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a b s t r a c t

We consider infinite-horizon optimal control of nonlinear systems where the control actions are discrete, and
focus on optimistic planning algorithms from artificial intelligence, which can handle general nonlinear systems
with nonquadratic costs. With the main goal of reducing computations, we introduce two such algorithms that
only search for constrained action sequences. The constraint prevents the sequences from switching between
different actions more than a limited number of times. We call the first method optimistic switch-limited planning
(OSP), and develop analysis showing that its fixed number of switches 𝑆 leads to polynomial complexity in the
search horizon, in contrast to the exponential complexity of the existing OP algorithm for deterministic systems;
and to a correspondingly faster convergence towards optimality. Since tuning 𝑆 is difficult, we introduce an
adaptive variant called OASP that automatically adjusts 𝑆 so as to limit computations while ensuring that near-
optimal solutions keep being explored. OSP and OASP are analytically evaluated in representative special cases,
and numerically illustrated in simulations of a rotational pendulum. To show that the algorithms also work in
challenging applications, OSP is used to control the pendulum in real time, while OASP is applied for trajectory
control of a simulated quadrotor.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems arise in numerous areas of technology. Our
focus here is on optimal control in discrete time, so as to maximize a
discounted sum of rewards (negative costs). Optimistic planning (OP)
techniques (Munos, 2014) solve this problem locally for any given
state, by exploring tree representations of possible sequences of actions
(control inputs) from that state, where the tree depth of each sequence
is equal to its length. Given a computational budget of tree node
expansions, performance grows with the resulting depth of the tree,
which can be seen as an adaptive horizon. OP works for general dynam-
ics and rewards, and provides a tight characterization of the relation
between the computational budget and near-optimality. Motivated by
these features, a number of OP algorithms have been introduced, e.g.
by Kocsis and Szepesvári (2006), Bubeck and Munos (2010), Buşoniu
and Munos (2012) and Mansley et al. (2011), which have proven useful
in practical problems (Mansley et al., 2011; Gelly et al., 2006). OP is
usually applied online in receding horizon, as a type of model-predictive
control (MPC).

* Corresponding author.
E-mail addresses: koppany.mathe@aut.utcluj.ro (K. Máthé), lucian.busoniu@aut.utcluj.ro (L. Buşoniu), munos@google.com (R. Munos), b.deschutter@tudelft.nl (B. De Schutter).

In this paper, we consider deterministic systems with discrete (or
discretized) actions, and introduce two new OP techniques tailored for
sequences that are constrained to switch only a limited number of times
between different discrete actions. Inheriting the generality of OP, these
techniques are able to deal with nonlinear dynamics and nonquadratic
reward functions. The switch constraint is motivated by two classes
of problems. In the first class (i), the loss of performance induced by
the constraint is negligible—such as in time-optimal control, where
solutions are of the bang–bang type. In the second class (ii), the switch
constraint must be imposed due to the problem’s nature, accepting the
resulting performance degradation—for example, to decrease computa-
tion time or because setting the actuator to a new discrete level is costly.
Examples of the latter type include traffic signal control (De Schutter and
De Moor, 1998), water level control by barriers and sluices (van Ekeren
et al., 2013), networked control systems (Tabuada, 2007), etc.

First, we propose optimistic switch-limited planning (OSP): an algo-
rithm that only explores sequences with at most 𝑆 switches, with 𝑆
fixed. This allows a significant reduction in computational complexity

https://doi.org/10.1016/j.engappai.2017.08.020
Received 24 November 2016; Received in revised form 7 June 2017; Accepted 29 August 2017
Available online 15 October 2017
0952-1976/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2017.08.020
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.08.020&domain=pdf
mailto:koppany.mathe@aut.utcluj.ro
mailto:lucian.busoniu@aut.utcluj.ro
mailto:munos@google.com
mailto:b.deschutter@tudelft.nl
https://doi.org/10.1016/j.engappai.2017.08.020


K. Máthé et al. Engineering Applications of Artificial Intelligence 67 (2018) 355–367

with respect to the state-of-the-art OP algorithm in the discrete-action,
deterministic case: OP for deterministic systems (OPD) (Hren and
Munos, 2008). Indeed, we show that the computational effort needed
by OSP to reach a given depth in the tree is polynomial in this depth,
rather than exponential as in OPD. Therefore, given a computational
budget 𝑛, the tree depth grows quickly and OSP converges faster to the
switch-constrained optimal solution than OPD would converge to the
unconstrained one. The convergence rate is dictated by the degree of
the polynomial, a complexity measure for the optimal control problem.

A limitation of OSP is the need to manually tune the number of
switches 𝑆. A too small value can lead to suboptimal solutions, while
allowing too many switches may lead to unneeded computation. We
therefore develop optimistic adaptive switch-limited planning (OASP),
which automatically finds a good 𝑆. The value of 𝑆 is increased adap-
tively, exploring sequences with more action switches when indicated
by an increment rule. We illustrate two such rules, and analyze both
variants in the same special cases as OSP was analyzed.

OSP is applied in receding horizon simulations to the problem of
swinging up a rotational pendulum. Note that this problem is in class
(i) where near-optimal sequences switch rarely. To illustrate class (ii),
in particular systems where switches are costly, we show how OSP can
take into account bandwidth limitations in networked control systems.
Here, the constraint is enforced in closed loop, so that along any
range of 𝑁 consecutive steps there are at most 𝑆 switches, where 𝑁
is a parameter. Furthermore, OSP is applied to control the physical
pendulum in real time. To evaluate the second algorithm, OASP, it is
compared to OPD and OSP in simulations of the rotational pendulum,
showing that in certain cases OASP performs better than the other
methods, while remaining competitive in other cases. Finally, OASP is
applied to the more complex control problem of trajectory control for
quadrotors, showing the benefits of the novel algorithm over OPD and
over a classical linear–quadratic regulator.

Like the entire class of OP algorithms, OSP and OASP are related
to Monte Carlo tree search (Browne et al., 2012), heuristic search
(Edelkamp and Schrödl, 2012), and planning for robotics (La Valle,
2006). The complexity measure of OSP (polynomial degree) is related
to similar measures in other optimistic algorithms, e.g. the branching
factor of near-optimal sequences in OPD (Hren and Munos, 2008), the
near-optimality exponent in the stochastic case (Buşoniu and Munos,
2012), or the near-optimality dimension in optimization (Munos, 2014);
due to the different structure of the explored tree, these measures do not
work in the switch-constrained problem of OSP, and the new polynomial
degree is needed.

In the MPC field, similar constraints on the number of action changes
have been exploited to decrease computation, e.g. in the linear case by
De Schutter and De Moor (1998), De Schutter (2000) and Alende et al.
(2009), later extended to the nonlinear case as time-instant optimization
MPC (van Ekeren et al., 2013). Applications include hybrid control
(De Schutter and De Moor, 1998; Martinez et al., 2007; Alende et
al., 2009) and hierarchical control (Sadowska et al., 2013). Liu et al.
(2011) constrain the solutions to hold the command constant for a
preset number of steps. In these works, an off-the-shelf optimizer (e.g. of
the mixed-integer linear programming type, see Alves and Clímaco,
2007) is usually applied, and the computational effort is investigated
empirically. Compared to this, the main advantage of our approach is
an analytical characterization of the relationship between the compu-
tational effort and near-optimality, for the complete algorithm down
to the implementation of the optimizer. A second axis of related work
in MPC concerns complexity analysis, typically for linear–quadratic
problems, see e.g. Li and Marlin (2011). A particularly strong work
thread is in explicit MPC (Bemporad et al., 2002), where the optimal
state feedback law is piecewise affine and the complexity of the online
search for the current affine region is characterized, see e.g. Tøndel et al.
(2003), Wen et al. (2009) and Bayat et al. (2011). Overall, MPC typically
uses a fixed, finite horizon, and its main strengths include stability
guarantees, mechanisms to handle constraints, and output feedback

techniques. In contrast, OSP and OASP focus on the generality of the
nonlinear dynamics they can address, while providing near-optimality
and convergence rate guarantees with respect to the infinite-horizon
optimum.

This paper is a revised and extended version of our conference article
(Mathe et al., 2014), where OSP was introduced. The present paper
provides more details and insight into the analysis of OSP, while its
empirical evaluation is done using a different control problem, with
entirely new real-time results. The main novelty compared to Mathe
et al. (2014) is however the adaptive algorithm OASP, with its analysis,
numerical evaluation, and application to simulated quadrotor trajectory
control.

Next, Section 2 gives the necessary background, Section 3 introduces
and analyzes OSP, and Section 4 similarly presents and studies OASP.
Experimental results for the two methods are provided in Sections 5 and
6, respectively. Finally, Section 7 concludes the paper.

2. Background: Markov decision processes and optimistic plan-
ning for deterministic systems

Consider a Markov decision process (MDP) describing an optimal
control problem with state 𝑥 ∈ 𝑋, action 𝑢 ∈ 𝑈 , transition function
𝑓 ∶ 𝑋 × 𝑈 → 𝑋, 𝑓 (𝑥, 𝑢) = 𝑥′ and an associated reward function
𝜌 ∶ 𝑋 ×𝑈 → R. The function 𝑓 (𝑥, 𝑢) describes the transition from state 𝑥
to 𝑥′ when applying action 𝑢, i.e. the system dynamics. Each transition
is rewarded by 𝜌(𝑥, 𝑢).

