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Abstract
In this paper we consider the variational setting for SPDE on a Gelfand triple
(V , H , V ∗). Under the standard conditions on a linear coercive pair (A, B), and a
symmetry condition on A we manage to extrapolate the classical L2-estimates in time
to Lp-estimates for some p > 2 without any further conditions on (A, B). As a con-
sequence we obtain several other a priori regularity results of the paths of the solution.
Under the assumption that V embeds compactly into H , we derive a universal com-
pactness result quantifying over all (A, B). As an application of the compactness result
we prove global existence of weak solutions to a system of second order quasi-linear
equations.
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1 Introduction

In this paper we consider stochastic evolution equations in the variational setting. This
is the stochastic version of Lions classical setting [23] and goes back to the work of
[6, 21, 28]. For details we refer the reader to the monographs [24, 31].

This paper consists of two main parts. In the first part we prove an extrapolation
result, which improves the usual a priori regularity estimates for linear equations with
operators that satisfy the usual coercivity conditions. As a consequence we derive a
new type of compactness result for linear equations, which is universal in the sense
that for given constants in the estimates it varies over all admissible operators and
data. In the second part we apply the compactness result to obtain global existence for
a class of stochastic parabolic systems which is not well-understood yet.

The triple (V , H , V ∗) are Hilbert spaces such that V ↪→ H ↪→ V ∗ densely, where
we identify the Hilbert space H with its dual, and where V ∗ is the dual with respect
to the inner product of H . The stochastic equations we consider can be written as:

{
du(t) + A(t)u(t) dt = f (t) dt + (B(t)u(t) + g(t)) dW (t),

u(0) = u0.
(LP)

Here A : (0, T )×� → L(V , V ∗) and B : (0, T )×� → L(V ,L2(U , H)), andW is
aU -cylindrical Brownian motion, whereU is a real separable Hilbert space. The time
T > 0 is finite. For the inhomogeneities ( f , g, u0) we assume f : (0, T )×� → V ∗,
g : (0, T ) × � → L2(U , H) and u0 : � → H , and the standard measurability
conditions are supposed to be satisfied.

Consider the following condition on the pair (A, B).

Assumption 1.1 There exist constants �,λ > 0 and M ≥ 0 such that pointwise in
[0, T ] × � for all v ∈ V ,

Re 〈Av, v〉 − 1

2
‖Bv‖2L2(U ,H) ≥ λ‖v‖2V − M‖v‖2H (coercivity),

‖Av‖V ∗ ≤ �‖v‖V & ‖Bv‖L2(U ,H) ≤ �‖v‖V (boundedness).

Under Assumption 1.1 it is standard that (LP) has a unique strong solution u ∈
L2(0, T ; V )∩C([0, T ]; H) a.s. and the following a priori estimate holds for a constant
C only depending on T ∨ 1, λ, �, and M :

‖u‖L2(�×(0,T );V ) + ‖u‖L2(�;C([0,T ];H)) ≤ C
[‖u0‖L2(�;H) + ‖ f ‖L2(�×(0,T );V ∗)

+ ‖g‖L2(�×(0,T );L2(U ,H))

]
.

(1)

In the deterministic setting it follows from [14] that one can find some p0 > 2
depending on T ∨ 1, λ, �, and M such that for every p ∈ [2, p0] there exists a
constant Cp such that
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‖u‖Lp(0,T ;V ) + ‖u′‖Lp(0,T ;V ∗) ≤ Cp
[‖u0‖(H ,V )1−2/p

+ ‖ f ‖Lp(0,T ;V ∗)
]
. (2)

Actually this even holds true outside the setting of Hilbert space and variational prob-
lems. On the other hand, (2) does not hold for all p ∈ (2,∞). In [14] the estimate
(2) is used to obtain a compactness result, which in turn is used to prove global exis-
tence of solutions to a quasi-linear parabolic PDE. On the other hand, if A does not
depend on time, then (2) holds for all p ∈ (1,∞) (see [19, Theorem 17.2.26 (4)]). A
stochastic version of an extrapolation result holds if B = 0 (or small), and was proved
in [25]. In the general case B �= 0 the result is false since the Lp(�)-integrability
can fail to hold (see [11]) and a more restrictive coercivity condition is needed (see
[16]). However, it would be interesting to obtain some result with mixed integrabil-
ity L2(�;Lp(0, T ; V )) in case of general (A, B) satisfying Assumption 1.1 and any
p ∈ [2,∞).

To prove (2) one can use Sneiberg’s lemma for complex interpolation. In the latter
argument one needs an operator T ∈ L(Xi ,Yi ), where (X0, X1) and (Y0,Y1) are
Banach couples. By complex interpolation also T ∈ L(Xθ ,Yθ ) for all θ ∈ (0, 1).
Sneiberg’s result states that the interval of θ ∈ (0, 1) for which T is invertible is
open. In the deterministic setting one can take Xi = 0W1,pi (0, T ; V ∗)∩Lpi (0, T ; V )

and Yi = Lpi (0, T ; V ∗) with 1 < p0 < 2 < p1 < ∞ and Tu = u′ + Au, where
0W1,pi (0, T ; V ∗) is defined as the subspace ofW1,pi (0, T ; V ∗) of function that vanish
at zero. The boundedness of T is trivial. Now if one takes θ ∈ (0, 1) such that
1−θ
p0

+ θ
p1

= 1
2 , then T : Xθ → Yθ is invertible by (2) for p = 2 and with u0 = 0.

Thus, Sneiberg’s lemma provides us with an open interval around this value of θ ,
which yields the required result. As far as we could see it seems impossible to define
an operator T in the stochastic framework so that the above steps can be completed.

New estimates for the linear problem

In this paper we circumvent the above problem at the price of a symmetry condition
on A, and prove the following result, where we emphasise that we do not need any
regularity conditions on (A, B).

Theorem 1.2 (Extrapolation of integrability and regularity) Suppose that Assump-
tion 1.1 holds and that on [0, T ] × � and for u, v ∈ V the symmetry condition
〈Au, v〉 = 〈Av, u〉 holds. Then there exists p0 > 2 only depending on �,λ such that
for all p ∈ [2, p0], f ∈ Lp

F (� × (0, T ); V ∗), g ∈ Lp
F (� × (0, T );L2(U , H))

and u0 ∈ Lp
F0

(�; (H , V )1−2/p,p), problem (LP) admits a unique solution u ∈
Lp(� × (0, T ); V ). Moreover, for δ ∈ (1/p, 1/2) and θ ∈ [0, 1/2) we have

u ∈ Lp(�;Cδ− 1
p ([0, T ]; [H , V ]1−2δ)), and u ∈ Lp(�;C([0, T ]; (H , V )1−2/p,p)).

In the above we used the notation [·, ·]θ and (·, ·)θ,p for complex and real interpo-
lation, respectively. The main novelties are Lp-integrability in � × (0, T ) and the
improved smoothness of the paths, which is much better than the classical path space
C([0, T ]; H) used in (1).

123



Stochastics and Partial Differential Equations: Analysis and Computations

Theorem 1.2 is a special case of Theorem 2.2, where additional linear estimates are
stated as well. As mentioned, we cannot use Sneiberg’s lemma to prove Theorem 1.2.
Instead we will use abstract Stein interpolation. The proof was inspired by the recent
work [8] on Lp-bounds for heat semigroups.

The symmetry condition can be written equivalently as A∗ = A. We do not know
if the symmetry condition is needed in Theorem 1.2. It is certainly not necessary. For
many operators A satisfying Assumption 1.1, one can always apply Theorem 1.2 to its
symmetric part A+A∗

2 and use a perturbation argument A = A+A∗
2 +R with R = A−A∗

2
(see [3, Theorem 3.2]). The only thing which needs to be checked is the following
relative boundedness condition: for every ε > 0 there exists a Cε such that

‖Rv‖V ∗ ≤ ε‖v‖V + Cε‖v‖H .

For instance for 2m-th elliptic differential operators with smooth coefficients in space
the highest order differentiation cancels out and R turns out to be of order 2m − 1,
and thus it satisfies the above relative boundedness condition.

Theorem 1.2 implies that the L2-theory in [2] can be extended to Lp-theory for
some range p ∈ (2, p0]. Although this leads to minimal changes in the proof, it has
many consequences for applications since for several problems it turns out that any
p > 2 is sufficient. For instance this occurs for SPDEs in dimension d = 2. Due to
the fact that taking for instance H = H1, V = H2 and V ∗ = L2, the space H does
not embed into L∞ as this instance of the Sobolev embedding fails. Using Lp-theory
instead one only needs that [H , V ]1−2/p = H2−1/p embeds into L∞, which is true in
dimension d = 2. We will investigate these applications in a subsequent paper.

Universal compactness

Thanks to Theorem 1.2 we obtain a compactness/tightness result for the solution
mapping ( f , g, u0) �→ u for (LP) for the path space C([0, T ]; H). We expect that
this has many consequences. In earlier works tightness of laws is obtained with H
replaced by V ∗ or even larger spaces for different but related settings (cf. [12] and
[30]). Tightness plays a key role in the stochastic compactness method (see [9]) for
obtaining weak solutions. Using a smaller path space can give more information on
the weak solution and its approximation.

Theorem 1.3 (Universal compactness for variational problems) Suppose that the
embedding V ↪→ H is compact. Let λ,�, T > 0, M ≥ 0 and K > 0 be
fixed. Then there exists a p0 > 2 only depending on λ,�, T ∨ 1 such that for
all p ∈ (2, p0], the laws {L (u) : u} on C([0, T ]; H) are tight, where u runs
over all strong solutions to (LP) and all (A, B) satisfying Assumption 1.1 with
A = A∗, and all f ∈ Lp

F (� × (0, T ); V ∗), g ∈ Lp
F (� × (0, T );L2(U , H)) and

u0 ∈ Lp
F0

(�; (H , V )1−2/p,p) satisfying ‖ f ‖ ≤ K, ‖g‖ ≤ K and ‖u0‖ ≤ K in the
respective norms.

As before, the condition A = A∗ can be weakened by a perturbation argument.
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To illustrate the power of Theorem 1.3 we will show that it can be effectively used
in the stochastic compactness method to prove global existence of a system of quasi-
linear SPDEs (see Theorem 6.6 below). A technical issue in applying the stochastic
compactness method is that the a.s. limit, obtained by tightness and the Skorohod
embedding theorem, needs to be identified as a solution. The following advantages
turn up as a consequence of the uniform estimate we obtain in the proof of Theorem
1.2:

(1) Tightness in C([0, T ]; H) (if V ↪→ H is compact);
(2) uniform estimates in Lp(�;C([0, T ]; H));
(3) uniform estimates in Lp(� × (0, T ); V ).

Here we let u run over all solutions with data (A, B, f , g, u0) as in Theorem 1.3. As
a consequence of (1) we obtain subsequences which converge in C([0, T ]; H). As a
consequence of (2) and (3) we obtain weak compactness in Lp(� × (0, T ); V ) and
uniform integrability of {‖u‖2C([0,T ];H)

: u} and {‖u‖2
L2(0,T ;V )

: u}, where u runs over
all strong solutions for the given data (A, B, f , g, u0) The uniform integrability can
be effectively combined with Vitali’s convergence theorem.

Application to a quasi-linear system of SPDEs

On an open and bounded set D ⊆ R
d consider the quasilinear system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duα = [
∂i (a

αβ
i j (u)∂ j u

β) + ∂i�
α
i (u) + φα(u)

]
dt

+
∑
n≥1

[
bαβ
n, j (u

β)∂ j u
β + gα

n (u)
]
dwn, on D,

uα = 0, on ∂D,

uα(0) = uα
0 , on D.

(QLP)

We state a special case of Theorem 6.6.

Theorem 1.4 (Weak existence for quasi-linear systems) Let h > 1. Suppose Assump-
tion 6.1. Then there is p0 > 2, depending on T ∨1, λ,�, q and C from the assumption
such that, if p ∈ (2, p0] and q ∈ (ph,∞), then, given u0 ∈ Lp

F0
(�;B1−2/p

2,p,0 (D)) ∩
Lq
F0

(� × D), there exists a weak solution (̃u, W̃ , �̃, F̃ , P̃, (F̃t )t≥0) of (QLP).

