maximum with
regards to u corresponding to R = R*. We split these curves between excess ribosomes
R > R*, depicted with light colored lines, and insufficient ribosomes R < R*, depicted
with dark colored lines, and display three of these curves in FigRCtradeoffB-C. For a
large number of these curves scanning values of n, we also identify the evolution of
the optimal RNA:protein ratio yielding the highest growth rate. We find that our model
predicts, accordingly with experimental results, scaling of the optimal RNA:protein ratio
with growth rate.

(3.7

RIBOSOME SUBSATURATION IMPLIES SPLIT BETWEEN OPTIMAL AND INSUFFICIENT
RIBOSOMES

Results in 3.3B correspond to high ribosome saturation k; < k;. We compare these
RNA:protein ratio results with results for ribosome subsaturation as identified by Kohanim
etal.: k; = k» (3.3C). Because excess ppGpp induces insufficient ribosomes, leading to a
lower growth rate, we are interested in the model predictions for insufficient ribosomes
R < R*. In contrast with experimental evidence of insufficient ribosomes through excess
ppGpp (Figure 3.3B), the model with k; = k; as proposed by Kohanim et al. because it
explains best their shift results, predicts that insufficient ribosomes lowers RNA:protein
ratio following a different relationship than the optimal RNA:protein ratio with regards to
growth rate, as shown in Figure 3.3C. More precisely, for a same RNA:protein, insufficient
ribosomes in a high nutrient quality yields a higher growth rate than a poor nutrient
quality. Interestingly, we found that with k; <« k», which corresponds to higher saturation
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of ribosomes, predicted an overlap of the relationship between optimal RNA:protein
ratio with the RNA:protein ratio arising from insufficient ribosomes, which resembles
experimental data better.

3.3.2. ADDING THE TRNA CARRIER CYCLE RETAINS OPTIMALITY OF

RIBOSOME CONTENT

Tranfer RNA (tRNA) delivers amino acids to the ribosomes to have them assembled into
proteins. They are also, together with dwelling ribosomes, thought to activate the main
ppGpp synthetase RelA. For these reasons, including tRNA in our model rather than a
single precursor might improve our description of ribosomal saturation while allowing us
to explicitly write the ppGpp regulation. In the next paragraph, we introduce tRNA and
how they act as a cycle acheminating amino acids to ribosomes before investigating the
consequences of adding this cycle on the model predictions. By implementing this cycle
in the resource-allocation model, we hope to bridge the notion of ribosomal saturation
with ppGpp regulation by tRNA pools.

IMPLEMENTING THE TRANSFER RNA CARRIER CYCLE

We add the tRNA carrier cycle to our model by grouping all tRNAs together into two
entities: deacyl-tRNAs described by their mass fraction 6 and acyl-tRNAs with mass
fraction T. We consider the whole metabolic pathway as one process converting deacyl-
tRNA into acyl-tRNA. A schematic view of the resulting model is provided in Figure
3.4A. In the previous model, the metabolic process, driven by the metabolic sector M is
only regulated by feedback inhibition by the precursor. While we can include feedback
inhibition by acyl-tRNA in this model, including only this regulation leads to metabolic
rate greater than zero when no deacyl-tRNAs are present: y(6 =0, T # 0) > 0. This would
be absurd as deacyl-tRNAs are necessary substrates of the metabolic process. To prevent
this and include the need for deacyl-tRNA to be able to produce acyl-tRNA we introduce
in the metabolic rate a Michaelis-Menten type term on 0: ﬁ' As this term has a
non-identical but similar effect as inhibition by 7, namely that higher charging ratio of
tRNA leads to slower metabolic process, we used only the term describing the need for
uncharged for the sake of simplicity. This leads to to the metabolic rate:

0

Y = Y max(Rmax — R)m- (3.8)

For the growth rate, we keep a similar expression, replacing the precursor x by acyl-tRNA
described by its mass fraction T as follows:

b= /JmaxR%kT- (3.9
TRNA ABUNDANCE SCALING WITH RIBOSOME CONTENT
In order to successfully add the tRNA cycle to our model and describe its dynamics,
we must assess how the tRNA pool scales with growth rate and ribosomes in different
conditions. Rosset et al. [16] have measured the fraction of RNA that is transfer RNA. They
found that this fraction stays rather constant in different carbon sources yielding various
growth rates, except for slow growth with u < 0.34! for which it is slightly higher. As a
first approximation, we assume this fraction to be constant. As tRNA and ribosomal RNA
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Figure 3.4: Adding transfer RNA carrier cycle to minimal model preserves most model
features and allows to explain non-zero RNA:protein ratio at null growth rate. (a)
Schematic view of the model with tRNA carrier cycle. (B-C) Model predictions and data displayed similarly
as previous Figures 3.2 & 3.3: grey line represents optimal behavior, dark colored lines describe insufficient
ribosomes R < R* and light colored lines, excess of ribosomes R > R*. (B) RNA:protein ratio versus growth
rate predictions of this model in comparison with experimental data. RNA:protein ratio is obtained through
R/p = R/ (1-R) (C) Fraction of RNA that is transfer RNA as a function of growth rate in carbon limitation,
comparison of model prediction and experimental data. In this graph, colored lines corresponding to lack and
excess of ribosomes fully overlap with optimal behavior and are thus hidden by the grey line describing this
behavior.
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constitute the vast majority of bacterial RNA [18], we neglect the mass fraction of other
types of RNA. With this assumption, the measurements of tRNA:RNA ratio correspond
to (0 +T)/(R+0+ T). This quantity being constant leads to 8 + T « R. In other words:
total tRNA content is proportional to ribosome content. We define a new parameter
¢ = (T +0) /R, which describes how the production of tRNAs scales with the production
of ribosomes.

SOLVING THE TRNA CARRIER CYCLE MODEL

Similarly as in the previous model the ribosomal sector is optimized to R = R* achieving
the highest possible growth rate for a given nutrient quality. To be able to describe
kinetics of this model and solve it numerically through finding steady state, we describe
the dynamics by writing time derivative as follows:

dL —y—p-pT
%:“_Y‘Ff}?*_ﬂe . YZHYmax(Rmax_R*)efke
dR * » with: e T . (3.10)
E:/JR —[JR ,uzﬂmaxR TkT
% = /J(Rmax - R*) -uM
These equations correspond to the steady-state values:
-r_
T= 7
0=¢R-L+1
(3.11)
R=R*
M = Rpax — R*

We analyzed this model to investigate how adding this cycle affects the predictions on
RNA:protein ratio. This model can be solved analytically to find u(R, n). We provide
such solution in supplementary materials 3.7.2 for any reader who wishes to use it. For
consistency with following models, after checking that it matches the analytical solution,
we analyze this model by minimizing derivatives for each set of (R, n) inputs considered.
We obtained, for each set of input, a solution (7,0, R, M) from which we can deduce the
growth rate u(R, T) and the RNA:protein ratio. For the latter we use, as previously, the
assumption that proteins and RNA constitute the vast majority of bacterial mass and now
include tRNA as follows:
R+T+60

R__R+T+0 (3.12)
P 1-R-T-6° )

ADDING TRNA CYCLE PRESERVES SCALING OF RIBOSOME CONTENT WITH GROWTH RATE

Similarly as with the previous model, we identify the optimal ribosomal allocation yielding
the highest growth rate for a range of nutrient quality values. We find that, as expected
due to the way this model is constructed, we obtain a tRNA:RNA ratio that is constant
both in optimal and non-optimal ribosomal allocation, see Figure 3.4C. We also found

that RNA:protein ratio prediction was similar though not identical to the simpler model
investigated in the previous section 3.3.1 (Figure 3.4B).
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THE TRNA CYCLE ALLOWS NON-ZERO RIBOSOME ABUNDANCE AT NULL GROWTH RATE
One of the main differences in the predictions of this model in comparison with the
previous model is that the split between the carbon limitation and the excess ppGpp
curve happens more drastically only under a specific growth rate, which is around 0.4h7!.
Secondly, at very low nutrient quality, this model is able to achieve null growth rate =0
with RNA:protein ratio R/p > 0 as is observed in various studies investigating this ratio
[5, 13, 14]. Therefore, at least in that sense, adding the tRNA carrier cycle improved
the ability of the model to reproduce experimental results. However, the RNA:protein
ratio corresponding to optimal behavior displays a kink which we do not see in the
experimental data.

3.3.3. PPGPP SCALING WITH DWELLING RIBOSOMES REPRODUCES NATURAL

PPGPP LEVELS AND FINDS OPTIMAL RIBOSOME CONTENT
In this section, we present an extension of the model analyzed in the previous section
3.3.2 by replacing the optimized ribosomal content that maximizes growth rate with a
regulation through the ppGpp signaling system determining ribosome production. By
doing so, we try to find a simple rule that explains how ppGpp finds the optimal ribosome
content and make predictions on the effect of perturbing ppGpp concentrations on
RNA:protein ratio and translation elongation rate.

