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Abstract

In recent years, airlines have increasingly developed the ability to monitor the condition of
aircraft components by means of sensors. In turn, aircraft maintenance aims to use this sensor data
to predict component failures. However, the challenge remains to make use of these prognostics to
generate appropriate maintenance schedules. In this paper, we develop a Monte-Carlo tree search
to schedule maintenance tasks based on component prognostics and available maintenance slots.
This approach is used to create a maintenance policy for multiple aircraft which specifies which
aircraft are allocated for maintenance and on which days. The results show that the scheduling of
the maintenance tasks is robust and able to accommodate the maintenance scheduling of smaller
airline fleet sizes. Overall, our results support the integration of aircraft component prognostics in
aircraft maintenance scheduling.
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1. Introduction

The airline industry underwent large changes during the last decades and especially the market
growth of low-cost carriers (LCC) [1] forced legacy carriers to reduce costs of their operations and
therefore also of their maintenance activities.

An important development in the maintenance field is the development of failure prognostics.
The improvements of sensors and computational algorithms to track, measure and detect degrada-
tion processes allowed advancements in the field of prognostics and health management [2] in order
to predict failure. These advancements allow for new and improved maintenance schedules in the
industry. Condition-based maintenance (CBM) policies propose a framework to incorporate prog-
nostic advancements into maintenance scheduling to achieve higher system availability and cost
reduction. A US study of 2003 predicted a 35 billion dollar per year cost reduction in the US if
CBM would be fully utilized to minimize unexpected downtimes [3]. Unfortunately, a more recent
study found that companies actually observe a large difference between the potential of prognostics
and actually achieved benefits [4]. Apparently, more research is needed to find solutions which offer
a complete and easy to use application incorporating a variety of CBM aspects, which furthermore
are linked to real-life airline operations. The main challenge it to draw operational conclusions from
the newly gained prognostics information. Meaning that operators need to answer the question
’When to repair an aircraft when a remaining useful lifetime (RUL) is presented by a prognostics
tool?’.
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In this paper, we address this challenge of scheduling a repair action based on known prognostics
information about a specific component. The approach is constrained by available maintenance
slots and opts to optimize not one unit but multiple aircraft of an airline fleet.

The remainder of this paper is structured as follows. In Section 2 we elaborate on the current
state of the art of research conducted in the field of maintenance scheduling having component
prognostics as input. We also review current research efforts using Monte-Carlo tree search (MCTS)
models. In Section 3 we present a Monte-Carlo tree search approach to schedule maintenance tasks
using component prognostics. We illustrate our results by means of a case study in Section 4. In
Section 5 we propose two additional case studies and present the results. In Section 6 we provide
a discussion of the results. Section 7 provides conclusions and recommendations.

2. Prior Work

In recent years, a variety of studies worked on topics related to the presented scheduling ap-
proach. At first we present the research done in the field of maintenance planning optimization,
followed by other applications of the chosen modeling approach (MCTS).

2.1. Maintenance Planning

A number of studies have been performed to include newly gained prognostics information in
a maintenance schedule, some within a contextual framework like wind farms, railways or aircraft
operations and others with a more research related focus.

One important difference consists of which type of prognostics are considered in the planning
approach. Most commonly models include Remaining Useful Lifetime (RUL) [5, 6, 7] or failure
probability prognostics as an input [8, 9]. All studies, however, assume that the RUL information
or failure probabilities are correct and therefore the accuracy of these values is not taken into
account.

The simplified implementation of prognostics information is furthermore often limited by apply-
ing thresholds and triggers of minimum RULs or minimum failure probability before the planning
algorithm is activated [6, 9, 7]. Another difference between different approaches is the objective
function applied to the problem. It varies from maximizing revenue [5] to minimizing (mainte-
nance) cost [8, 7], minimizing risk [6, 9] and minimizing unused maintenance slots [10]. Due to
the fact that many studies consider no or a very limited operational context one of their main
assumptions also is that immediate repair is possible at all times [8, 6, 7].

Other studies focus on finding solutions in a multi-unit planning framework to schedule multiple
systems simultaneously and considering their constraints on each other. Besides looking at cost
often other objectives are also considered. It is possible to minimize not just cost but also the
multi-unit unavailability [11], maximize productivity of all units [12] or to minimize labor, repair
and parts costs [13].

2.2. Monte-Carlo Tree Search Application

The Monte-Carlo tree search is a reinforcement-learning algorithm which first appeared in 2006
[14, 15] and enabled Google DeepMind to develop AlphaGo, an artificial intelligent Go-playing
algorithm, and to defeat the human world champion Go player [16]. This approach was chosen
since the Monte-Carlo tree search is able to present a solution without a pre-defined objective
function and without large amounts of data input. Which is especially useful in the situation at
hand with simplified prognostics input.
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The most common applications of the MCTS are in the field of game theory and game solving
programes like AlphaGo. Applications can be found for the games Go [17, 18], Othello [19, 20] and
many others. But since the Monte-Carlo Tree Search does not require detailed information about
the context it is also highly suitable for non-game applications. The usability ranges from solving
traveling salesman problems (TSP) [21, 22] and a variety of scheduling problems [23, 24, 25, 26].

3. Model Description and Formulation

In this section, we propose a Monte-Carlo tree search to schedule maintenance tasks of multiple
aircraft based on component prognostics. We first introduce the generic concept of the Monte-
Carlo tree search. Further, we introduce the component prognostics and show how they are taken
into account into the maintenance scheduling tree search. Then, we define an appropriate search
tree to represent the aircraft maintenance scheduling. Lastly, we define the value function of the
Monte-Carlo tree search for the aircraft maintenance schedule and elaborate on the exploration
and exploitation of this Monte-Carlo tree search.

3.1. Generic Monte-Carlo tree search concept

The MCTS [14, 15] is a reinforcement learning approach which iteratively samples from a given
node down the tree. Each iteration consists of four steps: selection, expansion, simulation ,and
back propagation (see also Figure 1). Each iteration starts at the root moving down the tree
and selecting a not yet expanded node according to a selection criterion as the Upper Confidence
Bound (UCB1) (selection phase). Then all possible child nodes are initialized below the selected
node (expansion phase) after which the algorithm simulates a possible path until a terminal state is
reached (simulation phase). The selected path and the simulated path are then evaluated according
to a value function and the evaluation and a counter of how often a node has been visited are
backpropagated to update the statistics of all nodes in the selected path (backpropagation phase).

Figure 1: Steps of the general MCTS approach [27]

3.2. Component prognostics as input to the maintenance scheduling Monte-Carlo tree search

We define the aircraft maintenance scheduling as a Monte-Carlo tree search. One input of the
tree is the prognostic of the aircraft component failure Pi,j for aircraft i for a time horizon of Ld

days in the future, where Pi,j ∈ {0, 1} is a classification prognostic that indicates:

Pi,j =

{
1, is the prediction at day j that aircraft i is subject to component failure in the next Ld days,

0, otherwise.

