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According to quantum mechanics, if we keep observing a continuous variable we generally disturb its evolution.
For a class of observables, however, it is possible to implement a so-called quantum nondemolition measurement:
by confining the perturbation to the conjugate variable, the observable is estimated with arbitrary accuracy, or
prepared in a well-known state. For instance, when the light bounces on a movable mirror, its intensity is not
perturbed (the effect is just seen on the phase of the radiation), but the radiation pressure allows one to trace back
its fluctuations by observing the mirror motion. In this work, we implement a cavity optomechanical experiment
based on an oscillating micromirror, and we measure correlations between the output light intensity fluctuations
and the mirror motion. We demonstrate that the uncertainty of the former is reduced below the shot-noise level
determined by the corpuscular nature of light.

DOI: 10.1103/PhysRevA.97.033833

I. INTRODUCTION

Quantum mechanics generally prescribes that, as soon as
we observe a system, we actually perturb it. As a paradigmatic
example, in the Heisenberg’s microscope a measurement of
the position of a particle at the time t perturbs its momentum,
thus influencing the particle motion, and actually its position
at following times. The consequence of the observation of the
system (backaction) deteriorates the accuracy of a continuous
measurement on the observable considered (the position). On
the other hand, there are observables that are not affected
by the disturbance caused by their measurement, the effect
of which remains confined to their conjugate variable: their
measurement can evade the backaction. For such observables
the concept of quantum nondemolition (QND) measurement
has been introduced [1–4]. A QND measurement allows one to
keep observing a variable with arbitrary accuracy. Examples of
QND variables are the quadratures of a mechanical oscillator
and, similarly, the fluctuations on the quadratures of the elec-
tromagnetic field, defined from its bosonic operators, after sep-
aration of their average coherent amplitude (a = 〈a〉 + δa), as
δX = δa + δa† (amplitude quadrature), δY = −i(δa − δa†)
(phase quadrature), and δXφ = δX cos φ + δY sin φ (generic
quadrature).

*Present address: Department of Physics and Astronomy, University
College London, WC1E 6BT, United Kingdom.
†marin@fi.infn.it

The possibility to perform a QND measurement of a field
quadrature (in particular, of the amplitude δX) by exploiting
the radiation pressure exerted on a movable mirror was studied
in a seminal work by Jacobs et al. in 1994 [5]. When the
light bounces on a mirror, its intensity is not perturbed: the
displacement of the mirror changes the phase of the field and
the optomechanical interaction modifies δY , but it leaves δX

unaffected. In the proposed experiment, a resonant optical
cavity amplifies the intensity fluctuations, and eventually the
momentum transferred to the mirror by the bouncing photons.
Such fluctuations are actually measured by observing the
momentum of the mirror, in particular around a mechanical
resonance where its susceptibility increases. The measurement
of the mirror motion can be performed interferometrically by
a meter field [6–8].

The complete measurement apparatus can be viewed as
a system with two outputs: the signal field (i.e., a quantum
object), and the result of a continuous measurement on one of
its quadratures, yielding a (classical) meter variable Ym. An
ideal QND measurement is testified by a perfect correlation
between the quantum observable to be estimated, i.e., a field
quadrature Xs (signal variable), and Ym. The condition to be
satisfied can be written as CXsYm := |SXsYm |2/(SXsXsSYmYm )=1,
where SXY is the cross-correlation spectrum between X and
Y and CXY is the so-called magnitude-squared coherence
(MSC). It is elucidating to compare the QND procedure with
a standard, classical intensity measurement where the signal
is the quadrature Xs of the field at one output port of a beam
splitter, while the field at the other output port is detected to
provide the meter Ym [Fig. 1(a)]. With a coherent input the
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FIG. 1. Simplified experimental schemes. (a) Scheme of a classical measurement of the field amplitude fluctuations. (b) Simplified
experimental setup for our QND measurement. DHD: double homodyne detection; PBS: polarizing beam splitter; Pol: polarizer. (c) Schematic
composition of the fields after the polarizer, in the complex phase plane. The mean field ES is formed by superposition of the field reflected by
the cavity and then transmitted through the polarizer (ER), and a fraction of the reference field (Eref ). By changing the length of the reference
path we can decide the reference phase φ0 and actually the output field phase φs . The final amplitude quadrature Xs corresponds to the quadrature
X(φs−φR ) in the reflected field.

cross correlation is null and the measurement can just provide
information on possible excess noise: the photon noise of the
remaining, usable light remains inaccessible. On the contrary,
a QND measurement gives access to the quantum fluctuations
of the signal field.

For a deeper understanding of the optomechanical QND
measurement, we can consider an ideal scheme exploiting a
cavity with coupling rate κ and no extra losses, and a resonant
input field in a coherent state, whose amplitude (δXin) and
phase (δYin) quadrature fluctuations have spectral densities
SδXinδXin = SδYinδYin = 1/4.

The position q of the mechanical oscillator embedded in the
cavity as end mirror, normalized to its zero-point fluctuations,
is given in the Fourier space by q = qth + qrp, where qrp =
4 χ χopt

√
�BA δXin is the displacement due to the radiation

pressure and Sqthqth = 4�th |χ |2 is the displacement spectrum
due to the oscillator thermal and quantum noise.

In the above expressions, χ = ωm/(ω2
m − ω2 − iωγm) is

the mechanical susceptibility, χopt = 1/(1 − i ω
κ

) is the optical
susceptibility, �BA = G2/κ is the backaction rate [9], and
�th = (ω/Q)(nT + 1/2) is the thermal and quantum coupling
rate, where Q is the mechanical quality factor [10] and the
average thermal occupancy is nT = [exp ( h̄ω

kT
) − 1]

−1
.

The field quadratures at the output of the cavity are [11]

δXout = exp(2iφopt) δXin, (1)

δYout = exp(2iφopt) δYin +
√

�BA χopt q, (2)

= exp(2iφopt) δYin + 4�BA |χopt|2 χ δXout

+
√

�BA χopt qth, (3)

where φopt = arg[χopt]. The relations (2) and (3) describe the
interaction between the field to be measured and the optome-

chanical system. In order to complete a QND measurement of
the field, we need an additional readout channel, measuring the
oscillator displacement with the result

Ym = q + qr, (4)

where q is defined above and qr is an additional noise term
that includes both the readout imprecision and its backaction
(i.e., it comprises the overall measurement accuracy). In case
of detection at the standard quantum limit, the spectrum of qr is
SSQL

qrqr
= 2|χ | [12], but the fundamental quantum limit is even

lower, i.e., SQL
qrqr

= 2 Im[χ ] [13,14]. At the oscillator resonance
frequency, the two limits coincide.