IMPLEMENTING PPGPP PRODUCTION PROPORTIONAL TO DWELLING RIBOSOMES

As ppGpp is not a major component of bacterial mass and our experimental results
assessed ppGpp concentration, we use its concentration (G) rather than using a mass
fraction like for other variables. Moreover, due to the significant degradation ppGpp is
subject to [19], we neglect dilution of ppGpp through growth and write the derivative of
the ppGpp concentration as follows:

d G=Q-6G 3.13

ar ’ (5.13)
with G the concentration of ppGpp, Q the production of ppGpp, and § a parameter de-
scribing the passive degradation of ppGpp. In the case of carbon limitation, production
of ppGpp mostly happens through the ppGpp synthetase RelA sensing dwelling of ribo-
somes which are waiting for the right acyl-tRNA to continue translating [20]. Through
this sensing, ppGpp is triggered by a slow down in translation [8]. For more details
about this mechanism, we refer the reader to Chapter 1 section 1.2. We therefore write
Q = QoRgwer1 (R, T) with Qg a newly introduced parameter and Rg,,;;(R, T) the mass
fraction of dwelling ribosomes. To explicit this mass fraction, we re-write the growth
rate by including the translation elongation rate, namely the rate at which an average
ribosome is assembling amino acids. We do so in the following way:

U=poRo(T) With: o(T) =0 max (3.14)

T
T+kr ’
with p the growth rate per ribosome and per translation elongation unit and o, the
maximal translation elongation rate. Apart from allowing us to compare our results to
experimental translation elongation rate data, we can also now define dwelling ribosome
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Figure 3.5: Implementing ppGpp regulation as a ribosomal allocation inhibitor acti-
vated by dwelling ribosomes is sufficient to find almost exact optimal allocation and
predicts higher levels of ppGpp in excess ppGpp, with difference with carbon-limitation
far smaller than experimental data. (A) Schematic view of the model with implementation of ppGpp
regulation. (B-C) Model predictions and experimental data are displayed in the same way as earlier Figures
3.2-3.4 with the exception that dark and light colored lines now represent excess and depleted ppGpp respec-
tively and induce lack and excess of ribosomes, and the grey line represents prediction for wild-type E. coli.
The wild-type prediction is obtained scanning values of n with o = 0 and m = 0. Excess and depleted ppGpp
predictions are obtained with (o > 0;m = 0) and (o = 0; m > 0) respectively at a fixed n value for each color
corresponding to the different carbon conditions tested experimentally. (B) ppGpp concentrations predicted by
the model in comparison with experimental data. (C) Comparison of predicted RNA:protein ratio predictions
with experimental data.
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mass fraction as follows:

Rawen(R T)—R(U(T) 1)—R k1 (3.15)
dwell I, = O mar = T+kT' .
The following equation describes ppGpp concentration dynamics:
d
—G=QoRaywen(R, T) - 6G. (3.16)

dat

ADDING EFFECT OF PPGPP ON RIBOSOME PRODUCTION
Next, we modeled the repressive effect of ppGpp on ribosome abundance. To do so, we
define p (G) as the fraction of newly made biomass that is ribosomes such that:

AR (G- uR (3.17)
o7 ~HP(G) R :

As ppGpp is known to bind to RNA polymerase attempting to transcript ribosomal operons
and inhibit their activity, we assumed that this fraction p (G) follows a Michaelis-Menten
type inhibition relationship with ppGpp:

0(G) =Ry (3.18)

G
G+kg'
where Ry and kg are newly introduced parameters. Ry describes the maximal ribosomal
mass fraction achieved at G = 0 and k¢ the concentration of ppGpp necessary to decrease
ribosomal allocation to half of Ry. We also maintain the tradeoff relationship between the
between metabolic and the ribosomal sector described by M + R = R;;,4x. This leads to
the following time derivatives for M and R:

dR _ ki
{E_”ROG+G]€G_IJR

dM (3.19)

dar ~ /J(Rmux _R(]%(;CG) - puM
IMPLEMENTING PPGPP PERTURBATION WITH TWO NEW INPUTS
Finally, to be able to simulate excess and depleted ppGpp, for which we produced experi-
mental results described in Chapter 2, we add two inputs which we name o and m. The
first one adds to the ppGpp production to describe expression of the catalytic domain of
RelA used in experiments while the second one adds to the passive degradation of ppGpp
to describe expression of MESH1. We can thus write the ppGpp concentration derivative
including these inputs as follows:

d
EGZQORdwell(Rr T) +0—(6+ m) G. (3.20)

SOLVING STRINGENT RESPONSE MODEL
To summarize, we have the following set of dynamic equations for this model:

ar
ar =Y-H-pT 0
Y=ny (R —R)7 5
%=u—¥+u5Ro—G'i‘iG—u9 y_u}’?";x max S0tk
. = M0
IR = uRy 5% — uR With: r . B2))

0 =O0max Tyk;

Rawell = R( o) _ 1)

O max

k
D = 4 Rinax — Ro g | - M

LG=QoRaper+0-6+mG
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These equations correspond to the steady-state values:

T:}_l_l
6=1—%+5R
k
RzROT(;cG . (3.22)

M=Rpax—R

_ QoRgwer+o
G= o+m

These equations, with the exception of the ones governing the ribosome mass fraction
R and the addition of the ppGpp concentration G, are identical to the previous model
analyzed in the previous section 3.3.2. The steady-state equations for this model lead,
for u(n, o, m), to a quintic equation which is to our knowledge not solvable. Even if one
manages to solve this equation, the solution would likely be difficult to analyze. For these
reasons, we solved this equation numerically by minimizing the time derivatives written
above.

OPTIMIZING STRINGENT RESPONSE MODEL PARAMETERS

The number of parameters of this model makes their manual tuning very difficult. Ex-
ploring the parameter space in such a way to assess if the architecture of this model can
reproduce the experimental result is a strenuous task. For these reasons, we optimized
the parameters of this model by minimizing the square of the distance between all experi-
mental data points shown in Figure 3.2 and the corresponding model predictions. For
more details about the optimization process, please refer to section 3.6.

PPGPP SCALING WITH DWELLING RIBOSOMES APPROACHES OPTIMAL RIBOSOME CONTENT

We found that, with optimized parameters, the modeled ppGpp regulation finds a resource
allocation that is not exactly the optimal one but well approximates it, as is visible in
Figure 3.5B-C by the gray line intersecting colored lines close to their maximum in terms of
growth rate. It is also able to reproduce reasonably well the RNA:protein ratio (Figure 3.5C).
As the distance to the optimal allocation is minimal and likely close to experimental errors,
we can say that modeling the ppGpp prodution proportionally to dwelling ribosomes
only and inhibiting ribosomes with a Michealis-Menten type inhibition is sufficient to
find optimal ribosomal allocation.

MODEL PREDICTS SLIGHTLY HIGHER LEVELS OF PPGPP NECESSARY TO HAMPER GROWTH
THROUGH EXCESS PPGPP

Prediction for excess ppGpp vielded higher growth rate than limiting nutrient quality
for the same concentration of ppGpp, see Figure 3.5B. This is because the predicted
translation elongation rate is higher in excess ppGpp due to accumulation of acyl-tRNA,
see Figure 3.7. The higher translation elongation rate is due, in the model, to a higher
ribosome saturation because of more abundant acyl-tRNAs. However, the amplitude of
the split between the predicted curve obtained when inducing excess ppGpp and the one
obtained from decreasing nutrient quality is far from matching our data. Additionally,
the predicted ppGpp concentrations with regards to growth rate in different carbon
conditions quickly join and follows the same relationship. This is however not the case for
our ppGpp concentration measurements, which seem to follow parallel lines with regards
to growth rate.
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Figure 3.6: Larger difference in ppGpp level of carbon limitation and excess ppGpp
through ribosomal saturation implies larger differences in RNA:protein ratio. Predictions
of ppGpp concentration (A) and RNA:protein (B) of wild-type E. coli and under excess ppGpp, for two version
of the model described in section 3.3.4. Predictions are obtained similarly as in Figure 3.5. experimental data
and model predictions are displayed similarly as previously with the exception that predications for depleted
ppGpp are omitted. All colored lines thus correspond to excess ppGpp. The first version, displayed with lighter
colors corresponds to the one in Figure 3.5. The second one, displayed with darker colors, corresponds to
the same model with different parameters obtained following an optimization favoring the match between
predictions and experimental values of ppGpp concentration in when excess ppGpp is induced and ignoring
distance between RNA:protein ratio predictions and experimental data in excess ppGpp.

3.3.4. RIBOSOME SATURATION CANNOT EXPLAIN BOTH PPGPP LEVELS AND
RIBOSOME CONTENT IN EXCESS PPGPP

In Figure 3.5, we displayed predictions of our model concerning ppGpp concentration and
RNA:protein ratio. We found that this model predicts that inducing excess ppGpp follows
a relationship with growth rate with slightly higher ppGpp concentration than the natural
level at a same growth rate. However, the difference between these two relationships
linking ppGpp concentration and growth rate is much smaller than the one we observed
experimentally. In an effort to understand why this model is unable to reproduce the
concentrations of ppGpp seen when excess ppGpp is induced, we attempt in this section
3.3.4 to increase this split while conserving other predictions as close to experimental
data as possible by using a parameter optimization favoring shorter distance to excess
ppGpp concentrations data.

ATTEMPTING TO MATCH EXCESS PPGPP EXPERIMENTAL CONCENTRATIONS

We implemented the same optimization process as previous by giving a higher weight
to distances between predicted and measured ppGpp concentrations in excess ppGpp.
We also removed from the optimization the distance to experimental measurements
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in excess ppGpp of RNA:protein ratio and translation elongation rate. This way, we
favored parameters which reproduce the split in ppGpp versus growth rate between
excess ppGpp and nutrient quality limitation, at the expense of RNA:protein ratio and
translation elongation rate results.

MORE PPGPP REQUIRED TO INHIBIT GROWTH IMPLIES LARGER SPLIT BETWEEN OPTIMAL
AND EXCESS PPGPP RIBOSOME CONTENT

With the optimization process favoring minimal distance to excess ppGpp concentrations
described in the previous paragraph, we found that our model can approach excess
ppGpp measurements slightly better in terms of ppGpp, but also that favoring this affects
the RNA:protein ratio predictions, see Figure 3.6. Indeed, it seems that a larger split
between excess ppGpp and nutrient quality limitation in the ppGpp versus growth rate
plane implies a larger split in the R/p versus p plane, which conflicts with data from
Zhu et al. [5]. Their data shows a clear overlap of the RNA:protein ratio when limiting
growth through poorer carbon sources and excess ppGpp. This can also be interpreted
mathematically from our equations. Indeed, our model achieves higher growth rates in
excess ppGpp due to faster translation elongation, in other words ow (1) < 0, (1) with
WT corresponding to carbon limited wild-type E. coli and o referring to our engineered
strain with excess ppGpp. As u = poRo, this necessarily leads to Ry (1) > R, (1), meaning
that for the same growth rate, the wild-type strain has more ribosomes, which leads to a
higher RNA:protein ratio as ribosomes consitute a majority of bacterial RNA. Moreover,
the bigger the difference o, (1) — ow (1) the larger the Ry 1 (1) — R, (1) difference.
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EXPLAINING DIVERGENCE OF EXCESS PPGPP WITH THE CARBON LINE THROUGH RIBOSOME
SATURATION IMPLIES FASTER TRANSLATION ELONGATION RATE IN EXCESS PPGPP