(1)
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We also consider previous prognostics up to Lp days in advance from the first day of the
scheduling horizon, where Pi,−j ∈ {1, 0}, j ∈ {1, 2, . . . , Lp}, with

Pi,−j =

{
1, is the prediction at day −j that aircraft i is subject to component failure in next Ld days,

0, otherwise.

(2)

The Pi,−j prognostics are assumed to be known at the beginning of the scheduling horizon of
Ld days. The Pi,j prognostics are unknown at the moment of decision making for maintenance
scheduling. These prognostics are used in the Monte-Carlo tree search to generate random scenarios
associated with the failure of a component in the next Ld days. In a similar fashion, in a Go game
[16] these prognostics are seen as possible, future moves to reach a terminal state.

We consider that these classification prognostics have an accuracy specified in the form of a
prognostic negative predictive value (NPV) and a positive predictive value (PPV) [28], where:

NPV =
TN

TN + FN
(3)

PPV =
TP

TP + FP
, (4)

where TN is the number of true negatives associated with the prognostic, FN is the number of
false negatives associated with the prognostics, TP is the number of true positives associated with
the prognostic and FP is the number of true negatives associated with the prognostics.

Figure 2 illustrates the concept of component prognostics where Lp = 10 and Ld = 10 days
before and after the moment of decision making, respectively. For each of the past 10 days, we
consider known classification component prognostics Pi,−j , 1 ≤ j ≤ 10. Each of these prognostics
indicates whether this component will fail or not in the next 10 days with an accuracy of NPV
and PPV . For each of the next Ld = 10 days, we simulate prognostics for the component failure.
Similarly, each of these simulated prognostics indicates whether this component will fail or not in
the next Ld = 10 days with an accuracy of NPV and PPV . At the moment of decision making,
these prognostics are among the main inputs to decide whether the component is scheduled for
maintenance or not in the next Ld = 10 days.

Figure 2: Example of prognostics considering 10 days prior and 10 days after initialisation, where at initialisation a
decision about maintenance scheduling is made

3.3. Monte-Carlo tree search for the aircraft maintenance scheduling

We represent the aircraft maintenance scheduling by means of a tree. We consider a fleet of I
aircraft, |I| ≥ 1. We consider a time horizon of Ld days, Ld > 0, over which a prognostic is made
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on the failure of a component for each aircraft. Based on these prognostics, we also consider a
scheduling horizon of Ld days, when an aircraft can be subject to maintenance or not. We define
a search tree with Ld layers, where each layer corresponds to a day in the scheduling horizon.
Further, each layer Lj , 1 ≤ j ≤ Ld, has kj nodes, 1 ≤ kj ≤ njchild. Each node kj has nchild
maximum amount of child nodes. Thus, layer Lj has a maximum amount of njchild nodes.

For each layer Lj , which is the jth layer of the tree, we define the following information for all
aircraft i ∈ I and day j in the scheduling horizon 1 ≤ j ≤ Ld:

Lj : (m1,j ,m2,j , ...,mi,j ;Mj ;P1,j , P2,j , ..., Pi,j), (5)

where mi,j is the possibility for aircraft i to make use of an available maintenance slot in day j. We
consider two types of maintenance slots: aircraft tail-specific (SM) slot, generic (GM) slot. Thus,
mi,j ∈ {SM,GM, 0}, where mi,j = SM means that aircraft i has the possibility to be maintained
during a tail-number specific maintenance slot in day j, mi,j = GM means that aircraft i has the
possibility to be maintained during a generic maintenance slot in day j and mi,j = 0 means that
there is no slot available to maintain aircraft i in day j. We also consider Mj ,Mj > 0 to be the
maximum amount of aircraft that can simultaneously undergo maintenance on day j.

Each tree node nj,kj , which is the kth node in layer Lj , is defined as follows, for all i ∈ I,

1 ≤ j ≤ Ld and 1 ≤ kj ≤ njchild:

nj,kj : (a1,j,kj , a2,j,kj , ..., ai,j,kj ;S1,j,kj , S2,j,kj , ..., Si,j,kj ), (6)

where ai,j,kj ∈ {0, 1} is the maintenance scheduling action taken for aircraft i at node nj,kj (at day
j), with

ai,j,kj =

{
1, if aircraft i scheduled for maintenance at node nj,kj (maintenance at day j) ,

0, if aircraft i not scheduled for maintenance at node nj,kj (no maintenance at day j) .

(7)
Also, Si,j,kj ∈ {0, 1} defines the maintenance state of aircraft i at node nj,kj , where

Si,j,kj =

{
1, if at node nj,kj , aircraft i has undergone maintenance between day 0 and day j

0 if at node nj,kj , aircraft i has not undergone maintenance between day 0 and day j

(8)
We also consider a root node n0 which corresponds to the initialization of the tree search, and,

thus, does not have an associated action or aircraft state.
We define a feasible maintenance actions ai,j,kj based on the state Si,j−1,kj−1

of the previous
(parent) node nj−1,kj−1

and the maintenance opportunity mi,j at layer Lj , as follows

ai,j,kj
(
Si,j−1,kj−1

,mi,j

)
=





0 or 1 if Si,j−1,kj−1
= 0 and mi,j 6= 0

0 if Si,j−1,kj−1
= 1

0 if mi,j = 0.

(9)

From eq. (9) an action to maintain the component of aircraft i, i.e., ai,j,kj = 1 at most one time
during the scheduling horizon of Ld days.
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Also, for a given layer Lj , 1 ≤ j ≤ Ld, and a given node nj,kj , 1 ≤ kj ≤ njchild, we also
ensure that the amount of aircraft that are scheduled for maintenance in day j does not exceed
the maximum number of simultaneous maintenance actions Mj , i.e.,

I∑

i=1

ai,j,kj ≤Mj (10)

Lastly, we update the state Si,j,kj of aircraft i at node nj,kj depending on the state of the
previous visited node nj−1,kj−1

and the action ai,j,kj as follows:

Si,j,kj
(
Si,j−1,kj−1

, ai,j,kj
)

= min
{
Si,j−1,kj−1

+ ai,j,kj , 1
}
. (11)

Figure 3: Example setup of the first two layers of a tree with I=2, where X marks an infeasible node

3.4. Monte-Carlo Tree Search Algorithm

In this section, we show how the maintenance scheduling Monte-Carlo tree search is explored
and exploited. In doing so, we make use of punishments, which we introduce at the beginning of
this section. In the second part of this section we then show how the four generic steps of the
Monte-Carlo tree search algorithm are implemented in our maintenance scheduling approach, this
includes that we show how simulation of the Monte-Carlo tree search is conducted.

3.4.1. Punishments in the Monte Carlo tree search

We define 5 punishments to decide whether to schedule an aircraft for maintenance or not.
These punishments are evaluated at the level of each node nj,kj of the selected path in the Monte
Carlo tree search. In order to compute the punishments, we define a set L of all nodes nj,kj along
the selected path. The set, therefore, consists of Ld elements.

