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Abstract This paper studies how streamflow predictability varies with basin characteristics. We
introduce an index of basin complexity that is based on a model of least statistical complexity that is
needed to reliably predict daily streamflow of the basin. We then relate it with climate, vegetation and soil
characteristics of the basin. Daily streamflow is modeled using k nearest neighbor model of lagged
streamflow that predicts next time step streamflow based on the occurrences of similar streamflow events
from the past. In order to calculate basin complexity, we identify difficult streamflow events of the basin
and then use Vapnik-Chervonenkis generalization theory, which trades off model performance with
Vapnik-Chervonenkis dimension (i.e., a measure of model complexity), to find a k nearest neighbor model
of appropriate complexity for predicting a difficult streamflow event of the basin. The average of selected
model complexities corresponding to difficult events is then defined as the basin’s complexity. Basin
complexity of 412 Model Parameter Estimation Experiment basins from continental United States are then
related with its six basin characteristics. All the characteristics have been derived from the Model Parameter
Estimation Experiment database to represent climate, vegetation and soil characteristics of the basins in a
concise manner. Results find that more complex basins that are drier have less seasonal rainfall, vegetation
with more storage capacity (i.e., smaller 5-week Normalized Difference Vegetation Index gradient), and
faster responsive soils. The results reaffirm prior observations that minimum complexity that is required to
model a basin depends on its climate and landscape characteristics (e.g., complex models do not perform
well in dry basins).

1. Introduction

One important lesson learned from the prediction in ungauged basins initiative of the International Associa-
tion of Hydrological Sciences is that variability in streamflow is controlled by climate and landscape attributes
of basins (Parajka et al., 2013; Viglione et al., 2013). Streamflow in ungauged basins are predicted based on
the transfer of understanding of the transformation of rainfall to runoff, in terms of models of similar but
gauged basins. Therefore, the ungauged basins where it is even more difficult to predict streamflow due to
its attributes such as aridity will not only have poorer candidate models to tansfer but also will have poorer
transfer of models itself.

Due to complex connections between processes and responses, streamflow predictability has been found
to be influenced by basin characteristics such as area and aridity (Parajka et al., 2013; Viglione et al., 2013).
Larger basins are expected to smooth out the effects of within basin process heterogeneities on its streamflow
responses more than smaller basins. As a symptom of difficulty of predicting streamflow in such basins, often
more complex models are needed to explain the response, which often is difficult when limited data are avail-
able. Thus, there has been a tendency to use simple models in dry basins and more complex model in humid
basins, even though the latter are hypothesized to have more linear rainfall-runoff processes (Parajka et al.,
2013). There is no doubt that models of different complexities work best only in certain environments (Fenicia
et al., 2011), and therefore, those models should be selected that are appropriate for the climate, vegetation,
and soil characteristics of a basin (van Werkhoven et al., 2009).

Basin characteristics have also been used to identify donor basins to transfer models to ungauged basins
with the understanding that predictabilty of streamflow depends on such characteristics. Several similarity
indices and transfer schemes have been proposed that rely on basin characteristics (Abdulla & Lettenmaier,
1997; Beck et al., 2016; Carrillo et al., 2011; Oudin et al., 2008; Parajka et al., 2005; Young, 2006; Zhang & Chiew,
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2009). It is therefore not surprising that the performance of such transfer schemes itself depends on basin
characteristics. This is because the performance of the models that they transfer is conditioned upon the latter
(Viglione et al., 2013).

This paper explores the question of how predictability of streamflow varies with basins characteristics yet
again, except that it studies how the former varies with multiple characteristics at the same time instead
of with one characteristics at a time. For example, the interpretation that larger basins are easier to predict,
based on one to one correlation, implicitly assumes that all other confounding characteristics, such as pre-
cipitation seasonality and drainage characteristics, are constant. What if bigger basins lie in regions of more
seasonal rainfall? Can some wetter basins be more complex, in terms of its streamflow predictability, because
its vegetation has more water storage capacity in a more seasonal climate?

We interpret streamflow predictability in terms of existing concepts of complexity and critical flow events.
Several interpretations of complexity exist that either interpret complexity in terms of model parameter
nonidentifiability (Beven, 2006), number of model parameters (e.g., Downer & Ogden, 2003; Jakeman & Horn-
berger, 1993; Keating et al., 2010; Young et al., 1996), number of reservoirs in a model structure (e.g., Bai et al.,
2009; Buttsa et al., 2004; Farmer et al., 2003; Martinez & Gupta, 2011; Sivapalan et al., 2003; van der Linden &
Woo, 2003), information content of data (e.g., Gupta et al., 2008, Marshall et al., 2005; Patil & Stieglitz, 2014;
Ye et al., 2008), or richness of underlying nonlinear dynamics (e.g., Kumar, 2011; Puente & Sivakumar, 2007;
Young et al., 1996). This paper interprets complexity in terms of difficulty in learning statistical patterns (Cucker
& Smale, 2002) from streamflow sequences and thus in terms of difficulty in predicting historically similar
streamflow events (Pande et al., 2009). Basins are then deemed more complex that generate streamflows that
are more difficult to predict. In other words, if more complex model is required to predict hydrologic processes
then this indicates that the basin is more complex. The paper relates basin complexity with its characteris-
tics in order to understand how streamflow predictability varies as a function of climate, vegetation and soil
characteristics of the basin. For this we comparatively analyze the characteristics and basin complexity of 412
MOPEX basins in the continental United States (Duan et al., 2006; Sawicz et al., 2011).

