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Introduction

1.1. Motivation and Relevance

Commercial airlines underwent large changes during the last couple of decades. A wave of aircraft
with growing passenger capacities and flight distances formed the airline network schedules around
the turn of the century. The main legacy carriers dominated the market with service-oriented strate-
gies. A crucial change in the industry, however, was the market growth of low-cost carriers (LCC)
[1]. Their strategy to offer flights at minimum costs forced legacy carriers to reduce their cost as
well to stay competitive. The first response of airlines and therefore also of researchers in that field
was to improve their networks, routes, general schedules, and flight operations. A lot of work within
that area has been done and incorporated into actual airline operations. It was and still is how-
ever difficult to indeed improve maintenance schedules for a long time. Which was mainly due to
the underdeveloped knowledge in the field of failure diagnostics and prognostics. The development
of sensors and computational algorithms to track, measure and detect degradation processes, how-
ever, allowed advancements in the field of prognostics and health management (PHM) [2]. Currently,
many studies are working on either developing prognostics or on developing maintenance planning
optimization. However, only a few research studies are performed in linking those two aspects into
one maintenance schedule.

1.2. Research Objective and Questions

The main objective of this research is to develop a component maintenance schedule for multiple
aircraft. It is furthermore important to include PHM information of that system and to implement a
real-life environment. To reach this objective, some smaller goals need to be reached.

e Select existing PHM classification algorithm to use as an input to a maintenance scheduling
approach

» Translate airline maintenance schedules into maintenance slots and other constraints

* Develop a model to schedule maintenance actions based on failure prediction and available

maintenance slots

Concluding from the above-mentioned research aim and objective and the state of the art concerning
applying prognostics to multi-unit component maintenance schedules, the following main research
question can be formulated.

How can component prognostics estimates be utilized in multi-aircraft maintenance scheduling to
minimize wasted lifetime while avoiding unscheduled maintenance?

To answers this overall question it is crucial to analyze a variety of aspects which are formulated in
the research sub-questions below.



1. How can component prognostics and maintenance slots be utilized in a maintenance sched-
ule?

(a) How can it be determined which prognostics should be used?
(b) How can classification prognostics be used in a scheduling approach?

(c) How can fixed and flexible maintenance slots be incorporated in the optimization?
2. How will the model of an optimal maintenance strategy be built up?

(a) Which approach should be chosen for the scheduling assignment?
(b) Which factors should be taken into account for scheduling aircraft?

(c) How can a maintenance scheduling assignment be formulated in a mathematical model?

1.3. Research Scope

The research develops a repair schedule for 20 Boeing 777 of a European airline. To do so the re-
search implements classification prognostics developed for the Bleed Air System of a wide-body fleet
of the same European Airline and the available maintenance slots of these 20 investigated aircraft.
This means that the study investigates multiple units of the chosen component. It is however out of
the scope to develop the prognostics and therefore these inputs are artificially generated. The opti-
mization is further constrained in a way that only existing maintenance opportunities are part of the
scope of the scheduling process instead of optimizing the opportunities themselves.

1.4. Structure of the Report

The report is structured as follows. At first, a scientific paper is presented in Part I to concisely elabo-
rate on the research done. The research done is supported by a literature study in Part II. It presents
the state of the art of prognostics in Chapter 2, airline maintenance scheduling in Chapter 3 and
maintenance planning optimization in Chapter 4. Finally, Part III further elaborates on the research
by explaining in more detail the prognostics used for the maintenance scheduling model in Chapter
5. After which the full model is presented in more detail in Chapter 6. Then in Chapter 7 additional
results to the ones presented in Part I are shown. The discussion of the full set of results and the
additional results can then be found in Chapter 8. Verification and Validation of the maintenance
scheduling algorithm can be found in Chapter 9. Finally, the conclusions and recommendations of
the research can be found in Chapter 10.
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Abstract

In recent years, airlines have increasingly developed the ability to monitor the condition of
aircraft components by means of sensors. In turn, aircraft maintenance aims to use this sensor data
to predict component failures. However, the challenge remains to make use of these prognostics to
generate appropriate maintenance schedules. In this paper, we develop a Monte-Carlo tree search
to schedule maintenance tasks based on component prognostics and available maintenance slots.
This approach is used to create a maintenance policy for multiple aircraft which specifies which
aircraft are allocated for maintenance and on which days. The results show that the scheduling of
the maintenance tasks is robust and able to accommodate the maintenance scheduling of smaller
airline fleet sizes. Overall, our results support the integration of aircraft component prognostics in
aircraft maintenance scheduling.

Keywords: Multi-Aircraft, Prognostics, Maintenance Scheduling, Monte-Carlo Tree Search

1. Introduction

The airline industry underwent large changes during the last decades and especially the market
growth of low-cost carriers (LCC) [1] forced legacy carriers to reduce costs of their operations and
therefore also of their maintenance activities.

An important development in the maintenance field is the development of failure prognostics.
The improvements of sensors and computational algorithms to track, measure and detect degrada-
tion processes allowed advancements in the field of prognostics and health management [2] in order
to predict failure. These advancements allow for new and improved maintenance schedules in the
industry. Condition-based maintenance (CBM) policies propose a framework to incorporate prog-
nostic advancements into maintenance scheduling to achieve higher system availability and cost
reduction. A US study of 2003 predicted a 35 billion dollar per year cost reduction in the US if
CBM would be fully utilized to minimize unexpected downtimes [3]. Unfortunately, a more recent
study found that companies actually observe a large difference between the potential of prognostics
and actually achieved benefits [4]. Apparently, more research is needed to find solutions which offer
a complete and easy to use application incorporating a variety of CBM aspects, which furthermore
are linked to real-life airline operations. The main challenge it to draw operational conclusions from
the newly gained prognostics information. Meaning that operators need to answer the question
"When to repair an aircraft when a remaining useful lifetime (RUL) is presented by a prognostics
tool?’.

Delft University of Technology July 23, 2019



In this paper, we address this challenge of scheduling a repair action based on known prognostics
information about a specific component. The approach is constrained by available maintenance
slots and opts to optimize not one unit but multiple aircraft of an airline fleet.

The remainder of this paper is structured as follows. In Section 2 we elaborate on the current
state of the art of research conducted in the field of maintenance scheduling having component
prognostics as input. We also review current research efforts using Monte-Carlo tree search (MCTS)
models. In Section 3 we present a Monte-Carlo tree search approach to schedule maintenance tasks
using component prognostics. We illustrate our results by means of a case study in Section 4. In
Section 5 we propose two additional case studies and present the results. In Section 6 we provide
a discussion of the results. Section 7 provides conclusions and recommendations.

2. Prior Work

In recent years, a variety of studies worked on topics related to the presented scheduling ap-
proach. At first we present the research done in the field of maintenance planning optimization,
followed by other applications of the chosen modeling approach (MCTS).

2.1. Maintenance Planning

A number of studies have been performed to include newly gained prognostics information in
a maintenance schedule, some within a contextual framework like wind farms, railways or aircraft
operations and others with a more research related focus.

One important difference consists of which type of prognostics are considered in the planning
approach. Most commonly models include Remaining Useful Lifetime (RUL) [5, 6, 7] or failure
probability prognostics as an input [8, 9]. All studies, however, assume that the RUL information
or failure probabilities are correct and therefore the accuracy of these values is not taken into
account.

The simplified implementation of prognostics information is furthermore often limited by apply-
ing thresholds and triggers of minimum RULs or minimum failure probability before the planning
algorithm is activated [6, 9, 7]. Another difference between different approaches is the objective
function applied to the problem. It varies from maximizing revenue [5] to minimizing (mainte-
nance) cost [8, 7], minimizing risk [6, 9] and minimizing unused maintenance slots [10]. Due to
the fact that many studies consider no or a very limited operational context one of their main
assumptions also is that immediate repair is possible at all times [8, 6, 7].

Other studies focus on finding solutions in a multi-unit planning framework to schedule multiple
systems simultaneously and considering their constraints on each other. Besides looking at cost
often other objectives are also considered. It is possible to minimize not just cost but also the
multi-unit unavailability [11], maximize productivity of all units [12] or to minimize labor, repair
and parts costs [13].

2.2. Monte-Carlo Tree Search Application

The Monte-Carlo tree search is a reinforcement-learning algorithm which first appeared in 2006
[14, 15] and enabled Google DeepMind to develop AlphaGo, an artificial intelligent Go-playing
algorithm, and to defeat the human world champion Go player [16]. This approach was chosen
since the Monte-Carlo tree search is able to present a solution without a pre-defined objective
function and without large amounts of data input. Which is especially useful in the situation at
hand with simplified prognostics input.



The most common applications of the MCTS are in the field of game theory and game solving
programes like AlphaGo. Applications can be found for the games Go [17, 18], Othello [19, 20] and
many others. But since the Monte-Carlo Tree Search does not require detailed information about
the context it is also highly suitable for non-game applications. The usability ranges from solving
traveling salesman problems (TSP) [21, 22] and a variety of scheduling problems [23, 24, 25, 26].

3. Model Description and Formulation

In this section, we propose a Monte-Carlo tree search to schedule maintenance tasks of multiple
aircraft based on component prognostics. We first introduce the generic concept of the Monte-
Carlo tree search. Further, we introduce the component prognostics and show how they are taken
into account into the maintenance scheduling tree search. Then, we define an appropriate search
tree to represent the aircraft maintenance scheduling. Lastly, we define the value function of the
Monte-Carlo tree search for the aircraft maintenance schedule and elaborate on the exploration
and exploitation of this Monte-Carlo tree search.

3.1. Generic Monte-Carlo tree search concept

The MCTS [14, 15] is a reinforcement learning approach which iteratively samples from a given
node down the tree. Each iteration consists of four steps: selection, expansion, simulation ,and
back propagation (see also Figure 1). Each iteration starts at the root moving down the tree
and selecting a not yet expanded node according to a selection criterion as the Upper Confidence
Bound (UCBI1) (selection phase). Then all possible child nodes are initialized below the selected
node (expansion phase) after which the algorithm simulates a possible path until a terminal state is
reached (simulation phase). The selected path and the simulated path are then evaluated according
to a value function and the evaluation and a counter of how often a node has been visited are
backpropagated to update the statistics of all nodes in the selected path (backpropagation phase).

/—> Selection —— Expansion — Simulation —> Backpropagation \
)

Tree Defattlr

Policy Pa{ivy
v
N A )

Figure 1: Steps of the general MCTS approach [27]

3.2. Component prognostics as input to the maintenance scheduling Monte-Carlo tree search

We define the aircraft maintenance scheduling as a Monte-Carlo tree search. One input of the
tree is the prognostic of the aircraft component failure P; ; for aircraft ¢ for a time horizon of Ly
days in the future, where P; ; € {0,1} is a classification prognostic that indicates:

{1, is the prediction at day j that aircraft ¢ is subject to component failure in the next Ly days,
i —

0, otherwise.

(1)



We also consider previous prognostics up to L, days in advance from the first day of the
scheduling horizon, where P; _; € {1,0},j € {1,2,...,L,}, with

_J 1, is the prediction at day —j that aircraft 7 is subject to component failure in next Lg days,
v 0, otherwise.

(2)
The P; _; prognostics are assumed to be known at the beginning of the scheduling horizon of
L, days. The P;; prognostics are unknown at the moment of decision making for maintenance
scheduling. These prognostics are used in the Monte-Carlo tree search to generate random scenarios
associated with the failure of a component in the next L, days. In a similar fashion, in a Go game
[16] these prognostics are seen as possible, future moves to reach a terminal state.
We consider that these classification prognostics have an accuracy specified in the form of a
prognostic negative predictive value (NPV) and a positive predictive value (PPV) [28], where:

TN

NPV = N T FN (3)
TP

Py —_ > 4

PPV = 55 7P (4)

where T'N is the number of true negatives associated with the prognostic, F'IN is the number of
false negatives associated with the prognostics, T'P is the number of true positives associated with
the prognostic and F'P is the number of true negatives associated with the prognostics.

Figure 2 illustrates the concept of component prognostics where L, = 10 and L; = 10 days
before and after the moment of decision making, respectively. For each of the past 10 days, we
consider known classification component prognostics P; _;, 1 < j < 10. Each of these prognostics
indicates whether this component will fail or not in the next 10 days with an accuracy of NPV
and PPV. For each of the next Ly = 10 days, we simulate prognostics for the component failure.
Similarly, each of these simulated prognostics indicates whether this component will fail or not in
the next Ly = 10 days with an accuracy of NPV and PPV. At the moment of decision making,
these prognostics are among the main inputs to decide whether the component is scheduled for
maintenance or not in the next Ly = 10 days.

Figure 2: Example of prognostics considering 10 days prior and 10 days after initialisation, where at initialisation a
decision about maintenance scheduling is made

P, o= Failure Prediction for day -2 until 8

>

P; 1= Fallure Prediction for day -1 until 9

pays (10| o] 8] 7|65 a[s]2[ 1)1 [2][3]a[s5]s[7]8]9]0]

P; 1= Failure Prediction for day 1 until 10

Moment of Decision Making
for Maintenance Scheduling

3.83. Monte-Carlo tree search for the aircraft maintenance scheduling
We represent the aircraft maintenance scheduling by means of a tree. We consider a fleet of 1
aircraft, |[I| > 1. We consider a time horizon of Ly days, Ly > 0, over which a prognostic is made

4



on the failure of a component for each aircraft. Based on these prognostics, we also consider a
scheduling horizon of L, days, when an aircraft can be subject to maintenance or not. We define
a search tree with L, layers, where each layer corresponds to a day in the scheduling horizon.
Further, each layer L;, 1 < j < Lg, has kj nodes, 1 < k; < nihild. Each pode k; has ncniia
maximum amount of child nodes. Thus, layer L; has a maximum amount of ”ihil 4 hodes.

For each layer L;, which is the 4t layer of the tree, we define the following information for all
aircraft ¢ € I and day j in the scheduling horizon 1 < j < Lg:

Lj . (ij, mgyj, ...,mm; Mj; Pl,j7 PQJ', ceey Pi,j)a (5)

where m; ; is the possibility for aircraft 7 to make use of an available maintenance slot in day j. We
consider two types of maintenance slots: aircraft tail-specific (SM) slot, generic (GM) slot. Thus,
m;; € {SM,GM,0}, where m; ; = SM means that aircraft ¢ has the possibility to be maintained
during a tail-number specific maintenance slot in day j, m; ; = GM means that aircraft ¢ has the
possibility to be maintained during a generic maintenance slot in day j and m;; = 0 means that
there is no slot available to maintain aircraft ¢ in day j. We also consider M;, M; > 0 to be the
maximum amount of aircraft that can simultaneously undergo maintenance on day j.

Each tree node nj;, which is the k" node in layer L;, is defined as follows, for all i € I,

- i J .
1<j<Lgand1<Ek; < Wopild:
Njky = (@1 ks> Q2,5 ks o Qi gk 3 S5,k 5 2,5,k 00 Sijiks ) (6)

where a; j; € {0,1} is the maintenance scheduling action taken for aircraft i at node n;y, (at day
J), with

{1, if aircraft ¢ scheduled for maintenance at node n; (maintenance at day j) ,
az7]7k] =

0, if aircraft 7 not scheduled for maintenance at node n;; (no maintenance at day j) .

(7)

Also, Sijk; € {0,1} defines the maintenance state of aircraft i at node n;,, where

_J 1, if at node nj;, aircraft ¢ has undergone maintenance between day 0 and day j
ks {0 if at node n;x;, aircraft i has not undergone maintenance between day 0 and day j
(8)
We also consider a root node ng which corresponds to the initialization of the tree search, and,
thus, does not have an associated action or aircraft state.
We define a feasible maintenance actions a; jx; based on the state S; ;1 ;_, of the previous
(parent) node nj-1k;_, and the maintenance opportunity m; ; at layer Lj, as follows

Oor1l ifS;j 1, =0 and m;; #0
Qi,j,k; (Si,jfl,kjfpmi,j) =<0 if Si,jfl,kj,l =1 (9)
0 lf mm- =0.

From eq. (9) an action to maintain the component of aircraft i, i.e., a;jk; = 1 at most one time
during the scheduling horizon of Ly days.



Also, for a given layer L;, 1 < j < Lg4, and a given node njy;, 1 < k; < nihild’ we also
ensure that the amount of aircraft that are scheduled for maintenance in day j does not exceed
the maximum number of simultaneous maintenance actions Mj, i.e.,

1
Zam’kj S Mj (10)
=1

Lastly, we update the state S;;; of aircraft ¢ at node n;y, depending on the state of the
previous visited node Tj—1k;_y and the action Q;jk; as follows:

Sigky (Sij—te;_1 Qi) = min{Sij_1k,_, + @ijk,> 1} (11)

Figure 3: Example setup of the first two layers of a tree with I=2, where X marks an infeasible node

Day 1

\
\
\
\

Day 2
Mgyt Ngo: Ng3 Mgyt Nag: Nag: N7 Nayg Nz Na10- Mg 11t No12° MNg 13 N3 14° Mg 150 Ny 16:
(L1131 (LoL1) (0L11) (0,0;1,1) 1111 (L0;L0) (0,1;1,1) (0,0;1,0) (L1311 (L0L1) (0101) (00,01) (L111) (L0;L0) (0,1,0,1) (0,0;0,0)

3.4. Monte-Carlo Tree Search Algorithm

In this section, we show how the maintenance scheduling Monte-Carlo tree search is explored
and exploited. In doing so, we make use of punishments, which we introduce at the beginning of
this section. In the second part of this section we then show how the four generic steps of the
Monte-Carlo tree search algorithm are implemented in our maintenance scheduling approach, this
includes that we show how simulation of the Monte-Carlo tree search is conducted.

3.4.1. Punishments in the Monte Carlo tree search

We define 5 punishments to decide whether to schedule an aircraft for maintenance or not.
These punishments are evaluated at the level of each node n;; of the selected path in the Monte
Carlo tree search. In order to compute the punishments, we define a set L of all nodes n;x, along
the selected path. The set, therefore, consists of L, elements.

L= {nl,k‘j ; n?,kj7 ) nLdJi‘j} (12)

The punishment values (), j;; are defined on each layer j, 1 < j < Lg, for each punishment n,
1 <n <5, for each aircraft 4, ¢ € I and for each node k; € L.



Average Lifetime Punishments

Equation (13) shows a punishment which sanctions a choice to repair aircraft i if the time
since last repair ¢, of that aircraft ¢ is lower than the mean time between repair t5. Therefore the
likelihood is reduced that an aircraft, which has been repaired a comparatively short time ago, is
scheduled for a repair.

1— % if t, <tgand S, =1
i—; if t, <tz and aijk; =1
0 if t, >t

0 if Si,j,kj =0 and aivjvk]’ =0

Chjil = (13)

If an aircraft ¢ with a time since last repair ¢, larger than the mean time between repair tz is
not scheduled it receives a punishment according to equation (14). Similarly to punishment C ;,,
it is, therefore, less likely to not schedule an aircraft if it has not been repaired for a comparatively
long time.