From the above model, we extract three meaningful con-
siderations. (i) Equation (1) shows that the optomechanical
interaction does not perturb the amplitude field quadrature
δX, that is transmitted to the output. (ii) Equation (4) and the
definitions of q and qrp show that the output of the readout
contains some information on δXout. (iii) Equation (3) shows
that, in the output field, amplitude and phase quadratures are
correlated.

The first two properties form the basis of the quantum
nondemolition measurement: Ym is the result of the QND
process, that includes the optomechanical interaction (that does
not destroy the variable δX), and a measurement of q. The third
observation implies instead that the optomechanical interaction
is also producing a field in a squeezed state: since δXout and
δYout are correlated, there is an output field quadrature δXφ

for which the fluctuations are below SδXoutδXout , and eventually
below the vacuum level.

Once acquired, Ym can be used to predict the behavior of the
quadrature δXout ≡ Xs of the surviving field, that is estimated
as XE = α(ω)Ym, where α(ω) is an arbitrary complex function
that is chosen with the aim of minimizing the average residual
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FIG. 2. Field fluctuations after an optomechanical setup. Blue,
long-dashed curve: residual uncertainty S

QL


X in the amplitude quadra-
ture of the field, after its QND measurement where the readout of the
oscillator motion is performed at the quantum limit. For comparison,
with the red dashed line we show the spectral density of an output
quadrature δXφ when the phase φ is optimized at each frequency. The
results of more realistic experiments, with fixed detection phase and
readout imprecision, are instead shown with solid lines. In this case,
we take φ = 0.002 rad, and we consider a readout at the quantum limit
for ω = ωm. Spectral densities are normalized to the shot-noise level.
For all the curves, we consider an input radiation resonant with lossless
cavity, in the “bad cavity” regime (i.e., with χopt � 1). The other
optomechanical parameters are inspired by the experiment described
below, namely γm = 0.005 ωm, �BA = ωm, and �th = 0.5 ωm.

uncertainty Sα

X := 〈|Xs − XE|2〉. In a stationary system, the

optimal α is αopt = (SXsYm )∗/SYmYm , and the lowest residual
uncertainty on the signal is S
X := SXsXs (1 − CXsYm ).

For the considered optomechanical system, such residual
uncertainty can be written as S

QL

X = (1 + C

1+R
)
−1

, where C =
�BA|χopt |2

�th
is the cooperativity. The parameter R = γmQ

2ωm(nT +1/2) is
originated by the readout noise qr , considered at the quantum
limit, and in general R � 1, except when the mechanical
oscillator is cooled close to its ground state [15]. An example
of this residual spectral density is shown in Fig. 2 with a blue
dashed line.

A readout imprecision at the quantum limit requires a
rapidly varying detection phase, optimized as a function of
the frequency, i.e., a so-called variational readout [16]. It is
more realistic to consider a QND procedure having a constant,
frequency-independent readout imprecision. We can assume
that the quantum limit is achieved at the mechanical resonance
frequency, and thus set the readout imprecision at |χ (ωm)| =
1/γm. With this choice, we can write the total readout noise
as Sqrqr = (1/γm + γm|χ |2), where the second term within
brackets is originated by the readout backaction, and R must
be multiplied by 1

2 Im[χ] (
1
γm

+ γm|χ |2) � 1 + 2( ω−ωm

γm
)
2
. The

resulting residual uncertainty is shown in Fig. 2 with a blue
solid line.

It is interesting to compare S
QL

X with the spectral density

in the maximally squeezed output quadrature Smin, that is
calculated by minimizing the spectral density of the output field
quadrature δXφ with respect to φ, for each detection frequency:
Smin = 1+sin2(arg[χ]) C

1+C . Similarly, the residual uncertainty ob-
tained in a QND measurement at fixed readout imprecision
can be compared with the noise in a fixed output quadrature

δXφ . The two spectra are shown in Fig. 2 with red lines. A
significantly better performance is obtainable with the QND
approach, in particular for the realistic experiments using a
fixed measurement phase (solid lines). We will further discuss
it after the description of our experimental results.

Recent advances in cavity optomechanics [11] have allowed
one to discern the quantum component in the effect of radiation
pressure [17–19], and in the correlation between signal and
meter [18] or between field quadratures after optomechanical
interaction [20–22]. As discussed, the latter is actually the
basic ingredient of the observed ponderomotive squeezing
[20,23–26]. The ability of a mechanical oscillator to perform
a QND measurement of the radiation intensity fluctuations
is experimentally demonstrated with a squeezed microwave
source by Clark et al. [27], who exploit the phase quadrature
of the same driving field, detected after the optomechanical
interaction, as a meter of the mirror motion. As discussed, a
complete QND scheme requires an additional readout of the
mirror motion, without destroying (or perturbing too much) the
field to be measured, that is therefore preserved after having
disclosed its quantum properties. This is in fact what we are
showing in the following, where we describe an experiment
that actually achieves a measurement of the transmitted light
quantum noise by observing the effect of the photons impact
on a movable mirror.

II. EXPERIMENT

In a fair QND procedure, α(ω) is chosen a priori, e.g.,
on the basis of a model, or derived from the analysis of
an independent set of data (this analysis could include a
destructive measurement of δXout to estimate its correlation
with Ym). In order to verify that a quantum measurement
is indeed performed, the experimentalist has to measure the
output intensity fluctuations as well as their correlation with
Ym. In a realistic optomechanical system, the achievement
of an ideal QND is prevented by thermal fluctuations of the
movable mirror, by optical losses, and by the imprecision of
the readout. Moreover, detuning between input field frequency
and cavity resonance, and/or excess classical input noise, can
create a strong classical correlation between the signal field
quadrature Xs and the meter field Ym [8]. Therefore, a non-null
correlation CXsYm , as it occurs in a classical measurement of a
noisy field, is not sufficient to guarantee that an even nonideal,
yet quantum QND measurement is achieved. The model-
independent condition to be verified is that the information
carried by Ym is sufficient to reduce the residual uncertainty of
Xs below the standard quantum fluctuations (shot noise), i.e.,
that S
X < 1 [28,29].

