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Abstract. Decentralized multi-agent control has broad applications,
ranging from multi-robot cooperation to distributed sensor networks. In
decentralized multi-agent control, systems are complex with unknown or
highly uncertain dynamics, where traditional model-based control meth-
ods can hardly be applied. Compared with model-based control in con-
trol theory, deep reinforcement learning (DRL) is promising to learn
the controller/policy from data without the knowing system dynamics.
However, to directly apply DRL to decentralized multi-agent control is
challenging, as interactions among agents make the learning environ-
ment non-stationary. More importantly, the existing multi-agent rein-
forcement learning (MARL) algorithms cannot ensure the closed-loop
stability of a multi-agent system from a control-theoretic perspective, so
the learned control polices are highly possible to generate abnormal or
dangerous behaviors in real applications. Hence, without stability guar-
antee, the application of the existing MARL algorithms to real multi-
agent systems is of great concern, e.g., UAVs, robots, and power sys-
tems, etc. In this paper, we aim to propose a new MARL algorithm for
decentralized multi-agent control with a stability guarantee. The new
MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is
proposed under the well-known framework of “centralized-training-with-
decentralized-execution”. The closed-loop stability is guaranteed by the
introduction of a stability constraint during the policy improvement in
our MASAC algorithm. The stability constraint is designed based on
Lyapunov’s method in control theory. To demonstrate the effectiveness,
we present a multi-agent navigation example to show the efficiency of
the proposed MASAC algorithm.

Keywords: Multi-agent reinforcement learning · Lyapunov stability ·
Decentralized control · Collective robotic systems
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1 Introduction

Multi-agent system control has intrigued researchers from both industrial and
academic communities for decades, due to its prospect in broad applications, such
as formation flight of unmanned aerial vehicles (UAVs) [43,44], coordination of
multi-robots [4,36], flocking/swarm control [33,40], distributed sensor networks
[32], large-scale power systems [17], traffic and transportation systems [6], etc.
Control of a multi-agent system can be achieved in either a centralized or a
decentralized manner. However, a multi-agent system with many subsystems
has high state and action dimensions that will dramatically increase the design
complexity and computational burdens of a single centralized controller [3]. In
many applications, every agent of a multi-agent system only has local control
capability with access to local observations, e.g., the cooperation of multiple
vehicles [13]. The lack of global control capability and information excludes the
possibility of centralized control. Besides, centralized control tends to be less
reliable. If the central controller fails, the entire system will break down. As an
alternative, decentralized control is capable of handling all the above issues.

Decentralized multi-agent control has been extensively studied [9,34,35,41].
With the assumption that the agents’ dynamics are known and linear, many
model-based control algorithms have been proposed for different tasks [9,36,41].
In control theory, those model-based algorithms can ensure closed-loop stability
if a multi-agent system satisfies all the assumptions. The state trajectories of a
multi-agent system under a model-based control algorithm will always stay close
to or even converge to an equilibrium point [24]. However, in most applications,
agent dynamics are nonlinear, complicated, and highly uncertain, e.g., robotic
systems, UAVs, and power systems. Assumptions made by model-based control
algorithms can be barely satisfied in real life. Therefore, model-based control
algorithms are restrictive, though theoretically sound.

Compared with model-based control, deep reinforcement learning (DRL) is
more promising for the decentralized multi-agent control for complicated non-
linear dynamical systems, as it can learn controller/policy from samples with-
out using much model information [7,8,12,26,39,45,46]. Recently, deep RL has
obtained significant success in applying to a variety of complex single-agent
control problems [2,19,25,30]. However, it is more challenging to apply deep
RL to decentralized multi-agent control. In multi-agent reinforcement learn-
ing (MARL), agents seek the best responses to other agents’ policies. The
policy update of an agent will affect the learning targets of other agents.
Such interactions among agents make MARL training non-stationary, thus
influencing the learning convergence. To resolve the non-stationary issue, a
“centralized-training-with-decentralized-execution” mechanism was employed,
based on which a number of MARL algorithms have been proposed, e.g., MAD-
DPG [29], COMA [14], mean-field MARL [42], MATD3 [1], and MAAC [22],
etc. Unfortunately, the existing MARL algorithms can not ensure the closed-
loop stability for a multi-agent system, while stability is the foremost concern
for the control of any dynamical systems. It is highly possible that learned con-
trol polices will generate abnormal or risky behaviors in real applications. From
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a control perspective, the learned control policies fail to stabilize a multi-agent
system, so they cannot be applied to safety-critical scenarios, e.g., formation
flight of UAVs.