Lot £t > g and S0, = 0 and a5, =0
0 if t, <3

Coi it < ta (14)
0 if Sijr; =1
0

if ai’jJCj =1

Simulated prognostics punishment

An action a; j k., is punished according to equation (15), depending on whether or not it matches
the predictions P; ; simulated for that day. An aircraft is, therefore, less likely to be scheduled if
there are few failure predictions and more likely to be scheduled if there are many failure predictions.

(

NPV if Pij=0and a;j, =1
(1-NPV) if P; =0 and aijk; = 0and NPV >0.5
Co s = 0 if P j=0and a;;, =0and NPV <0.5 (15)
. (1-PPV) if Pj=1anda;;x, =1and PPV >0.5
0 if Pij=1and a;j,, =1and PPV <0.5
\PPV if P, =1 and a;jk; =0

Previous prognostics punishment

The predictions are made for the next ten days, meaning that a prediction is made on a specific
day whether or not the component will fail in the upcoming ten days. Equation (16) punishes a
sequence of ten days if the number of repairs in those ten days do not match the prediction made
for that 10 day period. Therefore it will be less likely that an aircraft is scheduled if the failure
predictions in the past were mostly negative and similarly it will be more likely to be scheduled if
many of the previous predictions were positive.



PPV if Pi,j,10 =1 and Si,j,kj = 0 and am,kj =0
(1 - PPV) if f)i,j,10 =1 and (Si,j,kj =1lor ai,j,kj = 1) and PPV > 0.5
0 if Pj_10=1and (S;jr = 1ora;jr = 1) and PPV <0.5
Cajit =4 v p . (16)
%4 if Pz',j_l() =0 and (Si,j,kj =1or am',kj =1
(1-NPV) if P;j_10=0 and Sijk; = 0and a;jx, = 0and NPV > 0.5
0 if f)i,j,10 =0 and Si,j,kj = 0 and g k; = 0 and NPV < 0.5

Ezpensive maintenance slot punishment

Not all maintenance slots are identical and therefore if a repair is scheduled during one of the
more expensive opportunities (m;; = GM) that action is punished according to equations (17).
Meaning that an aircraft is less likely to be scheduled during a general maintenance slot instead of
a specific maintenance slot.

ﬁ if ai7j7kj =1 and m; 5 = GM
057]'72‘7[ = 0 if ai7j7kj =0 (17)
0 if miyj =SM

3.4.2. Monte-Carlo Tree Search Steps

As shown in Figure 1 the Monte-Carlo tree search algorithm consists of four steps. In order
to apply them we define a rollout value Rj;, € R, an award value A;;. € R*, a UCB1 value
UCBly, € R, a counter zjk; of node njx, and a counter zg of the root. All node characteristics
are initialized equal to zero during initialization of node njy,. How we implement these node
characteristics in the MCTS steps can be seen below.

A. Selection

The Monte-Carlo tree search tries to balance its iterations between exploration and exploitation
to cover the nodes with the highest potential with the least computational effort. Meaning that it
selects nodes n;, with high award values A;x, and with few visits z;,. The Upper Confidence
Bounds (UCB1) algorithm can be used to select a node [29]. A trade off is made between exploita-

tion (Term: A;j) and exploration (Term: w, where xg is the counter of the root node). A
J

weighting constant ¢, is used to balance those éspects, where ¢, > 0 and from theory it has a
default value of ¢, = v/2 [29]. The UCBI value UCB 1j; is therefore defined for each node n;;,

with 1 < k; < nihild and 1 <j < Lg:

In(zo)
l‘j,kj

UCBljk, = Ajk; + cu (18)

The average award value of node nj k., with 1 < k; < nihild and 1 < j < Ly, can be calculated
by dividing the award value Ajy, by the amount of visits x5, of node njg;.

_ A
Ajp, = =2 (19)
M x]akj



B. Expansion

If the selected node njx, has been visited and simulated once before, x5, = 1, it needs to be
expanded. This means that all n.;;q possible child nodes are added into the tree below node Nk
We define all node statistics (action ajk,, state Sj ., award value A; ., rollout value R; ., UCB1
value UCB1;x; and counter :(:Mj) for the new child nodes during initialization.

In case the node n;y, has not been visited before, z;x, = 0, this step is skipped and the node
is directly rolled out in a random simulation as explained in the step C. Simulation.

C. Simulation

A simulation can start at a feasible node n;;, which has not been rolled out before (z;x;, = 0).
We define this starting layer of the simulation as j/, where 1 < j/ < Lg. When a such a node is
found it can be rolled out in a random simulation which means that for each layer ;' < j < Ly,
and for each aircraft ¢, ¢ € I, a random simulated action a; jx; is compared with the prediction P; ;
made for that layer. The comparison is determined and documented in the punishments C, ;;,
which will then be used in the rollout value R;x, and award value Aj,k?j‘

Each node n;x, is evaluated based on rewards shown during random rollout simulations. Dur-
ing these simulations, a random combination of actions and punishments are simulated. These
simulated actions a;jx,; are not a node property but an action which is randomly chosen in the
simulation process for each layer j, 7' < j < L4 and for each aircraft i, i € I.

aijk; € {0,1} (20)

(21)

1 if the random rollout chooses to repair AC ¢ on day j during simulation
Qi jk; = . . . . . . .
b 0 if the random rollout chooses not to repair AC i on day j during simulation

Which simulated action a; jx; is chosen in the simulation for aircraft ¢ on layer j is constrained
by same aspects as defined in equations (9) and (10).

Each node nj; is furthermore equipped with an award value A;x, and a random rollout value
Rj ;. The random rollout value is computed using a random simulation of the next Lq — j days
and it is restricted by a maximum possible rollout value R,,. The award value A;x; of node n;x;
is equal to the rollout value Rjykj of node j k; and the sum of the award values of the child nodes
of node n;x; as can be seen in equation (22).

0 if zjp, =0
Ajr, = Ry, if @, = 1 (22)
Rk, + Zﬁzﬁtiid-(kﬂ)ﬂ Ajtiu i wjp > 1
Rp=N-(Lg—1)-1 (23)
0 ifzjp, =0
Rjp; = Rm—zgzlz;:ij S s 2, >0 (24)



The random rollout value can be computed using a maximum possible rollout value R, sub-
tracted by the sum of all punishments n, 1 < n < N, on node njj;, with 1 < k; < nepjqg and
1 < j < Lg, per aircraft i, ¢ € I.

The maximum possible random rollout value R, is dependent on the number of punishments
N, amount of days into the past Ly and the amount of aircraft I.

Therefore a rollout value R;x, close to Ry, shows a node with positive potential and few pun-
ishments in the random simulation.

D. Backpropagation

Once a rollout value Rjk; is found for the leaf node T k; the award value Aj’kj and the counter
zjk; of that node are updated. We then update the award values and counters along the path up
until node n;x, accordingly.

4. Results

In this section, we describe the results of the Monte-Carlo tree search algorithm as maintenance
scheduling model. We first present the implemented input data of the time since last repair,
available maintenance slots and classification component prognostics and how these are obtained.
After which we show and elaborate on the numerical results of the main model.

4.1. Data used in case study

We consider a fleet of 20 Boeing 777 aircraft of a European airline, where we consider their time
since last repair, available maintenance slots and classification prognostics. In order to compare
the results a standard input data set is used.

Time Since Last Repair

The time since last repair, t,., of aircraft 4, is randomly sampled based on the mean time between
repairs, tg, of the component analyzed in the used component prognostics (see equation (25)). The
data of all 20 aircraft are shown in Table 2 directly linked to the results of the maintenance
scheduling of 20 aircraft.

tr ~ U(0,2t5) (25)

Awailable maintenance slots

The information about available maintenance slots m; ; is based on planned maintenance slots
per aircraft and generally available maintenance slots for a specific type provided by the European
airline used for this case study. A maintenance slot somewhere on a specific day is considered an
opportunity for that day without evaluating whether the planned maintenance leaves enough time
for another maintenance action.

The maintenance slots considered in this case study can be seen in Table 2 directly linked to
the results of the maintenance scheduling model.

We, furthermore, consider a maximum amount of simultaneous repairs M, of one aircraft per
day for all days j.
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Prognostics for component failure

The component prognostics P; ; in real life would only be known from the previous days and not
of the upcoming days. As part of the Monte-Carlo tree search random simulation, those are however
required in a form of a potential possible situation. The previous predictions are generated upon
initialization by a random generator based on failure probabilities related to the time since last
repair t, of aircraft i. Whereas the component prognostics of Ly days in the future are randomly
generated during each simulation iteration. The classification prognostics used as an input in this
case study does not provide any failure probability information and therefore an approximation
needs to be found if one wishes to include a certain increase in failure probabilities. Since 94% of all
components show a constant hazard function [30] a failure distribution which leads to a constant
hazard function is most likely to be correct. The exponential distribution is the only continuous
distribution with a constant hazard function and therefore an exponential function is assumed for
future steps. The rate parameter A describes the average failure rate. The component (bleed air
system) analyzed in the component prognostics used as an input in this case study, on average fails
once in 354 days. This mean time between repairs will furthermore also be used in the simulation
in the form of tz = 354. The failure function can then be calculated as shown in equation (26).

Flty) =1 eap(~2 1) (26)

Knowing the time since last repair it is, therefore, possible to approximate the failure probability
at a specific day. Which we then use as a bias when randomly creating the component prognostics
based on the failure probability F'(¢,) (see equation (27)).

1, with probability 1 — exp(—ﬁ “ty)
id = (27)

0 , otherwise

The result of this biased generation of the days prior to initialization is presented in Table 1.
Whereas the predictions used for days in the future are created following the same rules during
each simulation.

Table 1: Classification Prognostics Input

Day
AC -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1 0 0 0 0 0 1 1 0 1 0
2 0 1 0 1 1 0 0 0 0 1
3 0 1 0 1 0 0 0 0 0 0
4 1 1 1 1 0 1 1 1 1 1
5 1 0 1 1 1 0 1 1 1 0
6 1 0 0 1 0 0 0 1 0 1
7 0 1 1 0 1 1 1 1 0 1
8 0 1 0 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 0 1 1
10 1 1 0 1 1 1 1 1 1 1
11 1 1 1 0 0 1 1 0 1 0
12 0 0 0 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0 1 0
14 1 1 0 1 1 1 0 0 1 0
15 0 1 1 0 1 0 1 1 1 0
16 1 1 1 1 1 1 0 1 0 1
17 1 1 1 0 1 0 1 1 1 1
18 0 0 0 0 0 0 1 1 0 1
19 0 1 1 0 0 0 1 0 1 1
20 0 0 0 0 1 0 0 1 0 0

In this paper, we consider classification component prognostics developed for the bleed air
system of the fleet of a European airline, where we assume the following NPV and PPV values:
NPV = 0.86 and PPV = 0.31. Meaning that only 31% of the yes predictions correctly predict
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a failure in the upcoming L, days and that 86% of the no predictions correctly predict that no
failure occurs in the next Ly days. We considered these NPV and PPV values in Section 3.4 when
presenting the punishment structure of the award values.

4.2. Numerical Results: Maintenance Scheduling of aircraft fleet

The proposed application of our Monte-Carlo tree search algorithm for maintenance scheduling
is evaluated in form of its main model description. The main model is used to schedule 20 aircraft
and the results are then analyzed with respect to their correctness, robustness, computational time
and sensitivity to varying input.

Scheduling 20 Aircraft

Table 2 presents the scheduled repair actions of a fleet of 20 aircraft. The table also shows the
time since last repair ¢, of each aircraft and the maintenance opportunities m; ; (at which day and
what type of opportunity), where SM are specific maintenance slots available for that aircraft and
GM are general maintenance slots available for all aircraft of that type.

Table 2: Scheduled Repair Actions 20 Aircraft

AC1 T AC 2 T AC3 T AC 4 I ACS. T ACG I ACT T ACS I ACO T AC 10
tr=178 tr=245 1 r=233 y  tr=657 H 1 r=536 y  tr=205 H tr=430 t r=543 H tr=600 tr=639
my Repoﬁr?l my Repair? | Rrepair?} -4 Repair? I MY Apepoirrd ™Y Repair? I MU Npepgiezl M1 Repair? I Ml pepairzl MU Repair?
Day Type| Day Type Day Type| Day Type Day Type| Day Type Day Type| Day Type| Day Type| Day Type
v Ty 1 Vi | P I | P I v | P I Day Ty | D 1Day Ty,
1osm - : B : : 1 osMm - II g M : II 7 GM v : : 1osM v : g sM
4 SM 1 | 14 M v 1 | & M 1 |4 oM -
7 05M v ] 1 ] 5 GM I I I I | 7 sm 1
g8 GM | 1 17 sm | I | I | I
. . v : : : . :
AC 11 1 AC 12 | AC 13 H AC 14 H AC 15 H AC 16 H AC 17 H AC 18 \ AC 19 H AC 20
tr=422 | t_r=49 | tr=15 | tr=6l6 | tr=294 | tr=4863 | tr=555 |  tr=176 |  tr=333 | t_r=163
n_ij | i 1 i 1 n_ij 1 i I m_jj 1 i | 1 i
m-l Repoﬁr.ﬁ m-4 Repcl‘rﬁ ml Repair ?| m—, Repair?| - Repai ?| m_g Hepa.'.rP| ml Repair?) rn_} Repm‘r?| mi Recc.\'(.’| m-y Repair?
ay Type ay y Type ay Type ay Type ay Type ay Type ay Type ay Type Da pe’
Day Ty } =D =“ T} ) =D I‘ Typ i =D 17 =D Typ } =Dy 1L ) =D Typ } =‘yTy.
1 sMm 1 Loem - pE osmov g | 8 SM 15 M v 3 M v 1 5M Y Y
4 SM 1 4 sm - 19 6™ - ] I 18 sm - 15 sMm - 13 GM - | 4 GM - |10 SM
7 sM 17 sm 1 I 1 I 13 sm Tw v - lio em 1

It can be seen that 7 of the 20 aircraft are scheduled to be repaired from which 5 have larger
time since last repair values that the mean time between repairs and the other 2 have enough
positive failure predictions that they are reasonable to be scheduled for repair. When looking at
the aircraft which are not scheduled, one can see that 5 of the 12 aircraft are not scheduled even
though their time since last repair is higher than the mean time between repairs. 2 of these (AC 8
and AC 14) do not have any available maintenance slots in the scheduling horizon. Furthermore,
the time since last repair of AC 19 is only slightly above the mean time between repairs and
therefore it is not striking if it is not scheduled for maintenance within the scheduling horizon of
10 days. On the contrary, AC 5 and AC 10 do have time since last repairs clearly higher than the
average time between repairs, therefore, those need further analysis why they are not scheduled for
maintenance. Table 2 shows that both aircraft have a specific maintenance slot on day 8 and that
the aircraft scheduled for maintenance on day 8 (AC 13) has a time since last repair lower than AC
5 and AC 10. The analysis shows that in the final iteration, where the final maintenance schedule
is determined the selection formula in equation (18) selects AC 13 because of the fewer amount of
visits to the node even though the average awards of selecting AC 5 or AC 10 were higher.

In order to further evaluate whether the most appropriate aircraft are chosen to be maintained,
the time since last repair information is analyzed. Table 3 splits the 20 aircraft into four ¢,. categories
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related to tz. The same is done for the scheduled aircraft. It can be seen that even though there
is a large amount of aircraft with comparatively low ¢, only few of them are scheduled, whereas
clearly more of the aircraft with high ¢, are actually scheduled for repair.

Table 3: Amount of AC in Optimization and amount of AC scheduled

tr < 0.5ta 0~5ta <tr <ty te < tr < 1~5ta, 1~5ta <t. < Qta Total
Amount of AC 4 5 . - ”
in Optimization
Amount of AC
Scheduled 1 1 2 3 7
Percentage
of AC Scheduled | 22 % 20 % 50 % 35 % 10 %

Analysis of the robustness of the maintenance scheduling results

In this section, we analyze the results of the maintenance scheduling model presented before.
An important factor in the evaluation of the model is the robustness of the model. Meaning that
during multiple runs with identical situations of aircraft characteristics (same ¢, m; j, PM) the
model should schedule the same or similar aircraft for repair. Table 4 shows the result of 20
runs with identical aircraft characteristics input. It can be seen that during half of the runs the
same aircraft are consistently scheduled. Only on 5 of the runs, an additional aircraft (AC 19)
is scheduled which is not done during the other 5 runs. The main reason for this is a time since
last repair slightly above the mean time between repairs. The difference between the punishments
of scheduling or not scheduling for maintenance are therefore close to each other which makes it
difficult for the maintenance scheduling model to be consistent during random rollout simulations.
There is furthermore a small difference for 2 of the aircraft (AC 4 and AC 9) on which days
maintenance is scheduled, they do however switch their days, thus in total, the same days are
chosen for repair actions.

Table 4: Heatmatrix Scheduled Repair Actions 20 Aircraft, 10 run
AC1__AC2 AC3 AC4 AC5 AC6 AC7 AC8 ACH
0 P 0 0 0

AC 10

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Day 8
Day 9
Day 10
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As can be seen in Figure 6 those promising robustness values can be found also for smaller
sets of aircraft in the scheduling algorithm. In Figure 6 we define robustness as presented in
equations (28) and (29), with an example calculation for the robustness of scheduling 20 aircraft.
A robustness (choosing AC) of 100 % means that during all runs the same aircraft are scheduled.
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And a robustness (choosing days) of for example 90 % means that on average 90 % of the scheduled
aircraft are always scheduled on the same days during all runs.

Robustness (choosing Days) — # AC remain scheduled on the same day for all runs (28)
usth g Lays) = # AC scheduled for maintenance during all runs

) # AC remain scheduled for all runs
Robust h AC) = 29
obustness (choosing ) # AC scheduled for maintenance during all runs (29)

As an example for the 20 aircraft presented in Table 4 and Figure 4, Robustness (choosing days)

= 10+6+10464 1041041045 — 89% and Robustness (choosing AC) = 10H10H10+10L10+1041045 — 939

It is striking that the robustness increases again for increasing fleet sizes. Comparing this to
Table 5 shows that the same aircraft show less robust results when choosing days (AC 4 and AC
9) and therefore the increasing robustness can be explained by the fact that in a larger fleet size
more aircraft are scheduled robustly. This means that robustness is not just linked to fleet size
and the model but to individual aircraft characteristics.