We assume that the action space 𝑈 is finite and discrete, 𝑈 =
{

𝑢1,… , 𝑢𝑀
}

, and the system dynamics 𝑓 (𝑥, 𝑢) and the reward function
𝜌(𝑥, 𝑢) are known. Additionally, to facilitate the analysis, the reward
function is assumed to be bounded to the unit interval, 𝜌(𝑥, 𝑢) ∈
[0, 1],∀𝑥, 𝑢. The only restrictive part here is the boundedness of the
reward, which is often assumed in AI approaches to solving MDPs; then,
the rewards can be scaled and translated to the unit interval without
affecting the optimal solution.

The objective is to find for any given state 𝑥0 an infinite action
sequence ℎ∞ = (𝑢0, 𝑢1,…) that maximizes the value function (discounted
sum of rewards):

𝑣(ℎ∞) =
∞
∑

𝑘=0
𝛾𝑘𝜌(𝑥𝑘, 𝑢𝑘) (1)

where 𝑘 ≥ 0 is the discrete time step, 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘), and 𝛾 ∈ (0, 1) is
the discount factor. The optimal value is denoted by 𝑣∗ = supℎ∞𝑣(ℎ∞).

Optimistic Planning for Deterministic Systems (OPD) (Hren and
Munos, 2008; Munos, 2014) is an extension of the classical 𝐴∗ tree
search to infinite-horizon problems. OPD looks for 𝑣∗ by creating a
search tree starting from 𝑥0 that explores the space of action sequences
by simulating their effects, until a given computational budget is
exhausted. This budget is denoted by 𝑛 and measures the number of
nodes the algorithm is allowed to expand in the search tree, where
expanding a node means adding 𝑀 child nodes to it, one corresponding
to each action from 𝑈 . Fig. 1 shows an example of a tree after 𝑛 = 3
expansions have been performed.

A node at depth 𝑑 is equivalent to the action sequence ℎ𝑑 =
(𝑢0, 𝑢1,… , 𝑢𝑑−1) leading to it: e.g. in Fig. 1, for the bold node at depth
𝑑 = 3 one has ℎ3 = (𝑢1, 𝑢2, 𝑢2). Consider any infinitely long action
sequence ℎ∞ that starts with ℎ𝑑 . Now, define the following lower bound
on 𝑣(ℎ∞):

𝜈(ℎ𝑑 ) =
𝑑−1
∑

𝑘=0
𝛾𝑘𝜌(𝑥𝑘, 𝑢𝑘) ⩽ 𝑣(ℎ∞) (2)

and the following upper bound on 𝑣(ℎ∞):

𝑏(ℎ𝑑 ) = 𝜈(ℎ𝑑 ) + 1 ⋅ 𝛾𝑑 + 1 ⋅ 𝛾𝑑+1 +⋯ = 𝜈(ℎ𝑑 ) +
𝛾𝑑

1 − 𝛾
⩾ 𝑣(ℎ∞). (3)

Note that these bounds are valid because 𝛾 < 1 and the rewards take
values between 0 and 1.
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Fig. 1. OPD search tree with states in the nodes and actions and rewards on the arcs
(corresponding to transitions). The size of the action space is 𝑀 = 2. Note that some
states may appear several times in the tree as results of different action sequences. The
algorithm does not exploit these duplicates, but keeps them separate on the tree.

Fig. 2. Uniform expansion of the OSP search tree, with 𝑀 = 2 different actions and
𝑆 = 1 switch allowed. The action leading to a node is put in the node. Nodes preceded
by continuous lines are expanded with all 𝑀 actions. Nodes on the dashed paths are no
longer expanded, since they have more than 𝑆 switches in their action sequence.

The leaf with the highest b-value is said to be optimistic. OPD runs the
tree search iteratively, where at each iteration a leaf that is optimistic
on the current tree is expanded. When there are multiple nodes with
the same 𝑏-value, a tie breaking rule is used to select the node to expand.
We choose here a rule that picks the earliest created node. At the end
of the tree construction, the algorithm returns an action sequence ℎ∗𝑑
with the highest 𝜈-value. Usually, e.g. in order to deal with unmodeled
effects, only the first action of this sequence is applied to the system,
after which the loop is closed and the algorithm is reapplied for the new
state, leading to a receding-horizon scheme.

3. Optimistic switch-limited planning

Optimistic switch-limited planning (OSP) is based on the same
principle as OPD: it iteratively and optimistically constructs a search
tree from 𝑥0, by simulating action sequences starting from that state.
After the algorithm finishes, like OPD, OSP chooses the action sequence
ℎ𝑑 that maximizes 𝜈(ℎ𝑑 ). The novelty of OSP is a constraint applied to
the algorithm: never expand a node that has more than 𝑆 action switches in
its action sequence.1 Some examples of finite action sequences respecting
this constraint are: for 𝑆 = 1, ℎ3 = (𝑢2, 𝑢1, 𝑢1), for 𝑆 = 2, ℎ3 = (𝑢2, 𝑢1, 𝑢1)
with one switch, or ℎ5 = (𝑢2, 𝑢3, 𝑢3, 𝑢1, 𝑢1) with two switches. An example
of an OSP search tree is presented in Fig. 2.

We now fully analyze OSP when applied locally at a given state
𝑥0, and later we will explain how to empirically apply it in closed
loop. Using the constraint on the number of switches, the search space

1 This means that some nodes created will have 𝑆 +1 switches. To avoid this, we could
change the expansion rule so that for nodes that have 𝑆 switches, it only creates the single
child that keeps the action constant. However, this would mean that expanding a node
costs a varying amount of simulations, so we choose not to do it. With some care it can
be seen that neither the analysis, nor the closed-loop usage explained at the end of this
section are affected by this choice, so in fact the algorithm can be implemented either
way.

is restricted and the optimal solution may fall outside it. Denote the
optimal return with sequences having at most 𝑆 switches by 𝑣∗𝑆 , where
𝑣∗𝑆 ≤ 𝑣∗. In problem class (i) (see Section 1), the loss 𝑣∗ − 𝑣∗𝑆 due to
enforcing the switch limitation is small by assumption, whereas in class
(ii) it may be significant but it must be accepted due to the problem
constraints or the need to reduce computations. As 𝑆 → ∞, 𝑣∗𝑆 should
approach 𝑣∗.

Intuitively, the constraint allows OSP to construct deeper search
trees than OPD for a given problem, as in place of the nodes eliminated
by the constraint OSP will explore other nodes that may be at larger
depths. Therefore, for the same budget 𝑛, OSP generally ensures a
smaller distance to the constrained optimum 𝑣∗𝑆 than OPD would ensure
with respect to 𝑣∗.

To make the following statements more concise, we say that OSP
is 𝜀-optimal if the solution ℎ∗𝑑 it returns satisfies 𝑣∗𝑆 − 𝜈(ℎ∗𝑑 ) ≤ 𝜀. The
following lemma gives an a posteriori bound, which is available after
the algorithm has terminated.

Lemma 1. OSP only expands nodes that satisfy the relation 𝑣∗𝑆 − 𝜈(ℎ𝑑 ) ≤
𝛾𝑑

1−𝛾 , and it is 𝛾𝑑max

1−𝛾 -optimal, where 𝑑max is the depth of the deepest expanded
node.

Proof. At any iteration of the OSP algorithm, there exists at least
one leaf sequence ℎ𝑑 in the search tree that forms the initial part of
a constrained optimal solution. Therefore, using the definition of the
b-value (3), there exists ℎ𝑑 such that 𝑏(ℎ𝑑 ) ≥ 𝑣∗𝑆 . Since the algorithm
always expands the node with the highest b-value, all the expanded
nodes will satisfy the relation 𝑏(ℎ𝑑 ) ≥ 𝑣∗𝑆 . As 𝑏(ℎ𝑑 ) = 𝜈(ℎ𝑑 ) +

𝛾𝑑

1−𝛾 , this

relation can be rewritten 𝑣∗𝑆 − 𝜈(ℎ𝑑 ) ≤
𝛾𝑑

1−𝛾 , which proves the first part
of the lemma.

Moreover, this relationship holds in particular at 𝑑max, for any
expanded node ℎ𝑑max

. Then, as 𝜈(ℎ∗𝑑 ) ≥ 𝜈(ℎ𝑑max
) by definition, one gets

𝑣∗𝑆 −𝜈(ℎ
∗
𝑑 ) ≤

𝛾𝑑max

1−𝛾 from which the second part of the lemma follows. ■

Such a property is standard for optimistic algorithms. In particular,
the corresponding result for OPD, in which 𝑣∗𝑆 would be substituted by
𝑣∗, was given in a different form by Hren and Munos (2008).

Now, note that due to Lemma 1 and the switch constraint, at depths
up to 𝑑 OSP only expands nodes in the set:

𝐻𝑑 =

{

ℎ𝑑′ |𝑑
′ ≤ 𝑑; 𝑠(ℎ𝑑′ ) ≤ 𝑆; 𝑣∗𝑆 − 𝜈(ℎ𝑑′ ) ≤

𝛾𝑑′

1 − 𝛾

}

where 𝑠(ℎ𝑑′ ) counts the number of switches in the action sequence ℎ𝑑′ .
Using the cardinality of this set one can characterize the depth the
algorithm will reach.