Our experiment is based on an oscillating micromirror,
working as end mirror in a high finesse optical cavity. This
oscillator is fabricated by microlithography on a silicon-
on-insulator wafer. A detailed description of the fabrication
process is reported in Ref. [30], while the design of the
device is discussed in Refs. [31,32]. The oscillator has a
particular shape, studied to maximize its mechanical quality
factor and isolation from the frame [Fig. 3(a)]. A structure
made of alternating torsional and flexural springs supports
the central mirror and allows its vertical displacement with
minimal internal deformations, reducing the mechanical loss
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FIG. 3. Optomechanical oscillator. (a) SEM image of the full
device, including the central oscillator and the external isolating
wheel. The central dark disk is the 400 μm diameter highly reflective
coating. (b)–(d) FEM simulations of the displacement corresponding
to the balanced oscillator mode exploited in this work (b), the second,
unbalanced mode (c), and the first wheel oscillator mode (d).

in the highly dissipative optical coating. For the oscillation
mode exploited for this work, the movement of the central disk
is balanced by four counterweights, so that the four joints are
nodal points [Fig. 3(b)]. Its effective mass ism = 2.5×10−7 kg,
deduced from the thermal peak in the displacement spectrum
measured at room temperature; its frequency at cryogenic
temperature is ωm/2π = 169 334 Hz. The quality factor of
1.1×106 at cryogenic temperature is measured in a ring-down
experiment. In a second oscillation mode, with resonance
frequency around ∼208 kHz, the counterweights move in
phase with the central disk [Fig. 3(c)]; therefore, a net recoil
force is applied on the joints, inducing a larger coupling with
the frame and actually a lower quality factor. The design
includes an external double wheel, working as a mechanical
filtering oscillator [Fig. 3(d)], with a resonance frequency of
∼22 kHz. The central coated region of the oscillator is the back
mirror of a Lc = 1.455 mm long Fabry-Pérot cavity where the
input coupler is a 50 mm radius concave mirror, glued on a
piezoelectric transducer used to keep a cavity resonance within
the laser tuning range. A cavity half-linewidth of κ/2π =
2.85 MHz is measured at cryogenic temperature. From the
calculated Finesse (18055), the measured resonance depth in
the reflected intensity, and the measured mode matching of
90%, we deduce an input coupler transmission of 315 ppm (in
agreement with the direct measurement, input rate κ1/2π =
2.58 MHz) and additional cavity losses of 33 ppm (loss rate
κ2/2π = 0.27 MHz). The cavity is strongly overcoupled to
optimize the quantum efficiency. The cavity is suspended
inside a helium flux cryostat and thermalized to its cold finger
with soft copper foils. The temperature reached by the cavity
mount, measured with a diode sensor, is 4.9 K. A finite element
simulation of the heat propagation inside the mount and the
silicon device, at the maximum input laser power, suggests that
the oscillator temperature should be a few tenths of a degree
higher. The temperature that gives the best agreement between
the experimental spectra and the model is indeed 5.6 K.

The experimental setup is sketched in the simplified scheme
of Fig. 1(b) and in more details in Fig. 8 of Appendix A.
A laser beam from a Nd:YAG source is actively amplitude
stabilized, down to an amplitude noise (normalized to shot
noise) of 1 + P /(24 mW), where P is the laser power. An
additional, frequency-shifted auxiliary beam (not shown in
Fig. 1) is used for controlling the detuning from the optical
cavity (see Appendix A for details). The main beam is split by
a polarizing beam splitter (PBS), the outputs of which are sent
into the two arms of an interferometer. On one arm, the beam is
mode matched to the optical cavity. The laser power impinging
on the cavity is about 50 μW from the auxiliary beam and 38
mW from the main beam. The calculated intracavity power
is 350 W, corresponding to nc = 1.8×1010 photons. Optical
circulators deviate the reflected beams toward the respective
detections.

After the recombination of the two interferometer beams,
a beam sampler picks up about 3% of the p-polarized light
arriving from the cavity and ∼15% of the s-polarized light
from the reference arm of the interferometer. The collected
radiation is detected in two homodyne setups whose output
signals, opportunely combined, allow one to actively stabilize
the interferometer with the desired phase difference between
the arms and, at the same time, to derive a weak measurement
of the cavity phase noise and actually of the motion of the
oscillating mirror (see Appendix A). The meter variable Ym

is obtained in this way without the necessity of an additional

(a)

(b)

FIG. 4. Meter spectrum and correlations. (a) Spectral density of
the meter field (black). The spectrum is calibrated both in terms of
meter shot noise (SQL; right axis), and in terms of single-sided power
spectral density (PSD) of cavity displacement noise (left axis). The
electronic noise (already subtracted from the displayed spectrum) is
10 dB below the SQL. In the model (magenta) we have introduced
phenomenologically a 1/ω2 contribution to account for the tails of
low frequency modes, and an additional resonance at ∼208 kHz.
(b) Experimental magnitude-squared coherence CXsYm between the
output signal and the meter (black), together with its theoretical model
(cyan). The corresponding signal spectrum is shown in Fig. 6. A
shadow shows the frequency region where the QND measurement
is accomplished.
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readout field, at the expense of a slightly reduced efficiency
in the transmission of the signal beam. The vacuum noise
entering from the unused port of the beam sampler determines
the measurement imprecision of the readout. The spectrum
of the meter [Fig. 4(a)] is dominated by the fluctuations
of the cavity length, mainly due to the oscillating mirror.
Therefore, the meter provides indeed a readout for the movable
mirror, that in turn performs a measurement of a particular
field quadrature (namely, the quadrature that gives rise to the
intracavity intensity fluctuations).

Due to the weak detuning, the optomechanical interac-
tion shifts the frequency of the main oscillator mode to
∼167 500 Hz and broadens its resonance to 430 Hz (corre-
sponding to an effective temperature of ∼2 mK) [11]. With
the achieved effective susceptibility, a readout achieving the
quantum limited sensitivity at resonance implies an impreci-
sion of 1.5×10−37 m2/Hz. However, the imprecision level is
not visible: the mechanical peak emerges from a background
of a few 10−36 m2/Hz given by the tails of low frequency
mechanical modes and of the unbalanced oscillator mode at
∼208 kHz. Thermal noise, laser amplitude noise (of classical
and quantum origin), and intracavity intensity fluctuations
due to the background displacement noise, all contribute
with comparable importance to the force noise acting on the
oscillator (see the simulations reported in Appendix C for their
quantitative estimations). The last contribution (i.e., eventually,
the cavity phase noise) is responsible for the deviation from a
Lorentzian shape of the peak that assumes a Fano profile.

The intracavity amplitude quadrature fluctuations are im-
printed on the mirror motion. Since the radiation is slightly
detuned on the red side of the optical resonance for improving
the system’s stability, the reflected field quadratures are rotated
with respect to the intracavity field; therefore, the fluctuations
sensed by the oscillator do not exactly correspond to the
amplitude quadrature of the reflected field. In order to explore

a range of reflected quadratures, we add to the reflected field
a small portion of a beam from the reference arm of the
interferometer, with a controlled phase (optical path length).
At this purpose, after the beam sampler the main beam is
filtered by a high extinction ratio (>107) polarizer. The axis of
the transmitted polarization is very close to the p-polarization
axis (within ∼1◦), so that >99% of the field from the cavity
and ∼3% of the field from the reference arm (corresponding
to about 2 μW) are transmitted and superimposed to form
the signal field. The latter is thus rotated with respect to the
radiation reflected by the cavity, as outlined in Fig. 1(c), with
a tuning range of about ±10−2 rad.