Our model can also make predic-
tion for translation elongation rate
o. This rate has been shown ex-
perimentally to decrease in car-
bon conditions leading to lower
growth rate. When excess ppGpp
is induced from a carbon source
supporting fast growth, transla-
tion elongation rate decreases with
growth rate, showing a clear over-
lap with the relationship obtained
by decreasing the quality of the car-
bon source [5]. Our model, on the
other hand, explains faster growth
in excess ppGpp through relatively .
faster translation, see Figure 3.7. 00 05 1
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tRNAs, excess ppGpp is predicted lation elongation rate o by the model described in Figure 3.5
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. . R and excess ppGpp. Experimental data and model predictions
hlgher translation elongatlon raté gpained and displayed similarly as in Figures 3.2 & 3.5
in comparison with nutrient limita-

tion, in contradiction with experi-

mental data. This shows that explaining divergence of excess ppGpp and the carbon line
through ribosome saturation leads to discrepancy with the translation elongation rate
data available. We can also note that p = g Ro leads to:

owr (W) =00(1) < Rwr (1) = Ro(W). (3.23)

In other words, this model architecture can only obtain overlap of translation elongation
rate in nutrient quality limitation and excess ppGpp if and only if ribosome content over-
laps as well. As rRNA and tRNA keep a constant ratio, this is also true for the RNA:protein
ratio. Therefore explaining the divergence in the ppGpp concentration measurements
through ribosome saturation leads to predictions disregarding experimental evidence for
both RNA:protein ratio and translation elongation rate.

OVERLAP OF EXCESS PPGPP RIBOSOME CONTENT WITH OPTIMUM NECESSITATES
ADDITIONAL FACTORS INFLUENCING RIBOSOME CONTENT

Obtaining overlap of RNA:protein ratio versus growth rate in carbon-limited wild-type E.
coli and when excess ppGpp is induced imposes mathematical constraints to the model,
which we can derive. As tRNA and ribosomal RNA keep a constant ratio, this overlaps
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requires that the R(u) relationships also overlap in these conditions. In other words,

Rw () = Ry (u). However, in our model, we have: R (G) = Ry ]i—ckc This equation shows
that R is a single variable monotonous function of G. Therefore our model predicts the

following:
Rwr() = Ro(1) <= Gwr () = Go(W). (3.24)

This logical relationship shows that respecting the overlap of the RNA:protein experimen-
tal data under carbon-limitation and excess ppGpp requires the overlap of the ppGpp
concentration in the same conditions. In other words, no matter the parameters, this
model architecture cannot simultaneously reproduce RNA:protein ratio measurements
and our ppGpp concentration measurements in excess ppGpp. The hypothesis that
ribosomal saturation could be the cause of higher ppGpp levels required to tune down
growth through excess ppGpp with such a model architecture is invalidated. Addition-
ally, we identified that the assumption that the ribosomal allocation can be written as a
monotonous function f of the single variable ppGpp concentration is wrong: R # f (G).
Indeed, at least in carbon limitation and excess ppGpp, ribosomal allocation does not
follow the same relationship depending on ppGpp concentration. This can also be ex-
tracted from the data presented in our Chapter 2 data in combination with RNA:protein
ratio data collected by Zhu et al. [5], as shown in Figure 3.8.

3.3.5. ADDING EFFECT OF NTPS ON RIBOSOME PRODUCTION IS
INSUFFICIENT TO EXPLAIN EXCESS PPGPP BEHAVIOR

Apart from ppGpp, other compounds and processes have been reported to impact ribo-
somal operon transcription. Before direct effect of ppGpp on ribosome abundance was
established and considered as the main regulation, many studies aiming to elucidate
the mechanisms of ribosome abundance control and its correlation with growth rate
focused on the effect of the nucleosides triphosphate ATP and GTP. The concentration
of the NTP initiating this transcription, namely ATP or GTP depending on the ribosomal
operon considered, have been reported to influence the transcription rate in vitro [21-24]
and in some cases in vivo [25]. Following our observation that the two NTPs initiating
ribosomal operons, ATP and GTB, slightly accumulate in excess ppGpp, we explore in
this section 3.3.5 whether including activation by these NTPs, competitively inhibited by
ppGpp, allows us to predict RNA:protein ratios measured in excess ppGpp.

NTP AS SUBSTRATE OF RIBOSOME PRODUCTION COMPETITIVELY INHIBITED BY PPGPP

To attempt to describe effect of NTPs and ppGpp on ribosome content, we write the
variation of ribosome content as a competition between ribosome production Y and the
dilution through growth described by a term —p R, with p the growth rate and R the mass
fraction of ribosomes. This variation is thus defined as follows:

— =Y —-puR. (3.25)
ar - *
We then explicit the ribosome production by including the elements known to play a
role in ribosomal operon transcription. We therefore consider ribosome production as
scaling with the transcription of the operons and neglect the role of translation, protein
maturation and ribosome assembly in regulating ribosome content. This is likely a fair
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Figure 3.8: ppGpp levels do not alone determine RNA mass fraction. Results of RNA
mass fraction adapted from Zhu et al. [5] in comparison with our results of ppGpp concentration. To relate
our ppGpp concentration results to RNA mass fraction, we first converted RNA:protein ratio measurements
obtained by Zhu et al. [5] into RNA mass fraction and then used single linear fit through this data for each
strain and carbon source combination. Circles represent WT samples, stars represent depleted ppGpp
and squares correspond to excess ppGpp. Each color corresponds to a different carbon source: blue for
glucose, ochre for succinate, green for glycerol and magenta for acetate.
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assumption, as the RNA mass fraction is composed mostly of ribosomal RNA and ribo-
somal proteins concentration thus vary in the same way. We consider RNA polymerase,
described by its concentration P, as an enzyme operating ribosome production. This
production thus scales with P. We then explicit the regulation on this production as a
Michaelis-Menten type competitive inhibition with the concentration of initating NTP
as a substrate, and the ppGpp concentration G as a competitive inhibitor. We obtain the
following ribosome production:

n

m. (3.26)

Y (G,n,P)=RoP

This production leads to the variation of ribosome content that follows:

dR n
— =RyP———— —uR. (3.27)

CONSTRAINING PARAMETERS TO RESPECT WILD-TYPE GROWTH LAW
The dynamic equation for % leads to the following steady state for R:

RoP
p=ot, " (3.28)

K n+ks(l+%)

From this equation, we derive the expected concentration of NTP, corresponding to the
concentration of ppGpp G, necessary to achieve the ribosome mass fraction R as follows:

e MR (1+£) (3.29)
M= 5 meP—ur " " ke) '
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This equation describes the substrate concentration if equation 3.28 is true. In other
words, it is, for given G(u) and R(u), the necessary NTP concentration for ribosome
content to be described as competitive inhibition of ppGpp on the substrate. We constrain
our model through the points (11; Ry; G1) and (12; Ry; G2): the two extreme points of the
wild-type curve, glutamate and glucose respectively, to make sure it respects the behavior
of wild-type E. coli in various nutrient conditions. With this constraint, we have:

_ R G
m =ks RoP1— Ry (1 + k_Gl)
) (3.30)
_ 2Ry G
n2 = ks RoP>—p2 Ry (1 + k_é)

which allows us to write Ry and ks depending on (kg,n1, R1, G1,72, R2, G2). These expres-
sions are detailed in section 3.7.3.

IDENTIFICATION OF THE CONSTRAINED PARAMETERS REVEALS UNPHYSICALITY OF THE
RIBOSOME PRODUCTION DEFINITION

Constraining parameters as described in the previous paragraph leaves k¢ as the only
free parameter. The two other parameters ks and Ry depend on k¢ following expressions
derived in section 3.7.3. These parameters also depend on the growth rate of the two
constraining points, the corresponding concentrations of NTP and ppGpp as well as
the corresponding ribosome mass fraction. For the growth rate and the concentration
of these two molecules, we use our measurements in glutamate (point 1) and glucose
(point 2) obtained in Chapter 2 and displayed in Figure 3.10 with the two constraining
points represented with a red cross and circle respectively. We deduce the ribosome
mass fraction using a single fit through the RNA mass fraction data adapted from Zhu
et al. [5] and Dai et al. [14], displayed in Figure 3.9. When scanning positive values of
kg, we obtained only negative values for ks and Ry, regardless of using ATP or GTP as
the initiating NTP. In other words, the definition of ribosome used in equation 3.26 in
combination with the two constraining points defined by the set of equations 3.30 is
unable to reproduce, through the NTP and ppGpp regulation defined in this model, the
ribosome fraction observed in wild-type E. coli and displayed in Figure 3.9.

PHYSICALITY OF THE RIBOSOME PRODUCTION DEFINITION REQUIRES STRONGER SCALING
OF RIBOSOME PRODUCTION WITH GROWTH RATE

We investigated the conditions for physical solutions with ks > 0 and Ry > 0. We found that
these conditions lead to the single condition k¢ < [kgl ;4 (proofin section 3.7.3). For GTP,
we get [kGlax = —46.1 pmol/mL/OD. For ATB, we have [kgl;4x = —81.1 pmol/mL/OD.
Physicality could only be obtained with a higher value of [kl ;4. We can see from the
expression of [kgl,,4x (equation 3.61) that [kg] ;4 could be increased by increasing P»
or 1)2. In other words, the concentration of RNA polymerase and/or of the initiating NTP
do not scale with growth rate strongly enough to reproduce the ribosome content scaling
with growth rate with this definition of ribosome production.
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Figure 3.10: Quantities used for constraining ribosome production model. This figure
display the concentrations used in the ribosome production model described in section 3.3.5. (A) RNA poly-
merase concentration adapted from Klumpp et al. [26]. Gray dots represent RNAP concentrations found in
wild-type E. coli growing steadily in various nutrient conditions, as a function of growth rate. Red dashed
line represents fit used to obtain constraining points. Red cross and circle represent expected concentration
in minimal media supplemented with glutamate and glucose respectively, which respectively correspond to
the points (i1, P1) and (u2, P2) used for constraining the ribosome production model. (B-D) Concentrations
measured as described in our previous Chapter 2 as a function of growth rate. Graphical conventions are the
same as in Figure 3.2, with the addition of the red cross and circle representing constraining points 1 and 2
respectively. (B) ppGpp concentration as a function of growth rate. (C) GTP concentration as a function of
growth rate. (D) ATP concentration as a function of growth rate.
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ulators Fis, dksA and H-NS do not show
a consistent trend in altered ppGpp lev-
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centrations in WT E. coli grown in different carbon
source conditions and upon inducing excess and
depleted ppGpp in these different conditions, rela-
tive to the estimated concentration in WT grown in
minimal media supplement with glucose. Circles
represent WT samples, stars represent depleted
ppGpp and squares correspond to excess ppGpp
and each color corresponds to a different carbon
source.
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3.3.6. KNOWN REGULATORS AND PROCESSES INFLUENCING RIBOSOME
PRODUCTION DO NOT SHOW THE NECESSARY TREND TO