Besides that we are able to treat highly coupled systems, even in the case of scalar
quasilinear equations the result of Theorem 1.4 contains new features:

(a) less regularity on the initial data is required;
(b) equations on domains with boundary condition can be considered;
(c) gradient/transport noise terms are included.

Often when applying the stochastic compactness method only the torus is con-
sidered for simplicity. Actually, equations on domains with for instance Dirichlet
boundary condition can lead to complications:

• Bootstrapping regularity can be problematic due the presence of boundary values;
• It is often unclear in what extrapolation space to formulate compactness/tightness.
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Open problems

Given thewell-posedness theory and the deterministic extrapolation results it is natural
to state the following open problem.

Problem 1.5 Do Theorems 1.2 and 1.3 hold without the symmetry condition A∗ = A?

The well-posedness theory of Lions is usually stated in the setting of nonlinear
operators (A, B) satisfying a continuity, monotonicity and coercivity condition. We
covered only the linear setting in Theorems 1.2 and 1.3. This leads to the following
natural question.

Problem 1.6 Do Theorems 1.2 and 1.3 hold in the setting of nonlinear monotone
operators (A, B) ?

This problem seems to be open even in the deterministic setting.

Organization of the paper

In Section 2 we present the precise assumptions and state a more general version of
Theorem 1.2, and we derive Theorem 1.3 from it. In Section 3 we present a result
on analytic dependency of solutions on the equation. This will be needed later on in
order to apply Stein interpolation. In Section 4 we discuss a case in which we have
Lp(�× (0, T ); V )-estimates for all p ∈ [2,∞), which is used as one of the endpoints
in the Stein interpolation; the other endpoint is L2(�× (0, T ); V ). Finally, in Section
5 we prove the main result Theorem 2.2, a more general version of Theorem 1.2.

The main weak existence result on quasi-linear systems is stated in Section 6. First,
a proof in the case of Lipschitz nonlinearities will be given in Section 7 via Theorem
1.3 and the stochastic compactness method. This intermediate result has its own value
as it imposes even less structural assumptions. The general case is covered in Section
8, again via an a priori estimate in Lq and the stochastic compactness method.

Notation

• The notation a �P b means that there is a constant C only depending on the
parameter P such that a ≤ Cb.

• (V , H , V ∗) is the notation for the Gelfand triple of Hilbert spaces.
• (·, ·)θ,p stands for real interpolation.
• [·, ·]θ stands for complex interpolation.
• W denotes a cylindrical Brownian motion on the real separable Hilbert space U .
• L2 denotes the Hilbert–Schmidt operators.

For further unexplained notation the reader is referred to [2, 17, 24].
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2 Main extrapolation result for linear equations

We consider a linear stochastic partial differential equation of the form

du(t) + A(t)u(t) dt = f (t) dt + (B(t)u(t) + g(t)) dW (t), u(0) = u0. (P)

Let us make precise the setting and assumptions for this part.

Assumption 2.1 Fix 0 < T < ∞. Let U be a real separable Hilbert space, and H
and V be complex separable Hilbert spaces, where V ⊆ H continuously and densely.
Fix a probability space � with filtration F = (Ft )0≤t≤T and let W be a real-valued
U -cylindrical Brownian motion adapted to F . Consider A : � × (0, T ) → L(V , V ∗)
and B : �×(0, T ) → L(V ,L2(U , H)), whereL2(U , H) denotes the space of Hilbert
Schmidt operators from U to H , both progressively measurable. Suppose that there
exist �(A),�(B), λ > 0 and M ≥ 0 such that pointwise on [0, T ] × � and v ∈ V
one has

Re 〈Av, v〉 − 1

2
‖Bv‖2L2(U ,H) ≥ λ‖v‖2V − M‖v‖2H , (3)

and

‖Av‖V ∗ ≤ �(A)‖v‖V & ‖Bv‖L2(U ,H) ≤ �(B)‖v‖V .

Put � = �(A) + �(B).

The main result of this part is the following.

Theorem 2.2 Suppose that Assumption 2.1 holds and 〈Au, v〉 = 〈Av, u〉 pointwise in
[0, T ] × �. Then there exists a p0 > 2 such that, for all p ∈ [2, p0], f ∈ Lp

F (� ×
(0, T ); V ∗), g ∈ Lp

F (�× (0, T );L2(U , H)) and u0 ∈ Lp
F0

(�; (H , V )1−2/p,p), prob-
lem (P) admits a unique solution u ∈ Lp(� × (0, T ); V ), and for any θ ∈ [0, 1/2)
there is a constant Kθ depending only on �(A), �(B), λ, M, T ∨ 1, θ such that

‖u‖Lp(�;Hθ,p(0,T ;[H ,V ]1−2θ )) ≤ KθCu0, f ,g,

where

Cu0, f ,g = ‖u0‖Lp(�;(H ,V )1−2/p,p)
+ ‖ f ‖Lp(�×(0,T );V ∗) + ‖g‖Lp(�×(0,T );L2(U ,H)).

Also, there is a constant K0 depending only on �(A), �(B), λ, M, T ∨ 1, and p such
that

‖u‖Lp(�;C([0,T ];(H ,V )1−2/p,p))
≤ K0Cu0, f ,g.

Moreover, for θ ∈ (1/p, 1/2), there is a constant Kθ depending only on �(A), �(B),
λ, T ∨ 1, and θ such that

‖u‖Lp(�;Cθ−1/p([0,T ];[H ,V ]1−2θ ))
≤ KθCu0, f ,g.
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The symbol Hθ,p denotes the (vector-valued) Bessel potential space (see [17, 19]),
and the subscriptsF andF0 refer to the subspaces ofLp ofF-progressivelymeasurable
and F0-adapted functions.

Remark 2.3 (Real problems) In virtue of complexification, the result does also apply
to problems over real Hilbert spaces. We are going to use this fact later on.

As a consequence of Theorem 2.2 we can already prove the compactness/tightness
result of Theorem 1.3.

Proof of Theorem 1.3 Let S denote the set of solutions described in Theorem 1.3. Fix
θ ∈ (1/p, 1/2). By Theorem 2.2, S is bounded in Lp(�;Cθ−1/p([0, T ]; [H , V ]1−2θ ))

by KθCu0, f ,g . Let ε > 0. Choose R > 0 such that K p
θ C

p
u0, f ,g

R−p ≤ ε. Then for all
u ∈ S,

P(‖u‖Cθ−1/p([0,T ];[H ,V ]1−2θ )
≥ R) ≤ R−p

E‖u‖p

Cθ−1/p([0,T ];[H ,V ]1−2θ )
≤ ε.

By the vector-valued Arzéla–Ascoli theorem [22, Theorem III.3.1], the embedding

Cθ−1/p([0, T ]; [H , V ]1−2θ ) ↪→ C([0, T ]; H)

is compact, and therefore {L(u) : u ∈ S} is tight.

3 L2-estimates and analytic dependency

The central finding of this section is that solutions to a complex family of variational
problems have analytic dependence provided this was the case for the complex family,
see Proposition 3.3 and Corollary 3.4. Before, we will briefly discuss well-posedness
of (P) in a complex setting.

To ease notation, we introduce data and solution spaces for the variational setting.

Definition 3.1 Define the data spaces E0:=L2
F (� × (0, T ); V ∗) and E 1

2
:=L2

F (� ×
(0, T );L2(U , H)), and the solution space E1:=L2

F (�×(0, T ); V )∩L2
F (�;C([0, T ];

H)), where the subscript F indicates the subspace of progressively measurable func-
tions.

3.1 A (complex) variational setting

The following variational well-posedness result is well-known in its real formulation
[24]. The complex version follows by “forgetting” the complex structure. For instance,
we can interpret a complex vector space H as a real vector space if we equip it with
the inner product (·|·)HR

= Re(·|·)H and so on.

Proposition 3.2 Let f ∈ E0, g ∈ E 1
2
. Suppose Assumption 2.1 holds. Then (P) with

u0 ∈ L2
F0

(�; H) has a unique solution u ∈ E1, and there exists a constant CL

123



Stochastics and Partial Differential Equations: Analysis and Computations

depending on �, λ, M, and T ∨ 1, such that

‖u‖E1 ≤ CL
(‖u0‖L2(�;H) + ‖ f ‖E0 + ‖g‖E 1

2

)
.

3.2 Analytic dependence of solutions

In the following result we show analytic dependence of solutions.

Proposition 3.3 Let O ⊆ C be open and for z ∈ O let Az and Bz be operator functions
that satisfy Assumption 2.1 uniformly in z and that depend analytically on z in the
uniform operator topology. Furthermore, let f ∈ E0, g ∈ E 1

2
and u0 ∈ H. Then, for

fixed z, the unique solution uz of the problem

du(t) + Az(t)u(t) dt = f (t) dt + (Bz(t)u(t) + g(t)) dW (t), u(0) = u0, (4)

gives rise to an analytic function O � z �→ uz ∈ E1.

Proof Since we consider differences below, we have zero initial data in the equations
in this proof. For fixed z, Proposition 3.2 yields a unique solution uz of (4).

Step 1: O � z �→ uz ∈ E1 is continuous.
Let z ∈ O and h small enough so that z + h ∈ O . The function v:=uz+h − uz is

the unique solution of

dv(t) + Az+hv(t) dt = −(Az+h − Az)uz dt + (Bz+hv(t) + (Bz+h − Bz)uz) dW (t).

Therefore, by Proposition 3.2,

‖v‖E1 ≤ CL
(‖(Az+h − Az)uz‖E0 + ‖(Bz+h − Bz)uz‖E 1

2

)
.

Hence, continuity of Az and Bz yield the claim.
Step 2: O � z �→ uz ∈ E1 is analytic.
Write Dh for difference quotients of u, A, and B with respect to z, for example

Dhu = u(z+h)−u(z)
h . One has that Dhu is the unique solution of

dv(t) + Azv dt = −(Dh Az)uz+h dt + (Bzv + (DhBz)uz+h) dW (t).

We show that Dhu is a Cauchy sequence in E1. Then, by the very definition of complex
differentiability, z �→ uz is analytic. To this end, consider h1 �= h2. The difference
w:=Dh1u − Dh2u solves

dw(t) + Azw dt = −
((

Dh1 A − Dh2 A
)
uz+h1 + (Dh2 A)(uz+h1 − uz+h2)

)
dt

+
(
Bzw + (

Dh1B − Dh2B
)
uz+h1 + (Dh2B)(uz+h1 − uz+h2)

)
dW (t).
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A calculation using Proposition 3.2 shows

‖Dh1u − Dh2u‖E1
≤ C2

L

(
‖Dh1 A − Dh2 A‖L(V ,V ∗) + ‖Dh1 B − Dh2 B‖L(V ,L2(U ,H))

)
(‖ f ‖E0 + ‖g‖E 1

2

)

+ CL

(
‖Dh2 A‖L(V ,V ∗) + ‖Dh2 B‖L(V ,L2(U ,H))

)
‖uz+h1 − uz+h2‖E1 .

First, the difference quotients of A and B are Cauchy sequences for A and B are
holomorphic. Second, the difference quotients of A and B are, again by analyticity,
uniformly bounded. Third, ‖uz+h1 − uz+h2‖E1 tends to zero by Step 1. We conclude
that Dhu is a Cauchy sequence as claimed. ��
Corollary 3.4 Let O ⊆ C be open and for z ∈ O let Az and Bz be operator functions
that satisfy Assumption 2.1 uniformly in z and that depend analytically on z in the
uniform operator topology. Furthermore, let f : O → E0, g : O → E 1

2
and u0 :

O → H be analytic. Then, for fixed z, the unique solution uz of the problem

du(t) + Az(t)u(t) dt = fz(t) dt + (Bz(t)u(t) + gz(t)) dW (t), u(0) = u0, (5)

gives rise to an analytic function O � z �→ uz ∈ E1.

Proof From Proposition 3.3 it follows that Sz : O → L(E0 × E 1
2

× H ,E1) given by
Sz = uz , where uz is the solution to (4), is analytic in the strong operator topology.
Therefore, S is analytic in the uniform operator topology (see [5, Proposition A.3]).
Now the analyticity follows as the solution to (5) is given by Sz( fz, gz, u0,z) and is
the composition of analytic functions. ��

4 Lp-estimates for small perturbations of the autonomous case

In this section, we establish Lp-theory by means of a perturbation result with the
autonomous case. The quantities in the assumption of Theorem 4.6 look cumbersome
at first glance, but we will see in Section 5 that they are, in fact, very closely tied to
the concept of coercivity.