In this paper, we propose MARL algorithms for decentralized multi-agent
control with a stability guarantee. A multi-agent soft actor-critic (MASAC)
algorithm is developed based on the well-known “centralized-training-with-
decentralized-execution” scheme. The interactions among agents are character-
ized using graph theory [11]. Besides, a stability-related constraint is introduced
to the policy improvement to ensure the closed-loop stability of the learned con-
trol policies. The stability-related constraint is designed based on the well-known
Lyapunov’s method in control theory which is a powerful tool for the design of
a controller to stabilize the complex nonlinear systems with stability guarantee
[24].

Contributions: The contributions of this paper can be summarized as follows.

1. For the first time, a Lyapunov-based multi-agent soft actor-critic algorithm
is developed for decentralized control problems based on the “centralized-
training-with-decentralized-execution” to guarantee the stability of a multi-
agent system.

2. Theoretical analysis is presented on the design of a stability constraint using
Lyapunov’s method.

2 Preliminaries

2.1 Networked Markov Game

Interactions among N agents are characterized using an undirected graph G =〈
I, E

〉
, where I := {1, . . . , N} represents the set of N agents and E ⊆ I × I

denotes the interactions among agents. If an agent i is able to interact with an
agent j with j �= i and i, j ∈ I, there exists an edge (i, j) ∈ E , and agent j is
called a neighbor of agent i. For an undirected graph, (j, i) ∈ E if (i, j) ∈ E . The
neighborhood of agent i is denoted by Ni := {∀j ∈ I| (i, j) ∈ E}. Assume the
undirected graph is fully connected, so there exists a path from each node i ∈ I
to any other nodes j ∈ I [11,16]. If an undirected graph is strongly connected,
information could eventually be shared among all agents via the communication
graph.

A networked Markov game with N agents is denoted by a tuple, MG :=〈
G,S,A,P, r, γ

〉
, where G :=

〈
I, E

〉
is the communication graph among N

agents, S :=
⋃N

i=1 Si is the entire environment space with Si the local state
space for agent i ∈ I, A :=

⋃N
i=1 Ai denotes the joint action space with Ai

the local action space for agent i ∈ I, P := S × A × S → R specifies the
state transition probability function, and r := S × A → R represents the global
reward function of the entire multi-agent system. The global transition proba-
bility can, therefore, be denoted by P (st+1|st,at). The joint action of N agents
is a = {a1, . . . , aN} where ai denotes the action of an agent i ∈ I. Accordingly,
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the joint policy is defined to be π = {π1, . . . , πN} where πi (∀i ∈ I) are local
policies for an agent i. Hence, the global policy for the entire multi-agent sys-
tem is defined to be π (a|s) =

∏N
i=1 πi (ai|si). Assume each agent i can only

obtain a local observation si ∈ Si (e.g. its own states and state information of
its neighbors) to make decisions at the execution.