As a first step, to provide a better insight, we take a small detour
to explain how OPD behaves compared to OSP. In OPD, the nodes
possibly expanded at depth 𝑑 do not have to satisfy the switch limitation,
instead they must only be 𝛾𝑑

1−𝛾 -optimal. It was shown then in Hren and
Munos (2008) that the tree of such nodes grows with a branching factor
𝐾 ∈ [1,𝑀], a measure of complexity of the OPD control problem. Then,
the number of expandable nodes grows exponentially with the depth,
so that the cardinality of the entire tree up to depth 𝑑 is dominated by
the number of nodes at this last depth: it is 𝑂(𝐾𝑑 ). In the case of OSP
this is no longer valid, as the search tree grows polynomially with the
depth. To develop an intuition on why this holds, consider the special,
worst case of uniform expansion. In this case, all the nodes from a
given depth are expanded before expanding deeper nodes. OSP then
distributes up to 𝑆 switches along sequences of length 𝑑, i.e. searches
among all combinations of up to 𝑆 elements from 𝑑—and the number of
such combinations grows only polynomially with 𝑑. A formal analysis
of this case is provided in Section 3.1 below.

Now, to describe in general the cardinality of 𝐻𝑑 , a new complexity
measure is needed, defined as follows.
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Definition 1. Let 𝑐 > 0 and 𝜎 ∈ [1, 𝑆 + 1] be so that |𝐻𝑑 | ≤ 𝑐 ⋅ 𝑑𝜎 . We
define the near-optimality degree as the smallest value of 𝜎 so that the
relationship holds.

The measure 𝜎 is called the near-optimality degree because it plays
a similar role to the near-optimality dimension from the optimization
algorithms at the basis of OP (Munos, 2014). Note that 𝜎 always
exists in the stated interval, because our special edge cases analyzed
below provide its smallest and largest possible values (1 and 𝑆 + 1,
respectively).

Theorem 1. Given a computational budget 𝑛, the OSP algorithm is 𝛾(𝑛∕𝑐)1∕𝜎

1−𝛾 -
optimal, where 𝑐 is the constant from the definition of 𝜎.

Proof. According to Lemma 1, the OSP algorithm is 𝛾𝑑max

1−𝛾 -optimal if a
node at depth 𝑑max was expanded. Now, we calculate a lower bound on
𝑑max a priori from the cardinality of set 𝐻𝑑 . Define 𝑑∗ to be the smallest
depth so that 𝑛 ≤ |𝐻𝑑∗ | = 𝑐 ⋅ 𝑑∗𝜎 ; this means the algorithm has surely
expanded nodes at 𝑑∗ (but possibly not yet at 𝑑∗ + 1), so 𝑑max ≥ 𝑑∗.
Moreover, 𝑑∗ ≥ (𝑛∕𝑐)1∕𝜎 , hence the same holds for 𝑑max, and OSP is
𝛾(𝑛∕𝑐)1∕𝜎

1−𝛾 -optimal. ■

A smaller 𝜎 corresponds to a slower growth of 𝐻𝑑 , so that a given
budget 𝑛 allows reaching larger depths and thus a better solution. In par-
ticular, in the best case 𝜎 = 1, which means that 𝐻𝑑 grows linearly with
𝑑, and suboptimality shrinks exponentially with increasing 𝑛. Otherwise,
in general, the relationship is stretched-exponential (i.e. exponential
in a power of 𝑛). Note that 𝜎 cannot usually be computed, so the
near-optimality cannot be determined in advance using Theorem 1.
Nevertheless, the result provides confidence that OSP converges quickly
to the constrained optimum, faster in simpler problems.

In the remainder of this section, Theorem 1 and the value of 𝜎 are
illustrated for several interesting cases.

3.1. Uniform search trees (𝜎 = 𝑆 + 1)

Consider a problem where all the rewards are identical, say equal to
1 or to 0. Note that in this case, 𝑣∗ = 𝑣∗𝑆 for any value of 𝑆.

Proposition 1. In the case of identical rewards, 𝜎 = 𝑆 + 1 and the OSP

algorithm is 𝛾
1
𝑀 (𝑛∕𝑐′)1∕(𝑆+1)

1−𝛾 -optimal, where 𝑐′ is a positive constant.

Proof. For identical rewards, OSP will explore the tree uniformly, in
the order of depth. We first count the number of expandable nodes at
each depth separately. Consider a vector 𝑁𝑑 with 𝑆 + 1 elements, in
which every element 𝑁𝑑 (𝑠) gives the number of nodes at depth 𝑑 with
𝑠 action switches, for 𝑠 = 0,… , 𝑆. In the example from Fig. 2, we have
𝑁1 = [2, 0], 𝑁2 = [2, 2], 𝑁3 = [2, 4], 𝑁4 = [2, 6].

As each node expansion leads to exactly one child having the same
action as the parent node (i.e. the same number of action switches) and
𝑀 − 1 children with one more switch, the vector 𝑁𝑑 can be calculated
recursively as:

𝑁1(0) =𝑀,𝑁1(𝑠) = 0, 𝑠 = 1,… , 𝑆
𝑁𝑑 (𝑠) = 𝑁𝑑−1(𝑠) + (𝑀 − 1) ⋅𝑁𝑑−1(𝑠 − 1), 𝑠 = 0,… , 𝑆,
for 𝑑 ≥ 2, where 𝑁𝑑−1(𝑠 − 1) = 0 for 𝑠 − 1 < 0.

Using these relations, after some calculations, one obtains the number
of nodes from a depth 𝑑:

𝑁𝑑 =
𝑆
∑

𝑠=0
𝑁𝑑 (𝑠) =

𝑆
∑

𝑠=0
𝑀 ⋅ (𝑀 − 1)𝑠 ⋅

(𝑑 − 1
𝑠

)

, 𝑑 ≥ 2

with 𝑁1 =𝑀 , from where the exact number of expandable nodes in the
uniform search tree of OSP, up to depth 𝑑, is:

|𝐻𝑑 | =
𝑑
∑

𝑖=1
𝑁𝑑 =𝑀 +

𝑑
∑

𝑖=2
𝑀

𝑆
∑

𝑠=0
(𝑀 − 1)𝑠 ⋅

( 𝑖 − 1
𝑠

)

.

Fig. 3. OSP search tree with 𝑀 = 3 different actions, 𝑆 = 3 switches allowed and a single
optimal path, marked with bold. Rewards are marked on the transitions. All the rewards
outside the optimal path are zero. Dashed circles indicate nodes not belonging to the OSP
tree. Note that some leaf nodes are not represented to reduce the complexity of the figure.

For large 𝑖, a good upper bound on the combination
(

𝑖−1
𝑠

)

is 𝑖𝑠.
Upper-bounding the inner sum as (𝑀 ⋅ 𝑖)𝑆 and then the outer sum as
𝑑 ⋅ 𝑀 ⋅ (𝑀 ⋅ 𝑑)𝑆 , asymptotically, the number of nodes in the uniform
search tree of OSP is |𝐻𝑑 | ≤ 𝑐′[𝑀 ⋅𝑑]𝑆+1 with 𝑐′ some positive constant,
and 𝜎 = 𝑆+1. Therefore, taking 𝑑∗ the smallest so that 𝑛 ≤ 𝑐′[𝑀 ⋅𝑑∗]𝑆+1,

𝑑∗ ≥ 1
𝑀

(

𝑛
𝑐′

)1∕(𝑆+1)
and OSP is 𝛾

1
𝑀 (𝑛∕𝑐′)1∕(𝑆+1)

1−𝛾 -optimal. ■

Note that the resulting expression differs from the one from Theorem
1 by including 𝑀 , the number of actions, which results in a more
precise expression and a different constant 𝑐′; if we were to ignore this
refinement, we would obtain the general result of Theorem 1.

We have obtained an interesting worst case, where 𝜎 is the largest
possible. The bound achieved by OSP here is also the smallest achievable
in a worst-case sense, which means that for any planning algorithm,
and any value of 𝑆 and 𝑛, one can construct a problem (constrained
to sequences with at most 𝑆 switches) for which the distance from the
optimal value is2 𝛺(𝛾

1
𝑀 (𝑛∕𝑐′)1∕(𝑆+1) ). To see this, choose the largest 𝐷

so that 𝑛 ≥ 𝑐′[𝑀(𝐷 − 1)](𝑆+1), assign rewards of 1 for some arbitrary
sequence ℎ∗𝑑 satisfying the constraint, but only starting from level 𝐷+ 1
onward, and rewards of 0 everywhere else. Then, OSP has uniformly
expanded all nodes up to𝐷−1 but none at𝐷+1, so it has no information
and must make an arbitrary action choice, which may not be optimal,
leading to a sub-optimality of 𝛾𝐷+1

1−𝛾 = 𝛺(𝛾
1
𝑀 (𝑛∕𝑐′)1∕(𝑆+1) ). An algorithm

that does not expand uniformly may miss the optimal sequence for an
even larger number of expansions 𝑛, so its near-optimality is at least
as large. This fact also shows that OSP behaves correctly in the uniform
case: as long as only uniform rewards are observed, the tree must be
expanded uniformly, and this behavior is reflected in the bound.