The paper is organized as follows. The first section on methodology presents the problem of learning from
the statistical patterns of past streamflow events. MOPEX data set that is used and cluster analysis is then
presented followed by the results section. These results are then discussed, followed by the conclusions
drawn.

2. Methodology

The problem of streamflow prediction is framed in terms of k nearest neighbor modeling (Lall & Sharma, 1996;
Sharma et al., 1997), which first identifies a query that is made up of lagged streamflows (e.g., streamflow
sequence at the last 𝓁 time steps). This then queries the model to predict the next time step streamflow and
makes a prediction based on finding lagged streamflow events from the past that are similar to the query.

A query is deemed more difficult if the error between what is predicted and what is observed in the next time
step is larger in general. That is, the statistical pattern corresponding to the query is difficult to learn from past
events and predict. This notion of difficulty, in particular the generality of errors (leave one out cross-validation
error used for assessing streamflow predictability in ; Viglione et al., 2013, is one example of generalized error),
of the next time step streamflow prediction is assessed based on Vapnik-Chervonenkis (VC) generalization
theory (Vapnik, 1982; Vapnik & Chervonenkis, 1971).

VC generalization theory expresses the worst-case performance of a model based on the ratio of its perfor-
mance of predicting streamflow in response to a given query and a measure of model complexity called VC
dimension (Shao & Cherkasky, 2000; Vapnik, 1999). The same ratio has successfully been used to constrain
average performance of models in high dimensional inverse problems (e.g., Bartlett & Kulkarni, 1998; Vap-
nik, 1999). The worst-case performance of a nearest neighbor model depends on the query it responds to.
That is, a model will perform worse on a query that is more difficult to predict even if the best possible model
is chosen for the purpose. Such a query may correspond to a rare streamflow event resulting from multiple
underlying processes or as a consequence of crossing thresholds that are otherwise crossed less often, such as
within basin connectivity of dry basins (Farmer et al., 2003). In order to identify such difficult to predict events,
corresponding time indices are identified that lie on the boundary of streamflow data cloud in 𝓁 dimensional
space (Singh & Bardossy, 2012).
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Figure 1. An illustration of k nearest neighbor streamflow prediction. Query, shown in black squares at the end of the
time series, is made of two lagged streamflow variables and seeks to predict the next time step value that is observed to
be +. For a given radius b = 0.3 m3/s, the model seeks other lagged streamflow vectors that lie within the 0.3 m3/s
radius neighborhood of the query. This is shown in the inset by the black dot, and selected similar occurring vectors are
shown within the circle with radius b. The prediction is the mean of next time step predictions of these neighboring
streamflow vectors, that is, the mean of values shown by x.

More complex basins are then the ones which have higher worst-case performance of the k nearest neigh-
bor models with least possible model complexity. That is, the difficulty in predicting streamflow of a basin
is framed in terms of the performance of the best possible streamflow predictions on the most difficult
streamflow events that the basin witnesses.

The following subsections further explain k nearest neighbor models and complexity regularized prediction
that is used to find the best possible prediction for most difficult streamflow events.

2.1. The k Nearest Neighbor Streamflow Prediction
Nonparametric models, such as k nearest neighbor models, avoid strong assumptions about rainfall-runoff
relationships (e.g., Karlsson & Yakowitz, 1987; Sharma et al., 1997; Yakowitz, 1993). The k nearest neighbor
models (Lall & Sharma, 1996) first identify k time sequences from the past that are closest to a query of, for
example, predicting the next time step streamflow. In case of hydrological time series, a sequence can be of
lagged rainfall, lagged streamflow, etc. The predicted stream flow of the query is the average of next time step
streamflow of k sets of similar sequences (i.e., k nearest neighbors).

Figure 1 is an illustration of the method of k nearest neighbor streamflow prediction. The input variables that
drive the model to predict stream flow Q(t+Δt) are lagged streamflow, Q(t′). The time indices, t′, for the input
variables lie between t and t − 𝓁Δt, that is, t′ ∈ {t, t − Δt,… , t − 𝓁Δt} for some 𝓁 ≥ 0 and Δt > 0 time step.

At any given time t, the nearest neighbor model predicts the streamflow for time t +Δt, Q̂(t +Δt). The model
predicts Q̂(t + Δt) based on the following steps.