COUNTERACT PPGPP

In this section 3.3.6, we investigate regulatory proteins and groups of proteins responsible
for processes that might affect ribosomal production. We do so using results of untargeted
proteomics in carbon limitation and ppGpp perturbations obtained in the previous
Chapter 2. For details of the methodology on how these results were obtained, we refer
the reader to Chapter 2. Briefly, the perturbations of ppGpp were performed in the
same way as for our ppGpp concentration measurements and our measurements allow
estimation of relative abundance of single proteins accross different conditions as well as
the proteome mass fraction represented by a group of proteins.
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THE REGULATOR FIS DOES NOT ACCUMULATE IN EXCESS PPGPP

The regulator Fis is known to upregulate ribosomal operons during nutrient upshifts
by binding upstream from the all the seven ribosomal operons [27-29]. We display Fis
concentration in the different conditions considered in Figure 3.11A. We found, as previ-
ously reported [30], that Fis correlates with growth rate in different nutrient conditions.
When we induced excess ppGpp, we found that Fis concentration either stays constant or
decreases. In none of the excess ppGpp conditions did we observe accumulation of Fis.
Depleted ppGpp, on the other hand showed important accumulation of Fis in glucose
and succinate but not in acetate.

DKSA AND H-NS DO NOT SHOW A CONSISTENT TREND IN EXCESS PPGPP

We also measured the concentration of the proteins dksA and H-NS, known to negatively
impact transcription of ribosomal operons [31, 32]; dksA through enhancing the effect
of ppGpp, H-NS through competing with Fis by binding DNA sequences overlapping
with Fis binding site [31]. We display the relative concentration of these proteins in the
same conditions in Figure 3.11B-C. Our WT strain, in various carbon conditions, keeps a
rather constant concentration of these proteins. Perturbing ppGpp concentration did not
show any significant trend for the abundance of these proteins. In particular, we did not
observe depletion of these proteins in excess ppGpp.

CONCENTRATIONS OF PROTEINS RESPONSIBLE FOR DNA REPLICATION DO NOT INCREASE
IN EXCESS PPGPP

As they might influence the ribosomal operon copy number, we extracted proteome mass
fraction of proteins involved in the DNA replication process, as well as the ones initiating
this process. We did so through the gene ontology (GO) terms "DNA replication" and
"DNA replication initiation" respectively. In accordance with previous results, we find
that WT E. coli has a slightly higher concentration of these two groups of proteins in
carbon sources sustaining faster growth, as shown in Figure 3.12. We also observed that,
in excess ppGpp, the proteins reponsible for DNA replication either kept a similar mass
fraction as in the unperturbed WT strain or slightly decreased. Depleted ppGpp had little
effect on the abundance of these proteins, except in acetate where they increase slightly.

PROTEINS INVOLVED IN DNA TOPOLOGY ARE POORLY AFFECTED BY PPGPP PERTURBATION
Because they might modulate the expression of some operons, including ribosomal
ones, we were interested in quantifying the relative abundance of proteins involved in
modifying DNA topology. To do so, we extracted proteins annotated with the GO term
"DNA topological change". We display the concentration of these proteins in Figure 3.13.
We found that WT E. coli has a rather unchanged abundance of these proteins in the tree
carbon conditions investigated. ppGpp perturbation towards both excess or depleted
ppGpp had little effect on the concentration of these proteins.

RNA POLYMERASE ABUNDANCE IS UNAFFECTED BY EXCESS PPGPP

Finally, we measured the proteome mass fraction of proteins forming RNA polymerases
(RNAP) complexes through the GO terms "RNA polymerase complex" as RNAPs are the
machineries synthesizing ribosomal RNA. Results are shown in Figure 3.14. We find that
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Figure 3.12: Proteins responsible for DNA replication and its initiation do not
accumulate in excess ppGpp. Results of proteome mass fraction of proteins belonging to the
GO terms "DNA replication” (A) and "DNA replication initiation" (B). Circles represent WT samples,
stars represent depleted ppGpp and squares correspond to excess ppGpp and each color corresponds
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Figure 3.13: Proteins respon-
sible for modifying DNA topol-
ogy poorly respond to ppGpp
perturbations. Results of pro-
teome mass fraction of proteins belong-
ing to the GO terms "DNA topological
change". Circles represent WT samples,
stars represent depleted ppGpp and
squares correspond to excess ppGpp
and each color corresponds to a differ-
ent carbon source.
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the abundance of RNAP proteins of our WT strain slightly increase with increasing growth
rate. When both excess and depleted ppGpp were induced, the mass fraction of RNAP
proteins stayed to a similar level as for the unperturbed natural case.

3.4. DISCUSSION

THE MAIN TRIGGER FOR PPGPP PRODUCTION IN STEADY GROWTH IS LIKELY DWELLING
RIBOSOMES

In steady growth, the tRNA to total RNA ratio keeps a roughly constant value (Figure 3.2C)
while the mass fraction of RNA increases (Figure 3.2B). This means that the abundance of
tRNA increases with growth rate. Additionally, Dai et al [14] showed that several tRNAs
show a constant aminoacylation ratio. This indicates that the abundance of deacyl-tRNA
likely increases with faster growth. This would make deacyl-tRNA a poor candidate to
be the main activation of the ppGpp response in steady growth. Our model consider-
ing only activation of ppGpp production by dwelling ribosomes was able to reproduce
ppGpp concentrations and the optimality of WT concentrations. One could speculate
that while dwelling ribosomes are the main trigger in steady growth, the identified ad-
ditional activation by deacyl-tRNA [15] might play a role in sudden starvation, during
which aminoacylation of tRNAs likely drop, allowing ppGpp to spike at much higher
concentrations than in steady growth as has been reported [25].

EXCESS PPGPP DOES NOT INCREASE RIBOSOME SATURATION

In their study, the authors of Kohanim et al. [12] explain a first rapid increase of growth
rate following a carbon source concentration upshift by the presence of sub-saturated
ribosomes in the less abundant nutrient conditions. These ribosomes would be quickly
put to use when nutrient availability suddenly increases and rapidly increase growth rate.
Following this idea we investigated in the previous section 3.3 whether ribosome satu-
ration can explain discrepancy between ppGpp versus growth rate in carbon limitation
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and excess ppGpp. Using an adapted version of the model developed by Kohanim et
al. [12] (section 3.3.1) and our model expliciting the repression by ppGpp on ribosome
(section 3.3.3), we showed that explaining divergence of excess ppGpp and the carbon
line in such a way leads to faster growth per ribosomes (Figures 3.3C and 3.6) in contrast
with experimental evidence.

One year after the work of Kohanim et al., the study by Zhu et al. [5] showed that when
inducing excess ppGpp, ribosome content decreases following the same relationship with
regards to growth rate as lowering carbon source quality (Figure 3.2B). This contradicts
the idea that higher ribosome saturation could explain divergence of excess ppGpp and
the carbon line. Indeed, this idea implies that the same amount of ribosomes can yield
a higher growth rate in excess ppGpp, which is in contradiction with observations from
Zhu et al. [5]. They also measured translation rate per individual ribosome following
excess ppGpp induction (Figure 3.2D), which followed the same curve as seen in carbon
limitation in other measurements [8, 14]. Both in carbon limitation and excess ppGpp
translation rate decreases towards about half its maximum at zero growth rate. This
further disproves the hypothesis that ribosome saturation could explain our ppGpp vs.
growth rate measurements. According to this hypothesis, the translation rate should
increase in excess ppGpp. In other words, if ribosomes are sub-saturated in the poor
nutrient conditions as Kohanim et al. [12] proposed in the case of carbon source con-
centration, then, inducing excess ppGpp does not increase this saturation and make
ribosomes translate faster.

EXCESS PPGPP LIKELY DECREASES TRANSLATION RATE DIRECTLY OR THROUGH ITS EFFECT

ON TRNA

The decrease in translation rate in excess ppGpp seems at first surprising as inducing
excess ppGpp with a different system has been shown to trigger amino acid accumula-
tion [33]. A possible explanation could be direct effect of ppGpp inhibiting translation
[34]. Alternatively, downregulation of transfer RNA by ppGpp could also explain such
result. tRNAs are necessary to deliver amino acids to ribosomes and allow them to serve
translation. They are known to scale with ribosomes in carbon limitation [35] and some
operons containing tRNA genes have been shown to be down-regulated by ppGpp [24, 36].
Their down-regulation by excess of ppGpp likely allows only a fraction of the accumulated
amino acids to be bound to tRNA and participate to translation. This is consistent with
measurements from Dai et al. [14] who showed that a major fraction of tRNAs around 80%
are acylated in different carbon conditions. Decreasing total tRNA content with excess
ppGpp likely leads to lack of deacyl-tRNA which results in a decrease in aminoacyl-tRNA
content though the amino acid pool is increasing. This, in combination with the direct
effect of ppGpp on translation, could explain why the accumulation of amino acids does
notyield a faster translation rate.

EXCESS PPGPP MODELING CANNOT WRITE RIBOSOME CONTENT AS SOLE FUNCTION OF
PPGPP LEVEL

In Figure 3.8, we confirmed that ribosome content anticorrelates with ppGpp concentra-
tion in various carbon conditions. On the other hand, when excess ppGpp is induced,
the dependency of ribosome abundance to ppGpp level is weaker. Many attempts to
model the ppGpp signaling response write ribosome abundance as a sole decreasing
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function of the ppGpp level [8, 10]. In section 3.3.4, we have shown based on our data
that such models cannot explain the effect of excess ppGpp on both ribosome abundance
and growth rate. Further studies attempting to model this system and what happens
when it is perturbed will need to identify the other regulators or processes influencing
the ribosome content and implement this in a new model and, by doing so, investigate
whether additional regulation on ribosome content in excess ppGpp is also relevant to
the natural case.