Figure 4: Robustness of the model using different fleet sizes
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Table 5: Scheduled Repair Actions for different fleet sizes with 10 runs
AC1 AC2 AC3 Aca ACS ACG ACT ACS ACO AC10
Fleet size 5 10 15 20 5 10 15 20 5 10 15 20] 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20| 5 10 15 20
Day 1 0 0 a 0| 1] 1] 0 0 0 0 0 o100 9 4 4 0 0 a 0| o 0 0 0 0 0 0 1] 0 1 [ B 0o 0 0
Day 2 o0 0o o oo oo oo ooo oo oo o 0o g 0o 0 0 10 10 10 00 0 0 0 o 0o 0 o
Day 3 0 0 a 1] 1]} 1] 0 0 0 ] 0 1] 0 v} 0 0 0 0] a 0| o 0 0 0 0 0 0 1] 0 0] a 0| o 0 0
paya |10 0 o ol o o o ofo o o oo 16 6 0 0 0 0 0o 0 0 0 0 0 000 0 9 4 4 0o 0 o
Day 5 0 0 aQ 0| 0 0 0 o0 0 0 0 0 0 0 0 o o 4] aQ 0| o 0 0 0 0 0 0 0 0 4] aQ 0| 0o 0 0
Day 6 o0 0o o oo oo oo ooo oo oo o o0 g 0o 0 0 0 0 0 00 0 0 0 o 0o 0 o
Day 7 0 10 10 10 1] ] 0 0 0 0 0 1] 0 0 0 0 0 0 a 0| o 0 D0 0 0 0 0 ] 0 0 a 0| 0o 0 0
Day 8 0 0 a 1] 0 0 0 0 0 0 0 0 0 0 0 o o 0 a 0| o 0 0 0 0 0 0 0 0 0 a 0| 0o 0 0
Day 9 0 0 aQ 0| 0 0 0 o0 0 0 0 0 0 0 0 o o 4] aQ 0| o 0 0 0 0 0 0 0 0 4] aQ 0| 0o 0 0
Day 10 0 0 ] 0| o0 0 0 0 0 0 0 0 0 0 0 o o 0 ] 0| o 0 0 0 0 0 0 0 0 0 ] 0| [V ] 0
ACIL AC12 ACL3 ACld ACLS AC16 ACLT AC18 AC1O AC 20

Fleet size 5 10 15 20 5 10 15 20 5 10 15 20] 5 10 15 20| 5 10 15 20| 5 10 15 20 5 10 15 20] 5 10 15 20 5 10 15 20| 5 10 15 20
Day 1 a 1] o 0 0 0 0 0 a 0| 0 0 0

Day 2 Q ] o 0 0 0 0 0 Q ) 0 0 0 ] 0
Day 3 a 1] 0 0 0 1] 0 0 a 0| 0 10| 0 0| 0
Day 4 0 0 00 0 o 0 0 0 0 0 0 0 0 0
Day 5 a 0| 0 0 0 0 0 0 a 0| 10 0 0 0| 0
Day 6 0 0 00 0 o0 0 0 0 0 0 0 0 0 0
Day 7 a 1] 0 0 0 1] 0 0 a 0| 0 0 0 0| 0
Day 8 0 0 00 10 10 0 o 0 0 0 0 0 0 0
Day 9 aQ 0| a o 0 0 0 0 aQ 0| 0 0 0 0| 0
Day 10 Q ] o 0 0 0 0 0 Q ) 0 0 0 5 0

Instead of simulating random prognostics during the rollout it is also interesting to analyze the
robustness of the maintenance scheduling model in case it receives a fixed set of prognostics also
for future days. Which would be the situation if one would have more accurate prognostics such
that a prediction about the prognostics can be made. As can be seen in Figure 5 the robustness is
even better if one applies the same set of prognostics during all simulation iterations. During all
runs identical aircraft are scheduled for maintenance on identical days of the scheduling horizon.

Figure 5: Robustness of the model using different fleet sizes, with fixed prognostics during simulation
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Analysis of computational time of the maintenance scheduling model

20

Airlines operate many aircraft in their fleet and therefore it is interesting how well the model is
able to schedule different amount of aircraft. As can be seen in Figure 6, the computational time
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highly increases with an increase of aircraft in the Monte-Carlo tree search. Up until approximately
12 aircraft the model is able to schedule the aircraft within 10 seconds or less. In order to schedule
20 aircraft, it requires however almost 5 hours, which is even exceeded by a computational runtime
of 3.5 days when scheduling 25 aircraft. These runtimes were observed on a dual core 3.1 GHz
Intel Xeon Platinum 8175 with 16 GB memory capacity and on a MATLAB 2018b version.

Figure 6: Computational Times of Different Amount of AC in the MCTS [s]
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4.83. Sensitivity analysis of variable aircraft characteristics input

Table 3 previously showed the amount of aircraft scheduled categorized into time since last
repair categories. The shown statistics are based on one run of the maintenance scheduling algo-
rithm for the 20 AC aircraft characteristics input. Table 4 furthermore showed that multiple runs
of that Monte-Carlo tree search algorithm using the same aircraft characteristics input schedule
identical aircraft for maintenance. It is however also interesting to see whether that general trend is
observable with different kind of aircraft characteristics input. Table 6 therefore shows the results
of categorizations for multiple runs of scheduling 20 aircraft, each with a different set of input data.
It can be seen that with random aircraft characteristics input the trend of scheduling more aircraft
of the categories with ¢, > t5 is even more visible than before.

Table 6: Amount of AC in Optimization and amount of AC scheduled (200 AC during 10 runs with random input)

tr < 0.5tq 0.5t <tr <ty to<tr<1lbt, 1.5ty <t, <2t, | Total
Amount of AC 45 50 54 51 200
in Optimization
Amount of AC
Scheduled 12 21 35 38 106
Percentage
of AC Scheduled 27 % 42 % 65 % 75 % 53 %

5. Additional Model Case Studies

The main model presented good and robust results when scheduling aircraft using classification
prognostics and available maintenance slots. It is furthermore also interesting to see how the

16



model behaves if probability prognostics are used instead of classification prognostics and how the
model behaves if simulated prognostics of future days are not taken into account. This section
presents both case studies by firstly presenting the changes to our maintenance scheduling model
and secondly elaborating on the results and added benefits.

5.1. Failure distribution input

Changes to the model - Failure distribution input

Classification prognostics, as applied as an input to the main model of the Monte-Carlo tree
search maintenance scheduling algorithm, are not the only available types of prognostics in the
maintenance sector. This case study, therefore, focuses on implementing a failure distribution
instead of classification prognostics. Meaning that at a given day a probability of failure is approx-
imated. This probability can then be used in the punishment structure presented above instead of
the accuracy values of NPV and PPV.

Failure probabilities can be calculated based on the failure function as can be seen in equation
(30).

1
Pj=F(z)=1- exp(—ﬂ “ty) (30)

The new version of the simulated predictions punishment uses the same concept as before.
It punishes a simulated action if it does not match the simulated prediction made for that day.
A probability > 0.5 is considered a prediction to fail and a probability < 0.5 is considered as
a prediction that the component will not fail. The new version of the second punishment value
Cy ;i is defined on each layer j, 1 < j < Ly and for each aircraft i, 7 € I.

(1 - Pl,j) if B,j < 0.5 and am"kj =1

0 if P;; <0.5and a; ;. =0

Ciy i1 = P e (31)
P ; it P; >0.5and a;j,.; =0
0 if Pij >0.5and a; 5 =1

The new version of the previous predictions punishment is able to include not just classification
prognostics but also probability prognostics such that the punishment is stronger if the failure
prediction is higher. The concept, however, is similar to the previous setup. If a failure prediction
with a specific probability is made for the next 10 days and no repair is scheduled within those 10
days, a punishment equal to the probability is added at day 10. The new version of punishment
Cly jiy is defined on each layer j, 1 < j < L4 depending on the actions a; jx; of the previous 10
days j — 10, ...., 7, and for each aircraft ¢, i € I.

f)’i,jflo if Si,j,kj =0 and ai,j,k:j = 0 and Pi,jfl() > 0.5
1—-PFP; if (S;6, =1 ik, = 1 dPi_19<0.5
Cyjil = 810 1 Sk O @ik, ) and P; j_10 (32)
0 if (Si,j,k:j =1lora i = 1) and P; ;190 > 0.5
0 if Si,j,kj = 0 and i jk; = 0 and Pi,j—lO < 0.5

Numerical Results: Maintenance scheduling using component failure distribution
Failure probabilities add additional information to the model compared to classification prog-
nostics. Which can also be seen in the results of the model extension with failure probability
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distribution as prognostics input. The same time since last repair and available maintenance slots
input are used as before. Using equation (30) results in the following failure probability input for
the days prior to initialization. As before in the main maintenance scheduling model, the failure
probabilities for the future days are computed randomly in the simulations.

Table 7: Probability Prognostics Input

Day
AC -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1 0,378 0,380 0,381 0,383 0,385 0,387 0,388 0,390 0,392 0,393
2 0,485 0,487 0,488 0,489 0,491 0,492 0,494 0,495 0,497 0,498
3 0,467 0,469 0,470 0,472 0,473 0,475 0,476 0,478 0,479 0,481
4 0,839 0,840 0,840 0,841 0,841 0,841 0,842 0,842 0,843 0,843
5 0,774 0,774 0,775 0,776 0,776 0,777 0,777 0,778 0,779 0,779
6 0,424 0,425 0,427 0,428 0,430 0,432 0,433 0,435 0,436 0,438
7 0,695 0,696 0,696 0,697 0,698 0,699 0,700 0,701 0,702 0,702
8 0,778 0,779 0,779 0,780 0,781 0,781 0,782 0,782 0,783 0,784
9 0,811 0,812 0,812 0,813 0,813 0,814 0,814 0,815 0,815 0,816
10 0,831 0,831 0,832 0,832 0,833 0,833 0,834 0,834 0,835 0,835
11 0,688 0,689 0,689 0,690 0,691 0,692 0,693 0,694 0,695 0,696
12 0,104 0,107 0,109 0,112 0,114 0,117 0,119 0,122 0,124 0,127
13 0,336 0,338 0,340 0,342 0,344 0,345 0,347 0,349 0,351 0,353
14 0,819 0,820 0,820 0,821 0,821 0,822 0,823 0,823 0,824 0,824
15 0,552 0,553 0,554 0,555 0,557 0,558 0,559 0,560 0,562 0,563
16 0,727 0,727 0,728 0,729 0,730 0,730 0,731 0,732 0,733 0,733
17 0,786 0,786 0,787 0,787 0,788 0,789 0,789 0,790 0,790 0,791
18 0,374 0,376 0,378 0,380 0,381 0,383 0,385 0,387 0,388 0,390
19 0,661 0,662 0,663 0,664 0,665 0,666 0,667 0,668 0,669 0,670
20 0,351 0,353 0,355 0,356 0,358 0,360 0,362 0,364 0,365 0,367

Table 8 shows that 7 of the 8 aircraft scheduled in the original model are still scheduled for
a repair action when applying a failure probability distribution as input instead of classification
prognostics. Those aircraft are furthermore also scheduled on the same days as before. Special
focus can, however, be put to the fact that again AC 19, with ¢, > tz, is scheduled. This is again
the same aircraft which already presented striking results during the robustness and sensitivity
analysis in Table 5 and Table 10. This nicely shows that the main model with random rollout
simulations is slightly unsure about scheduling AC 19 for maintenance but changes to the model
(e.g. neglecting random prognostics simulations or adding probability distributions as prognostics)
increase the certainty of the maintenance scheduling algorithm.

Table 8: Scheduled Repair Actions 20 Aircraft (main model and probability prognostics model extension)
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5.2. 1 day future prognostics

Changes to the model - 1 day prognostics

As explained before we considered randomly simulated classification component prognostics
during the simulation stage of the Monte-Carlo tree search due to the fact that the prognostics
are not known to us and even with randomly selected prognostics input the main model is able
to robustly schedule aircraft, only their robustness related to on which days the maintenance is
scheduled is lower for increasing sets of aircraft. It is interesting to analyze the effect of not
considering simulated prognostics. The same 20 aircraft as discussed before are scheduled for
maintenance neglecting simulated prognostics for future days. Which means that the simulated
prognostics punishment Cs ;;; is not taken into account. The component classifications prognostics
of day 1 which would be known at the moment of decision making are however taken into account
and set fixed as presented in Table 9, which can be seen as an extension to Table 1.

Table 9: Classification Prognostics Input of Day 1

Day 1
AC

1 1
2 0
3 0
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 0
13 0
14 1
15 0
16 1
17 0
18 1
19 1
20 0

Numerical Results: Without simulated prognostics of future days

Table 10 shows that the results are highly similar to the results of the main model presented
in Table 2. The only difference is that the main model scheduled AC 19 only during some of the
runs, whereas it is scheduled for maintenance when not considering simulated predictions. This
shows that in the current setup of the maintenance scheduling model the simulated prognostics do
not have a large effect on the results.
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Table 10: Scheduled Repair Actions 20 Aircraft (main model and model without simulated prognostics)
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The runtime analysis of the changed model resulted in almost identical results as before shown
in Figure 6 for the main model.

6. Discussion

The Monte-Carlo tree search algorithm as an application in airline maintenance scheduling
showed interesting results as presented above. In this section, we first discuss the results of the
main maintenance scheduling model after which we discuss the results of the model extension using
probability prognostics instead of classification prognostics.

6.1. Main maintenance scheduling model

The main objective of the model is to schedule multiple aircraft simultaneously for a pre-defined
amount of days into the future. This needs to be done using classification prognostics and available
maintenance slots into account. As shown in Table 2 this is indeed the results of the proposed
model and as can be seen in Table 3 it is also done is a comparatively accurate manner. Most of
the aircraft scheduled do have a time since last repair above the mean time between repairs. There
are however also some aircraft which have a shorter time since last repair but are scheduled either
way and others with a high time since last repair which are not scheduled.

Especially the impact of the prognostics is difficult to assess since the algorithm bases its
choice on comparing many different branches and combinations in order to make a selection. This,
unfortunately, makes it difficult to directly understand the choice of the model. It is, however,
possible to find reasons for all aircraft why they are scheduled or why not.

A positive result of the main model is also the high robustness of the main maintenance schedul-
ing model. Presenting the model with the same input always leads to a similar result. Meaning
that the almost identical aircraft are scheduled and only sometimes deviates on which days this
aircraft is scheduled. This constant good performance allows the assumption that the model is also
able to robustly schedule larger amount of aircraft.

This is however hindered by the steeply increasing computational runtimes for larger amount of
aircraft. The reason for this is the large increase of possible child nodes and therefore the possible
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options to evaluate. Up until around 20 AC of the same type the runtime is, however, feasible for
an operational context. When looking at the fleet of different airlines one can see that many airlines
operate less than 20 aircraft of the same type which means that this model would be feasible for
a number of those cases.

Table 11: Fleet sizes of different European Airlines

Airline AC Type A319 A320 A321 A330 A340 A350 A380 B737 B747 B77T7 B787
KLM 13 51 13 29 13
Lufthansa 27 94 65 16 32 14 14 32

TAP 21 25 12 23 4

The results of the main model also showed that the current implementations largely focus not
just on the prognostics input but also highly on the time since last repair of the aircraft. This
choice was deliberately made due to the low accuracy and availability of actual prognostics data.
Table 10 showed that the scheduling results are almost identical without simulating predictions for
upcoming days.

6.2. Additional Case Studies

As presented in Section 4 also the results of using failure distribution probabilities instead of
classification prognostics in the maintenance scheduling model show promising potential. According
to the time since last repairs of the scheduled aircraft the new approach is able to schedule 20
aircraft even more appropriately than before.

The practicality of the model is, however, an issue. The failure distribution probabilities are
created based on an assumed failure function since they were not available for the component
analyzed in the main model. We, however, assumed them to be correct without taking additional
accuracy of those failure predictions into account.

The analysis neglecting simulated prognostics and only including previous prognostics and the
ones from the first day showed that this version presents almost identical results and therefore
making it as useful as the main model.

7. Conclusions and Recommendations

As stated before, our Monte-Carlo tree search maintenance scheduling algorithm is able to ro-
bustly schedule multiple aircraft based on their failure prognostics. The main issue of the current
model and its’ extension is, however, the run time. As stated in the literature review, many other
scheduling models only start the planning process once an aircraft is triggered due to high time
since last repair or low remaining useful life. The deliberate choice of considering all aircraft and
letting the model compute which ones to repair ensures that all possible options are considered
but is also the main reason for the high computational run times. The main recommendation is
therefore to work on reducing the computational time for larger sets of aircraft. One might look
into implementing some form of a trigger to remove aircraft not fulfilling any of the criteria re-
quired in order to be scheduled or otherwise increase searching efficiency. But it is also interesting
to evaluate different selection procedures in the MCTS steps or to improve the current UCB1 pro-
cedure. The current implementation uses the default value of v/2 as a factor between exploitation
and exploration but other tuned factors might improve search efficiency while delivering similar
maintenance schedules.
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The extension offers an interesting solution for further developments. Probability prognostics
create a more complete set of information about the health status of a component which makes it
more useful for further implementations. It is however required to further improve the model in
order to include the accuracy of the failure predictions which is not implemented in the maintenance
scheduling model.

The case study when neglecting simulated prognostics showed good and almost identical results
as the main model. It is therefore possible to use this change as the basis for future model
improvements.

One possibility provided by the chosen Monte-Carlo tree search approach is the concept of
a moving horizon. This is currently not yet implemented but would be interesting to analyze
since it results in a more realistic solution. The current model once schedules all 20 aircraft for
the upcoming ten days but a moving horizon scheduling approach would be able to make use of
additional knowledge of days once they have passed. By scheduling each day for the upcoming ten
days while implementing the new data of the last day would improve the usability and accuracy
of the model further. Applying a moving horizon decision making process is also expected to solve
some concerns of the robustness and not scheduling aircraft with high time since last repairs, since
the algorithm only needs to be certain for the first day of the scheduling horizon.

Another aspect which should be analyzed if one wishes to improve real-life airline operations
applicability is the fact that the current maintenance scheduling model assumes each maintenance
slot be a full day and that is is always available to schedule an additional maintenance action,
which is clearly a strong assumption.

A Monte-Carlo tree search approach was chosen due to the simplified prognostics input available
and it proved to a suitable method for a simplified input environment. For future developments,
one should aim however at obtaining more sophisticated prognostics data as an input to the plan-
ning framework. Linking actual and more accurate prognostics information and the maintenance
availability of the respective aircraft one would be able to develop a more accurate model. This
would then also make the implementation at an airline easier.
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Prognostics

Prognostics and health management (PHM) is an engineering profession which aims at predicting
the time of failure of a system or component based on monitoring the health status or degradation
status of a component. Related to that is the prediction of the remaining useful life (RUL) or fail-
ure probability. There are a variety of approaches and categories associated with PHM applications.
The following chapter will first elaborate on the process and the current state of the art with respect
to prognostic methods in Section 2.1 after which the more specific topic of multi-components or
multi-units in prognostics will be covered in Section 2.2. Finally, Section 2.3 presents the trends and
developments with respect to PHM and evaluates possible improvements.