1. Query: Take a set of lagged streamflow of predetermined size 𝓁, that is, {Q(t),Q(t−Δt),… ,Q(t−𝓁Δt)}. Call
this a query,

xo = {Q(t),Q(t − Δt),… ,Q(t − 𝓁Δt)}.

2. Nearest neighbors: For the query xo, find k nearest neighbors, {x1, x2,… , xk} from the past time series of
streamflow of the basin. This is done by arranging the time series in the same format as the query. For
example, xi , for i = 1, .., k, is a set of lagged variable from time periods t′i < tfrom the past, that is,
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xi = {Q(t′i ),Q(t′i − Δt),… ,Q(t′i − 𝓁Δt)}.

The k such vectors are picked that are closest to xo in terms of Euclidean distance.
3. Prediction: The streamflow prediction Q̂(t + Δt) is given by the mean of one step ahead streamflow values

of k nearest neighbors of the query xo. That is,

Q̂(t + Δt) =

i=k∑
i=1

Q(t′i + Δt)

k

We use a slight modification of the model as illustrated in Figure 1 (Pande et al., 2009). Instead of using k
nearest neighbors of the query xo, we define a rectangular kernel centered at xo that has a radius b. The kernel,
K(xj − xo;b), is such that whenever the Euclidean distance between xo and any other point xj is less than or
equal to b it calls xj as one of the nearest neighbors of xo. The value that the kernel takes for such a point is
1; otherwise, it is set to 0 (see also ; Pande et al., 2009). This is how Kb,𝓁 neighbors of xo are chosen for a given
value of b and 𝓁, which is by finding those xj whose Euclidean distance from xo is less than or equal to b.

If we represent the streamflow data set in lagged form by DN = {(Q(tj + Δt), xj)}j=1,..,N−𝓁 , then the nearest
neighbor model m(xo,DN;b,𝓁) ∶ xo → Q̂ makes a prediction Q̂(t +Δt) in response to the query xo based on
Kb,𝓁 occurrences that are similar as

Q̂(t + Δt) =

i=Kb,𝓁∑
i=1

Q(ti + Δt)

Kb,𝓁
, (1)

where ti is the time index of lagged streamflow that is one of the Kb,𝓁 nearest neighbors of the query xo. It
can be shown that the model prediction, Q̂, in equation (1) is obtained by minimizing the following objective
function with respect to yp,

rN(xo,DN; yp,b,𝓁) =

N∑
t=𝓁Δt

(
Q(t + Δt) − yp

)2
K(xi − xo;b)

N
Thus, the nearest neighbor model in equation (1) produces smallest weighted mean of residuals among all
possible models for given (b,𝓁),

rN(xo,DN;b,𝓁) = min
yp

rN(xo,DN; yp,b,𝓁).

The nearest neighbor model seeks occurrences similar to a query in the past with the idea that similar
streamflow is likely to follow next (i.e., corresponding streamflow pattern learned from the past will repeat).
Therefore, similar occurrences but with larger lags (𝓁) may be needed to identify sufficient number of nearest
neighbors to confidently predict the next time step streamflow in case of basins with heterogeneous land-
scape or with many processes involved in generating streamflow. The interlinkages between number of lags
𝓁, radius of neighborhood b, and confidence in predicting next time step streamflow are discussed next.

2.2. Complexity Regularized Prediction
The predictions made by a nearest neighbor model depend on the chosen number of neighbors, and there-
fore on b and 𝓁. Note that a prediction is made for each query, so a prediction is specific to a query. Therefore,
(b,𝓁) can be locally specified for each query. A query about next time period streamflow resulting from multi-
ple processes may require more lags of past streamflow in order to obtain more information. But this increases
the dimensionality of the prediction problem and may require more nearest neighbors to make a confident
prediction. This is because increased dimensionality increases model complexity, and therefore, more data (in
terms of nearest neighbors) are needed for a confident prediction. Such a tradeoff relationship between data
and model complexity is generally realized based on worst-case performance of models.

Pande et al. (2009) estimated a complexity index, called VC dimension h(b,𝓁), for nearest neighbor models
that is based on its worst-case performance (Shao & Cherkasky, 2000; Vapnik et al., 1994). In context of
nearest neighbor modeling of streamflow, worst-case performance corresponds to difficult or critical queries
that appear less often in stream flow time series. In this way, the estimated VC dimension describes the
worst-case\vspace*{4pt} performance of a nearest neighbor model. Since model performance is never worse
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Figure 2. The complexity index called Vapnik-Chervonenkis dimension,
h(b,𝓁), as a function of radius of neighborhood, b, and number of lags 𝓁.
Shown is h(b,𝓁) estimated on data normalized between 0 and 1. Hence,
entire data are covered by a radius of b = 0.5. For a given number of lags,
complexity increases with small radius of neighborhood, while for a given
radius of neighborhood it increases with the number of lags.

than its worst-case performance, the complexity index defines an upper
bound on model performance in general. Also note that different values
of b and 𝓁 result in different models, different worst-case performances,
and hence different complexity indices. Figure 2 shows the estimated VC
dimension (h) as a function of b and 𝓁, that is, h(b,𝓁).