3.2. Single optimal path (𝜎 = 1)

In this case, a single sequence has maximal rewards (equal to 1), and
all other transitions have a reward of 0, see Fig. 3. The optimal path
switches 𝑆′ times where 𝑆′ is unknown but finite.

Proposition 2. When there is a single optimal path, 𝜎 = 1 and OSP is
𝛾𝑛−𝑐′′

1−𝛾 -optimal with respect to 𝑣∗𝑆 , with 𝑐′′ a positive constant.

2 Here and in the sequel, notations 𝑔 = 𝑂(ℎ) and 𝑔 = 𝛺(ℎ) mean that 𝑔 asymptotically
grows, respectively, at most as fast / at least as fast as ℎ.
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Proof. Consider two cases: either the path with rewards of 1, belongs
to the constrained search space 𝐻𝑑 or not. In the first case, i.e. when
𝑆 ⩾ 𝑆′, the analysis is trivial: the algorithm expands only on the optimal
path. In this case, taking a computational budget of 𝑛 expansions, the
tree will reach the depth 𝑑 = 𝑛.

In the second case, when 𝑆 < 𝑆′, the unconstrained optimal path,
with rewards of 1, belongs to the constrained search space 𝐻𝑑 only up
to depth 𝑑0, as illustrated in Fig. 3. After that it becomes different from
the constrained optimal path, which simply keeps the action constant
although getting rewards of 0 below 𝑑0. Denote ℎ𝑑0 the deepest node
from the optimal path belonging to the OSP tree that had a reward of 1.
Additionally, denote ℎ𝑑1 a node from the optimal path having 𝑑1 < 𝑑0.
The children of ℎ𝑑1 not on the optimal path and at a relative depth 𝑘′

to node ℎ𝑑1 are denoted ℎ𝑑1+𝑘′ . Similarly, the children of ℎ𝑑0 will be
denoted as ℎ𝑑0+𝑘.

Now, since the algorithm always expands the node with the highest
b-value, after expanding the 1-reward path up to depth 𝑑0, the choice
between the children of ℎ𝑑0 and ℎ𝑑1 for further expansion is made
using their b-values (3). We will show that children ℎ𝑑1+𝑘′ start being
dominated by (i.e. having smaller 𝑏-values than) ℎ𝑑0+𝑘 after finite 𝑘′.
For any 𝑘, 𝜈(ℎ𝑑0 ) < 𝑏(ℎ𝑑0+𝑘), so it suffices to show that:

𝜈(ℎ𝑑0 ) ≥ 𝑏(ℎ𝑑1+𝑘′ )

1 − 𝛾𝑑0
1 − 𝛾

≥ 1 − 𝛾𝑑1
1 − 𝛾

+
𝛾𝑑1+𝑘′

1 − 𝛾
𝛾𝑑1 − 𝛾𝑑0
1 − 𝛾

≥ 𝛾𝑑1+𝑘′

1 − 𝛾
.

But there exists a finite �̄� so that this relation holds for any 𝑘′ ≥ �̄�. So
at most a finite subtree, of relative depth at most �̄�, may be expanded
for any node ℎ𝑑1 before the nodes ℎ𝑑0+𝑘 start dominating. Therefore,
asymptotically, the tree construction will end up expanding only these
children. As nodes ℎ𝑑0+𝑘 have only one unconstrained child (that has
no more than 𝑆 switches), reaching a depth 𝑑 = 𝑑0 + 𝑘 will require 𝑑
expansions on the constrained optimal path. Adding to this the finite
number of expansions due to the children ℎ𝑑1+𝑘′ for all 𝑑1 as a constant
𝑐′′, the total number of expanded nodes in the search tree is |𝐻𝑑 | ≤
𝑐′′ + 𝑑. Hence, in this special case, 𝜎 = 1, 𝑛 ≤ 𝑐′′ + 𝑑 and the algorithm
is 𝛾𝑛−𝑐′′

1−𝛾 -optimal. ■

Thus, in this case where a ‘‘maximal’’ amount of structure exists
in the reward function, the problem becomes easy, represented by a
value of 𝜎 = 1, and the near-optimality is exponential in 𝑛 rather than
stretched-exponential like before. Again, we have obtained a refined
expression with a different constant than in Theorem 1.

Next, we briefly discuss practical aspects regarding the closed loop
implementation of the algorithm. In closed loop, online use of the
method, one may apply it at each encountered state 𝑥𝑘, send the
first action of the sequence returned to the actuator, and then repeat
the process in receding horizon. The resulting closed-loop sequence
may have more than 𝑆 switches, but this procedure is appropriate
for problems where the number of switches is not a real constraint
in the problem. Recall that in such problems, the space of solutions
searched by the algorithm is restricted either due to prior knowledge on
their structure, in case (i) of Section 1, or for computational reasons in
case (ii).

When switches are costly in the real world (still in case (ii) of Section
1), the constraint must be enforced in closed loop. It is not practical to
enforce only 𝑆 switches for the entire infinite horizon, as after they
are exhausted the algorithm can no longer react to unmodeled effects
(e.g. disturbances). Instead, we suggest ensuring that at most 𝑆 switches
are applied for any range of consecutive 𝑁 steps, where 𝑁 is a tuning
parameter. This can be implemented easily, by keeping track of the past
𝑁 actions (over the range 𝑘 − 𝑁,… , 𝑘 − 1) and ensuring that nodes
violating the condition are not expanded by the algorithm. Further, for
the ranges of steps where no more switches are allowed, the action

is simply held constant and OSP is only reapplied when a new switch
becomes eligible.

Note that with the first procedure, the state at steps 𝑘 + 2, 𝑘 + 3,…
can leave the tree seen at step 𝑘, because the closed-loop sequence
is unconstrained (𝑥𝑘+1 is on the tree at 𝑘 by definition). Our analysis
does not cover this closed-loop effect, instead only characterizing the
open-loop sequence found at each step. Nevertheless, since the loop is
closed at 𝑘+ 1, 𝑘+ 2,…, the algorithm can react in receding horizon by
computing new sequences for these states, which is expected to keep
performance acceptable. With the second procedure, the same effect
occurs, but more slowly due to the limited number of switches allowed.
Moreover, in either case, due to modeling errors the states will deviate
from the predicted ones, but as usually in MPC, the receding-horizon
feedback mechanism is also expected to compensate for this.

We will test both procedures in the upcoming experiments of
Section 5.

4. Optimistic adaptive switch-limited planning

The OSP algorithm discussed so far searches in a constrained space
of action sequences with at most a fixed number of 𝑆 switches. Recall
from above that in many problems, 𝑆 is not a hard constraint, being
instead a tunable parameter that increases the computational efficiency
of the algorithm, which can therefore be set to arbitrary values.

To eliminate the need to tune 𝑆, while still keeping the benefits
of OSP as much as possible, next, an optimistic adaptive switch-limited
planning (OASP) algorithm is introduced. OASP uses the same principle
as OSP: explore a search tree optimistically, but never expand nodes that
have more than 𝑆 action switches in their action sequence. However,
OASP allows for incrementing 𝑆 based on a certain criterion that will
be called the increment rule. As a simple example, one increment rule
may be to start with 𝑆0 = 0 and increase 𝑆 whenever a depth (𝑆 +1) ⋅𝑑0
is reached. In this example, presented also in Fig. 4, OASP explores the
search tree with 𝑆 = 0 until 𝑑0, starting from where it explores the
tree with 𝑆 = 1 until depth 2 ⋅ 𝑑0, and so on. After incrementing 𝑆,
the algorithm may return to lower depths, as also seen in Fig. 4, since
the 𝑏-values of nodes at smaller depths that were earlier not eligible
for expansion might be larger, and if they are now eligible due to the
increased 𝑆 they will be expanded.

The choice of the increment rule is crucial for the performance of the
algorithm. Two increment rules will be used, different from the simple
one used as an example. To develop an intuition, recall that OSP ensures
a near-optimality of 𝛾𝑑max∕(1 − 𝛾) where 𝑑max is the deepest expanded
depth with the current value of 𝑆. However, if the goal is to reach the
unconstrained optimum 𝑣∗, then it is only useful to increase 𝑑max until
the suboptimality due to the limited depth of exploration is smaller than
the suboptimality due to the limited value of 𝑆, 𝑣∗−𝑣∗𝑆 . So, in principle,
𝑆 should be increased as soon as 𝑣∗ − 𝑣∗𝑆 > 𝛾

𝑑max∕(1 − 𝛾). Now of course,
the algorithm does not know 𝑣∗ or even 𝑣∗𝑆 , so as proxy it will replace
the left-hand side of the inequality by a (very rough) estimate of the
gradient of 𝑣∗𝑆 with respect to 𝑆: the difference between either 𝑏-values
or 𝜈-values for the latest two values of 𝑆, scaled by a constant 𝛽.

Specifically, consider a 𝑏-rule, defined as:

𝑆 = 0. 𝑆 ← 𝑆 + 1, if 𝑏∗𝑆−1 − 𝑏
∗
𝑆 ⩾ 1

𝛽
⋅
𝛾𝑑′

1 − 𝛾
(4)

where 𝑏∗𝑆−1 denotes the maximum of the 𝑏-values before the algorithm
incremented 𝑆 to its current value, 𝑏∗𝑆 is the maximum value in the
current search tree with 𝑆 action switches allowed, 𝛽 is a tuning
parameter, and 𝑑′ is the depth of the deepest node expanded so far.
Also, 𝑏∗−1 = 1

1−𝛾 by definition. The OASP algorithm that uses the 𝑏-rule
is called OASP-𝑏.