NTPS ARE UNLIKELY TO COUNTERACT EXCESS PPGPP IMPACT ON RIBOSOMES

In section 3.3.5, we develop a model of ribosomal production proportional to the amount
of RNA polymerases and regulated by ppGpp and NTPs, which highlighted the need to
better understand other factors playing a role in ribosome abundance scaling with growth
rate. This is key to understanding how natural ribosome content relationship with growth
rate emerges before investigating how it is affected by excess ppGpp. While this does not
explain whether NTP levels could explain the divergence of excess ppGpp, we would like to
point out that the concentration of these NTPs is only increased in mild excess ppGpp and
drop back to their natural value at stronger inductions, as shown in Chapter 2 Figure 2.12.
For this reason, while the concentration of NTPs might play a role in increasing ribosome
abundance at mild excess ppGpp induction, their accumulation is unlikely to fully explain
what happens in excess ppGpp. Indeed, at strong inductions, the concentration of NTP
is the same as for a poor carbon source while the ppGpp concentration is much larger
(Chapter 2 Figure 2.1A) and the resulting ribosomal abundance is the same (Chapter 2
Figure 2.4 and Zhu et al. [5]).

KNOWN REGULATORS OF RIBOSOMAL OPERONS UNLIKELY TO COUNTERACT EXCESS PPGPP
IMPACT ON RIBOSOMES

To counteract the effect of excess ppGpp and explain why higher ppGpp levels in this
condition yield the same amount of ribosomes as in poor carbon, higher level of Fis
in excess ppGpp would be required, which we did not observe (Figure 3.11). The two
remaining known ribosomal operon regulators, apart from ppGpp, initiating NTPs and
Fis, are dksA and H-NS. Both have a repressive effect on the transcription of ribosomal
operons and counteraction of ppGpp through these proteins would thus require them
to deplete in excess ppGpp, which we also did not observe. These known regulators of
ribosomal operons are thus unlikely to counteract the effect of excess ppGpp on ribosome
abundance. This phenomenon might be explained by another yet to be discovered
regulator, or global effects modulating transcription.

CONCENTRATION OF RIBOSOMAL OPERON IS UNLIKELY TO INCREASE IN EXCESS PPGPP

Apart from regulators activating or repressing ribosomal operon, the ribosome abundance
might also be influenced by the concentration of ribosomal operons. Our results of DNA
replication proteins, displayed in Figure 3.12, show no accumulation of these proteins
which seems to indicate that DNA replication is not increased in excess ppGpp. More-
over, excess ppGpp is known to downregulate the amount of DNA per cell [37], likely by
stopping new rounds of replication. This same study also identified that the DNA origin
of replication (ori), usually more abundant than the terminus (ter), is found in similar
amount in excess ppGpp, likely as overlapping rounds of replication are stopped. Riboso-
mal operons, situated close to the origin of replication, are likely scaling in abundance like
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this sequence. As both DNA content per cell and the ori/ter ratio decrease, the number of
ribosomal operon per cell very likely decreases. The decreased cell size in excess ppGpp
might slightly counteract this effect to increase the concentration of ribosomal operons
but the results from Schreiber et al. [37] seem to indicate that the effect on DNA content
and the ori/ter ratio is at least as drastic as the one on cell size. It seems thus quite unlikely
that the concentration of ribosomal operon increases to counteract the effect of ppGpp
on ribosome content when we induce excess ppGpp.

TOTAL ABUNDANCE OF RNAP 1S UNLIKELY TO COUNTERACT EXCESS PPGPP

As RNA polymerases (RNAPs) are the machineries responsible for transcription, their
abundance might influence the overall transcription rate, thus also the transcription of
ribosomal operons. In Figure 3.14, we showed that the abundance of RNAP proteins
is unchanged when excess ppGpp is induced. Therefore, the total abundance of RNAP
counteracting the effect of excess ppGpp on ribosomes is very unlikely. On the other hand,
at similar abundance, the availability of RNAPs can vary and also affect transcription of
ribosomal operons, which we were not able to test with these measurements.

ADDITIONAL REGULATION ON RIBOSOME CONTENT MIGHT ARISE FROM PASSIVE
CONSTRAINTS IMPOSED BY REGULATION OF OTHER PROTEOME SECTORS

After attempting to explain the counteraction of the effect of ppGpp on ribosome abun-
dance in excess ppGpp through other ribosomal regulators or processes that might
influence ribosomal transcription without success, we speculate another possible expla-
nation. We believe that the downregulation of ribosome content in carbon limitation
could arise from a combination of the effect of ppGpp and passive constraints arising
from upregulation of other proteome sectors, such as the catabolic sector, by other regu-
lators. This could for instance leave less RNAPs available to transcribe ribosomal operons.
Excess ppGpp would decrease ribosomal content only through direct repression, without
upregulating these sectors as is indeed observed in Chapter 2 for the proteome sector
containing catabolic proteins. Additional modeling efforts, implementing such regulation,
and experiments, to test RNAP availability for example, would be required to test this
hypothesis.

3.5. CONCLUSIONS AND PERSPECTIVES

We have shown that simple laws are sufficient to explain reasonably well the behavior of
wild-type E. coli growing in various carbon conditions in terms of ppGpp concentrations
and RNA:protein ratio as well as the optimality of ppGpp concentrations (Figure 3.5).
We thereby proposed a simple model architecture which could be used as a base for
future modeling efforts: tradeoff between metabolic enzymes charging tRNAs with amino
acids and ribosomes assembling amino acids into new biomass and the ppGpp response
triggered by dwelling ribosomes and downregulating ribosomes.

Attempting to explain higher ppGpp concentrations measured when excess ppGpp is
induced than in carbon limitation at similar growth rate through a higher aminoacyl-tRNA
saturation of ribosomes, we found that this leads to higher growth rate per ribosome, in
contrast with experimental evidences (section 3.3.4). We showed mathematically that the
overlap of RNA:protein ratio in excess ppGpp and carbon limitation and the divergence
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of ppGpp concentrations in excess ppGpp can only be achieved by models considering
additional regulations on ribosome content than ppGpp only. This observation explained
why our models were unable to capture both of these behaviors and gave directions for
future models attempting to explain ppGpp perturbations: after identifying factors that
influence ribosome content differently in excess ppGpp and carbon limitation, one could
implement this regulation to the model we proposed and test whether this is sufficient to
explain the various experimental results we compared our model to.

In that purpose, we built a more mechanistic model of ribosomal operon transcrip-
tion including the reported activation by NTPs. This model was unable to explain ob-
served ribosome content, highlighting the need to better understand the different factors
that make ribosome content scale with growth rate. We investigated known ribosomal
regulators and processes, other than ppGpp and NTPs, that could influence ribosome
production: through our proteomics measurements and previously published studies,
we found that most of them are unlikely to counteract the effect of excess ppGpp, with
the notable exception of RNAP availability, which we were unable to investigate. Future
studies could investigate RNAP availability in excess ppGpp or attempt to narrow down
the search by placing a reporter gene under the control of a ribosomal promoter on a
plasmid and measure its expression to understand if ribosomal promoters give rise to the
same trends independently from the chromosome.

Following observations from our previous Chapter 2 that some proteome sectors such
as the ones containing catabolic proteins are unaffected by excess ppGpp in contrast
with carbon limitation, we speculated that ribosome content might, on top of being
downregulated by ppGpp, be negatively impacted by the upregulation of other proteins
in carbon limitation. The absence of this second passive regulation in excess ppGpp
could explain why the same ppGpp concentration leads to higher ribosome content, for
example through RNAP availability. Future modeling efforts could attempt to explain
ribosome content in such a way to test this hypothesis, either by empirically using results
of catabolic sector abundance, or by introducing its regulation into the model.

3.6. METHODS

STEADY STATE EQUATIONS SOLVING

To solve all presented models we expressed time derivatives of all entities of the model,
depending on parameters and inputs. These entities may include (R,C, x,7, T, [ppGpp]).
The first two of these entities are included in all models while the latter four are included
only in some of the presented models. We minimized the time derivatives of the in-
cluded entities using the least square non linear trust region reflective algorithm. We
constrain mass fractions between 0 and 1 and [ppGpp]| between 0 and 10000 and use
the criteria function tolerance, step tolerance and optimality tolerance equal to 210716,
After checking that the algorithm exited due to reaching one of these criteria, we can
extract the values of the variables which minimize the time derivatives. We use these
values to compute all rates and quantities of interest. We repeat the process for all sets of
parameters and inputs of interest. For example, to find the line describing the wild-type
strain under carbon limitation, we scanned values of 7 € [0; 1] and ran the minimization
algorithm for each of them.
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PARAMETERS OPTIMIZATION

For the last and most complex model presented here, for which manually tuning pa-
rameters is a strenuous task, we numerically optimized parameters to best reproduce
experimental data. To do so, we setup a function describing the distance between model
predictions and experimental data points. This function first computes steady state values
for a scan in nutrient quality n keeping other inputs (o; m) at zero describing carbon-
limited wild-type growth. Secondly, it also compute steady state values at fixed n values
following scans of inputs o and m, keeping the one which is not scanned at zero. These
scans describe ppGpp perturbations: o > 0 for excess ppGpp and m > 0 for depleted
ppGpp. We define a value of n for each carbon source for which data for such perturba-
tion exists, which we add to the list of parameters. Finally, for each experimental point i
displayed in Figure 3.2 we computed the relative distance between the predicted line and
the data point in the Y versus p plane with Y the considered experimental quantity as
follows:

Yimod — Yexp,i )2 (,umod — Hexp,i )2 (3.31)

d;=min (
max(Yexp) max(texp)

with the following:

* Umod and Yy, .4 respectively the vectors describing the growth rate and the corre-
sponding value for the quantity Y.