If model performance of a nearest neighbor model is defined as the mean
squared error between model prediction and next time step streamflow
values of xi vectors in the neighborhood of the query xo,

rN(xo,DN;b,𝓁) =

N∑
t=𝓁Δt

(
Q(t + Δt) − Q̂(t + Δt)

)2
K(xi − xo;b)

N
, (2)

then the general performance of the model in predicting stream flow cor-
responding to any given query xo is given by the left-hand side of (Pande
et al., 2009; Corani & Gatto, 2006)

r(xo;b,𝓁) ≤
rN(xo,DN;b,𝓁)
vm(h(b,𝓁),N)

. (3)

Here r(xo;b,𝓁) = ∫ rN(xo,DN;b,𝓁)P(DN)dP(DN) with P(DN)
being the probability of sampling DN data from the underlying

streamflow-generating processes. The denominator, vm(h(b,𝓁),N), on the right-hand side is called Vapnik
Measure that is given by (Cherkasky & Mulier, 1998)

vm(h(b,𝓁),N) = max 0,

(
1 −

√
p − p log p +

log N
N

)
,

where p = h(b,𝓁)∕N. Note that vm(h(b,𝓁),N) increases when model complexity h(b,𝓁) increases.

The best possible model for a given query xo is obtained by selecting parameters (b∗,𝓁∗) such that the
right-hand side of equation (3) is minimized, balancing the mean squared error with model complexity. This
ensures that extremely poor performances are avoided on average, and the model is of complexity that is
appropriate for the query at hand.

2.3. Critical Indices Using Data Depth Function
The worst-case performance of a model corresponds to the maximum of r(xo;b,𝓁) with respect to possible
queries xo. This means that difficult queries bring out worst-case performances of the model. If x̃o represent
one such difficult query then the performance of its best possible k nearest neighbor prediction is given by

r(x̃o;b∗,𝓁∗) ≈
rN(x̃o,DN;b∗,𝓁∗)

vm(h(b∗,𝓁∗; x̃o),N)
. (4)

This is when inequality in equation (3) is tight (i.e., holds approximately with equality) and the worst-case per-
formance of the model on the difficult query x̃o in general (in general because it is over different realizations
of DN), r∗(x̃o) = r(x̃o;b∗,𝓁∗), can be obtained from the right-hand side of equation (4).

Here h∗(x̃o) = h(b∗,𝓁∗; x̃o) corresponds to the best possible model that can be selected to predict the difficult
streamflow event corresponding to the query x̃o. This essentially gives an indication of how difficult it is to
learn from the statistical patterns of past streamflow events and to predict streamflow of the corresponding
basin in general.

We use the concept of data depth function to identify critical time indices corresponding to difficult queries.
The data depth concept orders multivariate data from the center of the multivariate data cloud in an outward
direction by first establishing the centrality of observations. The aim is to find time indices corresponding to
unusual streamflow events that lie on the boundary of the cloud, thereby yielding difficult queries at those
indices (see Figure 3). We use Tukey half-space depth function (Tukey, 1975) for extracting unusual events
based on ICE (identification of critical events) algorithm of Singh and Bardossy (2012). We operate ICE on data
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Figure 3. (left panel) Identification of critical streamflow events using Tukey half-space data depth function on the
boundary of the data cloud. (right panel) Identification of time indices corresponding to critical streamflow events at the
boundary of the data cloud. Queries are then constructed on the corresponding time indices.

cloud in three-dimensional space that is made up of lagged streamflow vectors as q(t) = {Q(t),Q(t−Δt),Q(t−
2Δt)} for t = 3, ..,N.

Figure 3 shows how the critical indices are obtained that identify difficult queries for data cloud in
two-dimensional space. The queries constructed at these indices are then deemed difficult.

2.4. Basin Complexity
For a given difficult query x̃o identified by the ICE algorithm, the complexity index value, h∗(x̃o) = h(b∗,𝓁∗; x̃o)
from equation (4) reflects the difficulty of finding occurrences similar to the streamflow event corresponding
to the query. We define basin complexity as the average of log complexity, log h∗(x̃j

o), calculated on J difficult
queries from ̃ = {x̃j

o ∈  , j = 1,… , J} identified on DN lagged streamflow data set of the basin. Here  is
the set of all the queries. That is, the basin complexity is defined as

 =

∑
x̃o∈̃

log h∗(x̃o)

J
(5)

where h∗(x̃o) = h(b∗,𝓁∗; x̃o) corresponds to (b∗,𝓁∗) ← arg minb,𝓁 r(x̃o;b,𝓁).