For any given initial global state s0, the global expected discounted return
following a joint policy π is given by

V (st) =
∞∑

t=0

E(st,at)∼ρπ

[
γtr (st,at) |s0

]
(1)

where γ is a discount factor, V is the global value function and ρπ is the state-
action marginals of the trajectory distribution induced by a global policy π. The
global action-value function (a.k.a. Q-function) of the entire system is

Q (st,at) = r (st,at) + γEst+1 [V (st+1)] (2)

2.2 Soft Actor-Critic Algorithm

In this paper, the soft actor-critic (SAC) algorithm will be used for the design of
the multi-agent reinforcement learning algorithm. The SAC algorithm belongs to
off-policy RL that is more sample efficient than on-policy RL methods [39], such
as the trust region policy optimization (TRPO) [37] and the proximal policy
optimization (PPO) [38]. In SAC, an expected entropy of the policy π is added
to the value functions (1) and (2) to regulate the exploration performance at
the training stage [19,47]. The inclusion of the entropy term makes the SAC
algorithm exceed both the efficiency and final performance of deep deterministic
policy gradient (DDPG) [18,27]. With the inclusion of the expected entropy, the
action value function (1) to be maximized for a multi-agent system will turn into

V (st) =
∞∑

t=0

E(st,at)∼ρπ

[
γt (r (st,at) + αH (π (·|st))) |s0

]
(3)

where α is the temperature parameter used to control the stochasticity of the
policy by regulating the relative importance of the entropy term against the
reward, and H (π (·|st)) = −Eπ

[
log (π (·|st))

]
is the entropy of the policy π.

Accordingly, a modified Bellman backup operator is defined as

T π Q (st,at) = r (st,at) + γEst+1 [V (st+1)] (4)

where V (st) = Eat∼π [Q (st,at) − α log (π (at|st))].

2.3 Lyapunov Stability in Control Theory

A dynamical system is called stable, if its state trajectory starting in vicinity to
an equilibrium point will stay near the equilibrium point all the time. Stability is
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a crucial concept for the control and safety of any dynamical systems. Lyapunov
stability theory provides a powerful means of stabilizing unstable dynamical sys-
tems using feedback control. The idea is to select a suitable Lyapunov function
and force it to decrease along the trajectories of the system. The resulting sys-
tem will eventually converge to its equilibrium. Lyapunov stability of dynamic
systems at a fixed policy π (a|s) is given by Lemma 1.

Lemma 1 (Lyapunov stability). [24] Suppose a system is denoted by a non-
linear mapping st+1 = f (st, π (at|st)). Let L (st) be a continuous function such
that L (sT ) = 0, L (st) > 0 (∀st ∈ Ω & st �= sT ), and L (st+1) − L (st) ≤ 0
(∀st ∈ Ω) where sT is an equilibrium state and Ω is a compact state space.
Then the system st+1 = f (st, π (at|st)) is stable around sT and L (st) is a Lya-
punov function. Furthermore, if L (st+1) − L (st) < 0 (∀st ∈ Ω), the system is
asymptotically stable around sT .

Note that maximizing the objective function (1) or (2) doesn’t necessarily result
in a policy stabilizing a dynamical system.

3 Multi-agent Reinforcement Learning with Lyapunov
Stability Constraint

In this section, we will first develop a MARL algorithm based on the SAC algo-
rithm by following a similar idea as the multi-agent deterministic policy gradient
descent (MADDPG) [29]. The proposed algorithm is termed as Multi-Agent Soft
Actor-Critic algorithm (MASAC). The proposed MASAC algorithm is thereafter
enhanced by incorporating a carefully designed Lyapunov constraint.

s

Q (s, a1, . . . , aN )

s1 s2 s
N

s
N−1

π1 π
N

π
N−1π2

Fig. 1. Centralized training with decentralized execution
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3.1 Multi-agent Soft Actor-Critic Algorithm

The crucial concept behind the MASAC is the so-called “centralized training
with decentralized execution” shown in Fig. 1. A centralized critic using global
information is employed at the training stage, while each agent uses their own
independent policy taking local observations as inputs. Hence, at the training
stage, agents share their rewards with all the other agents for the calculation of
the central critic. In MASAC, it is expected to maximize the entropy-regularized
objective function introduced in (3).