* Yexp and pxp respectively the vectors describing the experimental values and the
corresponding growth rate in the considered condition.

* Yexp,i and leyxp,; the experimental value and growth rate of the considered point i.

We split conditions into wild-type in carbon-limitation, excess and depleted ppGpp in
each carbon on source separately. For each excess and depleted ppGpp condition we
also include the distance between the line corresponding to this perturbation and the
wild-type point in order to force the perturbation line to anchor and intersect the carbon-
limitation line at the right point. Finally we construct the vector we wish to minimize
through parameter optimization by multiplying each distance d; by a weight factor w; as
follows:

V =[undy,...,w;d;,...,dy]. (3.32)

For the model results displayed in Figure 3.5 we used the following weights w; = 5 for
wild-type carbon limitation of RNA:protein ratio and [ppGpp]| and w; =1 for all other
that points. For the model version favoring in Figure 3.6 we used w; = 10 for RNA:protein
ratio in carbon-limitation and [ppGpp| in carbon-limitation or excess ppGpp, w; = 2 for
RNA:protein ratio in depleted ppGpp, w; = 0 for RNA:protein ratio in excess ppGpp and
all translation elongation points and w; = 1 for the remaining.

To optimize parameters and avoid local minima we use rounds ten parallel runs of the
Levenberg-Marquart algorithm. For each run we start with randomize each parameter as
follows:

pi=pio-10" With: , (3.33)

with the following:
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* pio the initial value of the considered parameter.
¢ p; the new value of the parameter after randomization.

e j the number of the round of parallel optimizations.

e r=N (0, %) arandom variable.

e A (a,s) the gaussian distribution of mean a and standard deviation s.

For each round we select the parameters obtained from the optimization that gave
the lowest sum of least squares. After ten rounds of parallel optimization the value of
parameters found is usually the same, which likely corresponds to the global minimum.
In other words, the value of the parameters that give the lowest sum of weighted square
distances to each experimental data points.

3.7. SUPPLEMENTARY MATERIALS

3.7.1. MODEL DEFINITION THROUGH MASS FRACTION

Let’s consider the simplified example with the mass of nutrient m,,, of precursor m,, and
of biomass mp and respectively the metabolic and growth fluxes I and G in mass/time
(or g/h) as such:

my & mye & mg. (3.34)

Then we have d{;’;x =T'-Gand ddif =G. Thus:

d d
4 (m_) _ SEmsmme
dt\mp g . (3.35)
d(me)_I=G _my G
dt\mg) ™ mp  mp mp
We define mass fraction of precursor x = 2% catabolic rate y = -— and growth rate
mp mp

u= W% and thus have:

dx _

T Y — M= UX. (3.36)
This reasoning can be generalized to any mass fraction X = Z’l—’;
If the mass my is produced with flux Px and consumed with flux Cx we then have

dditx =Py —Cx and:

dmy dmp
dX _ d (M) = —a MBTIX TG
dt dt \ mp m% . (3.37)
dX _ Px-Cx _mx G
dtr — mp mp mp
We can then define production px = 51—); and consumption rate cx = 51—’; and we have:
ax
E =px—cx —uX. (3.38)

We can thus apply this mass fraction definition to any quantities in our system, for
example the deacyl-tRNA mass fraction 6 or the acyl-tRNA mass fraction 7.
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3.7.2. SOLUTION FOR STEADY STATE GROWTH OF MODEL IN FIGURE 3.4
In this annex we present the analytical solving for the steady-state solution p = p (R, n) for
the model described in Figure 3.4.

Steady state equations:

0
Y =Ymax"(Rmax — R) m; (3.39)
= R r_. (3.40)
H=HUmax T+ kT’ .
dT_ —u—puT=0; (3.41)
ar Y—H—plL =0 :
T+0=¢R. (3.42)
Solving:
k
(3.40)—T=—"TH . (3.43)
UmaxR—

_ fl»lmasz_fR,u_ kr

(3.42)&(3.43) — 0 ; (3.44)
UmaxR—p
6
(3.41)&(3.39) = Ymax(Rmax —R)—— =1+ T); (3.45)
0+ ky

(3.44)&(3.45) =Y maxn(Rmax — R) (f,umasz —¢Ru—krp)
PmaxR—p+krp  (3.46)

= N(f,umasz —¢Ru—krp+kottmaxR— ko) xR — 12

Ymax"(Rmax — R) (‘f,umasz —¢Ru—krp)(UmaxR— 1)

(3.47)
= ﬂ(gﬂmasz —¢Ru—krp+kopimaxR — ko) (Umax R — p+ krp);

Ymax " tmax(Rmax = R’ =Y max € hmax(Rmax = AR

~ Y maxYmaxMmax(Rmax — B ER + kD) R+ Y maxn(Rmax — RN ER + kp)
=(ER+kr+ ko)A —kp)i® (3.48)

— [(€R+ kg) (1 = kT)maxR + ER + k1 + ko) hmax R] 12

(ER + k)2 R%;
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ER+kr+ ko)1 — kp)p®
— [€R+ ko)1 — k1) phmaxR + R + k1 + kg) thmax R
+Ymax7 (Rmax — R) (R + kT)] /.1,2

2 2 5 (3.49)
+ [(fR + ko) hmaxR” + Ymax € hmax (Rmax — R) R
+YmaxMHmax (Rmax — RVER+ kr)R] pt
- YmaxnflJ%naX(Rmax - R)Rs =0
”3 _ (CR+kg)(1 — kr)imax R+ (ER+ k1 + ko) max R + Y maxn(Rmax — R)(ER + k1) IJZ

(CR+kr +kg)(1 - k1)
+ R+ kG).u%nasz + Y max € Umax Rmax — R)R2 +Ymaxmax(Rmax — R R+ kT)R u
SR+ kT + kg)(1— k)

_ Ymaxnfﬂ?nax(Rmax - R)R3 -0
(&R +kr + ko)1= k) ’

(3.50)

1+ B +€p+2 =0, (3.51)

with:
B=— CR+kg)A—kr)tmax R+ R+kr+kg) max R+Y max M(Rimax—R) (ER+kr)
- (ER+kr+kg)(1—kT)
€ = (ER"'ICG)N%rmeZ+Ymaxn'fl~tmax(Rmux_R)R2+7mux”Ilmux(Rmax_R)(fR‘*'k'l‘)R
- (ER+kr+kg)(1-k7)
Q= _Ymaxn%(,u%nax(Rmax—R)R?’
- (CR+kr+kg)(1—kT)

(3.52)

P i/zgaB —9BC +27D +\/ (2B —9BE +27D)? — 4(B% —3%6)3
- > ,

choice of + does not matter for this term, same three solutions are found afterwards.

Different solutions are:

(3.53)

1 B -3¢
o=t b s £259),

zkx

with z = %53

The physical solution is found for z¥ = 1 as other two solutions lead to complex value
of u. The physical solution can thus be written as follows:

B> -3¢
—) (3.54)

1
=uy=—|B+X%
H=Ho 3( +Z4 + @

3 3 _ 3 _ 2_ 2_ 3
with: & = \/2913 9BEC+271D+\/ 2B 29@%+27@) 4#*-36)
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3.7.3. DERIVATION OF THE CONDITION FOR PHYSICALITY OF THE
NTP-REGULATED RIBOSOME PRODUCTION MODEL
We defined parameter constraints as follows:

_ 1Ry G
m = ks RoP1—p1 Ry (1 + kc)

(3.55)
_ 2Ry G
m2 = ks RoP2—p2 Ry (1 k_CZ;)
These constraints lead to the following expressions for ks and Ry:
_ m(RoPi—R) kg
ks = U1R1(Gr+kg)
(3.56)

_ N1 (kg +G2)—n2 (kg +G1)
Ro = p2Ropi1 Ry P1n1p2 R (kg +G2)—Panz 1 Ry (kg +Gr)

The conditions for physicality are ks > 0 and Ry > 0. The first one, ks > 0, leads to:

Ry > PIIJIRI- (3.57)

This condition implies Ry > 0 and is thus the only condition to have a physical solution
for the two parameters kg and Ry. It leads to:

p2R: [m (kg + G2) =12 (kg + G1)| o1
Py [PimipaRy (kG + G2) — Pamapii Ry (kg + G|~

(3.58)

For the denominator of the fraction on the left side of this inequation to be positive, is
required:

S Ponop1 R Gy — P12 R G

(3.59)
Pympz Ry — Ponapin By

G

For GTP this means kg > —0.3pmol/mL/OD and for ATP: kg > —14.7pmol/mL/OD.
In other words, the denominator in inequation 3.58 is always positive for any physi-
cal value of kg. Using this knowledge, we can derive for 3.58 the condition on k¢ for
physicality, which is:

2R
P,

[m (kg + G2) =02 (kg + G1)| > Py o Ry (kG + G2) — Pamapii Ry (kg + G1) . (3.60)

This conditions leads to:

ke < kel 3 Pynopi R1Gr— Py?01 o RoGo — i Ro G — pa Ry (12 = 11) (3.61)
G G = ) .
e P12n1u2Ry + Py Pomap Ry + p2 Ra (2 — 1)
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Il dort dans le soleil, la main sur sa poitrine
Tranquille. 1l a deux trous rouges au coté droit.

In the sun he sleeps, hand on his chest
Peaceful. He has two red holes on his left side.

Arthur Rimbaud, in Le Dormeur du Val [1], October 1870, depicting a, first thought asleep
dead soldier, highlights our difficulty in distinguishing death from dormancy.
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Several organisms are able to have their lives halted in a dried state and resume normal
dividing activity after being rehydrated. While many of these organisms are unicellular
such as yeast and some species of bacteria, some cells from more complex organisms or even
multicellular organisms can also survive dehydration. However, these organisms are rare
exceptions as most cells and organisms cannot be revived after they are desiccated. What
principles enable some organisms to restart their lives from a dormant dry state after they
are rehydrated remains a poorly understood question. By addressing this question, we may
be able to desiccate, preserve and revive organisms or cells for which it is not yet possible.
After freeze-drying and rehydrating budding yeast while inducing a reporter gene, we show,
using epifluorescence microscopy, RNA FISH and rhodamine 123 staining, that, among the
small proportion that conserve an intact outer membrane, only some yeast cells survive and
that they exhibit a lag-phase of variable duration during which they are unable to divide
and transcribe and their mitochondrial activity is low. We then hypothesize explanations
for this behavior.