3. Data Description and Analysis
3.1. MOPEX Basins and Its Hydrological Characteristics
The basin complexity described in equation (5) is calculated for 412 basins covering the continental United
States. Daily time series of streamflow for the basins are obtained from the MOPEX data set (Duan et al.,
2006; Sawicz et al., 2011), acknowledging that larger data set consisting of more diverse range of climate and
geographical domain could also be used (Addor et al., 2017; Newman et al., 2017).

In total, six hydrological characteristics of the basins are selected and described in Table 1. These character-
istics have been inspired by Sawicz et al. (2011) who clustered MOPEX basins from the eastern United States
based on six streamflow-based signatures and found systematic variation in climate, vegetation, and soil
characteristics of those clusters. The basin characteristics shown in Table 1 will be used to cluster the basins
with the underlying assumption that variability of streamflow with basin characteristics does not functionally
change within a cluster but changes across the clusters.

PANDE AND MOAYERI 6
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Table 1
Hydrological Characteristics of Selected 412 MOPEX Basins in the Eastern United States

Characteristics (units) Explanation Range

WRC (-) Slope of the water retention curve 3.08–11.37

(Clapp and Hornberger b parameter)

P/PE (-) Annual precipitation/annual potential evaporation 0.22–4.32

GNDVI (-) 5-week gradient of NDVI before peak greeness 4.57–50.00

MeanSlope (%) Mean slope 0.52–26.00

PSI (-) Precipitation seasonality index 0.05–0.86

Porosity (-) Porosity 0.35–0.48

Precipitation seasonality index (PSI) is calculated as
∑12

n=1 |Pn−P̄∕12|∕P̄, where Pn is the mean monthly precipi-
tation (mm/month) and P̄ is the mean annual precipitation (mm/year) of a basin. It is close to 0 for basins where
monthly rainfall is uniformly distributed over a year and close to 1 for basins with highly seasonal monthly
precipitation. The rest of the characteristics have been obtained from the MOPEX data set. Basins with higher
water retention curve (WRC) are expected to drain faster, such basins also tend to have lower porosity. Drier
basins have lower P/PE values. Basins with seasonal vegetation, such as prairies, are expected to have higher
values of GNDVI.

3.2. Complexity Computation and Cluster-Specific Regression
The complexity for each of the 412 basins are computed using equation (5). For this, a set of difficult queries
̃ are generated over 10 years of daily streamflow data and complexity indices, h∗(x̃o), are computed for each
x̃o ∈ ̃ by finding corresponding nearest neighbors from an independent set of 4 years of daily streamflow. In
total, 14 years of daily streamflow data from 26 September 1950 to 22 September 1964 is selected (42 basins
have a different period) and used for all the basins.

The computed basin complexity is then appended to the corresponding hydrological characteristics for all
412 characteristics. The basin characteristics and complexity are standardized individually, that is, by sub-
tracting the mean of a variable (e.g., PSI or ) calculated over 412 basins and dividing it by its standard
deviation. We then explore whether basin complexities are significantly correlated with hydrological charac-
teristics one at a time. Then the basins are clustered into groups of similar characteristics to geographically
locate basins associated with certain complexity, assuming that the dependence of streamflow variability with
basin characteristics is of similar nature within a cluster but is different across the clusters.

Agglomerative Hierarchical Clustering algorithm (Ward, 1963) is used for clustering the basins based on its
characteristics (see Table 1). It is implemented in MATLAB using function cluster, which constructs clusters
from the agglomerative hierarchical cluster tree as generated by the linkage function. The method used in
the linkage function was ward (Release, M A T L A B, 2015). It starts with one basin in one cluster and then, in
each successive iteration, it agglomerates (merges) the closest pair of clusters by satisfying a similarity criteria
(we use Ward method which minimizes the total within cluster variance), till all of the data are in one cluster.
Then a subjective number of clusters is chosen that cuts off the hierarchy at a lower point. We choose the best
number of clusters such that the mean of basin complexities within each cluster is sufficiently different from
the means of other clusters.

Finally, we perform cluster-specific linear regressions between the characteristics and basin complexity , in
order to explore multivariate linear relationships within each such cluster.

4. Results

Figure 4 shows how various basin characteristics correlate with basin complexity one at a time. All are signifi-
cantly correlated with p value< 0.005. The climatic variables such as P/PE and PSI are most strongly correlated,
followed by GNDVI and MeanSlope. Porosity and WRC characteristics appear to have weakest correlations.
The basin complexity increases with aridity and seasonality. It is lower for basins that have steeper slopes and
have faster changing vegetation (higher GNDVI). Finally, the basins that drain more easily, that is, associated
with lower porosity and/or steeper WRC, have higher complexity though such correlations are relatively weak.
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Figure 4. Pairwise correlations between hydrological characteristics and basin complexity . Characteristic and
complexity values have been standardized by subtracting respective mean from it and dividing by corresponding
standard deviation. The correlations, R, shown are statistically significant with p < 0.005. Also shown are the best fit lines
based on pairwise linear regressions. PSI = precipitation seasonality index; WRC = water retention curve.