The radiation transmitted by the polarizer is actually the
observed physical system, and in particular its amplitude
fluctuations are the signal variable Xs. In order to verify that
the meter provides a QND measurement of such fluctuations,
they are monitored (destructively) with a standard balanced
detection, composed of a 50% beam splitter and a couple of
photodiodes: the sum of their signals gives Xs; their difference
provides an accurate calibration of the radiation standard
quantum level (SQL). With respect to a standard homodyne
detection, this scheme improves the phase stability and, above
all, the accuracy of the shot-noise calibration, that is not trivial
in a homodyne with high signal power, at the price of weak
additional losses.

The measured common mode rejection of the balanced
detection is ∼40 dB, and the total quantum efficiency in the
detection of the field reflected by the cavity is 69%, including
the losses in the beam sampler and in the polarizer, and the
∼90% efficiency of the homodyne photodetectors.

The sum and difference signals are filtered with high-
order low-pass, antialiasing circuits and acquired by a high-
resolution digital scope. The complete electronics for the
readout of the sum and difference signals are calibrated with
a relative accuracy of better than 0.1%. The linearity of the

(a) (b)

(c)

FIG. 5. Shot-noise calibration. (c) Current noise spectral density at 170 kHz, measured in the difference signal of the balanced detection,
versus total photocurrent, measured by varying the optical power impinging on the detectors with the laser far from resonance. The cyan straight
line is a linear fit to the data. The red circle indicates a typical measurement taken with the fully working experiment (with the laser locked to
the cavity), used to calibrate the SQL for the spectra reported in Figs. 6 and 7. (b) Residuals of the fitting procedure. (a) Spectral density of the
difference signal, acquired during the experiment. The shadowed region is used for the linear regression shown with a cyan straight line, that
is actually used to evaluate the SQL. The peak at ∼168 kHz is the remnant of the signal due to the oscillator.
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difference signal versus the detected photocurrent (sum of the
two detectors photocurrents) has been checked by sending to
the photodiodes the laser radiation of the main beam very far
from cavity resonance [Figs. 5(b) and 5(c)]. The residuals
of the linear fit show no systematic deviation. The noise
variance reported in the figure is calculated by considering
the spectrum of the photodiode’s difference signal in the
intervals 154–163 kHz and 176–180 kHz, and calculating the
spectral density at 170 kHz with a linear interpolation. Such
linear interpolation is sufficient to account for the fact that the
spectrum is not flat, due to the filters in the photodetector’s
circuits. The same procedure is used for evaluating the SQL
in the experimental data, where we exclude in this way the
region (163–176 kHz), where the strong oscillator peak could
percolate into the difference signal in spite of the high rejection.
The electronic noise is equal to the shot noise of 0.63 mA,
equivalent to an impinging power of 0.8 mW, and it has a
day-to-day reproducibility of∼10%. Since it is subtracted from
the measured spectra, it contributes to the uncertainty with an
additional 0.3%. Taking into account all the analyzed sources
of systematic error, we evaluate that their total effect in the
calibration of the spectra to the SQL is below 0.5%.

III. RESULTS AND DISCUSSION

To verify the claim that the amplitude quadrature of the
signal field is measured in a QND way by the mechanical
oscillator [27], and actually that the meter variable well reports
the result of this measurement, we have to calculate the residual
spectrumS
X and show that it falls below the standard quantum
level in a proper frequency range. We observe indeed that the
coherence between the meter and the signal [Fig. 4(b)] reaches
values close to unit around the peak frequency, but it mainly
reflects classical fluctuations. Only the following comparison
with the signal spectrum allows one to assess that a QND
measurement is indeed performed.

In Fig. 6 we show the spectrum of Xs, i.e., of the amplitude
fluctuations of the output field that is determined by a particular
choice of cavity detuning and interferometer reference phase. It
displays a typical Fano profile, due to the interference between
amplitude fluctuations of the intracavity field, which act on the
mirror via radiation pressure, and the field fluctuations induced
by the consequent mirror motion. For the chosen reference
phase, such interference is constructive on the right of the
resonance, and destructive on the left, due to the change in
the sign of the real part of the mechanical susceptibility [33].
As a consequence, depending on the frequency, the spectral
density can be higher or lower than the input amplitude power
spectrum, but we always find it above the SQL due to the excess
input amplitude noise. This behavior is indeed predicted by the
theory (outlined in Appendix C), and typically occurs for most
of the values of the reference phase.

If, on the other hand, we exploit the information carried by
the meter and calculate the spectral density S
X of the residual
fluctuations, we verify that it falls below the shot-noise level in
an ∼1.5 kHz broad region, on the high-frequency side of the
resonance. Its lowest value, normalized to the SQL, is 0.921 ±
0.012 (uncertainty corresponding to one standard error) when
the spectrum is integrated over 150 Hz [Fig. 6(b)]. By averaging
over a 600 Hz band we obtain 0.942 ± 0.006, demonstrating

(a)

(b)

FIG. 6. Signal and its residual uncertainty. (a) Spectral density
of the signal field SXsXs , normalized to the SQL (wine). From the
comparison with the model (magenta) we deduce a detuning of
−0.016κ and a signal phase φs = −24 mrad. Spectral density of
the residual fluctuations S
X (dark green), with their model (cyan).
Spectrum of the difference between the signals of the photodiodes
in the balanced detection, from which the SQL is deduced (black).
The electronic noise (already subtracted from the displayed spectra)
is 15 dB below the SQL, for both the sum and the difference signals of
the balanced detection. The inset shows an enlarged view. (b) For S
X

we show the result of a flat moving average over a frequency interval
of 150 Hz (average value with red symbols, and 90% confidence
belt in light blue). The minimum is 0.921 ± 0.012 (uncertainty
corresponding to one standard error). By averaging over a 600 Hz
band we obtain 0.942 ± 0.006.

a QND measurement with strong statistical significance. The
systematic error due to calibration uncertainties is ±0.005. To
fully exploit the information carried by the meter, we have not
just used the correlation between Xs and Ym, but also the one
between Xs and the square of Ym (see Appendix B).

We have fitted to the spectrum a complete optomechanical
model (described in Appendix C) where all the system param-
eters are independently measured, except for the amplitude
of the background displacement noise, the detuning, and the
reference phase. The fact that S
X is below the SQL on just the
right-hand side of the peak, predicted by the complete model,
but in contrast with our simplified introductory description (see
Fig. 2), is due to the favorable frequency-background noise
cancellation occurring around the resonance frequency of the
free oscillator [34], an effect that can also be interpreted in
terms of optomechanically induced transparency [35].
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(a)

(b)

FIG. 7. Ponderomotive squeezing and QND measurement. With
respect to Fig. 6, the signal spectral density and its residual uncertainty
are recorded for a different value of the signal phase (−41.5 mrad) and
a slightly different detuning (−0.019κ). The signal field now shows
ponderomotive amplitude squeezing; however the information carried
by the meter is still useful to enhance the sub-shot-noise property of its
residual uncertainty. The minimal value of the residual fluctuations is
now 0.906 ± 0.016, when integrated over 150 Hz, and 0.924 ± 0.007
integrating over 600 Hz.