L = {n1,kj , n2,kj , ..., nLd,kj} (12)

The punishment values Cn,j,i,l are defined on each layer j, 1 ≤ j ≤ Ld, for each punishment n,
1 ≤ n ≤ 5, for each aircraft i, i ∈ I and for each node kj ∈ L.
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Average Lifetime Punishments

Equation (13) shows a punishment which sanctions a choice to repair aircraft i if the time
since last repair tr of that aircraft i is lower than the mean time between repair tā. Therefore the
likelihood is reduced that an aircraft, which has been repaired a comparatively short time ago, is
scheduled for a repair.

C1,j,i,l =





1− tr
tā

if tr < tā and Si,j,kj = 1

1− tr
tā

if tr < tā and ai,j,kj = 1

0 if tr ≥ tā
0 if Si,j,kj = 0 and ai,j,kj = 0

(13)

If an aircraft i with a time since last repair tr larger than the mean time between repair tā is
not scheduled it receives a punishment according to equation (14). Similarly to punishment C1,j,i,l,
it is, therefore, less likely to not schedule an aircraft if it has not been repaired for a comparatively
long time.

C2,j,i,l =





1− tā
tr

if tr > tā and Si,j,kj = 0 and ai,j,kj = 0

0 if tr ≤ tā
0 if Si,j,kj = 1

0 if ai,j,kj = 1

(14)

Simulated prognostics punishment

An action ai,j,kj is punished according to equation (15), depending on whether or not it matches
the predictions Pi,j simulated for that day. An aircraft is, therefore, less likely to be scheduled if
there are few failure predictions and more likely to be scheduled if there are many failure predictions.

C3,j,i,l =





NPV if Pi,j = 0 and ai,j,kj = 1

(1−NPV ) if Pi,j = 0 and ai,j,kj = 0 and NPV ≥ 0.5

0 if Pi,j = 0 and ai,j,kj = 0 and NPV < 0.5

(1− PPV ) if Pi,j = 1 and ai,j,kj = 1 and PPV ≥ 0.5

0 if Pi,j = 1 and ai,j,kj = 1 and PPV < 0.5

PPV if Pi,j = 1 and ai,j,kj = 0

(15)

Previous prognostics punishment

The predictions are made for the next ten days, meaning that a prediction is made on a specific
day whether or not the component will fail in the upcoming ten days. Equation (16) punishes a
sequence of ten days if the number of repairs in those ten days do not match the prediction made
for that 10 day period. Therefore it will be less likely that an aircraft is scheduled if the failure
predictions in the past were mostly negative and similarly it will be more likely to be scheduled if
many of the previous predictions were positive.
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C4,j,i,l =





PPV if Pi,j−10 = 1 and Si,j,kj = 0 and ai,j,kj = 0

(1− PPV ) if Pi,j−10 = 1 and (Si,j,kj = 1 or ai,j,kj = 1) and PPV ≥ 0.5

0 if Pi,j−10 = 1 and (Si,j,kj = 1 or ai,j,kj = 1) and PPV < 0.5

NPV if Pi,j−10 = 0 and (Si,j,kj = 1 or ai,j,kj = 1

(1−NPV ) if Pi,j−10 = 0 and Si,j,kj = 0 and ai,j,kj = 0 and NPV ≥ 0.5

0 if Pi,j−10 = 0 and Si,j,kj = 0 and ai,j,kj = 0 and NPV < 0.5

(16)

Expensive maintenance slot punishment

Not all maintenance slots are identical and therefore if a repair is scheduled during one of the
more expensive opportunities (mi,j = GM) that action is punished according to equations (17).
Meaning that an aircraft is less likely to be scheduled during a general maintenance slot instead of
a specific maintenance slot.

C5,j,i,l =





SMi
TMi

if ai,j,kj = 1 and mi,j = GM

0 if ai,j,kj = 0

0 if mi,j = SM

(17)

3.4.2. Monte-Carlo Tree Search Steps

As shown in Figure 1 the Monte-Carlo tree search algorithm consists of four steps. In order
to apply them we define a rollout value Rj,kj ∈ R+, an award value Aj,kj ∈ R+, a UCB1 value
UCB1j,kj ∈ R+, a counter xj,kj of node nj,kj and a counter x0 of the root. All node characteristics
are initialized equal to zero during initialization of node nj,kj . How we implement these node
characteristics in the MCTS steps can be seen below.

A. Selection
The Monte-Carlo tree search tries to balance its iterations between exploration and exploitation

to cover the nodes with the highest potential with the least computational effort. Meaning that it
selects nodes nj,kj with high award values Aj,kj and with few visits xj,kj . The Upper Confidence
Bounds (UCB1) algorithm can be used to select a node [29]. A trade off is made between exploita-

tion (Term: Aj,k) and exploration (Term:
√

ln(x0)
xj,k

, where x0 is the counter of the root node). A

weighting constant cw is used to balance those aspects, where cw > 0 and from theory it has a
default value of cw =

√
2 [29]. The UCB1 value UCB1j,kj is therefore defined for each node nj,kj ,

with 1 ≤ kj ≤ njchild and 1 ≤ j ≤ Ld:

UCB1j,kj = Aj,kj + cw

√
ln(x0)

xj,kj
(18)

The average award value of node nj,kj , with 1 ≤ kj ≤ njchild and 1 ≤ j ≤ Ld, can be calculated
by dividing the award value Aj,kj by the amount of visits xj,kj of node nj,kj .

Aj,kj =
Aj,kj

xj,kj
(19)
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B. Expansion
If the selected node nj,kj has been visited and simulated once before, xj,kj = 1, it needs to be

expanded. This means that all nchild possible child nodes are added into the tree below node nj,kj .
We define all node statistics (action aj,kj , state Sj,kj , award value Aj,kj , rollout value Rj,kj , UCB1
value UCB1j,kj and counter xj,kj ) for the new child nodes during initialization.

In case the node nj,kj has not been visited before, xj,kj = 0, this step is skipped and the node
is directly rolled out in a random simulation as explained in the step C. Simulation.

C. Simulation
A simulation can start at a feasible node nj,kj which has not been rolled out before (xj,kj = 0).

We define this starting layer of the simulation as j′, where 1 ≤ j′ ≤ Ld. When a such a node is
found it can be rolled out in a random simulation which means that for each layer j′ ≤ j ≤ Ld,
and for each aircraft i, i ∈ I, a random simulated action ai,j,kj is compared with the prediction Pi,j

made for that layer. The comparison is determined and documented in the punishments Cn,j,i,l,
which will then be used in the rollout value Rj,kj and award value Aj,kj .