Throughout this section, fix some p > 2. We extend Definition 3.1.

Definition 4.1 Put Ep
0 :=Lp

F (� × (0, T ); V ∗) and E
p
1
2
:=Lp

F (� × (0, T );L2(U , H))

for the data spaces and Ep
1 :=Lp

F (� × (0, T ); V ) ∩ Lp
F (�;C([0, T ]; (H , V )1−2/p,p))

for the solution space.

Let us introduce a reference operator for the perturbation argument.

Definition 4.2 Consider the operator A0 : V → V ∗ given by 〈A0(u), v〉:=(u|v)V .

Remark 4.3 The operator A0 is invertible, positive and self-adjoint.

The following deterministic maximal L p-regularity result holds.
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Lemma 4.4 There is a constant Cp such that, for all μ > 0, f ∈ Lp(0, T ; V ∗), and
u a strong solution to u′ + (μA0)u = f with u(0) = 0, one has the a-priori estimate

μ‖u‖Lp(0,T ;V ) ≤ Cp‖ f ‖Lp(0,T ;V ∗).

Proof The fact that A0 has maximal L p-regularity on R+ follows from de Simon’s
result (see [19, Corollary 17.3.8]). From the proof of [19, Theorem 17.2.26] it follows
that μA0 has maximal L p-regularity on R+ with the same constant Cp. Therefore,
by [19, Lemma 17.2.16]), μA0 has maximal L p-regularity on (0, T ) with the same
constant Cp. This gives the desired bound with constant independent of μ ��

Nextwewill present a similar result in the stochastic setting, butwithout the optimal
scaling in μ as this will not be needed later.

Lemma 4.5 For any μ > 0, the operator μA0 admits stochastic maximal Lp-
regularity, that is to say, there is c(p, μ) > 0 such that for all f ∈ Ep

0 and g ∈ E
p
1
2

there is a unique strong solution u ∈ E1 to

du(t) + μA0u dt = f (t) dt + g(t) dW (t), u(0) = 0,

satisfying the estimate

‖u‖Ep
1

≤ c(p, μ)
(‖ f ‖Ep

0
+ ‖g‖

E
p
1
2

)
.

Proof Let μ > 0. By linearity and Lemma 4.4 it suffices to consider f = 0. As μA0
is positive and self-adjoint on V ∗, it is also positive and self-adjoint on H (see [27,
Proposition 1.24]). Therefore, it has a bounded H∞-calculus with constant 1 (see [18,
Proposition 10.2.23]). Moreover, H is, as a separable Hilbert space, isomorphic to
L2(R). Therefore, from the definition of A0 and from [26] we obtain

μ1/2‖u‖Ep
1

= ‖(μA0)
1/2u‖Lp(�×R+;H) ≤ c(p)‖g‖Lp(�×R+;L2(U ,H)) = c(p)‖g‖

E
p
1
2

.

��
Theorem 4.6 Let f ∈ Ep

0 and g ∈ E
p
1
2
. Employ Assumptions 2.1 with M = 0 and

recall the constant �(B). Suppose that there are ε, δ > 0 such that

(i) for some μ > 0 one has Cpμ
−1‖A − μA0‖L(V ,V ∗) ≤ 1 − ε, where Cp is the

constant from Lemma 4.4, and
(ii) c�(B) ≤ 1 − δ, where c = c(�,μ, T , ε, p).

Then there exists a unique strong solution u ∈ Ep
1 to (P) with u0 = 0 satisfying the

estimate

‖u‖Ep
1

≤ c

δ

(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

)
.
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Proof We tacitly impose the initial condition u(0) = 0 whenever we speak about
equations in this proof. First, we investigate the problem with B = 0, that is to say,
we want to show that there exists a unique strong solution u ∈ Ep

1 to the stochastic
problem

du(t) + A(t)u(t) dt = f (t) dt + g(t) dW (t) (6)

satisfying the estimate

‖u‖Ep
1

≤ c(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

) (7)

with a constant c depending only on ε,�,μ, T ∨1, and p. This constant is the constant
postulated in hypothesis (i) of the theorem.

Step 1: Reduction to an a-priori estimate.
For θ ∈ [0, 1] consider Aθ :=(1− θ)μA0 + θ A. Since Aθ − μA0 = θ(A − μA0),

one has

Cpμ
−1‖Aθ − μA0‖L(V ,V ∗) = Cpμ

−1θ‖A − μA0‖L(V ,V ∗) ≤ 1 − ε.

Therefore, in the light of a stochastic version of the method of continuity (see [29,
Prop. 3.10]), it suffices to show the a priori estimate (7) for any strong solution u of (6).

Step 2: Show the a-priori estimate.
Let u a strong solution of (6). By Lemma 4.5 there is a strong solution v ∈ Ep

1 of

dv(t) + (μA0)v(t) dt = f (t) dt + g(t) dW (t)

satisfying the estimate

‖v‖Ep
1

≤ c(p, μ)(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

). (8)

Define w:=u − v ∈ Ep
1 . Fix ω ∈ �. Use the shorthand notation wω(t) = w(ω, t),

and so on. By construction, wω is almost surely a strong solution to the deterministic
problem

∂twω + (μA0)wω = −(Aω − μA0)uω.

Lemma 4.4 lets us compute

μ‖wω‖Lp(0,T ;V ) ≤ Cp‖(Aω − μA0)uω‖Lp(0,T ;V ∗)

≤ Cp‖Aω − μA0‖L(V ,V ∗)
(
‖vω‖Lp(0,T ;V ) + ‖wω‖Lp(0,T ;V )

)
.
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Divide this by μ and use the assumption to give

‖wω‖Lp(0,T ;V ) ≤ Cpμ
−1‖(Aω − μA0)‖L(V ,V ∗)

(
‖vω‖Lp(0,T ;V ) + ‖wω‖Lp(0,T ;V )

)
≤ (1 − ε)‖vω‖Lp(0,T ;V ) + (1 − ε)‖wω‖Lp(0,T ;V ).

Absorb the second term on the right-hand side into the left-hand side to deduce

‖wω‖Lp(0,T ;V ) ≤ 1 − ε

ε
‖vω‖Lp(0,T ;V ).

According to [29, Step 1 in Thm. 3.9], u is progressivelymeasurable. Hence, averaging
the last bound over � yields

‖w‖Lp(�×(0,T );V ) ≤ 1 − ε

ε
‖v‖Lp(�×(0,T );V ).

In conjunction with u = v + w and (8) we obtain in summary

‖u‖Lp(�×(0,T );V ) ≤ ‖v‖Lp(�×(0,T );V ) + ‖w‖Lp(�×(0,T );V )

≤ c(p, μ)

ε

(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

)
.

Step 3: Including B.
As is standard (see [29, Prop. 3.10], for instance), we solve the problem (P) with

u0 = 0,

du(t) + A(t)u(t) dt = f (t) dt + (B(t)u(t) + g(t)) dW (t), (9)

using a fixed-point argument. For � ∈ Ep
1 , replace Bu by B� in (9). This problem

possesses a unique solution in Ep
1 in virtue of the first part of the proof.Write R(�) for

it. To show unique solvability of (9), it suffices to show that R is a strict contraction.
Let �1,�2 ∈ Ep

1 . By linearity, R(�1)− R(�2) is the unique strong solution to the
problem

du(t) + A(t)u(t) dt = B(t)(�1(t) − �2(t)) dW (t).

Hence, (7) with f = 0 and g = B(�1 − �2) gives

‖R(�1) − R(�2)‖Ep
1

≤ C‖B(�1 − �2)‖Ep
1
2

≤ C�(B)‖�1 − �2‖Ep
1
.

Thus, R is a strict contraction by the assumption C�(B) ≤ 1 − δ.
For the estimate, apply the a-priori estimate (7) once more to find

‖u‖Ep
1

≤ C(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

+ ‖Bu‖
E
p
1
2

) ≤ C(‖ f ‖Ep
0

+ ‖g‖
E
p
1
2

) + (1 − δ)‖u‖Ep
1
.
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Wecan absorb the second termof the right-hand side into the left-hand side to conclude.
��

5 Extrapolation of integrability in time

Our main result follows from an interpolation argument using abstract Stein interpola-
tion [33]. For details on interpolation the reader is referred to [7, 17, 32]. The last two
sections constitute the endpoint cases of this interpolation. Before we can conclude in
Section 5.2, we have to construct an analytic family of auxiliary problems first.

Assumption 5.1 For fixed t , the form V × V � (u, v) �→ 〈A(ω, t)u, v〉 is hermitian
almost surely. To ease notation, write a(u, v):=aω,t (u, v):=〈A(ω, t)u, v〉.
This symmetry assumption is used in a crucial way in Lemmas 5.4 and 5.7.

Convention 5.2 We ignore the dependence on (ω, t) in our notation. For instance,
we let A denote the operator V → V ∗ given by 〈Au, v〉:=〈A(ω, t)u, v〉. Also, we put
a(u, v):=〈Au, v〉 and a[u]:=a(u, u).

The following lemma translates upper bounds on the diagonal of V × V to the
whole form. That the optimal constant is 1 is a consequence of Assumption 5.1, but
is actually not needed later. A simpler polarization argument without Assumption 5.1
would lead to an extra factor 2.

Lemma 5.3 Suppose that Assumption 5.1 holds. If for some c > 0 one has |a[u]| ≤
c‖u‖2V , then also |a(u, v)| ≤ c‖u‖V ‖v‖V for all u, v ∈ V .

Proof Let u, v ∈ V . We can of course assume u �= 0 �= v. There is a complex number
z with |z| = 1 such that za(u, v) is real and positive. By the polarization identity one
has

za(u, v) = a(zu, v) = 1

4

(
a[zu + v] − a[zu − v] + ia[zu + iv] − ia[zu − iv]).

(10)

Since a is hermitian, a[u] is real for any u ∈ V . Hence, taking the real part of (10)
gives

|a(u, v)| = za(u, v) = 1

4

(
a[zu + v] − a[zu − v]).

Expanding the quadratic forms in conjunction with the bound on the diagonal leads to

|a(u, v)| = 1

4

(
2a[zu] + 2a[v]) ≤ c

2

(‖u‖2V + ‖v‖2V
)
. (11)

It remains to use |a(u, v)| = |a(λu, λ−1v)|, apply (11), and minimize over λ > 0. ��

123



Stochastics and Partial Differential Equations: Analysis and Computations

5.1 Complex family of auxiliary problems

Lemma 5.4 Suppose that Assumption 2.1 holds with M = 0 and that Assumption 5.1
holds. Put μ = �(A) and ρ = λ

�(A)
. Then one has

∣∣∣μ−1
(
a[v] − 1

2
‖Bv‖2L2(U ,H)

)
− ‖v‖2V

∣∣∣ ≤ (1 − ρ)‖v‖2V .

Proof To ease notation, put c[v]:=a[v] − 1
2‖Bv‖2L2(U ,H)

. By Assumptions 2.1 (with

M = 0) and 5.1 one has λ‖v‖2V ≤ c[v] ≤ �(A)‖v‖2V . Let s ≥ 0. Assumption 5.1
implies that sc[v] − ‖v‖2V is real, hence

|sc[v] − ‖v‖2V | = max(sc[v] − ‖v‖2V , ‖v‖2V − sc[v]). (12)

Consider the first term. Since

sc[v] − ‖v‖2V ≤ (s�(A) − 1)‖v‖2V ,

the maximum in (12) coincides with the second term for any choice s ≤ 1
�(A)

. On the
other hand,

‖v‖2V − sc[v] ≤ (1 − sλ)‖v‖2V ,

so the right-hand side of the last estimate is minimal for themaximal admissible choice
s = (�(A))−1. Put μ = s−1 = �(A) and ρ = sλ = λ

�(A)
. In summary, we obtain

|μ−1c[v] − ‖v‖2V | ≤ (1 − ρ)‖v‖2V . ��
The same calculation but applied to a[v] instead of a[v] − 1

2‖Bv‖2L2(U ,H)
in con-

junction with Lemma 5.3 gives the following.

Corollary 5.5 Suppose that Assumption 2.1 holds with M = 0 and that Assumption 5.1
holds. For the same μ and ρ as in Lemma 5.4 one has ‖μ−1A− A0‖L(V ,V ∗) ≤ 1−ρ.