It is evident from Figure 4 that each of the pairwise scatters plots nonlinear relationships. Locally linear
relationships in different parts of the plots are evident. These locally linear relationships appear to be multi-
variate as well; that is, the pairwise scatters are two-dimensional projections of higher dimensional covariation
between complexity and the characteristics. This necessitates a local multivariate analysis, which is performed
based on cluster analysis.

Only four clusters could be identified with statistically different means (p value < 0.001). However, the distri-
bution of basins was quite unevenly distributed. The basins are therefore clustered into five clusters that have
sufficiently different complexity means from each other. Figure 5 shows the variation of hydrological char-
acteristics and basin complexity within the five clusters. While the covariation of basin characteristics with
complexity is overall as observed in pairwise correlation plots in Figure 4, that is, WRC and PSI increase and
other characteristics decrease with increasing basin complexity (), there are differences in how the charac-
teristics covary within a cluster. For example, MeanSlope strongly varies within CL V, after gradually varying
from CL I-CL IV. WRC gradually varies across all the clusters except CL IV, just as PSI except for its variation
within CL I. P/PE, Porosity and GNDVI have visible variability in each of the five clusters.

Table 2, which shows cluster-specific linear regression results, corroborates some of the observations made
in Figure 4. All but GNDVI and PSI characteristics are consistent in their signs of covariation with complexity.

Figure 6 maps the basin geographically according to their clusters. The lowest two complexity clusters lie in
the northwest along the Pacific coastline and along the Appalachian mountain range in eastern United States.
Most complex basins lie in the western United States.

Daily streamflow for each basin is predicted based on similar occurring events in the past. It is therefore
expected that basins that generate streamflow as a result of overcoming multiple thresholds or are forced by
less predictable rainfall events are more difficult to predict. Such basins are deemed as more complex. The
signs of cluster-specific slopes suggest that flatter and faster draining basins have higher complexity. Also,
basins with more seasonal rainfall or drier basins appear to be more complex. Farmer et al. (2003) corrobo-
rate this observation, who argued that drier catchment require more complex model structure because these
catchments experience more disruption of within basin connectivity when compared to wetter catchments.
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Figure 5. Heat map of basin characteristics for five identified clusters with mean complexities 𝜇1 = −0.880 (CL I, N = 17),
𝜇2 = −0.666 (CL II, N = 106), 𝜇3 = 0.050 (CL III, N = 167), 𝜇4 = 0.511 (CL IV, N = 59), and 𝜇5 = 0.747 (CL V, N = 63). The
clusters are identified such that means of basin complexity within clusters are sufficiently different from each other.
PSI = precipitation seasonality index; WRC = water retention curve.

While drier basins are more complex to predict overall, basin complexity is positively related with basin dry-
ness only within CL III and CL V complexity clusters. There is no significant relationship between dryness and
complexity for the remaining clusters, contrary to the notion that drier basins are more complex to understand
and predict (Parajka et al., 2013).

The case that flatter basins are more complex is only for lowest complexity basins that are also the wettest
(CL I and CL II). These basins lie along the northwest coastline and along the Appalachian mountain range in
eastern United States. Note that lowest complexity clusters also have basins with steep slope (see Figure 5).
Therefore, flatter basins being more complex applies to the set of basins that are relatively steep. Here the veg-
etation characteristic (GNDVI) appears to bear inconsistent relationship with basin complexity across the two
lowest complexity cluster. Further, CL II basins (along the Appalachian mountain range) witness its complexity

Table 2
Cluster-Specific Regression Between Hydrological Characteristics (as Independent Variable) With Basin Complexity (as the
Dependent Variable)

CL I CL II CL III CL IV CL V

mean var mean var mean var mean var mean var

 −0.880 0.056 −0.666 0.004 0.050 0.005 0.511 0.008 0.747 0.021

slope p-val slope p-val slope p-val slope p-val slope p-val

WRC — — 1.769 <0.001 0.276 0.088 — — — —

P/PE — — — — −0.764 <0.001 — — −0.918 <0.001

GNDVI −0.850 0.013 0.460 0.022 — — — — −0.218 0.047

Mean slope −0.947 0.002 −0.224 0.066 — — — — — —

PSI — — — — — — — — −0.270 0.032

Porosity — — −0.430 0.001 −0.251 <0.001 −0.675 0.011 −0.318 0.033

Note. The slopes of only those characteristics are shown that are significant with p value < 0.10. WRC = water retention
curve; PSI = precipitation seasonality index.
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Figure 6. Spatial distribution of basin complexity. High complexity basins (CL IV and CL V) lie to the west, drier part of
eastern United States. Low complexity basins (CL I and CL II) lie on the wet northwestern and northeastern part with
steeper slopes.

vary strongly with soil characteristics in addition to mean slope and GNDVI. Therefore, wetter basins are more
complex when they have more responsive vegetation and soils and are flatter (implying bigger basin areas; ;
Willgoose et al., 1991). That is, bigger basins can be more complex if they have more responsive catchments
(i.e., with more responsive vegetation and soils).