2.1. Prognostics Methods

The field of prognostics and health management is a growing specialty due to the fact that it offers
the opportunity to gain more information about the health status of the equipment. Knowing how
well the equipment is performing and possibly for how long it will be working and applying that
knowledge correctly enables companies to save costs and to increase their operational up-time. This
section gives an insight into the general concepts of prognostics and about how they are obtained.

2.1.1. On-line and Off-line PHM

Literature generally differentiates between two types of prognostics and health management con-
cepts. Namely on-line PHM (real-time PHM) and off-line PHM. As the names already indicate the
first uses live data to assess the health status of a system whereas the second works with backed-up
sensor data.

On-line monitoring is mostly applied in cases of mission critical systems or applications of high value
products. Common examples are on-board computers using real-time sensor data in cars or un-
manned vehicles to provide range distances, to re-plan missions or to reconfigure control settings.
Another focus point of real-time PHM is to test and verify whether all electronic systems are op-
erating correctly. This is done either instead of human inspections or as a support to the user or
technicians by simplifying the inspection task. The main downside of on-line prognostic and health
management is the large amount of required computational capacity of the on-board computers.
Since most prognostics require extensive simulations and computations, a lot of complex prognos-
tics computations are often done off-line. For this method a variety of sensor data is selected and
collected from the system and off-line PHM computer simulations are then used to predict for exam-
ple the RUL of that system. [3]

2.1.2. Modeling Approaches

One of the main decision aspects when working with PHM is to actually develop predictions about
for example the remaining useful life of the component. Three general concepts of obtaining prog-
nostics are currently known. The modeling approach either focuses on a data-driven methodology
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[3], a experience-based model [4] or a model-driven approach [5]. Itis however also possible to com-
bine those three in a hybrid modeling approach. A variety of considerations need to be made in order
to decide which of those strategies should be implemented in the PHM approach.

Experience-based Prognostics

This form of prognostics is not considered in all of the publications available. Some solely focus on
model-based and data-driven prognostics [3]. Other like [4, 6] classify it as one of the three main
methods.

The experience-based approach is comparable to a modeled representation of the actual logical steps
and work done by a system specialist. Based on the experts opinion a number of IF-THEN rules are
defined to draw conclusions about the current health state of the system [6]. An expert strategy using
a knowledge data base and IF-THEN rules were determined and proposed for example by Biagetti
and Sciubba [7] related to a gas turbine-based cogeneration system. It is however as explained below
often more common to focus on smaller components due to the interdependencies in larger systems.
Using an experts opinion offers the possibility of implementing the experience of multiple years or
even generations. However the main drawback of this approach is the limitation with respect to
the complexity of the system. Those expert rules are often not able to consider a larger amount of
combinations or dependencies and rely heavily on the opinion of a small group of experts which
might result in an incomplete set of rules and consideration of characteristics [4]. It is furthermore
very complicated to define accurate numerical predictions of the remaining useful life. Experience-
based prognostics are therefore more often used to obtain an indication about the health status of a
specific component or equipment instead of retrieving an accurate number of remaining useful life.
If an appropriate component of which a large amount of known interdependencies, behavioral char-
acteristics and fault-consequence combinations is chosen the result of the prognostics algorithm can
be comparatively accurate [8]. Majidian and Saidi [8] developed experience-based and neural net-
work (form of data-based prognostics) RUL predictions of boiler re-heater tubes and compared them
with each other. The results showed that both estimations were rather close.

Model-based Prognostics

To apply a model-based prognostics approach one requires the detailed understanding of the sys-
tem at stake. That means that in some form a physical representation of that system needs to be
created in order for it to be analysed. There are a variety of options to do so [9-13] each related and
customized to its specific real life component application. It is for example possible to model fatigue
crack dynamics using a nonlinear stochastic approach [14] or to use first and second-order nonlin-
ear differential equations to represent damage accumulation in a structural dynamic system [15].
Chelidze [16] furthermore developed a prognostics approach based on a mathematical model repre-
senting an electro-mechanical system consisting of a cantilever beam oscillating due to the potential
fields of two permanent magnets and electromagnets powered by batteries.

The health assessment is then based on the difference between measured data of an actual system
compared to the output of the theoretical healthy model of the system about how it should behave.
A large difference is therefore related to a health degradation of the system. In order to define when
a malfunction should be detected, a threshold needs to be defined. [17]

One of the main advantages of the model-based approach is the close relation to the actual physical
system. It means that small changes in the system can rather easily be incorporated into the model
without actually changing the prognostics algorithm. Furthermore the model can be improved as
soon as more insights about the degradation and failure processes are known. [17]

An important disadvantage of model-based prognostics is however that it is very complex and al-
most impossible to fully understand, model and simulate a whole multi-component system. Often
simplifications need to be made or behaviour needs to be separated which creates some limitations
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to the completeness of the prognostics. Those simplifications create a somewhat imaginary system
which makes it difficult to link and compare it to real-life applications in the industry.

Data-driven Prognostics

One option to create prognostics for complex systems without understanding the detailed physical
set-up of the system is applying data-driven prognostics. This method was enabled by the technol-
ogy advancements within the field of modern sensor systems and data storage and processing tech-
nologies [18]. The large amount of obtained data is then the basis for data-driven algorithms which
analyze the sensor data to monitor the health status and to predict failure of the system [3].

One of the main disadvantages of the data-driven approach is the amount of data required to feed
and test the algorithms. In an optimal scenario large number of run-to-failure data sets of the system
in question are wanted. This is however a time consuming and expensive process [19] and therefore
often an alternative needs to be found to train and validate the algorithms.

In the early development of prognostics the most used approach was the reliability analysis based
on historical data process modeling. A large downside of those however were the static and rigid
results due to the historic information [20, 21]. Therefore new methods were developed in order to
cope with more dynamic and flexible systems and data sets. Generally speaking there are currently
two commonly used data-driven approaches within prognostics and health management. Namely a
statistical approach and a machine learning approach. [22]

Statistical Approach

As the name statistical approach already indicates, this method is set up by analyzing fundamental
statistical parameters like mean, variance and median. Hereby a probability density function (PDF)
of the functional operational data set is created and new incoming data points can be compared to
that nominal PDF to detect anomalies. This straightforward comparison between new data points
and nominal probability function offers the possibility to give realistic confidence intervals to use
in the following decision making process. Those confidence intervals are the main advantage of the
statistical approach if the assumed probability density function is indeed a valid representation of
the actual system behaviour. If however the assumed statistical characteristics are not a good fit with
respect to the actual system behaviour, the results of the algorithm will present anomalies which
are not actual errors. Meaning that results require careful evaluation and interpretation before any
possible usage. [3]

There are two methods of formulating the statistical characteristics of the system. Parametric ap-
proaches assume those statistical properties based on commonly known probability distributions
and use the data set to calculate the distribution parameters. The non-parametric approach how-
ever does not take any existing probability distributions into account. It is therefore also suited in
case the underlying distribution is not known or if the data does not fit to any known PDE

Sutharssan et al. [3] defined a variety of possible statistical approaches. The extreme value theory
(EVT) for example sets a threshold extreme value as an anomaly detection as applied in [23, 24]. In
contrast to that is it also possible to determine the maximume-likelihood estimation to map input
data accordingly [22].

Machine-learning Approach

During the past years a lot of work has been done with respect to machine learning which is a sub-
field of artificial intelligence. Those algorithms are trained using a training data set from which the
algorithm learns the behavioral properties of the system. That knowledge is then further used to
cluster future data into healthy or anomaly. The main advantage of machine learning with respect to
the statistical approach is that the data relationships do not need to be pre-defined which allows it to
be used in a variety of complex systems with potentially unknown physical context. [25]
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The two main categories of machine learning in failure prognostics are supervised learning and un-
supervised learning. Where the main difference can be identified as whether or not a labelled output
for the training data set is provided [3]. In case of the supervised approach, the algorithm will be fed
with a data set including output labels according to a classification scheme. Its goal is then to learn
the relationship between input and output labels such that it can predict the output labels of new
incoming input labels. Those output labels are not available in an unsupervised learning approach.
The main application of this approach is therefore to detect patterns in an existing input data set and
to classify them. In order to do so a set of healthy test data is given to the algorithm to understand the
characteristics of healthy data after which it will be able to distinguish between healthy and anomaly
data. [3]

It is furthermore possible to make a distinction between the predictive modeling outcomes within
machine learning, namely a classification predictive modeling and a regression predictive modeling.
Using a classification approach creates a mapping function which is able to label new incoming in-
put. A fail/not fail prediction is often called a two-class or binary classification but it is also possible
to distinguish between more than two classes. A regression approach however develops a function
to predict a continuous output variable. In the prognostics context this could be related to a RUL
prediction in days or cycles. [26]

The most commonly used machine learning approach in prognostics are neural networks but also
Support Vector Machines (SVM), Gaussian processes and Bayesian networks [3].

Neural networks as applied by Schwabacher [25, 27] are trained to optimize the network parameters
by minimizing the error compared between the input and prediction.

Support vector machines originate from pattern recognition and are used in prognostics by learning
and defining of normal operating region with which new incoming data can be compared as done in
[28, 29].

Gaussian process regression as applied in [30, 31] define multiple random variables to create a dis-
tribution representing the distribution of input values.

When using a Bayesian network approach as done in [32, 33] the conditional probabilities of possible
nodes (related to the input) depending on other nodes is determined.

Combining Data-driven Algorithms

As stated in the paragraphs above all of those data-driven approaches have some downsides. In most
cases multiple data-driven algorithms are developed to evaluate which one is most suited. This how-
ever has some crucial disadvantages, namely that the different algorithms are potentially not robust,
alot of time and effort is invested into algorithms which are not used after all and it requires not only a
training set but also a testing set to validate which one is most suited. It is possible to develop a com-
bination of a variety of data-driven prognostic approaches connected by a weighted-sum method
[18]. It was found that the result of this combination resulted in more accurate remaining useful life
estimations than any of the individual data-driven algorithms. This strategy of combining multiple
data-driven models can also be considered as a form of hybrid approach as further elaborated on
below.

Hybrid Approaches

Up until a few years ago the above mentioned approaches have mainly been used individually but
recently a number of studies combined experience-based, model-based and data driven approaches
to make use of the best combination of advantages. The following combinations can be defined [4]:

¢ Experience-based model + data-driven model (as applied in [34, 35])

* Experience-based model + model-based approach (as applied in [36, 37])
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» Data-driven model + data-driven model (as applied in [38-40])
¢ Data-driven model + model-based approach (as applied in [41-43])

* Experience-based model + data-driven model + model-based approach (as applied in [44, 45])

The most common combination is the one between data-driven and model-based approaches. Where
the model-based approach is used to apply general physical laws and to identify and update model
parameters from the incoming test data. Whereas the data-driven model is used to predict anoma-
lies which then again triggers the actual RUL prediction process.

Overall three challenges need to be overcome in order to implement the hybrid approach efficiently.
Firstly the best combination of models needs to be selected, depending on the system in question,
the available data, the required output and further considerations. Secondly once some models are
selected a method to combine them is required. This can also be related to the situation at hand
and which approach is chosen for which task. Thirdly a combination of models can result in unex-
pected uncertainties, sensitivities of other performance indicators. It is important to manage those
prediction performances appropriately in order to draw useful conclusions from the model. [4]

2.2. Prognostics of Multi-Components

As stated above, the field of prognostics is growing rapidly but unfortunately the specific field of
prognostics of complex multi-components is still an under explored area. The main challenge is to
fully understand and implement the interdependencies between multiple components [46]. There
is actually more research done about implementing multi-components in a prognostic maintenance
schedule than looking at the individual prognostics of multi-components. Section 4.2 later onward
presents more insight into the implementation of multi-components into maintenance planning op-
timization.

The reason that it is useful to implement multi-components into prognostics is the fact that most sys-
tems actually consists of multiple components instead of just one. The multiple components in those
larger systems are usually interdependent on various levels. Literature generally classifies between
three dependencies: stochastic dependence, structural dependence and economic dependence. [47]
Stochastic dependence can be described as components being related to each other by their degra-
dation level, in that case a heavy deterioration of one component induces increased degradation of
a dependent component. If components are physically connected they usually form a structural de-
pendence. This means that the maintenance technician will be required to act on one component to
reach the component which actually needs the maintenance action. The economic dependence can
be further classified into positive economic dependence (PED) and negative economic dependence
(NED). If replacing or maintaining multiple components at the same time is less expensive than the
sum of their individual maintenance it can be defined as a positive economic dependence. Whereas
itis NED if the cost increases if multiple maintenance tasks are performed simultaneously compared
to the same separate activities. [48]

In order to develop prognostics or more specifically RUL estimations of one component in a larger
system it is crucial to understand as many interdependencies as possible. Ribot et al. [49] developed
a multi-component prognostics tool focusing on systems with only a few interdependencies between
individual components making it less useful in more complex systems.

One possibility to handle this multi-component problem combines individual failure functions of
multiple components and connecting their interdependencies in order to obtain an overall RUL es-
timation [46]. This study starts with defining failure probability density function for all individual
components with a Weibull model representation of each probability function. Those functions are

33



further developed into individual cumulative distribution functions and linked to component degra-
dation states. Finally the interaction level is incorporated between the multiple components result-
ing in a change of RUL estimation of individual components.

Another study focused on analysing factors which influence multiple components in a complex sys-
tem since they might be affected by the same environmental aspects [50]. The research uses multiple
component sensor data of a complex system to estimate the degradation state by filtering out the
noise of the environmental factors. Finally the RUL of individual components based on their inter-
dependent factors is determined from the degradation function.

When looking at multi-component prognostics the main focus of most studies is to develop prog-
nostics for a larger system consisting of multiple components. An important aspect to consider is
however also the fact that an operator can have multiple units of a specific system. Having multiple
units of a component is incorporated in a way that the amount of health and possible failure data is
increased. This means that algorithms or models are often based not just on the data of one single- or
multi-component but on multiple units of component. The knowledge gained over all units is then
used to predict the RUL or other PHM information for a specific single- or multi-component.

2.3. Diagnostics and Prognostics State of the Art

Prognostics and health management approaches started mainly as a form of diagnostics, meaning
that researchers focused initially at looking backwards. Diagnostics tools were developed in order to
determine failure modes and different correlations between factors which might have caused a spe-
cific failure. A tremendous amount of progress has been made in recent years in order to diagnose
faults and errors but research in the field is not yet complete. It is possible to define a number of
challenges within the diagnostics field which need to be handled in the next years to cope with the
changing and growing requirements of the industry. Those challenges are changing from behavioral
research to mechanism studies, from qualitative to quantitative research, from single to group fault
research, from severe to weak fault research and from component to system-level fault research [2].
This means that PHM research reached a point where evaluating a system in depth is possible. It also
includes that the actual mechanism instead of the reaction of the system is analysed in order to draw
conclusions about the overall performance.

After initial successes over the years more and more studies were performed to use the gained knowl-
edge about the past to predict future failures as a form of prognostics. The start of research in this
field was rather tedious and slow due to the lack of gathered complete data and computational capac-
ities. Initially most prognostics methods were based on an experience-based approach. As explained
above those algorithms were able to implement the years of experience of many experts and did not
require an extensive health monitoring data set, but were however limited to simpler systems with
few interdependencies.

Within time more sensors were implemented in on-board systems, and the increasing amount of
data allowed the use of more sophisticated methods to predict the remaining useful life of a com-
ponent. Changing from experience based models to physics based approaches and finally to data-
driven models of the degradation process of components.

Using sensor data as an input for RUL predictions, however results in another challenge for PHM
researchers. The data does not simply state the degradation state of a component but presents mea-
surements of some other forms of indicators like temperature, vibrations, noise level or displace-
ment. This data however includes uncertainties and noise. Therefore the data needs to be prepared
using a variety of filters or stochastic methods. [51]
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Even though a lot of research has been conducted in the field of PHM, the results of most prognos-
tics algorithms are often still not exact enough to use them in the real-life decision process. This is
due to the fact that the industry still struggles to collect the amount of data needed to optimally use
the algorithms on a variety of components. Even using the advantage of multiple units is currently
not sufficient to obtain enough health data for all systems. Up until now most approaches focus on
individual components or smaller systems instead of all larger systems or an overall aircraft, simply
because there is not yet an always valid and useful prognostics approach. A key aspect when devel-
oping prognostics is to choose the appropriate method and algorithm which results in the difficulty
to determine a successful PHM application for an overall system [3].

Besides further improving the fault diagnosis as explained in the beginning of this section it is there-
fore crucial for researchers to improve the applicability of prognostics. It should be the goal to de-
velop prognostics algorithms which are able to predict the remaining useful life of complex systems
including as many interdependencies as possible to make it easily comparable to real life systems.
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Airline Maintenance Schedules

Airline maintenance schedules consist of a variety of aspects which need to be considered in the
planning of maintenance actions. The following chapter will give a general overview of previous and
current maintenance strategies including a description of the variety of common types of mainte-
nance in the aviation sector in Section 3.1. This is followed up by an elaboration of current research
done in the field of maintenance scheduling in Section 3.2. An elaboration of the cost factors in
airline maintenance is presented in Section 3.3. Finally Section 3.4 describes the current status of
real-life airline maintenance schedules and the difference with respect to the scientific progress.

3.1. General Airline Maintenance Methods

Airline maintenance schedules consist of a large amount of tasks and procedures which need to be
planned and performed. Maintenance scheduling is the process of defining maintenance opportu-
nities meaning that an aircraft is scheduled for maintenance on a specific day or time. Maintenance
planning is the next step where the actual tasks and activities are chosen to be done during a specific
maintenance opportunity. This section presents the most important strategies, developments and
aspects of airline maintenance operations.

3.1.1. History of Airline Maintenance

The maintenance strategies in the airline industry changed a lot from the beginning of manned flight
up until today. In the beginning not a lot of focus was put into scheduling or planning of mainte-
nance. This corrective maintenance strategy meant that no actions were performed unit a compo-
nent had failed. Therefore each component was fully utilized but it however resulted in high cost and
down-times. The unexpected breakdowns were furthermore a large safety hazard.