A second rule, called 𝜈-rule, is defined as:

𝑆 = 0. 𝑆 ← 𝑆 + 1, if 𝜈∗𝑆 − 𝜈∗𝑆−1 ⩾
1
𝛽
⋅
𝛾𝑑′

1 − 𝛾
, or if 𝑆 < 𝑑′

𝑑lim
(5)
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Fig. 4. OASP search tree with 𝑀 = 2 discrete actions, 𝑆 = 0 initial value and increment rule: 𝑆 ← 𝑆 + 1 if the deepest expanded node is at 𝑑 = (𝑆 + 1) ⋅ 2. Nodes not yet expanded are
marked in gray outline, nodes not eligible for expansion are marked with dashed line, whereas nodes filled with gray are those where the increment rule can be activated. All the nodes
have 2 children, although the figure does not show all of them to limit the focus to the expanded nodes.

where, similarly to the 𝑏-rule, 𝜈∗𝑆−1 is the maximum of the 𝜈-values
before 𝑆 is incremented to its current value, 𝜈∗𝑆 is the currently highest
𝜈-value, and 𝛽 and 𝑑′ have the same meaning as before. Note that the
𝜈-rule contains an extra increment condition that prevents the algorithm
from keeping 𝑆 constant indefinitely, which is important in certain
special cases, as it will become apparent in the analysis from Section
4.1. We set 𝜈∗−1 = 0, and refer to the algorithm that uses the 𝜈-rule as
OASP-𝜈.

Next, the performance of OASP is analyzed in the same special cases
as OSP from Section 3: uniform tree and single optimal path. Sections
4.1 and 4.2 discuss the performance of OASP in the case of two different
uniform search trees, while Section 4.3 analyzes OASP in the case of a
search tree with a single optimal path.

4.1. Uniform 0-reward tree

Consider a uniform search tree with rewards of 0 for all the nodes.
In this case 𝑣∗ = 𝑣∗𝑆 for any value of 𝑆, and thus the near-optimality of
the methods can directly be compared.3

Proposition 3. In the case of identical 0 rewards, OASP-𝑏 is 𝑂
(

𝛾𝑑0 log 𝑛
)

-
optimal, while OASP-𝜈 is 𝑂

(

𝛾𝑑lim log 𝑛)-optimal, where 𝑑0 is a finite depth
defined in the proof.

Proof. For uniform rewards of 0, 𝜈(ℎ𝑑 ) = 0 and 𝑏(ℎ𝑑 ) =
𝛾𝑑

1−𝛾 for any node
ℎ𝑑 at depth 𝑑, i.e. the 𝜈-values are zero everywhere, and the 𝑏-values
decrease as the depth increases. Therefore, the highest 𝑏-values are at
the lowest unexpanded depths, and the algorithms explore the tree in
the order of the depths.

In the case of OASP-𝑏, when 𝑆 = 0, for any 𝛽 > 0 there is a depth
𝑑0 = 𝑑′ + 1 that validates the condition 𝑏−1 − 𝑏0 = 1

1−𝛾 −
(

0 + 𝛾𝑑0
1−𝛾

)

⩾
1
𝛽 ⋅ 𝛾𝑑′

1−𝛾 , i.e. 1 ⩾
(

1
𝛽⋅𝛾 + 1

)

⋅ 𝛾𝑑0 . Recall that 𝑑′ denotes the depth of the
deepest node expanded so far in the search tree. After this condition is
validated, the algorithm reaches depth 𝑑1 with 𝑆 = 1, and the condition
becomes 𝑏0 − 𝑏1 = 𝛾𝑑0

1−𝛾 − 𝛾𝑑1
1−𝛾 ⩾ 1

𝛽
𝛾𝑑′

1−𝛾 , i.e. 1 ⩾
(

1
𝛽⋅𝛾 + 1

)

⋅ 𝛾𝑑1−𝑑0 . Note
that this is validated for 𝑑1 = 2𝑑0, and so on. Thus, for an arbitrary 𝑆,
one obtains that 𝑆 is incremented at every depth that is a multiple of
𝑑0. Thus, since the tree is explored in the order of the depths, to reach a
certain depth 𝑑 = (𝑆 + 1)𝑑0 − 1, OASP-𝑏 explores all the sequences with
𝑆−1 action switches up to that depth, and, after expanding a node from
𝑑𝑆 = (𝑆 + 1)𝑑0, it starts to explore sequences with 𝑆 action switches.

3 It is still, however, useful to judge the near-optimality of the algorithms by their
largest expanded depth, via 𝛾𝑑max∕(1 − 𝛾), because – like in Section 3.1 – examples where
they have this suboptimality can be constructed.

Note that sequences with 𝑆 switches are explored if and only if the
tree has reached at least depth 𝑑𝑆 . The algorithm may then return to
lower depths with higher values of 𝑆, but will never expand sequences
with 𝑆 + 1 switches before reaching the depth 𝑑𝑆+1. Thus, one can
conclude that up to a depth 𝑑𝑆 , the tree expanded by OASP is included
in the tree that OSP would expand up to 𝑑𝑆 with a fixed 𝑆 constraint.

It is also true that once the algorithm expands a sequence with 𝑆
switches, it has reached for sure at least depth 𝑑𝑆 . Thus, it is sufficient to
perform the analysis based on the highest 𝑆 reached, denoted 𝑆∗. Then,
an upper bound on the number of expansions in the uniform 0-reward
tree results from the uniform tree expansion special case from Section
3.1, namely at most 𝑐 ⋅ (𝑀 ⋅ 𝑑𝑆∗ )𝑆∗+1 expansions, with 𝑐 some positive
constant. So, based on the analysis of OSP from Section 3.1, OASP-𝑏 is
𝑂
(

𝛾
1
𝑀 𝑛1∕(𝑆∗+1)

)

-optimal.
Now, 𝑆∗ is of course unknown, so we will find a lower bound 𝑆.

Take the smallest 𝑆 that, for a given computational budget 𝑛, satisfies

𝑛 ⩽ 𝑐 ⋅ (𝑀 ⋅ 𝑑𝑆 )𝑆+1. (6)

Replacing 𝑑𝑆 = 𝑆 ⋅ 𝑑0 in (6), one can determine 𝑆 by first rewriting

𝑛 ⩽ 𝑐 ⋅ (𝑀 ⋅ (𝑆 + 2) ⋅ 𝑑0)𝑆+1

𝑀 ⋅ 𝑑0 ⋅ log
𝑛
𝑐

⩽ 𝑒log(𝑀 ⋅𝑑0⋅(𝑆+2)) ⋅ log(𝑀 ⋅ 𝑑0 ⋅ (𝑆 + 2)). (7)

Using the Lambert 𝑊 function (Hoorfar and Hassani, 2008), which
satisfies

𝑧 = 𝑒𝑊 (𝑧) ⋅𝑊 (𝑧),∀𝑧 ∈ 𝐑+ (8)

and knowing that 𝑊 is increasing for positive values (Hoorfar and
Hassani, 2008), it can be applied to both sides of (7), obtaining

𝑊
(

𝑀 ⋅ 𝑑0 ⋅ log
𝑛
𝑐

)

⩽ 𝑊 (𝑧) = log(𝑀 ⋅ 𝑑0 ⋅ (𝑆 + 2)). (9)

Knowing that the Lambert function for real values can be bounded as
(Hoorfar and Hassani, 2008)

log 𝑥 − log log 𝑥 + 1
2
log log 𝑥
log 𝑥

⩽ 𝑊 (𝑥) ⩽ log 𝑥 − log log 𝑥

+ 𝑒
𝑒 − 1

log log 𝑥
log 𝑥

(10)

a lower bound is used to replace the function from (9), namely 𝑊 (𝑥) ⩾
log 𝑥 − log log 𝑥 = log 𝑥

log 𝑥 . Then,

log
𝑀 ⋅ 𝑑0 ⋅ log

𝑛
𝑐

log(𝑀 ⋅ 𝑑0 ⋅ log
𝑛
𝑐 )

⩽ log(𝑀 ⋅ 𝑑0 ⋅ (𝑆 + 2))

𝑆 ⩾
log 𝑛

𝑐

log(𝑀 ⋅ 𝑑0 ⋅ log
𝑛
𝑐 )

− 2.
(11)
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Table 1
Near-optimality of the algorithms. For uniformity, all the rates are shown in asymptotic notation and (where meaningful) as a
power of 𝛾. For each case, the best performing algorithm or algorithms are highlighted in bold.