In decentralized control, agents make decisions based on their local observa-
tions [3,13,23,34,35]. Hence, their polices are assumed to be independent of one
another, i.e., π (at|st) =

∏N
i=1 πi (ai|si). Hence, the entropy of the joint policy

π (at|st) in (3) is

H (π) = −
N∑

i

Eπi

[
log (πi)

]
=

N∑

i

H (πi) (5)

where H (πi) represent the entropy of each local policy πi.
The entire algorithm is divided into policy evaluation and policy improve-

ment. In the policy evaluation step, we will repeatedly apply the modified Bell-
man backup operator (4) to the Q-value of a fixed joint policy. Let the centralized
Q-value for the multi-agent system be parameterized by θ. The critic neural net-
work parameter θ is trained to minimize the following Bellman residual.

JQ (θ) =E(st,at)∼D

[
1
2

(

Qθ (st,at) − r (st,at)

− γEst+1

[
Vθ̄ (st+1) + α

N∑

i

H (πφi
)
])2 ]

(6)

In the optimization, the value function is replaced by the Q-value function.
Therefore, the critic parameters are optimized by stochastic gradient descent as

∇θJQ (θ) = E(st,at)∼D
[
∇θQθ (st,at) δQ

]
(7)

where

δQ = Qθ (st,at) − r − γQθ̄ (st+1,at+1) + γα

N∑

i

log πφi
(8)

In policy improvement, the policy is updated according to

π∗ = arg min
π ′∈Π

Eπi

[
α

N∑

i

log (πi) − Q (st,at)
]

(9)

where π∗ = {π∗
1 , . . . , π∗

N} is the optimal joint policy. Assume the policy of agent
i is parameterized by φi, ∀i = 1, . . . , N . According to (9), the policy parameters
φi, ∀i = 1, . . . , N are trained to minimize
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Algorithm 1. Multi-agent soft actor-critic algorithm
Initialize parameters θ1, θ2 and φi ∀i ∈ I
θ̄1 ← θ1, θ̄2 ← θ2, D ← ∅
repeat

for each environment step do
ai,t ∼ πφi (ai,t|si,t), ∀i ∈ I
st+1 ∼ Pi (st+1|st, at), where at = {a1,t, . . . , aN,t}
D ← D ⋃ {st, at, r (st, at, ) , st+1}

end for
for each gradient update step do

Sample a batch of data, B, from D
θj ← θj − ιQ∇θJQ

(
θj

)
, j = 1, 2

φi ← φi − ιπ∇φiJπi (φi), ∀i ∈ I
α ← α − ια∇αJα (α)
θ̄j ← τθj + (1 − τ) θ̄j , j = 1, 2

end for
until convergence

Jπ (φ) 
 E(st,at)∼D
(
Eπφ

(
α

N∑

i

log (πφi
) − Qθ (st,at))

))
(10)

where φ = {φ1, . . . , φN} and πφ = {πφ1 , . . . , πφN
}. In terms of the stochastic

gradient descent, each agent’s policy parameter φi will be updated according to

∇φi
Jπ (φ) 
E(st,at)∼D

[(
∇ai

log πφi
− ∇ai

Qθi
(st, at, āt)

)
∇φi

aφi

+ ∇φi
log πφi

]
(11)

The temperature parameter α will be updated based on (12).

Jαi
= Eπ

[

−α

N∑

i

log πi − αH̄
]

(12)

The MASAC algorithm is summarized in Algorithm1. The final MASAC algo-
rithm uses two soft Q-functions to mitigate the estimation bias in the policy
improvement and further increase the algorithm performance [1,15,21].

3.2 Lyapunov Stability Constraint

Qualitatively, stability implies that the states of a system will be at least bounded
and stay close to an equilibrium state for all the time. The existing MARL
algorithms, including the proposed MASAC algorithm in Sect. 3.1, can find an
optimal policy that can maximize either state or action-value functions. However,
they do not necessarily produce a policy that ensures the stability of a system.
In this section, we offer a possible solution to incorporate Lyapunov stability as
a constraint in the optimization of MASAC.
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A Lyapunov function candidate can be constructed based on cost functions
c (s, π) ≥ 0 with c (sT , π (aT |sT )) = 0 and sT the target/equilibrium state [5,10].
One possible choice of the Lyapunov function candidate is an accumulated cost
in a finite time horizon, e.g., model predictive control (MPC) [31]. Before the
introduction of the Lyapunov stability constraint, we make several assumptions
on both the cost functions to be designed and the system dynamics of interest.
The assumption on the cost function is given as follows.