For a deeper exploration of the QND measurement, it is
interesting to vary the choice of the signal quadrature Xs.
Such variation has strong effects on the intensity spectrum
SXsXs . In particular, if the phase φs is changed to the opposite
side with respect to the reference given by the reflected
field [see Fig. 1(c)], the destructive interference in Xs oc-
curs on the right of the resonance. By accurately tuning the
phase, we can now observe an intensity spectrum SXsXs falling
below the shot-noise level (Fig. 7). It is the signature of
ponderomotive squeezing [23–25,36,37]. On the other hand,
the residual spectrum obtained after exploiting the information
carried by Ym is weakly phase dependent, as indicated by the
fact that the sub-SQL region is now very similar to the one
previously shown in Fig. 6.

Both the dependence of Smin from arg[χ ] and the limited
squeezing bandwidth in a given output quadrature are the
consequence of the physical origin of the squeezing, that is due
to the negative interference (cancellation) between the terms
δXout cos φ and ∝ χ δXout sin φ [see Eq. (3)] in the output
field quadrature δXφ . At a given phase φ, such interference
is optimal for a particular value of χ , i.e., for a particular
frequency, while it degrades as soon as χ varies. Moreover,

the cancellation is limited by the imaginary part of the second
term (actually, by the imaginary part of χ ), and it is completely
inefficient at resonance, where χ is purely imaginary (see the
dashed red curve in Fig. 2). Such limiting features are absent
in the QND measurement, where an appropriate weighting
function α(ω) can compensate for the frequency dependence
of χ and for its argument. On the other hand, as we have seen,
the QND needs an additional measurement (on q), besides the
optomechanical interaction, that is not necessary to produce the
squeezed field. The QND performance depends on the quality
of such measurement.

IV. CONCLUSIONS

In conclusion, we have experimentally demonstrated that a
QND measurement is performed by means of the mechanical
interaction of light with a moving mirror. More specifically,
our optomechanical apparatus produces a radiation field whose
amplitude fluctuations (including those of quantum origin)
are continuously observed. The result of such measurement
is available through a meter channel that actually monitors the
mirror motion. The backaction of the measurement is almost
completely confined to the signal field phase fluctuations and
its weak percolation in the amplitude quadrature is efficiently
detected by the meter. As a consequence, the residual fluc-
tuations of the signal amplitude, that remain unknown after
exploiting the information brought about by the meter, are
below the shot noise. In a measurement process, the SQL
is a crucial threshold: one can reduce the noise down to
the SQL by just using, in a noise eater, a beam sampler
to measure the intensity fluctuations. On the contrary, in a
classical apparatus a noise level below the shot can just be
obtained inside the closed loop containing the detector, i.e.,
in a destructive measurement. In other words, the quantum
photon noise remains elusive in classical experiments and
it can just be caught by a QND measurement [28]. This
technique is therefore very promising for the application to
sub-SQL sensors, including integrated microdevices and future
gravitational wave detectors, where it can either be used to
produce sub-shot-noise light in a quantum noise eater [38]
or directly integrated in the complete measurement procedure
by performing a preliminary estimation of the field quantum
fluctuations.
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APPENDIX A: POUND-DREVER-HALL AND
THE DOUBLE HOMODYNE DETECTIONS

The experimental setup is shown in Fig. 8. On the laser
bench, the laser radiation is split into two beams. The first
one (auxiliary beam) is frequency shifted by means of two
acousto-optic modulators (AOM) operating on opposite
diffraction orders. A resonant electro-optic modulator (EOM)
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FIG. 8. Detailed scheme of the experimental setup. EOM: electro-optic modulator. AOM: acousto-optic modulator. Pol: polarizer. PBS:
polarizing beam splitter. LPF: low-pass filter. OI: optic isolator. PD: photodiode. FR: Faraday rotator.

provides phase modulation at 13.3 MHz used for a Pound-
Drever-Hall (PDH) detection scheme. The PDH signal allows
one to stabilize the laser frequency to the cavity resonance.
The locking bandwidth is about 20 kHz and additional notch
filters assure that the servo loop does not influence the sys-
tem dynamics in the frequency region around the oscillator
frequency.

The PDH signal is also bandpass filtered around 22 kHz, and
added to the signal driving the intensity modulator of the noise
eater acting on the main beam. We so implement a feedback
cooling [39] on the wheel oscillator, with two purposes. First,
we improve its dynamic stability, that is otherwise critical
due to the combined effect of optomechanical interaction
and frequency locking servo loop [40]. Second, we depress
the fluctuations of the wheel oscillator that would otherwise
provide a major contribution to the overall cavity phase noise.
We recall that the rms value of such phase noise is large
enough that a simple linear expansion of the cavity optical
response is not sufficient to account for the reflected field fluc-
tuations. Therefore, even if feedback cooling is just effective
on the peak of the wheel resonator, it reduces the contribution
brought into the frequency range of interest by nonlinear
mixing.

The second beam (main beam) is actively amplitude sta-
bilized, reducing the noise by about 30 dB in the band
100–200 kHz. Both beams are sent to the experiment bench
by means of single-mode, polarization maintaining optical
fibers. The main beam is split by a polarizing beam splitter
(PBS), the outputs of which are sent into the two arms of a
Michelson interferometer. The length of the reference arm is
finely controlled by shifting its end mirror with an inductive
transducer. On the other arm, the beam is overlapped to the

auxiliary beam, with orthogonal polarizations, in a further PBS
and then mode matched to the optical cavity. On the path of
the radiation exiting from the Michelson interferometer, the
two faces of a wedge window, with the bisector plane at the
Brewster angle, pick up 1.5% each of the p-polarized light
arriving from the cavity, and respectively 6% and 23% of
the s-polarized light from the reference beam. On the path
of one of these reflections, a quarter-wave plate with the axes
parallel to the polarizations adds an additional delay between
the fields arriving from the cavity and the reference arms.
The fields reflected by the two window faces are analyzed
by homodyne setups, each composed of a half-wave plate
that rotates the polarizations by 45◦, a PBS, and a couple of
photodiodes at the two outputs of the PBS. The difference
signals of the two couples of photodiodes can be written
respectively as VA sin φ and VB cos φ, where φ is the phase
difference between the fields coming from the two arms of
the Michelson interferometer. The transimpedence gains of
the detectors are set to compensate for the different collected
powers, in order to have VA � VB . We electronically derive
a weighted average of the two signals Vm = β1VA + β2(1 −
β1)VB ∝ sin[φ + φ0(β1,β2)], where β1 can be chosen between
zero and 1, and β2 = ±1, so that −π/2 < φ0 < π/2. The
low-frequency component of Vm is integrated and fed back
to the position control of the reference arm mirror, so that the
phase φ is locked to −φ0 with a servo bandwidth of about 1
kHz. Moreover, the fluctuations of δVm are now proportional
to the fluctuations of the phase quadrature of the field reflected
by the cavity, plus a contribution that, due to the low detected
power, can be considered as originated by additional vacuum
fluctuations. In summary, such combined homodyne detection
is equivalent to a standard homodyne detection of the phase
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quadrature of the radiation reflected from the cavity, and it
additionally allows one to choose and stabilize the phase
difference between the two orthogonally polarized fields that
compose the transmitted main beam. We identify δVm with our
meter variable Ym.