Special case OPD OSP OASP-𝑏 OASP-𝜈

Uniform 1-rewards 𝑂
(

𝛾 log 𝑛∕ log𝑀
)

𝑂
(

𝛾
1
𝑀
𝑛1∕(𝑆+1)

)

𝑶
(

𝜸𝒏∕𝑴
)

𝑂
(

𝛾𝑑0 ⋅log 𝑛
)

Uniform 0-rewards 𝑂
(

𝛾 log 𝑛∕ log𝑀
)

𝑶
(

𝜸
𝟏
𝑴 𝒏𝟏∕(𝑺+𝟏)

)

𝑂
(

𝛾𝑑0 ⋅log 𝑛
)

𝑂
(

𝛾𝑑lim ⋅log 𝑛
)

Single optim. path 𝑶 (𝜸𝒏) 𝑂(1), suboptimal 𝑶(𝜸𝒏) 𝑶(𝜸𝒏)

Thus, since 𝑆∗ ⩾ 𝑆, the near-optimality of OASP-𝜈 can be approximated
as

𝑂
(

𝛾
1
𝑀 𝑛1∕(𝑆∗+1)

)

⩽ 𝑂
(

𝛾
1
𝑀 𝑛1∕(𝑆+1)

)

⩽ 𝑂
(

𝛾
1
𝑀 𝑛1∕(𝑆+2)

)

⩽ 𝑂
(

𝛾
1
𝑀 𝑛log(𝑀 ⋅𝑑0 ⋅log

𝑛
𝑐 )∕ log

𝑛
𝑐
)

⩽ 𝑂
(

𝛾
1
𝑀 𝑛log(𝑀 ⋅𝑑0 ⋅log 𝑛)∕ log 𝑛

)

= 𝑂
(

𝛾𝑑0⋅log 𝑛
)

.

(12)

In the case of OASP-𝜈, the condition 𝜈∗𝑆 − 𝜈∗𝑆−1 = 0 ⩾ 1
𝛽 ⋅ 𝛾

𝑑′

1−𝛾 is never
satisfied. The value of 𝑆 is only incremented by the extra criterion, at
depths multiple of the limit value 𝑑lim from (5). Then, the analysis from
the above case of OASP-𝑏 can be reused with 𝑑0 replaced by 𝑑lim, so that
OASP-𝜈 expands 𝑛 = 𝑂

(

(𝑀 ⋅ 𝑑lim ⋅ (𝑆∗ + 2))𝑆∗+1) nodes in the uniform
0-reward tree, and is 𝑂

(

𝛾𝑑lim⋅log 𝑛)-optimal. ■

As a baseline, for this tree, OPD expands 𝑛 = 𝑂(𝑀𝑑max ) nodes,
with 𝑑max the depth of the deepest expanded node, so it has 𝑑max =
𝛺 (log 𝑛∕ log𝑀), and is 𝑂

(

𝛾 log 𝑛∕ log𝑀
)

-optimal (Hren and Munos, 2008).
OSP is𝑂

(

𝛾
1
𝑀 𝑛1∕(𝑆+1)

)

-optimal, as discussed in Section 3.1, see also Table
1 for a synthetic comparison.

In this special case, the OASP methods have a similar convergence
rate to OPD, somewhat faster due to the 𝑑0 or respectively 𝑑lim multiplier
in the near-optimality exponent. The increment rules of OASP increase
𝑆 to infinity correctly but unnecessarily, as all the sequences obtain
the same reward. On the other hand, the constant switch constraint of
OSP allows the algorithm to explore deeper and to provide a better
near-optimality bound. However, as shown in the special case from
Section 4.3 below, sometimes the constant 𝑆 used with OSP will get
the algorithm stuck in suboptimal solutions.

4.2. Uniform 1-reward tree

Consider a uniform tree with constant rewards of 1. Again, 𝑣∗ = 𝑣∗𝑆
for any value of 𝑆, and the near-optimality of the methods is directly
comparable.

Proposition 4. In the case of identical rewards of 1, OASP-𝑏 is 𝛾𝑛∕𝑀

1−𝛾 -
optimal, while OASP-𝜈 is 𝑂

(

𝛾𝑑0 log 𝑛
)

-optimal, where 𝑑0 is a finite depth
defined in the proof.

Proof. In this case, for any algorithm, a node ℎ𝑑 from depth 𝑑 has
𝜈(ℎ𝑑 ) =

1−𝛾𝑑
1−𝛾 and 𝑏(ℎ𝑑 ) =

1
1−𝛾 . Since the 𝑏-values are the same for all the

nodes, the tree expansion is performed in order of node creation.
OASP-𝑏 will never increment 𝑆, since 𝑏∗−1 − 𝑏

∗
0 = 0 for any node, and

the condition from the 𝑏-rule is never activated. Thus, OASP-𝑏 explores
this tree with 𝑆 = 0 on 𝑀 constant-action paths, expanding 𝑛 =𝑀 ⋅𝑑max
nodes and being 𝛾𝑛∕𝑀

1−𝛾 -optimal.
The increment condition of OASP-𝜈 is validated for a given 𝑑0 =

𝑑′ + 1. Starting with 𝑆 = 0, one has 𝜈∗0 − 0 = 1−𝛾𝑑0
1−𝛾 ⩾ 1

𝛽 ⋅ 𝛾𝑑′

1−𝛾 , or

equivalently 1 ⩾
(

1
𝛽⋅𝛾 + 1

)

⋅ 𝛾𝑑0 . Having this condition validated, the
algorithm reaches depth 𝑑1 with 𝑆 = 1, and the condition becomes
𝜈∗1 − 𝜈∗0 = 1−𝛾𝑑1

1−𝛾 − 1−𝛾𝑑0
1−𝛾 ⩾ 1

𝛽 ⋅ 𝛾𝑑′

1−𝛾 , i.e. 1 ⩾
(

1
𝛽⋅𝛾 + 1

)

⋅ 𝛾𝑑1−𝑑0 . Note that
this is validated for 𝑑1 = 2𝑑0, and so on, like in the case of OASP-𝑏 from
Section 4.1. Thus, following the same analysis line as in Section 4.1,
OASP-𝜈 is 𝑂

(

𝛾𝑑0⋅log 𝑛
)

-optimal. ■

Note that OPD and OSP have the same performance as in the
previous case of the uniform 0-reward tree. OPD is 𝑂

(

𝛾 log 𝑛∕ log𝑀
)

-
optimal, whereas OSP is 𝑂

(

𝛾
1
𝑀 (𝑛∕𝑐)1∕(𝑆+1)

)

-optimal. Thus, as OASP-𝑏
keeps 𝑆 = 0, in this special case it explores much deeper and provides a
tighter near-optimality bound, even better than OSP. On the other hand,
OASP-𝜈 has a similar performance as OPD but with faster convergence
to the near-optimal solution, like in the previous special case.

4.3. Single optimal path

Take a tree that has zero rewards for all the nodes except for a single
optimal path that switches 𝑆′ times where 𝑆′ is unknown but finite, see
the example in Fig. 3. Note that even in this case, 𝑣∗ = 𝑣∗𝑆 as soon as
𝑆 ≥ 𝑆′ switches are allowed.

Proposition 5. In the case of a single optimal path, OASP with both
increment rules is 𝑂 (𝛾𝑛)-optimal.

Proof. The two OASP methods explore this tree similarly to each
other. They start exploring the optimal path with 𝑆 = 0. Depending
on the chosen value of 𝛽 and the depth at which the first action
switch in the optimal path occurs, both methods expand some nodes
on suboptimal paths (i.e. with zero rewards). OASP-𝑏 has to get a high
enough difference between the 𝑏-values, i.e. expand a sufficient number
of sub-optimal nodes until incrementing 𝑆 and returning to the optimal
path. OASP-𝜈 has to explore sufficient nodes to reach a depth high
enough to activate the extra increment condition. When the increment
conditions are satisfied, both methods increment 𝑆 and keep exploring
the optimal path up to the next action switch. There, further suboptimal
paths are explored until 𝑆 is incremented, an so on, until 𝑆 ⩾ 𝑆′.
Up to this point, a constant-sized subtree is explored. Thereafter, the
OASP methods explore only on the optimal path. Therefore, the OASP
algorithms expand 𝑛 = 𝑂(𝑑max) nodes and are 𝑂(𝛾𝑛)-optimal. ■

As a comparison, OPD explores only the optimal path and has thus
𝑛 = 𝑑max expansions and 𝛾𝑛

1−𝛾 -optimality. OSP with 𝑆 ⩾ 𝑆′ has exactly
the same number of expansions and near-optimality as OPD. However,
taking 𝑆 < 𝑆′ makes OSP follow the optimal path until the available
switches are consumed, starting from where on OSP explores zero
rewarded paths and has thus constant suboptimality. Thus, this special
case illustrates how the increment rule of OASP helps the algorithm
work with similar asymptotic performance to OPD even in situations
when OSP would fail to find near-optimal solutions.

Table 1 summarizes the results in all these cases. A general conver-
gence rate of OASP, for any problem, has not been obtained yet. Nev-
ertheless, the analysis above illustrates that OASP with both increment
rules performs better than OPD or OSP in certain types of problems,
where it is therefore interesting; and gracefully degrades either to OSP
or OPD in some other problems.

OASP can be used in closed loop the usual way, by applying the
first action of each sequence returned and then recalculating actions in
receding horizon.