Assumption 1. The cost function c (s, π (·|s)) is bounded ∀s ∈ Ω and Lipschitz
continuous with respect to s, namely ‖c (s1, π (·|s1))− c (s2, π (·|s2)) ‖2 ≤ lc‖s1 −
s2‖2 where lc > 0 is a Lipschitz constant.

Assumption 1 could ensure the Lyapunov function candidate to be bounded and
Lipschitz continuous for the state s, if we choose it to be an accumulated cost
in a finite time horizon. Hence, we could further assume the Lyapunov function
candidate is Lipschitz continuous with the state s on a compact set Ω with lL
the Lipschitz constant.

Since we are interested in the decentralized control problem of multiple agents
with deterministic dynamics, the following assumption on the physical dynamics
is made.

Assumption 2. Consider a deterministic, discrete-time agent system st+1 =
f (st, at). The nonlinear dynamics f is Lipschitz continuous with respect to at,
namely ‖f

(
st, a

2
t

)
− f

(
st, a

1
t

)
‖2 ≤ lf‖a2

t − a1
t ‖2 where lf > 0 is a Lipschitz

constant.

According to the existence and uniqueness theorem, the local Lipschitz condition
is a common assumption for deterministic continuous systems.

According to Lemma 1, the state st+1 is needed to evaluate the stability of a
system under a fixed policy, but st+1 is not available in general. In Theorem 1,
we show that it is possible to evaluate the stability of a new policy πnew, if we
already have a feasible policy πold associated with a Lyapunov function L (s).
Here, a feasible policy implies that a system is stable and that a Lyapunov
function exists.

Theorem 1. Consider a system st+1 = f (st, at) Suppose Assumptions 1 and 2
hold. Let πold be a feasible policy for data collection and Lπold

(s) is the Lyapunov
function. A new policy πnew will also be a feasible policy under which the system
is stable, if there exists

Lπold
(st+1) + lLlf‖aπnew

t − aπold
t ‖2 − Lπold

(st) ≤ 0 (13)

where ∀st ∈ Ω, (st, a
πold
t , st+1) is a tuple from the policy πold, lL and lf are

Lipschitz constants of the Lyapunov function and system dynamics, respectively.
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Fig. 2. Learning curves of the rendezvous experiment (40 steps per episode)

Theorem 1 requires all the states need to be visited to evaluate the stability of
a new policy. Unfortunately, it is impossible to visit an infinite number of states.
However, Theorem 1 still shows a potential way to use historical samples for the
old policies to evaluate the current policy. Based on Theorem 1, we are able to
add a Lyapunov constraint similar to (13) in the policy gradient of each agent
for DC of multi-agent systems. With the inclusion of the Lyapunov constraint
(13) [5,20], the objective function (10) is rewritten as

Jπ (φ) 
 E(st,at)∼D
(
Eπφ

(
α

N∑

i

log (πφi
) − Qθ (st,at)) + βΔLφ

))
(14)

where β ∈ [0, 1] and ΔLψ = Li (st+1,at+1) + lLlf‖aφ − at‖2 − Li (st,at) +
βcπ (st).

At training, the Lyapunov functions L (st) will be parameterized by ψ which
is trained to minimize

JL (ψ) = E(st,at)∼D

[
1
2

(Lψ (st,at) − Ltarget)
2

]

where Ltarget =
∑T

t=0 c (st,at) with T denoting a finite time horizon as in model
predictive control. The modified robust multi-agent reinforcement learning algo-
rithm is summarized in Algorithm 2.