APPENDIX B: DATA ACQUISITION AND ANALYSIS

We have acquired simultaneous data streams from three
channels: the sum and difference outputs from the final bal-
anced detection and the meter Ym. The signals are sampled at
5 MHz and several 10 s data streams are acquired, separated by
lapses of few seconds necessary for data storage. Such delays
improve the randomness of the complete data sets, reducing the
effect of long term relaxations. The stability of the mean beam
power is better than 1% during the whole measurement period.
The data elaborated to obtain the results shown in Figs. 6 and
7 are taken respectively from five and four consecutive 10 s
time series.

The 10 s temporal series are divided into 100-ms-long
intervals. A preliminary selection on the intervals is performed
by setting upper limits on the peak and rms values of the
sum signal. This selection procedure is useful to reject data
sets plagued by strong noise spikes, mainly due to low
(∼kHz) frequency modes, generated by instabilities of the
helium flux in the cryostat. We keep ∼90% of the data
intervals.

For each nth interval, we calculate the discrete Fourier
transform of the difference signal X̃

(n)
− , of the sum signal X̃

(n)
+ ,

of the meter signal Ỹ (n)
m , and of the square of the meter signal

Ỹ (n)
sqm (we distinguish in the following the experimental signal

X̃+ from the signal variable Xs that is obtained from X̃+
after subtraction of the electronic noise and normalization to
the SQL).

The spectra to be evaluated are the sum and difference
power spectra SX+X+ and SX−X− and the cross-correlation
contributions. For all such spectra, we use correct estimators as
discussed below in the subsection “Statistical estimators”. The
final steps of the analysis are the subtraction of the detection
electronic noise and the normalization of the sum and the
residual spectra to the SQL. The obtained SXsXs is plotted in
Figs. 6 and 7 (wine traces).

1. Correlation with the square of the meter

Due to the relatively large rms value of the cavity phase
noise, mainly due to several mechanical resonances, a sim-
ple linear expansion of the cavity reflection function is not
sufficient to account for the whole effect of such fluctuations
on the reflected field quadratures. As a consequence, the best
estimate of Xs would be a function f (Ym). If we consider its
second-order expansion, we deduce that a non-null correlation
can also exist between X+ and the square of Ym, and a more
accurate estimate of the signal state can be performed by
exploiting all the information provided by the meter signal,
i.e., using an appropriate linear combination of Ym and of
its square. This residual uncertainty is found by subtracting
from SX+X+ also the correlation between X+ and Ysqm. This is
indeed the spectrum of the residual fluctuations that we have
plotted in Figs. 6 and 7 (dark green traces). It is compared
with the theoretical calculation of S
X, that is based on linear
expansions of the equations of motion. We remark however
that, even without the use of the correlation with Ysqm, the
normalized spectrum of the residual fluctuations falls below
the unit. No further improvements have been obtained by
considering correlation with higher order in Ym.

Even the subtraction of just the correlation with Ysqm from
the spectrum SX+X+ is interesting, as shown in Fig. 9, since
it removes some peaks originating from the nonlinearity of
the system, improving the agreement with the model. We
point out that this is a confirmation of the existence of a
quadratic nonlinearity. The correlation with Ysqm is particularly
meaningful around two peaks at ∼163 kHz and ∼187 kHz, but
it also slightly improves the residual around the minimum.

2. Statistical estimators

We have to estimate power spectra (such as SX+X+ and
SX−X−), as well as cross-correlation contributions (such as
|SX+Ym |2/SYmYm ), starting from a finite number N of experimen-
tal, Fourier-transformed time series. For the power spectrum
of a variable X, a good estimator is straightforwardly ŜXX =∑

n=1,N |X̃(n)|2/N . On the other hand, finding a correct, un-
biased indicator for the cross-correlation contribution is not
obvious. We have therefore chosen a different point of view.

(b)(a)

FIG. 9. (a) Spectra of the signal (experimental spectrum of the sum signal from the homodyne detection, with the electronic noise subtracted,
and normalized to SQL) (purple), the same after subtraction of the correlation with the square of the meter (dark green), and theoretical model
(cyan), for the reference phase corresponding to Fig. 6. (b) The same, for the reference phase corresponding to Fig. 7. The inset displays an
enlarged view around the minimum, showing the improvement of the ponderomotive squeezing when the correlation with Ysqm is subtracted
from the spectrum.
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We are willing to estimate the residual fluctuations of X that
remain once the information brought by Y is optimally used
(the subscripts of X and Y are omitted in this discussion for
the sake of clarity). In a linear system, the information that can
be extracted from Y can be written as α(ω)Ỹ , where α(ω) is a
complex function. Therefore, we have to find the function α(ω)
that minimizes the spectral density of Sα


X := 〈|X̃ − αỸ |2〉 =
SXX + |α|2SYY − 2 Re(αSXY ). By deriving with respect to α,
we find that its optimal value is αopt = (SXY )∗/SYY and the
lowest residual spectrum is indeed S

opt

X = SXX − |SXY |2/SYY .

Any different α gives an overestimation of the optimal residual
spectrum. On the other hand, for a given α, we have a correct,
unbiased estimator of the residual spectrum; that is,

Ŝα

X = 1/N

[∑
|X̃(n)|2 + |α|2

∑
|Ỹ (n)|2

−2 Re
(
α

∑
(X̃(n))∗Ỹ (n)

)]
. (B1)

The function α could be chosen a priori, e.g., on the basis
of a model, but for a more realistic analysis we have derived
it from the experimental data using the definition of αopt as
a guideline, as described in the following. We separate the
N intervals into two independent half-sets, according to the
parity of the index n. From the first half-set we calculate α as
αodd = ∑

odd n X̃(n)(Ỹ (n))∗/
∑

odd n |Ỹ (n)|2 and from the second
half-set we calculate the residual spectrum following Eq. (B1),
where the sums are taken over the even indexes. We then repeat
the procedure by exchanging the two half-sets, and we finally
take the average over the two resulting residual spectra. If we
calculate the expectation value of our final spectrum S

exp

X, we

find

E
[
S

exp

X

] = 1

N

〈 ∑
even n

|X̃(n)|2 + |αodd|2
∑

even n

|Ỹ (n)|2

−2 Re

(
αodd

∑
even n

(X̃(n))∗Ỹ (n)

)
+ (even ↔ odd)

〉

= SXX + 〈|αe/o|2〉SYY − 2 Re(〈αe/o〉SXY ),

where we have used the independence of the two half-data sets,
so that, e.g., 〈αodd

∑
even n f (n)〉 = 〈αodd〉〈

∑
even n f (n)〉 and

〈αodd〉 = 〈αeven〉 := 〈αe/o〉. Since 〈|αe/o|2〉 � |〈αe/o〉|2 (a rela-
tion valid for any stochastic variable), we can write E[Sexp


X] �
S

〈αe/o〉

X � S

opt

X. Therefore, our experimental evaluation of the

residual spectrum provides an unbiased, conservative estimator
of the residual spectrum.