We use μ and ρ from the lemma to define complex perturbations of A and B.

Definition 5.6 With μ and ρ from Lemma 5.4, fix numbers 0 < r < 1 < R satisfying

(i) R(1 − ρ) < 1, and
(ii) r min(Cp(1 − ρ), c�(B)) < 1, where Cp is the constant from Lemma 4.4 and c

is the constant from Theorem 4.6.

Moreover, with the holomorphic function F(z) = rez log(R/r) defined on the open unit
strip S = {z ∈ C : 0 < Re(z) < 1}, define

Az :=μ
(
F(z)(μ−1A − A0) + A0

)
& Bz :=F(z)

1
2 B.
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Lemma 5.7 Suppose that Assumption 2.1 holds with M = 0 and that Assumption 5.1
holds. Then the coercivity condition (3) in Assumption 2.1 is satisfied for Az and Bz,
uniformly in z ∈ S. To be more precise, the implied constant depends only on λ,�(A),
and R.

Proof Write ‖ · ‖L2 :=‖ · ‖L2(U ,H). Recall μ = �(A) from Lemma 5.4. Conse-
quently, ‖μ−1A‖L(V ,V ∗) ≤ 1. Since a is hermitian by Assumption 5.1, it follows
that μ−1a[v] − ‖v‖2V is real and non-positive. Recall

μ−1Az = F(z)(μ−1A − A0) + A0.

Calculate for ‖v‖V = 1 that

Reμ−1(az[v] − 1

2
‖Bz(v)‖2L2

) = 1 + (
Re F(z)

)
(μ−1a[v] − ‖v‖2V ) − |F(z)|

2μ
‖B(v)‖2L2

≥ 1 + |F(z)|(μ−1a[v] − ‖v‖2V ) − |F(z)|
2μ

‖B(v)‖2L2

= 1 + |F(z)|
(
μ−1(a[v] − 1

2
‖B(v)‖2L2

) − ‖v‖2V
)

≥ 1 − |F(z)|
∣∣∣μ−1(a[v] − 1

2
‖B(v)‖2L2

) − ‖v‖2V
∣∣∣,

where we exploited in the first line that μ−1a[v]− ‖v‖2V is real in the second line that
it is non-positive. Therefore, Lemma 5.4 reveals

Reμ−1(az[v] − 1

2
‖Bz(v)‖2L2

) ≥ 1 − |F(z)|(1 − ρ),

so that the right-hand side is strictly positive in virtue of Definition 5.6 (i) and since
|F(z)| ≤ relog(R/r) = R. Eventually, multiplying by μ completes the proof. ��
Now consider on the unit strip S the complex family of problems

du(t) + Az(t)u(t) dt = f (t) dt + (Bz(t)u(t) + g(t)) dW (t) (Pz)

with initial condition u(0) = 0.
By construction, the mappings z �→ Az and z �→ Bz are analytic, and Lemma 5.7

assures that Assumption 2.1 is satisfied uniformly in z. We conclude with Proposi-
tion 3.3 that z �→ uz ∈ E1, where uz is the unique solution of (Pz), is analytic.

5.2 Conclusion by Stein interpolation

The following proposition is the basis for our main result.

Proposition 5.8 Under Assumptions 2.1 with M = 0 and 5.1 there exists a p0 > 2
such that, for all p ∈ [2, p0], f ∈ Ep

0 and g ∈ E
p
1
2
, problem (P) with u0 = 0 admits
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a unique solution u ∈ Ep
1 , and there is a constant C depending only on �(A), �(B),

λ, T ∨ 1 such that

‖u‖Ep
1

≤ C
(‖ f ‖Ep

0
+ ‖g‖

E
p
1
2

)
.

Proof Step 1: Applying abstract Stein interpolation to (Pz).
For z ∈ S define an operator Tz : E0 × E 1

2
→ E1 which maps a data pair ( f , g) to

the unique solution u of (Pz). By linearity of the equation, Tz is linear and the family
of operator (Tz)z∈S is uniformly bounded according to Proposition 3.2.

Fix some q > 2. We apply the results of the last section with p replaced by q.
Let ( f , g) ∈ Eq

0 × E
q
1
2

⊆ E0 × E 1
2
. We claim that Tit ( f , g) ∈ Eq

1 uniformly. Indeed,

this follows from Theorem 4.6 if we check its smallness assumptions. Hypothesis (ii)
follows immediately from Definition 5.6. Moreover, since A0 −μ−1Az = F(z)(A0 −
μ−1A), it follows from Corollary 5.5 that

Cq‖A0 − μ−1Ait‖L(V ,V ∗) = Cq |F(it)|‖A0 − μ−1A‖L(V ,V ∗) ≤ rCq(1 − ρ).

Therefore, by choice of r inDefinition 5.6,Cq‖A0−μ−1Ait‖L(V ,V ∗) < 1uniformly
in z = it .

Finally, we have argued in Section 3.2 that for fixed ( f , g) the map S � z �→
Tz( f , g) ∈ E1 is holomorphic. In summary, this allows us to invoke abstract Stein
interpolation [33] to deduce

‖uθ‖Eqθ
1

≤ Cθ

(‖ f ‖Eqθ
0

+ ‖g‖
E
qθ
1
2

)
, θ ∈ (0, 1), f ∈ Eq

0 , g ∈ E
q
1
2
,

where 1
qθ

= 1−θ
2 + θ

q and Cθ = C1−θ
L (c/δ)θ , uθ is the unique solution to (Pz) with

z = θ , and where we use the constants from Proposition 3.2 and Theorem 4.6.
Step 2: Specializing to (P).
Choose θ = − log(r)

log(R/r) ∈ (0, 1). Then F(θ) = 1 and we find Aθ = A and Bθ = B.
Write p0:=qθ , then Step 1 shows

‖u‖Ep0
1

≤ C
(‖ f ‖Ep0

0
+ ‖g‖

E
p0
1
2

)
, f ∈ Eq

0 , g ∈ E
q
1
2
,

where 2 < p0 < q and u is the unique solution to (P) with data ( f , g). By an
approximation argument, we extend well-posedness to ( f , g) ∈ Ep0

0 × E
p0
1
2
.

Now to obtain the statement for p ∈ (2, p0], one can either use complex interpola-
tion with the case p = 2, or lower the value of r in the above proof. ��

Now we can prove the main regularity result for linear equations stated in Theo-
rem 2.2.

Proof of Theorem 2.2 By considering eλt u(t) for suitable λ ∈ R we can reduce to the
case M = 0 in Assumption 2.1. Then Proposition 5.8 yields a unique strong solution
to (P)with u0 = 0 that satisfies the Lp-estimate corresponding to θ = 0 in the theorem.
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Still with u0 = 0, we can first deduce higher regularity in time from [1, Prop. 3.8],
using the reference operators B̃ = 0 and Ã = A0. In a second step, we include initial
values u0 ∈ Lp

F0
(�; (H , V )1−2/p,p) in virtue of [1, Prop. 3.10]. At both stages, [1,

Prop. 2.10] can be used to get the maximal estimate missing in the case θ = 0.

6 Quasilinear problem andwell-posedness result

On an open and bounded set D ⊆ R
d consider the quasilinear system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duα = [
∂i (a

αβ
i j (u)∂ j u

β) + ∂i�
α
i (u) + φα(u)

]
dt

+
∑
n≥1

[
bαβ
n, j (u

β)∂ j u
β + gα

n (u)
]
dwn, on D,

uα = 0, on ∂D,

uα(0) = uα
0 , on D,

(QL)

where W = (wn(t) : t ≥ 0)n≥1 are independent standard Brownian motions on a
probability space �, i, j = 1, . . . , d, and α, β = 1, . . . , N for some system size
N ≥ 1. For simplicity, we employed Einstein’s summation convention above and in
the sequel. We will ignore the system size N in the notation for function spaces if this
cannot cause any confusion. Let F be the filtration on � induced by W .

Let h > 1. For our main result with growing non-linearities, Theorem 6.6, we
introduce the following assumption. As an intermediate step, we also treat “the case
h = 1” in Theorem 7.2, with reduced structural assumptions, and thus of independent
interest.

Assumption 6.1 (h)

(1) The system is diagonal, that is aαβ
i j and bαβ

j are non-zero only when α = β. Write
aα
i j :=aαα

i j and bα
j :=bαα

j . For fixed α, the matrix aα does not need to be diagonal.

(2) The coefficientsaα
i j : (0, T )×D×R

N → R andbα
j :=(bα

n, j )n≥1 : (0, T )×D×R →
�2 are continuous in the last component, measurable, and uniformly bounded by
a constant �. Moreover, supt,x,y |∂ j b

αβ
n, j (t, x, y)| < ∞.

(3) One has aα
i j = aα

j i and there exists λ > 0 such that, for all t ∈ (0, T ), x ∈ D, and

y ∈ R
N ,

(
aα
i j (t, x, y) − 1

2
bα
n,i (t, x, y

α)bα
n, j (t, x, y

α)
)
ξα
i ξα

j ≥ λ|ξ |2, ξ ∈ R
dN .

(4) The non-linearities �α
i : (0, T ) × D ×R

N → R and φα : (0, T ) × D ×R
N → R

are measurable, locally Lipschitz in the last component, and satisfy the following
growth condition: there exists a constant C such that,

|�(t, x, y)| + |φ(t, x, y)| ≤ C(1 + |y|h), t ∈ (0, T ), x ∈ D, y ∈ R
N . (G)
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(5) The non-linearity φ is dissipative in the following sense: there exists a constant C
such that one has for all t ∈ (0, T ), x ∈ D, y ∈ R

N and α = 1, . . . , N that

φα(t, x, y)yα ≤ C(|y|2 + 1).

The nonlinearity � is dissipative in the following sense:

�α(t, x, y) = �
α
(yα) + �̂α(t, x, y),

where �i : R → R
N is measurable, and �̂i : (0, T ) × D × R

N → R
N is

measurable andLipschitz continuous in the last component (uniformlywith respect
to t and x).

(6) The stochastic non-linearity gα:=(gα
n )n≥1 : (0, T )×D×R

N → �2 is measurable,
Lipschitz continuous and of linear growth in the last component (uniformly with
respect to the first two components).

Remark 6.2 Some discussion of the hypotheses is in order.

(i) When we work with non-linearities of linear growth, see Section 7, then the
diagonal structure assumed in (1) is not needed. This is why (QL) is formulated
for the non-diagonal case.

(ii) The non-linearities for a, � and φ lead to a coupling between the components
even when working with a diagonal structure.

(iii) To identify the limit in the stochastic compactness method, it seems crucial that
bαβ
j only depends on the βth component. In fact, it is a surprising strength of our

approach that this structural assumption is not needed for a.

Remark 6.3 (Diagonal structure) Instead of imposing a diagonal structure, we could
also strengthen the coercivity condition as follows: for q ∈ [0, 2(h − 1) + ε] assume
that there exists λq > 0 such that, for all t ∈ (0, T ), x ∈ D, and y ∈ R

N ,

|yα|q
(
aα
i j (t, x, y) − 1

2
bα
n,i (t, x, y

α)bα
n, j (t, x, y

α)
)
ξα
i ξα

j

≥ λq |yα|q |ξα|2 for all ξ ∈ R
dN .

For instance, such a condition can be ensured for perturbations of diagonal systems
in which |aαβ

i j | ≤ c(1 + |y|q)−1 whenever α �= β, where c is sufficiently small. For
clarity of exposition, we only work with the diagonal case. This case is also the most
important one in reaction–diffusion equations. However, we do not know whether the
structural condition we have made is essential. It is needed at a technical point in the
proof in the identification of the limit in the stochastic compactness method.

To make precise the homogeneous Dirichlet boundary condition in (QL), we intro-
duce the following function spaces.

Definition 6.4 Write H1
0(D) for the closure in H1(D) of C∞

0 (D), the smooth and
compactly supported functions in D. Moreover, for s ∈ (0, 1) put

Hs
0(D):=[L2(D),H1

0(D)]s & Bs
2,p,0(D):=(L2(D),H1

0(D))s,p.
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Remark 6.5 The spaces Hs
0(D) and Bs

2,p,0(D) can often be identified with closed
subspaces of the usual Bessel potential and Besov spaces on D.

The main result on the quasi-linear system (QL) reads as follows.