Within the 1930’s until 1950’s researchers analysed failures and how and why they occurred. The
result of this research was the bathtub curve as can be seen in Figure 3.1. The response of the indus-
try was to implement preventive maintenance in order to repair or replace components before they
reach the wear-out failure phase and therefore before the actual failure occurred. Components were
replaced based on hard-time or on-condition moments. Hard-time maintenance used early results
of statistics and reliability analysis to estimate when components start to wear-out. Based on some
general calculations fixed intervals were determined at which those kind or components require re-
pair or replacement. The intervals were based either on calender days, flight cycles or flight hours.
When applying on-condition maintenance the component in question is measured and compared
to a set of standard thresholds. Whenever a measurement appears to be insufficient compared to
the set standard, a repair or replacement action is executed or scheduled. Preventive maintenance
highly increased the safety of flight by more often preventing in-flight failures but it was and still is
difficult to predict when to optimally replace a component and therefore useful component life was
not used, resulting in higher cost for the operator.
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Figure 3.1: Schematic Drawing of the Failure Rate (Bathtub Curve)

In order to reduce the cost of not-utilized component life time more research had been conducted.
Researchers found in the late 1960s that only six percent of the complex system actually show wear-
out behaviour at the end of their life time [52] as can be seen in Figure 3.2. Researchers and in the in-
dustry responded to those finding by developing a new maintenance strategy called predictive main-
tenance. It includes the method of on-condition maintenance which was introduced in preventive
maintenance but also introduces a new predictive aspect. By predicting when a component actu-
ally fails unexpected failures can be prevented and repairs and replacements can be scheduled as
convenient and cost effective as possible. While at the same time minimized wasting useful lifetime
of functional equipment by replacing those too early. It however requires sophisticated monitoring
data collecting systems and prognostic and health management tools as explained before in Chapter
2.
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Figure 3.2: Experiences Age-Reliability Relationships [52]

37



3.1.2. Types of Airline Maintenance
Airline maintenance consists of a variety of maintenance actions, which can be divided into sched-
uled and unscheduled maintenance tasks. The Maintenance Steering Group (MSG) furthermore de-
veloped multiple maintenance decision support tools which changed related to the above mentioned
change in maintenance strategies. This section will elaborate on those three aspects.

Scheduled (routine) maintenance
A lot of checks are scheduled by the maintenance operator based on international regulations and
safety requirements. Those tasks are then usually planned either during line maintenance, base
maintenance or shop maintenance. An overview of the most common types of airline maintenance
can be found in Table 3.1.

Table 3.1: Overview of Common Types of Airline Maintenance

Type When and Where , Common Tasks Duration , Remarks

-Each - Check for
Transit turn-around obvious damage

. . . . TAT

Check - Line - Service engine oil

Maintenance as required

- Before first flight

of the day or - Operational checks of

. - when aircraft is TCAS, emergency lights,

Daily
Check on ground for stand-by power

more than 4 hours | - Checking condition of

- Line landing gear, brakes, oil levels

Maintenance

- 400-600

flight hours - Inspections of

or interior/exterior -1 day

B-check task
A-Check | -200-300 - operational checks -50-70 N . eek fashs
. . are included

flight cycles - oil and filter checks man hours

- Base and servicing

Maintenance

. 12-24 months - Functional and operational

system checks Includes A-Check
C-Check | - Base . - 1-2 weeks
. - cleaning and servicing (and B-Check)
Maintenance . .
- Service Bulletins

- 6-12 years . ﬁfsm ;)Ztlir:)ieﬁez?rr Includes A

D-Check | - Base p > repaih 2 months '
. replacement of internal B- and C-Check
Maintenance

structures and systems

Line Maintenance Checks
Most of the activities planned during line maintenance consist of recurrent (service) checks. The
crew performs pre- and post-flight visual inspections in order to notify the maintenance operator
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about changes, problems or anomalies. The check itself belongs to the scheduled activities, the re-
pair however in most cases not since it does not fit in the allocated time frame of the respective check.
Turnaround or transit checks include crucial scheduled task which are done during each turn-around
time (TAT) as a form of line maintenance. Most of the activities associated are checks for obvious vi-
sual damage or basic servicing actions. The daily or 48 hour check already includes more work inten-
sive actions but it can however still be performed during line maintenance. Scheduled activities can
be categorized as operational checks, testing and physical checks of safety related components like
landing gears, tires, breaks, emergency lights, TCAS (Traffic Alert and Collision Avoidance System).
Larger scheduled maintenance tasks are usually performed during letter checks as a form of hangar
maintenance. Those letter checks are mostly planned after a fixed amount of flight hours or flight
cycle interval depending on the regulations specific to the aircraft type.

A-Checks

A-checks are the smallest checks and occur approximately every 400-600 flight hours or 200-300 cy-
cles. The planned actions consist of some general inspections or operational checks but also small
lubrication, filter and fluid replacements. Activities planned during A-checks require the aircraft to
be approximately one day on the ground with 50-70 man hours of maintenance actions. Lately main-
tenance operators developed different sizes of A-checks and therefore including most of the B-check
tasks in the larger A-checks.

C-Checks

After 12-24 months each aircraft requires a larger C-check which is an extensive list of tasks. During
a C-check also all A- and B-check actions are performed but furthermore different operational and
functional not only of components but overall systems are executed. The interior and exterior are
also cleaned and serviced. An important focus of scheduled C-check tasks are also Service Bulletins
(SB) provided about the specific aircraft type. The usual duration of such a checkis around 1-2 weeks.
D-Checks

Finally the largest letter check is the D-check which is scheduled only every 6-12 years and it includes
a large dismantling effort in order to reach the internal structure of the aircraft. This allows the tech-
nicians to maintain, repair or replace the internal components which are otherwise not reachable
from the outside. This check can take up to two months to complete. Logically due to the high work
load a large amount of cost are related to a D-check. Therefore airlines wish to reduce the number of
D-checks as much as possible by for example selling an aircraft before a new check is required.

Those checks are scheduled based on planned and forecasted flight hours and flight cycles in cor-
relation with the MSG approaches as explained below. This results in a preliminary schedule which
is basis for a continuous improvement based on the actual maintenance performance, inspection
results and detailed flight schedules.

Currently a number of airlines already stopped applying a letter check scheduling frame but to use a
more flexible maintenance scheduling. This is supported by the MSG-3 approach as explained below
and further research in the field improvements of base maintenance as elaborated on in Section 3.2.

Unscheduled (non-routine) maintenance

The above mentioned maintenance actions are in almost all cases related to flight cycles or time
intervals. All inspections and tasks required due to other unexpected situations are usually classified
as unscheduled maintenance. Examples of those non-routine checks are heavy and unusual flight
situations like heavy turbulence, lightning or bird strike or not optimal landing manoeuvres. If those
inspections show that maintenance actions are required the technicians have a few options.

One option is to postpone the repair of the specific component if it is allowed according to the mini-
mum equipment list (MEL). This list defines aircraft specific requirements about which components
need to be fully functional and without which a flight can still take place. Usually some conditions
are mandatory to be fulfilled in order to defer the repair of a maintenance action.
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In case a system with redundancy fails it is often possible to postpone the maintenance. Regulations
state that this is only possible if the operator is aware of the breakdown of one of the systems and if
serviceability of the system is performed.

Lastly maintenance operators developed a fast way of performing maintenance for some of the air-
craft systems. Line replacement units (LRU) might be used to easily replace a system with a working
unit after which the faulty system is repaired in the workshop. This allows for fast maintenance ac-
tions especially during turn-around time or line maintenance without delaying the aircraft any fur-
ther.

The development of generally more flexible maintenance schedules as shortly introduced above of-
fers opportunities and improvements with respect to unscheduled maintenance. Research done in
the field of deferring or rescheduling maintenance tasks will be presented in Section 3.2.

Maintenance Steering Group Approaches

In relation to the history of airline maintenance strategies as stated above multiple new approaches
had been published by the Maintenance Steering Group in order to support maintenance decisions:
MSG-1, MSG-2 and MSG-3.

MSG-1 and MSG-2 proposed an bottom-up approach which was an expensive solution because it is
focused on components and parts instead of the performance of the overall system. Therefore the
MSG-3 approach was developed as a top-down approach including the consequences and economic
effects of failures. This method is still used today. MSG-3 consists of two different levels of analysis,
where the level one analysis focuses on determining the failure category and level two on determin-
ing the appropriate maintenance task.

A schematic overview of the level one analysis can be seen in Figure 3.3. Depending on whether the
failure is evident or not and whether the failure has operational effects or not each failure is catego-
rized into five categories. Each failure needs to be analysed using this test.

(1)
Is failure evident to N
operating crew?

(2)
Does failure affect
operating safety?

(3)
oes hidden failure
related system failure
affect operating
safety?

(4)
Does failure affect
aperating capabilit

Yes Yes

No

¢ A 4 h 4

(5) (6) (7) 8 (9)
Operational Non-Operational Non-Safety
Safety 3 . Safety .
Economic Economic Economic
<——Evident failures (A)}—— > -<¢——Hidden failures (B}——

Figure 3.3: MSG-3 Level 1 Analysis [53]
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The level two analysis differs depending on the result of the level one analysis. There are two flow
charts, one for evident and one for hidden failures. Figure 3.4 shows the flow chart of the evident
failures. In order to determine the appropriate maintenance actions safety related failures (category
5 and 8 in the level one analysis) need to answers all questions of the flow chart. Whereas non-safety
related failures need to complete the flow chart until one positive (yes) answer is found. The flow
chart of the hidden failures is very similar and can be found in literature [53]

As can be seen in the level two analysis a variety of tasks can be the result of the MSG-3 process.
The tasks can then be combined with failure rate data in order to determine intervals until the next
required maintenance action. Which can then again be used to improve the initial scheduled main-
tenance actions defined by regulations and requirements. This can then again be used to optimize
maintenance schedules and to offer flexible maintenance solutions.
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Figure 3.4: MSG-3 Level 2 Analysis - Evident Failures [53]

The latest version of the Maintenance steering group (MSG-3) is widely used today and in many
cases already able to replace pre-described letter checks within airline maintenance, since it provides
airlines with a complete decision process based on findings during inspections.

3.2. Current Research in Maintenance Scheduling

The previous Section described the general trends and forms of maintenance types and scheduling
strategies available in the aviation industry. Those are however rather general and often not specific
enough to choose the best possible maintenance action. A lot of theoretical work is done in the field
of maintenance scheduling and task planning.

3.2.1. Line Maintenance
During line maintenance only the most urgent and short tasks can be executed. If unexpected prob-

lems occur it can happen that the aircraft needs to be delayed. Research has been done in the field of
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short-term line maintenance planning by Papakostas et al. [54]. The aim of the research is to maxi-
mize fleet operability and minimize maintenance cost by developing a decision support tool to defer
maintenance actions if required and possible. Constraints are formed in relation with respective
costs, remaining useful life, risk and flight delay.

Further improvements to reduce delaying the aircraft due to longer line maintenance activities is
proposed by Muchiri and Smit [55]. The proposed model is able to group tasks into appropriate
packages in order to minimize wear and tear due to opening and closing of panels but also in order
to defer packages to more other maintenance opportunities if the planned line maintenance time
would be exceeded.

3.2.2. Base Maintenance

General requirements about when letter checks as a form of base maintenance are needed are pre-
scribed in regulations and the maintenance planning document. Those are however only general
and therefore airlines and researchers focus on scheduling those activities in the existing operational
schedule. Sriram and Haghani [56] developed a short term (7 day) maintenance allocation model
focused on domestic flights for which the aircraft routing assignment is already done before main-
tenance can be scheduled. Planned A- and B-checks can then be scheduled according to existing
maintenance slots at existing maintenance bases. The model is however able to change tail number
allocations if needed.

Lately research has also been done in order to combine a minimization of aircraft downtime and
maintenance cost by implementing a more flexible maintenance strategy less focused on rigid letter
checks [57]. The proposed model considers tasks individually according to the MSG-3 approach and
assumes that tasks are executable during all ground time opportunities and therefore do not require
predefined letter checks.

3.3. Cost Factors in Airline Maintenance

A 2015 IATA (International Air Transport Association) study analysed 60 airlines as part of their 2014
report and presented that approximately 10% of airline cost elements consists of maintenance cost
as can be seen in Figure 3.5. This large financial impact is one of the main reasons for the inten-
sive work done in the fields of diagnostics, prognostics, maintenance schedules and scheduling and
planning optimization in the scientific world. It is however very complex to firstly identify all cost
factors and secondly implement them in an optimization approach. Before a choice about the cost
factors for optimization can be made an overview of the overall airline maintenance cost is given in
this section.

Boeing presented cost factors as the built-up of the total maintenance cost (TMC) of an airline as can
be seen in Figure 3.6. The main distinction is made by them between direct and indirect maintenance
cost.

Costs immediately linked to the maintenance action itself are classified as direct maintenance cost
and as shown in Figure 3.6 are according to Boeing either part of the airframe or the powerplant.
Direct maintenance cost (DMC) consist of labour and material expenses required to perform the
actual maintenance action [58].
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Figure 3.5: Total Airline Cost Elements in 2014 [59]

It is furthermore possible to classify the direct maintenance cost further than elaborated by Boeing.
The main categories would then be [60]:

¢ Labour cost
¢ Repair cost
¢ Cost of lost utilization

¢ Risk cost

Even though some seem to be belonging to indirect maintenance cost, their amount is depending on
the actual maintenance action which classifies them as direct maintenance cost. [60]

The labour costs include the direct work and man hours needed to repair the component but also
possible time to get to location. This would happen if the technicians have longer travel time to the
aircraft than usual or if special effort is needed to bring the new component to the aircraft.

A crucial aspect is of course also the actual repair cost, meaning the material cost of the maintenance
action. The work done is not included in this part as it belongs to the labour cost and would otherwise
be counted multiple times.

When looking at predictive or preventive maintenance action an important aspect to include is the
lost utilization of the component. Wasting useful lifetime of a component by replacing it to early is
a negative cost factor within direct maintenance cost. It is however almost impossible to accurately
determine the lost utilization due to the fact that if the component is repaired or replaced one might
never know the exact failure time in case the component would not have been replaced. In order
to take this factor into account the actual lifetime can be compared to the budgeted life time of that
component or also the day of replacement with the day with the highest failure probability.

Every time a strategy for a specific maintenance action is chosen a respective risk is related to that
choice. Risk is mostly focused on delay of completion of the repair and therefore a possible increase
in down-time. This delay risk then possibly results in increased labour cost of the maintenance tech-
nicians, increased fleet cost since the aircraft might not be usable on time and other (costly) solutions
are required, increased crew cost if crew has a fixed salary, increased passenger cost if the delay is long
enough that the passengers need to be compensated for and finally even cost factors down the oper-
ational line due to fleet and network effects.
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Figure 3.6: Total Maintenance Cost [61]

As can be seen in Figure 3.6 the other large part besides DMC are the indirect maintenance cost fac-
tors. Those expenses are unrelated to one specific maintenance action at a specific time and can be
seen as fixed cost required to keep the maintenance company operational. It includes labour related
costs which exist independent of the maintenance work done by the technicians including aspects
like vacation and sick leave but also insurance and social costs. Another large part of the fixed cost
are the facilities, tools but also planning, quality assurance and training of staff members. General
maintenance actions provide further indirect maintenance expenses.

As was described above it is possible to differentiate between a large amount of different types of cost
factors and cost definitions in the maintenance industry. Some cost factors like cost of lost utilization
and risk cost are almost impossible to accurately determine for a real life situation. Other cost factors
related to indirect cost are often left out during scheduling assignments due to fact that those fac-
tors are not directly reduced by changing a specific aspect of the maintenance schedule. Only large
changes in the overall maintenance strategy would also have an effect on the managerial indirect
cost factors.

Current maintenance scheduling research as described in Section 3.2 simplify cost largely in order
to minimize the computational efforts. Papakostas et al. [54] uses a detailed maintenance cost per
task per component which includes equipment-, labour- and overhead-rate, the maintenance time
per component and component procurement costs. Whereas Muchiri and Smit [55] heavily simplify
cost into just including human labour and neglecting parts or other overhead cost. Simply taking an
average assumption of how expensive a certain type of maintenance check was done by Sriram and
Haghani [56]. Senturk and Ozkol [57] developed a model to minimize downtime of the aircraft and
allocated an average cost per downtime day.

3.4. Current Status of Real-life Airline Maintenance Operations

As stated above airline maintenance strategies changed tremendously from the first phases of manned
flight up until now. Due to the fact that maintenance accounts for 10% of airline operation cost it is
an important factor in order to decrease overall airline cost.

The main trend during the last years was to improve preventive and predictive maintenance sched-
ules based on information about the failure behaviour of individual or more complex components.
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Implementing and improving those scheduling procedures in a theoretical and scientific context as
stated in Section 3.1, Section 3.2 and later on in Chapter 4 often offer good solutions to determine
improved schedules but they are however often rather general and first and foremost theoretical. As
explained above the main downside of many theoretical scheduling approaches is the highly simpli-
fied operational context by for example neglecting number of aspects or by oversimplifying real-life
constraints. Therefore many airlines often do not actually apply those new schedules in detail. The
main strategy in many cases is often still either manual trial and error iterations to find a feasible
solution or very simple decision support tools.

This is done by initially defining a general maintenance schedule on a strategic long-term level based
on for example MSG-3 rules and letter check regulations and includes mostly tasks and calender-,
cycle- or flight hour-intervals. The initial schedule is described in an maintenance planning docu-
ment (MPD). The schedule then needs to be transferred into an actual maintenance planning specific
to the airline which incorporates the required tasks which were defined in the MPD. An important ob-
jective besides planning all tasks is also to spread out the work evenly such that technicians will be
able to perform the tasks efficiently and in an allocated time frame.

Based on the operational schedule and the flight hours, cycles and days related to that operational
flight schedule of the airline the engineering department of the airline will be able to assign specific
task to maintenance opportunities. Planning also needs to take a number of availability constraints
into account. Not just the aircraft itself needs to be available according to the operational schedule
but the engineering department also needs to ensure that it has sufficient space in their maintenance
facility, that enough man hours are available and that the required spare parts are available.

One of the important considerations of the maintenance planner when choosing tasks is the method
of grouping as further explained also in Chapter 4. If it is possible to define overlaps either with re-
spect to interval times, location in the aircraft, access point or task similarity it is most of the time
smart to group those tasks together in a task package.

Alarge difference can be seen between the theoretical knowledge about good maintenance schedules
and the actually applied maintenance schedules in airlines. More work is required in order to balance
out this difference. Another important movement during the last few years (in the scientific field)
but also most likely of the upcoming years was and is the predictive maintenance framework. As just
stated before this is at airlines currently mostly done using manually decision processes. The main
development will be the automatization of those decisions in a way to fully utilize components and
operating schedules while minimizing cost. Chapter 4 will further elaborate on the progress in that
field.

45



Maintenance Planning Optimization

There are a number of factors which need to be considered in airline maintenance schedules as it has
been explained above in Chapter 3. The main challenge is however to optimize the planning of those
maintenance activities. Sections 4.1 and 4.2 present the options of using prognostics information
and multi-components in maintenance planning optimization. Finally an overview of the most used
optimization algorithms is given in Section 4.3.