Each node nj,kj is evaluated based on rewards shown during random rollout simulations. Dur-
ing these simulations, a random combination of actions and punishments are simulated. These
simulated actions ai,j,kj are not a node property but an action which is randomly chosen in the
simulation process for each layer j, j′ ≤ j ≤ Ld and for each aircraft i, i ∈ I.

ai,j,kj ∈ {0, 1} (20)

ai,j,kj =

{
1 if the random rollout chooses to repair AC i on day j during simulation

0 if the random rollout chooses not to repair AC i on day j during simulation
(21)

Which simulated action ai,j,kj is chosen in the simulation for aircraft i on layer j is constrained
by same aspects as defined in equations (9) and (10).

Each node nj,kj is furthermore equipped with an award value Aj,kj and a random rollout value
Rj,kj . The random rollout value is computed using a random simulation of the next Ld − j days
and it is restricted by a maximum possible rollout value Rm. The award value Aj,kj of node nj,kj
is equal to the rollout value Rj,kj of node nj,kj and the sum of the award values of the child nodes
of node nj,kj as can be seen in equation (22).

Aj,kj =





0 if xj,kj = 0

Rj,kj if xj,kj = 1

Rj,kj +
∑k·nchild

u=nchild·(k−1)+1Aj+1,u if xj,kj > 1

(22)

Rm = N · (Ld − 1) · I (23)

Rj,kj =





0 if xj,kj = 0

Rm−
∑N

n=1

∑Ld
j=j

∑I
i=1 Cn,j,i,l

Rm
if xj,kj > 0

(24)

9



The random rollout value can be computed using a maximum possible rollout value Rm sub-
tracted by the sum of all punishments n, 1 ≤ n ≤ N , on node nj,kj , with 1 ≤ kj ≤ nchild and
1 ≤ j ≤ Ld, per aircraft i, i ∈ I.

The maximum possible random rollout value Rm is dependent on the number of punishments
N , amount of days into the past Ld and the amount of aircraft I.

Therefore a rollout value Rj,kj close to Rm shows a node with positive potential and few pun-
ishments in the random simulation.

D. Backpropagation
Once a rollout value Rj,kj is found for the leaf node nj,kj the award value Aj,kj and the counter

xj,kj of that node are updated. We then update the award values and counters along the path up
until node nj,kj accordingly.

4. Results

In this section, we describe the results of the Monte-Carlo tree search algorithm as maintenance
scheduling model. We first present the implemented input data of the time since last repair,
available maintenance slots and classification component prognostics and how these are obtained.
After which we show and elaborate on the numerical results of the main model.

4.1. Data used in case study

We consider a fleet of 20 Boeing 777 aircraft of a European airline, where we consider their time
since last repair, available maintenance slots and classification prognostics. In order to compare
the results a standard input data set is used.

Time Since Last Repair

The time since last repair, tr, of aircraft i, is randomly sampled based on the mean time between
repairs, tā, of the component analyzed in the used component prognostics (see equation (25)). The
data of all 20 aircraft are shown in Table 2 directly linked to the results of the maintenance
scheduling of 20 aircraft.

tr ∼ U(0, 2tā) (25)

Available maintenance slots

The information about available maintenance slots mi,j is based on planned maintenance slots
per aircraft and generally available maintenance slots for a specific type provided by the European
airline used for this case study. A maintenance slot somewhere on a specific day is considered an
opportunity for that day without evaluating whether the planned maintenance leaves enough time
for another maintenance action.

The maintenance slots considered in this case study can be seen in Table 2 directly linked to
the results of the maintenance scheduling model.

We, furthermore, consider a maximum amount of simultaneous repairs Mj of one aircraft per
day for all days j.
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Prognostics for component failure

The component prognostics Pi,j in real life would only be known from the previous days and not
of the upcoming days. As part of the Monte-Carlo tree search random simulation, those are however
required in a form of a potential possible situation. The previous predictions are generated upon
initialization by a random generator based on failure probabilities related to the time since last
repair tr of aircraft i. Whereas the component prognostics of Ld days in the future are randomly
generated during each simulation iteration. The classification prognostics used as an input in this
case study does not provide any failure probability information and therefore an approximation
needs to be found if one wishes to include a certain increase in failure probabilities. Since 94% of all
components show a constant hazard function [30] a failure distribution which leads to a constant
hazard function is most likely to be correct. The exponential distribution is the only continuous
distribution with a constant hazard function and therefore an exponential function is assumed for
future steps. The rate parameter λ describes the average failure rate. The component (bleed air
system) analyzed in the component prognostics used as an input in this case study, on average fails
once in 354 days. This mean time between repairs will furthermore also be used in the simulation
in the form of tā = 354. The failure function can then be calculated as shown in equation (26).

F (tr) = 1− exp(− 1

354
· tr) (26)

Knowing the time since last repair it is, therefore, possible to approximate the failure probability
at a specific day. Which we then use as a bias when randomly creating the component prognostics
based on the failure probability F (tr) (see equation (27)).

Pi,j =

{
1 , with probability 1− exp(− 1

354 · tr)
0 , otherwise

(27)

The result of this biased generation of the days prior to initialization is presented in Table 1.
Whereas the predictions used for days in the future are created following the same rules during
each simulation.

Table 1: Classification Prognostics Input

AC
Day

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

1 0 0 0 0 0 1 1 0 1 0
2 0 1 0 1 1 0 0 0 0 1
3 0 1 0 1 0 0 0 0 0 0
4 1 1 1 1 0 1 1 1 1 1
5 1 0 1 1 1 0 1 1 1 0
6 1 0 0 1 0 0 0 1 0 1
7 0 1 1 0 1 1 1 1 0 1
8 0 1 0 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 0 1 1
10 1 1 0 1 1 1 1 1 1 1
11 1 1 1 0 0 1 1 0 1 0
12 0 0 0 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0 1 0
14 1 1 0 1 1 1 0 0 1 0
15 0 1 1 0 1 0 1 1 1 0
16 1 1 1 1 1 1 0 1 0 1
17 1 1 1 0 1 0 1 1 1 1
18 0 0 0 0 0 0 1 1 0 1
19 0 1 1 0 0 0 1 0 1 1
20 0 0 0 0 1 0 0 1 0 0

In this paper, we consider classification component prognostics developed for the bleed air
system of the fleet of a European airline, where we assume the following NPV and PPV values:
NPV = 0.86 and PPV = 0.31. Meaning that only 31% of the yes predictions correctly predict
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a failure in the upcoming Ld days and that 86% of the no predictions correctly predict that no
failure occurs in the next Ld days. We considered these NPV and PPV values in Section 3.4 when
presenting the punishment structure of the award values.

4.2. Numerical Results: Maintenance Scheduling of aircraft fleet

The proposed application of our Monte-Carlo tree search algorithm for maintenance scheduling
is evaluated in form of its main model description. The main model is used to schedule 20 aircraft
and the results are then analyzed with respect to their correctness, robustness, computational time
and sensitivity to varying input.

Scheduling 20 Aircraft

Table 2 presents the scheduled repair actions of a fleet of 20 aircraft. The table also shows the
time since last repair tr of each aircraft and the maintenance opportunities mi,j (at which day and
what type of opportunity), where SM are specific maintenance slots available for that aircraft and
GM are general maintenance slots available for all aircraft of that type.