Theorem 6.6 (Weak existence) Let h > 1. Suppose Assumption 6.1 holds. Then there
is p0 > 2, depending only on C,�, λ from the assumption as well as dimensions,
such that, if p ∈ (2, p0] and q ∈ (ph,∞), then, given u0 ∈ Lp

F0
(�;B1−2/p

2,p,0 (D)) ∩
Lq
F0

(� × D), there exists a weak solution (̃u, W̃ , �̃, F̃ , P̃, (F̃t )t≥0) of (QL) in the
sense of Definition 6.7. One has the estimates

‖ũ‖
Lp(�̃;C([0,T ];B1−2/p

2,p,0 (D)))
�θ 1 + ‖u0‖hLq (�;Lq (D)) + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
,

‖ũ‖Lq (�̃×(0,T )×D) � 1 + ‖u0‖hLq (�×D).

Moreover, for all θ ∈ [0, 1/2) one has the bound

‖ũ‖Lp(�̃;Hθ,p(0,T ;H1−2θ
0 (D)))

�θ 1 + ‖u0‖hLq (�;Lq (D)) + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

.

Our notion of a weak solution employed in Theorem 6.6 is the following.

Definition 6.7 Call the tuple (̃u, W̃ , �̃, F̃ , P̃, (F̃t )t≥0) aweak solution of (QL) if W̃ =
(w̃n)n≥1 is an �2-cylindrical Brownian motion on �̃, ũ(0) has the same distribution as
u0, ũ ∈ L2(0, T ;H1

0(D)) ∩C([0, T ];L2(D)) almost surely and is (F̃t )-progressively
measurable, �α

i (̃u), φα(̃u) ∈ L1(0, T ;L1(D)), g(̃u) ∈ L2(0, T ;L2(D; �2)), and for
all ξ ∈ C∞

0 (D) and t ∈ [0, T ], one has almost surely

〈̃uα(t), ξ 〉 = 〈̃uα(0), ξ 〉 +
∫ t

0
−〈aαβ

i j (̃u)∂ j ũ, ∂iξ 〉 − 〈�α
i (̃u), ∂iξ 〉 + 〈φα(̃u), ξ 〉 dt

+
∑
n≥1

∫ t

0
〈bαβ

n, j (̃u)∂ j ũ, ξ 〉 + 〈gα
n (̃u), ξ 〉 dwn .

The proof of Theorem 6.6 will occupy the rest of this article.

Remark 6.8 In the scalar case N = 1 with b = 0 and φ = 0 a result such as Theorem
6.6 is proved in [12] in the case of periodic boundary conditions. Moreover, even the
degenerate case and initial data in L1 are considered via a different solution concept
called kinetic solutions. In this framework uniqueness is proved as well. It would be
interesting to see if some of these results can be obtained in the generality of Theorem
6.6. In the scalar case N = 1 one can also make a comparison to [30, Example 4.1] in
case the parameter α used there satisfies α = 2. The main differences in this special
case are that, in Theorem 6.6, we allow systems. Moreover, our condition on the
gradient noise is more flexible, and for N = 1 it coincides with the classical stochastic
parabolicity condition (cf. [2, Assumption 5.9(2)]). To compare the condition on the
gradient noise more precisely, note that the condition in [30, Theorem 3.2] reduces
to χLB < 2L A, where χ ≥ h + 1, where h ≥ 1 is the growth of our nonlinearity.
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Moreover, L A and LB are uniform constants over the coefficients. Our condition in
Assumption 6.1(3) is pointwise in x and y instead of uniform. Moreover, the growth
of φ and � does not influence this coercivity condition in any way.

7 Quasilinear problemwith Lipschitz non-linearities

First, we study (QL) under the following set of hypotheses. In Section 8 we are going
to reduce the general case to the current one in virtue of an approximation procedure.

Assumption 7.1 (1) The coefficient functions aαβ
i j : (0, T ) × D × R

N → R

and bαβ
j :=(bαβ

n, j )n≥1 : (0, T ) × D × R → �2 are continuous in the last
component, measurable, and uniformly bounded by a constant �. Moreover,
supt,x,y |∂ j b

αβ
n, j (t, x, y)| < ∞.

(2) One has aαβ
i j = aβα

j i and there exists λ > 0 such that, for all t ∈ (0, T ), x ∈ D,

and y ∈ R
N ,

(
aαβ
i j (t, x, y) − 1

2
bγα

n,i (t, x, y
α)bγβ

n, j (t, x, y
β)

)
ξα
i ξ

β
j ≥ λ|ξ |2 for all ξ ∈ R

dN .

(3) The non-linearities �α
i : (0, T )× D×R

N → R and φα : (0, T )× D×R
N → R,

and the stochastic non-linearity gα :=(gα
n )n≥1 : (0, T )×D×R

N → �2 aremeasur-
able, Lipschitz continuous and of linear growth in the last component (uniformly
with respect to the first two components).

Observe that Assumption 7.1 (3) is the combination of Assumption 6.1 (4) with
h = 1 and Assumption 6.1 (6). Assumption 6.1 (5) becomes obsolete.

We are going to show the following well-posedness result.

Theorem 7.2 Suppose Assumption 7.1 holds. There is p0 > 2, depending only on
C,�, λ from the assumption as well as dimensions, such that if p ∈ (2, p0], then,
given u0 ∈ Lp

F0
(�;B1−2/p

2,p,0 (D)), there exists a weak solution (̃u, W̃ , �̃, F̃ , P̃, (F̃t )t≥0)

of (QL). Moreover, for all θ ∈ [0, 1/2) one has

‖ũ‖
Lp(�̃;C([0,T ];B1−2/p

2,p,0 (D)))
+ ‖ũ‖Lp(�̃;Hθ,p(0,T ;H1−2θ

0 (D)))
�θ 1 + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
.

7.1 Smoothing of the coefficients

Let ζ : R → [0,∞) be a smooth and compactly supported function with integral equal
to 1 and ρ : RN → [0,∞) the N -fold product of ζ . For m ≥ 1, write ζm and ρm for
the induced mollifier sequences. Now, define the quasi-linear operators

m A(t) : L2(D)N → L(H1
0(D)N ,H−1(D)N ),

mB(t) : L2(D) → L(H1
0(D)N ,L2(�

2,L2(D)N ))
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by

m A(t, v)u = (
∂i (ma

αβ
i j (t, x, Rmv)∂ j u

β)
)N
α=1, (u ∈ H1

0(D)N , v ∈ L2(D)N ),

〈mB(t, w)u, en〉 = (
mb

αβ
n, j (t, x, Rmwβ)∂ j u

β
)N
α=1, (u ∈ H1

0(D)N , w ∈ L2(D)),

where Rm f = ρm ∗ E f , ma
αβ
i j (t, x, ·) = ρm ∗ aαβ

i j (t, x, ·) and mb
αβ
n, j (t, x, ·) = ζm ∗

bαβ
n, j (t, x, ·), where the convolution is taken with respect to the third variable. Here, E
denotes the zero extension of a given function, and we apply the convolution in the
definition of Rm component-wise if f is vector-valued.

Consider now the family of equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du = [
m A(u)u + ∂i�i (u) + φ(u)

]
dt

+
∑
n≥1

[〈mB(u)u, en〉 + gn(u)
]
dwn, on D,

u = 0, on ∂D,

u(0) = u0, on D.

(m-QL)

Following [20, p. 211] we show that the smoothed coefficients satisfy the same
coercivity condition as the original ones.

Lemma 7.3 For fixed m, the smoothed coefficients ma
αβ
i j and mb

αβ
n, j satisfy Assump-

tions 7.1 (1) and (2) with the same constants.

Proof Fix m. By definition of the convolution, symmetry of ma
αβ
i j is immediate. The

same holds for uniform boundedness, since the convolution kernel has normalized
L1-norm.

For better readability, suppress dependence on t and x of the coefficients. Intro-
duce the vector notation �bα

n, j (y):=
(
bαβ
n, j (y

β)
)N
β=1, likewise for m

�bα
n, j (y). In this way,∑

β bαβ
n, j (y

β)ξ
β
j = �bα

n, j (y) · ξ j and (mb
αβ
n, j )

N
β=1 = ρm ∗ �bα

n, j , where again we only
convolve in the last coordinate.

Observe first that for y ∈ R
N ,

∑
n

∑
i, j

∑
α,β,γ

mb
γα

n,i (y
α)mb

γβ

n, j (y
β)ξα

i ξ
β
j =

∑
n

∑
γ

∣∣∣∑
j

m �bγ

j (y) · ξ j

∣∣∣2
2
,

where | · |2 is the Euclidean norm on R
N . Write z : RN � z �→ z for the identity

map. Using that the convolution kernel is positive with normalized integral, Jensen’s
inequality gives

∑
n

∑
γ

∣∣∣∑
j

m �bγ

j (y) · ξ j

∣∣∣2
2

≤
∑
n

∑
γ

∣∣∣∑
j

�bγ

j (z) · ξ j

∣∣∣2
2
∗ ρm(y)

=
∑
n

∑
i, j

∑
α,β,γ

(
bγα

n,i (z
α)bγβ

n, j (z
β)ξα

i ξ
β
j

)
∗ ρm(y).
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Hence, it follows from Assumptions 7.1 (2) and positivity of the convolution kernel
that

(
ma

αβ
i j (y) − 1

2
mb

γα

n,i (y
α)mb

γβ

n, j (y
β)

)
ξα
i ξ

β
j

≥
∫
RN

(
aαβ
i j (z) − 1

2
bγα

n,i (z
α)bγβ

n, j (z
β)

)
ξα
i ξ

β
j ρm(y − z) dz ≥ λ|ξ |2.

��

Using [2] we show that for each m, problem (m-QL) admits a unique solution.

Lemma 7.4 Suppose Assumption 7.1 holds. Then, for each m, there is a unique strong
solution um ∈ L2(� × (0, T );H1

0(D)) ∩ L2(�;C([0, T ];L2(D))) to (m-QL).

Proof Fixm.Write ‖·‖L2 = ‖·‖L2(�2,L2(D)). The assertion follows from [2, Thm. 3.5]
applied with A0(v)u:=A0(t, v)u:=m A(t, v)u and B0(v)u:=B0(t, v)u:=mB(t, v)u,
the non-linearities F(v):=F(t, v):=∂i�i (t, v)+φ(t, v) andG(v)en :=G(t, v)en :=gn
(t, v), and the cylindrical Brownian motion Wen :=wn .

Indeed, note first that, in the light of Lemma 7.3, all assertions fromAssumption 7.1
remain valid for the problem (m-QL). Besides boundedness of A0 and B0, and linear
growth of F andG in the respective norms, which readily follow from uniform bound-
edness of the coefficients in the first two cases, and linear growth of the non-linearities
in the last two cases, we have to check the regularity conditions

‖A0(u)w − A0(v)w‖H−1(D) + ‖B0(u)w − B0(v)w‖L2 � ‖u − v‖L2(D)‖w‖H1
0(D),

(13)

for all u, v ∈ L2(D) and w ∈ H1
0(D), and

‖F(u) − F(v)‖H−1(D) + ‖G(u) − G(v)‖L2 � ‖u − v‖L2(D), (14)

for all u, v ∈ L2(D), aswell as the following coercivity condition: there exists θ, η > 0
and M ≥ 0 such that a.s.

〈A0(v)u, u〉 − (1/2 + η)‖B0(v)u‖2L2
≥ θ‖u‖2

H1
0(D)

− M‖u‖2L2(D)
, (15)

for all u ∈ H1
0(D) and v ∈ L2(D).

The second regularity condition, (14), follows immediately fromLischitz continuity
of �, φ, and g. For brevity, we present the regularity condition (13) only for A0. The
calculation for B0 is similar. Fix an integer k > d/2. Using the Sobolev embedding
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and Young’s convolution inequality, calculate

‖A0(u)w − A0(v)w‖H−1(D) ≤ ‖maαβ
i j (Rmu) − ma

αβ
i j (Rmv)‖∞‖∂ jw

β‖L2(D)

� ‖maαβ
i j ‖Lip‖Rmu − Rmv‖∞‖∂ jw

β‖L2(D)

�m ‖aαβ
i j ‖∞‖Rmu − Rmv‖Wk,2(D)‖∂ jw

β‖L2(D)

� ‖ρm‖Wk,1(D)‖u − v‖L2(D)‖w‖H1
0(D)

�m ‖u − v‖L2(D)‖w‖H1
0(D).