4.1. Prognostics in Maintenance Planning Optimization

The developments in the prognostics research as mentioned in Chapter 2 allow for new and im-
proved maintenance schedules in the industry. Condition-based maintenance (CBM) policies pro-
pose a framework to incorporate prognostic advancements into maintenance scheduling to achieve
higher system availability and cost reduction. A US study of 2003 predicted a 35 billion dollar per
year cost reduction in the US if CBM would be fully utilized to minimize unexpected down times
[62]. Unfortunately a more recent study found that companies actually observe a large difference be-
tween the potential of prognostics and the actual achieved benefits [63]. Apparently more research
is needed to find solutions which actually offer a complete and easy to use application incorporating
a variety of CBM aspects, which furthermore are linked to real-life airline operations.

Over the years a number of research papers have been published to propose a variety of implemen-
tations of prognostics information into maintenance schedules. There is not yet an overall agreed-
upon optimal strategy to use prognostics and therefore most approaches focus either on different
smaller specialized aspects which increases the difficulty to compare them directly [64, 65] or on the
very broad point of view of prognostics in a maintenance schedule [66-69]. An overview of a variety
of research approaches using prognostics information in a maintenance planning framework can be
seen in Table 4.1. The table presents the operational context and scientific novelties of the studies
including their main assumptions, type of prognostics and optimization used in order to optimize
the objective function.

Applying prognostics but mainly focusing on another topic occurred in the research of Lei & Sand-
born [64]. Most wind farms are managed using a power purchase agreement (PPA) which is a contract
between an energy buyer and a wind farm operator. Before this method was proposed no researcher
applied the agreed upon aspects of the PPA to a maintenance optimization process. It takes into
account the minimum and maximum amount of energy sold, energy prices and price penalties in
case of not adhering to points of the PPA. Therefore the objective is not to minimize maintenance
cost but to maximize revenue according to the PPA based on a schedule using RUL information. The
implemented RUL information was however not as sophisticated as explained in Section 2 and thus
less meaningful.

Multiple authors furthermore worked on optimizing prognostic maintenance schedules while fo-
cusing on remote or distributed locations of the assets. Those proposals were usually applied to
(offshore) wind turbines or railroad works. One of those studies combined a maintenance schedule
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optimization with the Travelling Repairman Problem (TRP) and therefore incorporating travel time
into the maintenance planning process [65]. During the overall process and the case study the focus
however was mostly on minimizing the travel effects instead of applying failure probability prognos-
tic information.

As stated above other research topics are rather broad when optimizing the maintenance schedule
with respect to prognostics. One of the proposed implementations of prognostics into maintenance
scheduling triggers the maintenance scheduling framework as soon as the estimated RUL is smaller
than a defined lifetime margin [66]. The remaining useful life predictions are repeated until that
value is below the defined lifetime margin after which the predictive maintenance scheduling occurs.
Therefore the found maintenance optimization might not actually be optimal since not all possible
combinations are evaluated. This procedure furthermore only focuses on one single component.
Most research strategies used actual RUL estimations (with different levels of accuracy) as an in-
put for their optimization approach. Another option applied by Camci [67] is to use prognostics
in the form of failure probabilities of multiple components to create an objective functions which
minimizes risk (failure and maintenance risk). This is done by utilizing prognostics and reliabilities
but also inventory and maintenance data. This study furthermore analyzed the difference between
whether or not applying thresholds to the predicted failure probabilities and therefore suggesting
that the solution of You and Meng [66] might not be optimal.

A study on maintenance scheduling using reliability and prognostics information heavily simplifies
the operational schedule [68]. The operational context of the research is a military air force base with
ten aircraft. The operational schedules of a military or a commercial operator are in most simplified
optimizations rather similar due to the fact that most airlines simplify their maintenance operation
also to one maintenance location. The main difference with respect to operations is therefore the
fleet size and the capacity. Another difference between the research and actual commercial aircraft
maintenance is that the proposed algorithm simplifies maintenance cost to a maintenance capability
and therefore maximum number of aircraft which can be maintained. An optimization approach in
a commercial context would need to take more cost factors into account in order to determine the
best maintenance opportunity.

Unlike most other approaches took Zhang et al. [69] imperfect maintenance actions into account but
the actual planning optimization based on RUL estimates was strongly simplified. When the RUL es-
timate at inspection is smaller than the time interval until the next inspection then the maintenance
action is executed immediately. The actual maintenance time stamp is therefore not actively planned
in this planning approach.

Due to the struggles of computing exact RUL predictions as explained in Chapter 2 the implementa-
tion is currently still a challenge. An optimization based on information with a high level of inaccu-
racy results in less meaningful decision support tools. It is presented above that there are a number
of studies trying to implement prognostics but often deliver results with many assumptions related
to the operational context of the system. Therefore most of the results are currently still mainly sci-
entific and not yet ready to be implemented in real life airline operations.
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4.2. Multi-Components in Maintenance Planning Optimization

The optimization of condition based maintenance is an important topic in the industry. Unfortu-
nately a large part of those studies analyse CBM optimizations of single components. A few re-
searchers however put a special focus on multi-components in the optimization of CBM, however
most of those studies include other specializations in the research as well or deliver a very specific
solution to a particular multi-component system. A variety of scientific contributions in the field
of applying multi-components in maintenance scheduling have been analysed and are presented in
Table 4.2.

As explained in Section 2.2 many multi-components show a positive economic dependence and
therefore most of the in literature existing multi-component CBM optimizations are based on PED
to minimize maintenance cost [70-75]. This has the advantage that those solutions can often be
adapted easily in order to fit other systems as well. Another strategy is to closely look at the physi-
cal and structural interdependencies as done in [76-79]. This however limits the applications to that
specific system instead of offering a general solution for a variety of multi-component structures [48].
In recent years more and more approaches included importance measures as part of their multi-
component maintenance planning optimization. Component importance is used to prioritize com-
ponents in order to select the most crucial ones in a system to focus on during an optimization
[80]. Examples of applying those importance measure to maintenance optimization can be found
in (76, 79].

An often considered approach to implement a multi-component perspective is the method of group-
ing. Generally speaking this method works based on maintaining one component when another is
maintained. Literature considers three different categories of grouping. Long-term (static) grouping,
medium-term (dynamic grouping) and short-term (opportunistic) grouping. The main strategy of
grouping is to minimize set-up cost under the possible down side of increasing down-time cost. [81]
Organising planned preventive maintenance activities in a way that the tasks can be done at the
same instance, for example during a specific letter check is a form of static grouping which is done
during the strategical maintenance planning phase. In most cases this static grouping is focused on
inspections or servicing activities.

Dynamic medium-term grouping usually considers which inspections or services can be executed
when a planned preventive or corrective repair is performed. A number of studies applying dynamic
grouping [70, 72, 77, 78, 80] can be seen in Table 4.2.

A further step is taken in the short-term opportunistic grouping [72, 74-76, 81-84]. This type of
grouping even considers unplanned repair or replacement actions and which planned inspections
or repairs could be combined with it. This grouping strategy is most likely to be very important in the
proposed application of prognostics in multi-unit maintenance schedules due to the comparatively
short horizon of good RUL predictions.

The collection of presented literature below show a number of different novelties included in the
optimization process, but also a variety of assumptions made in order to achieve the optimization
goals. Anumber of differences are elaborated on in the next paragraphs and information about which
references applied those aspects can be seen in Table 4.2.

One of the large difference between the studies is whether or not corrective maintenance (CM) is
considered a possibility during maintenance planning. Approaches neglecting CM assume that their
prognostic knowledge is perfect thus that all failures can be predicted, which is not always realistic or
close to actual operations. But the risk of allowing CM is that it minimizes the possible optimization
field since the time slot of CM itself can not be optimized.

Another aspect is whether and how prognostics are implemented. The set of presented literature
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is focused on implementing multi-components and not prognostics (which is shown in Section 4.1)
but prognostics information or at least degradation information is required in order to truly optimize
preventive and predictive maintenance. Most of the presented solutions incorporate this informa-
tion in form of a Gamma process to model the approximated degradation process. Applying actual
prognostics would add additional value to real life meaningfulness of the optimization.

Many approaches furthermore assume instantaneous inspections and repair which are immediately
possible whenever required. The advantage of this assumption is that it is easier to implement and
also that the approach is therefore applicable to multiple situations and systems. The disadvantage
however is lack of correlation with real-life maintenance. A specific action can only be planned when
there is enough time during that maintenance slot.

Finally a difference between maintenance performance can be observed. A number of approaches
assumes perfect maintenance which highly simplifies the model whereas imperfect maintenance
would often describe the real life application more accurately.

It is important to apply maintenance scheduling optimizations not just to simple single components
but also to larger systems consisting of multiple components and units. The current status of the
research in this field as presented above however shows that that degradation states, maintenance
duration and operability constraints are heavily simplified in the studies available and the optimiza-
tions are therefore not ready to be used in real life situations at airlines.
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4.3. Optimization Algorithms

There are many different strategies to determine an optimal maintenance schedule as presented in
the previous sections of this chapter. This section will highlight some of the most used optimization
algorithms in this field.

Even though there are many different approaches to optimize the maintenance schedules it can be
seen that often the same two optimization algorithms are used. Table 4.3 presents a number of ex-
amples of genetic algorithms (GA) and Markov decision processes (MDP) applied in the field.

4.3.1. Genetic Algorithm

The genetic algorithm is a form of meta-heuristic algorithms and it is based on the analogy to Dar-
win’s theory of evolution. One important characteristic of meta-heuristic algorithms and therefore
also of genetic algorithms is that they are usually able to determine a very good and feasible solution
in a short computational time. However it is not possible to ensure that the found solution is the
overall global optimum for that optimization problem. [85]

Initialization is the first step of the GA, during which an initial population is determined or created.
After which the fitness with respect to the objective function of each member is evaluated.

The second step is the first iteration. As part of Darwin’s theory it can be said that members with a
higher fitness are more likely to create off-springs. Therefore a random selection of the population
with a bias towards members with higher fitness is created. That selection is then used as parents
in the first iteration. Each pair creates two children and each child inherits a random selection of
features from both parents. The fitness of the new generation is again determined which is then the
start of the next iteration round.

It is furthermore possible to implement a mutation rate into the iteration process. This means that
the children would have some features which were not existing within their parents. This and the
amount of population size is an important tuning variable of the optimization process since this
can either increase or decrease the computational time depending on the amount of mutation and
population.

Creating a stopping rule is the final step of the genetic algorithm. It is possible to stop the algorithm
either after a certain amount of iterations or computational time or after a specified amount of iter-
ations without any changes in the members with the best fitness.

One of the advantages of GA is that it can be implemented even if the optimization problem requires a
non-linear objective function. Literature presents a number of maintenance optimization problems
applying a genetic algorithm as in [65, 67, 73, 86, 87].

The examples in the table below show that it is possible to apply a GA to a variety of tasks within the
optimization process. Depending on the objective of the approach it can be used to determine the
best maintenance slots but also to find the optimal sequence or group of components for a specific
slot.

When implementing the genetic algorithm as explained above a number of decisions about the GA
operators need to be made. Different studies chose to either use existing, calculated or approximated
operators in order to define the population size, mutation rate, crossover and stopping rule.

4.3.2. Markov Decision Process

Markov chains are an important aspect of stochastic processes and can be applied to a variety of real
life problems. In order to formulate the problem as a Markov Decision Process (MDP) it is crucial that
a clear set of states can be defined. Another characteristic is that any Markov process is a forward-
looking process, therefore any event in history does not effect the decision in the future. The decision
is purely based on the state at the time of inspection. [85]
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The MDP can be characterized by a number of steps which need to be followed. Initially a set of
states and their respective conditions and a set of actions are required to be determined. After each
transition the state can be observed and a decision about the action can be made. Not all actions are
possible for all states, therefore those dependencies are required to be established in the definition
of sets in the beginning. Based on the observed state and chosen action a cost factor for that specific
combination and a transition probability for the next transition can be determined. The objective is
then to find the order of actions resulting in the lowest expected average cost per unit time depend-
ing on the chosen actions at various states.

Maintenance schedule optimizations provide a suitable real life situation for a MDP. The degradation
levels are easily translated into states as done in [75, 83, 88, 89]. A MDP solution however easily gets
very large and complicated if the number of states is high. In case of many states or interdependen-
cies which needs to be taken into account.

Some of the examples use the MDP in order to determine at all decision points whether or not a
maintenance action should be performed or not. Some even determine which kind of maintenance
task(s) would be optimal for the situation at hand. Itis however also possible to use a Markov decision
process to model the degradation process of individual components as shown in [75].

For all MDPs it is crucial to define a number of sets of for example health states, degradation states,
transition rates and transition conditions.

Table 4.3: Overview of Optimization Approaches in Literature

Ref. Year Optimization Assignment of GA operator/
' Approach the Algorithm MDP characteristics
GA assigning components to a time slot and existing operators (scattered
[65] 2015 ordering the components per time slot crossover and Gaussian mutation)
. . existing operators (scattered
GA evaluating risk . .
[67] 2009 & crossover and Gaussian mutation)
identifying the important components and . .
GA . fy & . b p RSM is used to determine operators
[73] 2012 optimize the maintenance periods
GA determine best sequence of maintenance one point crossover process and set
[86] 2012 actions mutation rate
. . . standard operators (single random
determining maintenance time and . )
GA o . splice crossover and set mutation
[87] 2000 component combination per repair rate)
. . . . set of health states; set of
determine at which decision points a . L.
MDP . . environmental condition states; set
[83] 2013 maintenance action should be performed - ..
(ransition rates and conditions
determine next inspection time and L .
. spection t . calculated transition probabilities
MDP determine what kind of maintenance action
[88] 2005 . . . between states
(major, minor, no repair)
determine whether or not to perform CM set of system states, time periods,
(89] 2005 MDP and PM and if no maintenance how much failure probabilities and completion
the system should produce probabilities
modelling degradation process of
MDP . §ccs P set of component health states
[75] 2013 independent components
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Prognostics as an Input to the Model

This chapter is an addition to Part I and further elaborates on the prognostics used in the case studies.
This research uses classification component prognostics developed for the bleed air system of a wide-
body fleet of a European airline [90]. To implement the prognostics, it is first explained in Section 5.1
which prognostics information from the model is used in the maintenance scheduling model. After
which an approximation of the failure function is presented in Section 5.2. Then the implementation
of the prognostics in the model is presented in Section 5.3.

5.1. Prognostics information obtained from the tool

The maintenance scheduling approach combines component prognostics and available maintenance
slots for a certain time frame to determine when to repair the component. The chosen component
prognostics model is unfortunately not available to obtain actual prognostics information and there-
fore the presented results of the research are used as an input to the maintenance scheduling model.

One conclusion from the component prognostics model is that 63% of the predictions made are 'no’
predictions and therefore only 37% are 'yes’ predictions.
It is furthermore also possible to determine the positive and negative predictive values.

¢ Positive Predictive Value (PPV) = Prediction = % =0.31

* Negative Predictive Value (NPV) = 7=~ = 0.86

Where T'N is the number of true negatives associated with the prognostic, FN is the number of false
negatives associated with the prognostics, TP is the number of true positives associated with the
prognostic and FP is the number of true negatives associated with the prognostics.

Meaning that only 31% of the yes predictions correctly predict a flight deck error (FDE) in the up-
coming ten days and that 86% of the no predictions correctly predict that no FDE occurs in the next
ten days.

The classification component prognostics model is intended to be run on each consecutive day to
determine on every day a prediction for the upcoming 10 days. If one is at a specific day the current
prediction for the next 10 days is known and also the previous predictions would be available for their
respective time frames as shown in Figure 5.1.
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Moment of Decision Making
for Maintenance Scheduling

Figure 5.1: Overview of the prognostics

5.2. Failure Function Approximation

The classification component prognostics model does not provide any failure probability informa-
tion and therefore an approximation needs to be found if one wishes to include a certain increase in
failure probabilities.

Since 94% of all components show a constant hazard function [52] a failure distribution which leads
to a constant hazard function is most likely to be correct. The exponential distribution is the only
continuous distribution with a constant hazard function and therefore an exponential function is as-
sumed for future steps.

The rate parameter A describes the average failure rate as can be seen in equation 5.1. Thus on
average once in 354 days the bleed air system fails on the examined fleet used in this prognostics
model implementation.

1

" 354
The failure function can then be calculated as shown in equation 5.2 and the function can also be
seen in Figure 5.2.

(5.1)

F(x)=1-exp(-1x) (5.2)
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Figure 5.2: Approximated Failure Function of the Bleed Air System
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Knowing the time since last repair or replacement it is, therefore, possible to approximate the failure
probability at a specific day (see equation 5.3.

F(t;)=1—exp(=At;) (5.3)

5.3. Implementation of the prognostics information in the MCTS

To use as much of the actual results of the component prognostics the failure function and the accu-
racy values of the prognostics are used in the maintenance scheduling model in the form of biases
and punishments as shown in Table 5.1

Table 5.1: Implementation of prognostics information

Implemented in MCTS

- As a bias when randomly

creating predictions

- Choosing biased random simulated
PPV and NPV actions related to predictions

- As punishments

Failure Function

Implemented as a form of punishments means for example that a decision not to repair receives a
high punishment value if there was a yes prediction for failure with high accuracy. How exactly this
is done is described later onward in the punishment section of this model.

How the predictions are implemented is a complicated topic due to the fact that actual predictions
are not available. If the maintenance scheduling model would, however, be applied in the real sit-
uation where the classification component prognostics model would also be available the situation
at hand would be as presented in Figure 5.1. Since those predictions are not known they are created
randomly with a bias related to the amount of yes and no predictions in the confusion matrix.

The maintenance scheduling model will also use simulated predictions of future days which would
not be available at a specific day when starting the optimization process. Using those simulated
predictions which would not be known yet are the main advantage of the chosen modeling approach.
The chosen action for a specific day can be related not just to the information from the past but also
to possible future predictions.

An overview of the three types of predictions, where they come from, what they mean and how they
are used can be seen in Table 5.2.
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Table 5.2: Types of predictions and their creation and usage in the MCTS

Made on Made for .. .
which days? which days? Creation in MCTS Usage in MCTS
Randomly generated | Punishment 2
Current . . S
rediction day1 day 1 -day 10 with bias (prediction is compared
P failure function with simulated action)
Punishment 3
. (includes '’known’ predictions
each time the .
. . . Randomly generated | of previous days to enforce
Previous | previous L, upcoming 10 days s s .. .
. . . with bias a decision towards repair or
predictions | days as shown in . . .
Fioure 5.1 failure function no repair based on the amount
& ’ of Yes and No predictions
in the last L), days)
ing L h ti Punish 2
upcoming Ly eac tlrpe the Randomly generated qnls ment o
Future days upcoming 10 days with bias (Simulated predictions
predictions | (notknownyet | asshown in ) . in the future are compared
. failure function i .
on current day) | Figure 5.1 with simulated actions)
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Monte-Carlo tree search Model Description

This chapter again further elaborates on the Monte-Carlo tree search model presented in Part I. The
Monte-Carlo tree search method is especially useful when handling simplified data similar to our
approximated classification component prognostics input. The MCTS is also able to incorporate
future predictions which are not yet known at initialization in the form of possible future situations.
This section will first elaborate on the tree structure and the tree characteristics of the Monte-Carlo
tree search. After which the simulation is described. Then the punishment structure is presented to
evaluate the simulations. The main model then is extended by two model extensions. At the end, a
description of all steps of the Monte-Carlo tree search is shown.