As move from lowest complexity cluster, CL I, to geographically disconnected second lowest complexity clus-
ter CL II, the covariation of basin complexity with mean slope decreases. Meanwhile, the strong covariation
with drainage properties of the basin appears. The vegetation, being deciduous, also responds in a fashion
similar to evergreen vegetation of CL I. Vegetation with less rapidly changing greenness in response to similar
rainfall and temperature variability has more storage capacity to buffer against variability in water availabil-
ity. The vegetation therefore has lower variability in water stress as indicated by lower gradient in greenness
as we see in CL I. Under strong drainage effect of soils, as we see in CL II, the buffer against variability in water
availability is safeguarded by flowering of deciduous trees at the onset of warmer temperatures. This means
that as the buffering capacity of vegetation increases, the variability of streamflow partitioned out of rainfall
also increases resulting in higher basin complexity in terms of streamflow.

Meanwhile, highest complexity basins that are also the driest (see Figure 5) bear no relationship with average
slope. Instead, basin complexity is higher for those basins that have slower changing vegetation (based on
the gradient of NDVI, i.e., lower GNDVI) and drier climate. Surprisingly, the complexity of the basins belong-
ing to the highest complexity cluster has strong negative relationship with seasonality in precipitation, while
it remains insignificant for all other clusters. This is in spite of an overall positive correlation between basin
complexity and seasonality. Also, complexity strongly increases with faster responding basins (negative with
porosity) in this cluster. This thus means that faster responding basins that are drier but experience less
seasonal rainfall are more difficult to predict.

Consider now the basins in the third cluster that are of medium complex (CL III). Here complexity increases
with dryness and responsiveness of soils. The effect of dryness disappears while the effect of drainage prop-
erty weakens as one moves to medium to high complexity cluster (CL IV) in the midwest. As one moves further
west to most complex cluster of basins (i.e., CL V) dryness, seasonality, and vegetation begin to influence basin
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Figure 7. (left panel) Slope of the flow duration curve of the MOPEX basins. (right panel) Basin complexity, five clusters of which were shown in Figure 6. Overall
similarities are evident; that is, more complex basins tend to have steeper FDC, except for northeastern and southeastern basins.

complexity again. The vegetation retains its effect as one surprisingly transitions further west from the cluster
of most complex basins (CL V) to its neighboring cluster of lowest complexity basins (CL I).

5. Discussion

In summary, more complex basins that are drier have less seasonal rainfall, vegetation with more storage
capacity (i.e., smaller 5-week NDVI gradient), and faster responsive soils. In other words, variability in stream-
flow reduces (predictability of streamflow increases) as basins get wetter and its vegetation respond faster.
This may indicate that the vegetation is maximizing its use of water stored in the root zone (by absorbing any
variability in rainfall). In other words, it adapts to use the water more efficiently as the climate dries by reduc-
ing its buffering capacity (which is less needed because less water is available overall and more is uniformly
available throughout the year such as in basins of CL V) and quickly vaporizing any positive variation in rainfall
(Troch et al., 2009).

This is explicit in Figure 7 that compares slopes of flow duration curve (FDC) with basin complexity. While
Figure 6 shows clustered basins and the gradation of colors is intended to show how complexity changes
within each cluster from low to high, Figure 7 (right panel) shows how complexity values vary across all the
basins. Faster responding basins with lower storage capacity have steeper FDC (Yilmaz et al., 2008), resulting
from more variable streamflow (Berghuijs et al., 2014). This may mean that steeper FDCs are associated with
more complex basins and that corresponding basins are more difficult to predict. The dependence of slow
and fast parts of FDC on timing of rainfall events and basin storage capacity respectively (Yokoo & Sivapalan,
2011) reiterates overall association of basin complexity with the slope of its FDC. Drier basins are found to be
more complex (e.g., in CL IV; see Figure 6 and right panel of Figure 7) and to have intermediate slope of FDC
(left panel of Figure 7) when rainfall seasonality does not play a role. Cluster V basins (most complex), which
are drier but also bear intuitive relationships with seasonality, vegetation, and soil, also have similar patterns
of basin complexity and slope of FDC. However, the association breaks down in the northeastern basins of
cluster CL II (low complexity), the northern and southeastern basins of cluster CL III (intermediate complexity),
and western basins of cluster V (high complexity).

The northern and northeastern basins of CL II and western basins of CL V have higher fraction of rain falling as
snow, while the rainfall is mildly seasonal in the southeastern basins of CL III (Berghuijs et al., 2014). As a result,
both such sets of basins are expected to have higher intra-annual variability in streamflow and hence higher
complexity—which is what we observe in the map of basin complexity (right panel of Figure 7) but is not
captured by the slope of FDC (left panel of Figure 7). This is because high intra-annual variability is captured
by lower quantiles of FDC that are not considered when computing the slopes of FDC (Yaeger et al., 2012),
but it is captured by the index of basin complexity presented here.