To complete the proof, note first that Assumption 7.1 (2) implies (15) with η = 0
and θ :=λ=:M . Therefore, since B0(v) : H1

0(D)N → L2(D)N is bounded (uniformly
in v), we get (15) with η > 0 if we replace θ by θ/2. ��

7.2 Higher integrability of semilinear equations

It will turn out useful in the sequel to consider a semi-linear version of (QL). More
precisely, consider

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duα = [
∂i (a

αβ
i j ∂ j u

β) + ∂i�
α
i (u) + φα(u)

]
dt

+
∑
n≥1

[
bαβ
n, j∂ j u

β + gα
n (u)

]
dwn, on D,

uα = 0, on ∂D,

uα(0) = uα
0 , on D.

(SL)

We impose the following assumption, which is similar to Assumption 7.1.

Assumption 7.5 (1) The coefficients aαβ
i j : � × (0, T ) × D → R as well as

bαβ
j :=(bαβ

n, j )n≥1 : � × (0, T ) × D → �2 are progressively measurable and uni-
formly bounded by a constant �.

(2) One has aαβ
i j = aβα

j i and there exists λ > 0 such that, for all t ∈ (0, T ), x ∈ D,
one has almost surely

(
aαβ
i j (t, x) − 1

2
bγα

n,i (t, x)b
γβ

n, j (t, x)
)
ξα
i ξ

β
j ≥ λ|ξ |2 for all ξ ∈ R

dN .

(3) The deterministic non-linearities�α
i : (0, T )×D×R

N → R andφα : (0, T )×D×
R

N → R and the stochastic non-linearity gα:=(gα
n )n≥1 : (0, T ) × D ×R

N → �2

are measurable and Lipschitz continuous and of linear growth in the last variable
(uniformly with respect to the first two components).

A prototypical example for Assumption 7.5 is aαβ
i j (t, x):=aαβ

i j (t, x, u(t, x)) and

bαβ
n, j (t, x):=bαβ

n, j (t, x, u
β(t, x)), where aαβ

i j and bαβ
n, j are coefficients for (QL) subject to
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Assumption 7.1 and the progressively measurable function u : �× (0, T )×D → R
N

is frozen.
It is well-known that (SL) admits a unique variational solution in L2(� ×

(0, T );H1
0(D)) ∩ L2(�;C([0, T ];L2(D))). As a consequence of Theorem 2.2, the

main result of the first part of this article, we can improve integrability in time of this
variational solution to p > 2.

Proposition 7.6 (Higher integrability for (SL)) Suppose Assumption 7.5 holds. Then
there is some p0 > 2 such that for any p ∈ (2, p0] and any u0 ∈ Lp

F0
(�;B1−2/p

2,p,0 (D))

there is a unique solution u ∈ Lp(�×(0, T );H1
0(D))∩Lp(�;C([0, T ];B1−2/p

2,p,0 (D)))

to (SL) satisfying the estimate

‖u‖
Lp(�;C([0,T ];B1−2/p

2,p,0 (D)))
� 1 + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
,

and for all θ ∈ [0, 1/2) the estimate

‖u‖Lp(�;Hθ,p(0,T ;H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

.

If θ ∈ (1/p, 1/2), then one has moreover the estimate

‖u‖Lp(�;Cθ−1/p([0,T ];H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

.

Proof Step 1: Existence of variational solution and bootstrapping integrability.
Consider the progressively measurable maps

A0(t, u):=(∂i (a
αβ
i j (t, x)∂ j u

β))Nα=1,

B0(t, u)en :=(bαβ
n, j (t, x)∂ j u

β)Nα=1,

F(u):=(∂i�
α
i (u) + φα(u))Nα=1,

G(u)en :=(gα
n (u))Nα=1.

The well-posedness result [16, Thm. 2.4] applied with A(t, v):=A0(t, v) + F(v) and
B(t, v)en :=B0(t, v)en + G(u)en yields a unique strong solution

u ∈ Lp(�;L2(0, T ;H1
0(D))) ∩ Lp(�;C([0, T ];L2(D)))

together with the estimate

‖u‖Lp(�;L2(0,T ;H1
0(D))) + ‖u‖Lp(�;C([0,T ];L2(D))) � 1 + ‖u0‖Lp(�;L2(D)) (16)

for some p > 2 depending only on the quantities from Assumption 7.5, provided we
can verify the hypotheses listed in [16, Ass. 2.1]. Using boundedness of the coefficients
and linear growth of the non-linearities, (H4) and (H5) with f ≡ 1 follow readily. As
in the proof of Lemma 7.4 one deduces (H3) with p > 2 sufficiently close to 2 from
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Assumption 7.5 (2) and boundedness of B0. Condition (H2) is void for A0(t, u) and
B0(t, u) in virtue of (H3) and linearity, and is fulfilled for F(u) and G(u) by their
linear growth. Likewise, (H1) is immediate from linearity and Lipschitz continuity.

Step 2: bootstrapping time-regularity.
A particular consequence of (16) is F(u) ∈ Lp(� × (0, T );H−1(D)) and G(u) ∈

Lp(� × (0, T );L2(�
2,L2(D))), with the estimate

‖F(u)‖Lp(�×(0,T );H−1(D)) + ‖G(u)‖Lp(�×(0,T );L2(�2,L2(D))) � 1 + ‖u0‖Lp(�;L2(D)).

(17)

Consequently, if we freeze u in the semi-linearities of (SL), that is to say, if we
consider (SL) as a linear problem with right-hand sides f = F(u) and g = G(u),
then Theorem 2.2 becomes applicable (of course we can restrict p from Step 1 further
so that the smallness condition in the theorem is verified) and yields a unique solution
v ∈ Lp(� × (0, T );H1

0(D)) ∩ Lp(�;C([0, T ];B1−2/p
2,p,0 (D))). For the first estimate in

the theorem calculate

‖v‖
Lp(�;C([0,T ];B1−2/p

2,p,0 (D)))

� ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

+ ‖F(u)‖Lp(�×(0,T ),H−1(D)) + ‖G(u)‖Lp(�×(0,T ),L2(�2,L2(D)))

� 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

,

where we used (17) and the embedding B1−2/p
2,p,0 (D) ⊆ L2(D) in the last step. The other

estimates in the theorem follow also from Theorem 2.2 using the same argument. By
uniqueness with p = 2, u = v, which completes the proof. ��

7.3 Uniform bounds with p > 2

Recall the family of solutions

(um)m ⊆ L2(�;C([0, T ];L2(D))) ∩ L2(� × (0, T );H1
0(D))

to the approximate problems (m-QL) from Lemma 7.4. Using the result from Sec-
tion 7.2, we derive uniform Lp-bounds for some p > 2.

Proposition 7.7 Suppose Assumption 7.1 holds. Then there is some p0 > 2 such that
for all m, for all p ∈ (2, p0], and any u0 ∈ Lp

F0
(�;B1−2/p

2,p,0 (D)) there is a unique
solution

um ∈ Lp(� × (0, T );H1
0(D)) ∩ Lp(�;C([0, T ];B1−2/p

2,p,0 (D)))

to (m-QL) satisfying the estimate

‖um‖
Lp(�;C([0,T ];B1−2/p

2,p,0 (D)))
� 1 + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
,
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and for all θ ∈ [0, 1/2) the estimate

‖um‖Lp(�;Hθ,p(0,T ;H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

.

If θ ∈ (1/p, 1/2), then one has moreover the estimate

‖um‖Lp(�;Cθ−1/p([0,T ];H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

.

Proof Fix some m. As already mentioned in Section 7.2, we can consider the coeffi-
cients aαβ

i j (t, x):=ma
αβ
i j (t, x, um(t, x)) and bαβ

n, j (t, x):=mb
αβ
n, j (t, x, u

β
m(t, x)), which

then satisfy Assumption 7.5. Now by Proposition 7.6, (SL) with these coefficients
admits a unique solution v that satisfies the bounds claimed in the proposition. But
since

v ∈ Lp(� × (0, T );H1
0(D)) ∩ Lp(�;C([0, T ];B1−2/p

2,p,0 (D)))

⊆ L2(� × (0, T );H1
0(D)) ∩ L2(�;C([0, T ];L2(D))),

it follows v = um by uniqueness for p = 2 stated in Lemma 7.4, which completes the
proof. ��

7.4 Stochastic compactness argument

In Theorem 1.3 we have already seen that a general tightness result can be deduced
from a priori estimates such as the ones of Proposition 7.7. In the application to the
quasi-linear system we need a slight variation of the tightness result in which a certain
weak compactness is also taken into account.

In this section we suppose Assumption 7.1 holds, and we fix p0, p ∈ (2, p0], and
(um)m≥1 as in Proposition 7.6. Put

Xu :=C([0, T ];L2(D)) ∩ Lp
w(0, T ;H1

0(D)), XW :=C([0, T ];U0), X :=Xu × XW .

With the subscript “w” we indicate that the space Lp(0, T ;H1
0(D)) is equipped with

the weak topology. As a consequence of separability, this has no consequence for
questions of measurability. The space U0 ⊇ U is chosen in such a way that the
cylindrical Brownian motion converges almost surely. The random vectors (um,W )

take values in X . Write Lm for their (joint) laws.
We claim that the family (Lm)m is tight. It is sufficient to show tightness of the

laws L(um) on Xu . Let us emphasise that no “diagonal structure” of the coefficients
is needed.

Lemma 7.8 (Tightness) The family of laws (L(um))m on Xu is tight.

Proof Let θ ∈ (1/p, 1/2). For brevity, put

X θ,p
u :=Cθ−1/p([0, T ];H1−2θ (D)) ∩ Lp(0, T ;H1

0(D))
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and write BR for the open ball of radius R in X θ,p
u . First, by Chebyshev’s inequality

and Proposition 7.7,

P(‖um‖X θ,p
u

≥ R) ≤ R−p
E‖um‖p

X θ,p
u

� R−p
(
1 + ‖u0‖p

Lp(�;B1−2/p
2,p,0 (D))

)
→ 0 as R → ∞.

Second, we claim that the closure of BR is compact in Xu . Indeed, pre-compactness
in C([0, T ];L2(D)) follows from the vector-valued Arzéla–Ascoli theorem [22, The-
orem III.3.1], taking into account the compact embedding H1

0(D) ⊆ L2(D), and
compactness in the space Lp

w(0, T ;H1
0(D)) is clear, for BR is bounded in the norm

topology. ��
Therefore, Prokhorov’s theorem allows to pass to a weakly convergent subse-

quence (for convenience, we use the same symbol for this subsequence). Second,
the Jakubowski–Skorohod theorem [9, Thm. 2.7.1] gives the following almost sure
convergence.

Lemma 7.9 (Skorohod) There exists a probability space (�̃, F̃ , P̃), a sequence of X -
valued random variables (̃um, W̃m), and a limitingX -valued random variable (̃u, W̃ ),
such that

(i) for each m, the law of (̃um, W̃m) under P̃ coincides with the law Lm, and
(ii) one has P̃-almost surely that ũm → ũ in C([0, T ];L2(D)), ∇ũm → ∇ũ weakly

in Lp(0, T ;L2(D)), and W̃m → W̃ in C([0, T ];U0) as m → ∞.

Corollary 7.10 The inclusion

(̃um)m ⊆ Lp(�̃;C([0, T ];L2(D))) ∩ Lp(�̃ × (0, T );H1
0(D))

holds with the uniform bound

sup
m

(
‖ũm‖Lp(�̃;C([0,T ];L2(D))) + ‖ũm‖Lp(�̃×(0,T );H1

0(D))

)
� 1 + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
.

According to [12, Lem. 4.8], W̃ is a cylindrical Brownianmotion. Fixα = 1, . . . , N
and ξ ∈ C∞

c (D). Define

M̃α(t) = 〈̃uα(t), ξ 〉 − 〈̃uα(0), ξ 〉 +
∫ t

0
〈aαβ

i j (̃u)∂ j ũ
β, ∂iξ 〉 dr

+
∫ t

0
〈�α

i (̃u), ∂iξ 〉 dr −
∫ t

0
〈φα(̃u), ξ 〉 dr .