We have tested the compatibility of the two independent
“odd”or“even” estimates by calculating their difference nor-
malized to its statistical uncertainty (i.e., to twice the standard
deviation of their average). The result is shown in Fig. 10
for the QND frequency region of Fig. 7(b). The normalized
differences have an average value of −0.024 ± 0.21 and a
standard deviation of 0.86 ± 0.21, figures compatible with a
normal distribution.

The above discussion can be extended to the case of two
information channels Y1 and Y2, as follows. We have to
find the functions α1 and α2 that minimize the spectrum of

FIG. 10. Difference between the “odd” and “even” estimates of
the residual fluctuations, normalized to its statistical uncertainty.

(X − α1Y1 − α2Y2) . The residual spectrum is

S
X = SXX + |α1|2SY1Y1 + |α2|2SY2Y2 − 2 Re(α1SXY1 )

−2 Re(α2SXY2 ) + 2 Re(α∗
1α2SY1Y2 ) (B2)

and the optimal weight functions are

α1,opt = SY2Y2S
∗
XY1

− S∗
XY2

SY1Y2

SY1Y1SY2Y2 − ∣∣SY1Y2

∣∣2 , (B3)

α2,opt = SY1Y1S
∗
XY2

− S∗
XY1

SY2Y1

SY1Y1SY2Y2 − ∣∣SY1Y2

∣∣2 . (B4)

As in the case of the single correlation, in order to derive
a correct estimator one can separate the data streams into
two interlaced subsets, calculate the weight functions from
the above expression using, in place of the spectra, averages
on half-sets of the correspondent discrete Fourier transforms,
calculate the residual spectra S
X according to Eq. (B2),
exchange the two subsets, and finally average the two results.

In our experiment, we have one single meter Ym. However,
as we have already mentioned, a linear approximation is not
sufficient to fully exploit it. The best estimate of Xs would
be a function f (Ym) that we can ideally expand to the second
order, as f (Ym) � α1(ω)Ym + α2(ω)Ysqm, thus returning to the
previous, two channels case. In the ideal case of an infinite
number of measurements in a stationary system, the addition
of further orders in Ym can just improve the estimate. However,
in the case of N measurements each further channel adds
statistical uncertainty. Moreover, the nonoptimal estimator can
even increase the residual spectrum if the correlation is not
sufficiently strong. As already mentioned, in our case we
have indeed verified that the residual spectrum is not further
improved by considering higher-order terms in Ym.

APPENDIX C: MODEL

The Hamiltonian of the optomechanical system can be
written as

H = h̄ωca
†a + 1

2 h̄ωm(p2 + q2) − h̄G0a
†aq, (C1)

where a is the annihilation operator of the cavity mode
at frequency ωc, p and q are the momentum and position
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operators of the mechanical oscillator, and the single-photon
coupling strength is G0 = −(ωc/Lc)

√
h̄/mωm.

The evolution equations for the system are derived from
the Hamiltonian with the inclusion of an intense laser field
at frequency ω0, input vacuum field operators ain

1 (from the
input mirror) and ain

2 (from cavity losses), and additional noise
terms that will be listed below. They can be written in the frame
rotating at the laser frequency, that is detuned by
0 = ω0 − ωc

with respect to the cavity resonance, as

q̇ = ωmp, (C2)

ṗ = −ωmq − γmp + G0a
†a + ξ, (C3)

ȧ = −κa + i(
0 + ζ + G0q)a + E0

+
√

2κ1
(
ain

1 + ε
) +

√
2κ2a

in
2 . (C4)

Here E0 = √
2κ1P/h̄ω0, where P is the input laser power and

we take E0 as real, which means that we use the driving laser
as phase reference for the optical field. The mechanical mode
is affected by a viscous force with damping rate γm and by a
Brownian stochastic force ξ (t). We have included the laser ex-
cess amplitude noise with the real stochastic variable ε. The ad-
ditional cavity phase fluctuations are introduced by a stochastic
term ζ in the detuning. The input fields’ correlations are〈
ain

j (t)ain
j (t ′)

〉 = 〈
a

in,†
j (t)ain,†

j (t ′)
〉 = 〈

a
in,†
j (t)ain

j (t ′)
〉 = 0, (C5)〈

ain
j (t)ain,†

j (t ′)
〉 = δ(t − t ′), j = 1,2. (C6)

We consider the motion of the system around a steady
state characterized by the intracavity electromagnetic field of
amplitude αs , and the oscillator at a new position qs , by writing

q = qs + δq, (C7)

p = ps + δp, (C8)

a = αs + δa. (C9)

Substituting Eqs. (C7)–(C9) into Eqs. (C2)–(C4), we obtain
the stationary solutions,

qs = G0

ωm

|αs |2, (C10)

ps = 0, (C11)

αs = E0

κ − i

, (C12)

where 
 = 
0 + G0qs , and the first-order linearized equa-
tions for the fluctuation operators

δq̇ = ωmδp, (C13)

δṗ = −ωmδq − γmδp + G0(αsδa
† + α∗

s δa) + ξ, (C14)

δȧ = −(κ − i
)δa + iG0αsδq +
√

2κ1
(
ain

1 + ε
)

+iαsζ +
√

2κ2a
in
2 . (C15)

The Fourier transformed of Eqs. (C13)–(C15) are solved for
a(ω) [we call a(ω) the Fourier transformed of δa(t) and a†(ω)
the Fourier transformed of δa†(t), with the same notation for

the other fields]. Using the input-output relations

ER =
√

2κ1αs − E0√
2κ1

, (C16)

aout =
√

2κ1δa − (
ain

1 + ε
)
, (C17)

we can write the output field, with average value

ER =
√

P

h̄ω0

κ − 2κ2 + i


κ − i

(C18)

and fluctuation operator

aout(ω) = ν1(ω)ain
1 (ω) + ν2(ω)ain,†

1 (ω) + ν3(ω)ain
2 (ω)

+ν4(ω)ain,†
2 (ω) + ν5(ω)ζ (ω) + ν6(ω)ε(ω)

+ν7(ω)ξ (ω), (C19)

where

ν1(ω) = κ − 2κ2 + i(
 + ω)

κ − i(
 + ω)
+ i|G|2κ1χeff (ω)

[κ − i(
 + ω)]2
,

ν2(ω) = iG2κ1χeff (ω)

[κ − i(
 + ω)][κ + i(
 − ω)]
,

ν3(ω) =
√

κ2

κ1
[ν1(ω) + 1],

ν4(ω) =
√

κ2

κ1
ν2(ω),

ν5(ω) = iαs√
2κ1

[ν1(ω) − ν2(ω) + 1],

ν6(ω) = ν1(ω) + ν2(ω),

ν7(ω) = iG
√

κ1χeff (ω)

κ − i(
 + ω)
.