4.1.

First noticed by Anthony van Leeuwenhoek in 1702 in nematodes and rotifers [”], an-
hydrobiosis, the ability of some organisms to survive in a desicated state, was further
explored in the second half of the 20th century. The preservation of brewer’s dry yeast
after freeze-drying was reported by [3-5] and successful protocols were then described
and used for industrial purposes like long preservation yeast culture starters for beer and
bread. The mechanisms allowing yeast to be preserved in the form of a dry powder, while
most organisms cannot survive desiccation, were only later described. Yeast accumulates
large amounts of trehalose. This disaccharide replaces proteins hydrogen bonding with
water preserving their structure, avoids phospholipids melting transition during rehydra-
tion preserving membranes, and maintains vitrification of the preserved cells preventing
crystal formation inside the cells [, 7]. While most multicellular organisms are unable to
survive desiccation, there are a few exceptions [¢]. The study of these more complex anhy-
drobiotic organisms revealed an additional strategy to survive in a dry state. Intrinsically
disordered proteins help the brine shrimp Artemia fransiscana [] and tardigrades [ 0]
to do so. Using those discoveries, attempts were made to extend desiccation tolerance
to mammalian cells. It was shown that trehalose addition allows to dry and stabilize
human blood platelets. Attempts to stabilize nucleated cells remained unsuccessful but
hinted that a stress protein from artemia allows maintaining stability further in the drying
process [! 1]. Interestingly, a more recent study [ ] shows that mammalian cells might
face another challenge in surviving desiccation: the preservation of DNA integrity. In
the last decade, while decreasing interest for desiccation has been shown, many new
molecular biology methods have flourished. In this work, using synthetic biology and
single-cell observations to go back to the firstly studied anhydrobiotic organism budding
yeast as a model, we attempt to unravel the mechanisms that allows it or not to resume
a living activity after rehydration, hoping to find principles that are also true for other
organisms.
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4.2,

First observation we made when we dried
and rehydrated yeast cells, is that only
some fraction of them survive. To be able
to imagine better applications, and eas-
ily perform experiments, maximizing this
survival is an important first step. It is
also relevant for multicellular anhydrobi-
otic organisms as they are likely to need
the vast majority of their cells to stay in-
tact to survive. As mentioned above, tre- o protectant  Trehalose inmilla_ Trehalose in PBS
halose is known to have several properties
facilitating survival to freezing and drying. Figure 4.1: Survival after freeze-drying with different
When starved or stressed, yeast cells ac- protecting media. Sqryival is quantified l?y the propor-
. tion of cells able to divide and/or expressing a constitu-
cumulate trehalose which allows themto . reporter gene (GEP).
survive drying conditions. Its ability and
natural accumulation makes trehalose a
good candidate as a protectant to increase the proportion of cells that survive freeze-
drying. We image yeast cells from a GFP-inducible strain right after rehydration in syn-
thetic complete media with dextrose (SD) to assess the ability of these cells to resume
two of their main functions: expressing a gene and dividing. We observe that adding
a solution of trehalose in phosphate buffered saline (PBS) before freeze-drying greatly
increases the proportion of cells that survive compared to directly freeze-drying those
cells after removing media. (see figure /.1).

Proportion of cells expressing GFP and/or dividing

Even with the addition of the protectant trehalose to increase the proportion of surviving
cells, around 96% of the cells do not express GFP nor divide. In an effort to understand
the limitations of anhydrobiosis, we investigate the cause of death of this majority of non-
survivor cells. Membrane integrity is key to survival and often used as a proxy for viability
[13]. To assess the role of membrane disruption we stain freeze-dried cells right after
being rehydrated with propidium iodide (PI) known to stain cells with a leaky damaged
outer membrane. We found that outer membrane disruption only explains a part of the
deaths. In other words, some cells with an intact membrane are unable to express GFP or
divide, which suggests another cause of death (Figure 4 .2).

We observed a few cells taking up PI within the first hour after the addition of media
to the dry cells suggesting either a slow rehydration process during which the membrane
is damaged or another process leading to cell death. We also identified a proportion of
apoptotic cells, stained by annexin V, among PI-unstained cells. As annexin V compro-
mises viability, we cannot grow cells following this treatment. However, we hypothesize
that these apoptotic cells might correspond to the ones taking up PI later on in the first
hour after rehydration instead of right after rehydration. Note that as apoptosis even-
tually leads to membrane disruption and thus uptake of PI, these apoptotic cells are
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Figure 4.2: (top) Propidium iodide and annexin V staining. Accidentally dead cells are stained only by
propidium iodide (red). Late apoptotic are stained by both annexin V and propidium iodide (yellow). Early
apoptotic cells are stained only by annexin V (green). (bottom) Comparison between the number of cells with
an intact outer membrane and the number of cells expressing GFP and/or dividing.
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Figure 4.3: (top left) Distribution of lag time of dividing cells in 2% glucose. (top right) GFP level of freeze-
dried rehydrated cells in 2% glucose. (bottom left) Lag time distribution of sorted freeze-dried cells. (bottom
right) Comparison of survival in sorted and unsorted rehydrated freeze-dried cells, assessed by the ability to
divide and/or express GFP.

unlikely to account for the intact cells unable to divide which have been imaged for
several hours without expressing GFP, dividing or taking up PI. What caused their death
did not compromise their outer membrane or lead to apoptosis.

Studying how the few survivor cells recover might reveal the requirements to reestablish-
ing the main cellular functions and help us understand the so far unexplained deaths.
To do so we image yeast cells after rehydration in growth media while inducing GFP
expression. We extract from these images the time of the first division the time of the
apparition of the bud leading to the first division and the level of GFP over time. We
show that rehydrated freeze-dried yeast cells exhibit a highly variable lag time after which
they initiate their first division, with most cells budding between three and eight hours
after rehydration up to the slowest recorded recovery around 17 hours (see figure 4.3).
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Figure 4.4: (left) Two possible scenarios, transcriptional and translational blockage, and corresponding GFP
mRNA / GFP trajectories. (right) GFP mRNA and GFP levels over time, each point corresponding to a cell. GFP
mRNA number of molecules is measured by treating fluorescence images with FISH_quant software for FISH
experiment dot detection. GFP level is measured as mean GFP fluorescence over the cell area.

The typical doubling time of S. Cerevisiae in SD being around or slightly lower than two
hours, these results imply the existence of a stochastic process preventing these cells from
dividing earlier. Interestingly, we observe that, regardless of the lag time, most cells start
expressing GFP and dividing simultaneously. This suggests that the process preventing
survivor cells from dividing earlier is linked to gene expression, or at least, also blocks this
fundamental ability.

To further investigate the blockage that prevents survivor cells from expressing a reporter
gene, we try to distinguish at which level, transcription or translation, this blockage acts.
To do so, we perform RNA fluorescence in situ hybridization (RNA FISH) on freeze-dried
yeast cells at different times after rehydration in growth media and before more of them
divide (<4h). If survivor cells are able to transcribe throughout this lag phase during
which they can’t express GFB, we should observe cells with GFP-coding mRNAs and basal
level GFP. In figure /.1 we show that we do not observe such cells and that the GFP and
GFP-coding mRNA follow a behavior that seems to indicate that transcription is blocked
during the lag phase and resumes shortly before apparition of the first bud.

Many of the previously presented results are obtained on a small proportion of survivor
cells. Most cells have a damaged outer membrane, thus no chance of waking up. By ruling
out these cells, we can observe many more cells with an intact membrane. This could
allow us, among other things, to space cells more in growth after rehydration microscopy
experiments, allowing to image them for longer before they are hidden by a neighboring
colony originating by a cell with a shorter lag time, or to image more cells of interest using
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Starvation phase cells stained with rhodamine123 Rehydrated freeze-dried cells stained with rhodamine123

Figure 4.5: Comparison of rhodamine 123 stained starved cells (left) and freeze dried cells right after
rehydration (right). Highly fluorescent cells correspond to necrotic cells.

RNA FISH, for which the protocol requires a significant amount of cells and the obtained
slides can easily bleach. For example, in the previously presented FISH experiment
without sorting, we only observe very few cells with GFP or GFP-coding mRNA per image,
making the analysis of the GFP versus number or GFP coding mRNA tedious.

Lastly, we test another key component of yeast metabolism: mitochondria. Rhodamine
123 staining probes mitochondrial membrane potential[! ], which is the driving force for
ATP synthesis[! 5]. We stain starved yeast cells and freshly rehydrated freeze-dried yeast
cells with rhodamine 123. In starved cells, we observe dot-shaped and tubular structures,
corresponding to active mitochondria. In rehydrated freeze-dried, we observe very few
low intensity dot shapes (see Figure .5), indicating a much lower membrane potential
than during starvation phase. We can thus hypothesize that mitochondrial function is set
to a dormant state when cells are dried and takes time to re-activate, or that mitochondria
face some damages that need to be repaired before recovering their activity.

4.3.

Based on the observation that only a small proportion of yeast cells survive the process of
freeze-drying, we presented preliminary results that hint towards the different causes of
deaths that can occur during drying and rehydration and the challenges that cells face
in restarting their gene expression and dividing activity. While membrane disruption

seems to be the most common cause of death, apoptosis also appears to play a part.

Interestingly, CDC48 mutants were linked to apoptosis and abnormal shape mutants
[16]. We also observe numerous colonies with similar abnormal shapes, which in two
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rare occasions did not express the GFP reporter gene at all. We hypothesize, inspired
by a study that shows that dry mammalian cells face DNA damages| ! ”], explanations
that may motivate further studies: the appearance of those unusually shaped colonies
might be due to DNA damages in CDC48 gene or other cell cycle related genes. Similar
damages might as well disrupt the inserted genetic construct explaining the few cells that
do not express the reporter gene. Cells suffering too severe DNA damages or in key genes,
while they may have an intact outer membrane, are unable to express GFP or divide.
Finally, these DNA damages might be the origin of the observed apoptotic events. Cells
that avoided the two identified possible deaths, accidental membrane disruption and
apoptosis, seem to be stuck in a lag phase of variable duration during which their gene
expression machinery is halted at the transcription level. If this blockage is in any way
linked to DNA damages that cells might face or not, remains an open question. While our
results may not be sufficient to support such hypothesis, we suggest further studies to
focus on the mechanisms underlying this gene expression blockage and potential DNA
damages, as it might reveal principles that are true for other more complex organisms[!”].