5. Experimental evaluation of OSP

Our first batch of experiments uses the Quanser rotational pendulum,
shown in Fig. 5. This system consists of a heavy rod, the pendulum,
sitting on an unactuated rotational joint at the end of an intermediate,
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Fig. 5. Quanser rotational pendulum.

horizontal link actuated through a motor. The state vector is [𝜃, �̇�, 𝛼, �̇�]T
where the variables are the angle 𝛼 ∈ [−𝜋, 𝜋) rad of the pendulum
(zero when pointing up), the angle 𝜃 ∈ [−𝜋, 𝜋) rad of the horizontal
link (zero when pointing forward), and their angular velocities �̇�, �̇� in
[−100, 100] rad/s. The two angles ‘‘wrap around’’ the ends of the interval.
The input voltage 𝑢 varies in the range of [−6, 6]V. The dynamics are:

�̈� = (𝑎𝑑 sin 𝛼 − 𝑏2�̇�2 sin 𝛼 cos 𝛼 − 𝑏𝑒�̇� cos 𝛼
+ 𝑏𝑓𝑢 cos 𝛼)∕(𝑎𝑐 − 𝑏2cos2𝛼)

�̈� = (−𝑏𝑐�̇�2 sin 𝛼 + 𝑏𝑑 sin 𝛼 cos 𝛼 − 𝑐𝑒�̇� + 𝑐𝑓𝑢)∕(𝑎𝑐 − 𝑏2cos2𝛼)
(13)

with 𝑎 = 0.0112, 𝑏 = 0.0046, 𝑐 = 0.0048, 𝑑 = 0.2099, 𝑒 = 0.0729,
𝑓 = 0.1281, computed from the physical parameters. The goal of the
control problem is to reach the zero equilibrium, but the system is
underactuated so the pendulum must first be swung back and forth to
accumulate energy, so long trajectories must be found.

In all the experiments, the planners work with the normalized
reward function, defined as 𝜌(𝑥, 𝑢) = 1 − (𝑥𝑇𝑄𝑥 + 𝑅𝑢2)∕𝑟max, with
𝑄 = diag(0.1, 0.1, 1.0, 0.001), 𝑅 = 0.1, and 𝑟max ≈ 1024.46 representing
the largest possible value of the unnormalized cost 𝑥𝑇𝑄𝑥 + 𝑅𝑢2. The
discount factor in (1) is set to 𝛾 = 0.98 for all the methods. All the
experiments compare the methods for the same range of computational
budgets.

Although the rotational pendulum is a standard problem, it is an
appropriate benchmark for our algorithm: it is nonlinear, requires large

horizons to plan the swings, and the swings exhibit the limited-switch
property, so the basic problem is in class (i). So, first, Section 5.1
provides simulation results for OSP without enforcing the constraint
in closed loop. Then, the results from Section 5.2 show how limiting
the number of switches in closed loop can help when the pendulum is
controlled via a network. Finally, Section 5.3 shows the performance of
OSP when applied on the real rotational pendulum.

5.1. Rotational pendulum swing-up simulations

In the simulations from this section, the algorithms are tested online,
in receding horizon from initial state 𝑥0 = [𝜋, 0, 𝜋, 0]𝑇 and for a duration
of 100 steps, with a sampling time of 0.05 s, so that the trajectory length
is 2.5 s. The discretized actions are −6, 0, 6 V, so𝑀 = 3. For the resulting
finite sequence of control actions, the truncated discounted return is
calculated.

Fig. 6 shows the resulting returns for varying computational budgets.
An important remark is that by increasing the value of 𝑆, OSP converges
to OPD as expected from the construction of the algorithm. Choosing
𝑆 = 1, OSP obtains a sub-optimal solution where the difference between
𝑣∗ and 𝑣∗𝑆 is clearly visible for 𝑛 large. For lower values of 𝑛 OSP with
𝑆 = 1 gets higher returns, which can be explained by luck. Taking
higher values for 𝑆, the advantage of OSP is clearly reflected: OSP
obtains the same return as OPD for lower values of 𝑛. In other words,
for intermediate values of 𝑆, OSP is able to obtain a result of the same
quality as OPD or better, using fewer computational resources.

5.2. Application to simulation of networked control systems

In networked control systems, the controller is connected to the
system by a communication network shared with other devices. We
consider the setting where state measurements can be performed at
every step, while changes in the control action are expensive and should
be performed rarely; this is standard in so-called event-triggered control
(Tabuada, 2007). The algorithm is used as explained at the end of
Section 3: a new action is transmitted only when a switch occurs, and
otherwise the old action is maintained. By setting the ratio of 𝑆 switches
(transmissions) per 𝑁 steps, OSP can be used to fine-tune the usage of
the network. Discretizing the actions in a small number of actions is
also useful (De Persis and Frasca, 2013), since it reduces the size of the
control packets to a few bits (the action index), requiring a local table to
transform the action index back into the true value on the system side.
Fig. 7 shows this architecture.

This setting is illustrated for the rotational pendulum. Using the same
discretized actions as above, OSP is used to enforce at most 𝑆 = 3 action
changes over 𝑁 = 6 or 9 steps (since the sampling time is 0.05 s and
𝑀 = 3, no more than 9 bits of data are sent in 0.3 or 0.45 s, respectively).

Fig. 6. Rotational pendulum return for OPD and OSP: simulation results for budgets up to 5000 expansions (left), zoomed in for budgets up to 𝑛 = 1000 (right).
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Fig. 7. Networked control system architecture.

Fig. 8 shows that OSP is able to perform similarly to OPD even when
the constraint is applied online, though one needs a tradeoff between
the desired performance and the imposed constraints expressed by 𝑆
and 𝑁 .

5.3. Experiments with a real rotational pendulum

This section shows experimental results when OSP is used to swing
up the real rotational pendulum. The experiments are run with a C ++
implementation of OSP in order to increase computation speed. OSP
is evaluated for inputs 𝑈 ∈ {−6, 0, 6} V, switch constraint 𝑆 = 3,
and budget of 𝑛 = 2100 expansions, without enforcing the constraint
in closed loop. Since the computation time of the algorithm is not
negligible, we apply the real-time planning approach from (Wensveen
et al., 2015) to plan actions one step ahead, using the sampling period
𝑇𝑆 = 0.05 s to run the algorithm. Fig. 9 plots the obtained trajectories
and corresponding inputs and rewards.

The first graph from Fig. 9 shows the evolution of the angular
position of the pendulum, where zero means that the pendulum is
pointing up. A very first remark is that the algorithm is able to bring
up and stabilize the pendulum. Four sections of the trajectory are
highlighted. The first one marks the initial swing-up. The other three
sections highlight periods when perturbations were introduced by softly
hitting the pendulum. The events from around 3.5 s and 5.5 s correspond
to small hits, when the pendulum destabilizes only a little, and the
planner is able to immediately correct the position. The last event marks
a more pronounced perturbation, leading to higher angular velocity of
the pendulum for which a solution that keeps the pendulum in a pointing
up state cannot be found, so it is reswung. A video of this experiment
can be viewed at http://rocon.utcluj.ro/files/rotpend_osp.mp4.

6. Experimental evaluation of OASP

This section presents experimental results for OASP using simula-
tions in two control problems. First, Section 6.1 compares OASP to
OPD and to OSP using again the rotational pendulum, while evaluating
the effectiveness of the two proposed increment rules of OASP, the

𝑏-rule and the 𝜈-rule. Based on the results OASP-𝜈 is selected to be
further evaluated. The second set of experiments, presented in Section
6.2, uses the more involved problem of quadrotor flight path control.
OASP is compared against OPD and to a baseline, simple linear–
quadratic regulator (LQR), when the methods are used for determining
the sequence of actions to take in order to guide a quadrotor through
several waypoints while minimizing a certain cost.

6.1. Rotational pendulum simulations

Consider again the rotational pendulum control problem of Section
5. The OPD, OSP and OASP algorithms are evaluated online, i.e. calcu-
lating and applying actions in closed loop, for a number of 100 discrete
time steps, with computational budgets 𝑛 up to 5000 expansions. The
OSP algorithm is evaluated with 𝑆 = 3 based on the best settings from
Section 3, while for OASP-𝜈 and OASP-𝑏 we performed preliminary
tuning of the parameter 𝛽 in order to obtain the best results. OASP-𝜈
uses 𝛽 = 9, while OASP-𝑏 takes 𝛽 = 1500.

Fig. 10 shows the results. An important remark is that the OASP
methods outperform OPD and OSP for low values of 𝑛, meaning that
OASP in both of its variants is able to find a near-optimal solution
with less computation, already for less than 100 expansions per closed-
loop step. Also, as seen in the left graph of Fig. 10, OASP-𝜈 has better
performance for higher budgets too.

Since the performance of OASP depends on tuning the new parame-
ter 𝛽 from the increment rules Eqs. (4) and (5), in Fig. 11 we investigate
the sensitivity with respect to this parameter. Note that 𝑑lim is set large
enough, so that the 𝜈-rule never activates that branch. For both OASP
variants, too low values of 𝛽 lead to suboptimal performance due to
increasing 𝑆 too slowly, while very large values increase 𝑆 too fast,
losing the performance benefits over OPD. The major difference between
the variants is that OASP-𝜈 is more robust to changes of the parameter 𝛽,
due to which the next experiment is narrowed down to evaluating only
OASP-𝜈 against other methods. Recall that a fundamental advantage
compared to OSP is that OASP will eventually approach the uncon-
strained optimum, even when a badly chosen 𝛽 makes it approach it
slowly.