6.1. Tree Structure and Tree Characteristics

6.1.1. Layout of the Tree

The Monte-Carlo tree search (MCTS) considers a fleet of I aircraft and a scheduling horizon of Ly
days into the future and takes the prior L), days into account, where L, is defined as a negative num-
ber (L, <0), as can be seen in Figure 6.1

Ly Initialisation Lg

Ao 98| F| 6| 5|4 a|2]|a]la[2]a] %56 7] & a/ia

& > < >
Previous ‘known’ prognostics Maintenance scheduling horizan

Figure 6.1: Time frame of the MCTS

The tree will therefore have L; layers where each layer L, 1 < j < Ly, has k;j nodes, 1 < k; < ni hild"
Where n.pi;4 is the maximum amount of possible child nodes and ni 1d the maximum amount of

possible nodes on layer L;.

hi

Each layer L;, which is the j* " layer of the tree, includes the following information valid for all i € I
andl<j<Lg:
Lj:(my,j,myj,... m;j;P1j,P2j,.., Pij) (6.1)

Where m; ; is the maintenance opportunity of aircraft i on layer L; and P; ; is the prediction to fail

for aircraft i on layer L;.

And each node nj x;, which is the k'™ node on layer L j» includes the following information valid for
J

alliel,1sjsLgandl=<kj=<n},. .

nj,kj . (al,j,k}.,az,j,kj,..., ai,j,kj;Sl,j,kjrSZ,j,kjr---rSi,j,kj;Fj,kj;Rj,kj;xj,kj;Aj,kj; UCBljyk].) (6.2)
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Where a; j k; is the action taken for aircraft i on node n;;, Si j k, the status of aircraft i (whether or
not it has been repaired up until) on node n;x;, Fj i, the infeasability flag of nj ;, R; ; the random
rollout value of node n;, k> Xjk; the counter of how often node n;, k; has been included in an iteration,
Aj k; the award value of node 7, and UCB1j x, is the UCB1 decision value of n ;.

There is furthermore a root node 1y on the 0" layer of the tree, which is equipped with a counter
of the root node xy and the Award value of the root node Ay. Their computations are similar to the
counters and award values and will be explained below.

no : (xp; Ao) (6.3)

All tree information and tree statistics stored in layers L; and nodes n;,; introduced above will be
further elaborated on below. Figures 6.2 and 6.3 show an example of how the layers L; and the nodes
njk,; are implemented in the tree.
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6.1.3. Node Creation and Numbering

Each layer L; consists of multiple nodes n; ;. Each node n;y, is identified by an index k;. Which
index k; is associated with the node is dependent on the index k;_; of the parent node, the layer L;
on which the child node is initialized and the amount of aircraft I of the operational context.

kj(kj-1,j, 1) €{(kj—1 = 1) ncnita + L kj—1 Renitab (6.4)

As can be seen above, the possible values of k; range from (k;j—1 —1) - ncpjjq + 1 until kj—1 - nepjq and
are therefore directly linked to the maximum amount of possible child nodes n.y;;4. A few examples
of the numbering scheme can be found in Figures 6.4, 6.5 and 6.6.

o B 8 8 B

Figure 6.4: Sample node creation and numbering Part 1

=00
=1
j=2 =R
iz-"- ] 42; 1
EST bl Bom00
Figure 6.5: Sample node creation and numbering Part 2
3;,1,4= 00
=1
=2 4 (o 181 et
B 521 B2 10 Ag =
EERL bl 3z~ 3z =01 iz~
Figure 6.6: Sample node creation and numbering Part 3
Parent Node Definition
Node Nj-1,k;_ 18 the parent of nodes Njk;» with 1 <k; < noild: The index k;-; of the parent node
_[_k ;
nj-1,k;_, can be computed as k;j_1 (1, k;) = [ nch”d-l. And therefore the parent node is presented as

n‘ 1|' K -|
I= | nghina

6.1.4. Available Maintenance Slots
The maintenance slots m; ; are defined for each layer L;, 1 < j < L, and each aircraft i, i € I.
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m;,; €40,1,2} (6.5)

2 if AC i has a specific maintenance slot for its tail number on day j
m;, ;=41 if ACi has a generally available maintenance slot on day j the type of AC i (6.6)
0 if ACi has no maintenance slot on day j

At day 0 the values for m; ; are generated in advance and are stored in the respective layers L;.

6.1.5. Action and State
The action a; j i; and the state S; j i, are defined for each aircraft i, i € I, on node nj s, with 1 < k; <

and 1 < j < Ly, where ni nilq 18 the maximum amount of possible nodes on layer L;.

J
Mehila

ild

ai,jk; €10,1} (6.7)
- 1 ifatnode njx; itis chosen to repair AC i on day j 6.8)

R 0 ifatnode njy, itis chosen not to repair AC i on day j ’

and
Si,j,k €1{0,1} (6.9)
_J1 ifatnode njk; AC i has been repaired between day 0 and day j (6.10)
“P% 710 ifatnode n j.k; AC i has not been repaired between day 0 and day j '

Which actions a; ;, k; are possible depends on the state S; ;1 ki1 of the previous (parent) node n; Lkj,
and the maintenance opportunity m; ; atlayer L;.

Oorl ifSi,j—l,kj_1 =0and mj,j =1
@i, jik; (Si,j-1 k0 70,7) = 1 O i Sij-1kym =1 e
0 if mi,j = 0

Those three options are shown below in Figure 6.7.

a1,21=0 a1,21=0

$121=0 $121=0

Figure 6.7: Sample Possible Actions depending on State and maintenance opportunity
The possible actions will furthermore be constrained by the maximum amount of possible repairs at

the same time M. Therefore for a given layer Lj, 1 < j < Ly, and a given node nj;, 1 < kj < nihild,
on that layer, the following needs to be true:
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I
Z ai,j,kj = Mj (6.12)
i=1

Similarly the state S; j ; of aircraft i at node n;,x; depends on the state of the previous visited node
nj-1k,_, and the action a; j ;-

Si,j,kj (Si,j—l,kj_lr ai,j,kj) = min{Si,j_ij_l + ai,j,kjr 1} (6.13)

It is furthermore important to specify the order of actions a; ; x associated with each node n; ; such
that the above-mentioned node numbering scheme works. This is ensured by creating a fixed order
of actions on day 0. The order is stored in a matrix AO with a size of (I X n.p;14), where n¢pi;4 is the
maximum amount of possible child nodes.

The matrix AO shows the different aircraft i, i € I in the columns and each row presents the actions
for the different nodes kj, 1 < k;j < ncp;q.

a1 az,1 ara,
a2 az,2 a2
ai,1,3 az,1,3 ar1,3
AO = (6.14)
a4 az,4 ar,4
| Q1,1 nchita A2,L,ncpita - AL nchia |

Meaning that the pattern of actions a;j k; attributed to node n; ; for all aircraft i, i € I and layers j,
1< j=L,isrepeated as followed:

a1, j bnepa+k = @1k With b=1,2,3,4,5,..20~D (6.15)

It can indeed be seen in Figure 6.6 that a; 11 = a121 =a129=1and thatay 14 =az24 = a2 2,12 =0.

6.1.6. Prediction

The MCTS considers a scheduling horizon of L; days into the future and takes L, days of the past
into account. As explained in Chapter 5, the predictions are randomly created to represent the actual
prediction output of the prognostics tool. A yes/no prediction is made for each aircraft i, i € I, and
foreachlayer Lj, 1 < j < L. The prediction then means that the tool predicts whether or not a failure
will occur in the next ten days (j + 10 days).

P;jei0 1) (6.16)

p { 1 if tool predicts on day j that the component of AC i will break in the next L; — j days
ij=

0 iftool predicts on day j that the component of AC i will not break in the next L; — j days

(6.17)

At day 0 the values for P; ; are generated in advance and the values between day 1 and day L, are

stored in the respective layers L;. Whereas the predictions of the days prior to day 0 are stored in

a separate matrix Py, where each row presents a layer L;, L, < j < —1, and each column shows the
predictions of an aircraft i, i € I.
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P11 Py Pr1
p1,-2 P Pr—»
P35 Py_3 .. Pr_
P,= 1,-3 P2-3 1,3 (6.18)
P,y P34 .. Pry
.PLLp P2,Lp PI,L,,.

The bias used to randomly create the predictions is linked to the failure function in Figure 5.2. Mean-
ing that a component with a long time since last repair ¢, is more likely to present positive failure
predictions.

6.1.7. Counter

The counter x; x; indicates how often a specific node n i, with k;, 1 < k; < ni
L, has been included in an iteration.

nilgonlayerLj, 1< j<

0 at initialization
after first random simulation
ik = k-ncpita (6.19)
1+ Z Xj+l,u iij"k21

U=ncpijq-(k=1)+1

Each counter is, therefore, a summation of the first iteration and the counters of the child nodes.
Using this method as can be seen in Figure 6.8 all related counter values x; k; are automatically up-
dated.

Kqq=T+Xp 4*Xp 2

Xz 1="1¥X3 4+X3 7 Xz =1%Xg 3+K3 4

K3 4= _[K32=  [¥33= __|[X34= .

Figure 6.8: Sample counter computations

The root node ny is also equipped with a counter xy which adheres to similar concepts as the counter
on other layers x; x;, meaning that it is either 0 at initialization or the sum of all counters of its child
nodes.

0 at initialization

X0 = k-ncnita ) (6.20)
Xj+1,4 after expansion

U=nepjrqg-(k=1)+1
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6.1.8. Infeasibility Flag

As stated above there are many cases where a child node is not a feasible solution to the problem.
To cope with the numbering scheme of the actions and nodes, an infeasibility flag is incorporated to
know when the node does not require further simulation. A flag is defined for each node n; ,, with
J

I<skj=sng..,

andl<j<Ly,.

Fj,kj €10,1} (6.21)

0 ifnode nj k, is not a feasible node

Fir =4 . i ‘ (6.22)
" |1 ifnode njy, is a feasible node

k

It is dependent on the actions a;j k;, the states S
b= ’["chitd

-| of the parent node n i-Lkj1 and the
maintenance opportunities m; ;.
0 ifa;jr =1landS . 171 foranyiel

bi=1, ’V”child-‘

ifajjx; =land m;j=0 foranyiel

if ¥, aijk; >M; foranyiel (6.23)

Mchild

Fisy(@ijap S, [ Tmi.j) =

if j=Lg

—= o O O

all other cases

6.2. Simulation

Each node n;, is evaluated based on the potential shown during random rollout simulations. Dur-
ing those simulations, a random combination of actions and classification component prognostics
are simulated.

6.2.1. Simulated Action

Unlike the actual action 4;, j,t;, the simulated action 4; ; is not a node property but an action which
is randomly chosen in the simulation process for each simulated layer j, j < j < L, and for each
aircrafti, i e I.

Note: The index j is now a set input constant (layer L; of the start of the simulation) for a simulation

and unlike before a changeable variable.

dl-’]r €10,1} (6.24)

(6.25)

{ 1 if the random simulation chooses to repair AC i on day j
al,j =

0 if the random simulation chooses not to repair AC i on day

Which action g; 7 is chosen in the simulation for aircraft i on layer ] is constrained by similar aspects
as the actual actions a; j,x; and therefore it is dependent on the state of the leaf node S;,j x; and the
maintenance opportunities of the simulated layers m; i
Note: The index k; is now a set input constant (node nj i, where the random simulation starts) for a

simulation and unlike before a changeable variable.

0 ik, =1
a; §(Si,jk;m ;) =40 if m; ;=0 (6.26)
Oorl ifSl-,_,-,kj =0and mijzl
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And all other cases are therefore constrained by a maximum amount of possible simultaneous repairs
on layer L; (M;) and the fact that each aircraft should only be repaired once in L; days.
It is defined for each layer j, j < j < L, that at most only M ; aircraft can be repaired:

1
> d;i<M; 6.27)
i=1

And it is defined for each aircraft i, i € I, that, it can be repaired at most only one time between day j

and day Lg;:
L

U

a;;=<1 (6.28)

J

J

In the case of S; j, k; =0 and m; j=1las stated in equation 6.26 a biased random generator simulates
a1 or 0 decision:

Prob(a; ;=1)=031 ifP;;j=1
zzl.j={ (@,j= 1 b (6.29)

Prob(a; ;=0)=086 ifP;;=0

6.2.2. Random Simulation

At day j for all aircraft i for all simulated days j, j < j < L; a random selection of simulated actions
a; ; based on equations 6.26, 6.27 and 6.28 is generated. How well the simulated action compares
with the prediction is computed in the rollout values and the punishments as explained below.

6.2.3. Award and Rollout Value Computations
Each node n jk; 1s furthermore equipped with an award value A jk; and a random rollout value R ke
The random rollout value is computed using a random simulation of the next L; — j days and it is
restricted by a maximum possible rollout value R;;,.

Aji €RT (6.30)

Rjr; €R", (0<Rjt; < Rm) (6.31)
0 ifxjx; =0

Aj,kj _ Rj,k] - iij,kj =1 632
Rk, + ) Ajpru ifxje >1

U=ncpjjqa-(k=1)+1

As can be seen in equation 6.32, when a node is initiated the award value A}, is set to zero. Before a
simulated rollout is performed both the counter x; x; and the award value Aj ; are still equal to zero.
Once the simulated rollout is performed the counter x k; updates to 1 and the award value A;, k; to
the newly obtained rollout value Rj ;. After which the award value A; i; will be updated after each
iteration by adding the newly obtained rollout values along that branch of the tree, by summing the
award values of the n; ks child nodes.

67



Ay 1=RRqy 1+ Az A5

Az 1 =RRz 1+A3 1+A3 Az 5 =RRp oAz 3+A3 4

‘%,1 = ...|A3,2 =...|A3,3 = _|Aza= .

Figure 6.9: Sample Award Value Computations

The root node ny is also equipped with an award value Ap, which is based on similar concepts as the
previously defined award values on other layers Aj i,. Therefore it is also equal to zero when the root
node has not been part of an iteration yet xo = 0 and it is the sum of the award values of its child
nodes (see equation 6.34).

Ap eR" (6.33)
0 if X0 = 0
Ag = Mchild . (6.34)
Z Ajilu if xg=1
u=1

The random rollout simulation uses a random combination of yes and no predictions and simulated
yes and no repair actions to compute the potential of choosing a specific node.

The random rollout value can be computed using a maximum possible rollout value R, subtracted
by the sum of all punishments n, 1 < n < N, on node Njk;» with 1 < kj < nepjjg and 1 < j < Ly, per
aircrafti, i e I.

The maximum possible random rollout value R, is dependent on the amount of punishments N,
number of days into the past L; and the amount of aircraft I.

Rpn=N-(Ly-1-1I (6.35)
Ateach nj;, Rj; is defined as:
0 ifxo =0
Rjk, = N L d 6.36
T R= Y Y Y Cogy 3021 (650
n=1j=ji=1

Therefore a rollout value R; i, close to R, shows a node with positive potential and few punishments
in the random simulation.
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6.3. Punishment Structure

6.3.1. Punishment Overview
The punishment values C,, j,iare defined on each simulated layer j, j < j < Ly, for each punishment
n,1<n< N, and for each aircrafti, i € I.

C ;.eRY,(0<C, ;.<1) (6.37)

n,j,i mj,i=

Punishments are the basis for the random rollout values Rj i, and therefore also of the award values
Ajk;- The initial model will include three punishments (N = 3) but they will be extended in future
updated model versions. The numerical value of the punishments is based on the accuracy of the
used prognostics tool as explained at the beginning of this chapter.

6.3.2. Average Lifetime Punishments

This punishment consists of two parts namely firstly punishing a repair action if the time since last
repair £, is shorter than the average replacement interval {; and secondly punishing no repair within
L, days even though the time since last repair #,, is larger than the average replacement interval ;.
The average replacement interval is computed from data related to the time between unscheduled
maintenance actions.

Punishment 1 C, ;; is defined on each simulated layer j, j = J < Lg, and for each aircraft i, i € I,
with the requirement being that the time since last repair £, is shorter than the average replacement
interval t5:

.
l_t_; if tr <tzand §; j, =1
-2 da; ;=1
Cii='"1% ift; <tzand a; ;= (6.38)
0 if S jx, =0anda; ;=0

Punishment 2, C; ; ;, is defined for the sequence of L, days, for each aircraft i, i € I, with the require-
ment being that the time since last repair ¢, is larger than the average replacement interval ;. The
punishment is allocated to day j.

l_t_ iftr>taandSi,j,k,-=0and“i,i:O

v

Coji = 0 iftr<ta (.39
if Si,j,kj =1

6.3.3. Simulated Prognostics Punishment

This punishment relates the simulated predictions P; ; at a simulated day j (between day 1 and day
Lg) with the simulated action a; 7k at the same day. Meaning that a simulated action is punished if it
does not match the simulated prediction on a specific day. The punishment is based on the accuracy
of yes or no predictions of the used prognostics tool and therefore the punishment is higher is the
accuracy is higher.

The second punishment value C3 jils defined on each simulated layer j, j < j < Ly, and for each
aircrafti, i e I.
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NPV if P; ; =0and a;;=1
(1-NPV) ifP;;j=0and Ezl-,fZO ,if NPV =0.5
} 0 if P; ; =0and di,]v=0 ,if NPV <0.5
Ca,ji Pijy @i j) = 9 N o (6.40)
(1-PPV) ifP;;=1and ai’j—l ,if PPV =0.5
0 ifP,-,j:Ianddi,j:I ,if PPV <0.5
PPV ifPi,j:Iand di,f:

6.3.4. Previous Prognostics Punishment

This punishment includes the '’known’ predictions made prior to initialization of the model. It pun-
ishes a sequence of 10 days if the amount of repairs in those 10 days does not match the prediction
made 10 days ago. The punishment is awarded on the last day of that 10-day sequence. The punish-
ment is also related to the accuracy of the prognostics model, meaning that the punishment is higher
if the accuracy is higher.

The third punishment C, ; ; is defined on each simulated layer j, j < j < L, depending on the actions
ai,j of the previous 10 days j — 10, ..., j, and for each aircraft i, i € I.