Table 2: Scheduled Repair Actions 20 Aircraft

It can be seen that 7 of the 20 aircraft are scheduled to be repaired from which 5 have larger
time since last repair values that the mean time between repairs and the other 2 have enough
positive failure predictions that they are reasonable to be scheduled for repair. When looking at
the aircraft which are not scheduled, one can see that 5 of the 12 aircraft are not scheduled even
though their time since last repair is higher than the mean time between repairs. 2 of these (AC 8
and AC 14) do not have any available maintenance slots in the scheduling horizon. Furthermore,
the time since last repair of AC 19 is only slightly above the mean time between repairs and
therefore it is not striking if it is not scheduled for maintenance within the scheduling horizon of
10 days. On the contrary, AC 5 and AC 10 do have time since last repairs clearly higher than the
average time between repairs, therefore, those need further analysis why they are not scheduled for
maintenance. Table 2 shows that both aircraft have a specific maintenance slot on day 8 and that
the aircraft scheduled for maintenance on day 8 (AC 13) has a time since last repair lower than AC
5 and AC 10. The analysis shows that in the final iteration, where the final maintenance schedule
is determined the selection formula in equation (18) selects AC 13 because of the fewer amount of
visits to the node even though the average awards of selecting AC 5 or AC 10 were higher.

In order to further evaluate whether the most appropriate aircraft are chosen to be maintained,
the time since last repair information is analyzed. Table 3 splits the 20 aircraft into four tr categories
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related to tā. The same is done for the scheduled aircraft. It can be seen that even though there
is a large amount of aircraft with comparatively low tr only few of them are scheduled, whereas
clearly more of the aircraft with high tr are actually scheduled for repair.

Table 3: Amount of AC in Optimization and amount of AC scheduled
tr < 0.5ta 0.5ta < tr < ta ta < tr < 1.5ta 1.5ta < tr < 2ta Total

Amount of AC
in Optimization

4 5 4 7 20

Amount of AC
Scheduled

1 1 2 3 7

Percentage
of AC Scheduled

25 % 20 % 50 % 35 % 40 %

Analysis of the robustness of the maintenance scheduling results

In this section, we analyze the results of the maintenance scheduling model presented before.
An important factor in the evaluation of the model is the robustness of the model. Meaning that
during multiple runs with identical situations of aircraft characteristics (same tr, mi,j , Pi,j) the
model should schedule the same or similar aircraft for repair. Table 4 shows the result of 20
runs with identical aircraft characteristics input. It can be seen that during half of the runs the
same aircraft are consistently scheduled. Only on 5 of the runs, an additional aircraft (AC 19)
is scheduled which is not done during the other 5 runs. The main reason for this is a time since
last repair slightly above the mean time between repairs. The difference between the punishments
of scheduling or not scheduling for maintenance are therefore close to each other which makes it
difficult for the maintenance scheduling model to be consistent during random rollout simulations.
There is furthermore a small difference for 2 of the aircraft (AC 4 and AC 9) on which days
maintenance is scheduled, they do however switch their days, thus in total, the same days are
chosen for repair actions.

Table 4: Heatmatrix Scheduled Repair Actions 20 Aircraft, 10 run
AC 1 AC 2 AC 3 AC 4 AC 5 AC 6 AC 7 AC 8 AC 9 AC 10

Day 1 0 0 0 4 0 0 0 0 6 0
Day 2 0 0 0 0 0 0 10 0 0 0
Day 3 0 0 0 0 0 0 0 0 0 0
Day 4 0 0 0 6 0 0 0 0 4 0
Day 5 0 0 0 0 0 0 0 0 0 0
Day 6 0 0 0 0 0 0 0 0 0 0
Day 7 10 0 0 0 0 0 0 0 0 0
Day 8 0 0 0 0 0 0 0 0 0 0
Day 9 0 0 0 0 0 0 0 0 0 0
Day 10 0 0 0 0 0 0 0 0 0 0

AC 11 AC 12 AC 13 AC 14 AC 15 AC 16 AC 17 AC 18 AC 19 AC 20
Day 1 0 0 0 0 0 0 0 0 0 0
Day 2 0 0 0 0 0 0 0 0 0 0
Day 3 0 0 0 0 0 0 10 0 0 0
Day 4 0 0 0 0 0 0 0 0 0 0
Day 5 0 0 0 0 0 10 0 0 0 0
Day 6 0 0 0 0 0 0 0 0 0 0
Day 7 0 0 0 0 0 0 0 0 0 0
Day 8 0 0 10 0 0 0 0 0 0 0
Day 9 0 0 0 0 0 0 0 0 0 0
Day 10 0 0 0 0 0 0 0 0 5 0

As can be seen in Figure 6 those promising robustness values can be found also for smaller
sets of aircraft in the scheduling algorithm. In Figure 6 we define robustness as presented in
equations (28) and (29), with an example calculation for the robustness of scheduling 20 aircraft.
A robustness (choosing AC) of 100 % means that during all runs the same aircraft are scheduled.
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And a robustness (choosing days) of for example 90 % means that on average 90 % of the scheduled
aircraft are always scheduled on the same days during all runs.

Robustness (choosing Days) =
# AC remain scheduled on the same day for all runs

# AC scheduled for maintenance during all runs
(28)

Robustness (choosing AC) =
# AC remain scheduled for all runs

# AC scheduled for maintenance during all runs
(29)

As an example for the 20 aircraft presented in Table 4 and Figure 4, Robustness (choosing days)
= 10+6+10+6+10+10+10+5

75 = 89% and Robustness (choosing AC) = 10+10+10+10+10+10+10+5
75 = 93%.

It is striking that the robustness increases again for increasing fleet sizes. Comparing this to
Table 5 shows that the same aircraft show less robust results when choosing days (AC 4 and AC
9) and therefore the increasing robustness can be explained by the fact that in a larger fleet size
more aircraft are scheduled robustly. This means that robustness is not just linked to fleet size
and the model but to individual aircraft characteristics.

Figure 4: Robustness of the model using different fleet sizes
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Table 5: Scheduled Repair Actions for different fleet sizes with 10 runs

Instead of simulating random prognostics during the rollout it is also interesting to analyze the
robustness of the maintenance scheduling model in case it receives a fixed set of prognostics also
for future days. Which would be the situation if one would have more accurate prognostics such
that a prediction about the prognostics can be made. As can be seen in Figure 5 the robustness is
even better if one applies the same set of prognostics during all simulation iterations. During all
runs identical aircraft are scheduled for maintenance on identical days of the scheduling horizon.