Here G = G0

√
2αs is the effective coupling strength and

χeff (ω) = ωm

[
ω2

m − ω2 − iωγm + |G|2
ωm

(κ − iω)2 + 
2

]−1

(C20)

is the effective mechanical susceptibility modified by the
optomechanical coupling.

In the experiment, we split the output field into a weak
meter and a signal. They have different optical losses, that are
considered in the model using the beam-splitter relations

am = √
ηm aout +

√
1 − ηm a3, (C21)

as = √
ηs aout +

√
1 − ηs a4, (C22)

where a3,4 are vacuum input fields and ηm,s are the efficiencies
respectively for the meter and the signal. The correlation
between a3 and a4 could be considered by introducing in
the model the beam splitter that separates the meter and
signal fields, followed by further beam splitters modeling
the optical losses. However, due to the low efficiency ηm, to
reproduce the results we can safely neglect such correlation
and consider vacuum fields a3,4 satisfying the relations
(C5) and (C6) with j extended to (3,4). We can similarly
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consider the reference field as contributing to the meter and
the signal with independent effective vacuum fields, already
included phenomenologically in a3,4. To account for the
nonperfect mode matching we must consider that the field in
the nonresonant modes is reflected by the cavity input mirror
and impinges on the detectors where, in first approximation,
it does not interfere with the main mode. Therefore, we do
not sum the fields, but the fluctuating intensities. The above
relations are modified by replacing P → ηmmP, (ain

1 + ε) →√
ηmm(ain

1 + ε) + √
1 − ηmm a5, and aout → √

ηmmaout +√
1 − ηmm[

√
1 − ηmm(ain

1 + ε) − √
ηmma5], where ηmm is the

mode-matching coefficient and a5 is a further vacuum input
field.

The general quadrature of a field a is defined as a e−iφ +
a†eiφ . For the meter field, we measure the phase quadrature
with respect to the field reflected by the cavity. The latter,
according to Eq. (C18), is dephased by φR = arctan 
/(κ −
2κ2) + arctan 
/κ with respect to our reference (i.e., the
field at the cavity input). The measured quadrature of the
meter is therefore defined by φm = φR + π/2. Concerning
the signal, we are defining as Xs the amplitude quadrature
at the output of the polarizer, i.e., the quadrature defined by
the superposition of main and reference fields: φs = φR −
arcsin (sin φ0/

√
1 + PR/Pref + 2

√
PR/Pref cos φ0), where PR

(Pref ) is the power transmitted by the polarizer and coming
from the cavity (reference) arm [Fig. 1(c) of the main text].

Theoretical curves are obtained by calculating symmetrized
power spectra and cross-correlation spectra of the vari-
ables Ym = am(ω)e−iφm + a

†
m(ω)eiφm and Xs = as(ω)e−iφs +

a
†
s (ω)eiφs . The oscillator and cavity parameters, quoted in the

main text, are all measured independently and fixed in the
theoretical calculations. The calculated coupling strengths are
G0/2π = −3.85 Hz and G/2π = −740 kHz (at resonance).
The input power is P = 38 mW. The spectrum Sεε is 1/4 of
the excess intensity noise, normalized to SQL. In our case,
we set Sεε = 0.25×P/(24 mW). The stochastic term in the
detuning is linked to the cavity length fluctuations δl by ζ =
δl × ωc/Lc. Its spectrum is modeled with a Lorentzian peak at
208 kHz that roughly reproduces the resonance of the second
oscillator mode, plus a 1/ω2 background. The total background
amplitude is left as free fitting parameters. The mode-matching
parameter and the efficiencies, both for the signal and for
the meter, are measured independently. The detuning and the
signal phase φs are free fitting parameters.

In addition to the curves already compared with the ex-
perimental results in the main text, we show in Fig. 11
the contributions of the different noise sources to the power
spectrum SXsXs plotted in Fig. 7 of the main text. The contribu-
tion of the cavity phase noise cancels at the bare oscillator
frequency, as discussed in Ref. [34] of the main text. The
contribution of the laser noise (quantum noise and classical
amplitude noise) reaches a minimum at a frequency determined
by the best destructive interference between the fluctuations
of the laser field (modified by the optical cavity) and those
mediated by the optomechanical interaction [originated by the
term proportional to δq in Eq. (C15)]. With the parameters
used for this spectrum, even this interference occurs close to
ωm. This coincidence allows one to observe ponderomotive
squeezing that would otherwise be hidden by the cavity phase

FIG. 11. Theoretical calculation of the spectrum reported in Fig. 7
of the main text (black solid line), normalized to SQL (gray dashed
line), together with its contributions: input laser noise (blue dashed–
double dotted line), thermal noise (red solid line), vacuum noise
entering through cavity losses (dark yellow, long dash–double dotted
line), and cavity phase noise (greed dashed line).

noise. The squeezing depth is eventually limited by thermal
noise.

In Fig. 12 we show, for the same parameters, the spectrum
of the residual fluctuations of Xs after the subtraction of the
correlation with the meter. To put into evidence the different
noise contributions, we start by the residual spectrum where
just the laser noise is present; then we add cavity losses, thermal
noise, and cavity phase noise. Before the last contribution,
the interference effect described above is no longer necessary
to fall below the SQL, and the region where it happens
is potentially much larger. However, in agreement with the
comment to the previous figure, we see that eventually the
cavity phase noise strongly limits the width of this QND region.
Its cancellation at ωm is crucial, while the minimum of the
spectrum is again limited by thermal noise.

FIG. 12. Theoretical calculation of the spectrum of the residual
fluctuations of Xs, reported in Fig. 7 of the main text (black solid line),
normalized to SQL (gray dashed line). The other curves show the
contributions of the different noise sources to the final spectrum. We
start by a system with just the laser noise, at zero temperature, without
cavity losses and without extra displacement noise (dark yellow, long
dash–double dotted line). We then add cavity losses (blue dashed–
double dotted line), thermal noise (red solid line), and cavity phase
noise (green dashed line). The inclusion of vacuum noise introduced
by the detection efficiency brings us to the final spectrum.
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