PPV ifPi,j_m:land Si,j,kj =0and ai’fZO
(1-PPV) ifP;j_10=1and (Si,j,k, =1lor a; ;= 1) and PPV =0.5
N 0 iij'j_l() =1and (Si,j,k, =lora, H 1) and PPV <0.5
Cyjilai J, Py 7) =4 . ' (6.41)
o ' NPV if P; j_10=0and (Si,j,kj =1lor a; ;=
(1-NPV) ifPjj10=0andS§; ;i =0and a;;=0 and NPV =0.5
0 if P; j—10=0and Si,jk; =0 and a; ;= 0and NPV <0.5

6.3.5. Expensive Maintenance Slot Punishment

This punishment is related to maintenance opportunities. It punishes a simulated maintenance ac-
tion if the action is planned on a day with a more expensive maintenance slot. An airline mainte-
nance schedule differentiates between specifically allocated maintenance slots of a specific aircraft
and generally available maintenance opportunities for a type of aircraft. Since the aircraft is already
taken of the active operational schedule for the fixed maintenance slots and the fact that mainte-
nance technicians are already scheduled it is cheaper to perform a repair then compared to a gener-
ally available slot.

The total amount of maintenance opportunities 7 M; and the amount of specific maintenance slots
SM; are defined for aircraft i, i € I between day 0 and day L;:

Let SM; be the set of all specific maintenance actions of m; 1, ..., m; 1, with m; j = 2. And let TM; be
the set of all maintenance opportunities of m; 1, ..., m; 1, with m; ; > 0.

Lg

SM;=)_ Ly, =2 (6.42)
j=1
Ly

TM;i=3} lm ;>0 (6.43)
j=1
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The fifth punishment C; ; ; is defined on each simulated layer j, j < J < Lg, and for each aircraft i,
iel

SM;
TMl ifdileandmijzl
; , ,
Cs 7,i(my 5 diy J) = 5 0 ifa; ;=0 (6.44)
]

6.4. MCTS Iteration Steps

The MCTS consists of four steps which are explained below.

/—> Selection —— Expansion —— Simulation — Backpropagation =5

Tree Deflaulr

Policy Poll.'.icy
\
- = J

Figure 6.10: Steps of one iteration of the MCTS approach

6.4.1. Selection

The Monte-Carlo tree search tries to balance its iterations between exploration and exploitation to
cover the nodes with the highest potential with the least computational effort. Meaning that it selects
nodes nj i, with high award values A; , and with few visits x; ;. The Upper Confidence Bounds
(UCBI) algorithm can be used to select a node. A trade off is made between exploitation (Term: A k)

In(xg)

and exploration (Term: Y where X is the counter of the root node). A weighting constant c,,
I

is used to balance those aspects and can be empirically tuned depending on whether one prefers
exploitation or exploration, in literature it is usually a positive single digit value (0 < ¢;, < 10).
The UCB1value UCBI x; is therefore defined for each node n ;, with 1 < k; < nihild andl<j<Lg:

In(xp)

UCB1jy, = Aji, +Cuw (6.45)

Xjk;
The average award value of node nj x;, with 1 < k;j < ni hild
the award value A;, k; by the amount of visits of node n;, k;-

and 1 < j < Ly, can be calculated dividing

— A Jrk;j
Ajj = —— (6.46)
Xjk;
The UCBI1 value needs to be calculated for all child nodes in question such that the child node with
the highest UCBI1 value can be selected as the most promising one for the next simulation iteration
as shown in equation 6.47.
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select nj i, with max(UCB1x;) (6.47)

To summarize:

1. Compute UCB1j, value for all nodes

(a) Calculate average award value A j,k; up until the node of interest

(b) Determine counter of the root node xq and counter of the node of interest x;

2. Select the child node n ikj with the highest UCB1 value UCB1}, k;

6.4.2. Expansion

If the selected node has been visited once before, x; i, = 1, it needs to be expanded. This means that
all n.pi14 possible child nodes are added into the tree and they get initialized with all node statistics
as explained before.

In case the node has not been visited before, x; x, = 0, this step is skipped and the node is directly
rolled out in a random simulation as explained in the next step.

ifxjr, =1 seestep4and expand the node 7k,
3.
if xjx, =0 see step 5 and perform random simulation of node 7 x;
yKj )

4. Expand the node by initializing all n.j;;4 possible child nodes (each child node equipped with
all node information)

6.4.3. Simulation

Simulation can start at a feasible node n ik; which has notbeen rolled out before (F;, k=1 and x k=
0). When such a node is found it can be rolled out in a random simulation which means that for each
simulated layer j, j < j < Ly, and for each aircraft i, i € I, arandom simulated action a; 7is compared
with the prediction P; ; made for that layer. The comparison is determined and documented in the
punishments C, 7 ;, which will then be used in the rollout value R; r; and award value A; i, as defined
in equations 6.36 and 6.32 respectively.

5. Confirm that simulation can start on the selected node (Fj x, = 1 and x;,x;, = 0)

6. Create a random combination of simulated actions a; ; for the next Ly — j days according to
the concept defined in equations 6.26, 6.27, 6.28.

7. Determine all punishments C, 5 ; for the given combination of predictions P;,j and simulated
actions 4; ;7 as stated in equations 6.38, 6.40, 6.41.

8. Compute the rollout value R, according to equation 6.36.

9. Compute the award value Aj x; according to equation 6.32.

6.4.4. Backpropagation

Once a rollout value Rj x; is found for node nj,, the award value A; x; and the counter x; ; of that
node are updated according to the concept explained in equation 6.32 and 6.19. This automatically
results in updating the award values and counters along that branch according to the concept ex-
plained previously (see Figures 6.7 and 6.8).

10. Update the rollout value R; x; of the previously rolled out node ; i,

11. Update the award value Aj x; of the previously rolled out node 7
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12. Update the counter x;, k; of the previously rolled out node n;, k;

13. All other award values and counters up until this node are automatically updated according to
the concept defined in equations 6.32 and 6.19

14. Start new iteration at step 1
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Additional Results

The results and findings of the main model and two interesting changes to the model were previ-
ously discussed in Part I of the report. These results of the Monte-Carlo tree search maintenance
scheduling model presented in Part I showed interesting and seemingly robust and correct results.
It is furthermore also interesting to analyze the possibility to schedule aircraft of different types si-
multaneously, since most airlines do not only operate just one type of aircraft but multiple. If one
allows the different types to plan repair actions also during slots of the other type it is possible to
schedule multiple aircraft of the same type at the same day. Due to a large increase in computational
runtime it is not possible to present a schedule for the full set of 20 aircraft as done before. This anal-
ysis focuses on four aircraft of type 1 and four aircraft of type 2. Table 7.1 presents the maintenance
schedule when the extension of having two types is implemented. Whereas the result of individually
scheduling the first four aircraft with just their own available maintenance slots and then the other
four aircraft with their general available type maintenance slots can be seen in Table 7.2.

Table 7.1: Scheduled Repair Actions 8 Aircraft of different types (scheduled together)

AC 1 | AC 2 | AC3 1 ACH | AC 5 1 ACG | ACT | ACS
type 1 I type 1 I type 1 I type 1 I type 2 I type 2 I type 2 I type 2
tr=178 |  tr=245 |  tr=233 } tr=657 1 tr=53 y tr=205 | tr=430 |  t_r=543

m.Yy Rf'pair?l my Repﬂfr'?l m.y Repm'r'?l my Repm’r?l m_y Rf‘pm’r?l m.Yy Repair?l my Repm’r?l m_y Repair?
Day Type | Day Type | Day Type 1Day Type | Day Type 1Day Type 1Day Type | Day Type
2 GM «IZOGM -:a GM —:1 GM —IIOGlelt)GM -:a GM —IIOGM -
3 GM T 3 GM v | 6 0GM T 2 0OGM v | 3 OGM I 3 GM v | 6 GM v | 2 GM =
5 GM - | 5 0OGM ] 9 OGM v |5 GM - |7 0GM - |6 GM - |9 6M - |5 OGM v
6 OGM - 1 6 0oGM I 17 Gm 110 GMm - 17 a6m -1 I 7 OoGMm =
7 0GM - : 9 OGM : : : :g GM - : :10 M -
] ] 1 ] p 10 _6M ] ]
Table 7.2: Scheduled Repair Actions 8 Aircraft of different types (scheduled individually)
AC1 I AC2 I AC3 I AC4 I AC5 I AC6 | ACT | AC8
type 1 : type 1 : type 1 : type 1 : type 2 : type 2 : type 2 : type 2
tr=178 | tr=245 | tr=233 | tr=657 | tr=53 | tr=205 | tr=430 | tr=543
o Repair? : m_1 Repair? : m.d Repair? : m_y spm‘r?: -y epair? : m.J epair? : Y Repair? : m_J Repair?
Day Type ' Day Type 1Day Type 1Day Type 1Day Type Day Type Day Type 1Day Type
2 6M v |3 GM - ;3 GM |1 6M v 10 GM | 3 6Mm |3 6M v 2 6M v
3 GM E | 1 | 5 GM - | 6 GM v | 6 GM - 110 GM
5 GM I 1 1 7 6™ - I 7 GMm 1 9 &M -
| : : | s o - ! :
1 1 1 1 j: 10 GM 1 1

We can see that Table 7.1 shows that all aircraft have more maintenance slots available to them and
that indeed multiple aircraft are scheduled during an opportunity of the other type.
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Unfortunately by extending the maintenance scheduling mode with 2 types of aircraft, the feasible
search space of the Monte-Carlo tree search is increased drastically. Which furthermore results in
long computational runtimes which makes it in the current form less applicable in an operational
airline context.

The extension with 2 types in its’ current form furthermore seems to schedule a lot of aircraft because
there are the opportunities to do so even though they were not scheduled when not presenting them
with the option of using alternative maintenance slots. It seems as the time since last repair is taken
into account less then when there is a limited maintenance slot availability.
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Discussion

8.1. Main Maintenance Scheduling Model

Scheduling Results

The main objective of the model is to schedule multiple aircraft simultaneously for a pre-defined
amount of days into the future. This needs to be done using classification prognostics and available
maintenance slots into account. As shown in Part I this is indeed the results of the proposed model,
which is also done is a comparatively accurate manner. Most of the aircraft scheduled for mainte-
nance do have a time since last repair above the mean time between repairs. There are however also
some aircraft which have a shorter time since last repair but are scheduled either way and others with
a high time since last repair which are not scheduled.

These differences between the scheduling results and what would be expected can be explained by
the way the Monte-Carlo tree search makes its decision in the selection phase of each iteration. The
selection criterion selects a node with high awards and/or few visits during iterations. The current
model does not include a check whether this is actually is the best node. Especially in the final it-
eration this check is missing in order to guarantee that the most logical aircraft are scheduled for
repair.

It can however nicely be seen that the model indeed favours specific maintenance slots over general
maintenance slots when scheduling maintenance. This nicely shows that the distinction between
cheaper and more expensive maintenance slots improves the maintenance scheduling model to-
wards a cheaper overall solution.

Robustness

A positive result of the main model is also the high robustness of the main maintenance scheduling
model. Presenting the model with the same input of time since last repairs, available maintenance
slots and prognostics of previous days leads to a similar result. Meaning that almost identical aircraft
are scheduled and that the schedules only sometimes deviate on which days the aircraft is scheduled
for maintenance. In the presented case that 2 aircraft switch on which days they are scheduled has
the effect that the airline do know on which days the maintenance actions is scheduled but not for
which aircraft. They are however scheduled on specific maintenance slots which means that it is al-
ready scheduled out of operations and thus no negative effect for the airline can be expected from
this slight uncertainty. The fact that one aircraft is not consistently scheduled during all runs has
however more negative effects on an airline. These are however last drastically because the mainte-
nance is scheduled at the end of the scheduling horizon and therefore new prognostics insight would
improve the decision making. This overall good performance with respect to robustness allows the
therefore conclusion that the model will also be able to robustly schedule larger amount of aircraft.

Runtime
The up-scaling of the case study with larger fleet sizes is however hindered by the steeply increas-
ing computational runtimes for larger amount of aircraft. The reason for this is the large increase
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of possible child nodes and therefore the possible options to evaluate. Up until around 20 AC of the
same type the runtime is, however, feasible for an operational context. Most airlines operate vary-
ing amount of aircraft of the same type and therefore many of those cases are below 20 aircraft but
others are also above and therefore making the current model implementation less useful for those
situations.

8.2. Probability Failure Distribution Prognostics

Expanding the model with failure distribution as a prognostics input instead of component prognos-
tics as presented in Part I nicely showed that the chosen model is also able to incorporate probabil-
ities in the decision making process. Adding failure distribution probabilities add additional knowl-
edge to the maintenance scheduling model. The current version implements an approximated fail-
ure distribution and therefore no accuracy information of those probabilities are included.

8.3. No Simulated Prognostics

Removing the simulated prognostics and just considering the known prognostics of the previous days
and day 1 shows that the results are almost identical as before. This means that the simulated prog-
nostics and the related punishment to that do not have a large effect on the maintenance scheduling
process.

8.4. Two Types of Aircraft

Changing the model in order to be able to incorporate multiple types of aircraft while allowing them
to be scheduled on maintenance slots of the other type presented an interesting case study but
proved to be not yet sufficiently developed. The current runtimes only allow for extremely small fleet
sizes to be scheduled in a reasonable time frame. The results furthermore showed that the current
model schedules maintenance progressively, meaning that it schedules also aircraft with low time
since last repairs. This behaviour is not yet sufficient for an airline application.

It is however also clear that the model extension is only required if one wishes to allow aircraft to
select maintenance slots of other types. If one would simply schedule multiple types of aircraft with
their own maintenance slots no changes to the model would be required and the original main model
could be applied.
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Verification and Validation

In order to ensure the correctness of the Monte-Carlo tree search maintenance scheduling model, it
is important to verify and validate the model and its’ results. Verification as described in Section 9.1
analyses whether the maintenance scheduling model performs the computations correctly. Then the
validation in Section 9.2 evaluates whether the model appropriately represents the actual operational
context.

9.1. Verification
The verification of the maintenance scheduling model is performed in a unit and a system analysis
in order to ensure that all parts of the model and also the full model perform as expected.

During the one-step analysis, each part of the model and its implementation are walked through to
confirm that the step is indeed defined correctly. This is done using careful logical analysis and test-
ing each step with simplified and standard input parameters (no maintenance slots, always mainte-
nance slot, no failure predictions, always yes failure predictions, extreme accuracy values). Whenever
a step not presents the expected output the step is reviewed and improved followed by another anal-
ysis until the final model at its’ implementation behaves as expected when confronted with extreme
input.

A similar process is used to verify the complete model. Analyzing each connection between individ-
ual steps and their order in the overall model guarantees that not just the specific units but also the
overall system performs as expected. This is again confirmed with an extreme value analysis of the
whole model.

9.2. Validation
Validation of the maintenance scheduling model is performed in the form of a case study with airline
data combined with artificially generated data.

Using the input data as presented in Part I the maintenance scheduling is performed and the results
are analyzed. By evaluating that indeed no repairs are scheduled on days without maintenance slots
and that aircraft with appropriate time since last repair times are scheduled shows that the mainte-
nance scheduling model is indeed able to correctly represent the actual airline maintenance opera-
tion.

Unfortunately, no maintenance scheduling models using prognostics and available maintenance
slots of multiple aircraft are currently applied at airlines, therefore, it is not possible to compare the
results of the proposed maintenance scheduling model with existing and therefore verified and vali-
dated models.
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Conclusions and Recommendations

As stated before, the Monte-Carlo tree search maintenance scheduling algorithm is able to robustly
schedule multiple aircraft based on their failure prognostics. The main issue of the current model
and its’ extension is however the run time. As stated in the literature review, many other scheduling
models only start the planning process once an aircraft is triggered due to high time since last repair
or low remaining useful life. The deliberate choice of considering all aircraft and letting the model
compute which ones to repair ensures that all possible options are considered but is also the main
reason for the high computational run times. The main recommendation is therefore to work on
reducing the computational time for larger sets of aircraft. One might look into implementing some
form of trigger to remove aircraft not fulfilling any of the criteria required in order to be scheduled or
otherwise increase searching efficiency. But it is also interesting to evaluate different selection pro-
cedures in the MCTS steps or to improve the current UCB1 procedure. The current implementation
uses the default value of v/2 as a factor between exploitation and exploration but other tuned factors
might improve search efficiency while delivering similar maintenance schedules.

The fact that in the final iteration an aircraft with a clearly lower time since last repair was scheduled
instead of others also showed that the selection procedure is not yet perfect. In the final iteration a
check should be implemented to ensure that not a node with an award value comparatively too low
is selected only because of its’ few visits during iterations.

The failure distribution probability case study offers an interesting solution for further developments.
Probability prognostics create a more complete set of information about the health status of a com-
ponent which makes it more useful for further implementations. It is however required to further
improve the model in order to include the accuracy of the failure predictions which is not imple-
mented in the maintenance scheduling model.

It will also be interesting to compare the effect between continuous probability prognostics (increase
in failure probability per day) and just one failure probability. The first also offers the possibility to
apply a clear objective function and optimization of the maintenance scheduling whereas the latter
will most likely be less suited in the form of a Monte-Carlo tree search implementation since there
is no trend of prognostics which will largely increase the search space and therefore the runtime will
increase further.

The analysis of neglecting simulated prognostics showed that this is a feasible solution which presents
almost identical maintenance schedules as the main model without assuming prognostics input.
Further improvements of the MCTS maintenance scheduling model should therefore use this as a
standard setup.

Implementing the multiple type extension is a nice proof of concept but is currently not yet done
this way in the airline industry. Currently airlines only use the maintenance slots of the actual air-
craft type instead of using those of other types. This model showed that it might be interesting topic
to look into from an operational and from a scheduling point of view. If one wishes to further im-
plement this concept is is definitely required to improve the computational efficiency first and to
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analyse and improve the behaviour of the model if it is offered with many available maintenance
slots.

One possibility provided by the chosen Monte-Carlo tree search approach is the concept of a moving
horizon. This is currently not yet implemented but would be interesting to analyse since it results in
amore realistic solution. The current model once schedules all 20 aircraft for the upcoming ten days
but a moving horizon scheduling approach would be able to make use of an additional knowledge of
days once they have passed. By scheduling each day for the upcoming ten days while implementing
the new data of the last day would improve the usability and accuracy of the model further.

Another aspect which should be analysed if one wishes to improve real life airline operations appli-
cability, is the fact that the current maintenance scheduling model assumes each maintenance slot
be a full day and that is is always available to schedule an additional maintenance action, which is
clearly a strong assumption.

A Monte-Carlo tree search approach was chosen due to the simplified prognostics input available
and it proved to a suitable method for a simplified input environment. For future developments one
should aim however at obtaining more sophisticated prognostics data as an input to the planning
framework. Linking actual and more accurate prognostics information and the maintenance avail-
ability of the respective aircraft one would be able to develop a more accurate model. This would
then also make the implementation at an airline easier.
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