Figure 5: Robustness of the model using different fleet sizes, with fixed prognostics during simulation

Analysis of computational time of the maintenance scheduling model

Airlines operate many aircraft in their fleet and therefore it is interesting how well the model is
able to schedule different amount of aircraft. As can be seen in Figure 6, the computational time
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highly increases with an increase of aircraft in the Monte-Carlo tree search. Up until approximately
12 aircraft the model is able to schedule the aircraft within 10 seconds or less. In order to schedule
20 aircraft, it requires however almost 5 hours, which is even exceeded by a computational runtime
of 3.5 days when scheduling 25 aircraft. These runtimes were observed on a dual core 3.1 GHz
Intel Xeon Platinum 8175 with 16 GB memory capacity and on a MATLAB 2018b version.

Figure 6: Computational Times of Different Amount of AC in the MCTS [s]

4.3. Sensitivity analysis of variable aircraft characteristics input

Table 3 previously showed the amount of aircraft scheduled categorized into time since last
repair categories. The shown statistics are based on one run of the maintenance scheduling algo-
rithm for the 20 AC aircraft characteristics input. Table 4 furthermore showed that multiple runs
of that Monte-Carlo tree search algorithm using the same aircraft characteristics input schedule
identical aircraft for maintenance. It is however also interesting to see whether that general trend is
observable with different kind of aircraft characteristics input. Table 6 therefore shows the results
of categorizations for multiple runs of scheduling 20 aircraft, each with a different set of input data.
It can be seen that with random aircraft characteristics input the trend of scheduling more aircraft
of the categories with tr > tā is even more visible than before.

Table 6: Amount of AC in Optimization and amount of AC scheduled (200 AC during 10 runs with random input)

tr < 0.5ta 0.5ta < tr < ta ta < tr < 1.5ta 1.5ta < tr < 2ta Total

Amount of AC
in Optimization

45 50 54 51 200

Amount of AC
Scheduled

12 21 35 38 106

Percentage
of AC Scheduled

27 % 42 % 65 % 75 % 53 %

5. Additional Model Case Studies

The main model presented good and robust results when scheduling aircraft using classification
prognostics and available maintenance slots. It is furthermore also interesting to see how the

16



model behaves if probability prognostics are used instead of classification prognostics and how the
model behaves if simulated prognostics of future days are not taken into account. This section
presents both case studies by firstly presenting the changes to our maintenance scheduling model
and secondly elaborating on the results and added benefits.

5.1. Failure distribution input

Changes to the model - Failure distribution input

Classification prognostics, as applied as an input to the main model of the Monte-Carlo tree
search maintenance scheduling algorithm, are not the only available types of prognostics in the
maintenance sector. This case study, therefore, focuses on implementing a failure distribution
instead of classification prognostics. Meaning that at a given day a probability of failure is approx-
imated. This probability can then be used in the punishment structure presented above instead of
the accuracy values of NPV and PPV.

Failure probabilities can be calculated based on the failure function as can be seen in equation
(30).

Pi,j = F (x) = 1− exp(− 1

354
· tr) (30)

The new version of the simulated predictions punishment uses the same concept as before.
It punishes a simulated action if it does not match the simulated prediction made for that day.
A probability ≥ 0.5 is considered a prediction to fail and a probability < 0.5 is considered as
a prediction that the component will not fail. The new version of the second punishment value
C3′,j,i,l is defined on each layer j, 1 ≤ j ≤ Ld and for each aircraft i, i ∈ I.

C3′,j,i,l =





(1− Pi,j) if Pi,j < 0.5 and ai,j,kj = 1

0 if Pi,j < 0.5 and ai,j,kj = 0

Pi,j if Pi,j ≥ 0.5 and ai,jk;j = 0

0 if Pi,j ≥ 0.5 and ai,j,kj = 1

(31)

The new version of the previous predictions punishment is able to include not just classification
prognostics but also probability prognostics such that the punishment is stronger if the failure
prediction is higher. The concept, however, is similar to the previous setup. If a failure prediction
with a specific probability is made for the next 10 days and no repair is scheduled within those 10
days, a punishment equal to the probability is added at day 10. The new version of punishment
C4′,j,i,l is defined on each layer j, 1 ≤ j ≤ Ld depending on the actions ai,j,kj of the previous 10
days j − 10, ...., j, and for each aircraft i, i ∈ I.

C4′,j,i,l =





Pi,j−10 if Si,j,kj = 0 and ai,j,kj = 0 and Pi,j−10 ≥ 0.5

1− Pi,j−10 if (Si,j,kj = 1 or ai,j,kj = 1) and Pi,j−10 < 0.5

0 if (Si,j,kj = 1 or ai,j,kj = 1) and Pi,j−10 ≥ 0.5

0 if Si,j,kj = 0 and ai,j,kj = 0 and Pi,j−10 < 0.5

(32)

Numerical Results: Maintenance scheduling using component failure distribution

Failure probabilities add additional information to the model compared to classification prog-
nostics. Which can also be seen in the results of the model extension with failure probability
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distribution as prognostics input. The same time since last repair and available maintenance slots
input are used as before. Using equation (30) results in the following failure probability input for
the days prior to initialization. As before in the main maintenance scheduling model, the failure
probabilities for the future days are computed randomly in the simulations.

Table 7: Probability Prognostics Input

AC
Day

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

1 0,378 0,380 0,381 0,383 0,385 0,387 0,388 0,390 0,392 0,393
2 0,485 0,487 0,488 0,489 0,491 0,492 0,494 0,495 0,497 0,498
3 0,467 0,469 0,470 0,472 0,473 0,475 0,476 0,478 0,479 0,481
4 0,839 0,840 0,840 0,841 0,841 0,841 0,842 0,842 0,843 0,843
5 0,774 0,774 0,775 0,776 0,776 0,777 0,777 0,778 0,779 0,779
6 0,424 0,425 0,427 0,428 0,430 0,432 0,433 0,435 0,436 0,438
7 0,695 0,696 0,696 0,697 0,698 0,699 0,700 0,701 0,702 0,702
8 0,778 0,779 0,779 0,780 0,781 0,781 0,782 0,782 0,783 0,784
9 0,811 0,812 0,812 0,813 0,813 0,814 0,814 0,815 0,815 0,816
10 0,831 0,831 0,832 0,832 0,833 0,833 0,834 0,834 0,835 0,835
11 0,688 0,689 0,689 0,690 0,691 0,692 0,693 0,694 0,695 0,696
12 0,104 0,107 0,109 0,112 0,114 0,117 0,119 0,122 0,124 0,127
13 0,336 0,338 0,340 0,342 0,344 0,345 0,347 0,349 0,351 0,353
14 0,819 0,820 0,820 0,821 0,821 0,822 0,823 0,823 0,824 0,824
15 0,552 0,553 0,554 0,555 0,557 0,558 0,559 0,560 0,562 0,563
16 0,727 0,727 0,728 0,729 0,730 0,730 0,731 0,732 0,733 0,733
17 0,786 0,786 0,787 0,787 0,788 0,789 0,789 0,790 0,790 0,791
18 0,374 0,376 0,378 0,380 0,381 0,383 0,385 0,387 0,388 0,390
19 0,661 0,662 0,663 0,664 0,665 0,666 0,667 0,668 0,669 0,670
20 0,351 0,353 0,355 0,356 0,358 0,360 0,362 0,364 0,365 0,367

Table 8 shows that 7 of the 8 aircraft scheduled in the original model are still scheduled for
a repair action when applying a failure probability distribution as input instead of classification
prognostics. Those aircraft are furthermore also scheduled on the same days as before. Special
focus can, however, be put to the fact that again AC 19, with tr > tā, is scheduled. This is again
the same aircraft which already presented striking results during the robustness and sensitivity
analysis in Table 5 and Table 10. This nicely shows that the main model with random rollout
simulations is slightly unsure about scheduling AC 19 for maintenance but changes to the model
(e.g. neglecting random prognostics simulations or adding probability distributions as prognostics)
increase the certainty of the maintenance scheduling algorithm.