6.2. Simulation results for quadrotor trajectory control

In this section, OASP is compared against OPD using the problem
of quadrotor flight path control. The methods are used for determining
the sequence of actions to take in order to guide a quadrotor through
a sequence of waypoints while minimizing a certain cost. Also, the al-
gorithms are compared to a baseline, simple linear–quadratic regulator
(LQR). The LQR controller (Kirk, 2004; Lewis et al., 2012), similarly

Fig. 8. Networked control system: simulation results for budgets up to 5000 expansions (left), zoomed in for budgets up to 𝑛 = 1000 (right).
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Fig. 9. Rotational pendulum online trajectory: the graphs show, from top to bottom, the evolution of the angular position of the pendulum (𝛼) and of the actuated joint (𝜃), the control
inputs 𝑈 , and the rewards.

Fig. 10. Rotational pendulum: cumulative rewards for computational budget up to 𝑛 = 5000 (left), and the same results zoomed in for budgets up to 𝑛 = 1000 expansions (right).

Fig. 11. Rotational pendulum: given a fixed computational budget of 𝑛 = 1000 expansions, the left graph shows the return obtained by OASP-𝜈 for 𝛽 ∈ [2, 20], while the right graph
presents the returns of OASP-𝑏 for 𝛽 ∈ [200, 3500]. Both graphs present as a reference the return obtained by OPD with 𝑛 = 1000.

to OPD and OASP, optimizes a quadratic cost function but is designed
based on linearized dynamics, see (Máthé, 2016) for details.

The quadrotor is modeled using twelve states representing the
position, orientation, linear and angular velocity of the quadrotor in

space, with respect to each axis, 𝑥, 𝑦 and 𝑧. An additional state, 𝑥13
is used to mark the index of the current waypoint towards which the
quadrotor is heading. Note that 𝑥13 is not part of the dynamics, but is
used in the rewards to indicate the currently targeted waypoint. The
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Fig. 12. Quadrotor online simulations: path obtained with LQR (left) and with OPD and OASP (right). Both figures show the flights in side view, while the insets show the trajectory in
top view.

inputs are 𝑈 = [𝑈coll, 𝑈𝜙, 𝑈𝜃 , 𝑈𝜓 ], i.e. the collective force acting on the
𝑧 axis, and the torques acting on the three axes. The transition function
is obtained by using a sampling time 𝑇𝑆 = 0.004 s and numerically
integrating the continuous-time dynamics. The dynamics from (Dydek
et al., 2013) are used:

⎧
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⎪

⎪
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�̈� = [𝑐(𝜙)𝑠(𝜃)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)]
𝑈coll
𝑚

�̈� = [𝑐(𝜙)𝑠(𝜃)𝑠(𝜓) − 𝑠(𝜙)𝑐(𝜓)]
𝑈coll
𝑚

�̈� = −𝑔 + 𝑐(𝜙)𝑐(𝜃)
𝑈coll
𝑚

�̈� = �̇��̇�
𝐼𝑦 − 𝐼𝑧
𝐼𝑥

+ 1
𝐼𝑥
𝑈𝜙

�̈� = �̇��̇�
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

+ 1
𝐼𝑦
𝑈𝜃

�̈� = �̇��̇�
𝐼𝑥 − 𝐼𝑦
𝐼𝑧

+ 1
𝐼𝑧
𝑈𝜓

(14)

with 𝑚 = 0.4472 kg the total mass of the quadrotor, 𝑔 = 9.80665 m∕s2 the
gravitational acceleration, and (𝐼𝑥, 𝐼𝑦, 𝐼𝑧) = (0.0020, 0.0016, 0.0035) Nms2

the moments of inertia on the corresponding axes.
OPD and OASP are used with four macro actions that, in turn,

determine a sequence of low-level control inputs 𝑈 . The four macros
are: fly ahead, turn left, turn right, and hover. Each macro action lasts
for 50 ⋅ 𝑇𝑆 = 0.2 s, during which the quadrotor is expected to fulfil the
desired behavior. All these macros can be applied in any state of the
system, and they are inspired from the existing high-level control of the
AR.Drone quadrotor we simulate, which exposes only high-level linear
and angular velocity commands. The macro actions are achieved using
simple LQR controllers, for more details refer to (Máthé, 2016).

The control goal of passing through all the waypoints on the shortest
path is defined using the reward function:

𝜌(𝑥, 𝑢) =
𝑥13 − 1
𝑁

+ 1
𝑁

(1 − (𝑥 − 𝑌 (𝑥13))𝑇𝑄(𝑥 − 𝑌 (𝑥13))∕𝑟max) (15)

where 𝑁 marks the total number of waypoints, 𝑌 (𝑥13) is the coordinate
of the waypoint towards which the quadrotor should currently be
heading, and the maximum unnormalized reward for the waypoint
distance component is 𝑟max = 2800.84. The term 𝑥13−1

𝑁 increases as more
waypoints are reached. It is enough to reach a neighborhood of 0.2 m on
each axis around a waypoint to consider it reached and increment 𝑥13.
The second term of the reward function provides a score on how close
the quadrotor is to the current waypoint, where we set 𝑄 = diag(1, 1, 3,

0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0). Thus, the largest weight is put on the 𝑧
axis position of the quadrotor, so that the altitude is kept as stable as
possible. Large weights are also set for the other two positions, so that
the waypoints are reached. The last three weights, equal to 0.1, prevent
the quadrotor from performing sudden rotations on any axis. Finally,
the constant 𝑟max normalizes the reward to [0, 1].

Two experiments are run, in which five waypoints are defined,
having the coordinates (𝑥, 𝑦, 𝑧) = (6, 0, 1), (9, 2, 1), (8, 5, 1), (5, 4, 1), and
(1, 2, 1), all expressed in meters. The quadrotor starts from a hovering
state, oriented towards the positive direction on the 𝑥 axis, and should
fly through the waypoints and stop at the last one. The experiments are
performed with a budget of 𝑛 = 1000 expansions for OPD and OASP,
while OASP is configured with the 𝜈-rule and 𝛽 = 18.

In the first experiment the starting position is (𝑥, 𝑦, 𝑧) = (3, 0, 1).
The left graph from Fig. 12 shows that the LQR controller obtains an
almost perfect flight trajectory, because the quadrotor dynamics remain
in a near-linear regime for which the LQR controller (designed based
on linearized dynamics) works well. The side view of the trajectory
indicates the quadrotor had some small variations in the flight altitude.
The right graph from Fig. 12 presents the trajectories obtained by
OPD and OASP. Although both planning methods find a solution to fly
through the waypoints, the trajectories are sub-optimal. The solutions
can be improved e.g. by increasing the computational budget, or by
tuning the macro actions. Nevertheless, the flight path obtained with
OASP is clearly better than the one of OPD.

The second experiment starts from a more distant location, (𝑥, 𝑦, 𝑧) =
(25, 2, 1). i.e. to the right of the waypoints. The quadrotor has to turn
back before flying towards the waypoints. The additional turning and
the larger distance increase the number of required actions before the
first waypoint is reached, and thus the required planning horizon. In
contrast to the first experiment, LQR fails to find the correct flight
direction and drives the quadrotor to an incorrect location. This is
because the quadrotor evolves in a wider range of states where the
linearized dynamics are no longer valid. On the other hand, as shown in
the right graph from Fig. 13, OPD also fails to find a solution. The same
computational budget is however enough for OASP to find a solution,
which confirms the benefit of working with constrained planners.

7. Conclusions and future work

This paper has presented two algorithms for near-optimal control,
tailored to compute solutions that switch a limited number of times
between different discrete actions. The first algorithm, called optimistic
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Fig. 13. Quadrotor online simulations: path planned with LQR (left) and with OPD and OASP (right).

switch-limited planning (OSP), uses a fixed switch constraint. By taking
advantage of this property, our analysis showed that computation in
the case of OSP is polynomial in the adaptive horizon of the com-
puted solution, in contrast to the exponential complexity achieved
by unconstrained OP algorithms; and therefore that OSP approaches
the constrained optimum fast. Extensive simulations confirmed the
analytical properties of the algorithm and illustrated that it works well
in receding horizon. As a more general class of applications, we also
explained how the switch constraint can be applied to limit bandwidth
requirements in networked control systems. Furthermore, the algorithm
was applied to a real rotational pendulum, with good results.

Since OSP uses a fixed value of the switch constraint 𝑆, the optimal
solution may fall outside its search space. In the second part of the
paper, we developed an extension of OSP, called OASP, introducing
an increment rule that adapts 𝑆 depending on the evolution of the
cumulative rewards. OASP was evaluated for two possible increment
rules for 𝑆, analyzing the performance of the algorithm in several
special cases of search trees. Although a general characterization of
the performance of OASP was not obtained yet, the analysis in these
cases confirmed that, unlike OSP, OASP exploits the adaptation rule to
obtain a near-optimal solution. Furthermore, OASP outperforms OPD
for certain types of control problems, and gracefully degrades to the
performance of OPD in other cases. OASP was evaluated in simulations
of rotational pendulum swing-up and of quadrotor trajectory control,
confirming the benefits of the novel algorithm.

Future work will focus on comparisons with more classical model-
predictive control methods, analyzing the closed-loop performance of
OSP and OASP, and on completing the analysis of OASP with a general
characterization of its convergence rate.
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