4 Experiment

In this section, we will evaluate our proposed algorithms in a well-known applica-
tion of multi-agent systems called “rendezvous” [28]. In the “rendezvous” prob-
lem, all agents starting from different locations are required to meet at the same
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Algorithm 2. Multi-agent soft actor-critic algorithm with a Lyapunov
constraint

Initialize parameters θ1, θ2 and φi ∀i ∈ I
θ̄1 ← θ1, θ̄2 ← θ2, D ← ∅
repeat

for each environment step do
ai,t ∼ πφi (ai,t|si,t), ∀i ∈ I
st+1 ∼ Pi (st+1|st, at), where at = {a1,t, . . . , aN,t}
D ← D ⋃ {st, at, r (st, at) , st+1}

end for
for each gradient update step do

Sample a batch of data, B, from D
θj ← θj − ιQ∇θiJQi

(
θj

)
, j = 1, 2

φi ← φi − ιπ∇φiJπ (φ), ∀i ∈ I from (14)
α ← α − ια∇αJα (α)
θ̄j ← τθj + (1 − τ) θ̄j , j = 1, 2
ψ ← ψ − ιL∇ψJL (ψ)

end for
until convergence

target location in the end. Only a subgroup of agents, which are called lead-
ers, have access to the target location, while others need to learn to cooperate
with others. In the experiments, both the critic and actor are represented suing
fully connected multiple-layer perceptrons with two hidden layers. Each hidden
Layer has 64 neurons with the ‘ReLU’ activation function. The learning rate for
the actor network is chosen to be 0.0003, while the learning rate for the critic
network is 0.003. To stabilize the training, learning rates decrease with a cer-
tain decay rate (0.0750.0005 in the experiments). The Lyapunov neural network
is approximated by an MLP with three hidden layers (64 neurons for the first
two hidden layers, and 16 neurons for the last hidden layers). The batch size is
selected to be 256. The parameter τ for soft updates of both actor and critic
networks is picked to be 0.005. The discount factor γ is chosen to be 0.95.

The environment is built using the multi-agent environment used in [29]. The
agent model in the environment in [29] is replaced by a high-order non-holonomic
unicycle model which is widely used in robotics navigation. The agent dynamics
are given as follows. ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = v cos ψ
ẏ = v sin ψ

ψ̇ = ω
v̇ = a
ω̇ = r

(15)

where x and y are the positions of the agent, ψ is the heading angle, v is the
speed, and ω is the angular rate. The control actions for each agent are a and r,
respectively.
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Learning curves of both the MASAC and MASAC-Lyapunov are shown in
Fig. 2. Although both the MASAC and MASAC-Lyapunov will converge, they
have a different performance at evaluations. To further verify the performance,
we evaluate both the MASAC and MASAC-Lyapunov for 500 times with agents’
initial positions randomly generated. We define a criterion called “success rate”
to compare the overall performance of the two algorithms. We think an evalua-
tion episode is successful if all agents end up in the target location. The “success
rate” is calculated by total number of successful episodes

totalnumberofepisodesatevaluation × 100. The “success rate”
of the two algorithms is shown in Fig. 3. With the inclusion of the Lyapunov
constraint, we can increase the success rate of the tasks dramatically according
to Fig. 3. Hence, the Lyapunov constraint will increase the stability performance
of the learned policy, thereby resulting in a policy that is more likely to stabilize
a system.

Fig. 3. Evaluation results of running the rendezvous experiment for 500 times using
trained polices (success rate = total number of successful episodes

total number of episodes at evaluation
× 100)

5 Conclusion

In this paper, we studied MARL for data-driven decentralized control for multi-
agent systems. We proposed a MASAC algorithm based on the “centralized-
training-with-decentralized-execution’. We thereafter presented a feasible solu-
tion to combine Lyapunov’s methods in control theory with MASAC to guar-
antee stability. The MASAC algorithm was modified accordingly by the intro-
duction of a Lyapunov stability constraint. The experiment conducted in this
paper demonstrated that the introduced Lyapunov stability constraint is impor-
tant to design a policy to achieve better performance than our vanilla MASAC
algorithm.
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