Table 8: Scheduled Repair Actions 20 Aircraft (main model and probability prognostics model extension)
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5.2. 1 day future prognostics

Changes to the model - 1 day prognostics

As explained before we considered randomly simulated classification component prognostics
during the simulation stage of the Monte-Carlo tree search due to the fact that the prognostics
are not known to us and even with randomly selected prognostics input the main model is able
to robustly schedule aircraft, only their robustness related to on which days the maintenance is
scheduled is lower for increasing sets of aircraft. It is interesting to analyze the effect of not
considering simulated prognostics. The same 20 aircraft as discussed before are scheduled for
maintenance neglecting simulated prognostics for future days. Which means that the simulated
prognostics punishment C3,j,i,l is not taken into account. The component classifications prognostics
of day 1 which would be known at the moment of decision making are however taken into account
and set fixed as presented in Table 9, which can be seen as an extension to Table 1.

Table 9: Classification Prognostics Input of Day 1

AC
Day

1

1 1
2 0
3 0
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 0
13 0
14 1
15 0
16 1
17 0
18 1
19 1
20 0

Numerical Results: Without simulated prognostics of future days

Table 10 shows that the results are highly similar to the results of the main model presented
in Table 2. The only difference is that the main model scheduled AC 19 only during some of the
runs, whereas it is scheduled for maintenance when not considering simulated predictions. This
shows that in the current setup of the maintenance scheduling model the simulated prognostics do
not have a large effect on the results.
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Table 10: Scheduled Repair Actions 20 Aircraft (main model and model without simulated prognostics)

The runtime analysis of the changed model resulted in almost identical results as before shown
in Figure 6 for the main model.

6. Discussion

The Monte-Carlo tree search algorithm as an application in airline maintenance scheduling
showed interesting results as presented above. In this section, we first discuss the results of the
main maintenance scheduling model after which we discuss the results of the model extension using
probability prognostics instead of classification prognostics.

6.1. Main maintenance scheduling model

The main objective of the model is to schedule multiple aircraft simultaneously for a pre-defined
amount of days into the future. This needs to be done using classification prognostics and available
maintenance slots into account. As shown in Table 2 this is indeed the results of the proposed
model and as can be seen in Table 3 it is also done is a comparatively accurate manner. Most of
the aircraft scheduled do have a time since last repair above the mean time between repairs. There
are however also some aircraft which have a shorter time since last repair but are scheduled either
way and others with a high time since last repair which are not scheduled.

Especially the impact of the prognostics is difficult to assess since the algorithm bases its
choice on comparing many different branches and combinations in order to make a selection. This,
unfortunately, makes it difficult to directly understand the choice of the model. It is, however,
possible to find reasons for all aircraft why they are scheduled or why not.

A positive result of the main model is also the high robustness of the main maintenance schedul-
ing model. Presenting the model with the same input always leads to a similar result. Meaning
that the almost identical aircraft are scheduled and only sometimes deviates on which days this
aircraft is scheduled. This constant good performance allows the assumption that the model is also
able to robustly schedule larger amount of aircraft.

This is however hindered by the steeply increasing computational runtimes for larger amount of
aircraft. The reason for this is the large increase of possible child nodes and therefore the possible
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options to evaluate. Up until around 20 AC of the same type the runtime is, however, feasible for
an operational context. When looking at the fleet of different airlines one can see that many airlines
operate less than 20 aircraft of the same type which means that this model would be feasible for
a number of those cases.

Table 11: Fleet sizes of different European Airlines

Airline
AC Type

A319 A320 A321 A330 A340 A350 A380 B737 B747 B777 B787

KLM 13 51 13 29 13
Lufthansa 27 94 65 16 32 14 14 32
TAP 21 25 12 23 4

The results of the main model also showed that the current implementations largely focus not
just on the prognostics input but also highly on the time since last repair of the aircraft. This
choice was deliberately made due to the low accuracy and availability of actual prognostics data.
Table 10 showed that the scheduling results are almost identical without simulating predictions for
upcoming days.

6.2. Additional Case Studies

As presented in Section 4 also the results of using failure distribution probabilities instead of
classification prognostics in the maintenance scheduling model show promising potential. According
to the time since last repairs of the scheduled aircraft the new approach is able to schedule 20
aircraft even more appropriately than before.

The practicality of the model is, however, an issue. The failure distribution probabilities are
created based on an assumed failure function since they were not available for the component
analyzed in the main model. We, however, assumed them to be correct without taking additional
accuracy of those failure predictions into account.

The analysis neglecting simulated prognostics and only including previous prognostics and the
ones from the first day showed that this version presents almost identical results and therefore
making it as useful as the main model.

7. Conclusions and Recommendations

As stated before, our Monte-Carlo tree search maintenance scheduling algorithm is able to ro-
bustly schedule multiple aircraft based on their failure prognostics. The main issue of the current
model and its’ extension is, however, the run time. As stated in the literature review, many other
scheduling models only start the planning process once an aircraft is triggered due to high time
since last repair or low remaining useful life. The deliberate choice of considering all aircraft and
letting the model compute which ones to repair ensures that all possible options are considered
but is also the main reason for the high computational run times. The main recommendation is
therefore to work on reducing the computational time for larger sets of aircraft. One might look
into implementing some form of a trigger to remove aircraft not fulfilling any of the criteria re-
quired in order to be scheduled or otherwise increase searching efficiency. But it is also interesting
to evaluate different selection procedures in the MCTS steps or to improve the current UCB1 pro-
cedure. The current implementation uses the default value of

√
2 as a factor between exploitation

and exploration but other tuned factors might improve search efficiency while delivering similar
maintenance schedules.
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The extension offers an interesting solution for further developments. Probability prognostics
create a more complete set of information about the health status of a component which makes it
more useful for further implementations. It is however required to further improve the model in
order to include the accuracy of the failure predictions which is not implemented in the maintenance
scheduling model.

The case study when neglecting simulated prognostics showed good and almost identical results
as the main model. It is therefore possible to use this change as the basis for future model
improvements.