4.4.

All yeast strains in this work are using the haploid GFP-inducible TT7 strain described

in [17], based on the wild-type strain W303-K6001 [1¢] it has the following genome:
MATa; his3—11_15;leu2—-3_112;ura3-1; ADE2;canl1-100; HygB; tr pA2; ura3—1;pADH1—-
rtTA;pTET07 — GFP. ADE2 and HygB genes were added for selection purposes.

Yeast cells were grown overnight in aerobic conditions in YNB media and conserved frozen
at —80°C after addition of 50% glycerol. From this frozen glycerol stock, colonies were
obtained on a minimum synthetic medium with 2% dextrose (SD) agar plate. Inoculated
from a single colony from this plate, 200mL culture was grown in SD in a flask under con-
stant shaking at 30°C over 48 hours due to large volume compared to an usual overnight
culture. The 200mL of saturated culture were separated in four 50mL flacon tubes and
centrifuged at 4000rpm for 5 minutes. Each pellet was resuspended in 10mL PBS and
gathered in a single tube. Cells were centrifuged and washed in PBS three times to remove
remaining media. After a last centrifugation, washing PBS solution was removed as much
as possible. In all presented results except "no protectant" and "trehalose in milliQ" 4.1,
cell pellet was resuspended in 1mL of 10% trehalose solution in PBS was added. For the
two previously mentioned results, respectively no protectant and 1mL of 10% trehalose
in milliQ water was added. The tube containing the resuspended pellet was frozen at
—80°C in a diagonal position to maximize surface. The lid was replaced by aluminum
foil and the cells were freeze-dried in the same tube and positioned in a Christ Alpha 1-2
LD plus freeze-dryer. Obtained powder of FD yeast cells was stored at 4°C for up to a
month. For each experiment, a small spatula of the obtained freeze-dried yeast powder
was rehydrated by adding the desired medium, pre-warmed at 30°C up to optical density
0.3 at 600nm and then diluted to the desired concentration.
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After rehydration yeast cells were attached to the concanavalin A coated glass bottom of
a 200uL well of a pre-warmed Zell-Kontakt 96-well Fluorcarbon Film Imaging Plate by
centrifugating 200uL of rehydrated yeast cells at the desired dilution at 4000rpm for 5
minutes. The plate was maintained at 30°C using a Okolab frame heating system and
different non-overlapping fields of view were recorded in brightfield, GFP channel, and
mCherry channel for PI staining using a Nikon eclipse Ti inverted microscope. The ability
to divide and or express GFP was manually recorded. All cells that were able to divide
and/or express GFP were tracked using interpolation between manually drawn ellipse
masks. The mean GFP over the mask was extracted over time.

For PI and annexin V co-staining we used Tali apoptosis kit and followed the protocol
described with this kit, adapting the first steps to use rehydrated freeze-dried cells and
the last steps to observe the cells in a 96-well imaging plate. We also stained cells for
growth experiment with PI only, as annexin V compromises viability. We used the same PI
concentration of 1ug/mL as in the kit protocol.

After staining cells with PI as described above, we sorted them according to mCherry
fluorescence using a BD FACSMelody Cell Sorter. Cells were directly collected into pre-
warmed desired media, ready to be used with the microscopy method described previ-
ously.

For GFP mRNA FISH in yeast we used the protocol described by stellaris in Stellaris RNA
FISH Protocol for S.Cerevisae and in [19], applied in [1 7]. FISH probes corresponding to
GFP mRNA were ordered from Stellaris.

Mitochondrial membrane potential was assessed using the rhodamine 123 staining
method described in [20].
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CONCLUSION

Throughout this thesis, we have studied systems and phenomena that allow micro-
organisms to maximize their growth in challenging nutritional conditions, but also to
completely halt growth and withstand the removal water, the most essential compound
for life. We reviewed, in Chapter 1, knowledge on the bacterial guanosine tetraphosphate
(ppGpp) signaling system, responsible for bacterial response to stress and starvation,
with a focus on its regulation on compounds or processes playing a role in bacterial
steady-state growth. Then, we presented in Chapter 2 novel results of impact of ppGpp
level perturbation on concentrations of proteins and metabolites which are of significant
importance to bacterial growth. With this result, we determined the scope of ppGpp
regulation in steady-state growth independently from nutritional effects. In Chapter 3 we
developed a coarse-grained model of bacterial growth, the effect of ppGpp on processes
relevant to growth, and the perturbations of ppGpp concentrations. By doing so, we
refuted some of our intuitions and identified conditions that a model should verify to
be able to explain the effect of ppGpp perturbation on bacterial growth rate. Finally, in
Chapter 4 we freeze-dried Saccharomyces cerevisiae and rehydrated them while inducing
expression of a reporter gene under the microscope to identify what allows some of these
yeast cells to resume their lives.

PPGPP IS REPONSIBLE FOR ONLY PART OF PROTEOME CHANGES IN LIMITING NUTRIENTS
In Chapter 2, we confirmed that artificially increasing ppGpp leads to less abundant
ribosomes. While this is a significant change in the way resources are allocated in the
proteome, it is only part of the changes observed when growth is limited by the quality of
the available carbon source. Changes in abundance of other groups of proteins happening
in different nutrient conditions are in large parts happening independently of ppGpp
concentration.

MASS OF CATABOLIC PROTEINS IS REGULATED INDEPENDENTLY OF PPGPP

One of the most surprising result we obtained when inducing an excess of ppGpp, is the
unchanged mass fraction of the proteome responsible for carbon input. This conflicts
with the previously proposed idea that ppGpp balances growth and metabolism and
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reveals the limits of the ppGpp regulation: the proteome mass fraction of catabolic
proteins is regulated independently of ppGpp.

PPGPP DOES NOT CONTROL AMINO ACID BIOSYNTHESIS IN STEADY-STATE GROWTH

While ppGpp is known to be necessary to synthesize some of amino acid biosynthesis
proteins, artificially titrating its concentration has no effect on their total abundance. This
surprising result seems to indicate that only a small concentration of ppGpp is enough for
activation of these genes by ppGpp. The increase in abundance of these proteins in faster
growth is thus likely driven by other processes such as the known feedback inhibition of
amino acids on the pathways operating their own synthesis.

INSUFFICIENT PPGPP CONCETRATION MIGHT LEAD TO SINGLE AMINO ACID STARVATION
While the reason for slower growth when ppGpp concentration is artificially increased is
easy to grasp (translational flux is limited by insufficient ribosomes), the ones leading to
a slow down in depleted ppGpp remained more mysterious. Our results show that this
perturbation leads to a strong upregulation of proteins responsible for a single nutritional
condition dependent amino acid pathway. This suggests that depleting ppGpp might
lead to starvation of a single amino acid depending on the condition.

ABSOLUTE PPGPP CONCENTRATION DOES NOT FULLY DETERMINE RIBOSOME ABUNDANCE
In Chapter 3, we seeked an explanation to the observation that much larger concentra-
tions of ppGpp are required to slow down growth trough excess ppGpp than the ones
found in the natural case. We found that this phenomenon happens because the ppGpp
concentration does not fully determine ribosome abundance, which is likely the main de-
terminant for growth rate in this condition. This finding challenges models of the ppGpp
response assuming that ribosome content depends on the concentration of ppGpp only.

RIBOSOME ABUNDANCE MIGHT BE REGULATED PASSIVELY BY UPREGULATION OF CATABOLIC
GENES

We also investigated, through modeling and experimental results, compounds and pro-
cesses that might play a role in the regulation of ribosome content. We found that most
known regulators and processes known or suspected to impact ribosome abundance do
not seem likely to give rise to the observed ribosome content in excess ppGpp. Following
this observations, we suggested that the upregulation of catabolic proteins in poor nutri-
ents passively downregulates ribosome abundance, for example through lower availability
of RNA polymerases. This regulation would not be present in excess ppGpp and explain
why higher ribosome content and growth rates are observed than in the natural case for a
similar ppGpp concentration.

HAS THE SPOT LOST ITS MAGIC?

Because of its first unknown nature and its large amount of targets, ppGpp gained the
nickname of "magic spot". With our results nuancing the scope and strength of ppGpp
regulation comes the question: has it lost its magic? It seems that ppGpp’s main role is to
regulate translation-related proteins to satisfy a offer and demand tradeoff: having the
right amount of these proteins to sustain the translation flux to grow as fast as possible in
the current conditions. Not so magic after all? It seems that the magic now lies mostly
around the famous regulator. What are the quantitative laws describing its coordination
with regulators of catabolic proteins and amino acid synthesis? What else is regulating
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ribosome content when ppGpp concentration is artificially increased? Does this regulator
or process also participate in scaling ribosome content with growth rate?

YEASTS NEED TO PRESERVE THEIR CELLULAR MEMBRANE AND THEIR ABILITY TO
TRANSCRIBE TO SURVIVE DESICCATION

Finally, we presented another story investigating the conditions and mechanisms for
survival of yeast cells in drying conditions. By freeze-drying yeast cells, and imaging them
right after rehydration while expressing a reporter gene, we identified two challenges
yeast cells face when attempting to survive in a dry state during which their replicative
life is halted. Firstly, a vast majority of these cells seem to loose integrity of their outer
membrane, resulting in their death. However, not all cells preserving a intact membrane
are able to divide. We show that some cells with an intact membrane are unable to divide
and to express the reporter gene due to a blockage at the transcription level. In surviving
yeasts, this blockage seems to be lifted after a highly variable lag time.

FINAL THOUGHTS

Through these three studies, we brought insights on the existing strategies some microor-
ganisms adopt to maximize growth and completely halt it to survive one of the harshest
stress. We also suggested some directions to investigate these systems and the questions
our results raised. Hopefully, we also gave the reader a glimpse of how much is still to
unveil about growth and survival of microorganisms in challenging conditions.
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