The statistical interpretation of the measure of complexity is that those basins that are more complex are
more difficult to predict. It is therefore most difficult to predict in drier parts of western United States and
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the Great Plains (thereby requiring more complex models), while streamflow is easiest to predict along the
northwest and northeastern coastline. If a complex hydrological model, that is, Variable Infiltration Capacity
(Newman et al., 2015), is calibrated and used to predict stream flow in both such basins, one is likely to achieve
unreliable predictions in the case of drier parts of western United States and the Great Plains (Mizukami et al.,
2017; Newman et al., 2015). This is because the corresponding inverse problem (of estimating the parameters
of the model by maximizing some measure of model performance on available data) is difficult and not posed
well (Vapnik, 1982). One method to tame such difficult inverse problems is penalize the selection problem by
a certain measure of model complexity (i.e., regularization of the inverse problem; ; Arkesteijn & Pande, 2013).

Often number of model parameters is considered a measure of corresponding model complexity (e.g., see ;
Mo et al., 2006; Newman et al., 2015). This is indeed the case for models that are linear in its input, for example,
if daily stream flow is modeled as a linear function of current and last d days of daily rainfall. However, in case
of highly nonlinear models, complexity has also been found to depend on the magnitude of parameters that
nonlinearly transform rainfall to runoff (Pande et al., 2012, 2015). The strong covariation of basin complexity
with hydrological characteristics presented in Table 2 reinforces the observation. For example, the complexity
of basins in cluster CL II increases as porosity decreases and slope of the WRC increases. Since higher porosity
means higher water storage capacity and steeper slope of the WRC corresponds to a higher recession coeffi-
cient, this means that basin complexity increases with higher magnitude of recession coefficients (unit: T−1)
and lower magnitude of storage capacity. If one imagines that stream flow of the basin has been simulated
by some underlying but unknown universal hydrological model, this would mean that corresponding model
complexity increases with its recession coefficients and reduces with its soil (or vegetation) water storage
capacity. Such conclusions have also been drawn elsewhere (Pande et al., 2015).

Basin characteristics have been used to regionalize model parameters in order to extrapolate streamflow
predictions from gauged to ungauged locations (Abdulla & Lettenmaier, 1997; Young, 2006). The implied
dependence of model parameters on hydrological characteristics can therefore be used to regularize a hydro-
logical model of choice in order to predict a basin’s streamflow. The regularization will depend on the cluster
to which the basin belongs to. For example, the following steps may be taken in modeling the stream flows of
basins in CL V: (i) identify parameters of the model that correspond to significant co-variates of basin complex-
ity (i.e., GNDVI and porosity), (2) identify predictive equations of the parameters in terms of these covariates,
and (3) then use a weighted sum of the absolute values of the predictive equations to regularize the calibra-
tion of the hydrological model. Since the measure of basin complexity also serves as a measure of similarity,
the predictive equation identified in step 2 also identifies the sensitive parameters and how the parameters
and the model can be extrapolated from gauged to ungauged locations in a robust manner. Such an approach
complements other studies such as Archfield and Vogel (2010), Carrillo et al. (2011), and Patil and Stieglitz
(2012) that have proposed methods to transfer models from gauged to similar but ungauged basins.

6. Conclusion

The k nearest neighbor model predicted streamflow based on the occurrence of similar events in the past for
412 MOPEX basins in continental United States. We used VC generalization theory and data depth function to
estimate appropriate model complexity that is needed to predict critical streamflow events in all these basins.
Basin complexity was then computed as the average model complexity needed to predict its critical events
and regressed with characteristics related to climate, vegetation, and soil. Those basins were deemed more
complex where it was more difficult to learn the statistical patterns of critical streamflow sequences. Statis-
tically significant relationships were observed between model complexity and the characteristics, specific to
three different clusters of the basins that were identified based solely on the characteristics.

Drier basins in general were found to be more complex; however, wetter basins that are flatter were also
difficult to predict. Faster responding basins or those with lower storage capacity (either in vegetation or soil)
were also difficult to predict, irrespective of its dryness. Spatial pattern of basin complexity was also found to
be closely associated with that of the slope of corresponding FDC, suggesting that basins with steeper FDC
are difficult to predict.

Even though the motivation of the paper was to interpret basin complexity in terms of learning from the
statistical patterns of streamflow and how it relates with basin characteristics, the presented measure can
also serve as an index of hydrological similarity in the light of its relationships with dryness, rainfall sea-
sonality, drainage response, and storage capacity of the basins. This is because such relationships between
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streamflow and the characteristics can only emerge from the dynamics of climate, vegetation response,
soil, and basin-scale streamflow response. Such emergent relationships can therefore be used to control the
complexity of basin-specific hydrological models in order to predict steam flow.
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