One possibility provided by the chosen Monte-Carlo tree search approach is the concept of
a moving horizon. This is currently not yet implemented but would be interesting to analyze
since it results in a more realistic solution. The current model once schedules all 20 aircraft for
the upcoming ten days but a moving horizon scheduling approach would be able to make use of
additional knowledge of days once they have passed. By scheduling each day for the upcoming ten
days while implementing the new data of the last day would improve the usability and accuracy
of the model further. Applying a moving horizon decision making process is also expected to solve
some concerns of the robustness and not scheduling aircraft with high time since last repairs, since
the algorithm only needs to be certain for the first day of the scheduling horizon.

Another aspect which should be analyzed if one wishes to improve real-life airline operations
applicability is the fact that the current maintenance scheduling model assumes each maintenance
slot be a full day and that is is always available to schedule an additional maintenance action,
which is clearly a strong assumption.

A Monte-Carlo tree search approach was chosen due to the simplified prognostics input available
and it proved to a suitable method for a simplified input environment. For future developments,
one should aim however at obtaining more sophisticated prognostics data as an input to the plan-
ning framework. Linking actual and more accurate prognostics information and the maintenance
availability of the respective aircraft one would be able to develop a more accurate model. This
would then also make the implementation at an airline easier.

22



References

[1] P. Sparaco, LCCs on route to dominate european point-to-point travel, Aviation Week and Space Technology
(New York) 173 (19) (2018) 46.

[2] X. Chen, S. Wang, B. Qiao, Q. Chen, Basic research on machinery fault diagnostics: Past, present, and future
trends, Frontiers of Mechanical Engineering 13 (2) (2018) 264291.

[3] H. R. P. I. Report, Approaching zero downtime: The center for intelligent maintenance systems (IMS)n, Harbor
Research Inc. (2003) 1–11.

[4] T. Grubic, L. Redding, T. Baines, D. Julien, The adoption and use of diagnostic and prognostic technology
within UK-based manufacturers, The Journal of Engineering Manufacture 225 (8) (2011) 1457–1470.

[5] X. Lei, P. Sandborn, Maintenance scheduling based on remaining useful life predictions for wind farms managed
using power purchase agreements, Renewable Energy 118 (Part B) (2018) 188–198.

[6] M. You, G. Meng, A predictive maintenance scheduling framework utilizing residual life prediction information,
Journal of Process Mechanical Engineering 227 (3) (2012) 185–197.

[7] B. Zhang, L. Xu, Y. Chen, A. Li, Remaining useful life based maintenance policy for deteriorating systems
subject to continuous degradation and shock, in: 51st CIRP Conference on Manufacturing Systems, 2018.

[8] F. Camci, Maintenance scheduling of geographically distributed assets with prognostics information, European
Journal of Operational Research 245 (2) (2015) 506–516.

[9] F. Camci, System maintenance scheduling with prognostics information using generic algorithm, IEEE Trans-
actions on Reliability 58 (3) (2009) 539–552.

[10] Z. Li, J. Guo, R. Zhou, Maintenance scheduling optimization based on reliability and prognostics information,
in: Annual Reliability and Maintainability Symposium (RAMS), 2016.

[11] S. Zhang, M. Du, J. Tong, Y.-F. Li, Multi-objective optimization of maintenance program in multi-unit nuclear
power plant sites, Reliability Engineering and System Safety 188 (1) (2019) 532–548.

[12] S. Lakshminarayanan, D. Kaur, Optimal maintenance scheduling of generator units using discrete integer cuckoo
search optimization algorithm, Swarm and Evolutionary Computation 42 (1) (2018) 89–98.

[13] H. Yamashina, S. Otani, Optimal preventive maintenance planning for multiple elevators, Journal of Quality in
Maintenance Engineering 7 (2) (2001) 128–150.

[14] G. Chaslot, J.Saito, B.Bouzy, J.Uiterwijk, H. V. D. Herik, Monte-Carlo strategies for computer go, in: BeNeLux
Conference on Artificial Intelligence, 2006, pp. 83–91.

[15] L. Kocsis, C. Szepesvari, Bandit based Monte-Carlo planning, in: European Conference of Machine Learning,
2006, pp. 282–293.

[16] M. FU, Alphago and Monte Carlo tree search: The simulation optimization perspective, in: Winter Simulation
Conference, 2016, pp. 659–669.

[17] S. Gelly, A contribution to reinforcement learning; Application to computer-Go, Univeristy Paris-Sud, Paris,
France, 2007.

[18] G. Chaslot, C. Fiter, J. Hoock, A. Rimmel, O. Teytoud, Adding expert knowledge and exploration in Monte-
Carlo tree search, in: Advanced Computing Games, 2010, pp. 1–13.

[19] Y. Osaki, K. Shibahara, Y. Tajima, Y. Kotani, An Othello evaluation function based on temporal difference
learning using probability of winning, in: Symposium on Computational Intelligence and Games, 2008, pp.
205–211.

[20] P. Hingston, M. Masek, Experiments with Monte Carlo Othello, in: Congress on Evolutionary Computation,
2007, pp. 4059–4064.

[21] A. Rimmel, F. Teytoud, T. Cazenave, Optimization of the nested0 Monte-Carlo algorithm on the traveling sales-
man problem with time windows, in: European Conference on the Applications of Evolutionary Computation,
2011, pp. 501–510.

[22] Z. Bnaya, A. Felner, S. Shimony, D. Fried, O. Maksin, Repeated-task Canadian traveler problem, in: Symposium
on Combinatorial Search, 2011, pp. 24–30.

[23] H. Liu, K. Austin, M. Forbes, M. Kearney, Monte-Carlo tree search in dragline operation planning, IEEE
robotics and automation letters 3 (1) (2018) 419–425.

[24] N. Zhao, Y. Guo, T. Xiang, M. Xia, Y. Shen, C. Mi, Container ship stowage based on Monte Carlo tree search,
Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research 83 (1) (2018) 540–547.

[25] H. Nakhost, M. Mller, Monte-Carlo exploration for deterministic planing, in: International Joint Conference of
Artificial Intelligence, 2009, pp. 1766–1771.

[26] D. Silver, G. Tesauro, Monte-Carlo planning in large POMDPs, in: Annual Conference on Neural Information
Processing Systems, 2010, pp. 1–9.

23



[27] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samoth-
rakis, S. Colton, A survey of Monte Carlo tree search methods, IEEE Transactions on computational intelligence
and AI in games 4 (1) (2012) 1–43.

[28] D. Altman, J. Bland, Statistics notes: Diagnostic tests 2: Predictive values, BMJ 309 (6947) (1994) 102.
doi:10.1136/bmj.309.6947.102.

[29] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine learning
47 (2) (2002) 235–256.

[30] T. Matteson, Airline experience with reliability-centered maintenance, Nuclear Engineering and Design 89 (2)
(1985) 385–390.

24



II
Literature Study (previously graded under

AE4020)

28























































III
Elaborations of Thesis Work

54




































































	I Scientific Paper
	II Literature Study (previously graded under AE4020)
	III Elaborations of Thesis Work