As presented in the proof of [12, Prop. 4.7], well-posedness of (QL) under Assump-
tion 7.1, that is to say, validity of Theorem 7.2, follows directly from the following
lemma.
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Lemma 7.11 The processes

M̃, M̃2 −
∑
n≥1

∫ ·

0

[〈bαβ
n, j (̃u

β)∂ j ũ
β, ξ 〉 + 〈gα

n (̃u), ξ 〉]2 dr ,
and M̃wn −

∫ ·

0
〈bαβ

n, j (̃u
β)∂ j ũ

β, ξ 〉 + 〈gα
n (̃u), ξ 〉 dr

are (F̃t )-martingales, where F̃t :=σ({̃u(s), w̃n(s) : s ≤ t, n ≥ 1}).
Proof In a first step, we showcase the general strategy for the process M̃ . Afterwards,
we explain the necessary changes for the two remaining processes.

Step 1: M̃ is an (F̃t )-martingale.
Introduce the processes

Mα
m(t) = 〈uα

m(t), ξ 〉 − 〈uα
0 , ξ 〉 +

∫ t

0
〈maαβ

i j (Rmum)∂ j u
β
m, ∂iξ 〉 dr

+
∫ t

0
〈�α

i (um), ∂iξ 〉 dr −
∫ t

0
〈φα(um), ξ 〉 dr ,

M̃α
m(t) = 〈̃uα

m(t), ξ 〉 − 〈̃uα
m(0), ξ 〉 +

∫ t

0
〈maαβ

i j (Rmũm)∂ j ũ
β
m, ∂iξ 〉 dr

+
∫ t

0
〈�α

i (̃um), ∂iξ 〉 dr −
∫ t

0
〈φα(̃um), ξ 〉 dr . (18)

For each m, Mα
m is an (Ft )-martingale because um is a solution to (m-QL).

Fix α and s ≤ t throughout the proof. Let ρs denote the canonical restriction
C([0, T ];X ) → C([0, s];X ) and fix any continuous function γ : C([0, s];X ) →
[0, 1]. One has that

γm :=γ (ρs(um,W ))

is Fs-measurable. Therefore, conditioning and the martingale property yield

E

(
γm[Mα

m(t) − Mα
m(s)]

)
= 0. (19)

We claim that γm , Mα
m(t), and Mα

m(s) depend on u in a measurable way. Indeed, these
quantities even depend continuously on u if we equip Lp(0, T ;H1

0(D))with the strong
topology in the definition of X . As already mentioned, passing to the weak topology
preserves measurability, which gives the claim. Therefore, with Lemma 7.9 (i) deduce
from (19) that

Ẽ

(
γ̃m[M̃α

m(t) − M̃α
m(s)]

)
= 0, (20)

where γ̃m and M̃α
m are defined by the same expressions as γm and Mα

m , but with um
replaced by ũm and W replaced by W̃ .
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Next, we take the limitm → ∞ in (20). To do so, we appeal to Vitali’s convergence
theorem. Owing to Corollary 7.10, we have for instance

Ẽ

∣∣∣∣
∫ t

0
〈maαβ

i j (Rmũm)∂ j ũ
β
m, ∂iξ 〉 dr

∣∣∣∣
p

� T p−1
Ẽ

∫ T

0
‖∇ũm‖p

L2(D)

� 1 + ‖u0‖p

Lp(�;B1−2/p
2,p,0 (D))

, (21)

which justifies the application of Vitali’s convergence theorem. It remains to determine
the almost-sure limit of γ̃m[M̃α

m(t)− M̃α(t)]. On the one hand, by continuity of γ ◦ρs
onX , deduce γ̃m → γ̃ almost surely fromLemma 7.9 (ii). On the other hand, we claim
that M̃α

m(t) → M̃α(t) almost surely. Convergence of the first two terms of M̃α
m(t) is

immediate. For the fourth and fifth term, use that � and φ are Lipschitz continuous
along with almost sure convergence in C([0, T ];L2(D)) ⊆ L1(0, T ;L2(D)). The
most challenging term is the third. Rewrite

∫ t

0
〈maαβ

i j (Rmũm)∂ j ũ
β
m, ∂iξ 〉 dr −

∫ t

0
〈aαβ

i j (̃u)∂ j ũ
β, ∂iξ 〉 dr

=
∫ t

0
〈∂ j ũ

β
m, (ma

αβ
i j (Rmũm) − aαβ

i j (̃u))∂iξ 〉 dr +
∫ t

0
〈∂ j (̃u

β
m − ũβ), aαβ

i j (̃u)∂iξ 〉 dr
= I + II.

We use the convergence properties from Lemma 7.9 (ii) as follows to conclude: using
theweak convergence of∇ũm inL2(0, t;L2(D))wesee that II → 0 asm → ∞ almost
surely. Moreover, ∇ũm is uniformly bounded in Lp(0, T ;L2(D)) ⊆ L2(0, t;L2(D))

almost surely. Consequently, I goes to zero if (ma
αβ
i j (Rmũm) − aαβ

i j (̃u))∂iξ → 0 in

L2(0, t;L2(D)). Split further

ma
αβ
i j (Rmũm) − aαβ

i j (̃u) = (ma
αβ
i j (Rmũm) − aαβ

i j (Rmũm)) + (aαβ
i j (Rmũm) − aαβ

i j (̃u)).

Since the coefficients are uniformly bounded and ξ is smooth and compactly supported,
we haveVitali’s convergence theorem in (r , x) at our disposal. Up to passing to another
subsequence, we can suppose Rmũm → ũ pointwise almost everywhere in (r , x).
In particular, for almost every (r , x), the closure of the set {Rmũm(r , x) : m ∈ N}
is compact. Then, the claim follows by continuity of aαβ

i j in conjunction with the

convergence ma
αβ
i j → aαβ

i j uniformly on compact subsets.
In conclusion, we deduce

Ẽ

(
γ̃ [M̃α(t) − M̃α(s)]

)
= 0. (22)

But (22) remains valid if we replace γ̃ by any bounded and F̃s-measurable function
in virtue of the monotone class theorem, since F̃s is by definition the σ -field induced
by ũ and W̃ . It follows that M̃α is an (F̃t )-martingale as claimed.

Step 2: the remaining two processes.
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The general strategy is as in Step 1 andwe only discuss the necessarymodifications.
The martingale property for the processes related to um is again clear. We follow the
proof of Step 1 until we reach the analogues of (20). The first step in the identification
of the limit, the moment condition (21), can be reused with the following observations:
first of all, since the moment condition for one term holds with p > 2, any product
appearing in (M̃α

m)2 satisfies a moment condition with p/2 > 1 in virtue of Hölder’s
inequality. The same is true for M̃mwk , of course. Likewise, one has

Ẽ

∣∣∣∣
∫ t

0
〈mbαβ

n, j (Rmũ
β
m)∂ j ũ

β
m, ξ 〉2 dr

∣∣∣∣
p/2

� T p/2−1
Ẽ

∫ T

0
‖∇ũm‖p

L2(D)

� 1 + ‖u0‖p

Lp(�;B1−2/p
2,p,0 (D))

. (23)

It remains to verify almost sure convergence, for instance

∫ t

0
〈mbαβ

n, j (Rmũ
β
m)∂ j ũ

β
m, ξ 〉2 dr →

∫ t

0
〈bαβ

n, j (̃u
β)∂ j ũ

β, ξ 〉2 dr , (24)

for fixed n. First, we claim that we can replace mb
αβ
n, j (Rmũ

β
m) by bαβ

n, j (̃u
β) on the left-

hand side of (24). Indeed, the calculation is similar to the treatment of term I in Step 1,
but one has to use uniform boundedness of ∇ũm in Lp(0, T ;L2(D)) with p > 2.
Next, define the auxiliary function

b̄αβ
n, j (r , x, y):=

∫ y

0
bαβ
n, j (r , x, z) dz, (y ∈ R).

By the chain rule, ∂ j b̄
αβ
n, j (r , x, ũ(r , x)) = bαβ

n, j (r , x, ũ(r , x))∂ j ũ(r , x) + �
αβ
n, j

(r , x, ũβ(r , x)), where�
αβ
n, j (r , x, y) = ∫ y

0 ∂ j b
αβ
n, j (r , x, z) dz. Therefore, to prove (24)

it is enough to show

∫ t

0
〈b̄αβ

n, j (̃u
β) − b̄αβ

n, j (̃u
β
m), ∂ jξ 〉2 dr → 0

and
∫ t

0
〈�αβ

n, j (·, ũβ) − �
αβ
n, j (·, ũβ

m), ξ 〉2 dr → 0.

For the first term, using Vitali’s convergence theorem once more, we only need to
show convergence for a fixed time r ∈ (0, t). Now since ũβ

m → ũβ in L2(D), we can
conclude the proof by passing to another subsequence and using continuity of b̄αβ

n, j .

For the second term, the uniform boundedness of ∂ j b
αβ
n, j implies that |�αβ

n, j (·, ũβ) −
�

αβ
n, j (·, ũβ

m)| � |̃uβ − ũβ
m |. Therefore, the desired convergence follows from ũm → ũ

in L2(0, t;L2(D)).
Let us stress that the last argument heavily relies on the structural assumption on b,

and is the reason why we cannot allow full non-linear dependence on all components
of u as is the case for a. ��
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Remark 7.12 We stress that the above proof critically uses the p-integrability of ∇ũm
in �̃× (0, T ). Indeed, to get L1(�)-convergence of (23) we used Vitali’s convergence
theorem based on the uniform boundedness of ∇ũm in Lp(� × (0, T );L2(D)) with
p > 2. That such a bound is available for p > 2 is a novelty of our approach.

8 Quasilinear problemwith growing non-linearities

We reduce the general case with growing non-linearities to the Lipschitz case from the
last section. This happens using a truncation argument. We use the following classical
result from convex analysis (see [10, Proposition 5.3]) to include systems in a neat
way.

Lemma 8.1 (Phelps) Let C be a non-empty, closed, convex subset of a Hilbert space
K . Then the projection onto C is Lipschitz continuous with Lipschitz constant 1.

With the preceding lemma, we can consider truncated non-linearities � ◦ P and
φ ◦ P , where P is a projection to a bounded and convex set. As in Section 7.2, we
would like to consider f = �i (P(u))+φ(P(u)) as a fixed right-hand side. However,
that f is an admissible right-hand side is more difficult with growing non-linearities.
We will take care of this in Proposition 8.4. The next two lemmas are a preparation
for the last-mentioned proposition.

Lemma 8.2 ( [13, Lem. 8]) For q > 2 and m ≥ 1, the function ψm : R → R given by

ψm(ξ) =
{|ξ |q , |ξ | ≤ m,

mq−2
[
q(q−1)

2 ξ2 − q(q − 2)m|ξ | + (q−1)(q−2)
2 m2

]
, |ξ | > m

is twice continuously differentiable, has bounded second derivative, and satisfies the
following properties:

|ψ ′
m(ξ)| ≤ |ξ |ψ ′′

m(ξ), (25)

ψ ′
m(ξ)

ξ
≥ 0, (ξ �= 0), (26)

ψ ′′
m(ξ) ≤ q(q − 1)(1 + ψm(ξ)), (27)

ξ2ψ ′′
m(ξ) ≤ q(q − 1)ψm(ξ), (28)

ψ ′′
m(ξ1) ≤ ψ ′′

m(ξ2), (|ξ1| ≤ |ξ2|). (29)

Moreover, ψm → | · |q and ψ ′′
m → | · |q−2 pointwise.

The following technical lemma relates the dissipativity of φ stated in Assump-
tion 6.1 (5) with the auxiliary function ψm .
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Lemma 8.3 Let v ∈ R
N . For all q ∈ (2,∞) and m ≥ 1 one has for ψm defined as in

Lemma 8.2 the estimate

∑
α

ψ ′
m(vα)φα(v) �q 1 +

∑
β

ψm(vβ).

Proof Let v ∈ R
N and fix α for the moment. We can assume vα �= 0. Calculate

using (26), Assumption 6.1 (5), and (25) that

ψ ′
m(vα)φα(v) = ψ ′

m(vα)

vα
vαφα(v) � ψ ′

m(vα)

vα
(1 + |v|2) � ψ ′′

m(vα)(1 + |v|2).

Using (27), the termψ ′′
m(vα) can be controlled by 1+ψm(vα). Likewise,ψ ′′

m(vα)|vα|2
is controlled by ψm(vα) owing to (28). It remains to consider ψ ′′

m(vα)|vβ |2. We dis-
tinguish the cases |vα| ≤ |vβ | and |vα| ≥ |vβ |. In the first case, we use that ψ ′′

m is
increasing, (29), to reduce to the known case ψ ′′

m(vβ)|vβ |2. Likewise, we reduce in
the second case using that | · |2 is increasing. Finally, summing in α gives the claim. ��

Proposition 8.4 (Bootstrapping Integrability) Suppose Assumption 6.1 holds, and for
the moment suppose that there is a constant L such that

|φ(t, x, y)| + |�(t, x, y)| ≤ L(1 + |y|), t ∈ [0, T ], x ∈ D, y ∈ R
N .

Let u0 ∈ Lq
F0

(� × D) with q ∈ [2,∞) fixed and let v ∈ L2(� × (0, T );H1
0(D)) ∩

L2(�;C([0, T ];L2(D))) be a solution to (QL) with initial datum u0. Then one has

‖v‖qLq (�×(0,T )×D) + E

∫ T

0

∫
D

|v|q−2|∇v|2 dx ds � 1 + ‖u0‖qLq (�;Lq (D))
,

where the implicit constant does not depend on L.

The additional growth condition on φ and� are needed to make sure that the functions
in the proof below are integrable. Later on, we will apply the lemma to truncated
versions of φ and �, and therefore the growth condition does not lead to additional
assumptions.

Proof Fix α and letm ≥ 1, t ∈ [0, T ]. Define the linear functional v �→ ∫
D ψm(v) dx

on L2(D). Since ψ ′′
m is bounded and, taking (25) into account, ψ ′

m is of linear growth,
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the Itô formula from [28, Thm. 4.2] is applicable and yields

∫
D

ψm(vα(t)) dx =
∫
D

ψm(vα(0)) dx

−
∫ t

0

∫
D

ψ ′′
m(vα)aα

i j (v)∂iv
α∂ jv

α dx ds

−
∫ t

0

∫
D

ψ ′′
m(vα)�α

i (v)∂iv
α dx ds

+
∫ t

0

∫
D

ψ ′
m(vα)φα(v) dx ds

+
∑
n

∫ t

0

∫
D

ψ ′
m(vα)

[
bα
n, j (v

α)∂ jv
α + gα

n (v)
]
dx dwn

+
∑
n

1

2

∫ t

0

∫
D

ψ ′′
m(vα)

∣∣∣∑
j

bα
n, j (v

α)∂ jv
α + gα

n (v)

∣∣∣2 dx ds
= I − II − III + IV + V + VI.

Recall that �α(s, x, y) = �̂α(s, x, y) + �
α
(yα). Therefore, the part of III involving

�
α
vanishes as can be seen in the same way as in [4, Lemma 3.5]. Indeed,

∫
D

ψ ′′
m(vα)�

α

i (vα)∂iv
α dx =

∫
D
divx

∫ vα

0
ψ ′′
m(r)�

α

i (r) dr dx = 0,

where we applied the divergence theorem and the fact that vα vanishes at the boundary.
Thus III can be bounded as follows

−III ≤
∣∣∣ ∫ t

0

∫
D

ψ ′′
m(vα)�̂α

i (v)∂iv
α dx ds

∣∣∣
≤ Cδ

∫ t

0

∫
D

ψ ′′
m(vα)|�̂α(v)|2 dx ds + δ

∫ t

0

∫
D

ψ ′′
m(vα)|∇vα|2 dx ds

=: III(�̂α(v)) + III(∇vα).

Use the inequality 1/2|b + g|2 ≤ (1/2 + ε)b2 + Cεg2 for all ε > 0 in VI to get

VI ≤ (1/2 + ε)
∑
n

∫ t

0

∫
D

ψ ′′
m(vα)

∣∣∣∑
j

bα
n, j (v

α)∂ jv
α
∣∣∣2 dx ds

+ Cε

∑
n

∫ t

0

∫
D

ψ ′′
m(vα)|gα

n (v)|2 dx ds

= VI(b) + VI(g).

By the “diagonal structure” of a and b stated in Assumption 6.1 (1), the coercivity con-
dition in Assumption 6.1 (3) can be applied componentwise. Therefore, by choosing
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ε and δ small enough (similar to the proof of Lemma 7.4), we get the lower bound

II − III(∇vα) − VI(b) ≥ λ

2

∫ t

0

∫
D

ψ ′′
m(vα)|∇vα|2 dx ds.

This is the only argument that uses Assumption 6.1 (1), see Remark 6.3 for further
discussion. Hence, we can absorb −II + III(∇vα) + VI(b) into the left-hand side, to
give

∫
D

ψm(vα) dx + λ

2

∫ t

0

∫
D

ψ ′′
m(vα)|∇vα|2 dx ds

≤
∫
D

ψm(vα(0)) dx

+
∫ t

0

∫
D

ψ ′
m(vα)φα(v) dx ds

+
∑
n

∫ t

0

∫
D

ψ ′
m(vα)

[
bα
n, j (v

α)∂ jv
α + gα

n (v)
]
dx dwn

+ Cε

∑
n

∫ t

0

∫
D

ψ ′′
m(vα)|gα

n (v)|2 dx ds + Cδ

∫ t

0

∫
D

ψ ′′
m(vα)|�̂α(v)|2 dx ds.

(30)

The first term on the right-hand side of (30) is controlled by ‖u0‖qLq (D) by definition
of ψm . We come to the second term. Applying Lemma 8.3 with v = v(s, x), estimate

∫ t

0

∫
D

ψ ′
m(vα)φα(v) dx ds � 1 +

∫ t

0

∫
D

∑
β

ψm(vβ) dx ds.

Since g is of linear growth, we get
∑

n ψ ′′
m(vα)|gα

n (v)|2 � ψ ′′
m(vα)(1 + |v|2), so the

proof of Lemma 8.3 reveals also

∫ t

0

∫
D

ψ ′′
m(vα)|gα

n (v)|2 dx ds � 1 +
∫ t

0

∫
D

∑
β

ψm(vβ) dx ds.

Since �̂α is Lipschitz, a similar estimate holds for ψ ′′
m(vα)|�̂α(v)|2. So far, we have

in summary

∫
D

ψm(vα) dx + λ

2

∫ t

0

∫
D

ψ ′′
m(vα)|∇vα|2 dx ds

� 1 + ‖u0‖qLq (D) +
∫ t

0

∫
D

∑
β

ψm(vβ) dx ds

+
∑
n

∫ t

0

∫
D

ψ ′
m(vα)

[
bα
n, j (v

α)∂ jv
α + gα

n (v)
]
dwn ds.

(31)
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We take the expectation, so that the stochastic integral vanishes, and sum in α after-
wards, to find

E

∫
D

∑
α

ψm(vα) dx + λ

2
E

∫ t

0

∫
D

∑
α

ψ ′′
m(vα)|∇vα|2 dx ds

� 1 + E‖u0‖qLq (D) + E

∫ t

0

∫
D

∑
α

ψm(vα) dx ds.

(32)

Note that for all t ∈ [0, T ] one has E
∫ t
0

∫
D

∑
α ψm(vα(s)) dx ds is finite, for

ψm(v(s)) ≤ |v(s)|2 + C . Therefore, Gronwall’s inequality is applicable with t �→
E

∫
D

∑
α ψm(vα(t)) dx and yields

E

∫
D

∑
α

ψm(vα) dx � 1 + E‖u0‖qLq (D) (33)

for all t ∈ (0, T ). Integrate this bound in t , use Fubini’s theorem, and take (in virtue
of the pointwise convergence of ψm from Lemma 8.2) the limit m → ∞ to conclude
the first claim of the proposition. Finally, plug (33) back into (32) to deduce

λ

2
E

∫ t

0

∫
D

∑
α

ψ ′′
m(vα)|∇v|2 dx ds � 1 + E‖u0‖qLq (D).

This time using the pointwise convergence ofψ ′′
m stated in Lemma 8.2, take once more

the limit m → ∞. Afterwards, take the limit t → T to conclude the second claim in
the proposition. ��

Remark 8.5 Evenmore is true in the last proposition: if we take first the supremumover
t in (31) and then expectations, a calculation based on the Burkholder–Davis–Gundy
inequality even yields the estimate

‖v‖Lq (�;C([0,T ];Lq (D))) � 1 + ‖u0‖Lq (�;Lq (D)).

We will not need this extra information and decided therefore to stick to the shorter
proof that leads to Proposition 8.4.

Proof of Theorem 6.6 Write PR for the projection onto the closed ball of radius R
around 0 in R

N . Then, for R > 0, define the non-linearities Rφα(t, x, y):=φα(t, x,
PR(y)) and R�α

i (t, x, y):=�α
i (t, x, PR(y)). They are Lipschitz continuous and

bounded (in particular, of linear growth) with constant depending on R, and satisfy
Assumptions 6.1 (4) and (5) uniformly in R by virtue of Lemma 8.1. Consider the
equation
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duα = [
∂i (a

αβ
i j (u)∂ j u

β) + ∂i (R�α
i (u)) + Rφα(u)

]
dt

+
∑
n≥1

[
bαβ
n, j (u

β)∂ j u
β + gα

n (u)
]
dwn, on D,

uα = 0, on ∂D,

uα(0) = uα
0 , on D.

(R-QL)

Problem (R-QL) fulfills Assumption 7.1. Therefore, by the well-posedness result
of Section 7, there are p0 > 2 and solutions

uR ∈ Lp(� × (0, T );H1
0(D)) ∩ Lp(�;C([0, T ];B1−2/p

2,p,0 (D)))

to (R-QL).
Apply Proposition 8.4 to uR to find ‖uR‖Lq (�×(0,T )×D) � 1+ ‖u0‖Lq (�×D). With

the growth condition for the non-linearities we find, keeping ph ≤ q in mind,

‖Rφα(uR)‖Lp(�×(0,T );L2(D)) + ‖R�α
i (uR)‖Lp(�×(0,T );L2(D))

� 1 + ‖uR‖hLq (�×(0,T )×D)

� 1 + ‖u0‖hLq (�×D). (34)

Therefore, we can freeze uR , R� and Rφ in (R-QL) to obtain, as in Section 7.3, a
linear problem to which Theorem 2.2 applies. This results in the uniform bounds

‖uR‖
Lp(�;C([0,T ];B1−2/p

2,p,0 (D)))
� 1 + ‖u0‖Lp(�;B1−2/p

2,p,0 (D))
+ ‖u0‖hLq (�×D),

and for all θ ∈ [0, 1/2) the estimate

‖uR‖Lp(�;Hθ,p(0,T ;H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

+ ‖u0‖hLq (�×D).

If θ ∈ (1/p, 1/2), then one has moreover the estimate

‖uR‖Lp(�;Cθ−1/p([0,T ];H1−2θ
0 (D)))

�θ 1 + ‖u0‖Lp(�;B1−2/p
2,p,0 (D))

+ ‖u0‖hLq (�×D).

Then, the conclusion using the stochastic compactness argument works analogous,
with one additional argument: first, by (34), the terms corresponding to � and φ

in (18) satisfy the same moment condition as before. Second, for the almost sure
convergence, decompose

φ(̃u) − Rφ(̃uR) = (φ(̃u) − φ(̃uR)) + (φ(̃uR) − Rφ(̃uR)), (35)

likewise for R�i . As seen before, by Vitali’s convergence theorem, it suffices to show
(r , x) almost everywhere convergence of 〈Rφ(̃uR), ξ 〉 and 〈R�i (̃uR), ∂iξ 〉, and upon
passing to a subsequence,we can assume that ũ R converges to ũ for almost every (s, x).
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Therefore, the second term on the right-hand side of (35) goes to zero since ũ R is a
bounded sequence for fixed (s, x), so that eventually φ and Rφ coincide. For the first
term on the right-hand side of (35), we upgrade almost everywhere convergence of the
subsequence to Lph((0, T ) × D) convergence using Vitali’s theorem (recall that q >

ph). Then the claim follows by continuity of the Nemytski operator [15, Thm. 3.2.24],
that is to say, continuity of the operator v �→ φ(t, x, v) from Lph((0, T ) × D) →
Lp((0, T )×D). Here, we use that φ is a Carathéodory function satisfying the uniform
growth condition stated in Assumption 6.1 (4). ��
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